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Abstract

In this paper we present some former results about properties of digital circles defined by neighbourhood sequences

in the triangular grid. Das and Chatterji [Inform. Sci. 50 (1990) 123] analyzed the geometric behaviour of two-

dimensional periodic neighbourhood sequences. We use a more general definition of neighbourhood sequences, which

does not require periodicity [Publ. Math. Debrecen 60 (2002) 405]. We study the development of wave-fronts and grow

digital circles from a triangle with general neighbourhood sequences in triangular grid. We present the possible types of

polygons, and characterize them by the initial part of the neighbourhood sequences. The symmetry and the convexity

analysis of the digital circles is also presented.

Besides those who are interested in the underlying theory there may be readers from the pattern recognition or the

image processing communities or even the geometric modelling field who could find some of the consequences of the

paper of interest.
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PACS: 52C99; 68U10

Keywords: Digital geometry; Neighbourhood sequences; Triangular grid; Digital circles; Region growing; Constructive geometry;

Finite state automaton
1. Introduction

The classical digital––cityblock and chess-

board––motions were introduced by Rosenfeld

and Pfaltz (1968) in square grid. Based on these

types of motions, the authors in (Rosenfeld and

Pfaltz, 1968) defined three distances. The d4 or d8
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distance of two points is the number of steps re-
quired to reach either point from the other, where

only cityblock or chessboard motions can be used,

respectively. The distance doct obtains a better

approximation for the Euclidean distance, in this

Rosenfeld and Pfaltz used both the cityblock and

chessboard motions, alternate. Geometrically, the

corresponding ‘disks’ are diamonds for the dis-

tance d4, squares for d8, and octagons for doct. (In
Fig. 1 there are some examples.)

By allowing arbitrary mixture of cityblock and

chessboard motions, Das et al. introduced the

concept of periodic neighbourhood sequences in
ed.

mail to: nbenedek@math.klte.hu
http://www.inf.unideb.hu/~nbenedek


Fig. 1. Examples for growing digital circles up to radius 8. (a) Circles in square grid, (b) circles in triangular grid.
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(Das et al., 1987). In that paper only periodic

neighbourhood sequences were investigated. The

concept of neighbourhood sequences was extended
to the concept of generalised (not necessarily

periodic) neighbourhood sequences in (Fazekas

et al., 2002).

The main advantage of neighbourhood se-

quences over the classical distances d4, d8 is that

they provide more flexibility in moving on the

plane. Making use of this property, Das and

Chatterji (1990) were able to determine distance
functions that provide good approximation of the

Euclidean distance. They analyzed the geometric

properties of the octagons occupied by a neigh-

bourhood sequence during ‘spreading’ on the 2D

plane.

Similarly to the square grid, in triangular grid

there are also more neighbourhood criteria (Deu-

tsch, 1972). In (Nagy, 2003) we used neighbour-
hood sequences in triangular grid. We presented

an algorithm which provides a shortest path be-

tween two arbitrary triangles by using a given

neighbourhood sequences. (We used the concept

neighbourhood sequences in the general way, as

can be found in (Fazekas et al., 2002).)

The triangular grid is a valid concurrent plane

to the rectangular one in digital geometry. It has
many nice properties, but it also has some strange

properties (in (Nagy, 2002), we showed that the

distance based on neighbourhood sequences in

triangular grid may not be symmetric). The digital

circles (we show some examples in Fig. 1) of tri-

angular grid are better approximations to the

Euclidean circles than the ones in square grid
(Hajdu and Nagy, 2002). This is an important

reason why we study this plane in detail. The tri-

angular grids play an increasing role in geometric
modelling, many 3D-scanners produce triangula-

tions. These grids are generally not regular, but at

high enough resolution they are close to regular

ones. The human retina is often modelled by a

Delauney triangulation. Many algorithms of com-

puter graphics are also given for triangular grid.

Therefore we can say that the triangular grids are

among the most important grids in digital geom-
etry, in digital image processing (see Deutsch,

1972; Shimizu, 1981) and in cellular neural net-

works also (see Radv�anyi (2002), where is shown

how the rectangular arrays with weight functions,

which are easy-usable by computers, can be used

to represent other important grids).

We would like to mention here that the digital (or

discrete) circles (and spheres) are also well examined
from different points of view. In most papers the

Euclidean circles are approximated using only

points of a grid. The aim is to use a digital figure

which looks like a circle. (For example, how a

computer can draw a circle on a digital display.)

Difference equation methods and grid-following

algorithms for drawing circles are frequently used.

One of the basic circle-drawing algorithms is the
Bresenham’s algorithm (Bresenham, 1977). It has

many extensions. In (McIlroy, 1983) there are

algorithms for circles and arcs with non-integer radii

and/or non-integer centres in the square grid. In

(Kulpa and Kruse, 1983) there are discrete circles,

disks and rings in the square grid. Algorithms for

figure propagation and disk generation are dis-



Fig. 2. Neighbourhood relations in triangular grid.
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cussed. Their 4-direction, 8-direction and octagonal

propagation disks are the same digital objects as the

digital circles using neighbourhood sequences in the

square grid. In (Andres, 1994) an efficient incre-

mental generation algorithm is presented for square

and cube grids (an extension of Bresenham’s circle
called arithmetical circle is used), while in (Shimizu,

1981) a computer graphical drawing algorithm is

given for the nodes of the triangular grid. Recently

we introduced and investigated distance functions

based on neighbourhood sequences in the triangular

grid (Nagy, 2002, 2003) (we use the regions of the

grid as points). In this paper we will use these digital

distance functions having only integer values be-
tween any two points of the grid. Since our digital

circles will be defined by these neighbourhood-based

distances they are really circles (using digital dis-

tances instead of the Euclidean distance). Our main

aim is not to produce digital objects in the triangular

grid which look like the Euclidean circles, but to

describe the digital circles based on these discrete

distance functions.
The structure of this paper is as follows. In

Section 2 we give our notation, and provide some

properties of the concepts introduced. We present

some properties, in which the triangular grid dif-

fers from the square grid. In the other sections of

this paper we show some former results of Das and

Chatterji (1990) on the triangular grid. Moreover,

we use generalized neighbourhood sequences in-
stead of periodic ones in our analysis. In Section 3

we analyze the changing and development of

wave-fronts, and give an illustrated description of

the digital circles with neighbourhood sequences in

triangular grid. In Section 4 we show a charac-

terization of digital circles. In Section 5 a short

overview of possible applications is presented. Fi-

nally in Section 6 we summarize our results.
Fig. 3. Coordinate axes and values in triangular grid.
2. Basic notation and concepts

In this section we recall some definitions and

notation from (Fazekas et al., 2002; Nagy, 2002,

2003) concerning neighbourhood relations and

sequences.
The neighbourhood relations in triangular grid

is based on the widely used relations (see Deutsch
(1972)), we use three types of neighbours as Fig. 2

shows. These relations are reflexive (i.e. the pixel

marked dark triangle is a 1-, 2-, and 3-neighbour

of itself). In addition, all 1-neighbours of a pixel

are its 2-neighbours and all 2-neighbours are 3-

neighbours, as well (i.e. increasing and inclusion
properties).

We will use three coordinates to represent the

triangles of the triangular grid as in (Nagy, 2002)

and in (Nagy, 2003) (sometimes we refer the tri-

angles as the points of the triangular grid). Fig. 3

shows a part of the triangular grid with the asso-

ciated coordinate values. We note that the points

of the triangular plane have exactly the same
points which have sum of coordinate value 0 or 1,

we call them even and odd triangles, respectively.

The coordinate axes are lines go through the origin

with growing direction of the assigned coordinate

value (and non-ascending of the other two values).

Let P be a triangle in triangular grid. The ith
coordinate of P is indicated by pi ð16 i6 3Þ. Let m
be an integer with 16m6 3. The triangles P ;Q are
called m-neighbours if the following two condi-

tions hold:
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• jpi � qij6 1 ð16 i6 3Þ,
•

P3

i¼1 jpi � qij6m.

Note, that the neighbouring relations are

reflexive and symmetric relations. It is easy to
check that the formal definition above with the

presented coordinate values (Fig. 3) gives the

neighbourhood relations shown in Fig. 2.

The sequence B ¼ ðbðiÞÞ1i¼1, where 16 bðiÞ6 3

for all i 2 N, is called a neighbourhood sequence

for triangular grid, or (triangular) neighbourhood

sequence. B is periodic, if for some l 2 N,

bðiþ lÞ ¼ bðiÞ ði 2 NÞ. For a periodic neighbour-
hood sequence B with period l we briefly write

B ¼ ðbð1Þ; bð2Þ; . . . ; bðlÞÞ. The set of all triangular

neighbourhood sequences will be denoted by S.
We call a step bðiÞ-step when we move from a

triangle P to a triangle Q and they are bðiÞ-neigh-
bours. Let P ;Q be triangles and B 2 S. The trian-

gle sequence P ¼ P0; P1; . . . ; Pk ¼ Q, in which we

move from Pi�1 to Pi by a bðiÞ-step ð16 i6 kÞ, is
called a B-path from P to Q of length k. The B-
distance dðP ;Q;BÞ from P to Q is defined as the

length of the shortest B-path(s), respectively.
In this paper we investigate the way a neigh-

bourhood sequence spreads in the digital space

starting from a triangle of the triangular grid. This

spreading is translation-invariant among the tri-

angles of the same parity and it is central-sym-
metric concerning triangles with different parities.

So, for simplicity we may choose the origin 0 as the

starting triangle.

Let B be a triangular neighbourhood sequence.

For k 2 N, let

Ck
B ¼ fP : dð0; P ;BÞ6 kg:

So Ck
B is the region (digital circle) occupied by B

after k steps.
Similarly, in square grid we will use the

Ok
A ¼ fN : dð0;N ;AÞ6 kg

notations for the occupied regions where N is a

square in the square grid (Z2), A ¼ ðaðiÞÞ1i¼1 is a

neighbourhood sequence for square grid, i.e.,

16 aðiÞ6 2 for all i, and k is a natural number.

In the following we summarize some simple
observations about the digital circles. We under-
line some properties which are different for the

digital circles in square grid and in triangular grid.

In square grid the region Ok
A occupied by k steps

of a neighbourhood sequence A is independent of

the ordering of the first k element of A. A proof is

based on the permutability of steps to a 1-neigh-
bour and to a 2-neighbour (see Hajdu and Nagy

(2002) for more details, where we approximate the

Euclidean circle by digital ones).

Lemma 1. Contrary to the case of square grid, it is
possible for a neighbourhood sequence B and for a
k 2 N, that the region Ck

B does depend on the order
of the first k elements of B.

Proof. We will show an example. Assume that

B1 ¼ ð1; 3Þ and B2 ¼ ð3; 1Þ then our regions

hB2i ¼ C2
B1
and hD1i ¼ C2

B2
differ as Fig. 4 shows in

the margins of row 3. �

This strange property of triangular neighbour-

hood sequences occurs if the distances defining by
them are not symmetric (it can happen that

dðP ;Q;BÞ 6¼ dðQ; P ;BÞ for some triangles P ;Q and

a neighbourhood sequence B). In (Nagy, 2002) we

presented the necessary and sufficient condition

for a neighbourhood sequence to generate a sym-

metric and/or triangular distance function (it can

happen that a B-distance is non-triangular, i.e.,

there are points P , Q, R such that dðP ;Q;BÞþ
dðQ;R;BÞ < dðP ;R;BÞ). (A distance based on a

triangular neighbourhood sequence satisfies the

metric properties iff it is triangular and symmetric.)

In square grid for any neighbourhood sequence

A the regions Ok
A and Ol

A are in the following

relation: Ok
A)Ol

A if and only if k > l.
The triangular neighbourhood sequences have

the similar property as the next remark claims.

Remark 2. For any B 2 S, the sequence of regions
ðCk

BÞ
1
k¼1 is a strictly monotone increasing sequence.

That is, k > l implies Ck
B)Cl

B.

In square grid it is impossible for k 6¼ l and any

two neighbourhood sequences A1 and A2 that

Ok
A1

¼ Ol
A2
. This statement follows from the fact,

that for any neighbourhood sequence A the point

Nð0; kÞ 2 Ol
A if and only if lP k.



Fig. 4. Basic digital circles and their hierarchy. We will refer them by their signed names. The labelled directed paths from hA1i
correspond to the initial part of the neighbourhood sequences resulting the given circles.
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Lemma 3. Contrary to the square grid in the tri-
angular grid it is possible for B1;B2 2 S that
Ck

B1
¼ Cl

B2
with k 6¼ l.

Proof. We present an example. Let B1 ¼ ð1Þ and

B2 ¼ ð2Þ then C2
ð1Þ ¼ C1

ð2Þ (see the ways to get hC1i
from hA1i in Fig. 4). �

We will use the concept of minimal equivalent

neighbourhood sequences to our investigations,
therefore we recall it from (Nagy, 2002).
Let Bðbð1Þ; bð2Þ; . . .Þ and B0ðb0ð1Þ; b0ð2Þ; . . .Þ be

two neighbourhood sequences in the triangular
grid. B0 is called the minimal equivalent neigh-

bourhood sequence of B if the following condi-

tions hold:

• dðP ;Q;BÞ ¼ dðP ;Q;B0Þ for all grid triangles P ,
Q, and

• for each neighbourhood sequence B00, if

dðP ;Q;BÞ ¼ dðP ;Q;B00Þ for all grid triangles P ,
Q, then b0ðiÞ6 b00ðiÞ for all i 2 N.
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In (Nagy, 2002) we proved the following lemma

about the minimal equivalent neighbourhood se-

quence.

Lemma 4. The minimal equivalent neighbourhood
sequence B0 of B is uniquely determined, and is given
by

• b0ðiÞ ¼ bðiÞ, if bðiÞ < 3,
• b0ðiÞ ¼ 3, if bðiÞ ¼ 3 and there is no j < i such

that b0ðjÞ ¼ 3,
• b0ðiÞ ¼ 3, if bðiÞ ¼ 3 and there is some b0ðlÞ ¼ 3

with l < i, and
Pi�1

k¼jþ1 b
0ðkÞ is odd, where

j ¼ maxfljl < i, b0ðlÞ ¼ 3g,
• b0ðiÞ ¼ 2, otherwise.

In the triangular grid, for certain neighbour-

hood sequences, it can happen that a 3-step is

equivalent to a 2-step for our investigations (i.e.

the digital circles in triangular grid have the

following property).

Remark 5. According to the definition of the

minimal equivalent neighbourhood sequence we

obtain the same digital circles using them with the

original ones, i.e., ðCk
B0 ¼ Ck

BÞ for any k 2 N and

minimal equivalent neighbourhood sequence B0

of B.

In Fig. 4 we present some simple digital circles
obtained in a few steps (small radii). We are

starting from the origin, we call this ‘circle’ hA1i.
Using a 1-step we get hA2i or using a 3-step hB1i.
The ‘circle’ hC1i can be given by a 2-step from the

origin, or a 1-step from hA2i. The other circles on

the figure are obtained from the previous ones by

the signed steps.
Fig. 5. Changing the edges (‘sawtooth’ in the top, ‘hilly’ in

middle and ‘straight’ edges in the bottom rows) after a step in

upward direction: (a) original edges; (b) after a 1-step; (c) after a

2-step; (d) after a 3-step.
3. Wave-fronts in triangular grid

In (Das et al., 1987) the authors examined the

wave-front sets of neighbourhood sequences in

square grid. In this part we present the types and

the development of wave-fronts in the triangular

plane. Das and Chatterji (1990) showed that for
every 2D periodic neighbourhood sequence A, Ok

A

is always an octagon. In rectangular grid we have
two kinds of sides: ‘straight’ and ‘stair’-types as

shown in Fig. 1. The vertical and horizontal edges

are ‘straight’, the other four edges are ‘stair’-type.

In the next cases the octagon is degenerate, i.e., it

is a square with only one type of edges. With the

neighbourhood sequence A1 ¼ ð1Þ we get only four
‘stair’-type edges, while using the neighbourhood

sequence A2 ¼ ð2Þ we get a square with only

‘straight’ edges. In the case when we use both 1-

step and 2-step our result is a non-degenerated

octagon.

In triangular plane we have three kinds of

possible ‘limit lines’ (edges). These are the

‘straight’, the ‘hilly’ and the ‘sawtooth’. They
change to each other by using a step from Ck

B to

Ckþ1
B . In Fig. 5, there is the diagram of changing

them by a step using different neighbourhood cri-

teria. (The used growing direction is bottom-up.)

In the first rows we can see how modifying the

‘sawtooth’ with various length; in middle rows the

‘hilly’ and in the last rows the ‘straight’ edges after

different type of steps. (We used steps by neigh-
bouring criteria 1, 2 and 3 at columns (b) (c)

and (d) respectively.)

The diagram of the changing of types of edges

is given by the Table 1 and by Fig. 6.



Table 1

State transition table of edges by taking a step

Original edge

type

After a

1-step

After a

2-step

After a

3-step

‘sawtooth’ ‘straight’ ‘sawtooth’ ‘straight’

‘hilly’ ‘hilly’ ‘hilly’ ‘hilly’

‘straight’ ‘sawtooth’ ‘straight’ ‘straight’

Fig. 6. State transition diagram of type of the edges of digital

circles.

Fig. 7. Changing the corners after a step: (a) original ones (type

1–7); (b) after a 1-step; (c) after a 2-step; (d) after a 3-step.
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In the next statements we summarize our
experiences.

Proposition 6

• After a 3-step our straight and sawtooth edges go
to straight lines,

• the 2-step do not change the type of the edges,
• the ‘hilly’ edge cannot change into another type

edge.

In the previous part, in Fig. 4 we showed the

basic digital circles and here we analyzed the

edges. In next part we analyze how the possible

vertices i.e., the connections of the possible type of

edges change in growing steps. In Table 3 we show

what kinds of corners occur in different digital

circles. Fig. 7 shows all of the cases of changing
vertices by a step in upward direction, because all

corners occurring at basic digital circles are in the
Table 2

Vertex-types of basic digital circles in triangular grid

Name and sign of

corner-type

‘straight’–

‘straight’ (1)

‘straight’–

‘sawtooth’

(2)

‘sawtooth’–

‘sawtooth’

(3)

Occurrence in

basic circles

hB3i hC1i hD3i
hB4i hC3i hD4i
figure (see Table 2), and all possible evolving cor-
ners are in the figure, as well. (See also Table 3 and

Fig. 8.)

Table 2 gathers the types of corners which

occur in basic digital circles (we refer to the basic

circles of Fig. 4 by their name). We use here all

digital circles occurring in Fig. 4, for which the

figure does not contain all three possible growing

steps.
Based on Table 3 we summarize how the ver-

tices change via the growing procedure.

Proposition 7

• There are two types of vertices between ‘hilly’
edges, as we used type 6 and 7, the difference
can be seen at their corner: in type 7 there is a
peak, while in type 6 there is a plateau.

• The following corners can start a new type of
edges, as we show in the table by two values: be-
tween two ‘sawtooth’ edges with 3-step we get a
‘straight’–

‘hilly’ (4)

‘sawtooth’–

‘hilly’ (5)

‘hilly’–‘hilly’

(6)

‘hilly’–‘hilly’

(7)

hE1i – hE1i –

hE2i hE2i



Table 3

State transition table of vertices by taking a step

Original vertex type Edges after a 1-step Edges after a 2-step Edges after a 3-step

‘straight’–‘straight’ (1) ‘sawtooth’–‘sawtooth’ (3) ‘straight’–‘straight’ (1) ‘straight’–‘straight’ (1)

‘straight’–‘sawtooth’ (2) ‘straight’–‘sawtooth’ (2) ‘straight’–‘sawtooth’ (2) ‘straight’–‘straight’ (1)

‘sawtooth’–‘sawtooth’ (3) ‘straight’–‘straight’ (1) ‘sawtooth’–‘sawtooth’ (3) ‘straight’–‘hilly’–‘straight’ (4, 4)

‘straight’–‘hilly’ (4) ‘sawtooth’–‘hilly’ (5) ‘straight’–‘hilly’ (4) ‘straight’–‘hilly’ (4)

‘sawtooth’–‘hilly’ (5) ‘straight’–‘hilly’ (4) ‘sawtooth’–‘hilly’ (5) ‘straight’–‘hilly’ (4)

‘hilly’–‘hilly’ (6) ‘hilly’–‘hilly’ (7) ‘straight’–‘hilly’–‘straight’ (4, 4) ‘straight’–‘hilly’–‘straight’ (4, 4)

‘hilly’–‘hilly’ (7) ‘straight’–‘hilly’–‘straight’ (4, 4) ‘hilly’–‘sawtooth’–‘hilly’ (5, 5) ‘hilly’–‘hilly’ (6)

Fig. 8. State transition diagram of vertices by growing digital

circles.
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new ‘hilly’ edge between the ‘straight’ ones; be-
tween two ‘hilly’ edges we get a new ‘straight’
one (in case 6 with 2-step or 3-step) and we get
a ‘straight’ and a ‘sawtooth’ one using 1-step
and 2-step respectively in case 7.

We draw the state transition diagram of the

vertices in Fig. 8. The double arrows mean that

using these transitions we get two vertices (of the

same type).

As we can see our edge-types and vertex-types

are in closed sets, i.e., we cannot step out from the

above used sets by the growing steps. One can

check also, that all kinds of vertices and edges
occur in digital circles.

Using the basic digital circles and our growing

tables we get all possible digital circles of the tri-

angular grid. In Section 4 we will list their types.
4. Characterizing digital circles

In this section––based on our previous experi-

ence––we characterize the digital circles with

neighbourhood sequences in the triangular plane.
Since neighbourhood sequences spread in an

‘isotropic’ way, the occupied regions are somehow

symmetric objects. More precisely, we have the

following lemma and theorem.
Lemma 8. Let B 2 S and k 2 N. If a triangle P with
coordinates ðp1; p2; p3Þ belongs to Ck

B, then the tri-
angles with coordinates ðpi1 ; pi2 ; pi3Þ also belong to
Ck

B. Here ði1; i2; i3Þ is an arbitrary permutation of
ð1; 2; 3Þ.
Proof. There is not a special coordinate, each of

them plays equal role. Therefore permutating them

we get triangles also with the same distance from

the origin. �

Using the above results we know that the

lines––for which the regions occupied by neigh-

bourhood sequences are symmetric––are the

coordinate axes. Moreover the digital circles are

invariant for the rotation with 2kp=3 for all k 2 Z.

(In general, those 6 triangles have the same coor-

dinate values with permutation.)

Theorem 9. The digital circles in triangular grid are
axial symmetric for 3 lines with p=3 angles between
any two of them.

Proof. It is evident by Lemma 8. The lines are

exactly the coordinate axes for the circles growing

from the origin. �
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In the following, based on Lemma 4 and Re-

mark 5 we will use the minimal equivalent neigh-

bourhood sequence B0 instead of the original

sequence B. In Table 4 and in Fig. 9 we show the

types of the possible digital circles Ck
B. In the figure

we can see the state transition diagram of the
them.

Theorem 10. Table 4 contains all possible digital
circles, and each of them is in the correct place,
respectively.

For proving this theorem we will use the fol-

lowing facts.
Fig. 9. State transition of types of digital circles.
Lemma 11. Table 4 contains the digital circles for
all possible neighbourhood sequences.

Proof. It is evident––that using for steps the

equivalent neighbourhood sequence B0 instead

of B (using Remark 5)––all initial part of all

neighbourhood sequences occur in the second
column. �

One can check that the following statement is

true.

Proposition 12. All basic digital circles in Fig. 4

occur in Table 4, and their types are correct.

Now for proving Theorem 10 we will use

induction.
Table 4

The possible types of digital circles

(A) Triangle Basic: 0 (only the starting t

(B) Hexagon––six ‘straight’ edges Only one 3-step and the ot

(C) Hexagon––three ‘straight’ and

three ‘sawtooth’ edges

With only 1-steps and 2-ste

(D) Hexagon––six ‘sawtooth’ edges Only one 3-step and the ot

(E) Enneagon––six ‘hilly’ and three

‘straight’

Only odd steps: 1-steps and

2-step or repetition (double

(F) Enneagon––six ‘hilly’ and three

‘sawtooth’

Only 1-steps and 3-steps by

(G) Dodecagon––six ‘hilly’ and six

‘straight’

At least (a 2-step or repeat

the sum is even

(H) Dodecagon––six ‘hilly’ and six

‘sawtooth’

At least (a 2-step or repeat

the sum is odd
Proof. By using Lemma 11 we know that all pos-

sible initial parts for the possible neighbourhood
riangle) or by a 1-step

hers are 1-step and 2-step; the sum after the 3-step is even

ps (without any 3-step); and the sum at least 2

hers are 1-steps and 2-steps; the sum after the 3-step is odd

3-steps by turns (with minimum two 3-steps); without any

1-steps) with a 3-step at last

turns (minimum two 3-steps) with a 1-step at last

ed 1-steps) and at least two 3-steps and after the last 3-step

ed 1-steps) and at least two 3-steps and after the last 3-step
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sequences are in Table 4. Therefore we need to

prove only the statement, that for all rows of the

table the given digital circles are right. Our proof is

by induction. From Proposition 12 we know this

fact for the basic digital circles. Now we suppose
that for a digital circle that it is in the correct place

in Table 4. Our induction steps are based on state

transitions of the wave-fronts (Tables 3 and 1 for

the corners and edges respectively). Using these

facts we get the state transition diagram that we

show in Fig. 9. Thus Theorem 10 is proved. �

In Fig. 9 we used the minimal equivalent
neighbourhood sequences to represent all elements

of S. For this reason one cannot see arrows rep-

resenting 3-step from the types of digital circles

for which the sum of the elements after the last

used 3-step must be even. For example types B,

E and G are in this position. In that cases if

the next element of the neighbourhood sequence

B is 3 then we get the same result as we get with
element 2. (Therefore we would have used both

values 2 and 3 on the arrows representing 2-step

if we had used the original neighbourhood se-

quence B.)
We can use our state transition diagram in Fig.

9 as an automaton with as starting state the

starting triangle and alphabet f1; 2; 3g. Our ter-

minal state(s) will be X , where X is the type of the
desired polygon ðX 2 fA;B;C;D;E;F;G;HgÞ.

Now we analyze the convexity of the digital

circles. In strict sense there are many concave

occupied regions among the digital circles. It is

evident that in square grid the occupied area Ok
A is

convex if and only if aðiÞ ¼ 2 for all i < k in the

neighbourhood sequence A. Hence we can say that
Fig. 10. Examples of different types o
only the square with ‘straight’ edges convex. In

triangular grid we have the next theorem.

Theorem 13. In triangular grid the digital circle Ck
B

is convex if and only if it is one of the following
types: A (triangle) or B (hexagon with ‘straight’
edges).

Proof. It is evident that a region is not convex if it

has ‘hilly’ or ‘sawtooth’ edge. Therefore the

statements follows. �
5. Practical examples

In this paper, we were growing regions in the

triangular grid using three kinds of neighbouring

relations in various neighbourhood sequences. In

image processing the region growing is an often

used method for analyzing pictures (find a con-

nected region etc. see Gonzalez and Woods

(1992)). In our method with growing digital circles
we did not care about other properties of the

picture. In practice, starting from a point of an

image a variation of our method can be used. We

unite only those new points of the wave-front

set to our region, which satisfy another desired

property. We can finish the method when our re-

gion does not change, getting the result, which

may depend on the used neighbourhood sequence.
(Using a neighbourhood sequence B our result is

B-connected, i.e., the definition of connectedness

and therefore the result picture depends on B. In
Fig. 10 a tree can be seen (original image, (a)). The

image in the triangular grid is also shown (b). The

next three figures show the maximal (3)––con-
f connected regions (a) original.



Fig. 11. Approximation of the shape with digital circles: (a) original figure; (b) in the square; (c) in the triangular grid.

Fig. 12. Digital parabolas in the triangular grid with neighbourhood sequences. (a) B ¼ ð1Þ, (b) B ¼ ð2Þ, (c) B ¼ ð1; 2; 3Þ.
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nected, the maximal (2)––connected and a maxi-

mal (1)––connected region of the trunk, (c), (d)

and (e), respectively.)

In the following ‘figure propagation’ example
we approximate the shape of the telephone by 15

overlapping digital circles both in the square and

the triangular grid. Fig. 11 shows the original fig-

ure and the results as well.

We analyzed the spreading of wave-fronts orig-

inating from a point. Other kinds of sources of

wave-fronts can be examined as well. For example,

the so-called lanes (investigated in (Nagy, 2003))
which include all points with a fixed coordinate. It is

easy to show that in this case the wave-fronts can be

only of the types ‘straight’ and ‘sawtooth’. The

meeting points of a blowing digital circle and a

wave-front starting from a lane form a (digital)

parabola. In Fig. 12 some parabolas can be seen in

the triangular grid. The parameters of the parabolas

are also marked (in each figure a point and a lane).
As we mentioned in the introduction our aim

was not to approximate the Euclidean circles, but

discovering and using digital circles defined by

digital distance functions based on neighbourhood

sequences in the triangular grid. The B-distances
have only non-negative integer values therefore we

dealt only with circles with integer radii. We would

like to mention here, that in the case of the trian-
gular grid the approximation of the Euclidean cir-

cles is not so trivial as in the square grid. The

triangular grid has some strange properties which

we mentioned before. For example, the radius of
the circle hC3i can be 2 (with neighbourhood se-

quence (2)), can be 3 (for instance using ð1; 2; 1Þ) or
it can also be 4 (using (1)). Therefore the approxi-

mation is highly dependent on the ‘goodness’

measure and on the formal aim of the approxi-

mation. Intuitively it is trivial (and it is easy to

prove formally as well), that generally with our

dodecagons we can have better approximations
than with the octagons which are the circles on

the square grid using neighbourhood sequences.
6. Conclusion

In this paper we presented some results about

triangular neighbourhood sequences, namely we
characterize the digital circles. We gave the possi-

ble types of edges and vertices of these digital

polygons and studied their development in grow-

ing procedure. We listed the types of the digital

circles occupied by neighbourhood sequences, and

performed the symmetry and convexity analysis of

these regions. Moreover we presented state tran-

sition diagrams, which can work as automata.
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The development of the wave-fronts and so, the

digital circles can be drawn by a simple algorithm.

In cellular neural network universal machine

structures, in some image processes there are

effective algorithms which are based on morpho-

logical procedures of waves on binary pictures. It
can be an interesting further research to analyze

these algorithms in the triangular grid. In practice,

it would also be interesting to examine the devel-

opment of the wave-front sets in the case of ‘bar-

rels’. Another possible direction of future research

is the further analysis of meeting waves, etc. It

would be interesting if one mixed our method of

region growing with the methods used in practice
(Chen et al., 1986; Gonzalez and Woods, 1992).

Extensions to non-regular grids can be topics of

further research, as well.
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