Universite Libre de Bruxelles

Institut de Recherches Interdisciplinaires
IRIDIANN ot de Développements en Intelligence Artificielle

4)

AutoMoDe-Chocolate: a Method for the
Automatic Design of Robot Swarms that
Outperforms Humans

G. FRANCESCA

4 ™
IRIDIA — Technical Report Series

Technical Report No.

TR/IRIDIA /2014-015

November 2014
\ Last revision: March 2015 .

IRIDIA — Technical Report Series
ISSN 1781-3794

Published by:

IRIDIA, Institut de Recherches Interdisciplinaires
et de Développements en Intelligence Artificielle

UNIVERSITE LIBRE DE BRUXELLES

Av F. D. Roosevelt 50, CP 194/6

1050 Bruxelles, Belgium

Technical report number TR/IRIDIA /2014-015

Revision history:

TR/IRIDIA/2014-015.001 November 2014
TR/IRIDIA/2014-015.002 March 2015

The information provided is the sole responsibility of the authors and does not necessarily
reflect the opinion of the members of IRIDIA. The authors take full responsibility for
any copyright breaches that may result from publication of this paper in the IRIDIA —
Technical Report Series. IRIDIA is not responsible for any use that might be made of
data appearing in this publication.

IRIDIA technical report manuscript No.
(will be inserted by the editor)

AutoMoDe-Chocolate: a method for the automatic
design of robot swarms that outperforms humans

Gianpiero Francesca - Manuele Brambilla -
Arne Brutschy - Lorenzo Garattoni -
Roman Miletitch - Gaétan Podevijn -
Andreagiovanni Reina - Touraj Soleymani -
Mattia Salvaro . Carlo Pinciroli -

Franco Mascia - Vito Trianni -

Mauro Birattari

Received: date / Accepted: date

Abstract We present two empirical studies on the design of robot swarms. In
Study A, Vanilla and EvoStick, two previously published automatic methods, are
compared with human designers. The comparison is performed on five new swarm
robotics tasks, different from those on which Vanilla and EvoStick have been
previously tested. The results show that Vanilla performs better than EvoStick
but it is not able to outperform human designers. The results indicate that Va-
nilla’s weak element is the optimization algorithm employed to search the space
of candidate designs. To improve over Vanilla and with the goal of obtaining
an automatic design method that performs better that the human designer, we
introduce Chocolate, which differs from Vanilla only in the fact that it adopts
a more powerful optimization algorithm. In Study B, we perform an assessment
of Chocolate. The results show that Chocolate outperforms both Vanilla and
the human designers: Chocolate is the first automatic design method for robot
swarms that is shown to outperform a human designer.

Keywords swarm robotics - automatic design - AutoMoDe

1 Introduction

In this paper, we present two empirical studies on the design of robot swarms in
which we compare automatic and manual design methods. Moreover, we introduce
AutoMoDe-Chocolate (hereafter Chocolate), the first automatic design method
for robot swarms that is shown to outperform human designers.

Designing robot swarms is challenging due to the complex relation existing
between the individual behavior of each robot and the resulting swarm-level prop-
erties: requirements are naturally expressed at the collective level by stating the
characteristics of the desired collective behavior that the swarm should exhibit.
Nonetheless, the designer must eventually define what the individual robots should
do, so that the desired collective behavior is achieved (Dorigo et al, 2014).

IRIDIA, Université Libre de Bruxelles, Belgium - ISTC-CNR, Rome, Italy
E-mail: {gfrances,mbiro}@ulb.ac.be

2 Gianpiero Francesca et al.

Presently, no general approach exists to derive the individual behavior of the
robots from a desired collective behavior—see Sect. 2 for some promising pre-
liminary steps in this direction. Typically, robot swarms are designed manually
by trial and error: the designer implements, tests, and modifies the behavior of
the individual robots until the desired collective behavior is obtained. This design
process completely relies on the intuition and skills of the designer.

Automatic design is an appealing alternative to the manual design process
described above. In an automatic method, the design problem is cast into an
optimization problem: the solution space comprises instances of control software
that conform to a predefined parametric architecture. An optimization algorithm is
employed to search the solution space, which amounts to tune the free parameters
of the architecture. Several studies have shown that effective control software for
robot swarms can be produced via an optimization process—see Sect. 2. However,
these studies owe their success to task-specific solutions, leaving the problem of
creating a general-purpose design method still open (Trianni and Nolfi, 2011).

The focus of our research is on developing a general-purpose, automatic design
method capable of producing control software for robot swarms. By a general-
purpose method we mean a method that proves to be effective for a sufficiently
large class of tasks, without requiring task-specific modifications.

In our research, we consider the simplest life-cycle model for a robot swarm:
specification—development—deployment. In particular, we consider the case in which
the three phases can be instantiated as follows. Specification: the task to be
performed by the swarm is defined and a measure of performance is specified.
Development: the control software of the robots is designed and implemented
with the support of computer-based simulations. Deployment: the control soft-
ware developed is uploaded to the robots and the swarm is deployed to perform
the assigned task. More complex life cycles can be conceived. Nonetheless, as the
engineering of robot swarms is at its dawn, we reckon that focusing on a basic life
cycle is more appropriate and avoids unnecessary complications.

In Francesca et al (2014), we introduced AutoMoDe, as a first step in the devel-
opment of general-purpose automatic design methods. AutoMoDe is an approach
in which control software is automatically designed in the form of a probabilistic
finite state machine, by combining and fine-tuning preexisting parametric mod-
ules. Moreover, we defined AutoMoDe-Vanilla (hereafter Vanilla), a first method
that complies with the AutoMoDe approach. More precisely, Vanilla is a special-
ization of AutoMoDe for a version of the e-puck robot (Mondada et al, 2009). We
compared Vanilla with EvoStick (Francesca et al, 2014), a design method that
uses an evolutionary algorithm to optimize a neural network. The comparison was
based on two classical swarm robotics tasks: aggregation and foraging. The results
show that on both tasks Vanilla outperforms EvoStick.

In this paper, our aim is to (i) perform an objective comparison of some au-
tomatic and manual design methods, and (ii) present the first automatic design
method that is shown to outperform human designers.

We compare Vanilla, EvoStick and two manual design methods: U-Human and
C-Human. In U-Human, the human designer is unconstrained and implements the
control software without any restriction on the structure of the solution. U-Human
closely mimics the way in which most control software for robot swarms is currently
produced (Brambilla et al, 2013). In C-Human, the human designer is constrained to
implement control software by combining the same parametric modules on which

AutoMoDe-Chocolate 3

Vanilla operates. A detailed description of the four methods under analysis is
given in Sect. 3. We perform the study on five tasks defined by researchers that, at
the moment of defining the tasks, were neither aware of the internals of Vanilla
and EvoStick, nor informed on which design methods were included in the study.
This ensures that the definition of the tasks is neutral and no a priori advantage
is granted to any method. The versions of Vanilla and EvoStick that we adopt
are exactly the same that were described in Francesca et al (2014). In other words,
Vanilla and EvoStick were developed before the five tasks were defined and did
not undergo any modification to adapt them to these five tasks. This is consistent
with our quest for a true general-purpose automatic design method.

This study, which we will call Study A, answers two questions: (i) whether
Vanilla performs better than EvoStick also on the new tasks, and (ii) whether
Vanilla performs better than the manual design methods U-Human and C-Human.
The study is reported in Sect. 4. The results show that also on the five new
tasks, Vanilla outperforms EvoStick. Moreover, Vanilla outperforms U-Human.
However, Vanilla performs worse than C-Human. As Vanilla and C-Human operate
on the same set of modules, the difference in performance is to be ascribed to
the mechanism adopted by Vanilla to combine and fine-tune the modules: the
optimization algorithm.

In the light of this conclusion, in Sect. 5 we introduce Chocolate, an improved
version of Vanilla that is based on a more effective optimization algorithm. To
assess Chocolate, we perform a second empirical study: Study B. The goal of this
study is to confirm the following working hypotheses: (i) by adopting a more
advanced optimization algorithm, Chocolate improves over Vanilla; and, most
importantly, (ii) the improvement is such that Chocolate outperforms C-Human.
Study B is reported in Sect. 6. The results confirm both working hypotheses.

The research presented in this paper advances the state of the art in the automatic
design of robot swarms in two main respects. (i) We introduce Chocolate, the first
automatic design method for robot swarms that is shown to outperform a human
designer. (i) We present the first comparison of automatic and manual methods
for the design of robot swarms. This is the first comparison performed on mul-
tiple tasks without any task-specific modification of the methods under analysis.
The experimental protocol we adopt is a contribution per se and can easily be ex-
tended/adapted to any study that aims to compare automatic and manual design
methods. The empirical studies presented in the paper are unprecedented in the
domain of the automatic design of robot swarms—they comprise 350 experimental
runs with a swarm of 20 robots; a total of five methods are tested on five tasks.

2 Related work

In this section, we discuss studies that propose or support principled manual design
methods and automatic or semi-automatic design methods for swarm robotics. We
focus on those studies that prove the viability of the proposed method through
robot experiments—as proposed in this paper—although we consider also some
promising studies that have not been yet validated in reality.

Principled manual design methods. The core issue with the trial and error ap-
proach is that it does not explicitly address the problem of deriving the individual

4 Gianpiero Francesca et al.

behavior from the desired collective one. Some works have proposed ideas to ad-
dress this issue. Unfortunately, most of them rely on strong assumptions and are
not of general applicability as they are conceived for specific tasks. The following is
a brief overview of some of the most promising ideas. For a comprehensive review,
we refer the reader to Brambilla et al (2013).

Martinoli et al (1999) used rate equations to model a collective clustering
behavior and to guide the implementation of the control software of the individual
robots. The method was assessed both in simulation and with up to 10 khepera
robots (Mondada et al, 1993). Lerman et al (2001) and Martinoli et al (2004)
applied rate equations to a cooperative stick pulling task. The control software
produced was tested with up to 6 kheperas. Lerman and Galstyan (2002) used
rate equations to model a foraging behavior under the effect of interference.

Kazadi et al (2007) used a method based on artificial vector fields to develop
a pattern formation behavior. The method is illustrated with simulations and ap-
pears to be able to deal only with spatially organizing behaviors. Hsieh et al (2007)
proposed an approach based on artificial potentials to obtain control software for
coordinated motion along predefined orbital trajectories. The authors provided
convergence proofs and simulated experiments. Similarly, Sartoretti et al (2014)
proposed an approach based on stochastic differential equations driven by white
gaussian noise to tackle coordinated motion. In this case, the orbital trajectory is
derived via collective consensus among the robots of the swarm. The approach has
been validated with a swarm of 8 e-puck robots.

Hamann and Woérn (2008) used Langevin equations to model the behavior
of the individual robots, and analytically derived a Fokker-Planck equation that
models the collective behavior of the swarm. Berman et al (2011) adopted a similar
approach based on a set of advection-diffusion-reaction partial differential equa-
tions to design control software for task allocation. None of the two approaches
has been assessed in robot experiments yet.

Lopes et al (2014) introduced an approach based on supervisory control the-
ory. The approach has been demonstrated by designing a segregation behavior.
The assessment has been performed with a swarm of 26 e-pucks and one of 42
kilobots (Rubenstein et al, 2014). The main drawback of this approach is that it
requires extensive domain knowledge.

Brambilla et al (2014) introduced an approach based on prescriptive modeling
and model checking. The approach has been demonstrated by designing control
software for two tasks: aggregation and foraging. The assessment has been per-
formed with swarms of up to 20 e-pucks. Also in this case, the approach requires
extensive domain knowledge.

Automatic and semi-automatic design methods. The automatic design of robot
swarms has been pursued mainly within the evolutionary robotics domain, in which
the standard methodologies employed in the single robot case have been extended
towards multi-robot systems (Trianni, 2008). Following the main tradition of evo-
lutionary robotics, several studies demonstrated the possibility of designing con-
trol software in the form of a neural network (Quinn et al, 2003; Baldassarre et al,
2007; Trianni and Nolfi, 2009; Hauert et al, 2008; Grof and Dorigo, 2009; Izzo et al,
2014). Research studies often sway between providing an engineering solution and
modeling biological systems (Trianni, 2014). Notwithstanding the large number
of robot swarms successfully designed via an evolutionary process, an engineering

AutoMoDe-Chocolate 5

methodology for the application of evolutionary robotics is still unavailable (Tri-
anni and Nolfi, 2011). In the following, we discuss three techniques that have
been proposed as contributions to the definition of an engineering methodology in
evolutionary robotics (for a recent review, see Doncieux and Mouret, 2014).

Multi-objectivization has been proposed as a general way to guide the evo-
lutionary search in rugged fitness landscapes and avoid bootstrap problems, both
problems severely affecting the evolution of control software for robot swarms (Tri-
anni and Lépez-Ibdnez, 2014). However no test with robots has been performed
to date, and multi-objective evolution could be equally affected by the reality gap
problem as much as single-objective studies. The possibility to deal with the reality
gap by adding a specific objective—as demonstrated by Koos et al (2013)—makes
the approach promising in the general case.

Novelty search has been proposed by Lehman and Stanley (2011) as a tech-
nique for promoting diversity among possible behaviors and improving the explo-
ration of the search space. Gomes et al (2013) extended the technique to swarm
robotics and provided also a solution that combines novelty search and fitness-
based techniques through scalarization of the respective scores. No quantitative
results with robots have been provided to date.

Hierarchical decomposition has been proposed by Duarte et al (2014b) as
an approach to scale in task complexity. The design problem is tackled by decom-
posing the control software into modules that are either evolved or manually pro-
grammed. The hierarchical decomposition is performed manually by the designer
and is task-specific. The approach has been successfully extended to multi-robot
systems (Duarte et al, 2014a), but no test with robots has been performed yet.
The transfer to reality of the control software in the single robot case (Duarte
et al, 2014b) makes the proposed technique promising also for robot swarms.

A number of studies on online adaptation in multi-robot systems are related to
evolutionary robotics. In these studies, population-based optimization algorithms
are implemented in a decentralized way exploiting the robots as computational
nodes. Watson et al (2002) introduced embodied evolution as a technique to dis-
tribute an evolutionary algorithm over a group of robots. Since its introduction,
several studies have tested the feasibility of the approach, proposing algorithms for
both open-ended or task-dependent evolution (Bredeche et al, 2012; Haasdijk et al,
2014). Konig and Mostaghim (2009) proposed the usage of finite state machines
within embodied evolution. However, the problems studied are rather simple and
no test with robots was performed.

Further studies about online adaptation depart from the implementation of dis-
tributed evolutionary algorithms. Winfield and Erbas (2011) exploited an imitation-
based algorithm to explore the idea of cultural evolution within robotic groups.
Pugh and Martinoli (2009) implemented a distributed version of particle swarm
optimization, and Di Mario and Martinoli (2014) extended the approach to a hy-
brid simulate-and-transfer setup that further reduces the experimental time.

Related to automatic design are those studies in swarm robotics in which the
control architecture is fixed and only a small set of parameters is tuned. Hecker et al
(2012) used a genetic algorithm to optimize the parameters of a finite state machine
for a cooperative foraging task. Gauci et al (2014a) used evolutionary strategies
to optimize the six parameters of the control software for an object clustering
task. The same authors resorted to exhaustive search to tune the parameters of

6 Gianpiero Francesca et al.

Fig. 1: Front and side view of an e-puck robot and a tag used to localize the robot
via a ceiling-mounted camera

similar control software for self-organized aggregation (Gauci et al, 2014b). In
these studies, the distinction between manual design with some parameter tuning
and a truly automatic design is somewhat blurred.

Empirical assessments of automatic design methods for robot swarms that have
been conducted with swarms of a reasonably large size are rare in the literature. To
the best of our knowledge, the only automatic design methods that have been em-
pirically tested in experiments involving swarms of at least 10 robots are the ones
presented by Gauci et al (2014a,b) and Francesca et al (2014). Those presented
by Francesca et al (2014), that is, Vanilla and EvoStick, are the only automatic
design methods that have been tested on more than one task, without undergoing
any task-specific modification. No automatic design method for robot swarms has
been so far compared against human designers in a controlled experiment.

3 Four design methods for a swarm of e-pucks

In this section, we describe four methods that design control software for a swarm
of e-puck robots: Vanilla, EvoStick, C-Human, and U-Human. To be precise, these
methods operate with a subset of the capabilities of the e-puck platform which is
formally described by the reference model introduced by Francesca et al (2014).
In this paper, we call this reference model RM1.

The e-puck maneuvers by actuating its two wheels, which constitute a differ-
ential steering system (Mondada et al, 2009). The version of the e-puck adopted
in our research is shown in Fig. 1. This version of the e-puck is equipped with 8 in-
frared transceivers, 3 ground sensors, and a range-and-bearing board. The infrared
transceivers are placed around the body of the e-puck and are used as light and
proximity sensors. The ground sensors are placed under the front of the e-puck
and measure the reflectance of the floor, which allows the e-puck to distinguish
at least three levels of gray. The range-and-bearing board (Gutiérrez et al, 2009)
allows the e-puck to perceive the presence of other e-pucks in a 0.70 m range. For

AutoMoDe-Chocolate 7

Table 1: Reference model RM1

Input Variable Values Description

DProTic(12,... 8} [0,1] reading of proximity sensor ¢
light;c1,2,... 8} [0,1] reading of light sensor %

gndje (12,3} {black, gray, white} reading of ground sensor j

n {0,...,20} number of neighboring e-pucks
Tme{l,2,...,n} [0,0.70]m distance of neighbour m
Lbmeqi,2,...,n) [0,27]rad angle of neighbour m

Output Variable Values Description

Vke{l,r} [—0.16,0.16] m/s target linear wheel velocity

Period of the control cycle: 100 ms

each perceived e-puck, the range-and-bearing board computes the distance (range)
and the relative angle (bearing).

Reference model RM1 is a formalization of the capabilities of the e-puck that
are described above: RM1 abstracts sensors and actuators by defining the input
and the output variables that are made available to the control software at each
control step. Sensors are defined as input variables: the control software can only
read them. Actuators are defined as output variables: the control software can only
write them. Input and output variables are updated with a period of 100 ms. The
reference model RM1 is summarized in Table 1. According to RM1, the reading of
a proximity sensor ¢ is stored in the variable proz, that has values between 0 and 1.
When sensor ¢ does not perceive any obstacle in a 0.03 m range, prozx; = 0; while
when sensor ¢ perceives an obstacle closer than 0.01 m, prox; = 1. Similarly, the
reading of a light sensor ¢ is stored in the variable light, that has values between 0,
when no light source is perceived, and 1, when the sensor ¢ saturates. The readings
of the three ground sensors are stored in the variables gnd,, gnd, and gnd;. These
variables can take three different values: black, gray and white. The e-puck uses
the range-and-bearing board to perceive other e-pucks in its neighborhood. The
variable n stores the number of the neighboring e-pucks. For each neighboring
e-puck m € {1,2,...,n}, the variables r,, and Zby,, indicate the range and the
bearing, respectively. The wheel actuators are operated by the control software
through the variables v; and v,, in which the control software writes the target
linear velocity for the left and right wheel, respectively. The linear wheel velocity
ranges between —0.16 m/s and 0.16 m/s.

In the rest of this section, we describe the four design methods.

3.1 Vanilla

Vanilla produces robot control software by assembling preexisting modules into
a probabilistic finite state machine. The modules operate on the variables defined
in RM1. Modules might have parameters that regulate their internal functioning.
The parameters, along with the topology of the probabilistic finite state machine,
are optimized in order to maximize a task-dependent performance measure.

1 The range-and-bearing board also allows the e-pucks to exchange messages. However, this
functionality is not included in RM1.

8 Gianpiero Francesca et al.

Vanilla assembles two kinds of modules: behaviors and transitions. A behavior
is an activity that the robot can perform, while a transition is a criterion to regulate
the change of behavior in response to a particular condition or event experienced by
the robot. In practice, a behavior is a parametric procedure that sets the output
variables defined in RM1 on the basis of the value of (a subset of) the input
variables. A transition is a parametric procedure that returns either true or false
on the basis of the value of (a subset of) the input variables. In the parlance of
probabilistic finite state machines, states and edges are instances of behaviors and
transitions, respectively. More precisely, a state (edge) is an instance of a behavior
(transition) in which the parameters, if any, are given a valid value. Different
states (edges) might be instances of the same behavior (transition), possibly with
different values of the parameters.

An execution of the control software is a series of control steps of 100 ms each.
At any given control step, the probabilistic finite state machine is in one and only
one state, which we refer to as the active state. The instance of the behavior
associated with the active state is executed. That is, output variables are set, on
the basis of the input variables, as prescribed by the behavior. Subsequently, if
at least one outgoing transition returns true, the control software changes state:
one transition among the ones that returned true is randomly selected and the
state pointed by the selected transition becomes the active state for the following
control step. If no transition returns true, the active state remains unchanged. The
execution of the control software then moves on to the following control step.

In Vanilla, twelve modules are available for being assembled into a probabilis-
tic finite state machine: six behaviors and six transitions. The six behaviors are:
exploration, stop, phototaxis, anti-phototaxis, attraction, and repulsion. With the
exception of stop, these behaviors include an obstacle avoidance mechanism. The
six transitions are: black-floor, gray-floor, white-floor, neighbor-count, inverted-
neighbor-count, fixed-probability. We refer the reader to Vanilla’s original paper
for a detailed description of the modules (Francesca et al, 2014).

The finite state machine and the parameters of the modules are obtained via
an optimization process. The space of feasible solutions searched by Vanilla is
the space of the probabilistic finite state machines that comprise up to four states
and up to four outgoing edges from each state; the behaviors and the transitions
to be associated with states and edges, respectively, are sampled with replacement
from the available modules.

The goal of the optimization is to maximize the expected value of a task-specific
performance measure; where the expectation is taken with respect to the initial
conditions and the contingencies of task execution. Each different initial condition
starting from which the task has to be performed is reproduced through a different
test case on which solutions are evaluated. The contingencies of task execution are
accounted for through realistic computer-based simulations that reproduce sensor
and actuator noise. Specifically, a solution is evaluated on a test case by means of
ARGoS (Pinciroli et al, 2012), a physics-based simulator of swarm robotics systems
that includes a realistic model of the e-puck robot.

The optimization algorithm adopted by Vanilla is F-Race (Birattari et al,
2002; Birattari, 2009). In F-Race, a set of candidate solutions are sequentially
evaluated over different test cases in a process that is reminiscent of a race. The
aim of the process is to select the best candidate solution. The set of candidate
solutions is sampled in a uniformly random way from the space of feasible solutions.

AutoMoDe-Chocolate 9

The F-Race algorithm comprises a series of steps. At each step, a different test case
is sampled and is used to evaluate the candidate solution. At the end of each step,
a Friedman test is performed on the basis of the results obtained by the candidate
solutions on the test cases sampled so far. All candidate solutions that appear
to perform significantly worse than at least another one are dropped from the
set of candidate solutions and are not further evaluated in the subsequent steps.
The process stops when either a single candidate remains or when a predefined
budget of evaluations have been performed. By discarding as early as possible
the candidates that are statistically dominated by at least another candidate, the
evaluation process implemented by the F-Race algorithm allows for a rational and
efficient use of the available evaluation budget (Birattari, 2009).

The implementation of F-Race that is adopted in Vanilla is the one provided
by the irace package (Lépez-Ibafiez et al, 2011) for R (R Core Team, 2014). Va-
nilla uses the default parameters of F-Race provided by the irace package and
samples the design space using the built-in sampling procedure of irace.

3.2 EvoStick

EvoStick is an automatic design method belonging to the evolutionary robotics
approach. EvoStick generates control software in the form of a fully connected,
feed-forward neural network without hidden nodes. Inputs and outputs of the
network are defined on the basis of the variables given in RM1. The neural network
has 24 inputs and 2 outputs. The inputs are 8 proximity sensors, 8 light sensors, 3
ground sensors, and 5 values computed from the messages received by the range-
and-bearing board. The two outputs act on the two wheels by setting the target
speed velocity. The neural network is described by 50 parameters. Each parameters
is a real value in the range [—5,5]. In EvoStick, the parameters of the neural
network are encoded in a real-valued vector and are optimized via an evolutionary
algorithm that involves mutation and elitism. At the beginning, a population of 100
neural networks is randomly generated. Each neural network of the population is
evaluated via 10 runs in simulation using ARGoS. To constitute the new population
of neural networks, elitism and mutation are applied. The elite, that is, the 20 best
performing neural networks are included unmodified in the new population. The
remaining 80 neural networks of the new population are obtained by mutating the
individuals of the elite. Mutations are performed by adding a random value drawn
from a normal distribution (with mean 0 and variance 1) to each parameter of the
neural network. The evolutionary algorithm stops when a predefined number of
iteration is reached. The final population is then evaluated again in order to select
the best neural network, that is, the one with the highest mean performance.
EvoStick has been introduced in Francesca et al (2014) and is similar to some
previously published methods in a number of respects. For example, EvoStick
shares the control architecture, the encoding of the parameters, and the optimiza-
tion algorithm (albeit with different parameters) with the method described in
Francesca et al (2012). The two methods differ in the inputs that are fed to the
neural network. EvoStick is also similar to the methods proposed by Ampatzis et al
(2009) and Tuci et al (2011). The three methods share the encoding of the param-
eters and the optimization algorithm (albeit with different parameters). The main
difference is the structure of the control architecture: the methods proposed by

10 Gianpiero Francesca et al.

Ampatzis et al (2009) and Tuci et al (2011) adopt a neural network that includes
hidden nodes. To the best of our knowledge, EvoStick is the only evolutionary
robotics method that has been tested on more that one task without undergoing
any modification (Francesca et al, 2014).

3.3 U-Human

U-Human is a manual design method in which a human designer implements the
control software in the way (s)he deems appropriate, without any kind of restric-
tion regarding the solution to produce. The designer implements a trial-and-error
process: the control software is iteratively improved and tested until the desired
behavior is obtained. Within this process, the designer assesses the quality of the
result by computing the value of the objective function and by observing the re-
sulting behavior via the simulator’s visual interface. As in the case of Vanilla and
EvoStick, during the development of the control software, the designer is allowed
to perform tests in simulation using ARGoS, but is not allowed to perform tests
with the robots. In the implementation of the control software, the designer is
free to access all the resources (s)he deems appropriate including the internet and
her/his own previously developed code.

The control software is implemented as a C++ class that operates on the in-
put and output variables defined in RM1. These variables are manipulated by the
control software via an appropriate API. The designer is provided with a complete
programming and simulation environment based on ARGoS. Moreover, the de-
signer is provided with the description of the task to be solved, a control software
skeleton to be used as a starting point, the task-specific objective function to be
optimized, and all the scripts that initialize ARGoS for the task at hand. The con-
trol software skeleton is an empty C++ class that complies with the specification
of a valid control software for ARGoS. In other terms, the skeleton is a valid con-
trol software that compiles and runs correctly but that leaves the robot motionless
in its initial position. The designer is required to fill in the skeleton with the ap-
propriate logic for solving the given task. To reduce the burden on the designer,
the skeleton contains commented instructions to access the variables of RM1 via
the API. The task-specific objective function is an ARGoS loop function (Pinciroli
et al, 2012) that computes the performance of the swarm within the simulation.
The objective function is computed automatically by the simulation environment
in a way that is completely transparent to the designer. To ease the assessment
of the control software being implemented, a utility script is provided. The script
compiles the control software, starts ARGoS, generates the simulated arena, runs
and visualizes the simulation, and prints the value of the objective function for
the simulated experimental run. The designer is allowed to use debugging tools
including gdb and valgrind.

3.4 C-Human
C-Human is a manual method in which the human designer is constrained to use

Vanilla’s control architecture and modules. In other words, the human designer
takes the role of Vanilla’s optimization algorithm and searches the same design

AutoMoDe-Chocolate 11

--nstates 2

--s0 attraction --alphaO 5 --n0 1
--n0x0 1 --c0x0 black-floor --betalOx0 1

--s1 stop --n1 2
--n1x0 0 --c1x0 fixed-probability --betalx0 0.25
--nlx1l 0 --clix1 gray-floor --betalxl 1

(a) The probabilistic finite state machine comprises 2 states. State 0 is “attraction”, with
parameter o =5, and has outdegree 1: edge 0 is connected to state 1, the condition for the
transition is “black-floor”, with parameter S =1. State 1 is “stop” and has outdegree 2: edge
0 is connected to state 0, the transition is activated with fixed probability 0.25; edge 1 is
connected to state 0, the condition for the transition is “gray-floor”, with parameter =1

fixed probability
=025
attraction black floor

(b) Resulting probabilistic finite state

Fig. 2: Example of a probabilistic finite state machine specified in the simple finite
language adopted in C-Human (a) and its graphical visualization (b)

space searched by Vanilla. As in Vanilla, the human is constrained to create
finite state machines comprised of at most four states, each with at most four
outgoing transitions—see Sect. 3.1 for the details on the restrictions on the finite
state machines produced by Vanilla. As in U-Human, in C-Human the designer it-
eratively improves the control software in a trial-and-error process that comprises
implementation phases interleaved with testing via simulation. The only difference
between U-Human and C-Human is that in the case of C-Human, the designer imple-
ments the control software by combining the modules of Vanilla and setting their
parameters, rather than directly writing C++ source code. To allow the designer
to implement the control software in this fashion, a user interface is provided. The
user interface allows the designer to specify the probabilistic finite state machine
using a simple finite language, and visualizes the result. An example of a state-
ment in this language is given in Fig. 2, together with the visual representation
produced by the user interface. The user interface also starts ARGoS, generates
the simulated arena, runs and visualizes the simulation, and prints the value of
the objective function for the simulated experimental run.

4 Study A: comparison of four design methods for RM1

The goal of this study is to compare the design methods described in Sect. 3.

12 Gianpiero Francesca et al.

Table 2: Role of the experts, anonymously indicated here by the labels E1 to E5.
The tasks defined by the experts are described in Sect. 4.1.2

task defined by U-Human C-Human
SCA —shelter with constrained access E1 E5 E4
LCN —largest covering network E2 E1l E5
CFA —coverage with forbidden areas E3 E2 E1l
SPC —surface and perimeter coverage E4 E3 E2
AAC - aggregation with ambient cues E5 E4 E3

4.1 Experimental protocol

In the experiments proposed in the paper, a central role is played by five re-
searchers, hereinafter referred to as experts. The experts are PhD candidates in
the domain of swarm robotics. They have about two years of experience in the
domain. They have previously worked with the e-puck platform or with similar
platforms. They are familiar with the ARGoS simulator and programming envi-
ronment. Within the protocol, each expert plays a threefold role: (i) define a task,
(ii) solve a task via U-Human, and (iii) solve a task via C-Human. The tasks solved
by an expert via U-Human and C-Human are different and are not the one proposed
by the expert himself. Experts shall not exchange information throughout the du-
ration of the empirical study. The roles of each expert is summarized in Table 2.

4.1.1 Definition of the tasks

In the definition of the tasks, the experts are kept unaware of the design methods
included in the empirical study, in order to avoid any influence in the experts’
choices that could favor one method over the others. Experts are asked to define
tasks that, according to their judgment, could be performed by a swarm of 20
robots conforming to RM1. The experts are given a set of constraints that the tasks
must satisfy: The time available to the robots for performing a task is 7' = 120s.
The robots operate in a dodecagonal area of 4.91 m? surrounded by walls. The
floor of the arena is gray. Up to three circular or rectangular patches might be
present on the floor. The patches might be either white or black. The diameter of
the circular patches and the sides of the rectangular patches cannot exceed 0.6 m.
The experimental setup might include a light source placed outside the south side
of the arena. Up to 5 obstacles might be present in the arena. Obstacles are wooden
cuboids of size 0.05m x 0.05m x L, where L is in the range [0.05,0.80] m.

As part of the task definition, the experts are asked to define the task-specific
performance measure that will be used to assess task execution. The performance
measure should be computable on the basis of the position and orientation of the
robots, evaluated every 100 ms.

The procedure through which an expert defines a task can be intended as a
sampling according to an unknown distribution defined over the space of tasks that
can be performed by a swarm of 20 robots conforming to RM1, and that satisfy
the given environmental constraints. The tasks that are relevant to our study can
be defined in terms of the sampling procedure: the higher the probability that a
task is sampled, the higher the relevance of the task.

AutoMoDe-Chocolate 13

4.1.2 Description of the tasks defined by the experts

The following are the tasks defined by the experts according to the procedure
given in Sect. 4.1.1. Overhead shots of the experimental arenas are given in Fig. 3.

SCA - shelter with constrained access. The arena contains a rectangular white
region of 0.15m x 0.6 m. This region is closed on three sides by obstacles: only the
south side is open for the robots to enter. In the arena, there are also two black
circular patches, positioned aside the white region. The two circular patches have
the same diameter of 0.6 m. The setup also includes a light source placed on the
south side of the arena. The task for the robots is to aggregate on the white region:
the shelter. The robots can use the light source and the black circular patches to
orientate themselves. The performance measure is defined in terms of an objective
function to be maximized: Fsca = Z?zl N (t), where N (t) is the number of robots
in the shelter at time ¢ and T is the duration of the experiment.

LCN —largest covering network. The arena does not contain any obstacle, floor
patch or light source. The robots are required to create a connected network that
covers the largest area possible. Each robot covers a circular area of 0.35 m radius.
Two robots are considered to be connected if their distance is less than 0.25 m. The
performance measure is defined in terms of an objective function to be maximized:
Fren = Ac(ry, where C(T') is the largest network of connected robots at the end
T of an experiment and Ac(r) is the area covered by C(T).

CFA — coverage with forbidden areas. The arena contains three circular black
regions, each with a diameter of 0.6 m. The robots are required to cover the arena,
avoiding the forbidden areas denoted by the black floor. The performance measure
is defined in terms of an objective function to be minimized: Fora = E[d(T)],
where E[d(T)] is the expected distance, at the end T of an experiment, between a
generic point of the arena and the closest robot that is not in the forbidden area.
This objective function is measured in meters.

SPC - surface and perimeter coverage. The arena contains a circular black re-
gion with a diameter of 0.6 m and a square white region with sides of 0.6 m. The
robots are required to aggregate on the perimeter of the black circle and to cover
the area of the white square. The performance measure is defined in terms of
an objective function to be minimized: Fspc = caE[da(T)] + cpEldp(T')], where
ca = 0.08, ¢, = 0.06, E[d.(T)] is the expected distance, at the end T of an ex-
periment, between a generic point in the square region and the closest robot that
is in the square region, FE[dp(T)] is the expected distance between a generic point
on the circumference of the circular region and the closest robot that intersects
the circumference. If no robot is on the surface of the square region and/or on the
perimeter of the circular region, E[d.(T")] and/or E[dy(T)] are undefined and we
thus assign an arbitrarily large value to Fspc. We consider this a major failure.

AAC - aggregation with ambient cues. The arena contains two circular regions,
one black and one white, each with a diameter of 0.6 m. The black region is placed
closer to the light source, which is on the south side of the arena. The robots have
to aggregate on the black region and can use the light and the white region to
orientate themselves. The performance measure is defined in terms of an objective
function to be maximized: Faac = 23:1 N(t), where N(t) is the number of robots
on the black region at time t.

14 Gianpiero Francesca et al.

SCA —shelter with constrained access LCN —largest covering network

robots must aggregate in the white region, robots must create a connected network
the shelter that covers the largest area possible

CFA —coverage with forbidden areas SPC —surface and perimeter coverage

robots must cover all the arena except the robots must cover the area of the white
forbidden black regions square and the perimeter of the black circle

Fig. 3: Overhead shots of the arenas
used for the five tasks defined by the
experts. The pictures show also the
20 e-puck robots

AAC - aggregation with ambient cues
robots must aggregate on the black circle

AutoMoDe-Chocolate 15

4.1.8 Destign methods under analysis and experimental setup

We compare Vanilla, EvoStick, U-Human, and C-Human. These four design meth-
ods are tested under the same conditions:

Same platform. All methods target the same robotic platform: the specific
version of the e-puck formally defined by RM1.

Same simulator. All methods employ ARGoS as a simulation software to
evaluate design candidates.

Same performance measures. All methods base the evaluation of a design
candidate on the same task-specific performance measures.

Same resources. To design the control software, the four methods are given
a comparable amount of time. U-Human and C-Human are given four hours per task.
Time starts when the human designer receives the description of the task. Vanilla
and EvoStick are given a budget of 200,000 executions of ARGoS per task. Vanilla
and EvoStick are executed on a computer cluster that comprises 400 opteron6272
cores. Under this setting, Vanilla and EvoStick are able to complete a design
session in approximately 2 hours and 20 minutes, wall-clock time.

It is important to notice that simulation plays a different role in automatic and
manual design. Vanilla and EvoStick utilize simulation only to compute the value
of the objective function. This value is then used by the optimization algorithm
to steer the search process. Beside the value of the objective function, no other
piece of information is retained from the simulation. A graphical visualization
of the experimental run is not needed and is not therefore performed. When a
graphical visualization is not performed, ARGoS is much faster than real time.?
As a consequence, the main benefit that Vanilla and EvoStick obtain from not
requiring a graphical visualization is the fact that the objective function can be
computed in a relatively short amount of time.

In contrast, human designers greatly benefit from observing the whole evolution
of an experimental run: the human designer observes the resulting behavior of
the swarm and gets insights on how to improve the control software. Arguably,
for a human designer visual observation is more informative than the value of
the objective function. Both in U-Human and C-Human, the designer can choose to
speed up the visualization with respect to real time or even to disable visualization
altogether. By performing simulations with visualization (at some appropriate
speed-up level), the human designer trades simulation speed for useful information.

4.1.4 Experiments with the e-pucks

The control software produced by Vanilla, EvoStick, U-Human and C-Human for
each task are assessed via experiments with a swarm of 20 e-puck robots.

In this study we adopt a hands-off approach that reduces human intervention
to a bare minimum. The control software is directly cross-compiled by the ARGoS
simulator and it is uploaded to each e-puck of the swarm without any modifica-
tion. To reduce the risk that the negative effects of battery discharge and other
environmental contingencies affect one method more than another, the order of
the experiments is randomly generated so that experiments with the control soft-
ware produced by the four design methods are interleaved. The initial position

2 The statements holds true under the conditions considered in the paper.

16 Gianpiero Francesca et al.

of the e-pucks is generated by placing the e-pucks in known positions and letting
them perform a random walk for 20 seconds. This effectively yields a randomized
initialization for each experiment.

To compute the task-dependent performance measure we use a tracking sys-
tem (Stranieri et al, 2013) that gathers data via a ceiling-mounted camera. The
tracking system logs position and orientation of each e-puck every 100 ms.

4.1.5 Objective of the study and statistical tools

The objective of the study is to compare the four design methods. We wish to
answer two questions: (i) whether Vanilla performs better than EvoStick on the
tasks proposed by the experts; and (ii) whether Vanilla performs better than a
human designer, represented here by the U-Human and C-Human methods.

As discussed in Sect. 4.1.1, the selected tasks can be intended as a sample
extracted from a class of tasks. As such, these tasks allow one to draw conclusions
that generalize, in a statistical sense, to the class of tasks from which they have
been sampled. For this reason, we concentrate our attention on the aggregate per-
formance of the methods over the tasks considered. For the sake of completeness,
we report also a boxplot of the per-task performance and the results obtained
in simulation by the control software produced by the methods under analysis.
Nonetheless, the focus of our study remains the aggregate analysis.

For each task, we perform 40 independent experiments: 10 for the control soft-
ware generated by each of the four methods under analysis. We analyze the results
using the Friedman test (Conover, 1999), with the task as a blocking factor. As
the Friedman test is a rank-based non-parametric test, it does not require scal-
ing the performance measure computed for each of the tasks nor formulating any
restrictive hypothesis on the underlying distribution of the different performance
measures. This test requires only to convert the objective functions of all tasks into
the objective functions of the equivalent minimization problems. Given the rank-
based nature of the Friedman test, this operation is trivial: it can be performed
via any function that inverts the rank order. Specifically, to obtain a minimization
problem from a maximization one, we use as objective function the inverse of the
original one. We represent the result of the Friedman test in a graphical way: a plot
that shows the expected rank obtained by each design method, together with a
95% confidence interval. If the confidence intervals of two methods do not overlap,
the difference between the expected rank of the two is statistically significant.

Concerning the per-task results of the four design methods, we present five
notched box-and-whisker boxplots: one for each task. A notched box-and-whisker
boxplot gives a visual representation of a sample. The horizontal thick line denotes
the median. The lower and upper sides of the box are called upper and lower hinges
and represent the 25-th and 75-th percentile of the observations, respectively. The
upper whisker extends either up to the largest observation or up to 1.5 times
the difference between upper hinge and median—whichever is smaller. The lower
whisker is defined analogously. Small circles represent outliers (if any), that is,
observations that fall beyond the whiskers. Notches extend to +1.58IQR/+/n,
where IQR is the interquartile range and n = 10 is the number of observations.
Notches indicate the 95% confidence interval on the position of the median. If the
notches of two boxes do not overlap, the observed difference between the respective
medians is significant (Chambers et al, 1983).

AutoMoDe-Chocolate 17

In the boxplots, we include also the results obtained in simulation in order
to appraise the impact of the reality gap on the four design methods. Results
obtained in robot experiments are represented by wide boxes and those obtained
in simulation by narrow boxes. As with the experiments with the e-puck robots,
also in simulation we perform 10 independent experiments for the control software
instance generated by each of the four design methods under analysis.

4.2 Per-task results

We report in the following the results obtained by the methods under analysis on
each of the five tasks. The notched box-and-whisker boxplots are given in Fig. 4.
Videos of the experiments and the full set of raw data are available as online
supplementary material.®

SCA —shelter with constrained access. C-Human and Vanilla perform better
than U-Human and EvoStick. In particular, Vanilla is significantly better than
EvoStick. EvoStick is unable to overcome the reality gap. This holds true also
for U-Human, but to a far minor extent. C-Human and Vanilla overcome the reality
gap satisfactorily.

LCN -largest covering network. C-Human and EvoStick perform better than
other methods, with Vanilla performing significantly better than U-Human. Va-
nilla and U-Human do not successfully overcome the reality gap.

CFA — coverage with forbidden areas. The performance of the four methods is
comparable: differences are within a range of few centimeters, that is, less that half
of the e-puck’s diameter. Regarding the reality gap, all methods display differences
between simulation and reality, but these differences are small in absolute terms—
they are all within few centimeters.

SPC - surface and perimeter coverage. EvoStick is visibly unable to overcome
the reality gap and performs significantly worse than the other methods. In the
boxplot, the four X indicate four runs that resulted in a major failure. Vanilla,
U-Human, and C-Human perform comparably well.

AAC - aggregation with ambient cues. Vanilla’s results are slightly better than
those of U-Human and C-Human, and significantly better than those of EvoStick.
The four methods greatly differ in their ability to overcome the reality gap:
EvoStick has the most severe difficulties, followed by U-Human; also Vanilla and
C-Human display difficulties, but to a minor extent.

4.3 Aggregate analysis and discussion

The aggregate analysis is given in Fig. 5: C-Human performs significantly better
than Vanilla, and that both C-Human and Vanilla perform significantly better
than EvoStick and U-Human. The comparison between Vanilla and EvoStick con-
firms the results obtained by Francesca et al (2014).

Concerning manual design, some interesting facts can be observed. The results
show that, at least under the specification—development—deployment life cycle,

3 http://iridia.ulb.ac.be/supp/IridiaSupp2014-011

18 Gianpiero Francesca et al.

SCA —shelter with constrained access LCN - largest covering network
8 o -
S oA - e,
N 3 H _ 3
T = : } =
I 2 8 8
o 2 7 o
8 < . I 5 : - 1%
8 5 B Hs
=y -
2 k=
= (=N J— <
— b © - T ; ©
8 1 I 5 £
< g Sl - T B af ' ; —~
SN e S
H °© H =
. : ' -~ ==
Vanilla EvoStick U-Human C-Human Vanilla EvoStick U-Human C-Human
CFA —coverage with forbidden areas SPC —surface and perimeter coverage
o
—_ - - X X X X =
& 2 2
© 3 o] 8
(o} [0}
© = T <
e = b
S 5] - i g
2 2
< - 2 i o
B [— _ [
° s © T £
N . : i i
Y . - ==g g = g
° i T —H —IR
N o
o
Vanilla EvoStick U-Human C-Human Vanilla EvoStick U-Human C-Human

AAC - aggregation with ambient cues

=]

In each boxplot, the vertical axis re-
ports the values of the task-specific
performance measure. Wide boxes rep-
7 resent the results of the experiments
- ? performed with the robots and narrow
g E g boxes of those performed in simulation.

= See Sect. 4.1.5 for a guide on how to
— read notched box-and-whisker boxplots

15000 20000

3 (&1

10000
the higher, the better,

5000

0

Vanilla EvoStick U-Human C-Human

Fig. 4: Study A—notched box-and-whisker boxplots of the results obtained by
Vanilla, EvoStick, U-Human, and C-Human on the five tasks

also manual design suffers from the reality gap. It is interesting to notice that
C-Human appears to be more effective than U-Human at overcoming the reality gap.
This confirms the reasoning based on the notion of bias-variance tradeoff (Geman
et al, 1992) that we presented in Francesca et al (2014): the reality gap problem
is an instance of a wider problem related to generalization. Methods that are
more constrained and therefore have a reduced representational power also have a
reduced variance. As a result, they appear to have better generalization properties.

A second interesting fact is that, under the protocol adopted, human designers
produce more effective control software when constrained to use predefined mod-

AutoMoDe-Chocolate 19

Vanilla — o0— |the lower, the better
EvoStick —_——
U-Human —o0— 1
C-Human oo
15 20 25
rank

Fig. 5: Study A—Friedman test on aggregate data from the five tasks. Vanilla
performs significantly better than EvoStick and U-Human, but significantly worse
than C-Human. See Sect. 4.1.5 for an explanation of how to read the plot

ules. This result was unexpected—particularly by the experts themselves—and
appears counter-intuitive. We were convinced that human designers would have
obtained the best results when left free to structure the control software following
their intuition and understanding. Also, we expected that the constraint to limit
the design activity to assembling 12 predefined modules would have hindered their
creativity and would have limited their effectiveness. The results proved us wrong;:
C-Human clearly outperforms U-Human. Apparently, the aforementioned reduction
of the variance that is obtained by introducing constraints more than compensates
for the disadvantages that derive from the introduction of a bias.

Concerning the comparison between manual and automatic design, the results
show that Vanilla performs significantly better than U-Human but worse than
C-Human. This is a promising result but indicates that we have not attained our
goal yet: Vanilla cannot be claimed to be more effective than a human designer.

The results obtained by C-Human and Vanilla corroborate the hypothesis that
Vanilla’s set of modules are generally appropriate for tackling relevant tasks with
robots conforming to RM1. The results also highlight a major issue with Vanil-
la: the optimization algorithm F-Race appears to be unable to fully exploit the
potential of the modules. This is clearly indicated by the fact that C-Human, which
adopts the same modules adopted by Vanilla, performs significantly better.

5 Chocolate

Chocolate is an improved version of Vanilla. As Vanilla, Chocolate designs
control software for RM1. Chocolate differs from Vanilla in a single aspect: the
optimization algorithm used to explore the design space. Chocolate adopts Iter-
ated F-Race (Balaprakash et al, 2007; Birattari et al, 2010; Lépez-Ibéfiez et al,
2011), an algorithm for automatic configuration originally devised to fine-tune the
parameters of metaheuristics. Iterated F-Race is based on F-Race (Birattari et al,
2002; Birattari, 2009), the optimization algorithm adopted in Vanilla.

In Iterated F-Race, the optimization process goes through a series of iterations
each of which is an execution of the F-Race algorithm. In the first iteration, an
initial set of candidate solutions is generated by sampling the space of feasible so-
lutions in a uniformly random way. The initial candidates undergo a first execution
of the F-Race algorithm. When the F-Race algorithm terminates, the surviving
solutions—that is, the candidate solutions that have not been discarded—are used

20 Gianpiero Francesca et al.

as a seed to generate a new set of candidate solutions on which the following iter-
ation will operate. The new set of candidates is obtained by sampling the space of
feasible solutions according to a distribution that gives a higher probability of be-
ing selected to solutions that are close to the surviving solutions. See Lépez-Ibanez
et al (2011) for the details. The new set of candidates undergoes a further execu-
tion of the F-Race algorithm. The process is iterated and stops when a predefined
budget of evaluations have been performed.

The implementation of Iterated F-Race that is adopted in Chocolate is the
one provided by the irace package (Lépez-Ibanez et al, 2011) for R (R Core Team,
2014). Chocolate uses the default parameters of irace and samples the design
space using the built-in sampling procedure of irace (Lépez-Ibéiiez et al, 2011).

Our working hypotheses are that, by adopting a more effective optimization
algorithm, (i) Chocolate improves over Vanilla and, most importantly, (ii) the
improvement is such that Chocolate outperforms C-Human.

6 Study B: assessment of Chocolate

The goal of this study is to empirically assess Chocolate and corroborate the
working hypotheses formulated in Sect. 5.

6.1 Experimental protocol

The experimental protocol that we adopt to evaluate Chocolate shares its main
features with the one defined in Sect. 4.1. The only differences concern (i) the way
in which the tasks are defined /selected and (ii) the design methods under analysis.

6.1.1 Tasks and design methods under analysis

The study is performed on five swarm robotics tasks considered in Sect. 4. We do
not follow anew the procedure described in Sect. 4.1.1 but we directly adopt the
task defined by the experts for Study A and already described in Sect. 4.1.2

We compare Chocolate, with Vanilla, and C-Human. EvoStick and U-Human
have been excluded from this study because they were clearly outperformed by
C-Human and Vanilla in Study A. Concerning Vanilla and C-Human, we adopt the
same control software generated in Study A.

Chocolate, Vanilla, and C-Human share a number of key characteristics: (i) they
all produce robot control software in the form of a probabilistic finite state ma-
chine; (ii) they operate on the same set of modules; and (iii) they all adopt the
same simulator to compare and select candidate designs.

The three design methods under analysis are tested under the same conditions
adopted in Study A: same platform, same simulator, same performance measures,
same resources. See Sect. 4.1.3 for the details.

6.1.2 Experiments with the e-pucks

As in Study A, the control software produced by the design methods are assessed
via experiments with a swarm of 20 e-puck robots.

AutoMoDe-Chocolate 21

Although in Sect. 4 we have already performed an assessment of the control
software generated by Vanilla and C-Human on the five tasks considered, we repeat
these experiments. This allows us to compare the three methods under the exact
same conditions. It would be indeed practically impossible to reproduce the same
conditions under which Study A was performed: robots, batteries, and light sources
have been subject to wear and their properties have possibly changed. Moreover,
we have updated the firmware of the e-pucks and the software we use to manage
the experiments and to track the position of the e-pucks over time. Finally, the
arena has been disassembled and later reassembled in a different position.

We adopt here the same hands-off approach we adopted in Study A: the con-
trol software is cross-compiled by ARGoS and it is uploaded to each e-puck of
the swarm without any modification. Moreover, the order of the experiments is
randomly generated so that experiments with the control software produced by
the methods under analysis are interleaved. The initial positions of the e-pucks are
randomly generated as in Study A. Also the performance measures are computed
via the tracking system as in Study A.

6.1.3 Objective of the study and statistical tools

The objective of the study is to compare the three design methods. In particular,
we wish to confirm our working hypotheses: (i) Chocolate improves over Vanilla;
and, most of all, (ii) the improvement is such that Chocolate outperforms C-Human.
As in Study A, we are interested in the aggregate performance of the methods over
the five tasks. Therefore, the main statistical tool we use is the Friedman test. For
completeness, we report also the per-task notched box-and-whisker boxplots.

6.2 Per-task results

The results obtained by the three methods under analysis on each of the five
tasks are represented by the notched box-and-whisker boxplots reported in Fig. 6.
Videos of the experiments and the full set of raw data are available as online
supplementary material.*

SCA - shelter with constrained access. The control software instance designed
by Chocolate performs better than the ones designed by Vanilla and C-Human.
The differences in performance between Chocolate and C-Human and between
Chocolate and Vanilla are significant. Moreover, C-Human performs significantly
better than Vanilla. Regarding the difference between simulation and reality,
Chocolate and C-Human appear to overcome the reality gap successfully: they
have similar performance in simulation and in reality. On the contrary, Vanilla
shows a significant mismatch.

LCN —largest covering network. Chocolate and C-Human have qualitatively the
same performance. On the other hand, Vanilla performs significantly worse than
both Chocolate and C-Human. For what concerns the effects of the reality gap,
all three design methods present a rather noticeable difference between simulation
and reality. C-Human displays the smallest mismatch. The mismatch between the
performance in simulation and reality is possibly due to the fact that, to solve this

4 http://iridia.ulb.ac.be/supp/IridiaSupp2014-011

22 Gianpiero Francesca et al.

SCA —shelter with constrained access LCN —largest covering network
o
g 2 K = 3
o 24 T e
£ —_ io£
T - — %3
H H < 1 E =
. . =% 1 _H. = >=<I:
= o 8
i o
ol i i
Vanilla Chocolate C—Human Vanilla Chocolate C—Human
CFA —coverage with forbidden areas SPC —surface and perimeter coverage
o]
E} i Qa i a
i 2 0 i o
g — g - g
IS H o 2
! - = £

<
R
o

5 of i

Vanilla Chocolate C—Human Vanilla Chocolate C—Human

[=]
4

AAC - aggregation with ambient cues

20000

In each boxplot, the vertical axis re-
ports the values of the task-specific
performance measure. Wide boxes rep-
- £ 8 _ resent the results of the experiments
Eg : i 1 performed with the robots and narrow
1 — g B boxes of those performed in simulation.
— See Sect. 4.1.5 for a guide on how to
- read notched box-and-whisker boxplots

15000
T
the higher, the better,

10000

5000

Vanilla Chocolate C—Human

Fig. 6: Study B—notched box-and-whisker boxplots of the results obtained by Va-
nilla, Chocolate, and C-Human on the five tasks

task, the e-pucks rely on their ability to measure the distance of the neighboring
robots. The measurement of the distance is obtained via the range-and-bearing
board, which is imprecise and highly dependent on uncontrolled factors such as
battery levels and light conditions.

CFA - coverage with forbidden areas. Chocolate and C-Human have similar per-
formance. Vanilla is slightly worse. Differences are small: medians are all within
a range of less that two centimeters. Regarding the reality gap, the three methods
present a similar difference between simulation and reality. The flattening of the

AutoMoDe-Chocolate 23

Vanilla ——o0—

C-Human —o0—i

Chocolate —o0— Ithe lower, the better
\ \ \
20 30 40
rank

Fig. 7: Study B—Friedman test on aggregate data from the five tasks. Chocolate
performs significantly better than both Vanilla and C-Human. See Sect. 4.1.5 for
an explanation of how to read the plot

results with small differences that have no practical implications is possibly due
to the imprecision of the distances measured via the range-and-bearing board.

SPC - surface and perimeter coverage. The median performance recorded for
Chocolate is better than the one recorded for C-Human and Vanilla. The differ-
ence between Chocolate and Vanilla is significant. Concerning the performance
difference between simulation and robot experiments, all three the methods show
some mismatch. Like in the case of SCA —shelter with constrained access, this
difference is possibly due to the fact that part of the task relies on the imprecise
estimation of the distance provided by the range-and-bearing board.

AAC-aggregation with ambient cues. Both Chocolate and Vanilla perform
significantly better than C-Human. The median recorded for Chocolate is slightly
better than the one recorded for Vanilla. Concerning the performance difference
between simulation and robot experiments, Vanilla shows a smaller difference
with respect to Chocolate and C-Human.

6.3 Aggregate analysis and discussion

The results of the aggregate analysis are reported in Fig. 7. These results confirm
those presented in Sect. 4: C-Human outperforms Vanilla. The better performance
of C-Human over Vanilla corroborates the hypothesis formulated in Sect. 4.3: as
C-Human and Vanilla design control software combining the same modules, the
failure of Vanilla to match C-Human’s performance is to be ascribed to Vanilla’s
optimization algorithm. The hypothesis is confirmed by the fact that Chocolate,
which adopts a more advanced optimization algorithm, outperforms Vanilla. This
improvement of Chocolate is such that Chocolate outperforms also C-Human. In
other words, under the experimental conditions defined by the protocol presented
in Sect. 6.1, Chocolate produce better control software than the one produced by
a human designer that operates on the same set of modules as Chocolate.

The results presented in Sect. 4 show that C-Human outperforms U-Human, that
is, the human designer that produces control software without any restriction on
the structure of the control software. Together, the results presented in Sect. 4
and those presented here lead to a stronger statement: under the experimental
conditions defined in Sect. 4.1 and Sect. 6.1, Chocolate designs control software
that outperforms the one produced by a human designer, whether the human is
constrained to use Chocolate’s (and Vanilla’s) modules or not.

24 Gianpiero Francesca et al.

7 Conclusions

In this paper, we presented two empirical studies on the design of robot swarms
in which automatic and manual methods are compared. In Study A, we compared
two automatic methods—Vanilla and EvoStick—with two manual methods—
U-Human and C-Human. Vanilla produces control software by assembling preexist-
ing modules into a finite state machine. EvoStick is a rather standard evolution-
ary robotics method. The two automatic methods have been already published in
Francesca et al (2014) and have been applied in this paper without any modifica-
tion whatsoever. We carried out the comparison on five new tasks, different from
those on which Vanilla and EvoStick had been previously tested. The tasks have
been defined by human experts that, at the time of the definition of the tasks, were
unaware of the functioning of Vanilla and EvoStick. The results showed that Va-
nilla produces better control software than EvoStick, which confirms the results
previously obtained on other tasks. Moreover, the results showed that Vanilla
outperforms U-Human but is outperformed by C-Human. As C-Human is a method
in which a human manually synthesizes finite state machines by assembling the
same modules on which Vanilla operates, we concluded that the difference in
performance between Vanilla and C-Human has to be ascribed to shortcomings in
Vanilla’s optimization algorithm.

To confirm our hypothesis, we defined a new automatic design method, Choc—
olate, that differs from Vanilla only in the optimization algorithm adopted. We
assessed Chocolate in Study B: our results show that Chocolate outperforms both
Vanilla and C-Human. Chocolate is the first automatic design method for robot
swarms that is shown to outperform a human designer.

Beside proposing and assessing Chocolate, in this paper we make an important
contribution to the literature on the automatic design methods for robot swarms.
We proposed and demonstrated an experimental protocol to compare automatic
and manual design methods. The protocol has been developed for use with up to
four methods and five experts. Nonetheless, the protocol can be straightforwardly
extended to a larger number of methods and experts.

A notable trait of the empirical studies presented in the paper is the fact that
all the design methods under analysis adopt the same reference model RM1. It
is our contention that the definition of a reference model of the robotic platform
at hand is a fundamental and necessary step to enable the fair and meaningful
comparison of multiple design methods, whether manual or automatic. We argue
that the lack of scientifically sound comparisons between different design methods
in the swarm robotics literature is to some extent related to the fact that the
important role of reference models has been so far overlooked.

An interesting question that naturally arises concerns the generality of the au-
tomatic design methods discussed in the paper. The question should be addressed
at two different levels: (i) the generality of Vanilla and Chocolate, as specializa-
tions of AutoMoDe to a given reference model; and (ii) the generality of AutoMoDe
as an approach. In Francesca et al (2014), we have already conceptually framed
the notion of specialization of AutoMoDe and the generality of a specialization. In
the following, we focus on original remarks that can be made on the basis of the re-
sults presented in this paper. Regarding the generality of Vanilla and Chocolate,
the results presented in this paper corroborate the hypothesis that underlies the
definition of Vanilla (Francesca et al, 2014): the modules originally proposed for

AutoMoDe-Chocolate 25

Vanilla and then adopted by Chocolate and C-Human are sufficiently general to
produce control software for tasks that can be accomplished by a swarm of robots
conforming to RM1. The hypothesis is corroborated by the results because of the
way in which the tasks have been defined: as already noted, they can be considered
as sampled according to an unknown distribution defined over the space of tasks
that can be accomplished by a swarm of robots conforming to RM1. Regarding
AutoMoDe, statements on the general applicability of the approach can be made
only by specializing AutoMoDe to a large number of different reference models (of
the same or different robots) and then assessing these specializations on multiple
tasks via studies similar to those presented in this paper. This is clearly a research
program that requires a large amount of empirical work and that goes far beyond
the possibilities of a single paper.

A similar reasoning applies to the adoption of Iterated F-Race within Auto-
MoDe. As the results obtained by Iterated F-Race in Chocolate are fully satisfac-
tory, Iterated F-Race will likely be the first optimization algorithm that we will
consider in the specialization of AutoMoDe for new reference models. Nonetheless,
it is perfectly possible that a new reference model (and therefore a new set of mod-
ules) requires adopting another optimization algorithm. It should be noted that
the optimization algorithm to be used is not part of the definition of AutoMoDe,
but rather of its specializations. Whether Iterated F-Race scales satisfactorily with
the number of modules and whether some characteristics of the modules create
particular problems to Iterated F-Race is an empirical question that can be ad-
dressed only by specializing AutoMoDe to a large number of reference models
that require an increasingly larger set of modules. Also in this case, this research
program clearly goes beyond the possibility of a single paper.

Future work will be devoted to the development of a new specialization of Au-
toMoDe to target a reference model that is more complex than RM1. In particular,
we wish to explore the possibility of specializing AutoMoDe for a reference model
that includes communication capabilities. We also plan on assessing the new spe-
cialization of AutoMoDe in an empirical study that involves a larger number of
human experts than the one presented in this paper.

Acknowledgements. This research was partially supported the European Research Council
under the EU’s Seventh Framework Programme—ERC grant agreement n. 246939 and from
the European Science Foundation via the H2SWARM project. Vito Trianni acknowledges sup-
port from the Italian CNR. Arne Brutschy, Franco Mascia, and Mauro Birattari acknowledge
support from the Belgian F.R.S.-FNRS.

References

Ampatzis C, Tuci E, Trianni V, Christensen AL, Dorigo M (2009) Evolving self-
assembly in autonomous homogeneous robots: Experiments with two physical
robots. Artificial Life 15(4):465-484

Balaprakash P, Birattari M, Stiitzle T (2007) Improvement strategies for the F-
Race algorithm: Sampling design and iterative refinement. In: Hybrid Meta-
heuristics, HM 2007, LNCS, vol 4771, Springer, Berlin, Germany, pp 108-122

Baldassarre G, Trianni V, Bonani M, Mondada F, Dorigo M, Nolfi S (2007) Self-
organised coordinated motion in groups of physically connected robots. IEEE
Transactions on Systems, Man and Cybernetics - Part B 37(1):224-239

26 Gianpiero Francesca et al.

Berman S, Kumar V, Nagpal R (2011) Design of control policies for spatially in-
homogeneous robot swarms with application to commercial pollination. In: In-
ternational Conference on Robotics and Automation (ICRA 2011), IEEE Press,
Piscataway, NJ, pp 378-385

Birattari M (2009) Tuning Metaheuristics. Springer, Berlin, Germany

Birattari M, Stiitzle T, Paquete L, Varrentrapp K (2002) A racing algorithm for
configuring metaheuristics. In: Langdon WB, et al (eds) Genetic and Evolution-
ary Computation, GECCO, Morgan Kaufmann, San Francisco, CA, pp 11-18

Birattari M, Yuan Z, Balaprakash P, Stiitzle T (2010) F-Race and Iterated F-Race:
An overview. In: Bartz-Beielstein T, et al (eds) Experimental Methods for the
Analysis of Optimization Algorithms, Springer, Berlin, Germany, pp 311-336

Brambilla M, Ferrante E, Birattari M, Dorigo M (2013) Swarm robotics: A review
from the swarm engineering perspective. Swarm Intelligence 7(1):1-41

Brambilla M, Brutschy A, Dorigo M, Birattari M (2014) Property-driven design
for swarm robotics: A design method based on prescriptive modeling and model
checking. Transactions on Autonomous and Adaptive Systems 9(4):17.1-28

Bredeche N, Montanier JM, Liu W, Winfield AF (2012) Environment-driven dis-
tributed evolutionary adaptation in a population of autonomous robotic agents.
Mathematical and Computer Modelling of Dynamical Systems 18(1):101-129

Chambers JM, Cleveland WS, Kleiner B, Tukey PA (1983) Graphical Methods for
Data Analysis. Wadsworth & Brooks/Cole, Pacific Grove, CA

Conover WJ (1999) Practical Nonparametric Statistics. Wiley, New York

Di Mario E, Martinoli A (2014) Distributed particle swarm optimization for
limited-time adaptation with real robots. Robotica 32(2):193-208

Doncieux S, Mouret JB (2014) Beyond black-box optimization: a review of selective
pressures for evolutionary robotics. Evolutionary Intelligence 7(2):71-93

Dorigo M, Birattari M, Brambilla M (2014) Swarm robotics. Scholarpedia
9(1):1463

Duarte M, Oliveira SM, Christensen AL (2014a) Evolution of hierarchical con-
trollers for multirobot systems. In: Sayama H, et al (eds) Artificial Life 14:
Proceedings of the International Conference on the Synthesis and Simulation of
Living Systems, MIT Press, Cambridge, MA, pp 657664

Duarte M, Oliveira SM, Christensen AL (2014b) Evolution of hybrid robotic con-
trollers for complex tasks. Journal of Intelligent & Robotic Systems pp 1-22

Francesca G, Brambilla M, Trianni V, Dorigo M, Birattari M (2012) Analysing an
evolved robotic behaviour using a biological model of collegial decision making.
In: From Animals to Animats 12, Springer, Berlin, Germany, LNCS, vol 7426,
pp 381-390

Francesca G, Brambilla M, Brutschy A, Trianni V, Birattari M (2014) AutoMoDe:
A novel approach to the automatic design of control software for robot swarms.
Swarm Intelligence 8(2):89-112

Gauci M, Chen J, Li W, Dodd TJ, Gro8 R (2014a) Clustering objects with robots
that do not compute. In: Lomuscio A, et al (eds) Autonomous Agents and
Multiagent Systems (AAMAS 2014), IFAAMAS, Richland, SC, pp 421428

Gauci M, Chen J, Li W, Dodd TJ, Gro8 R (2014b) Self-organized aggregation
without computation. Int Journal of Robotics Research 33(8):1145-1161

Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias/variance
dilemma. Neural Computation 4(1):1-58

Gomes J, Urbano P, Christensen AL (2013) Evolution of swarm robotics systems
with novelty search. Swarm Intelligence 7(2-3):115-144

AutoMoDe-Chocolate 27

Grof} R, Dorigo M (2009) Towards group transport by swarms of robots. Interna-
tional Journal of Bio-Inspired Computation 1(1-2):1-13

Gutiérrez A, Campo A, Dorigo M, Donate J, Monasterio-Huelin F, Magdalena L
(2009) Open e-puck range & bearing miniaturized board for local communication
in swarm robotics. In: International Conference on Robotics and Automation
(ICRA 2009), IEEE Press, Piscataway, NJ, pp 3111-3116

Haasdijk E, Bredeche N, Eiben AE (2014) Combining environment-driven adap-
tation and task-driven optimisation in evolutionary robotics. PLoS ONE
9(6):€98,466

Hamann H, Wérn H (2008) A framework of space—time continuous models for
algorithm design in swarm robotics. Swarm Intelligence 2(2):209-239

Hauert S, Zufferey JC, Floreano D (2008) Evolved swarming without positioning
information: An application in aerial communication relay. Autonomous Robots
26(1):21-32

Hecker JP, Letendre K, Stolleis K, Washington D, Moses ME (2012) Formica
ex machina: Ant swarm foraging from physical to virtual and back again. In:
Dorigo M, et al (eds) Swarm Intelligence, ANTS 2012, Springer, Berlin, Ger-
many, LNCS, vol 7461, pp 252-259

Hsieh M, Loizou S, Kumar V (2007) Stabilization of multiple robots on stable or-
bits via local sensing. In: International Conference on Robotics and Automation
(ICRA 2007), IEEE Press, Piscataway, NJ, pp 2312-2317

Izzo D, Simées LF, de Croon GCHE (2014) An evolutionary robotics approach
for the distributed control of satellite formations. Evolutionary Intelligence
7(2):107-118

Kazadi S, Lee JR, Lee J (2007) Artificial physics, swarm engineering, and the
hamiltonian method. In: World Congress on Engineering and Computer Science,
Newswood, Hong Kong, pp 623-632

Konig L, Mostaghim S (2009) Decentralized evolution of robotic behavior using
finite state machines. International Journal of Intelligent Computing and Cy-
bernetics 2(4):695-723

Koos S, Mouret J, Doncieux S (2013) The transferability approach: Crossing the
reality gap in evolutionary robotics. IEEE Transactions on Evolutionary Com-
putation 17(1):122-145

Lehman J, Stanley KO (2011) Abandoning objectives: evolution through the search
for novelty alone. Evolutionary Computation 19(2):189-223

Lerman K, Galstyan A (2002) Mathematical model of foraging in a group of robots:
effect of interference. Autonomous Robots 13(2):127-141

Lerman K, Galstyan A, Martinoli A, Ijspeert AJ (2001) A macroscopic analytical
model of collaboration in distributed robotic systems. Artificial Life 7(4):375—
393

Lopes Y, Leal A, Dodd TJ, Gro R (2014) Application of supervisory control
theory to swarms of e-puck and kilobot robots. In: Dorigo M, et al (eds) Swarm
Intelligence, ANTS 2014, LNCS, vol 8667, Springer, Berlin, Germany, pp 62-73

Lépez-Ibanez M, Dubois-Lacoste J, Stiitzle T, Birattari M (2011) The irace
package, iterated race for automatic algorithm configuration. Tech. Rep.
TR/IRIDIA /2011-004, IRIDIA, Université Libre de Bruxelles, Belgium

Martinoli A, Ijspeert AJ, Mondada F (1999) Understanding collective aggrega-
tion mechanisms: From probabilistic modelling to experiments with real robots.
Robotics and Autonomous Systems 29(1):51-63

28 Gianpiero Francesca et al.

Martinoli A, Easton K, Agassounon W (2004) Modeling swarm robotic systems: a
case study in collaborative distributed manipulation. The International Journal
of Robotics Research 23(4-5):415-436

Mondada F, Franzi E, Ienne P (1993) Mobile robot miniaturization: A tool for
investigation in control algorithms. In: Yoshikawa T, Miyazaki F (eds) Experi-
mental Robotics III, Springer, Berlin, Germany, pp 501-513

Mondada F, et al (2009) The e-puck, a robot designed for education in engineer-
ing. In: 9th Conf. on Autonomous Robot Systems and Competitions, Instituto
Politécnico de Castelo Branco, Portugal, pp 5965

Pinciroli C, Trianni V, O’Grady R, Pini G, Brutschy A, Brambilla M, Mathews
N, Ferrante E, Di Caro G, Ducatelle F, Birattari M, Gambardella LM, Dorigo
M (2012) ARGoS: A modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intelligence 6(4):271-295

Pugh J, Martinoli A (2009) Distributed scalable multi-robot learning using particle
swarm optimization. Swarm Intelligence 3(3):203-222

Quinn M, Smith L, Mayley G, Husbands P (2003) Evolving controllers for a homo-
geneous system of physical robots: Structured cooperation with minimal sensors.
Philosophical Transactions of the Royal Society of London, Series A: Mathemat-
ical, Physical and Engineering Sciences 361(1811):2321-2343

R Core Team (2014) R: A language and environment for statistical computing. R
Foundation for Statistical Computing, Vienna, Austria

Rubenstein M, Ahler C, Hoff N, Cabrera A, Nagpal R (2014) Kilobot: A low cost
robot with scalable operations designed for collective behaviors. Robotics and
Autonomous Systems 62(7):966-975

Sartoretti G, Hongler MO, de Oliveira ME, Mondada F (2014) Decentralized self-
selection of swarm trajectories: from dynamical systems theory to robotic im-
plementation. Swarm Intelligence 8(4):329-351

Stranieri A, Turgut A, Salvaro M, Garattoni L, Francesca G, Reina A,
Dorigo M, Birattari M (2013) IRIDIA’s arena tracking system. Tech. Rep.
TR/IRIDIA /2013-013, IRIDIA, Université Libre de Bruxelles, Belgium

Trianni V (2008) Evolutionary swarm robotics. Springer, Berlin, Germany

Trianni V (2014) Evolutionary robotics: Model or design? Frontiers in Robotics
and AT 1(13):1-6

Trianni V, Lépez-Ibdnez M (2014) Advantages of multi-objective optimisation in
evolutionary robotics: survey and case studies. Tech. Rep. TR/IRIDIA /2014-
014, TRIDIA, Université Libre de Bruxelles, Belgium

Trianni V, Nolfi S (2009) Self-organising sync in a robotic swarm. A dynamical
system view. IEEE Transactions on Evolutionary Computation 13(4):722-741

Trianni V, Nolfi S (2011) Engineering the evolution of self-organizing behaviors in
swarm robotics: A case study. Artificial Life 17(3):183-202

Tuci E, Ferrauto T, Zeschel A, Massera G, Nolfi S (2011) An experiment on behav-
ior generalization and the emergence of linguistic compositionality in evolving
robots. IEEE Transactions on Autonomous Mental Development 3(2):176-189

Watson R, Ficici SG, Pollack J (2002) Embodied evolution: Distributing an evolu-
tionary algorithm in a population of robots. Robotics and Autonomous Systems
39(1):1-18

Winfield AFT, Erbas MD (2011) On embodied memetic evolution and the emer-
gence of behavioural traditions in robots. Memetic Computing 3(4):261-270

