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Abstract

Multi-scenario optimization is a convenient way to formulate and solve multi-set parameter estimation problems that arise from errors-
in-variables-measured (EVM) formulations. These large-scale problems lead to nonlinear programs (NLPs) with specialized structure that
can be exploited by the NLP solver in order to obtained more efficient solutions. Here we adapt the IPOPT barrier nonlinear programming
algorithm to provide efficient parallel solution of multi-scenario problems. The recently developed object oriented framework, IPOPT 3.2, has
been specifically designed to allow specialized linear algebra in order to exploit problem specific structure. This study discusses high-level
design principles of IPOPT 3.2 and develops a parallel Schur complement decomposition approach for large-scale multi-scenario optimization
problems. A large-scale case study example for the identification of an industrial low-density polyethylene (LDPE) reactor model is presented.
The effectiveness of the approach is demonstrated through the solution of parameter estimation problems with over 4100 ordinary differential
equations, 16,000 algebraic equations and 2100 degrees of freedom in a distributed cluster.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This study deals with the development of specialized non-
linear programming algorithms for large, structured optimiza-
tion problems that arise in parameter estimation. The solution
of these problems is key to the development of industrially rel-
evant models that go beyond idealized laboratory conditions.
In this context, large-scale rigorous models need to be devel-
oped that incorporate complex phenomena in order to capture
the behavior characterized by actual process data. Moreover, as
model development is a repetitive task, efficient methods are
needed for fast and accurate estimation of parameters. This task
is also essential for data analysis, statistical inference and as a
subtask in model discrimination.

Efficient parameter estimation requires structural exploita-
tion of the resulting nonlinear programming problem. These
estimation problems present a multi-scenario structure aris-
ing from multiple data sets that include both local and global
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parameters. While local parameters affect only a particular data
set, global parameters affect all sets and, therefore, can be seen
as complicating variables between sets. An estimation problem
class related to this type of problem is the errors-in-variables-
measured (EVM) formulation where the consideration of mea-
surement errors in both input and output variables leads to a
significant increase in the degrees of freedom.

While nonlinear multi-scenario optimization formulations
can be solved directly with general purpose nonlinear program
(NLP) solvers, the problem size can easily become intractable.
Traditionally, large-scale structured optimization problems
have been handled by specialized problem level decomposition
algorithms. In contrast, this study develops an internal decom-
position for a particular full-space, primal–dual interior-point
(IP) algorithm, IPOPT. In this type of algorithm the dominant
computational expense is the solution of a large linear system
at each iteration. With the proposed decomposition approach,
the fundamental interior-point algorithm is not altered, but
the linear algebra operations performed by the algorithm are
made aware of the problem structure. Therefore, it is possible
to develop large-scale decomposition approaches that preserve
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the desirable convergence properties of the overall NLP algo-
rithm. Similar concepts have also been advanced by Gondzio
and Grothey (2004, 2006), primarily for linear, quadratic, and
convex programming problems. In this work, we exploit the
structure of large, nonconvex multi-scenario problems with a
parallel Schur complement decomposition strategy that can be
implemented in modern parallel computing architectures.

In the next section we provide a general statement of the
parameter estimation problem for both standard least-squares
and EVM models. Section 3 then reviews Newton-based barrier
methods and discusses their adaptation to multi-scenario prob-
lems. Section 4 presents the high-level design of the IPOPT 3.2
software package and describes how the design enables devel-
opment of internal decomposition approaches without changes
to the fundamental algorithm and code. The parallel Schur
complement decomposition is implemented within this frame-
work. This approach is demonstrated in Section 5 on large-scale
parameter estimation for the identification of an low-density
polyethylene (LDPE) reactor model. Results are shown for a
parallel implementation of the multi-scenario algorithm. Sec-
tion 6 then concludes the paper and discusses areas for future
work.

2. Parameter estimation problem

Consider the differential–algebraic equation (DAE) model

Fk

[
dzk(t)

dt
, zk(t), yk(t), pk, �

]
= 0,

Gk [zk(t), yk(t), pk, �] = 0,

zk(0) = z0,k , (1)

where Fk(·), Gk(·) are differential and algebraic equations, re-
spectively, defined over a set of operating scenarios or data sets
k = 1, ..., NS. Here, zk(t) are the differential state variables
with initial conditions z0,k , yk(t) are algebraic state variables
and the independent variable t is either temporal or spatial. In
a standard estimation problem, the local and global model pa-
rameters pk and �, respectively, are selected to minimize the
deviation between the predicted and the measured values of a
set of output variables. Here we note that the local parameters
may vary in each scenario while the global parameters are com-
mon between scenarios. The standard least-squares parameter
estimation problem can be stated as

min
�,pk

NS∑
k=1

NMk∑
i=1

(yk(ti) − ȳk,i )
TV−1

y (yk(ti) − ȳk,i )

s.t.

Fk

[
dzk(t)

dt
, zk(t), yk(t), pk, �

]
= 0,

Gk[zk(t), yk(t), pk, �] = 0,

Hk[zk(t), yk(t), pk, �]�0,

zk(0) = z0,k, k = 1, . . . , NS, (2)

where Hk(·) are general inequality constraints, NMk is the num-
ber of measurement locations for a given scenario k, ti is the

measurement location and ȳ denotes the actual plant mea-
surements. The symbol V−1

y denotes a weighting matrix for
the algebraic output variables representing an approximation
of the inverse covariance matrix. The computational complex-
ity associated to these problems comes from the incorpora-
tion of multiple instances of the large-scale DAE model as
constraints.

The problem formulation in (2) can be generalized to include
a wide variety of objective functions derived from maximum
likelihood theory as well as extensions to Bayesian and robust
statistics. Because our derivation uses exact second derivatives,
no special property is required other than separability of the
objective function so that it can be written in the general form:∑NS

k=1�(yk, pk, �). In particular, the standard least-squares for-
mulation presented in (2) considers errors that are present only
in the output variables. It is well known that this approach can
produce biased parameters (Moran, 1971; Kendall and Stuart,
1973). On the other hand, the EVM formulation accounts for
errors in all the measured variables (both input and output vari-
ables) and is particularly useful in finding more reliable global
parameters. However, a major difficulty in solving this type of
problems is that, since the error is accounted in all the vari-
ables, the optimization is performed on both the parameters
and the inputs, thus leading to problems with many degrees
of freedom. The general EVM formulation resembles standard
least-squares (2) except that the inputs in every data set k be-
come decision variables. Upon addition of terms in the objective
function that account for allowed adjustments from measured
input variables, the parameter estimation problem becomes

min
�,pk,uk

NS∑
k=1

NMk∑
i=1

(yk(ti) − ȳk,i )
TV−1

y (yk(ti) − ȳk,i )

+
NS∑
k=1

(uk − ūk)
TV−1

u (uk − ūk)

s.t.

Fk

[
dzk(t)

dt
, zk(t), yk(t), uk, pk, �

]
= 0,

Gk[zk(t), yk(t), uk, pk, �] = 0,

Hk[zk(t), yk(t), pk, �]�0,

zk(0) = z0,k, k = 1, ..., NS, (3)

where V−1
u is a weighting matrix for the input variables uk

and ūk are their corresponding measured values; these could
include flow rates as well as inlet pressures, temperatures and
concentrations. The EVM approach corrects for measurement
errors on all these variables and yields less biased parameters.
However, this comes at the expense of an increased number of
degrees of freedom. Consequently, solutions of EVM problems
are often considered to be computationally intensive.

3. Solution strategy

Two main approaches have been traditionally used for
the solution of the DAE-constrained optimization problems
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described in the previous section. First, the sequential or
feasible-path approach separates the model solution and op-
timization tasks. Here, an optimizer updates the parameters
and passes them to a DAE solver, which integrates the model
equations (Kim et al., 1991). Derivative information required
by the optimizer can be obtained through the integration of
sensitivity or adjoint equations or by perturbation (Caracotsios
and Stewart, 1985). Since this approach requires the repeated
solution of the DAE system, it turns out to be computationally
inefficient for large-scale models. Moreover, even if the inte-
gration task can be parallelized in the presence of multiple data
sets (Faber and Wozny, 2003), the optimization task needs to
be performed over a reduced but dense space of the parameter
and input variables, leading to a computational complexity that
scales cubically with the number of degrees of freedom (Zavala
et al., 2007). Nevertheless, because of its relative simplicity
in developing solution frameworks from standard optimization
and integration algorithms, this approach has been popular for
the solution of parameter estimation problems involving DAE
models. However, its practical application to large-scale pa-
rameter estimation and, particularly EVM problems, has been
rather limited.

In the simultaneous or infeasible-path approach, the DAE
model solution and optimization tasks are completely coupled
by performing a full discretization of the model. With this,
the DAE-constrained optimization problem is converted into a
large-scale NLP problem with sparse structure. The most im-
portant advantage of this approach is that it avoids the con-
tinuous and expensive solution of the large-scale model, since
the discretized model (algebraic constraints) is solved only
once, at the solution of the NLP. The recent potential of this
approach has been directly related to the availability of opti-
mization strategies and computational resources able to handle
large-scale NLPs (Biegler and Grossmann, 2004). Nowadays,
modern nonlinear programming algorithms based on sequential
quadratic programming (SQP) and IP methods can efficiently
handle large-scale NLPs, thus enabling the solution of chal-
lenging DAE-constrained optimization problems (Biegler et al.,
2002; Byrd et al., 2000; Benson et al., 2002). Furthermore, ap-
plication of simultaneous approaches has also become simple
and efficient due to the availability of powerful modeling envi-
ronments (Fourer et al., 1992; Brooke et al., 1998). Moreover,
these platforms provide exact first and second derivative infor-
mation, thus enhancing convergence properties of large-scale
NLP algorithms.

Finally, note that the optimization task taking place in the si-
multaneous approach is performed on a much larger but sparse
space (degrees of freedom and discretized model variables)
that leads to a computational complexity that scales at most
quadratically with the number of degrees of freedom. That is,
the computational complexity of this approach scales better than
that of the sequential approach (Zavala et al., 2007). Simulta-
neous approaches have been demonstrated for the solution of
general DAE- and PDAE-constrained optimization problems in
many areas of science and engineering, and have been shown
to be robust and efficient (Biros and Ghattas, 2003; Betts and
Huffman, 2003). On the other hand, these approaches heavily

rely on the efficiency of the optimization solver, require careful
initializations and might suffer from numerical difficulties asso-
ciated to the discretization of highly nonlinear and stiff DAEs.
In such cases, feasible-path approaches are expected to be more
reliable since they can handle the complexity of the DAE more
efficiently.

3.1. Model discretization

In this work, a simultaneous approach based on orthogonal
collocation on finite elements is used for the solution of the
parameter estimation problem. This discretization scheme ap-
proximates the differential and algebraic variable profiles by
using a family of interpolation polynomials over the entire
continuous time domain which is divided into finite elements
(t0 < t1 < · · · < tNFE

). Here, we use a monomial basis repre-
sentation for the differential profiles (Bader and Ascher, 1987)
that is particularly attractive since it leads to better condition
numbers of the Jacobian matrix

z(t) = zi−1 + hi

NC∑
q=1

�q

(
t − ti−1

hi

)
dz

dt i,q
, (4)

where zi−1 is the value of the differential variable, evaluated at
the beginning of element i, hi = ti − ti−1 is the length of the
element i, dz/dti,q is the value of the first derivative in element
i at collocation point q and �q is an interpolation polynomial
of order NC that satisfies,

�q(0) = 0, �′
q(�r ) = �q,r for q = 1, . . . , NC,

where �r is the location of the rth collocation point within
each element and �q,r is the Kronecker delta. Continuity of the
differential profiles across elements is directly enforced by

zi = zi−1 + hi

NC∑
q=1

�q(1)
dz

dt i,q
. (5)

Here, Radau collocation points are used because they stabi-
lize the system more efficiently in the presence of high-index
DAEs. The algebraic profiles are approximated using a similar
monomial basis representation

y(t) =
NC∑
q=1

�q

(
t − ti−1

hi

)
yi,q , (6)

where yi,q represents the values of the algebraic variables. �q

is a Lagrange polynomial of order NC satisfying

�q(�r ) = �q,r for q, r = 1, . . . , NC.

Note that the number and length of the finite elements can be
adjusted according to the precision required in the approxima-
tion. In addition, note that the objective function in problems
(2)–(3) may include measurements located at positions that do
not coincide with the discretization mesh. In such a case, the
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measurement values can be interpolated using the closest point
in the mesh.

Upon substitution of the algebraic expressions (4)–(6),
problems (2)–(3) can be expressed as large-scale, general NLP
problems of the form

min f (x)

s.t. c(x) = 0,

x�0, (7)

where x ∈ Rnx contains local and global parameters, input
variables and all the variables obtained from the discretization
of the DAEs corresponding to all the scenarios.

3.2. IP methods

In principle, the multi-set or multi-scenario parameter esti-
mation problems (2)–(3) can be solved directly as the general
NLP (7), i.e., without exploiting any structure of the problem.
However, when the optimization problem becomes too large,
specialized approaches able to exploit the multi-scenario prob-
lem structure are necessary. In this context, SQP-based strate-
gies have been previously developed that exploit the structure
of these problems (Varvarezos et al., 1994; Bhatia and Biegler,
1999). In this study, we present an improved multi-scenario
strategy based on a recently developed, primal–dual barrier
NLP method called IPOPT.

IPOPT applies a Newton strategy to the optimality conditions
that result from the primal–dual barrier subproblem

min f (x) − �
nx∑

j=1

ln(x(j))

s.t. c(x) = 0 (8)

for decreasing values of the barrier parameter � and global
convergence is promoted by a filter-based line-search strat-
egy (Wächter and Biegler, 2006). Under mild assumptions,
the algorithm has global and superlinear convergence proper-
ties. Originally developed in FORTRAN, the IPOPT algorithm
was recently redesigned to allow for structure dependent spe-
cialization of the fundamental linear algebra operations. This
new package is implemented in C + + and is freely available
through the COIN-OR foundation from the following website:
http://projects.coin-or.org/Ipopt. The key step
in the IPOPT algorithm is the solution of linear systems de-
rived from the linearization of the first-order optimality con-
ditions (in primal–dual form) of the barrier subproblem. Here,
we derive the structured form of these linear systems for the
multi-scenario optimization problem and present a specialized
decomposition for their solution.

To simplify the resulting decomposition of problems (2)–(3),
we introduce, for the global variables �, additional local link-
ing variables and define them through linear linking constraints
for each scenario. Noting how these linking variables and con-
straints partition among the different scenarios (i.e., data sets)
we can rewrite (7) as a generalized multi-scenario problem

of the form

min
xk,d

NS∑
k=1

fk(xk)

s.t.
ck(xk) = 0,

Skxk �0,

Dkxk − D̄kd = 0,

}
k = 1, . . . , NS, (9)

where xk contains all the parameters and variables correspond-
ing to the discretization of the DAEs for a particular scenario k,
d is the vector of linking variables, matrix Dk extracts the com-
ponents corresponding to the global parameters � from the xk

vector and matrix D̄k assigns the extracted components (Dkxk)

to the linking variable vector d. Matrix Sk extracts the compo-
nents of xk that have bound constraints; if all of the scenarios
have the same structure, we can set S1 = · · · = SNS .

We note that problem (9) can apply to more general multi-
scenario problems than just (2)–(3). For instance, it is possible
to incorporate scenarios with heterogeneous structures (e.g. dif-
ferent DAE models). Finally, we note that the above formulation
is presented only for implementation purposes, as it now allows
us to specify the multi-scenario problem through individual
NLP instances (i.e., with the linking constraints in (9) removed).

Using a barrier formulation, problem (9) can be converted to

min
xk,d

NS∑
k=1

⎧⎨
⎩fk(xk) − �

∑
j

ln[(Skxk)
(j)]

⎫⎬
⎭

s.t.
ck(xk) = 0,

Dkxk − D̄kd = 0,

}
k = 1, . . . , NS, (10)

where indices j correspond to scalar elements of the vector
(Skxk). Defining the Lagrange function of the barrier problem
(10)

L(x, �,	, d) =
NS∑
k=1

L̄k(xk, �k,	k, d)

=
NS∑
k=1

⎧⎨
⎩Lk(xk, �k,	k, d) − �

∑
j

ln[(Skxk)
(j)]

⎫⎬
⎭

=
NS∑
k=1

⎧⎨
⎩fk(xk) − �

∑
j

ln[(Skxk)
(j)]

+ck(xk)
T�k + [Dkxk − D̄kd]T	k

⎫⎬
⎭ (11)

with multipliers �k and 	k , and Gk = diag(Skxk) leads to the
primal–dual form of the first-order optimality conditions for
this equality constrained problem, written as

∇xk
fk(xk) + ∇xk

ck(xk)�k

+DT
k 	k − ST

k 
k = 0,

ck(xk) = 0,

Dkxk − D̄kd = 0,

Gk
k − �e = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

k = 1, . . . , NS,

−
NS∑
k=1

D̄T
k 	k = 0, (12)

http://www.projects.coin-or.org/Ipopt
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where we define eT = [1, 1, . . . , 1]. Writing the Newton step
for (12) at iteration � leads to

∇xkxk
L�

k�xk + ∇xk
c�
k��k

+DT
k �	k − ST

k �
k

= − (∇xk
L�

k − ST
k 
�

k),

∇xk
c�
k�xk = −c�

k,

Dk�xk − D̄k�d = −Dkx
�
k + D̄kd

�,

V �
k Sk�xk + Gk�
k = �e − Gk
�

k,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

k = 1, . . . , NS,

−
NS∑
k=1

D̄T
k �	k =

NS∑
k=1

D̄T
k 	�

k , (13)

where the superscript � indicates that the quantity is evaluated at
the point (x�

k , �
�
k, 	

�
k, 


�
k, d

�). Eliminating �
k from the resulting
linear equation gives the primal–dual augmented system

H�
k �xk+∇xk

c�
k��k+DT

k �	k = −∇xk
L̄

�

k,

∇xk
c�
k�xk = −c�

k,

Dk�xk − D̄k�d = −Dkx
�
k + D̄kd

�,

⎫⎬
⎭ k = 1, . . . , NS,

−
NS∑
k=1

D̄T
k �	k =

NS∑
k=1

D̄T
k 	�

k , (14)

where H�
k = ∇xkxk

L�
k + ST

k (G�
k)

−1V �
k Sk , and Vk = diag(
k).

According to the IPOPT algorithm (Wächter and Biegler,
2006), the linear system (14) is regularized if necessary by
adding diagonal terms. Diagonal elements are added to the
block Hessian terms in the augmented system to handle nonpos-
itive curvature (�1I ) and to the lower right corner in each block
to handle temporary dependencies in the constraints (−�2I ).
Applying these modifications, linear system (14) can be written
with a block bordered diagonal (arrowhead) structure given by⎡
⎢⎢⎢⎢⎢⎢⎣

W1 A1
W2 A2

W3 A3
. . .

...

WNS ANS

AT
1 AT

2 AT
3 · · · AT

NS �1I

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

�v1
�v2
�v3
...

�vNS

�d

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

r1
r2
r3
...

rNS

rd

⎤
⎥⎥⎥⎥⎥⎥⎦

, (15)

where rT
k = −[(∇xk

L�
k)

T, (c�
k)

T, (Dkx
�
k − D̄kd

�)T], �vT
k =

[�xT
k ��T

k �	T
k ], AT

k = [0 0 − D̄T
k ],

Wk =
⎡
⎣H�

k + �1I ∇xk
c�
k DT

k

(∇xk
c�
k)

T −�2I 0
Dk 0 −�2I

⎤
⎦

for k = 1, . . . , NS, and rd = ∑NS
k=1D̄

T
k 	�

k .
The IPOPT algorithm requires the solution of the augmented

system (15), at each iteration along with the determination of
its inertia (the number of positive and negative eigenvalues).

The inertia calculation can be done efficiently with sparse, in-
definite LTBL solvers. Here, multiple factorizations of the aug-
mented system are performed using different trial values of �1
and �2 until the proper inertia (i.e., #positive eigenvalues =
#variables, #negative eigenvalues = #constraints) is ob-
tained at each iteration. This guarantees that the Newton step
obtained from (15) is a descent direction, as required by the
filter line-search globalization strategy. Now, if values of �1 =
�2 = 0 give the proper inertia at the solution of the NLP (10),
then it is possible to conclude that the solution satisfies strict
second-order optimality conditions and has linearly indepen-
dent constraints. As a result, the estimated parameters for this
problem have unique values (Zavala and Biegler, 2006).

The linear system (15) can be solved, in principle, with any
general direct linear solver configured with IPOPT. However,
as the problem size grows, the time and memory requirements
can make this approach intractable. Instead, applying a Schur
complement decomposition allows an efficient parallel solution
technique.

Eliminating each Wk from (15) we get the following expres-
sion for �d:[
�1I −

NS∑
k=1

AT
k (Wk)

−1Ak

]
�d = rd −

NS∑
k=1

AT
k (Wk)

−1rk (16)

which requires forming the Schur complement, B = �1I −∑NS
k=1A

T
k (Wk)

−1Ak , and solving this dense symmetric linear
system for �d. Once a value for �d is known, the remaining
variables can be found by solving the following system:

Wk�vk = rk − Ak�d (17)

for each k = 1, . . . , NS. Note that in this strategy, the fac-
torization of Wk and the solution of (17) can be performed
independently in different processors. The Schur complement
decomposition strategy applies specifically to the solution of the
augmented system within the overall IPOPT algorithm and sim-
ply replaces the general default linear solver. The sequence of
steps in the overall IPOPT algorithm is not altered, and as such,
this specialized strategy inherits all of the convergence prop-
erties of the IPOPT algorithm for general nonlinear programs.

Furthermore, this decomposition strategy is straightfor-
ward to parallelize with excellent scaling properties. With
M = dim(d), the number of global parameters, the number of
linear solves of the Wk blocks required by the decomposition
approach is NS · M + 2NS. If the number of available proces-
sors in a distributed cluster is equal to NS (one processor for
each scenario), then the number of linear solves required by
each processor is only M + 2, independent of the number of
scenarios. This implies an approach that scales well with the
number of scenarios. As we increase the number of scenarios
under consideration, the cost of the linear solve remains fairly
constant (with minimal communication overhead) as long as
an additional processor is available for each new scenario.
More importantly, the memory required on each processor is
also nearly constant, allowing us to expand the number of
scenarios and, using a large distributed cluster, move beyond
the memory limitation of a standard single processor machine.
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The efficient use of a distributed cluster to solve large prob-
lems that were previously not possible with a single standard
machine is a major driving force of this work.

4. Implementation of internal decomposition

The Schur complement algorithm described above is well
known. Nevertheless, the implementation of this linear decom-
position in most existing NLP software requires a nontrivial
modification of the code. In many numerical codes, the partic-
ular data structures used for storing vectors and matrices are
exposed to the fundamental algorithm code. With this design, it
is straightforward to perform any necessary mathematical op-
erations efficiently within the algorithm code. However, chang-
ing the underlying data representation (e.g. storing a vector in
block form across a distributed cluster instead of storing it as
a dense array) requires that the algorithm code be altered ev-
ery place it has access to the individual elements of these vec-
tors or matrices. Developing algorithms that exploit problem
specific structure through internal decomposition requires the
use of efficient (and possibly distributed) data structures that
inherently represent the structure of the problem. In addition,
it also requires the implementation of mathematical operations
that can efficiently exploit this structure. If the fundamental al-
gorithm code is intimately aware of the underlying data repre-
sentation (primarily of vectors and matrices) then altering that
representation for a particular problem structure can require a
significant modification of the code.

In IPOPT 3.2, special care was taken to separate the fun-
damental algorithm code from the underlying data representa-
tions. The high-level structure of IPOPT is described in Fig. 1.
The fundamental algorithm code communicates with the prob-
lem specification through an NLP interface. Moreover, the fun-
damental algorithm code is never allowed to access individual
elements in vectors or matrices and is purposely unaware of the
underlying data structures within these objects. It can perform
only operations on these objects through various linear algebra
interfaces. While the algorithm is independent of the underly-
ing data structure, the NLP implementation needs to have ac-
cess to the internal representation so it can fill the necessary
data (e.g. specify the values of Jacobian entries). As a conse-
quence, the NLP implementation is aware of the particular lin-
ear algebra implementation, but returns only interface pointers

Fig. 1. Redesigned IPOPT structure, allowing for specialized linear algebra.

to the fundamental algorithm code. The IPOPT package comes
with a default linear algebra representation and a default set of
NLP interfaces, but this design allows data representations and
mathematical operations to be modified for a particular problem
structure without changes to the fundamental algorithm code.
Similar ideas have also been used in the design of reduced-space
SQP codes, particularly for problems constrained by partial
differential equations (Bartlett, 2001, 2002; Bartlett and van
Bloemen Waanders, 2002).

In this work, we tested the redesigned IPOPT framework by
implementing the Schur complement decomposition approach
for the multi-scenario design problem. This implementation
makes use of the message passing interface (MPI) to allow
parallel execution on a distributed cluster. The implementation
uses the composite design pattern and implements a composite
NLP that forms the overall multi-scenario problem by combin-
ing individual NLP instances for each scenario. This implemen-
tation has also been interfaced to AMPL (Fourer et al., 1992),
allowing the entire problem to be specified using individual
AMPL NLP models for each scenario and AMPL suffixes to
describe the connectivity, these implicitly define the Dk , D̄k ,
and Sk matrices in (9). This allows the formulation of large
multi-scenario problems with relative ease. Furthermore, when
solving the problem in parallel, each processor only evaluates
functions for its own scenarios, allowing distribution of data
and parallelization of these computations across processors.

Parallel implementations for vectors and matrices have also
been developed that distribute individual blocks across pro-
cessors. All the necessary vector operations (e.g. BLAS op-
erations, etc.) have been implemented for efficient calculation
in parallel. Finally, a distributed solver has been written for
the augmented system that uses a parallel version of the algo-
rithm described in the previous section. This distributed solver
uses a separate linear solver instance for the solution of each
of the Wk blocks (and can use any of the linear solvers al-
ready interfaced with IPOPT). This separation allows solution
of heterogeneous multi-scenario problems where the individual
scenarios may have different structures. Finally, the distributed
solver calls LAPACK routines for the dense linear solve of the
Schur complement.

5. LDPE case study

In this work, we apply the proposed decomposition strategy
for the solution of large-scale parameter estimation prob-
lems arising in industrial LDPE reactors. LDPE grades are
produced in high-pressure, multi-zone tubular reactors. Re-
acting in gas phase at high temperature (130.300 ◦C) and
pressure (1500–3000 atm), ethylene is polymerized through a
free-radical mechanism (Kiparissides et al., 2005) in the pres-
ence of complex mixtures of peroxide initiators. A typical
tubular reactor can be described as a jacketed, multi-zone de-
vice with a predefined sequence of reaction and cooling zones.
Different configurations of monomer and initiator mixtures
enter in feed and multiple sidestreams, and are selected to
maximize the reactor productivity and obtain the desired poly-
mer properties. The total reactor length ranges between 0.5 and
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Fig. 2. Schematic representation of a typical high-pressure LDPE tubular reactor.

Table 1
Ethylene homopolymerization kinetic mechanism

Initiator(s) decomposition Incorporation of CTAs

Ii

�i kdi−→ 2R, i = 1, NI Pr + Si

kspi−→ Pr+1, i = 1, Ns

Chain initiation Termination by combination

R. + M
kI1−→ P1 Pr + Px

ktc−→ Mr+x

Chain propagation Termination by disproportionation

Pr + M
kp−→ Pr+1 Pr + Px

ktd−→ Mr + Mx

Chain transfer to monomer Backbiting

Pr + M
kf m−→ P1 + Mr Pr

kb−→ P ′
r

Chain transfer to polymer �-scission of sec- and tert-radicals

Pr + Mx

kfp−→ Px + Mr Pr

k�−→ M=
r + P1

Chain transfer to CTAs

Pr + Si
ksi−→ P1 + Mr, i = 1, Ns

2 km, while its internal diameter does not exceed 70–80 mm.
A schematic representation of a typical tubular reactor is pre-
sented in Fig. 2. The final end-use properties of the different
LDPE grades are mainly correlated to the polymer density
and macromolecular properties. Different additives or chain-
transfer agents (CTAs) are added to the axial feed streams to
control the polymer melt index. In general, the required poly-
mer properties are enforced through complex recipes that try
to keep the reactor at strict operating conditions.

There exist a number of comprehensive mathematical mod-
els for LDPE tubular reactors available in the literature. These
models comprise detailed polymerization kinetic mechanisms
and rigorous methods for the prediction of the reacting mixture
thermodynamic and transport properties at extreme conditions.
In this work, we consider a previously reported first-principles
model describing the gas-phase free-radical homopolymeriza-
tion of ethylene in the presence of several different initia-
tors and CTAs at supercritical conditions (Zavala and Biegler,
2006). The mechanism postulated to describe the homopoly-
merization kinetics is presented in Table 1. Here, the symbols
Ii, i = 1, . . . , NI , R·, M and Si, i = 1, . . . , NS denote the ini-
tiators, radicals, monomer, and CTA molecules, respectively.
The symbol �i represents the efficiency of initiator i, Pr repre-
sents “live” polymer chains and Mr are “dead” polymer chains
with r monomer units. The corresponding reaction rates for
the monomers, initiators, CTAs and “live” and “dead” poly-
mer chains can be obtained by combining the reaction rates
of the elementary reactions describing their production and

consumption. Here, we recognize that a complete description
of the polymer chain molecular weight distributions requires
an extremely large number of population balances for the poly-
mer chains. To avoid this, the method of moments (Ray, 1972)
is used to describe macromolecular properties of the copoly-
mer. The method of moments is based on the statistical repre-
sentation of the polymer average molecular weights in terms
of the leading moments of the number chain-length distribu-
tions of the “live” and “dead” polymer chains. In this model,
the number chain-length distributions for Pr and Mr are con-
sidered. Accordingly, the moments of the number chain-length
distributions are defined as

�n =
∞∑

r=1

rnR(r), n = 0, 1, 2, (18)

�n =
∞∑

r=1

rnD(r), n = 0, 1, 2, (19)

where R(r)=[Pr ] and D(r)=[Mr ]. With this, macromolecular
properties of the polymer can be obtained in terms of the leading
moments of the chain-length distributions. For instance, the
polymer number- and weight-average molecular weights and
polydispersity are given by

MWn = MW0
�1

�0
, (20)

MWw = MW0
�2

�1
, (21)

PDI = MWw

MWn

, (22)

where MW0 is the average molecular weight of a building unit
in the polymer chain. The number of short- and long-chain
branches per 1000 atoms can be obtained from

LCB = 500
CLCB

�1
, (23)

SCB = 500
CSCB

�1
, (24)

where expressions for the calculation of the concentration CLCB
and CSCB can be derived from the kinetic mechanism. Despite
the fact that all these macromolecular properties provide a rel-
atively accurate description of the structural properties of the
polymer, they are rarely used to monitor the quality of the poly-
mer in industrial reactors since they are difficult to measure
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online. Instead, the polymer melt index and density are nor-
mally used as raw quality measures. The polymer density �pol
is correlated to the number of short-chain branches

�pol = a0 + a1SCB (25)

and the polymer melt index can be correlated to the rest of the
macromolecular properties as

log10(MI) = a2 + a3 log10(MWw) + a4 log10(PDI)

+ a5 log10(LCB). (26)

The complexity of the rigorous model is often reduced by mak-
ing the following validated assumptions:

• the reacting mixture forms a single supercritical phase;
• plug flow is observed along the reactor;
• net production rates of the radicals and “live” polymer chains

are negligible (quasi-steady-state assumption) (Kiparissides
et al., 1993).

Considering this, it is possible to derive sets of steady-state
differential molar and energy balances describing the evolution
of the reacting mixture along each reactor zone. The detailed
design equations are reported in Zavala and Biegler (2006).

Perhaps the most difficult problem in simulating the opera-
tion of high-pressure LDPE reactors is the selection of appro-
priate values for the kinetic rate parameters in Table 1. The rate
constants have the general Arrhenius form

ki = k0
i exp

[
−�Eai

+ P�Evi

RT

]
, (27)

where subindex i belongs to the entire set of elementary reac-
tions in the kinetic mechanism, k0

i denotes the pre-exponential
factor, �Eai

the activation energy, �Evi
the activation volume,

T is the temperature, P is the pressure and R is the universal
gas constant. Despite the importance of the kinetic parameters,
there is not a consistent set of values that can be obtained from
literature reports. Furthermore, even if the parameter values
could be obtained from idealized laboratory conditions, they
will not be in general applicable to the full-scale rigorous re-
actor model, due to natural uncertain disturbances arising in
industrial units such as complex kinetic-transport interactions
(Yoon et al., 2004). As a result, it is difficult to find a reliable set
of parameters; instead, the parameters need to be tuned using
the full rigorous model to match industrial reactor data directly.

In addition to limited kinetic parameters data, LDPE tubu-
lar reactors are also subject to persistent variability over
the operating horizon. This requires the selection and on-
line estimation of adjustable parameters to account for this
variability. One of the most fundamental and complex prob-
lems associated to the operation of LDPE tubular reactors
is the severe and random fouling of the inner reactor wall
due to a continuous polymer build-up. This phenomenon is
difficult to predict by means of simple mechanistic models
(Buchelli et al., 2005). The most simple engineering way
to handle this problem is to estimate the heat-transfer co-
efficient (HTC) associated to each reactor zone to match

the reactor temperature profile (Kiparissides et al., 1996).
In addition, there exists uncertainty associated to the decom-
position mechanism of the initiator mixtures along the reactor.
These initiators decompose to generate the radicals that start
the polymerization. At each feed point, a typical initiator mix-
ture can include up to four different initiators with different
chemical properties. The initiator decomposition reactions
include sets of complex reaction subnetworks involving the
formation of highly active intermediate species that can react
among each other or with impurities in the reacting mixture be-
fore generating the desired radicals. Thus, there is an efficiency
factor �i associated to the decomposition of each initiator.
These initiator efficiencies are strongly dependent on a large
number of factors such as the reacting mixture temperature and
pressure, the degree of mixing at the feed points and the pres-
ence of other species such as impurities or CTAs. Moreover,
the efficiency of an individual initiator might vary with its
concentration in the reacting mixture (Luft et al., 1977; Seidl
and Luft, 1981). In LDPE tubular reactors, wide variations of
the reacting mixture temperature, pressure, composition and
physical properties are observed. As a consequence, wide vari-
ations of the efficiencies are expected as well along the reactor
and over time due to the accumulation of impurities. To cope
with this, the initiator efficiencies can be estimated for each
reaction zone in order to match the plant reactor temperature
profile. Previous studies have shown satisfactory results using
this technique; this approach is followed in this work.

To illustrate the accuracy of the described rigorous model,
a comparison between plant and predicted temperature profiles
for an industrial reactor is presented in Fig. 3. The predicted
profile was obtained using estimated HTCs and initiator effi-
ciencies that match the model temperature profile to the plant
measurements at a particular point in time.

According to the above description, the steady-state evolu-
tion of the reacting mixture along the multiple reactor zones
can be formulated as a multi-stage DAE system of the form

Fk,j

[
dzk,j (t)

dt
, zk,j (t), yk,j (t), pk,j , �

]
= 0,

Gk,j [zk,j (t), yk,j (t), pk,j , �] = 0,

zk,j (0) = �(zk,j−1(tLk,j−1), uk,j ),

k = 1, . . . , NS, j = 1, . . . , NZk . (28)

Notice the appearance of subindex j denoting a particular stage
or reactor zone defined for a particular operating scenario k and
NZk is the total number of zones for the reactor in scenario
k, so this formulation allows estimation over different reactor
configurations. In addition, note that the zone DAE models are
coupled through material and energy balances �(·) at the feed
points where the input variables uk,j include the flow rates and
temperatures for the monomer, initiator, CTA and cooling wa-
ter side streams along the reactor and tLk,j

denotes the total
length of zone j in scenario k. Symbol pk,j denotes local pa-
rameters corresponding to the HTC and multiple initiator effi-
ciencies at each zone j and scenario k and � corresponds to
the kinetic rate constants. The reactor model contains around
130 ordinary differential equations and 500 algebraic equations
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Fig. 3. Predicted and plant temperature profiles for a typical LDPE tubular reactor.

for each instance k. That is, the total number of equations in
(28) increases linearly with the number of scenarios k. In ad-
dition to the large number of equations, the reactor model is
computationally expensive to solve due to the high nonlinear-
ity and stiffness of the DAEs and the high degrees of algebraic
coupling and parametric sensitivity.

Once the model has been defined, the objective is to esti-
mate the kinetic parameters to match the plant reactor oper-
ating conditions and polymer properties. However, due to the
uncertainty associated to the fouling and initiator decomposi-
tion mechanisms, it is also necessary to include the HTCs and
initiator efficiencies in the set of estimated parameters. In or-
der to capture the interaction of pk,j and � and to account
for the measurement errors in the multiple of flow rates, con-
centrations, temperatures and pressures around the reactor, we
consider multi-scenario EVM estimation problems of the form

min
�,pk,j ,uk,j

NS∑
k=1

NZk∑
j=1

NMk,j∑
i=1

(yk,j (ti) − ȳk,j,i )
T

× V−1
y (yk,j (ti) − ȳk,j,i )

+
NS∑
k=1

NZk∑
j=1

(uk,j − uM
k,j )

TV−1
u (uk,j − uM

k,j )

s.t.

Fk,j

[
dzk,j (t)

dt
, zk,j (t), yk,j (t), uk,j , pk,j , �

]
=0,

Gk,j [zk,j (t), yk,j (t), uk,j , pk,j , �]=0,

Hk,j [zk,j (t), yk,j (t), pk,j , �]�0,

zk,j (0) = �(zk,j−1(tLk,j−1), uk,j ),

k = 1, . . . , NS, j = 1, . . . , NZk , (29)

where the output variables contain the reactor temperature pro-
file along each zone, jacket inlet and outlet temperatures at
each zone, macromolecular properties (MWw, MWn, LCB)
and quality properties (MI, �pol) at the reactor outlet which are
matched to the corresponding available plant measurements for
each operating scenario or data set k.

As reported in our previous work, it is possible to obtain
reliable parameters and improve the predictive capabilities of

LDPE reactor models through the application of systematic
strategies for parameter estimation (Zavala and Biegler, 2006).
A simultaneous approach was applied to the solution of (29)
and the resulting NLP of the form in (7) was solved on a sin-
gle processor machine using IPOPT without internal decompo-
sition. Following this approach, it was shown that the size of
the resulting parameter 95% confidence regions can be reduced
substantially as the number of data sets is increased. That is,
the reliability of the estimated parameters can be improved and
conclusions on model structure limitations can be drawn. On
the other hand, it was also shown that the associated NLPs be-
come quickly intractable due to the size and complexity of the
LDPE reactor model. As expected, the key bottleneck was the
factorization of the KKT matrix which could only be performed
for NLPs with a small number of data sets.

In this work, we apply the described parallel decomposition
strategy to the NLPs resulting from the application of a simulta-
neous approach to (29). As opposed to the strategy from Zavala
and Biegler (2006), we now exploit the natural multi-scenario
structure in (10). Since the decomposition strategy avoids the
factorization of the full KKT matrix in a single processor, it
is able to avoid memory bottlenecks and handle a large num-
ber of data sets in the estimation problem, thus improving the
reliability of the estimated parameters.

To formulate the estimation problem (29) as a multi-scenario
NLP (10), we perform a full discretization of the differential
and algebraic variables and group the resulting set of variables
by data sets or scenarios k. For each data set, we use a total of
16 finite elements for the reaction zones, two finite elements
for the cooling zones and three collocation points for the dis-
cretization in (29), giving rise to NS individual NLP instances,
each one with around 12,000 constraints and 92 degrees of free-
dom, from which 32 correspond to the local parameters pk , 25
to global parameters � and 35 to the input variables uk . In or-
der to obtain exact first and second derivative information, the
NLP instances are implemented as NS separate AMPL mod-
els that internally indicate the set of variables corresponding to
the global parameters �. This is required to build the linking
variables vector in IPOPT.

In Fig. 4 we present computational results associated to the
solution of multi-scenario NLPs with up to 32 data sets. The
results were obtained in a Beowulf type cluster using standard
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Fig. 4. Total time and number of iterations for the solution of multi-scenario NLPs with IPOPT. Serial and parallel implementations.

Intel Pentium IV Xeon 2.4 GHz, 2 Gb RAM processors run-
ning on Linux. The parallel results are compared against those
obtained from the serial solution of the multi-scenario prob-
lems in a single processor with similar characteristics. As seen
in the figure, the serial solution of the multi-scenario NLPs ex-
hausts the available memory when the number of data sets ex-
ceeds nine, while the parallel implementation overcomes this
memory bottleneck and solves problems with over 32 data sets.
In all of the analyzed cases, no regularization of the KKT ma-
trix was required at the solution (no inertia correction). The in-
formation provided in the estimation problems is sufficient to
estimate the full set of parameters uniquely. Here, the largest
problem solved contains around 4100 differential and 16,000
algebraic equations and 2100 degrees of freedom. Moreover,
notice that the solution time significantly increases in the se-
rial implementation as we add more data sets. The solution of
the nine data set problem takes more than 30 min. In contrast,
the parallel solution takes consistently less than 10 min regard-
less of the number of data sets. Finally, note that the solution
times and number of iterations do not follow any particular
trend, presenting “random” jumps as we add or remove data
sets. It is important to emphasize that this behavior is prob-
lem (and data) dependent. In fact, the solution of the 32 data
set problem requires fewer iterations than that with 20 data
sets. This behavior is mainly attributed to the nonlinearity of
the constraints, the influence of the initialization with differ-
ent NS, and ill-conditioning of the KKT matrix. Moreover, the
high nonlinearity of the constraints gives rise to directions of
negative curvature, which require additional inertia correction
steps (more factorizations of linear system (15) per iteration);
this is entirely problem dependent.

Motivated by this behavior, we present in Fig. 5 com-
putational results for the time required per iteration and
factorization of the KKT matrix; this is a more consistent mea-
sure of the scalability of the proposed strategy. For the parallel
approach, notice that the effect of parallelism is reflected not
in the time required per iteration but on the time per factoriza-
tion. Nevertheless, the time per iteration can be consistently
kept below 5 s, while the factorization in the serial approach
can take as much as 35 s before running out of memory.

In Table 2 we present a summary of the computational results
for both the sequential and parallel approaches. From the serial
and parallel results, it is possible to observe that the number
of iterations taken by the IP algorithm is hardly affected as we
add degrees of freedom to the estimation problem. It is impor-
tant to emphasize that this desirable property can be obtained
with full-space solvers using exact derivative information. As
the proposed parallel decomposition strategy does not alter the
core NLP algorithm in IPOPT, these desirable properties are
retained.

6. Conclusions and future work

In this work, a decomposition strategy is proposed for par-
allel solution of large-scale parameter estimation problems.
These multi-scenario problems are solved following an IP
strategy that allows to exploit the resulting block bordered
diagonal structure of the KKT matrix. As a result, the decompo-
sition approach occurs only at the linear algebra level, preserv-
ing the convergence properties of the IP method. The strategy
has been implemented within IPOPT 3.2, a recently redesigned
IP algorithm that allows for the implementation of specialized,
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Table 2
Summary of computational results associated to the solution of multi-scenario NLPs with IPOPT

NS NLP statistics Serial Parallel

m DOF LB UB It total (s) it (s) It total (s) it (s) kkt (s)

1 12 319 92 425 412 28 78.24 2.79 28 78.24 2.79 1.40
2 24 638 159 850 824 42 280.86 6.69 39 115.22 2.95 1.54
3 36 957 226 1275 1236 49 500.75 10.22 33 100.62 3.05 1.48
4 49 276 293 1700 1648 44 604.45 13.74 28 80.08 2.86 1.48
5 61 643 361 2126 2061 35 603.20 17.23 40 131.76 3.29 1.59
6 73 962 428 2551 2473 56 1251.87 22.35 26 78.77 3.03 1.58
7 86 953 495 2976 2885 63 1624.59 25.79 91 291.91 3.21 1.38
8 99 944 562 3401 3297 63 1994.17 31.65 52 155.90 3.00 1.39
9 1 12 935 629 3826 3709 62 2136.82 34.46 39 121.55 3.12 1.60

10 1 25 254 696 4251 4121 38 115.34 3.04 1.39
12 1 37 573 763 4676 4533 70 234.50 3.35 1.53
14 1 50 564 830 5101 4945 48 189.94 3.96 1.79
16 2 00 512 1098 6801 6593 99 398.35 4.02 1.79
18 2 25 822 1232 7651 7417 66 268.03 4.06 1.76
20 2 51 132 1366 8501 8241 119 545.19 4.58 2.02
22 2 75 098 1500 9351 9065 84 363.14 4.32 1.85
24 3 00 408 1634 10 201 9889 82 301.13 3.67 1.58
26 3 25 046 1768 11 051 10 713 105 375.00 3.57 1.57
28 3 49 684 1902 11 901 11 537 47 147.14 3.13 1.69
30 3 74 994 2036 12 751 12 361 57 212.31 3.72 1.81
32 3 99 632 2170 13 601 13 185 54 212.15 3.93 1.81

m, number of constraints; DOF, number of degrees of freedom; LB, number of lower bounds; UB, number of upper bounds; It, number of iterations; total,
total wall clock time; it , wall clock time per iteration; kkt , wall clock time per factorization of KKT matrix.

structure-exploiting linear algebra strategies. The proposed ap-
proach is suitable for parallel computing architectures and has
been used for the solution of large-scale parameter estimation

problems arising in industrial LPDE tubular reactors. Using
this case study, it is shown that multi-set DAE-constrained
estimation problems can be solved quickly and efficiently with
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the proposed strategy, while avoiding complexity bottlenecks.
This leads to highly reliable parameters that allow exploration
of predictive limits and identification of structural deficiencies
in rigorous mathematical models.

As part of future work, it is desired to explore more advanced
decomposition strategies that allow for the solution of increas-
ingly larger problems. For instance, the parameter estimation
problem (29) presents a nested structure that can be further
exploited. Notice that for a particular instance k, the LDPE re-
actor model corresponds to a set of multi-stage DAEs. This
multi-stage structure can also be interpreted as a multi-scenario
structure which would give rise to a doubly nested KKT ma-
trix (15). For instance, every block Wk would have an internal
almost block diagonal structure,

Wk =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Wk,1 Ak,1

AT
k,1 Wk,2 Ak,2

AT
k,2 Wk,3 Ak,3

. . .

AT
k,NZk−2 Wk,NZk−1 Ak,NZk−1

AT
k,NZk−1 Wk,NZk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(30)

that could also be exploited using a specialized decomposi-
tion. Here, NZk is the number of zones or stages in the reactor
and matrices Ak,j induce coupling of the state variables among
stages. The current object-oriented design of IPOPT 3.2 allows
for the implementation of this and other specialized linear al-
gebra decomposition strategies, thus broadening the scope of
IP methods for the solution of very large-scale problems.
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