
An Approach to Detecting Duplicate Bug Reports using
Natural Language and Execution Information

Xiaoyin Wang1, Lu Zhang1*, Tao Xie2*, John Anvik3 and Jiasu Sun1
1Key laboratory of High Confidence Software
Technologies, Ministry of Education, Institute
of Software, EECS, Peking University, Bei-

jing, 100871, P. R. China,
{wangxy06, zhanglu, sjs}@sei.pku.edu.cn

2Department of Computer Sci-
ence, North Carolina State

University, Raleigh, NC 27695,
USA

xie@csc.ncsu.edu

3Department of Computer Science,
University of Victoria

PO Box 3055, STN CSC
Victoria, BC, Canada, V8W 3P6

janvik@cs.uvic.ca

ABSTRACT
An open source project typically maintains an open bug reposi-
tory so that bug reports from all over the world can be gathered.
When a new bug report is submitted to the repository, a person,
called a triager, examines whether it is a duplicate of an existing
bug report. If it is, the triager marks it as DUPLICATE and the
bug report is removed from consideration for further work. In the
literature, there are approaches exploiting only natural language
information to detect duplicate bug reports. In this paper we pre-
sent a new approach that further involves execution information.
In our approach, when a new bug report arrives, its natural lan-
guage information and execution information are compared with
those of the existing bug reports. Then, a small number of existing
bug reports are suggested to the triager as the most similar bug
reports to the new bug report. Finally, the triager examines the
suggested bug reports to determine whether the new bug report
duplicates an existing bug report. We calibrated our approach on a
subset of the Eclipse bug repository and evaluated our approach
on a subset of the Firefox bug repository. The experimental re-
sults show that our approach can detect 67%-93% of duplicate
bug reports in the Firefox bug repository, compared to 43%-72%
using natural language information alone.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance and
Enhancement

General Terms
Management, Reliability

Keywords
Duplicate bug report, execution information, information retrieval

1. INTRODUCTION
Many∗open source software projects incorporate open bug reposi-
tories1 during development and maintenance so that both develop-
ers and users can report bugs that they have encountered, and call
for more useful features or make suggestions for revision. There
are at least two important advantages of using such a bug reposi-
tory. First, the bug repository allows users all around the world to
be “testers” of the software, so it can increase the possibility of

∗ Corresponding authors

revealing defects and thus increase the quality of the software
[14]. Second, it helps the software evolve according to users’
requests, and meet the requirements of more users 1[1].

However, these advantages come with a cost. Due to a project’s
reliance on a large number of users acting as testers, this form of
testing is asynchronous and loosely organized. Also, the cost of
users searching the repository (to determine if their problem has
been reported) is higher than the cost of creating a new bug report.
As a result, some reported bugs are not new but actually dupli-
cates of existing bugs. To avoid the same bug being addressed by
multiple bug fixers, it is necessary for a triager2 to examine each
submitted bug report to determine whether it is a duplicate.

Due to the large number of existing bug reports, it is challenging
for the triager to examine all existing bug reports to detect dupli-
cation. One solution is that the triager retrieves a small subset of
similar bug reports and compares the new bug report with each
retrieved bug report to see whether the new bug report is a dupli-
cate. If so, the report is marked as DUPLICATE of the report that
it matches. Otherwise, the triager has to assume that there is no
duplication [2]. In this paper, we refer to the bug report that the
new report duplicates as the “target report”, and the set of bug
reports retrieved for examination for a given new bug report as
the “suggested list”. Then, duplicate-bug-report detection can be
viewed as the problem of searching for the target report for each
new report within the corresponding suggested list.

The quality of the suggested list is essential in the detection of
duplicate bug reports. In fact, suggested lists of high quality can
reduce both the workload of triagers and the possibility of passing
duplicate bug reports to bug fixers. Recently, some research [8]
has been conducted to enhance the quality of the suggested list. In
general, these approaches adopt information-retrieval techniques
to measure the similarity between bug reports using natural lan-
guage information. Thus, these approaches retrieve only textually
similar bug reports for the triager to examine. In particular, the
approach proposed by Runeson et al. [18] achieves a recall range
of 30%-42% for the Sony-Ericsson Mobile Communications bug
repository using suggested-list sizes between 5 and 15. The ap-
proach proposed by Hiew [8] achieves a recall range of 36%-50%
for the Firefox bug repository using suggested-list sizes between 3
and 7.

Although these approaches already provide some practical help to
triagers to detect duplicate bug reports, there is still a need to

1 We use the colloquial term “bug repository” to refer to the issue

tracking system that contains both fault reports and feature re-
quests and “bug report” to refer to contents of bug repositories.

2 A triager is a person who decides whether a report should be
worked on and who should work on it.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists, re-
quires prior specific permission and/or a fee.
ICSE’08, May 10–18, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-079-1/08/05…$5.00.

improve them due to their low recalls. In this paper, we further
consider another important kind of information source: the execu-
tion information of bug-revealing runs that cause a bug report to
be submitted. Compared to natural language information, execu-
tion information has the following advantages. First, execution
information can reflect the situation during bug-revealing runs
and is not affected by the variety of natural languages. Second,
execution information can reflect internal abnormal behavior
associated with bug-revealing runs unnoticed by the bug reporter.

We propose an approach using both natural language information
and execution information in the detection of duplicate bug re-
ports. Our basic idea is as follows. First, based on information
retrieval, we calculate two similarities between the new bug re-
port and each existing bug report using natural language informa-
tion and execution information respectively. Second, we use some
heuristics to determine the suggested list using the preceding
similarities. To evaluate our approach, we conducted an experi-
ment, which consists of two parts. First, we calibrated our ap-
proach on a subset of the bug repository of the Eclipse3 project (a
popular Java IDE), and also evaluated the calibrated approach on
this dataset. Second, we evaluated our approach on a subset of the
bug repository of Firefox4 (a popular open source web browser),
and compared the calibrated approach with approaches using only
natural language information. Experimental results show that,
using suggested-list sizes of 1-10, our approach has a recall range
of 67%-93% in the Firefox bug repository, compared to 43%-72%
using natural language information alone. This result indicates
that our approach achieves a significant improvement in recalls
over previous approaches. Furthermore, as the triager can achieve
quite a high recall by examining no more than 10 existing bug
reports, he or she can be more confident that very few duplicate
bugs are missed in the triaging work using our approach than
using previous approaches.

This paper makes the following contributions:

• A demonstration of the need to use both natural language
information and execution information in detecting duplicate
bug reports.

• An approach to detecting duplicate bug reports using both
natural language information and execution information.

• An empirical comparison of the effect of using different pa-
rameters in our approach: different heuristics using two kinds
of similarities and using different natural language sources.

• An experimental evaluation of the proposed approach on a
subset of the Firefox bug repository.

The rest of this paper is organized as follows. Section 2 presents
two motivating examples to show why the use of both natural
language and execution information is necessary. Section 3 pre-
sents some background knowledge used in our approach. Section
4 presents our approach. Section 5 reports an experiment of our
approach. Section 6 discusses some important issues. Sections 7
and 8 discuss related work and future work, respectively. Section
9 concludes this paper.

2. MOTIVATING EXAMPLES
In this section, we present two duplicate-bug pairs from the Fire-
fox bug repository to motivate the need for using both natural

3 http://www.eclipse.org, accessed on 2007-09-01
4 http://www.mozilla.com/en-US/firefox, accessed on 2007-09-01

language and execution information in duplicate-bug-report detec-
tion. In a typical bug report, its natural language part mainly con-
tains two sub-parts: the summary and the detailed description. For
brevity, we show only the summary parts in the examples.

2.1 Browser-Closing Bug
In the Firefox bug repository, both Bug-260331 and Bug-239223
are about the incomplete closing of the browser. Bug-260331 had
been identified as a duplicate of Bug-239223. Specifically, their
summaries are as follows.
Bug-260331: After closing Firefox, the process is still running.
Cannot reopen Firefox after that, unless the previous process is
killed manually

Bug-239223: (Ghostproc) – [Meta] firefox.exe doesn't always
exit after closing all windows; session-specific data retained

Both summaries share words like “firefox” and “after closing”,
but as these words are very common in the Firefox bug repository,
it is difficult to use these words to confirm a duplicate relationship
between the two bug reports. Furthermore, due to the difference in
wording, it is difficult to match some phrases with equivalent
meanings like “retain” and “still running”, even if synonym lists
are used. As a result, it is not easy to decide whether these two
reports are duplicates using only natural language processing
techniques on the summaries. Including the more detailed descrip-
tions does not necessarily help, because people still use different
ways to express the same idea in the detailed description. How-
ever, if we involve the execution information in duplicate-bug-
report detection, it would be easier to find the common part of the
two bugs: their execution traces should share the same abnormal
process of quitting Firefox.

This example indicates that using only natural language informa-
tion may fail to detect some duplicate bug reports due to the vari-
ety of natural language usages. In such a case, execution informa-
tion may be more reliable. However, using only the execution
information may also have its own disadvantage. The example
below demonstrates this situation.

2.2 Document-Contain-No-Data Bug
Another duplicate pair in the Firefox repository is Bug-219232
and Bug-244372, whose summaries are presented below.
Bug-244372: "Document contains no data" message on con-
tinuation page of NY Times article

Bug-219232: random "The Document contains no data." Alerts

In this duplicate pair, the two bugs are both about incorrect load-
ing of web pages. The two natural language descriptions share the
common phrase “document contains no data”. These words can
provide a clear clue that both bug reports are related to an error
message “document contains no data”. However, Bug-244372
describes a scenario that the error happens when visiting the web
site of NY Times, while Bug-219232 indicates a random visit. It
is highly likely that Bug-219232 is observed on several web sites
that are totally different from the web site of NY Times. There-
fore, if we ignore the natural language information but rely on the
execution information alone, the part of execution related to load-
ing different files in different pages will be rather different for
these two bug reports. These differences may shadow the similar
parts of erroneous executions.

This example indicates that using only execution information may
fail to detect some duplicate bug reports due to the various ways

of observing a bug. In such a case, natural language information
may be superior to execution information.

2.3 Motivation
In the preceding examples, neither natural language information
nor execution information is always superior to the other in all
cases. In particular, considering both kinds of information can
have the following advantages. First, natural language informa-
tion acquired from the bug description most likely represents the
external buggy behavior observed by the bug reporter, while the
corresponding execution information likely records the internal
abnormal behavior. Thus, using both kinds of information can
make it possible to consider both external and internal behaviors
in duplicate-bug-report detection. Second, as descriptions in natu-
ral languages often contain uncertainty and imprecision, execu-
tion information, which is typically certain and precise, may help
reduce the uncertainty and imprecision in existing duplicate-
detection approaches. Moreover, as shown by the examples, either
natural language information or execution information can be the
dominant factor in detecting duplicate bug reports. Thus distin-
guishing which kind of information is the dominant factor may
further facilitate duplicate-bug-report detection.

3. BACKGROUND
In our approach, we uniformly deal with both kinds of informa-
tion sources using information retrieval techniques. Information
Retrieval (IR) [7] is a discipline that deals with retrieval of un-
structured data, especially textual documents, in response to a
query or a topic, which may itself be unstructured or structured.

The vector space model [16] is a widely used technique in tradi-
tional information retrieval. Both existing approaches [8][18] to
duplicate-bug-report detection adopt the vector space model. In
the vector space model, each document or query is represented as
an n-dimensional vector, where n is the number of unique index
terms appearing in all the documents and queries and wi (1≤i≤n) is
the weight of the i-th index term in the vector <w1, w2, …, wn>
and defined by Formula (1).

wi = tfi × idfi (1)

In Formula (1), tfi refers to the term frequency and idfi refers to
the inverse document frequency. More precisely, tfi is the fre-
quency of the i-th index term appearing in the document or query,
and idfi is defined by Formula (2).

idfi = log (Dsum / Dwi) (2)

In Formula (2), Dsum is the total number of documents, and Dwi
is the number of documents that contains the i-th index term.

After transforming documents and queries into vectors, we can
calculate the similarity of a pair of documents or queries through
a formula defining the similarity of two vectors. Typically, for
two vectors q1=<w11, w21, …, w1n> and q2=<w21, w22, … , w2n>,
the similarity of q1 and q2 is defined by Formula (3).

∑∑

∑

==

=

×

=
n

i
i

n

i
i

n

i
ii

ww

ww
Sim

1

2
2

1

2
1

1
21 (3)

In practice, there are also several other ways [13] of calculating
weights and similarities for the vector space model. For simplicity,
we present only the formulae used in our approach.

4. THE PROPOSED APPROACH
Our approach consists of three steps. First, we calculate the Natu-
ral-Language-based Similarities (NL-S) between the new bug
report and existing bug reports. Second, we calculate the Execu-
tion-information-based Similarities (E-S) between the new bug
report and existing bug reports. Finally, we retrieve potential tar-
get reports using the two kinds of similarities based on two heu-
ristics. The first heuristic is to combine the NL-S and the E-S into
one combined similarity, and use the combined similarity to re-
trieve potential target reports. The second heuristic is to try to
distinguish whether the natural language information or the exe-
cution information is the dominant factor in detecting each pair of
possible duplicate reports, and use different strategies to deal with
different situations.

4.1 Calculating NL-S
Our approach adopts a similar technique used in two previous
approaches [8][18] to calculate NL-S between two bug reports.
First, we extract the text information from the summary and de-
scription of the two reports. Second, for the extracted text part of
each report, we perform the standard preprocessing in information
retrieval, including the stemming work and the removal of the
stop words5. Third, we obtain one vector for each bug report by
applying Formulae (1) and (2). Finally, we use Formula (3) to
calculate the similarity for the pair of vectors for the two reports.

There is a slight difference in calculating NL-S between the pre-
vious work and our work. As we stated in Section 2, the text part
of a bug report mainly contains a summary and a detailed descrip-
tion. Hiew’s approach [8] treats the summary and the detailed
description equally. Runeson et al. [18] suggested that the sum-
mary should be treated as twice as important as the detailed de-
scription. That is to say, when calculating the term frequency of
an index term, appearing in the summary once will be counted as
occurring twice, but appearing in the detailed description once
will be counted as once. Ko et al. [10] suggest that using only the
summary should be better when dealing with text from bug re-
ports, but they did not provide any experimental evaluation.

Our approach can use natural language in each of the above ways.
We experimented with all these approaches, and compare their
performance especially when execution information is involved.

4.2 Calculating E-S
Similar to the natural language information, our approach also
uses the vector space model to calculate E-S. Specifically, we
record one execution trace for each reported bug-revealing run,
and transform the execution trace into a vector similar to that used
for natural language information. In the transformation process,
we view each invoked method as a dimension in the vector space
model. We use the granularity of methods because many previous
approaches [6][15][17] did so. We plan to further investigate the
performance of using other levels of granularity in future work. In
the specific case of execution information, we further make the
following two decisions.

First, when recording an execution trace, we consider only the
methods that are invoked during the run without considering how

5 Stop words are words without enough meaning, such as “the”.

Stemming is a technique in natural language processing to unify
grammatical forms of words. For example, “worked” and
“working” are both transformed to “work” after stemming.

many times each method has been invoked. Intuitively, if a
method is invoked during a bug-revealing run, the method may be
responsible for the failure, but more invocations of a method do
not necessarily imply a higher responsibility.

Second, the name of a method may contain several words and
different methods may share a name due to overloading. We treat
the canonical signature of each method as one index term. That is,
we treat overloaded methods as different index terms.

Having made these decisions, we transform each execution trace
into a vector using Formulae (1) and (2). Note that the term fre-
quency in Formula (1) should be either zero or one, as we treat
each method as an index term and we record only the information
of whether the method is invoked. Finally, we apply Formula (3)
on the vectors to calculate the E-S.

4.3 Retrieving Potential Target Bug Reports
4.3.1 Basic Heuristic
After calculating NL-S and E-S, we need to rank the existing bug
reports in a list using these two kinds of similarities. The first
heuristic is to combine the NL-S and the E-S into one combined
similarity, and use the combined similarity to retrieve potential
target reports. Thus, we need a tool to combine the NL-S and the
E-S. Generally, the combination can be represented as a function
in Formula (4).
SIMcombined = f (SIMnlp, SIMexe) (4)
In Formula (4), SIMnlp denotes the NL-S value, SIMexe denotes the
E-S value, SIMcombined is the combined similarity, and f is the
combination function. We consider the most common combina-
tion function in our approach: the arithmetic average. Formula (5)
formally presents this combination function.

2
exenlp

combined

SIMSIM
SIM

+
= (5)

4.3.2 Classification-Based Heuristic
The preceding heuristic simply treats both kinds of information
sources equally for every pair of bug reports. However, as shown
in Section 2, in a specific duplicate pair, either natural language
information or execution information can be the dominant factor
in correctly detecting duplicate bug reports. In such a case, we
should naturally rely more on the dominant information source.
Thus, we further propose a classification-based heuristic that is
based on distinguishing which kind of information source is the
dominant factor.
When analyzing some pairs of duplicate bug reports, we found
that an extremely high value of NL-S often indicates a case that
natural language information dominates, and there is a similar
observation for E-S. Thus, when ranking the existing bug reports,
those with extremely high NL-S or E-S values should be ranked
above other bug reports. Furthermore, we can also define two
thresholds on the similarity values to distinguish whether one kind
of information source is dominant. Here, we refer to such a
threshold as the Credibility Threshold (CT), and use CTNL-S and
CTE-S to denote credibility thresholds for NL-S and E-S, respec-
tively. For an existing bug report, our classification-based heuris-
tic uses the following strategy to calculate its ranking:

 If its NL-S and E-S are both higher than the corresponding
CTs, we put the bug report in Class I, in which bug reports
are ranked by their combined similarity using Formula (5).

 If its NL-S is higher than CTNL-S, but its E-S is lower than
CTE-S, we put it in Class II, in which bug reports are ranked
only by NL-S.

 If its E-S is higher than CTE-S, but its NL-S is lower than
CTNL-S, we put it in Class III, in which bug reports are
ranked only by E-S.

 Otherwise, we put it in Class IV, in which bug reports are
ranked by their combined similarity using Formula (5).

In the final ranking, Class I is ranked higher than Class II, Class II
higher than Class III, and Class III higher than Class IV. The rea-
son that we put the class of natural-language-dominant bug re-
ports (i.e., Class II) higher than the class of execution-
information-dominant bug reports (i.e., Class III) lies in that CTE-S
cannot always definitely identify execution-information-dominant
bug reports. In fact, for two very similar or even identical bug-
revealing execution traces, it is still possible that the two execu-
tion traces reveal different bugs, especially when the granularity
of the execution traces is at the method level.

4.3.3 Determining Credibility Thresholds
For our classification-based heuristic, we need two credibility
thresholds. In this sub-section, we present a technique to calculate
these thresholds. Our technique is based on the analysis of exist-
ing bug reports, among which the duplicate relationships are
known. For simplicity, we describe only how to determine CTNL-S.
The determination of CTE-S is similar.
As the aim of CTNL-S is to rank bug reports with extremely high
NL-S values higher in the list, the intuition in determining CTNL-S
is to choose a value (denoted as v) such that on average bug re-
ports whose NL-S values are larger than v are more likely to be
duplicate bug reports. Our technique is as follows.
Given a set of existing bug reports (denoted as S), we use D to
denote a subset of S where for each bug report (denoted as b) in D,
there is at least one duplicate bug report of b in S. For each bug
report b in D, we calculate the NL-S value between b and each
other bug report in S. For a given value v, we use dup(b, v) to
denote the number of duplicate bug reports whose NL-S values
with b are larger than v; and we use fp(b, v) to denote the number
of false-positive bug reports whose NL-S values with b are larger
than v. Thus, we define the effectiveness of v (denoted as E(v)) as
in Formula (6):

∑
∈

−=
Db

vbfpvbdupvE)),(),(()((6)

Based on Formula (6), we calculate the effectiveness of a series of
different values, and choose the value with the largest effective-
ness as the threshold.

4.4 Presenting Potential Target Bug Reports
When presenting the ranked list of retrieved potential target bug
reports to the triager, there are two ways used in previous research:
suggesting a list with a predetermined fixed size [18] and suggest-
ing a list with floating sizes [8]. The fixed list size is determined
using a predefined number. The floating list sizes are determined
using a threshold of similarity. For our basic heuristic, both ways
can be adopted. Our classification-based heuristic can use only a
fixed suggested-list size, as this heuristic is not based on one
combined similarity but a collection of four different sets. In our
experiment, we use the fixed list size for both heuristics for the
ease of comparison.

5. EXPERIMENT
In our experiment, we investigate two research questions. First,
we want to discover the setting under which our approach can
achieve a good accuracy. Second, we want to see whether our
approach can outperform approaches using only natural language
information. To evaluate the performance of the different ap-
proaches, we use the recall rate6 of target reports under a certain
suggested-list size as a measure. This technique was suggested by
Runeson et al. [18]. Formula (7) shows this measure.

tatal

recalled

N
N

raterecall = (7)

In Formula (7), Nrecalled refers to the number of duplicate bug re-
ports whose target reports are in the suggested lists, and Ntotal
refers to the number of duplicate bug reports used in experiment.

5.1 Experimental Setup
In our experiment, we used the bug repositories of two large open
source projects: the Eclipse project and the Firefox project. These
two projects are from different domains and used by different
types of users. Thus, carrying out the experiment on them helps to
generalize our conclusions. Also both projects have large bug
repositories so as to provide ample data for an evaluation. We
selected a subset of each repository to set up an experimental bug
set in our study. When setting up the two experimental bug-report
sets, we did not select the most recent bug reports, because the
resolutions of recent bug reports are more likely to be changed
compared to older bug reports. For example, some new bug re-
ports may be incorrectly marked as duplicate and the mistakes
have not yet been corrected. Including these new bug reports
would affect the precision and fidelity of our experiment.

Typically bug repositories also contain invalid bug reports. A
report may be invalid for several reasons, such as not being repro-
ducible or being filed by a spambot. In practice, when encounter-
ing an invalid bug report, the triager marks it as invalid and the
report receives no further attention, but the report remains in the
repository. To avoid interference by invalid bug reports, we dis-
carded such reports when setting up an experimental bug-report
set.

Our approach requires both natural language information and
execution information for each bug report. In both the Eclipse and
Firefox bug repositories, a bug report provides a summary and a
detailed description, both of which contain natural language in-
formation, but there is no execution information associated with
the bug report. Therefore, we needed to create the execution in-
formation for each bug report used in our study.

For an experimental bug-report set used in our experiment, we
classify the bug reports into three main types: runtime error re-
ports, feature requests, and patch reports. A runtime error report is
an erroneous behavior or crash that the reporter encounters when
he or she uses an existing feature of the software. A feature re-
quest is a request for a non-existing feature of the software. A
patch report refers to a bug report (submitted by a highly technical
bug reporter) that directly points to a bug in the code with a sug-
gestion of fixes. For different types of reports, we used different
techniques to obtain the corresponding execution information.

6 We follow Runeson et al’s naming [18] but we think that it can

also be called accuracy (the percentage of the correct target re-
ports that appeared in suggested lists with the same size).

 For a runtime error report, we started the program and ran the
program until the error occurs. As the steps to reproduce a
runtime error are provided in the description part of the bug
report, we reproduced these bugs according to these steps.
Thus the execution information of our reproduction should be
very close to the execution information that caused the fault.

 For a feature request, we started the program and ran the pro-
gram until we reached the point where the new feature (sug-
gested by the reporter) should appear. Like runtime errors,
there is also guidance in the description part of a feature re-
quest for the bug fixer to reach the point where the new fea-
ture is desired. For example, to reproduce a bug calling for
automatic sorting of bookmarks, we ran the browser until the
list of the bookmarks was shown.

 For a patch report, there is no associated bug-revealing run
and a bug reporter will not submit execution information. Fur-
thermore, it is unlikely that two independent bug reporters
identify the same buggy code simultaneously. Actually, in the
part of bug repository from which we build our experiment set,
we did not find any duplicate patch reports. Therefore, we did
not use patch reports in the experiment. This decision does not
affect the validity of our experiment, as patch reports can be
easily distinguished from other reports in a bug repository that
involves execution information due to these patch reports’
lack of execution information.

5.2 Calibration and Evaluation on Eclipse
As there are several parameters in our approach, it is necessary to
calibrate our approach experimentally. To do so, we set up a small
experimental bug-report set using a subset of bug reports from the
Eclipse bug repository. To create the subset, we randomly se-
lected 200 bug reports submitted to the Eclipse repository during
June 2004. To make sure that the set of experimental bug-reports
contained enough duplicate pairs, we further added the target
reports of some duplicate bug reports. After filtering out patches
and invalid bug reports, our experimental bug-report set contained
220 bug reports with 44 pairs of duplicate bug reports.

Furthermore, to calculate the credibility thresholds, we randomly
selected 200 other bug reports submitted during May 2004, and
used the same technique to build a set of 232 bug reports with 42
pairs of duplicates. We applied the technique described in Section
4.3.3 to calculate the credibility thresholds. We determined the
values of CTNL-S as follows: 0.43 for using summary only, 0.55
for using summary and description with equal weights, and 0.53
for using a double-weighted summary. The value of CTE-S is 0.94.

Using the experimental bug-report repository, we evaluated dif-
ferent combinations of parameters for our approach. For each of
the 44 duplicate pairs, we used one bug report as the new bug
report and the other 219 bug reports as the existing bug reports.
For each different parameter combination, we recorded the recall
rate (calculated with Formula (7)) for the 44 bug reports for dif-
ferent suggested list sizes. Note that our evaluation is based only
on the 44 bug reports for which we have a target report among the
existing reports. The rationale is that if we used a new bug report
that is not a duplicate of any existing bug report, the triager will
never find the target report after examining the suggested list. In
other words, all the evaluated parameter combinations become
equally effective for a fixed suggested-list size of unique new bug
reports. In our calibration, we considered two parameters. The
first parameter was how to use the natural language information
from each bug report. As discussed in Section 4.1, we considered

Figure 1: Recall rates using different parameters in Eclipse

three options for this parameter: using the summary only, using
both the summary and the detailed description with equal weights,
and using both the summary and the detailed description with the
summary double-weighted. The second parameter examined was
the heuristics for retrieving potential target bug reports using the
two kinds of similarities: the basic heuristic and the classification-
based heuristic. Furthermore, we also considered a variant of the
classification-based heuristic, in which execution-information-
dominant bug reports are ranked higher than natural-language-
dominant bug reports. For simplicity, we refer to this variant as
the reverse classification-based heuristic. The aim of the calibra-
tion is to examine which combination of different values for the
two parameters performs the best for the bug reports in the ex-
perimental bug-report set.

In Figure 1, we use six sub-figures to show the recall rates using
the nine different combinations of the parameters for Eclipse. In
all the six sub-figures, the x-axis denotes the different suggested-
list size used, and the y-axis denotes the recall rate of our ap-
proach for the suggested-list size. We use “BHeur” as the abbre-
viation for the basic heuristic, “CBHeur” for the classification-
based heuristic, and “RCBHeur” for the reverse classification-
based heuristic. We use “sum” for using only the summary, “sum+
des” for using both the summary and the description with equal
weights, and “2sum+des” for using both the summary and the
description with the summary double-weighted. The upper three
sub-figures show the results of using the three different kinds of
natural language information, respectively. In each of these three
sub-figures, we compare the recall rates of using different heuris-
tics. The lower three sub-figures show the results of using the
three different kinds of heuristics, respectively. In each of the
lower three sub-figures, we compare the recall rates of using the
three different kinds of natural language information.

From Figure 1, we make the following observations. First, the
three upper sub-figures show that if we fix the parameter of how
we weight the natural language information, the classification-
based heuristic always outperforms the other two heuristics. This
observation indicates that the classification-based heuristic is an
improvement over the basic heuristic. This observation also con-
firms that in the classification-based heuristic, natural-language-

dominant bug reports should be ranked higher than execution-
information-dominant bug reports. It is also interesting to note that
for each of the three upper sub-figures, the difference between the
three heuristics becomes smaller as the suggested-list size be-
comes larger. We suspect the reason to be that natural-language-
dominant bug reports and execution-information-dominant bug
reports in the classification-based heuristic and its variant are of-
ten similar to the new bug report according to their combined
similarities. Therefore, when the suggested-list size becomes lar-
ger, the three heuristics will retrieve roughly the same set of exist-
ing bug reports. But the ordering of bug reports retrieved by each
heuristic differs. The ordering used by the classification-based
heuristic appears to be the best among the three heuristics.

Second, the three lower sub-figures show that if we fix a specific
heuristic in bug-report retrieval, neither way of using the natural
language information always outperforms the other two. When the
suggested-list size is small, using both the summary and the de-
scription seems superior to using only the summary. When the
suggested-list size becomes larger, using only the summary be-
comes superior to using both the summary and the description. We
suspect the reason to be that the description contains both clues
and noise not contained in the summary. The clues can help effec-
tively determine the ordering of retrieved bug reports, but in some
cases the noise can make our approach fail to retrieve target bug
reports. Of the two ways of weighting both the summary and de-
scription, using the double-weighted summary seems to perform
slightly better than using the single-weighted summary. This re-
sult is in accordance with the finding of Runeson et al. [18].

Although the experimental bug-report set formed from the Eclipse
bug repository is quite small and also includes manually inserted
duplicate bug reports, we believe that evaluation on this experi-
mental bug-report set provides some initial insights about whether
our heuristics using both natural language information and execu-
tion information can be an improvement over approaches that use
only a single type of information.

Specifically, as the reverse classification-based heuristic is a less
effective variant of the classification-based heuristic, we consid-
ered only the basic heuristic and the classification-based heuristic

for our approach in the evaluation. Similarly, as using double-
weighted summary with detailed description always outperforms
using both summary and detailed description with equal weights,
we did not consider the way of using equally-weighted summary
and detailed description for our approach in the evaluation. There-
fore, we had four different combinations of parameters for our
approach. As a comparison, we also considered three approaches
using only the natural language information (i.e. summary only,
equally-weighted summary and description, and double-weighted
summary and description) and one approach using only the execu-
tion information. As before, we used each of the 44 duplicate bug
reports as the new bug report and the other 219 bug reports as the
existing bug reports in evaluating each approach. Figure 2 shows
the result of the evaluation for suggested-list sizes of 1-6.

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

1 2 3 4 5 6
suggested list size

r
e
c
a
l
l

r
a
t
e

sum+CBHeur 2sum+des+CBHeur sum+BHeur

2sum+des+BHeur execution sum
2sum+des sum+des

Figure 2: Recall rates using different similarities in Eclipse

From Figure 2, we make the following three observations. First,
the four parameter combinations for our approach always outper-
form the other four approaches. In our approach, as the classifica-
tion-based heuristic always outperforms the basic heuristic, we
focus on the two combinations using the classification-based heu-
ristic. When comparing the performance of our approach using
both the summary and the execution information with the classifi-
cation-based heuristic to the best performance of using only the
natural language information, there is an increase of 11-20 per-
centage points for suggested-list sizes of 1-6. The increase of the
other combination over the best performance of using only the
natural language information is 7-22 percentage points.

Second, when the suggested-list size is small, using only execu-
tion information appears to outperform using only natural lan-
guage information. When the suggested-list size becomes larger,
using only natural language information becomes superior to us-
ing only execution information. We suspect the reason to be that
execution information is more precise than natural language in-
formation. The precision in information leads to a better order of
the retrieved bug reports. However, as bug reports with quite simi-
lar or even identical execution information are not guaranteed to
be duplicate bug reports, using only execution information may
become more likely to retrieve irrelevant bug reports than using
only natural language information when suggested lists are large.

Finally, among the three approaches using only natural language
information, the one using the double-weighted summary with the
detailed description appears to achieve the best performance, and

the approach that uses only the summary appears to perform the
worst. This observation is different from the situation of using
natural language information together with execution information,
where using only the summary becomes superior when the sug-
gested-list size becomes larger. We suspect the reason to be that,
without the other kind of information sources, only the summary
cannot provide enough clues to achieve a high-quality set of re-
trieved bug reports or a high-quality ordering of the retrieved bug
reports. As using the double-weighted summary with the detailed
description performs slightly better than using the equal-weighted
summary and description, this observation once again confirms
the finding of Runeson et al. [18].

5.3 Evaluation on Firefox
We used the Eclipse bug repository mainly to calibrate the pa-
rameters of our approach. To further evaluate our approach, we
carried out another experiment using data from the Firefox bug
repository. When establishing the experimental bug-report set, we
considered the two following issues. First, Runeson et al. [18]
suggested that searching the bug reports that are submitted 50
days before the new bug report is the most effective for searching
target reports. Thus we created our experimental report set using
bug reports submitted in three consecutive months, and treated the
bug reports submitted in the first 50 days as existing bug reports
and the remaining bug reports as new bug reports. Second, there is
usually an intensive bug-fixing period after a major release [2] . In
this period, the triager usually has the largest triaging workload.
Therefore, we downloaded all resolved bug reports between Jan.
1st 2004 and Apr. 1st 2004, which is around the release of version
0.8 on Feb. 6th 2004. In open source projects, some bug reports,
especially those submitted shortly before the new release, remain
unsolved in the new release, and users of the new release may
rediscover them, and submit a duplicate bug report. Therefore, we
included bug reports both before and after the release of version
0.8 in our experimental data set. Note that those bug reports
treated as new ones were submitted after the release of version 0.8.

In total, we collected 1749 bug reports. After filtering out the
patch reports and invalid bug reports, we reproduced the execution
traces of the remaining bug reports and established an experimen-
tal bug-report set containing 1492 bug reports. Among the 1492
bug reports, there are 744 bug reports submitted in the first 50
days. We treated them as the existing bug reports. We treated the
other 748 bug reports as the set of new bug reports.

Similar to our evaluation of Eclipse in Section 5.2, we calculated
the credibility thresholds using the 744 existing bug reports. We
can do this calculation because the duplicate relationships among
existing bug reports can be acquired before triaging new bug re-
ports. The values of CTNL-S are as follows: 0.39 for using the
summary only, 0.57 for using the summary and description with
equal weights, and 0.55 for using the double-weighted summary.
The value of CTE-S is 0.95. Note that these values are similar to
those acquired in our evaluation on Eclipse.

We then added the bug reports from the set of new bug reports to
the existing bug-report set in the same order as they were submit-
ted to the Firefox bug repository. Each time we added a bug report,
we performed duplicate-bug-report detection using the same ap-
proaches compared in our evaluation on Eclipse. Similar to our
evaluation on Eclipse, for different suggested-list sizes, we re-
corded the performances of the eight approaches on only those
new bug reports each of which has a duplicate counterpart in the
set of existing bug reports, as all the eight approaches become
equally effective for unique new bug reports.

When adding bug reports chronologically to our experimental
bug-report set, we faced the inverse duplicate problem. In a bug
repository, a bug report will sometimes be marked as the duplicate
of a future bug report. This problem has been observed in previous
research [8][18]. We used the same solution used in previous re-
search. We designated the earliest bug report in a group of dupli-
cate bug reports as the target report. We also marked the duplicate
bug reports whose target report was not in our experimental bug-
report set as “unique” instead of “duplicate”. Under this strategy,
there were totally 77 duplicate bug-report pairs in our evaluation.

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

1 2 3 4 5 6 7 8 9 10
suggested list size

r
e
c
a
l
l

r
a
t
e

sum+CBHeur 2sum+des+CBHeur sum+BHeur
2sum+des+BHeur execution sum
2sum+des sum+des

Figure 3: Recall rates using different similarities in Firefox

The results of the evaluation on Firefox are shown in Figure 3. We
make similar observations from this figure as observed in Figure 2.
The results can confirm almost all the findings in our evaluation
on Eclipse. First, the four combinations for our approach outper-
form the other four approaches. Unlike the results on Eclipse,
among the four combinations of our approach, the one using the
summary and the execution information with the classification-
based heuristic outperforms the other combinations. This combi-
nation achieves recall rates of 67%-93% for suggested-list sizes of
1-10. However, there is a similar trend in both Figures 2 and 3:
when the suggested-list size is small, our approach that uses only
the summary has no advantage over our approach that uses the
double-weighted summary with the detailed description. The ad-
vantage becomes significant only when the suggested-list size
becomes larger. Second, for approaches using only the natural
language information and only the execution information, using
only execution information performs better with small suggested-
list sizes, and using only natural language information performs
better with larger suggested-list sizes. Finally, among the three
approaches using only natural language information, the one using
the double-weighted summary with detailed description outper-
forms the other two.

In summary, the best result of our approach has an increase of 18-
26 percentage points in recall rates over the best result of using
only natural language information for suggested-list sizes of 1-10.

5.4 Threats to Validity
As there was no execution information associated with bug reports
in both Eclipse and the Firefox bug repositories, we used repro-

duced execution traces for our experiment. Thus, these reproduced
execution traces are a threat to the construct validity, as the execu-
tion traces that we reproduced may be somewhat different from
those actually recorded by the bug reporters. Such differences may
be due to our misunderstanding of the bug reports or due to exter-
nal influence beyond our control. To reduce this threat, we care-
fully examined the summary and the detailed description of each
bug report before reproducing the execution traces for it.

In our experiment, we used subsets of bug reports in the original
bug repositories. This factor may be a threat to the external valid-
ity, as the experimental results may be applicable only to the se-
lected bug reports but not to the entire bug repositories. To reduce
this threat, we tried to use as many bug reports as possible in our
experiment.

Another threat to the external validity is the bug repositories used
in our experiment. It is possible that some particular characteris-
tics of a bug repository lead to our experimental results. To reduce
this threat, we used two different real-world bug repositories.

6. DISCUSSION
6.1 Costs of Using Execution Information
Our experimental results show that using both the execution in-
formation and the natural language information can be more effec-
tive than using the natural language information alone. However,
there are costs to achieve this effectiveness.

The first cost is that the bug repository has to store the execution
information in addition to the natural language information for
each bug report. Thus, the repository would increase its storage
requirement for bug reports. For example, one typical execution
trace for an Eclipse bug report in our experiment contains around
30,000 methods. If we record the full signature of each method in
an execution trace file, one execution trace file may require more
than 1MB to store. However, if the bug repository maintains a
table of the signatures of all the methods, an execution trace can
be represented as a series of indices to the table or a series of Boo-
lean values, each indicating whether the trace contains a method.
Thus, we can keep the storage requirement for execution informa-
tion within an acceptable level. Furthermore, as this way of execu-
tion trace representation is similar to the vector representation, it
also facilitates the transformation of execution traces to vectors.

The second cost of using execution information is the cost of cal-
culating the E-S. As an execution trace typically contains much
more index terms than its corresponding textual part, calculating
the E-S is more time-consuming than calculating the NL-S. This
cost may become a burden for the triager to retrieve potential tar-
get bug reports. However, as stated in Section 5.3, we can match
the new bug report with only recently submitted bug reports using
a time frame [18]. Furthermore, there are some methods that fre-
quently appear in many execution traces. Due to the nature of the
vector space model, the inverse document frequency (idf) of such
a frequently appearing index term is small. So in practice we can
ignore some methods with very small idf in each execution trace,
and thus decrease the number of index terms in each execution
trace. As a result, we can decrease the costs of both storing execu-
tion information and calculating E-S through representing each
execution trace with fewer methods. Indeed, this simplification
may induce imprecision and requires further investigation.

The third cost of using execution information is the burden posed
on bug reporters. To record the execution information, bug report-
ers need to run an instrumented version of the software and submit
execution information. This instrumentation may lengthen the

time of testing the system. However, we do not think this length-
ening will be a burden for bug reporters, because the overhead of
executing instrumented code is usually a small portion of execut-
ing the original code. Recently, Clause and Orso [3] suggested an
effective approach to automatically reproduce bug-revealing runs
and record execution information associated to bug reports sub-
mitted by remote users. This technique further relieves the burden
on bug reporters. Another problem is that bug reporters may re-
fuse to submit execution information because it contains private
data. As the execution information that our approach requires
includes only a list of executed methods but does not include data
parts such as the values of variables, we believe that the privacy
issue would not be a concern in our approach.

6.2 Coping with Existing Bug Repositories
Our approach requires both execution information and natural
language information in bug repositories. It is easy for a new open
source project to create such a bug repository at beginning. How-
ever, if a project already maintains a bug repository that does not
contain execution information, the project cannot directly take
advantage of our approach. To facilitate such a project to migrate
to a bug repository supporting the inclusion of execution informa-
tion, we suggest the following strategy. First, each bug report in
the existing repository can be transformed into a bug report in the
new bug repository with the execution information part marked as
“missing”. Second, when a new non-patch bug report is submitted,
the bug repository requests both natural language information and
execution information. Third, when the triager detects whether a
new bug report is a duplicate bug report, we calculate the E-S
between the new bug report and an existing bug report differently
according to whether the existing bug report contains execution
information. If the existing bug report contains execution informa-
tion, we use our proposed approach to calculate the similarity;
otherwise, we assume that the similarity is the average of the simi-
larities between the new bug report and all the existing bug reports
that contain execution information. Specifically, let R be the set of
existing bug reports containing execution information, and i be a
new bug report, we use Formula (8) to calculate the average E-S.

∑
∈

=
Rx

exeexe xiSim
n

iAvgSim),(1)((8)

In Formula (8), n is the number of bug reports in R. We use this
similarity uniformly as the E-S between i and any existing bug
report with “missing” execution information. Using this formula,
the E-S between a new bug report and any existing bug report
with “missing” execution information will be the same. Therefore
the ranking of these bugs will be decided only by the NL-S.

6.3 Evaluation Criteria for Duplicate-Bug-
Report Detection
The ultimate criterion to evaluate an approach for duplicate-bug-
report detection should be how much workload is saved for the
involved developers. However, the saved workload may be diffi-
cult to measure in practice. In our experiment, we adopt the
evaluation criterion used by Runeson et al. [18]. In this criterion,
an approach is assessed through measuring how many duplicate
bug reports the approach can detect under a given suggested-list
size. This criterion is applicable under the following conditions: (1)
the compared approaches use the same suggested-list size; and (2)
the triager checks all the suggested bug reports with equal effort.

Given a set of existing bug reports and a new bug report, if two
approaches require different suggested-list sizes, these approaches
sometimes are incomparable to each other. For example, for a

duplicate new bug report, Approach 1 retrieves n bug reports not
containing the target bug report, and Approach 2 retrieves m bug
reports containing the target bug report. If n is less than m, it is
unclear which approach is superior. On one hand, Approach 1
fails to detect the duplication but Approach 2 can. This observa-
tion indicates that Approach 2 is better than Approach 1. On the
other hand, Approach 1 requires less effort for the triager to exam-
ine the retrieved bug reports. In fact, this situation reflects the
original dilemma that more effort from the triager to detect dupli-
cate bug reports can make developers waste less effort in bug
fixing. Without setting up an accurate relationship between the
two kinds of effort, we cannot have a satisfactory evaluation of the
preceding situation.

Moreover, some bug-report pairs are easy for the triager to deter-
mine whether one duplicates the other; but other bug-report pairs
may be difficult. Thus, the number of bug reports that the triager
examines may not accurately reflect the effort that a triager in-
vests. Even worse, different triagers may feel differently about
how hard it is to examine the same bug report. Therefore, the cur-
rent evaluation criterion used by us and others is only a coarse
simplification. More effort is needed to set up a more accurate
criterion.

7. RELATED WORK
As previously mentioned, there have been some approaches to
duplicate-bug-report detection reported in the literature. Runeson
et al. [18] proposed an approach based on information retrieval.
This approach uses only the natural language information of bug
reports without considering the use of execution information.
Hiew [8] also proposed an approach to duplicate-bug-report detec-
tion using the natural language information alone. Hiew’s ap-
proach is based on incremental clustering, which is quite similar to
information retrieval. The main difference is that Hiew’s approach
further considers the detected duplicate bug-report pairs/groups as
clusters. Thus, when calculating similarities between a new report
and existing bug reports, each detected cluster is considered as a
whole rather than as several individual existing bug reports. That
is to say, for each detected cluster, this approach will calculate one
similarity between the new report and the detected cluster instead
of calculating several similarities between the new report and all
the reports in the cluster. Compared to these two approaches, our
approach further considers execution information, and uses effec-
tive heuristics to combine the two kinds of information.

Besides the effort on duplicate-bug-report detection, there has also
been some effort made on bug-report mining. Anvik et al. [1],
Cubranic and Murphy [4] and Lucca et al. [12] all proposed semi-
automatic techniques to categorize bug reports. Based on catego-
ries of bug reports, their approaches help assign bug reports to
suitable developers. All the three approaches rely on only natural
language information. Podgurski et al. [15] also proposed an ap-
proach to bug-report categorization, and later improved their ap-
proach using two tree-based techniques in the clustering process
[6]. However, their approaches target at prioritizing bug reports by
their severity and frequency, not assigning bug reports to develop-
ers. Another main difference is that their approaches [6][15] use
only execution information but not natural language information.
Ko et al. [10] analyzed the linguistic characteristics of bug-report
summaries, and proposed a technique to differentiate failure re-
ports and feature calls. They also emphasized the need of dupli-
cate-bug-report detection, but did not propose a solution. In gen-
eral, although either natural language information or execution
information has been used in bug-report mining, no previous ap-
proach to bug-report mining has used both kinds of information.

There have been several statistical studies of existing bug reposi-
tories. Anvik et al. [2] reported a statistical study on open bug
repositories with some interesting results such as the proportion of
different resolutions and the number of bug reports that a single
reporter submitted. Sandusky et al. [19] studied the relationships
between bug reports and reported some statistical results on dupli-
cate bugs in open bug repositories. However, neither work pro-
posed any approaches to duplicate-bug-report detection.

There are also approaches on analyzing execution information of
bug-revealing runs for debugging [9][11][17]. However, these
approaches mainly focus on debugging using execution informa-
tion, not on how to detect duplicate bug reports.

Some research has been conducted on automatic remote execu-
tion-information collection. Elbaum and Diep [5] suggested a
strategy to collect remote execution information over Internet;
Liblit et al [11] proposed a technique to sampling remote runs for
bug isolation. Clause and Orso [3] suggested a technique on auto-
matic reproduction and execution-information recording of remote
bug-revealing runs. These techniques, which improve the collec-
tion of remote execution information, can facilitate the use of our
approach, which requires execution information, but none of these
previous techniques target the problem of duplicate bug-report
detection.

8. FUTURE WORK
There are several ways to improve or extend our current research.
First, there are the previously mentioned threats to validity of our
experiment. Our future plan includes conducting experiment on
larger sets and deploying the tool on some open source projects to
see if triagers benefit from our approach, so that we can further
address these threats.

Second, as our research indicates that the combination of natural
language and execution information provides a more precise rep-
resentation of bug reports, the combination may be useful in areas
beyond duplicate-bug-report detection. For example, automated
bug assignment and bug prioritization may also benefit from the
combination.

Third, in Section 6.1, we discussed some simplifications of our
approach to cope with some practical situations. In future work,
we plan to further investigate these simplifications.

Finally, as current evaluation techniques for duplicate-bug-report
detection are not precise enough, we plan to further investigate
this issue and develop more-suitable evaluation techniques.

9. CONCLUSION
In this paper, we present a novel approach to assist triagers in
detecting duplicate bug reports. Unlike existing approaches, our
approach further considers execution information. Furthermore,
our approach employs two heuristics to combine the two kinds of
information. We also calibrated and evaluated our approach on
bug reports from the Eclipse and Firefox repositories. The ex-
perimental results show that, compared with the best performance
of approaches using only natural language information, our cali-
brated approach (with the classified-based heuristic and using only
the summary) leads to an increase of 11-20 percentage points and
an increase of 18-26 percentage points in recall rates on the two
experimental bug-report sets respectively.

Acknowledgments
We are grateful to Prof. Hong Mei, for his guidance and support in
both the research and paper writing process. The authors from

Peking University are sponsored by the National 973 Key Basic
Research and Development Program No. 2002 CB312003, the
State 863 High-Tech Program No. 2006AA01Z 156 and the Na-
tional Science Foundation of China No.60403015. Tao Xie’s work
is supported in part by NSF grant CNS-0720641 and Army Re-
search Office grant W911NF-07-1-0431.

10. REFERENCES
[1] Anvik, J., Hiew, L., and Murphy, G. Who Should Fix This

Bug? In Proc. ICSE., 2006, 371-380.
[2] Anvik, J., Hiew, L., and Murphy, G. Coping with Open Bug

Repositories. In Proc. of OOPSLA Workshop on Eclipse
Technology eXchange (ETX), 2005, 35-39.

[3] Clause, J. and Orso, A. A Technique for Enabling and Sup-
porting Debugging of Field Failures. In Proc. ICSE, 2007,
261-270

[4] Cubranic, D. and Murphy, G. Automatic Bug Triage Using
Text Classification. In Proc. SEKE, 2004, 92-97.

[5] Elbaum S. and M. Diep. Profiling Deployed Software: As-
sessing Strategies and Testing Opportunities. IEEE TSE, 31,
4: p312–327, 2005.

[6] Francis, P., Leon, D., and Minch, M. Tree-Based Methods for
classifying Software Failures. In Proc. ISSRE, 2004, 451-462.

[7] Greengrass, E. Information Retrieval: A Survey, University
of Maryland, Baltimore County, 2000

[8] Hiew, L. Assisted Detection of Duplicate Bug Reports. Mas-
ter’s thesis, University of British Columbia, Canada, 2006.

[9] Hildebrandt, R. and Zeller, A. Simplifying failure-inducing
input. In Proc. ISSTA, 2000, 135-145.

[10] Ko, A., Myers, B., and Chau, D.H. A Linguistic Analysis of
How People Describe Software Problems in Bug Reports. In
Proc. of IEEE Conf. on Visual Language and Human-Centric
Computing (VL/HCC), 2006, 127-134.

[11] Liblit B., Aiken A. and Zheng A. Bug Isolation via Re-mote
Program Sampling. In Proc. PLDI, 2003, 15-26.

[12] Lucca, D., Penta, D., Granada, S., An Approach to Classify
Software Maintenance Requests. In Proc. ICSM, 2002, 93-
102.

[13] Manning, D., Schutze, H. Foundations of Statistical Natural
Language Processing. Cambridge, USA, MIT Press 1999.

[14] Mockus, A., Fielding, R., and Herbsleb, J. Two Case Studies
of Open Source Software Development: Apache and Mozilla.
ACM TOSEM, 11, 3: p309-346, 2002

[15] Podgurski, A., Leon, D., and Francis, P. Automated Support
for Classifying Software Failure Reports. In Proc. ICSE,
2003, 465-475.

[16] Raghavan, V., Wong, M. A critical analysis of vector space
model for information retrieval. Journal of the American So-
ciety for Information Science, 37, 5: p279-287, 1986.

[17] Reiss, S., and Renieris, M. Encoding Program Executions. In
Proc. ICSE, 2001, 221-230.

[18] Runeson, P., Alexanderson, M., Nyholm, O. Detection of
Duplicate Defect Reports Using Natural Language Process-
ing. In Proc. ICSE, 2007, 499-510.

[19] Sandusky, J., Gasser, L., and Ripoche, G. Bug Report Net-
works: Varieties, Strategies, and Impacts in an OSS Devel-
opment Community, In Proc. MSR, 2004, 80-84.

