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ABSTRACT 
An open source project typically maintains an open bug reposi-
tory so that bug reports from all over the world can be gathered. 
When a new bug report is submitted to the repository, a person, 
called a triager, examines whether it is a duplicate of an existing 
bug report. If it is, the triager marks it as DUPLICATE and the 
bug report is removed from consideration for further work. In the 
literature, there are approaches exploiting only natural language 
information to detect duplicate bug reports. In this paper we pre-
sent a new approach that further involves execution information. 
In our approach, when a new bug report arrives, its natural lan-
guage information and execution information are compared with 
those of the existing bug reports. Then, a small number of existing 
bug reports are suggested to the triager as the most similar bug 
reports to the new bug report. Finally, the triager examines the 
suggested bug reports to determine whether the new bug report 
duplicates an existing bug report. We calibrated our approach on a 
subset of the Eclipse bug repository and evaluated our approach 
on a subset of the Firefox bug repository. The experimental re-
sults show that our approach can detect 67%-93% of duplicate 
bug reports in the Firefox bug repository, compared to 43%-72% 
using natural language information alone. 

Categories and Subject Descriptors 
D.2.7 [Software Engineering]: Distribution, Maintenance and 
Enhancement 

General Terms 
Management, Reliability 
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1. INTRODUCTION 
Many∗open source software projects incorporate open bug reposi-
tories1 during development and maintenance so that both develop-
ers and users can report bugs that they have encountered, and call 
for more useful features or make suggestions for revision. There 
are at least two important advantages of using such a bug reposi-
tory. First, the bug repository allows users all around the world to 
be “testers” of the software, so it can increase the possibility of 
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revealing defects and thus increase the quality of the software 
[14]. Second, it helps the software evolve according to users’ 
requests, and meet the requirements of more users 1[1].  

However, these advantages come with a cost. Due to a project’s 
reliance on a large number of users acting as testers, this form of 
testing is asynchronous and loosely organized. Also, the cost of 
users searching the repository (to determine if their problem has 
been reported) is higher than the cost of creating a new bug report. 
As a result, some reported bugs are not new but actually dupli-
cates of existing bugs. To avoid the same bug being addressed by 
multiple bug fixers, it is necessary for a triager2 to examine each 
submitted bug report to determine whether it is a duplicate. 

Due to the large number of existing bug reports, it is challenging 
for the triager to examine all existing bug reports to detect dupli-
cation. One solution is that the triager retrieves a small subset of 
similar bug reports and compares the new bug report with each 
retrieved bug report to see whether the new bug report is a dupli-
cate. If so, the report is marked as DUPLICATE of the report that 
it matches. Otherwise, the triager has to assume that there is no 
duplication [2]. In this paper, we refer to the bug report that the 
new report duplicates as the “target report”, and the set of bug 
reports retrieved for examination for a given new bug report as 
the “suggested list”. Then, duplicate-bug-report detection can be 
viewed as the problem of searching for the target report for each 
new report within the corresponding suggested list. 

The quality of the suggested list is essential in the detection of 
duplicate bug reports. In fact, suggested lists of high quality can 
reduce both the workload of triagers and the possibility of passing 
duplicate bug reports to bug fixers. Recently, some research [8] 
has been conducted to enhance the quality of the suggested list. In 
general, these approaches adopt information-retrieval techniques 
to measure the similarity between bug reports using natural lan-
guage information. Thus, these approaches retrieve only textually 
similar bug reports for the triager to examine. In particular, the 
approach proposed by Runeson et al. [18] achieves a recall range 
of 30%-42% for the Sony-Ericsson Mobile Communications bug 
repository using suggested-list sizes between 5 and 15. The ap-
proach proposed by Hiew [8] achieves a recall range of 36%-50% 
for the Firefox bug repository using suggested-list sizes between 3 
and 7.  

Although these approaches already provide some practical help to 
triagers to detect duplicate bug reports, there is still a need to 
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tracking system that contains both fault reports and feature re-
quests and “bug report” to refer to contents of bug repositories. 

2 A triager is a person who decides whether a report should be 
worked on and who should work on it. 
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improve them due to their low recalls. In this paper, we further 
consider another important kind of information source: the execu-
tion information of bug-revealing runs that cause a bug report to 
be submitted. Compared to natural language information, execu-
tion information has the following advantages. First, execution 
information can reflect the situation during bug-revealing runs 
and is not affected by the variety of natural languages. Second, 
execution information can reflect internal abnormal behavior 
associated with bug-revealing runs unnoticed by the bug reporter. 

We propose an approach using both natural language information 
and execution information in the detection of duplicate bug re-
ports. Our basic idea is as follows. First, based on information 
retrieval, we calculate two similarities between the new bug re-
port and each existing bug report using natural language informa-
tion and execution information respectively. Second, we use some 
heuristics to determine the suggested list using the preceding 
similarities. To evaluate our approach, we conducted an experi-
ment, which consists of two parts. First, we calibrated our ap-
proach on a subset of the bug repository of the Eclipse3 project (a 
popular Java IDE), and also evaluated the calibrated approach on 
this dataset. Second, we evaluated our approach on a subset of the 
bug repository of Firefox4 (a popular open source web browser), 
and compared the calibrated approach with approaches using only 
natural language information. Experimental results show that, 
using suggested-list sizes of 1-10, our approach has a recall range 
of 67%-93% in the Firefox bug repository, compared to 43%-72% 
using natural language information alone. This result indicates 
that our approach achieves a significant improvement in recalls 
over previous approaches. Furthermore, as the triager can achieve 
quite a high recall by examining no more than 10 existing bug 
reports, he or she can be more confident that very few duplicate 
bugs are missed in the triaging work using our approach than 
using previous approaches. 

This paper makes the following contributions: 

• A demonstration of the need to use both natural language 
information and execution information in detecting duplicate 
bug reports. 

• An approach to detecting duplicate bug reports using both 
natural language information and execution information. 

• An empirical comparison of the effect of using different pa-
rameters in our approach: different heuristics using two kinds 
of similarities and using different natural language sources. 

• An experimental evaluation of the proposed approach on a 
subset of the Firefox bug repository. 

The rest of this paper is organized as follows. Section 2 presents 
two motivating examples to show why the use of both natural 
language and execution information is necessary. Section 3 pre-
sents some background knowledge used in our approach. Section 
4 presents our approach. Section 5 reports an experiment of our 
approach. Section 6 discusses some important issues. Sections 7 
and 8 discuss related work and future work, respectively. Section 
9 concludes this paper. 

2. MOTIVATING EXAMPLES 
In this section, we present two duplicate-bug pairs from the Fire-
fox bug repository to motivate the need for using both natural 
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language and execution information in duplicate-bug-report detec-
tion. In a typical bug report, its natural language part mainly con-
tains two sub-parts: the summary and the detailed description. For 
brevity, we show only the summary parts in the examples. 

2.1  Browser-Closing Bug 
In the Firefox bug repository, both Bug-260331 and Bug-239223 
are about the incomplete closing of the browser. Bug-260331 had 
been identified as a duplicate of Bug-239223. Specifically, their 
summaries are as follows. 
Bug-260331: After closing Firefox, the process is still running. 
Cannot reopen Firefox after that, unless the previous process is 
killed manually 

Bug-239223: (Ghostproc) – [Meta] firefox.exe doesn't always 
exit after closing all windows; session-specific data retained 

Both summaries share words like “firefox” and “after closing”, 
but as these words are very common in the Firefox bug repository, 
it is difficult to use these words to confirm a duplicate relationship 
between the two bug reports. Furthermore, due to the difference in 
wording, it is difficult to match some phrases with equivalent 
meanings like “retain” and “still running”, even if synonym lists 
are used. As a result, it is not easy to decide whether these two 
reports are duplicates using only natural language processing 
techniques on the summaries. Including the more detailed descrip-
tions does not necessarily help, because people still use different 
ways to express the same idea in the detailed description. How-
ever, if we involve the execution information in duplicate-bug- 
report detection, it would be easier to find the common part of the 
two bugs: their execution traces should share the same abnormal 
process of quitting Firefox. 

This example indicates that using only natural language informa-
tion may fail to detect some duplicate bug reports due to the vari-
ety of natural language usages. In such a case, execution informa-
tion may be more reliable. However, using only the execution 
information may also have its own disadvantage. The example 
below demonstrates this situation. 

2.2 Document-Contain-No-Data Bug 
Another duplicate pair in the Firefox repository is Bug-219232 
and Bug-244372, whose summaries are presented below.  
Bug-244372: "Document contains no data" message on con-
tinuation page of NY Times article 

Bug-219232: random "The Document contains no data." Alerts 

In this duplicate pair, the two bugs are both about incorrect load-
ing of web pages. The two natural language descriptions share the 
common phrase “document contains no data”. These words can 
provide a clear clue that both bug reports are related to an error 
message “document contains no data”. However, Bug-244372 
describes a scenario that the error happens when visiting the web 
site of NY Times, while Bug-219232 indicates a random visit. It 
is highly likely that Bug-219232 is observed on several web sites 
that are totally different from the web site of NY Times. There-
fore, if we ignore the natural language information but rely on the 
execution information alone, the part of execution related to load-
ing different files in different pages will be rather different for 
these two bug reports. These differences may shadow the similar 
parts of erroneous executions.  

This example indicates that using only execution information may 
fail to detect some duplicate bug reports due to the various ways 



of observing a bug. In such a case, natural language information 
may be superior to execution information. 

2.3 Motivation 
In the preceding examples, neither natural language information 
nor execution information is always superior to the other in all 
cases. In particular, considering both kinds of information can 
have the following advantages. First, natural language informa-
tion acquired from the bug description most likely represents the 
external buggy behavior observed by the bug reporter, while the 
corresponding execution information likely records the internal 
abnormal behavior. Thus, using both kinds of information can 
make it possible to consider both external and internal behaviors 
in duplicate-bug-report detection. Second, as descriptions in natu-
ral languages often contain uncertainty and imprecision, execu-
tion information, which is typically certain and precise, may help 
reduce the uncertainty and imprecision in existing duplicate-
detection approaches. Moreover, as shown by the examples, either 
natural language information or execution information can be the 
dominant factor in detecting duplicate bug reports. Thus distin-
guishing which kind of information is the dominant factor may 
further facilitate duplicate-bug-report detection. 

3. BACKGROUND 
In our approach, we uniformly deal with both kinds of informa-
tion sources using information retrieval techniques. Information 
Retrieval (IR) [7] is a discipline that deals with retrieval of un-
structured data, especially textual documents, in response to a 
query or a topic, which may itself be unstructured or structured.  

The vector space model [16] is a widely used technique in tradi-
tional information retrieval. Both existing approaches [8][18] to 
duplicate-bug-report detection adopt the vector space model. In 
the vector space model, each document or query is represented as 
an n-dimensional vector, where n is the number of unique index 
terms appearing in all the documents and queries and wi (1≤i≤n) is 
the weight of the i-th index term in the vector <w1, w2, …, wn> 
and  defined by Formula (1). 

wi = tfi × idfi                                                               (1) 

In Formula (1), tfi refers to the term frequency and idfi refers to 
the inverse document frequency. More precisely, tfi is the fre-
quency of the i-th index term appearing in the document or query, 
and idfi is defined by Formula (2). 

idfi = log (Dsum / Dwi)                                               (2) 

In Formula (2), Dsum is the total number of documents, and Dwi 
is the number of documents that contains the i-th index term. 

After transforming documents and queries into vectors, we can 
calculate the similarity of a pair of documents or queries through 
a formula defining the similarity of two vectors. Typically, for 
two vectors q1=<w11, w21, …, w1n> and q2=<w21, w22, … , w2n>, 
the similarity of q1 and q2 is defined by Formula (3). 
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In practice, there are also several other ways [13] of calculating 
weights and similarities for the vector space model. For simplicity, 
we present only the formulae used in our approach. 

4. THE PROPOSED APPROACH 
Our approach consists of three steps. First, we calculate the Natu-
ral-Language-based Similarities (NL-S) between the new bug 
report and existing bug reports. Second, we calculate the Execu-
tion-information-based Similarities (E-S) between the new bug 
report and existing bug reports. Finally, we retrieve potential tar-
get reports using the two kinds of similarities based on two heu-
ristics. The first heuristic is to combine the NL-S and the E-S into 
one combined similarity, and use the combined similarity to re-
trieve potential target reports. The second heuristic is to try to 
distinguish whether the natural language information or the exe-
cution information is the dominant factor in detecting each pair of 
possible duplicate reports, and use different strategies to deal with 
different situations. 

4.1 Calculating NL-S 
Our approach adopts a similar technique used in two previous 
approaches [8][18] to calculate NL-S between two bug reports. 
First, we extract the text information from the summary and de-
scription of the two reports. Second, for the extracted text part of 
each report, we perform the standard preprocessing in information 
retrieval, including the stemming work and the removal of the 
stop words5. Third, we obtain one vector for each bug report by 
applying Formulae (1) and (2). Finally, we use Formula (3) to 
calculate the similarity for the pair of vectors for the two reports.  

There is a slight difference in calculating NL-S between the pre-
vious work and our work. As we stated in Section 2, the text part 
of a bug report mainly contains a summary and a detailed descrip-
tion. Hiew’s approach [8] treats the summary and the detailed 
description equally. Runeson et al. [18] suggested that the sum-
mary should be treated as twice as important as the detailed de-
scription. That is to say, when calculating the term frequency of 
an index term, appearing in the summary once will be counted as 
occurring twice, but appearing in the detailed description once 
will be counted as once.  Ko et al. [10] suggest that using only the 
summary should be better when dealing with text from bug re-
ports, but they did not provide any experimental evaluation. 

Our approach can use natural language in each of the above ways. 
We experimented with all these approaches, and compare their 
performance especially when execution information is involved. 

4.2 Calculating E-S 
Similar to the natural language information, our approach also 
uses the vector space model to calculate E-S. Specifically, we 
record one execution trace for each reported bug-revealing run, 
and transform the execution trace into a vector similar to that used 
for natural language information. In the transformation process, 
we view each invoked method as a dimension in the vector space 
model. We use the granularity of methods because many previous 
approaches [6][15][17] did so. We plan to further investigate the 
performance of using other levels of granularity in future work. In 
the specific case of execution information, we further make the 
following two decisions. 

First, when recording an execution trace, we consider only the 
methods that are invoked during the run without considering how 
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Stemming is a technique in natural language processing to unify 
grammatical forms of words. For example, “worked” and 
“working” are both transformed to “work” after stemming. 



many times each method has been invoked. Intuitively, if a 
method is invoked during a bug-revealing run, the method may be 
responsible for the failure, but more invocations of a method do 
not necessarily imply a higher responsibility.  

Second, the name of a method may contain several words and 
different methods may share a name due to overloading. We treat 
the canonical signature of each method as one index term. That is, 
we treat overloaded methods as different index terms. 

Having made these decisions, we transform each execution trace 
into a vector using Formulae (1) and (2). Note that the term fre-
quency in Formula (1) should be either zero or one, as we treat 
each method as an index term and we record only the information 
of whether the method is invoked. Finally, we apply Formula (3) 
on the vectors to calculate the E-S.  

4.3 Retrieving Potential Target Bug Reports 
4.3.1 Basic Heuristic 
After calculating NL-S and E-S, we need to rank the existing bug 
reports in a list using these two kinds of similarities. The first 
heuristic is to combine the NL-S and the E-S into one combined 
similarity, and use the combined similarity to retrieve potential 
target reports. Thus, we need a tool to combine the NL-S and the 
E-S. Generally, the combination can be represented as a function 
in Formula (4). 
SIMcombined = f (SIMnlp, SIMexe)                                         (4) 
In Formula (4), SIMnlp denotes the NL-S value, SIMexe denotes the 
E-S value, SIMcombined is the combined similarity, and f is the 
combination function. We consider the most common combina-
tion function in our approach: the arithmetic average. Formula (5) 
formally presents this combination function. 
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4.3.2 Classification-Based Heuristic 
The preceding heuristic simply treats both kinds of information 
sources equally for every pair of bug reports. However, as shown 
in Section 2, in a specific duplicate pair, either natural language 
information or execution information can be the dominant factor 
in correctly detecting duplicate bug reports. In such a case, we 
should naturally rely more on the dominant information source. 
Thus, we further propose a classification-based heuristic that is 
based on distinguishing which kind of information source is the 
dominant factor.  
When analyzing some pairs of duplicate bug reports, we found 
that an extremely high value of NL-S often indicates a case that 
natural language information dominates, and there is a similar 
observation for E-S. Thus, when ranking the existing bug reports, 
those with extremely high NL-S or E-S values should be ranked 
above other bug reports. Furthermore, we can also define two 
thresholds on the similarity values to distinguish whether one kind 
of information source is dominant. Here, we refer to such a 
threshold as the Credibility Threshold (CT), and use CTNL-S and 
CTE-S to denote credibility thresholds for NL-S and E-S, respec-
tively. For an existing bug report, our classification-based heuris-
tic uses the following strategy to calculate its ranking: 

 If its NL-S and E-S are both higher than the corresponding 
CTs, we put the bug report in Class I, in which bug reports 
are ranked by their combined similarity using Formula (5). 

 If its NL-S is higher than CTNL-S, but its E-S is lower than 
CTE-S, we put it in Class II, in which bug reports are ranked 
only by NL-S.  

 If its E-S is higher than CTE-S, but its NL-S is lower than 
CTNL-S, we put it in Class III, in which bug reports are 
ranked only by E-S.  

 Otherwise, we put it in Class IV, in which bug reports are 
ranked by their combined similarity using Formula (5). 

In the final ranking, Class I is ranked higher than Class II, Class II 
higher than Class III, and Class III higher than Class IV. The rea-
son that we put the class of natural-language-dominant bug re-
ports (i.e., Class II) higher than the class of execution-
information-dominant bug reports (i.e., Class III) lies in that CTE-S 
cannot always definitely identify execution-information-dominant 
bug reports. In fact, for two very similar or even identical bug-
revealing execution traces, it is still possible that the two execu-
tion traces reveal different bugs, especially when the granularity 
of the execution traces is at the method level.  

4.3.3 Determining Credibility Thresholds 
For our classification-based heuristic, we need two credibility 
thresholds. In this sub-section, we present a technique to calculate 
these thresholds. Our technique is based on the analysis of exist-
ing bug reports, among which the duplicate relationships are 
known. For simplicity, we describe only how to determine CTNL-S. 
The determination of CTE-S is similar.  
As the aim of CTNL-S is to rank bug reports with extremely high 
NL-S values higher in the list, the intuition in determining CTNL-S 
is to choose a value (denoted as v) such that on average bug re-
ports whose NL-S values are larger than v are more likely to be 
duplicate bug reports. Our technique is as follows. 
Given a set of existing bug reports (denoted as S), we use D to 
denote a subset of S where for each bug report (denoted as b) in D, 
there is at least one duplicate bug report of b in S. For each bug 
report b in D, we calculate the NL-S value between b and each 
other bug report in S. For a given value v, we use dup(b, v) to 
denote the number of duplicate bug reports whose NL-S values 
with b are larger than v; and we use fp(b, v) to denote the number 
of false-positive bug reports whose NL-S values with b are larger 
than v. Thus, we define the effectiveness of v (denoted as E(v)) as 
in Formula (6):  

∑
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Based on Formula (6), we calculate the effectiveness of a series of 
different values, and choose the value with the largest effective-
ness as the threshold.  

4.4 Presenting Potential Target Bug Reports 
When presenting the ranked list of retrieved potential target bug 
reports to the triager, there are two ways used in previous research: 
suggesting a list with a predetermined fixed size [18] and suggest-
ing a list with floating sizes [8]. The fixed list size is determined 
using a predefined number. The floating list sizes are determined 
using a threshold of similarity. For our basic heuristic, both ways 
can be adopted. Our classification-based heuristic can use only a 
fixed suggested-list size, as this heuristic is not based on one 
combined similarity but a collection of four different sets. In our 
experiment, we use the fixed list size for both heuristics for the 
ease of comparison. 



5. EXPERIMENT 
In our experiment, we investigate two research questions. First, 
we want to discover the setting under which our approach can 
achieve a good accuracy. Second, we want to see whether our 
approach can outperform approaches using only natural language 
information. To evaluate the performance of the different ap-
proaches, we use the recall rate6 of target reports under a certain 
suggested-list size as a measure. This technique was suggested by 
Runeson et al. [18]. Formula (7) shows this measure. 

tatal

recalled

N
N

raterecall =                                     (7) 

In Formula (7), Nrecalled refers to the number of duplicate bug re-
ports whose target reports are in the suggested lists, and Ntotal 
refers to the number of duplicate bug reports used in experiment. 

5.1 Experimental Setup 
In our experiment, we used the bug repositories of two large open 
source projects: the Eclipse project and the Firefox project. These 
two projects are from different domains and used by different 
types of users. Thus, carrying out the experiment on them helps to 
generalize our conclusions. Also both projects have large bug 
repositories so as to provide ample data for an evaluation. We 
selected a subset of each repository to set up an experimental bug 
set in our study. When setting up the two experimental bug-report 
sets, we did not select the most recent bug reports, because the 
resolutions of recent bug reports are more likely to be changed 
compared to older bug reports. For example, some new bug re-
ports may be incorrectly marked as duplicate and the mistakes 
have not yet been corrected. Including these new bug reports 
would affect the precision and fidelity of our experiment.  

Typically bug repositories also contain invalid bug reports. A 
report may be invalid for several reasons, such as not being repro-
ducible or being filed by a spambot. In practice, when encounter-
ing an invalid bug report, the triager marks it as invalid and the 
report receives no further attention, but the report remains in the 
repository. To avoid interference by invalid bug reports, we dis-
carded such reports when setting up an experimental bug-report 
set.  

Our approach requires both natural language information and 
execution information for each bug report. In both the Eclipse and 
Firefox bug repositories, a bug report provides a summary and a 
detailed description, both of which contain natural language in-
formation, but there is no execution information associated with 
the bug report. Therefore, we needed to create the execution in-
formation for each bug report used in our study.  

For an experimental bug-report set used in our experiment, we 
classify the bug reports into three main types: runtime error re-
ports, feature requests, and patch reports. A runtime error report is 
an erroneous behavior or crash that the reporter encounters when 
he or she uses an existing feature of the software. A feature re-
quest is a request for a non-existing feature of the software. A 
patch report refers to a bug report (submitted by a highly technical 
bug reporter) that directly points to a bug in the code with a sug-
gestion of fixes. For different types of reports, we used different 
techniques to obtain the corresponding execution information.  

                                                                 
6 We follow Runeson et al’s naming [18] but we think that it can 

also be called accuracy (the percentage of the correct target re-
ports that appeared in suggested lists with the same size). 

 For a runtime error report, we started the program and ran the 
program until the error occurs. As the steps to reproduce a 
runtime error are provided in the description part of the bug 
report, we reproduced these bugs according to these steps. 
Thus the execution information of our reproduction should be 
very close to the execution information that caused the fault.  

 For a feature request, we started the program and ran the pro-
gram until we reached the point where the new feature (sug-
gested by the reporter) should appear. Like runtime errors, 
there is also guidance in the description part of a feature re-
quest for the bug fixer to reach the point where the new fea-
ture is desired. For example, to reproduce a bug calling for 
automatic sorting of bookmarks, we ran the browser until the 
list of the bookmarks was shown. 

 For a patch report, there is no associated bug-revealing run 
and a bug reporter will not submit execution information. Fur-
thermore, it is unlikely that two independent bug reporters 
identify the same buggy code simultaneously. Actually, in the 
part of bug repository from which we build our experiment set, 
we did not find any duplicate patch reports. Therefore, we did 
not use patch reports in the experiment. This decision does not 
affect the validity of our experiment, as patch reports can be 
easily distinguished from other reports in a bug repository that 
involves execution information due to these patch reports’ 
lack of execution information. 

5.2 Calibration and Evaluation on Eclipse 
As there are several parameters in our approach, it is necessary to 
calibrate our approach experimentally. To do so, we set up a small 
experimental bug-report set using a subset of bug reports from the 
Eclipse bug repository. To create the subset, we randomly se-
lected 200 bug reports submitted to the Eclipse repository during 
June 2004. To make sure that the set of experimental bug-reports 
contained enough duplicate pairs, we further added the target 
reports of some duplicate bug reports. After filtering out patches 
and invalid bug reports, our experimental bug-report set contained 
220 bug reports with 44 pairs of duplicate bug reports.  

Furthermore, to calculate the credibility thresholds, we randomly 
selected 200 other bug reports submitted during May 2004, and 
used the same technique to build a set of 232 bug reports with 42 
pairs of duplicates. We applied the technique described in Section 
4.3.3 to calculate the credibility thresholds. We determined the 
values of CTNL-S as follows: 0.43 for using summary only, 0.55 
for using summary and description with equal weights, and 0.53 
for using a double-weighted summary. The value of CTE-S is 0.94.  

Using the experimental bug-report repository, we evaluated dif-
ferent combinations of parameters for our approach. For each of 
the 44 duplicate pairs, we used one bug report as the new bug 
report and the other 219 bug reports as the existing bug reports. 
For each different parameter combination, we recorded the recall 
rate (calculated with Formula (7)) for the 44 bug reports for dif-
ferent suggested list sizes. Note that our evaluation is based only 
on the 44 bug reports for which we have a target report among the 
existing reports. The rationale is that if we used a new bug report 
that is not a duplicate of any existing bug report, the triager will 
never find the target report after examining the suggested list. In 
other words, all the evaluated parameter combinations become 
equally effective for a fixed suggested-list size of unique new bug 
reports. In our calibration, we considered two parameters. The 
first parameter was how to use the natural language information 
from each bug report.  As discussed in Section 4.1, we considered  



 
Figure 1: Recall rates using different parameters in Eclipse

three options for this parameter: using the summary only, using 
both the summary and the detailed description with equal weights, 
and using both the summary and the detailed description with the 
summary double-weighted. The second parameter examined was 
the heuristics for retrieving potential target bug reports using the 
two kinds of similarities: the basic heuristic and the classification-
based heuristic. Furthermore, we also considered a variant of the 
classification-based heuristic, in which execution-information-
dominant bug reports are ranked higher than natural-language-
dominant bug reports. For simplicity, we refer to this variant as 
the reverse classification-based heuristic. The aim of the calibra-
tion is to examine which combination of different values for the 
two parameters performs the best for the bug reports in the ex-
perimental bug-report set. 

In Figure 1, we use six sub-figures to show the recall rates using 
the nine different combinations of the parameters for Eclipse. In 
all the six sub-figures, the x-axis denotes the different suggested-
list size used, and the y-axis denotes the recall rate of our ap-
proach for the suggested-list size. We use “BHeur” as the abbre-
viation for the basic heuristic, “CBHeur” for the classification-
based heuristic, and “RCBHeur” for the reverse classification-
based heuristic. We use “sum” for using only the summary, “sum+ 
des” for using both the summary and the description with equal 
weights, and “2sum+des” for using both the summary and the 
description with the summary double-weighted. The upper three 
sub-figures show the results of using the three different kinds of 
natural language information, respectively. In each of these three 
sub-figures, we compare the recall rates of using different heuris-
tics. The lower three sub-figures show the results of using the 
three different kinds of heuristics, respectively. In each of the 
lower three sub-figures, we compare the recall rates of using the 
three different kinds of natural language information.  

From Figure 1, we make the following observations. First, the 
three upper sub-figures show that if we fix the parameter of how 
we weight the natural language information, the classification-
based heuristic always outperforms the other two heuristics. This 
observation indicates that the classification-based heuristic is an 
improvement over the basic heuristic. This observation also con-
firms that in the classification-based heuristic, natural-language-

dominant bug reports should be ranked higher than execution-
information-dominant bug reports. It is also interesting to note that 
for each of the three upper sub-figures, the difference between the 
three heuristics becomes smaller as the suggested-list size be-
comes larger. We suspect the reason to be that natural-language-
dominant bug reports and execution-information-dominant bug 
reports in the classification-based heuristic and its variant are of-
ten similar to the new bug report according to their combined 
similarities. Therefore, when the suggested-list size becomes lar-
ger, the three heuristics will retrieve roughly the same set of exist-
ing bug reports. But the ordering of bug reports retrieved by each 
heuristic differs. The ordering used by the classification-based 
heuristic appears to be the best among the three heuristics.  

Second, the three lower sub-figures show that if we fix a specific 
heuristic in bug-report retrieval, neither way of using the natural 
language information always outperforms the other two. When the 
suggested-list size is small, using both the summary and the de-
scription seems superior to using only the summary. When the 
suggested-list size becomes larger, using only the summary be-
comes superior to using both the summary and the description. We 
suspect the reason to be that the description contains both clues 
and noise not contained in the summary. The clues can help effec-
tively determine the ordering of retrieved bug reports, but in some 
cases the noise can make our approach fail to retrieve target bug 
reports. Of the two ways of weighting both the summary and de-
scription, using the double-weighted summary seems to perform 
slightly better than using the single-weighted summary. This re-
sult is in accordance with the finding of Runeson et al. [18]. 

Although the experimental bug-report set formed from the Eclipse 
bug repository is quite small and also includes manually inserted 
duplicate bug reports, we believe that evaluation on this experi-
mental bug-report set provides some initial insights about whether 
our heuristics using both natural language information and execu-
tion information can be an improvement over approaches that use 
only a single type of information.  

Specifically, as the reverse classification-based heuristic is a less 
effective variant of the classification-based heuristic, we consid-
ered only the basic heuristic and the classification-based heuristic 



for our approach in the evaluation. Similarly, as using double-
weighted summary with detailed description always outperforms 
using both summary and detailed description with equal weights, 
we did not consider the way of using equally-weighted summary 
and detailed description for our approach in the evaluation. There-
fore, we had four different combinations of parameters for our 
approach. As a comparison, we also considered three approaches 
using only the natural language information (i.e. summary only, 
equally-weighted summary and description, and double-weighted 
summary and description) and one approach using only the execu-
tion information. As before, we used each of the 44 duplicate bug 
reports as the new bug report and the other 219 bug reports as the 
existing bug reports in evaluating each approach. Figure 2 shows 
the result of the evaluation for suggested-list sizes of 1-6. 
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Figure 2: Recall rates using different similarities in Eclipse 

From Figure 2, we make the following three observations. First, 
the four parameter combinations for our approach always outper-
form the other four approaches. In our approach, as the classifica-
tion-based heuristic always outperforms the basic heuristic, we 
focus on the two combinations using the classification-based heu-
ristic. When comparing the performance of our approach using 
both the summary and the execution information with the classifi-
cation-based heuristic to the best performance of using only the 
natural language information, there is an increase of 11-20 per-
centage points for suggested-list sizes of 1-6. The increase of the 
other combination over the best performance of using only the 
natural language information is 7-22 percentage points. 

Second, when the suggested-list size is small, using only execu-
tion information appears to outperform using only natural lan-
guage information. When the suggested-list size becomes larger, 
using only natural language information becomes superior to us-
ing only execution information. We suspect the reason to be that 
execution information is more precise than natural language in-
formation. The precision in information leads to a better order of 
the retrieved bug reports. However, as bug reports with quite simi-
lar or even identical execution information are not guaranteed to 
be duplicate bug reports, using only execution information may 
become more likely to retrieve irrelevant bug reports than using 
only natural language information when suggested lists are large. 

Finally, among the three approaches using only natural language 
information, the one using the double-weighted summary with the 
detailed description appears to achieve the best performance, and 

the approach that uses only the summary appears to perform the 
worst. This observation is different from the situation of using 
natural language information together with execution information, 
where using only the summary becomes superior when the sug-
gested-list size becomes larger. We suspect the reason to be that, 
without the other kind of information sources, only the summary 
cannot provide enough clues to achieve a high-quality set of re-
trieved bug reports or a high-quality ordering of the retrieved bug 
reports. As using the double-weighted summary with the detailed 
description performs slightly better than using the equal-weighted 
summary and description, this observation once again confirms 
the finding of Runeson et al. [18]. 

5.3 Evaluation on Firefox 
We used the Eclipse bug repository mainly to calibrate the pa-
rameters of our approach. To further evaluate our approach, we 
carried out another experiment using data from the Firefox bug 
repository. When establishing the experimental bug-report set, we 
considered the two following issues. First, Runeson et al. [18] 
suggested that searching the bug reports that are submitted 50 
days before the new bug report is the most effective for searching 
target reports. Thus we created our experimental report set using 
bug reports submitted in three consecutive months, and treated the 
bug reports submitted in the first 50 days as existing bug reports 
and the remaining bug reports as new bug reports. Second, there is 
usually an intensive bug-fixing period after a major release [2] . In 
this period, the triager usually has the largest triaging workload. 
Therefore, we downloaded all resolved bug reports between Jan. 
1st 2004 and Apr. 1st 2004, which is around the release of version 
0.8 on Feb. 6th 2004. In open source projects, some bug reports, 
especially those submitted shortly before the new release, remain 
unsolved in the new release, and users of the new release may 
rediscover them, and submit a duplicate bug report. Therefore, we 
included bug reports both before and after the release of version 
0.8 in our experimental data set. Note that those bug reports 
treated as new ones were submitted after the release of version 0.8. 

In total, we collected 1749 bug reports. After filtering out the 
patch reports and invalid bug reports, we reproduced the execution 
traces of the remaining bug reports and established an experimen-
tal bug-report set containing 1492 bug reports. Among the 1492 
bug reports, there are 744 bug reports submitted in the first 50 
days. We treated them as the existing bug reports. We treated the 
other 748 bug reports as the set of new bug reports. 

Similar to our evaluation of Eclipse in Section 5.2, we calculated 
the credibility thresholds using the 744 existing bug reports. We 
can do this calculation because the duplicate relationships among 
existing bug reports can be acquired before triaging new bug re-
ports. The values of CTNL-S are as follows:  0.39 for using the 
summary only, 0.57 for using the summary and description with 
equal weights, and 0.55 for using the double-weighted summary. 
The value of CTE-S is 0.95. Note that these values are similar to 
those acquired in our evaluation on Eclipse.  

We then added the bug reports from the set of new bug reports to 
the existing bug-report set in the same order as they were submit-
ted to the Firefox bug repository. Each time we added a bug report, 
we performed duplicate-bug-report detection using the same ap-
proaches compared in our evaluation on Eclipse. Similar to our 
evaluation on Eclipse, for different suggested-list sizes, we re-
corded the performances of the eight approaches on only those 
new bug reports each of which has a duplicate counterpart in the 
set of existing bug reports, as all the eight approaches become 
equally effective for unique new bug reports.  



When adding bug reports chronologically to our experimental 
bug-report set, we faced the inverse duplicate problem. In a bug 
repository, a bug report will sometimes be marked as the duplicate 
of a future bug report. This problem has been observed in previous 
research [8][18]. We used the same solution used in previous re-
search. We designated the earliest bug report in a group of dupli-
cate bug reports as the target report. We also marked the duplicate 
bug reports whose target report was not in our experimental bug-
report set as “unique” instead of “duplicate”. Under this strategy, 
there were totally 77 duplicate bug-report pairs in our evaluation. 
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Figure 3: Recall rates using different similarities in Firefox 

The results of the evaluation on Firefox are shown in Figure 3. We 
make similar observations from this figure as observed in Figure 2. 
The results can confirm almost all the findings in our evaluation 
on Eclipse. First, the four combinations for our approach outper-
form the other four approaches. Unlike the results on Eclipse, 
among the four combinations of our approach, the one using the 
summary and the execution information with the classification-
based heuristic outperforms the other combinations. This combi-
nation achieves recall rates of 67%-93% for suggested-list sizes of 
1-10. However, there is a similar trend in both Figures 2 and 3: 
when the suggested-list size is small, our approach that uses only 
the summary has no advantage over our approach that uses the 
double-weighted summary with the detailed description. The ad-
vantage becomes significant only when the suggested-list size 
becomes larger. Second, for approaches using only the natural 
language information and only the execution information, using 
only execution information performs better with small suggested-
list sizes, and using only natural language information performs 
better with larger suggested-list sizes. Finally, among the three 
approaches using only natural language information, the one using 
the double-weighted summary with detailed description outper-
forms the other two. 

In summary, the best result of our approach has an increase of 18-
26 percentage points in recall rates over the best result of using 
only natural language information for suggested-list sizes of 1-10. 

5.4 Threats to Validity 
As there was no execution information associated with bug reports 
in both Eclipse and the Firefox bug repositories, we used repro-

duced execution traces for our experiment. Thus, these reproduced 
execution traces are a threat to the construct validity, as the execu-
tion traces that we reproduced may be somewhat different from 
those actually recorded by the bug reporters. Such differences may 
be due to our misunderstanding of the bug reports or due to exter-
nal influence beyond our control. To reduce this threat, we care-
fully examined the summary and the detailed description of each 
bug report before reproducing the execution traces for it.  

In our experiment, we used subsets of bug reports in the original 
bug repositories. This factor may be a threat to the external valid-
ity, as the experimental results may be applicable only to the se-
lected bug reports but not to the entire bug repositories. To reduce 
this threat, we tried to use as many bug reports as possible in our 
experiment. 

Another threat to the external validity is the bug repositories used 
in our experiment. It is possible that some particular characteris-
tics of a bug repository lead to our experimental results. To reduce 
this threat, we used two different real-world bug repositories. 

6. DISCUSSION 
6.1 Costs of Using Execution Information 
Our experimental results show that using both the execution in-
formation and the natural language information can be more effec-
tive than using the natural language information alone. However, 
there are costs to achieve this effectiveness.  

The first cost is that the bug repository has to store the execution 
information in addition to the natural language information for 
each bug report. Thus, the repository would increase its storage 
requirement for bug reports. For example, one typical execution 
trace for an Eclipse bug report in our experiment contains around 
30,000 methods. If we record the full signature of each method in 
an execution trace file, one execution trace file may require more 
than 1MB to store. However, if the bug repository maintains a 
table of the signatures of all the methods, an execution trace can 
be represented as a series of indices to the table or a series of Boo-
lean values, each indicating whether the trace contains a method. 
Thus, we can keep the storage requirement for execution informa-
tion within an acceptable level. Furthermore, as this way of execu-
tion trace representation is similar to the vector representation, it 
also facilitates the transformation of execution traces to vectors. 

The second cost of using execution information is the cost of cal-
culating the E-S. As an execution trace typically contains much 
more index terms than its corresponding textual part, calculating 
the E-S is more time-consuming than calculating the NL-S. This 
cost may become a burden for the triager to retrieve potential tar-
get bug reports. However, as stated in Section 5.3, we can match 
the new bug report with only recently submitted bug reports using 
a time frame [18]. Furthermore, there are some methods that fre-
quently appear in many execution traces. Due to the nature of the 
vector space model, the inverse document frequency (idf) of such 
a frequently appearing index term is small. So in practice we can 
ignore some methods with very small idf in each execution trace, 
and thus decrease the number of index terms in each execution 
trace. As a result, we can decrease the costs of both storing execu-
tion information and calculating E-S through representing each 
execution trace with fewer methods. Indeed, this simplification 
may induce imprecision and requires further investigation. 

The third cost of using execution information is the burden posed 
on bug reporters. To record the execution information, bug report-
ers need to run an instrumented version of the software and submit 
execution information. This instrumentation may lengthen the 



time of testing the system. However, we do not think this length-
ening will be a burden for bug reporters, because the overhead of 
executing instrumented code is usually a small portion of execut-
ing the original code. Recently, Clause and Orso [3] suggested an 
effective approach to automatically reproduce bug-revealing runs 
and record execution information associated to bug reports sub-
mitted by remote users. This technique further relieves the burden 
on bug reporters. Another problem is that bug reporters may re-
fuse to submit execution information because it contains private 
data. As the execution information that our approach requires 
includes only a list of executed methods but does not include data 
parts such as the values of variables, we believe that the privacy 
issue would not be a concern in our approach. 

6.2 Coping with Existing Bug Repositories 
Our approach requires both execution information and natural 
language information in bug repositories. It is easy for a new open 
source project to create such a bug repository at beginning. How-
ever, if a project already maintains a bug repository that does not 
contain execution information, the project cannot directly take 
advantage of our approach. To facilitate such a project to migrate 
to a bug repository supporting the inclusion of execution informa-
tion, we suggest the following strategy. First, each bug report in 
the existing repository can be transformed into a bug report in the 
new bug repository with the execution information part marked as 
“missing”. Second, when a new non-patch bug report is submitted, 
the bug repository requests both natural language information and 
execution information. Third, when the triager detects whether a 
new bug report is a duplicate bug report, we calculate the E-S 
between the new bug report and an existing bug report differently 
according to whether the existing bug report contains execution 
information. If the existing bug report contains execution informa-
tion, we use our proposed approach to calculate the similarity; 
otherwise, we assume that the similarity is the average of the simi-
larities between the new bug report and all the existing bug reports 
that contain execution information. Specifically, let R be the set of 
existing bug reports containing execution information, and i be a 
new bug report, we use Formula (8) to calculate the average E-S.  

∑
∈
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In Formula (8), n is the number of bug reports in R. We use this 
similarity uniformly as the E-S between i and any existing bug 
report with “missing” execution information. Using this formula, 
the E-S between a new bug report and any existing bug report 
with “missing” execution information will be the same. Therefore 
the ranking of these bugs will be decided only by the NL-S.  

6.3 Evaluation Criteria for Duplicate-Bug-
Report Detection 
The ultimate criterion to evaluate an approach for duplicate-bug-
report detection should be how much workload is saved for the 
involved developers. However, the saved workload may be diffi-
cult to measure in practice. In our experiment, we adopt the 
evaluation criterion used by Runeson et al. [18]. In this criterion, 
an approach is assessed through measuring how many duplicate 
bug reports the approach can detect under a given suggested-list 
size. This criterion is applicable under the following conditions: (1) 
the compared approaches use the same suggested-list size; and (2) 
the triager checks all the suggested bug reports with equal effort.  

Given a set of existing bug reports and a new bug report, if two 
approaches require different suggested-list sizes, these approaches 
sometimes are incomparable to each other. For example, for a 

duplicate new bug report, Approach 1 retrieves n bug reports not 
containing the target bug report, and Approach 2 retrieves m bug 
reports containing the target bug report. If n is less than m, it is 
unclear which approach is superior. On one hand, Approach 1 
fails to detect the duplication but Approach 2 can. This observa-
tion indicates that Approach 2 is better than Approach 1. On the 
other hand, Approach 1 requires less effort for the triager to exam-
ine the retrieved bug reports. In fact, this situation reflects the 
original dilemma that more effort from the triager to detect dupli-
cate bug reports can make developers waste less effort in bug 
fixing. Without setting up an accurate relationship between the 
two kinds of effort, we cannot have a satisfactory evaluation of the 
preceding situation.  

Moreover, some bug-report pairs are easy for the triager to deter-
mine whether one duplicates the other; but other bug-report pairs 
may be difficult. Thus, the number of bug reports that the triager 
examines may not accurately reflect the effort that a triager in-
vests. Even worse, different triagers may feel differently about 
how hard it is to examine the same bug report. Therefore, the cur-
rent evaluation criterion used by us and others is only a coarse 
simplification. More effort is needed to set up a more accurate 
criterion. 

7. RELATED WORK 
As previously mentioned, there have been some approaches to 
duplicate-bug-report detection reported in the literature. Runeson 
et al. [18] proposed an approach based on information retrieval. 
This approach uses only the natural language information of bug 
reports without considering the use of execution information. 
Hiew [8] also proposed an approach to duplicate-bug-report detec-
tion using the natural language information alone. Hiew’s ap-
proach is based on incremental clustering, which is quite similar to 
information retrieval. The main difference is that Hiew’s approach 
further considers the detected duplicate bug-report pairs/groups as 
clusters. Thus, when calculating similarities between a new report 
and existing bug reports, each detected cluster is considered as a 
whole rather than as several individual existing bug reports. That 
is to say, for each detected cluster, this approach will calculate one 
similarity between the new report and the detected cluster instead 
of calculating several similarities between the new report and all 
the reports in the cluster. Compared to these two approaches, our 
approach further considers execution information, and uses effec-
tive heuristics to combine the two kinds of information. 

Besides the effort on duplicate-bug-report detection, there has also 
been some effort made on bug-report mining. Anvik et al. [1], 
Cubranic and Murphy [4] and Lucca et al. [12] all proposed semi-
automatic techniques to categorize bug reports. Based on catego-
ries of bug reports, their approaches help assign bug reports to 
suitable developers. All the three approaches rely on only natural 
language information. Podgurski et al. [15] also proposed an ap-
proach to bug-report categorization, and later improved their ap-
proach using two tree-based techniques in the clustering process 
[6]. However, their approaches target at prioritizing bug reports by 
their severity and frequency, not assigning bug reports to develop-
ers. Another main difference is that their approaches [6][15] use 
only execution information but not natural language information. 
Ko et al. [10] analyzed the linguistic characteristics of bug-report 
summaries, and proposed a technique to differentiate failure re-
ports and feature calls. They also emphasized the need of dupli-
cate-bug-report detection, but did not propose a solution. In gen-
eral, although either natural language information or execution 
information has been used in bug-report mining, no previous ap-
proach to bug-report mining has used both kinds of information. 



There have been several statistical studies of existing bug reposi-
tories. Anvik et al. [2] reported a statistical study on open bug 
repositories with some interesting results such as the proportion of 
different resolutions and the number of bug reports that a single 
reporter submitted. Sandusky et al. [19] studied the relationships 
between bug reports and reported some statistical results on dupli-
cate bugs in open bug repositories. However, neither work pro-
posed any approaches to duplicate-bug-report detection.  

There are also approaches on analyzing execution information of 
bug-revealing runs for debugging [9][11][17]. However, these 
approaches mainly focus on debugging using execution informa-
tion, not on how to detect duplicate bug reports. 

Some research has been conducted on automatic remote execu-
tion-information collection. Elbaum and Diep [5] suggested a 
strategy to collect remote execution information over Internet; 
Liblit et al [11] proposed a technique to sampling remote runs for 
bug isolation. Clause and Orso [3] suggested a technique on auto-
matic reproduction and execution-information recording of remote 
bug-revealing runs. These techniques, which improve the collec-
tion of remote execution information, can facilitate the use of our 
approach, which requires execution information, but none of these 
previous techniques target the problem of duplicate bug-report 
detection. 

8. FUTURE WORK 
There are several ways to improve or extend our current research. 
First, there are the previously mentioned threats to validity of our 
experiment. Our future plan includes conducting experiment on 
larger sets and deploying the tool on some open source projects to 
see if triagers benefit from our approach, so that we can further 
address these threats.  

Second, as our research indicates that the combination of natural 
language and execution information provides a more precise rep-
resentation of bug reports, the combination may be useful in areas 
beyond duplicate-bug-report detection. For example, automated 
bug assignment and bug prioritization may also benefit from the 
combination.  

Third, in Section 6.1, we discussed some simplifications of our 
approach to cope with some practical situations. In future work, 
we plan to further investigate these simplifications. 

Finally, as current evaluation techniques for duplicate-bug-report 
detection are not precise enough, we plan to further investigate 
this issue and develop more-suitable evaluation techniques. 

9. CONCLUSION 
In this paper, we present a novel approach to assist triagers in 
detecting duplicate bug reports. Unlike existing approaches, our 
approach further considers execution information. Furthermore, 
our approach employs two heuristics to combine the two kinds of 
information. We also calibrated and evaluated our approach on 
bug reports from the Eclipse and Firefox repositories. The ex-
perimental results show that, compared with the best performance 
of approaches using only natural language information, our cali-
brated approach (with the classified-based heuristic and using only 
the summary) leads to an increase of 11-20 percentage points and 
an increase of 18-26 percentage points in recall rates on the two 
experimental bug-report sets respectively. 
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