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The purpose of these notes is to provide some insight into Gaussan basis st
techndogy as implemented in the CRYSTAL Hartree Fock/density functiond theory
program for periodic systems'. Esential differences between basis ts appropriate
for use in solids andthaose used in purely moleaular codes are exlained. Examples of
how to chocse appropriate basis sts for particular problems, hints on bais %t
devdopment, andsome simple execises are also included.

1. Basis set expansions

In order to cdculate moleaular or crystalline structures and properties, it is
necessry to determine the egenfunctions W and eigenvalues E of the Schrédinger
equation

HY = EY. (1.1

where H isthe dedronic Hamiltonian. For systems of interest in chemistry, analytic
solutions to this problem are imposgble to find, and so ore normally resorts to the

variationd approach invalving the introdwtion o a trial wave function W(ar) that
depends on a set of variable parameters{ a }. If the functional

(PH[W)

E(a)= ) (1.2

is minimized with resped to variations in {a}, the energy converges from above on
the true energy in (1.1), and the wave function converges in the mean onthe true wave
function as the parameter set {a} is expanded to completeness
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The most obvious way of implementing this approach is to make the trial wave
function depend linealy on the parameters {a}. The resulting linea expansion may

be written most generaly as

Y=>o,c,. (1.3
u

A set of equations for the linea coefficients c, in this expansion may be derived on
substitution d (1.3) into (1.2 by making the energy stationary with resped to
variations in the mefficients. The N-particle basis functions {®} are aset of fixed
analytic functions that depend onthe m-ordinates of all eledronsin the system. They
can conveniently be taken to be orthonamal, in which case the variational equations
correspondto the egenvalue problem

Hc=Ec. 1.9

If the N-particle basis were a omplete set of N-eledron functions, the use of the
variational approach would introduce no error, becaise the true wave function could
be expanded exadly in such a basis. However, the basis would then be of infinite
dimension, and in pradice, the fad that we must work with an incomplete set of N-
particle functions is one of our magor pradicd approximations. Furthermore, the
guestion arises of how to construct the N-particle basis itself. There ae many possble
physicdly motivated ways of doing this, bu in most pradicd quantum chemistry
techniques it is constructed using linea combinations of products of one-eledron
wave functions or orbitals. These ae usualy antisymmetrized to acourt for the
permutational symmetry of the wave function (and may also be spin and symmetry
adapted):

N
®, = Al @, (%) (1.5

Here A is an antisymmmetrization operator and the x, are the space ad spin co-
ordinates of a single dedron. In this form the N-particle basis functions are cdled
Sater determinarts. The unknavn ore-eledron functions {¢} in (1.5) are referred to

as atomic, moleaular or crystalline orbitals depending on the physicd nature of the
problem. To find the unknonvn arbitals, one generally expands them as an arthonamal
linea combination d known ore-eledron kesis functions x ,:

Qi = Z XaCa,yi (1.9
a

One then oltains a set of algebraic equations for the optimum orbitals which may be
solved by standard matrix techniques. The set of functions {x} in (1.6) constitute the

one-particle basis %t given as inpu to most quantum chemistry cdculations. Thisis
what these notes are dou.

So evidently the simplest truncation d the N-particle spaceis that in which
only one N-eledron besis function is used - a single cnfiguration which is the best
variational approximation to the exad groundstate wave function. In this case dl



coefficients in the expansion (1.3) are zero with the exception d that of the ground
state mnfiguration. Minimizing the expedation value of the Hamiltonian with respea
to the one-eledron abhitals in a single determinant trial function allows us to derive
the self-consistent HartreeFock (HF) equations, which may be solved to find the
optimum orbitals (i.e. the best coefficients of equation (1.6)). To develop ‘correlated
wave function methods' that give abetter description o eledron-eledron correlation
than HF one usualy uses more mmplex tedniques involving combinations of
explicitly many-particle functions such as, for example, configuration interadion
(C1)?, MC-SCF® or couped-cluster* methods (although stochastic techniques ich as
guartum Monte Carlo are becoming an increasingly popar aternative — see later).
The HF speadd case is sufficiently important that the difference Eqp — Epp IS
defined as the correlation energy. Here E ¢ is the HartreeFock energy, that is, the
SCF result in a complete one-particle basis st. The Hartree Fock limit is thus defined
as the complete one-particle spacesingle-configuration result.

Of course, an excdlent and generaly chegoer dternative to wave function
methods is Kohn-Sham density functiond theory (KS-DFT). In this £heme the single
determinant of orbitalsis not meant to represent the true many-eledron wave function
as in HF theory. The basic ideaof the Kohn-Sham scheme isto replacethe cdculation
of the true wave function W by that of a single Slater determinant that represents a
norrinterading model system and yields the same groundstate density as . However
the expedation value of the Hamiltonian with this determinant only gives part of the
total energy. The remaining (exchange-correlation) contribution to the total energy is
nat diredly accessble by the determinant and is given by an (approximate) functional
of the total density. Pretty much all statements here amncerning the one-particle basis
set are gplicable both to HF and Kohn-Sham orbitals, but where there ae distinctions
these will be noted.

The nature of the one-particle basis functions used in in the expansion d the
orbitals depends on the periodicity of the system. In the molealar case, functions
locdized at the nuclea centres are generally used, consisting of products of a radial
function R(r) (such as a Gausdan) and an angular function (such as a sphericd
harmonic Y, (6,(/))). In the periodic case by contrast, the one-particle basis must be

made up d Bloch functions x, (r) i.e. products of afunction periodic in the primitive

lattice and a phase fador whose frequency and dredion d oscill ation is dependent on
the wave vedor k. These Bloch functions might be, for example. simple plane-waves
expli(k + G)r), where G is a vedor in the redprocd lattice, or asin CRYSTAL a

combination d alocdized function x, and al of its periodic images with the whole
moduated by a phase fador:

_ 1 t
xik(r)=mZXa(r —-r, —t)exp(k ) 1.7

Here X; refers to the ath locdized atomic function (lying at position r, in the zero
cdl) in the unit cdl of the aystal described by the latticetranslation vedor t. Note that
because the wave vedor k is a cntinuous variable, the basis st of Bloch functionsis
in principle infinite; in pradice however, the problem is lved at a finite set of k
points, and the results interpolated.

Thus the one-particle basis of atomic functions/Bloch functions determines the
one-particle orbitals, which in turn determine the N-particle basis. If the one-particle



basis were wmplete, it would in principle be posgble to form a complete N-particle
basis, and henceto oltain an exad wave function variationally. Again however, such
a mmplete one-particle basis would be of infinite dimension, and thus the basis must
be truncated in pradicd applicaions. We must therefore use truncated N-particle
spaces that are cnstructed from truncated ore-particle bases. These two truncaions
(i.e. correlation and besis st error) are the most important sources of uncertainty in
guantum chemicd cdculations. It isinteresting to nde & this point that if we remove
the restriction d analytic integrability of basis functions in correlated wave function
methods, it is possble to construct much more dficient N-particle functions by
including terms which depend explicitly on the interparticle distances. A good
example is the Sater-Jastrow form used in quartum Monte Carlo cdculations where
a single N-eledron function is usually an excdlent approximation to the true wave
function and gives a very acarate description d the dedron correlation. Such
cdculations will be the subjea of my semnd ledure & this shod but will not be
mentioned further here.

It shoud be noted that the ultimate acaracy of any cdculation, in correlated
cdculations over many N-particle basis functions as well as at the SCF level, is
determined by the one-particle basis st. Thisis one of the most obvious observations
abou quantum chemicd cdculations, bu worth emphasizing noretheless It is in
genera just not possble to get the right answer for the right resson uwsing, for
example, an STO-3G Gaussan basis st (see later). This is not necessarily an
argument against using such sets (people make bigger approximations every day) but
their limitations must be kept constantly in mind. Probably one of the most important
lessons of this hod is that the dhoice of one-particle spaceis the most important
dedsion in setting up any cdculation, since ultimately this choice determines the
reli ability of the result. Nothing can overcome limitations in the one-particle basis'.

In the next sedion we shall examine particular properties of the one-eledron
basis functions most commonly used in modern molealar quantum chemistry codes,
namely contraded Gaussan-type functions, and hav these ae modified in a periodic
code such as CRYSTAL.

2. One-electron basis sets constructed from Gaussian-type functions

General considerations

Having worked for the last four yeas in the spiritual home of plane-wave
pseudopdential cdculations (the Theory of Condensed Matter Group in the
Cavendish Laboratory at the University of Cambridge), it has been rather obvious to
me that the traditional basis for construction d the one-eledron Bloch functions in
solid-state dedronic structure caculations has not been Gaussans. Indeed, you may
as well lean now that in certain circles the derision invited by doing so can be
tiresome. Chemists are no problem. But if you dan to interad with physicists and to
use Gausdan basis sts, it is as well to have rehearsed the aguments for and against
beforehand. Referring to what CRYSTAL does as an ‘al-eledron full potential
LCGTF method rather than ‘Gausgan basis st cdculations’ will help at first. Do na
use the phrase ‘linea combination d atomic orbitals under any cirumstances. When
pressed, follow the example of the diredor of this £hod at a cnference some yeas
ago in reference to a question abou why he used HartreeFock theory (which is
guaed to me every time | mention in conversation who | used to work for) and claim

" Except, magically, diffusion Monte Carlo!



that ‘it is ome strange kind d sexual perversion’. Of course dl different basis sts
have their advantages and dsadvantages. The dhoice of one set over ancther is one of
personal taste (what codes do | have on my computer that | know how to use?) and a
caeful consideration d the pros and cons of the various methods (do | want speed,
acaracy, forces etc.?). A short discusson aong these lines will appea at the end o
this sdion.

So anyway in periodic systems as in moleaules the fundamental idea behind
the use of locdized Gausdan-type functions is the ‘atoms in moleaules’ concept (i.e.
moleaules are an asemblage of dightly perturbed atoms), and ou consequent
expedation that locdized atomic functions will prove suitable & an expansion set in
moleaules is generaly well-founded. The historicd phrase linear combination o
atomic orbitals is often used to describe this procedure but this is both archaic and
inacarate and shoud be avoided. Strictly speaking, ‘atomic orbitals' are solutions of
the HartreeFock equations for the @om i.e. a wave function for a single aomic
eledron in a self-consistent field. Locdized basis functions are thus not atomic
orbitals, bu can in sphericd poar coordinates be ay function o the form
R(r)O(3)®d(¢) with properties chasen for computational convenience. The equations
determining the form of the radial functions R(r) can be solved orly for one-eledron
‘hydrogen-like’ atoms, but some general conclusions abou the nature of the solutions
can still be drawn. In particular, due to the singularity of the potential at a point
nucleus with a darge of +Z, the wave function must have a‘cusp’ at the nucleus. In
faa, for such aone-eledron atom, it isrequired that

s (2.2)
dr r=0

At the other end d the range, an eledron far away from any moleaule would seethe
remainder of the moleaule & a positive dharge withou any particular structure. Like
any one-eledron atom, the wave function would therefore decay exporentialy. It
would thus sam reasonable to use exporential functions as basis functions, espeaaly
since they are known to be exad solutions for any one-eledron system. Historicdly
therefore, basis functions with exporential asymptotic behaviour - Slater-type orbitals
(STOs) - were the first to be used®. These ae dharaderized by an exporential fadtor in
theradia part:

X" =r" exp(r)Y,, (6,9) (2.3

where ¢ (‘zeta’) is cdled the exporent, the Y, (6,9) is the sphericd harmonic or

angular momentum part (the function describing the ‘shape’ of the STO), and the
n,l,m are quantum numbers.

Unfortunately such functions are not suitable for fast caculations of multi-
centre integrals, so Gaussan-type functions (GTFs) were introduced to remedy the
difficulties Transforming from a locd polar coordinate system to a Cartesian ore,
these can be written

X =explar?)x'y"z" (2.9



where a is again the exporent, and the I,m,n are nat quantum numbers but simply
integral exporents of Cartesian coordinates. In this form (now cdled Gaussan
primitives) they be fadorized into their Cartesian comporentsi.e.

GTF ,,GTF

X =X (2.9
where eab Cartesian comporent has the form (introducing an origin such that the
Gaussanislocaed at position xy),

XS = (x-x,) exsl-alx-x,J). X

This smplifies considerably the cdculation d integrals. (It shoud be dea that if
write the exporential part of an STO, exp(— a|r|), in Cartesian comporents we get

exp(— a x> +y? +7° ) which is not so separable). Note that the asence of the STO

pre-exporential fador r"™ restricts sngle Gaussan primitives to approximating only
1s, 2p, 3d etc. orbitals and nd eg. 2s, 3p, 4d etc... However, combinations of
Gaussans are ale to approximate crred nodal properties of atomic orbitals if the
primitives are included with dfferent signs. The sum of exporents of Cartesian
coordinates L =1 +m+n is used analagously to the angular momentum quantum
number for atoms to mark Gausgan primitives as s-type (L=0), p-type (L=1), d-type
(L=2), f-type (L=3) etc.”

The present success of GTFs as the basis st of choice in wvirtualy al
moleaular quantum chemistry cdculations was far from obwvious originaly. In
particular, it is clea that the behaviour of a Gaussan is qualitatively wrong bath at the
nuclel and in the long-distance limit for a Hamiltonian with pant-charge nuclei and
Coulomb interadion. It has therefore been a cmmonly held belief that STOs would
be the preferred basis if only the integral evaluation problem could be solved. It has
been claimed® that this is not necessarily the cae and that the ‘cusp’ behaviour
represents an idedized pant nucleus, and for more redistic nuclel of finite extension
the Gausgan shape may adually be more redistic. If acarate solutions for a point-
charge model Hamiltonian are desired, they can be obtained to any desired acairagy in
pradice by expanding the ‘core’ basis functions in a sufficiently large number of
Gaussgans to ensure their corred behaviour. Furthermore, properties related to the
behaviour of the wave function at or nea nuclel can often be predicted corredly, even
withou an acarately ‘cusped’ wave function’. In most moleaular applications the
asymptotic behaviour of the density far from the nuclel is considered much more
important than the nuclea cusp. As mentioned abowve, the wave function for a bound
state must fall off exporentially with distance whenever the Hamiltonian contains
Coulomb eledrostatic interadion ketween particles. However, even though an STO
basiswould in principle be cgable of providing such a @rred exporentia decg, this
occurs in pradice only when the smallest exporent in the basis st iSC yin = +/2! min »

where |, is the first ionization pdential. Such a restriction onthe range of exporent
values, while accetable for atomic SCF cdculations, is far too restrictive for

" Note CRY STAL spedfics: CRY STAL98 all ows Gaussan primitives of s,p or d types. In principle,
the foll owing six anguar functions are possble for Cartesian Gaussans: 1s (1), 2p (x,y,2), 3d (&, xy, xz,
yz, Y2, 7). Note that there ae only five linealy independent and orthogonal atomic d orbitals
internally CRY STAL uses appropriate linea combinations of Cartesian Gaussans to give the five red
sphericd harmonic d basis functions: 3z%-r% , xz, yz, X*-y?, xy (stored internally in that order).



moleaular and soli d-state work. Some of these formal limit ations have thus turned ou
to be of relatively littl e importance in pradice Indeel the universaity of Gausgan
functions in moleaular quantum chemistry is virtually complete - Slater-type functions
are hardly used today and we shall not discuss them here ay further. Much more
important are limitations arising from the anvergence of results with the size of the
basis t.

Contraction schemes

Both the number of integrals over basis functions to be stored on dsk and the
total CPU time nominally scde rather undeasantly with the number of functions in
the basis st. Thus it usualy pays to consider the isaue of basis &t compadness that
is, the aility to expand the orbitals as acarrately as possble using the minimum
number of basis functions. Furthermore, although we wish to perform this expansion
in terms of locdized ‘atomic-orbital’-like functions, we have seen that our basis
functions of choice (Gausdans) do nd in themselves resemble exad HF atomic
orbitals particularly closely. In most applicaions therefore, Gaussan-type basis
functions are expanded as a linea combination (or ‘contradion’) of individualy
normalized Gausdan primitives g;(r) charaderized by the same centre and angular
guantum numbers, bu with dff erent exporents,

L
Xi(r)= zdj g;()
j=1
where (2.7)
g;(r) = gl ;a.1,m) = Ny (@)r'Y (8, 9) exp(-a ;r?)

where L is the length of the contradion, the a; are the contraction exporents, the d;
contraction coefficients and | have now written the Gausgan primitives in terms of
red sphericad harmonics including a normali zation constant. By proper choice of these
guantities, the ‘contraded Gaussans may be made to assume ay functional form
consistent with the primitive functions used. One may therefore dhocse the exporents
of the primitives and the mntradion coefficients 9 as to lead to basis functions with
desired properties, such as reasonable ausp-like behaviour at the nucleus (e.g.
approximate Slater functions or HF atomic orbitals). Integrals invalving such basis
functions reduce to sums of integrals invaving the Gaussan primitives. Even though
many primitive integrals may need to be cdculated for ead basis function integral,
the basis function integrals will be rapidly cdculated provided the method d
cdculating primitive integrals is fast, and the number of orbital coefficients in the
wavefunction will have been considerably reduced.

The exporents and contradion coefficients are normally chasen onthe basis of
relatively cheg atomic SCF cdculations 9 as to give basis functions suitable for
describing exad HartreeFock atomic orbitals. An approximate aomic basis function,
whose shapeis siitable for physicad and chemicd reasons, is thus expanded in a set of
primitive Gausdans, whose mathematicd properties are atradive from a
computational point of view. Note that the physicd motivation for this procedure is
that, while many primitive Gausdan functions may be required to provide an
acceptable representation d an atomic orbital, the relative weights of many of these
primitives are dmost unchanged when the aoms are formed into moleaules or
crystals. The relative weights of the primitives can therefore be fixed from a previous



cdculation and ony the overal scde fador for this contracded Gaussan function reed
be determined in the extended cdculation. It is clea that contradion will in general
significantly reduce the number of basis functions. For example aso-cdled STO-3G
basis, where three Gaussan primitives are used to form a @ntraded function which
resembles a Slater-type orbital, the reduction in size from the primitive basis is a
fador of 3, correspondng to a nominal reduction fador of 81 (N*) on the number of
two-eledronintegrals - clealy asignificant reduction.

How does this sheme transfer to the solid state? A finite number p of GTFs,
constructed from contradions of Gaussan primitives, are atributed to eat of the
nonrequivalent atoms in the reference zero cdl. The same GTFs are then formally
asociated with all N trandationally equivalent atoms in the aystal by dired
trandations of the lattice vedors t. This gives a total of Np GTFs from which Np
Gaussan-type Bloch functions (GTBF) are then constructed acarding to

Ta)= 3 Xalr =1, —tyexp(k ). 29

where the r, are the m-ordinates of the basis atom in the reference zero cdl with
which Y, is asociated. In fad, for solid-state cdculations, there ae no padicd
differences in the form of the basis %t inpu compared to the moleaular case, as the
transformation d the one-eledron hasis functions to their Bloch form is dore
internally after the definition o the locdized atomic functions. However, the
exporents and contradion coefficients in the two cases will generaly be rather
different, and with some exceptions such as moleaular crystals and certain covalent
systems, moleaular basis sts are not diredly transferable to the study of crystalline
solids. We shall return to this point in the next sedion.

Two further points may be made with resped to basis st contradion schemes.
The first concerns the way AOs belonging to a given atom are grouped into shells. In
general, a shell contains al functions charaderized by the same n and | quantum
numbers (e.g. al the different d functions in a 3d shell); this all ows the partitioning of
the total charge density into ‘shell charge distributions’ and is useful in the seledion
of bieledronic integrals and in the evaluation d long-range interadions. A feaure of
the @ntradion schemes originally used in basis sts of the Pople type (and dten
useful in cdculations with CRYSTAL) is the alditional groupng of AOs with orly
the same principle quantum number into shells; e.g. a 2sp shell, in which bah 2s and
2p functions have the same set of exporents q; but different contradion coefficients
d;. This procedure reduces the number of auxiliary functions to be cdculated in the
evauation d eledron integrals. In fad basis sts with sp shells can give asaving
fador as large a four in the CPU time, compared with the cae where s and p have
different exporents. Note that CRY STAL isrestricted to s, p and d basis functions and
that only sp shells may be formed in this way. One shoud nde however, that while
the use of sp shells may reduce the cmputational effort somewhat, in certain
circumstances it may adually represent an important constraint on the form of the
basis functions. For relatively small cdculations where the time axd storage
limitations are not an important fador, some nsideration shoud be given to
describing the s and p functions with separate sets of exporents.

The seaond pant isnat diredly relevant to the CRY STAL program but may be
encourtered in the literature and as sich ore shoud be awvare of it, namely the so-
cdled general contraction scheme®. Most standard codes sich as CRY STAL use what
is known as a segmented contraction, in which the transformation from the larger



primitive set to the smaler contraded set is restricted in such a way that eath
Gausdan primitive g; contributes to exadly one @ntraded GTF. The dgorithms
involved are relatively simple if the transformation is reduced to a series of small,
independent summations within mutually exclusive sets. In contrast, the general
contradion scheme makes no such assumptions, and allows ead Gausgan primitive
to contribute to severa contraded GTFs. A considerable alvantage of the general
scheme is that the mntraded GTFs reproduce exadly the desired combinations of
primiti ve functions. For example, if an atomic SCF cdculation is used to define the
contradion coefficients in a general contradion, the resulting minimal basis will
reproduce the SCF energy obtained in the primitive basis. This is not the cae with
segmented contradions. There ae other advantages with a genera contradion: for
example, it is possble to contrad inner-shell orbitals to single functions with noerror
in the @omic energy, making cdculations on heary elements much easier. Another
advantage is a onceptual one: using a general contradion, it is possble to perform
cdculations in which the one-particle spaceis a set of atomic orbitals, a true LCAO
scheme, rather than being a segmented grouping of a somewhat arbitrary expansion
basis. The MOs can then be analysed very simply, just as for the original qualitative
LCAO MO approach, bu in terms of ‘exad AOsS rather than relatively crude
approximations to them.

Computationd aspeds

One of the most attradive feaures of Gaussan basis functions is their
separability into Cartesian comporents, as in (2.5). This alows a computationally
efficient transition from the sphericd symmetry of the @aom, naturally represented in a
polar co-ordinate system, to a more general Cartesian representation which is useful
for describing moleaular/crystalli ne geometries. Another equally important reason for
the usefulness of a Gaussan basis %t is emboded in the Gausdan product theorem
(GPT), which in its smplest form states that the product of two simple Gaussan
functions with exporents a and 3, located at centres A and B, is itself a simple
Gaussgan with exporent y, multiplied by a constant fador F, located at a point C along
the line segment A-B, where

y=a+p (2.9%)
c=fA* P8 (2.9

U y L
F= exp%#%(A —B)ZE (2.%)

The product of two poaynomial GTF, of degreep andv and locaed at points A and B
istherefore ancther paynomial GTF locaed at C of degreep+v in X, Y. and z., which
can be expressed as ashort expansion d one-centre Gaussans:

U+v

Xax (X (0= D GV eigxr (2.10
i=0
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- 2 ax, + BX
where ¢ (X) = X & PX%)" and x, = —; +§ b

The product of two Gausdans which are functions of the a-ordinates of the
same dedronisreferred to asanoverlap dstribution, and al the integrals which must
be cdculated involve & least one such owerlap dstribution. The most important
consequence of the GPT isthat al four-centre two-eledron integrals can be expressed
in terms of two-centre quantities. Some properties of the GPT and owerlap
distributions are explored in Exercise 1.

CRYSTAL adualy uses a common and more dficient approach for the
evaluation o integrals over Gausdan basis functions’, in which Hermite Gausdan
functions (HGFs) are used instead of the usual Cartesian Gausdans in the re-
expansion (2.10. Hermite Gausdans are defined as derivatives of an s type Gaussan:

L
A= H @ amiag(x-x) B (D' en-¢?) (219
where H; (¢) isapadynomial of order i, and
£ =a3(x-xp) 2.1

The set of HGFs gans the same space a the expansion functions in (2.10 and as a
consequencethey can be used for expanding the basis function products:

la+lb

Xax ()Xo (X = D CFPA; (£) (2.13
i=0

where the expansion coefficients must now be redefined. Because of the natural
relations between Hermite poynomias and Gaussans, the necessry two-centre
integrals can be evaluated with very high efficiency (see Ref. *° for a useful
discusson). Basis functions with higher quantum numbers can be generated through
repeded dfferentiation d an s-type Gaussan.

Even though the four-centre bieledronic integrals can be written in terms of
two-centre quantiti es, the st of evaluating them still scdes nominally as N, where N
is the number of functions in the expansion. This <ding is far from satisfadory and
this must be reduced in order to trea large systems. One way of doing this which is
used in CRYSTAL is the method d pre-screening where, rather than attempting to
cdculate the integrals more dficiently, one seeks where posshle to avoid ther
evauation atogether. Since the expresgon for an integral over primitive Gaussans
can beformally written as

<ab| Cd> = Sclb %d Tabcd (214)

where S, isaradia overlap between functions x, and ¥, , and T, iS a slowly varying
angular fador. In many situations the product S S thus constitutes a good estimate of
the magnitude of the integral, and it may seem attradive to use that product as an
estimate in screening out small i ntegrals. In order to estimate these overlaps quickly, a
single, namalized s-type Gaussan (cdled an ‘adjoined Gaussan' in the CRYSTAL
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literature) is asciated with ead shell, whose exporent a is the smallest of the
exporents in the shell contradion. This function thus reproduces approximately the
absolute value of the crrespondng AOs at intermediate and long range. The aljoined
Gaussgan is used in fast algorithms for estimating overlaps on the basis of which
integrals are ather evaluated exadly, approximately, or not at al. The level of
approximation is user-definable through a set of tolerances given in the inpu. Such
algorithms, and a nsideration d the aystalline symmetry, mean that the CRY STAL
integrals part currently scdes at between N and N?, depending on the size of the
system. The most undeasant scading in CRY STAL isthus the SCF part which, sinceit
invalves diagonalization d the Fock matrix, scaes as approximately N°.

Plane waves vs. Gaussans

Finally | shall briefly compare the advantages and dsadvantage of the simplest
aternative to Gausdans in solid-state cdculations i.e. plane waves. Plane waves are
an athonama complete set; any function belonging to the dass of continuows
normalizable functions (which are those of interest in quantum medhanics) can be
expanded with arbitrary predsionin such abasis st. The set is universal, in the sense
that it does nat depend onthe paositions of the @oms in the unit cdl, na on ther
nature. We thus do nd have to invent a new basis st for every atom in the periodic
table nor modify them in dfferent materials as is the cae with Gausdan functions,
and the basis can be made better (and more expensive) or worse (and chegper) by
varying a single parameter. This charaderistic is particularly valuable in ab initio
moleaular dynamics cdculations, where nuclea positions are @nstantly changing.
The dgorithms mainly (invalving fast Fourier transforms) are eaer to program since
the dgebraic manipulation d plane-waves is very simple. It is relatively easy to
compute forces on atoms, with al the wedth of new physics and chemistry which that
implies. Finaly, plane-wave cdculations do nd suffer from basis st superposition
error (seelater). In pradice, one must use afinite set of plane waves, and this restricts
the detail that can be reveded in red spaceto such an extent that core dedrons canna
be described in this manner. One must either augment the basis st with additional
functions (as in e.g. the (F)LAPW scheme), or use pseudopdentials to describe the
core states.

In comparison with plane waves, the use of al-eledron Gausdan caculations
allows us to describe acarately eledronic distributions bath in the valence and the
core region with a limited number of basis functions. The locd nature of the basis
allows a treament both of finite systems and d systems with periodic boundary
condtions in ore, two o three dimensions. This has advantages over plane wave
cdculations of moleaules, pdymers or surfaces which work by imposing artificial
periodicity: the cdculation must be dore on eg. a threedimensional array of
moleaules with a sufficiently large distance between them. Gausdan total energies can
be made very predse (i.e. reliable to many places of dedmals) since dl integrals can
be dore anayticdly (in pradice this is only true for HartreeFock cdculations,
density functional theory cdculations with CRY STAL require anumericd integration
of the exchange-correlation pdential which reduces the atainable predsion, although
this was improved with the release of CRY STAL98). Having an ‘atomic-like’ basis
fadlitates popdation analyses, the @mputation o properties sich as projeded
densities of states, and ‘pre-SCF adteration o orbital occupation’” (the CRY STAL
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‘EIGSHIFT’ option)”. Many plane-wave programs cannat compute exadt non-loca
exchange which is required na only for HartreeFock cdculations, bu aso in the
‘hybrid” DFT exchange-correlation functionals and in owvercoming self-interadion
problems in DFT cdculations of Mott insulators'™. It is now well-understood that
locdized basis functions are essential for the various new linear scaling DFT
algorithms that have been the subjed of agrea ded of recent reseach™® and will i n all
probability be incorporated in afuture version d CRYSTAL. The st that is paid for
using Gaussans is the loss of orthogonality, of universaity, the need for more
sophisticaed algorithms for the cdculations of the integrals, the difficulty of
computing forces (athough the next release of CRYSTAL scheduled for ealy 2001
will i nclude forces for the first time), and an overly heavy reliance on the presence of
lots of spacegroup symmetry operators for efficient cdculations. As a fina nate, |
have observed that Gaussans are generally more dficient than plane-wavesin highly
acarate quantum Monte Carlo cdculations where symmetry is irrelevant. CRY STAL
may be used to provide initial trial wave functions for the Cambridge QMC code,
CASINO*®,

3. Terminology and notation connected with Gaussian basis sets

There is avast amourt of historicd quantum chemistry jargon asociated with
Gausgan besis sts, much o it redundant. Unfortunately it is necessary to uncerstand
a cetain propation d it in order to rea the literature, bu please try to avoid using
too much o it yourself.

It has been usual to make adistinction between ‘core’ basis functions and
‘valence basis functions in Gaussan basis sts. Contradions consisting of primitives
with large exporents are asociated with the are while more diffuse (small exporent)
functions are asciated with the valence This is adually rather arbitrary and is a
lingering edho from the past era of Slater orbitals. | stressagain that basis functions
are not atomic orbitals, and in many cases, they do nd even resemble orbitals of
isolated atoms. In fad, examining coefficients of true aomic/moleaular/crystalli ne
orbitals expanded in such a basis usualy reveds that these ‘core’ basis functions
contribute substantially to the highest occupied valence orbitals. Thisis a consequence
of the fad that basis functions on a given center are usually not orthogond; in addition
they are often na redly all that compad and owrlap to some extent with ‘core
functions on reighbouing centers — a situation nd likely to occur with true @omic
core orbitals.

The ealy Gausdan contradions were obtained by aleast squaresfit to Slater
orbitals. The number of contradions (not primitives) used for representing asingle
Slater orbital (i.e. zeta) was a measure of the goodressof the set. So, asinge zeta (or
minimal) basis st is one that has a single basis function correspondng to eat o the
atomic orbitalsthat are occupied in the @om. It is the small est set one can reasonably
usein any cdculation,and ore shoud na exped any quantitative accracy with such
abasis. The doulde-zeta basis st consists of two basis functions per atomic orbital,
andisthustwice & large athe minimal. In the same way, basis sts of triple-zeta,
quaduple-zeta etc. quality can be built. One often encourters the term split-valence
basis which basicaly means a set in which more mntradions are used to describe
valenceorbitals than core orbitals. The letter V dencotes lit valencesetse.g. DZV

" Thistechnique isimportant, for example, in driving the caculation into particular statesin caseslike
the various transition metal materials where d orbital degenerades are not broken by the aystal field
but by high order effeds sich as gin-orbit coupling e.g. CoO.
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represents abasis st with orly one wntradionfor core orbitals and two contradions
for valenceorbitals. The fad that more basis functions are assgned to valenceorbitals
does nat mean the valence orbitals incorporate more primitives. Usually the wre
orbitals are long contradions consisting of many primitives to represent well the ausp
of the s-type function at the nucleus.

One very important and still useful concept is that of polarization functions,
which are nominaly functions of higher angular quantum number than the highest
occupied orbital in the system. As an example of why these may be nealed, consider
an isolated hydrogen atom, the exad wave function o which isjust the 1s orbital. If
the hydrogen atom is placal in a uniform eledric field then the dharge distribution
abou the nucleus becomes asymmetric - it is pdarized. The lowest order solution to
this problem is a mixture of the origina 1s orbital and a p-type function i.e. the
solution can be mnsidered to be ahybridized orbital. A hydrogen atom in a moleaule
experiences a similar, bu non-uniform eedric field arising from its non-sphericd
environment. By adding pdarization functionsi.e. p-type functionsto abasis st for H
we diredly acommodate this effed. In a similar way, d-type functions which are not
occupied in first-row atoms, play the role of paarization functions for the aoms Li to
F. Note that the exporents of pdarization functions canna be optimized in atomic
SCF cdculations and must be reoptimized spedficdly for the moleaule or solid. The
‘zeta termindogy is often augmented with a description d the polarization functions.
Thus, DZP means doule-zeta plus paarization, TZP for triple-zeta plus poarization
etc. Sometimes the number of pdarization functions is given e.g. TZDP, TZ2P,
TZ+2P al stand for triple-zeta plus pdarization. The aedivity here is evidently
extensive.

In moleaular work, systems are commonly encourtered for which the darge
distribution is expeded to be cnsiderably more diffuse than in the neutral atom. This
is espedally true for negatively charged spedes, or polar systems where apart of the
moleaule can be expeded to cary an excessve negative dharge. Inthiscase, it is often
advantageous to augment the basis st with diffuse functions, i.e. functions that have
smaller orbital exporents than those normally used. Diffuse functions are dso helpful
in caculations when an acarate acourt of the outer region d the darge density
cloud is essntial, such as in the cdculation d higher-order moments or
polarizabiliti es. It is essntia to redize however, that functions invalving diffuse
primitives are of very littl e use in the solid state and may even be dangerous, for at
least the following three reasons. first the number of integrals to be explicitly
cdculated increases very quickly as you deaease the exporent; seaondy, the acaracy
of the cdculation must be particularly high in oder to avoid pseudolinea
dependence caastrophes (espedally when computing exad Fock exchange in HF or
hybrid DFT cdculations); thirdly diffuse functions are not of much use in densely
padked crystals, because their tail s are foundin regions where there is large variational
freedom associated with functions on aher atoms.

We have drealy seen some of the bewil dering array of aaonyms for the many
different kinds of basis ts available. These ae esentialy just cryptic shorthand for
the way the wntradions from Gausdan primitives were performed with passbly
some description d how the set was modified afterwards. The way in which
contradions are derived is not easy to summarize in general, and moreover, it depends
upon the intended use for the basis functions. It is a good ideato always read the
original paper which describes the cntradion procedure. Some basis sts are goodfor
geometry and energies, some ae damed at properties (such as polarizability), some ae
optimized ony with HartreeFock in mind, and some ae tailored for correlated
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cdculations. Finally, some ae good for anions and ahers for caions and reutra
moleaules. For some cdculations, a good representation d the inner (core) orbitalsis
necessry (e.g. for properties required to anadyze NMR spedra or hyperfine
interadions (e.g. ISOTROPIC/ANISOTROPIC keywords in CRYSTAL) or for al-
eledron Gaussan quantum Monte Carlo cdculations), while others require the best
possble representation d the valence orbitals.

The most widely-known ndation aher than the ‘zeta system consists of
aaonyms like 6-31G. This denotes a basis &t where six Gausdan primitives have
been used to expand eat o the ‘core aomic orbitals', whereas the ‘valence orbitals
are described by two functions - the inner one expanded in three Gaussans, the outer
one uncontraded. It is usual to leare the most diffuse basis functions uncontraded -
the outer part of the valence is © strongly distorted from the a@omic picture that
flexibility is more important than atomic resemblance To indicae the presence of
(any number of) pdarization functions an asterisk is added to the basis %t symbd. In
pradice hydrogen atoms are often treaed dfferently from other atoms in a moleaule
with regard to the choice of basis st, and pdarization functions are not always added
to hydrogen atoms. Thus for a set with pdarization onall atoms we ald two asterisks,
6-31G**. Diffuse functions are treaed similarly; a‘+ denates the presence of diffuse
functions, ‘++ denates that such functions are used onall atoms. A symbad such as
e.g. 6-311G** + would thus be interpreted as foll ows:

(1) Each atom core orbital is represented by one basis function, expanded in
six primitive Gaussans.

(2) Each atom vaence orbital is represented by three basis functions, the
tightest expanded in three Gaussgans, the other two urcontraded.

(3) A set of uncontraded pdarization functions has been added onead atom
(p-orbitals on hydrogen, d-orbitals on all other atoms).

(4) A set of diffuse functions (with the same I-values as thase occurring in the
valenceorbitals) have been added onall non-hydrogen atoms.

Just for fun before we go any further, let’ s take alook at the EMSL web library
of Gaussan basis =t (www.emd.pn.gov:2080forms/basisform.html) used by
moleaular quantum chemists. | can tell you that the lucky purter is given the dhoice of
the following basis st types (which | am typing in orly becaise | want to concentrate
onwatching Ally McBed for half an hou — OK?):

STO-2G, STO-3G, STO-6G, STO-3G*, 3-21G, 3-21++G, 3-21G*, 3-21GSP,
4-31G, 4-22GSP, 6-31G, 6-31G-Blaudeau, 6-31++G, 6-31G*, 6-31G**, 6-31G*-
Blaudeau, 6-31+G*, 6-31++G**, 6-31G(3df,3pd), 6-311G, 6-311G*, 6-311G**, 6-
311+G*, 6-311++G**, 6-311++G(2d,2p, 6-311G(2df,2pd, 6-311++G(3df,3pd),
MINI (Huzinaga), MINI (Scded), MIDI (Huzinaga), MIDI!, SV (Dunnng-Hay),
SVP+Diffuse (Dunning-Hay), DZ (Dunning), DZP (Dunning), DZP+Diffuse
(Dunnng), TZ (Dunning), Chipman DZP+Diffuse, cc-pVDZ, cc-PVTZ, cc-pVQZ, cc-
pV5Z, ccpVeZ, pveZ, pV7Z, cc-pVDZ(seg-opt), cc-pVTZ(seg-opt), cc-PVQZ(seg-
opt), cc-pCVDZ, ccpCVTZ, ccpCVQZ, cc-pCVhZ, aug-cc-pVDZ, aug-ccpVTZ,
aug-ccpvQZ, aug-ccpV5Z, aug-cc-pVeZ, aug-pV7Z, aug-cc-pCVDZ, aug-cc
pCVTZ, aug-cc-pCVQZ, aug-cc-pCV5Z, daug-cc-pvVDZ, d-aug-cc-pVTZ, d-aug-cc-
pVQZ, daug-cc-pV5Z, d-aug-cc-pVeZ, Feller Misc. CVDZ, Feller Misc cVTZ, Feller
Misc. CVQZ, NASA Ames ANO, Roos Augmented Doulde Zeta ANO, Roos
Augmented Triple Zeta ANO, WTBS, GAMESS VTZ, GAMESS R/TZ, Partridge
Uncontr. 1, Partridge Uncontr. 2, Partridge Uncontr. 3, Ahlrichs VDZ, Ahlrichs,
pvDZ, Ahlrichs VTZ, Ahlrichs TZV, Binning/Curtiss SV, Binning/Curtiss VTZ,
Binning/Curtiss SVP, Binning-Curtiss VTZP, Mclean/Chander VTZ, SV+Rydberg
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(Dunning-Hay), SVP+Rudberg (Dunning-Hay), SV P+Diffuse+Rydberg, DZ+Rydberg
(Dunning), DZP+Rydberg (Dunning), DZ+Doulde Rydberg (Dunnng-Hay),
SV+Doule Rydberg (Dunnng-Hay), Wadters+f, Bauschlicher ANO, Sadlgj pvVTZ,
Hay-Wadt MB(n+1)ECP, Hay-Wadt VDZ(n+1)ECP, LANL2DZ ECP, SBKJC VDZ
ECP, CRENBL ECP, CRENBS ECP, Stuttgart RLC ECP, Stuttgart RSC ECP, DZVP
(DFT Orbital), DZVP2 (DFT Orbital), TZP (DFT Orbital), DeMon Coulomb Fitting,
DGauss A1l DFT Coulomb Fitting, DGauss A1 DFT Exchange Fitting, DGauss A2
DFT Coulomb Fitting, DGaussA2 DFT Exchange Fitting, Ahlrichs Coulomb Fitting,
ccpVDZ-it2-1, cc-pVTZ-fit2-1, cc-pvDZ DK, ccpVTZ DK, ccpVQZ DK, cc
pV5Z DK, ccpVDZ(pt/sfifw), ccPVTZ(pt/sf/fw), ccpVQZ(pt/sf/fw), cc
pV5Z(pt/sfifw), ccpVDZ(fi/sflfw), ccpVTZ(filst/fw), cc-pVQZ(fi/sf/fw), cc
pV5Z(fi/sf/fw), ccpVDZ(pt/sf/sc), cc-pVDZ(pt/sf/lc), ccpVTZ(pt/sf/sc), cc-
PVTZ(pt/sf/lc), cop-PVQZ(pt/sf/sc), cc-pVQZ(pt/sf/ic), cc-PV5Z(pt/sf/sc), cc
PV5Z(pt/sf/lc), ccpVDZ(filsf/sc), ccPVDZ(fi/sflic), cc-PVTZ(fi/sf/sc), cc
PVTZ(filsflic), ccPVQZ(filsf/sc), cc-PVQZ(fi/sf/lc), cc-PV5Z(fi/sf/sc), cc
pV5Z(fi/sf/Ic), Pople-Style Diffuse, STO-3G* Polarization, 321G* Polarization, 6
31G* Polarization, 631G** Polarization, 6311G* Polarization, 6311G**
Polarization, Pople (2d/2p) Polarization, Pople (3df,3pd Polarization), HONDO7
Polarization, Huzinaga Polarization, Dunning-Hay Diffuse, aug-cc-pvVDZ Diffuse,
aug-cc-pVTZ Diffuse, aug-cc-pvVQZ Diffuse, aug-cc-pV5Z Diffuse, aug-cc-pV6Z
Diffuse, aug-pV7Z Diffuse, d-aug-cc-pVDZ Diffuse, d-aug-cc-pVTZ Diffuse, d-aug-
ccpvVQZ Diffuse, daug-cc-pv5Z Diffuse, daug-ccpv6Z Diffuse, DHMS
Polarization, Dunning-Hay Rydberg, Dunnng-Hay Doulde Rydberg, Binning-Curtiss
(1d Polarization), Binning-Curtiss (df) Polarization, Ahlrichs Polarization,
Glendenning Polarization, Blaudeau Polarization, Core/val. Functions (cc-pCVD2Z),
Corelval. Functions (cc-pCVTZ), Corelval. Functions (cc-pCVQZ), Corelval.
Functions (cc-pCV52).

| hope you can see that this would become a increasingly unprofitable
exercise if | commented further. Let me @nclude this edion by stating how | think
CRY STAL users might record their basis ts in pubdished work. First of al (and I'm
generdizing only alittl€) it isa sad fad that true moleaular quantum chemists will not
believe ay work you do utessit is done with a‘named and pubished’ basis st with
the name in question being one of theten or so peoplein the @owelist. Thisisa aoss
we dl have to bea. Kill yourself or get over it. In my opinion, the simplest and most
sensible natation for CRY STAL users who develop their own sets might be something
like “In this piece of terrificdly important reseach we used a basis of contraded
Gaussan-type functions of the form s(9)sp(7)sp(6)sp(3)sp(1)d(4)d(1) for element A
and s(8)sp(6)sp(3)sp(1) for element B, where the letters give the shell type and the
numbers in bradets give the number of primitive Gaussans in ead shell contradion.
The exporents and contradion coefficients are reported in appendix X/TableY/Web
Site Z.” This conveys al relevant information, there is no reed to dedde on some
semi-arbitrary core-valence partition and, keing familiar with the periodic table, the
reader is able to work out for herself whether the set includes padarization functions or
not. Andfor God's ske don't invent any more aconyms.

Basis &tsin CRYSTAL
The basis st information in the CRYSTAL inpu dedk is reasonably
straightforward, and may be understood through the example given onthe foll owing

page:
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287 rickel basis with seven shell s
0082010
367916.0 0.000227
52493.9 0.001929 dsis st type for this dell:
11175.8 0.0111 6 genera basis &, given asinpu (like this)

2925.4
882.875

£ STO-NG (Z=1-54)
2 Pople 3(6)-21G (Z = 1-54(18))

1703
0.369

74.4211 -0.1
29.6211 0.2576 3944 NB:[(scdefador)® x exporent in contradion]=true exporent
12.4721 0.6357 0.397 formal eledronic charge dtributed to the shell
4.2461 0.2838 0.2586

0148010

56.658 K—0:0124-6-048——exporent of normalized primitive Gaussan
21.2063 -0.2218 -0.08

8.4914 -0.8712% 0.2089——s contradion coefficient

3.6152 1.0285 1.25%— p contradion coefficient
0110010
1.5145 1.0 1.0
0110010
0.6144 1.0 1.0
0348010
41.08 0.040500
11.4126 0.202200
3.856  0.433800
1.33 0.489700
0310010
0411 1.0
84 oxygen basiswith four shells
0082010
8020.0 0.00108
1338.0 0.00804
255.4 0.05324
69.22 0.1681
23.90 0.3581
9.264 0.3855
3.851 0.1468
1.212 0.0728
0148010
49.43 -0.00883 0.00958
10.47 -0.0915 0.0696
3.235 -0.0402 0.2065
1.217 0.379 0.347
0110010
0.4764 1.0 1.0
0110010

0.1802 1.0 1.0
end d basis st inpu
All-eledron basis st for nickel oxide (NiO)

990
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Two sets of al eledron besis s are included as internal data in the
CRYSTAL code, neither of which are worth using any more. Nevertheless they are:

(2) the minimal STO-nG basis %ts of Pople and co-workers (atomic nos. 1-54)

These basis sts are designed to mimic the shape of Slater-type functions, and
are obtained by fitting STOs with n contraded primitive Gaussans (where n is
generally between 2 and 6). Such afit can be dore acarately and the main limitation
to the usefulness of these sets appeas to be that the STO itself is not a perfed basis
function. They are still used occesiondly in spite of the poa quality of the resulting
wave function, pesumably because they are well-documented and generally provide,
due to fortuitous cancdl ation d errors, reasonable optimized geometries at low cost.

(b) split-valence 3-21 and 621 basis sts

In these sets, the re shells are described as a linea combination d three (up
to atomic number 54) or six (up to atomic number 18) Gaussan primitives with the
two valence shell s containing two and ore Gaussans. The exporents and contradion
coefficients have been variationally optimized for the isolated atoms, and s and p
functions of the same shell share the same exporent. A single set of polarization
functions (p, d) can be alded withou causing numericd problems. Standard
moleaular padlarization functions are usuall y also adequate for periodic compounds.

4. Basis set selection

In chocsing a basis st the paramourt but conflicting issues are acaracy and
computational cost. These ae obviously inversely related, and there is littl e more to
be said abou it. However, computational cost alone shoud na determine what basis
set is used. Seleding a smaller set purely on the basis of a lak of sufficiently
powerful computers or interest will often prove unsuitable for describing the system in
guestion, which rather defedas the objea of performing the caculation in the first
place The minimum basis st requirements of all properties to be computed shoud
always be considered.

A gred ded of genera experience has now been gained by computational
chemists in seleding appropriate basis sts for moleaular problems™, and much o this
experience ca be used in the seledion d basis s for studies of crystalli ne solids.
However, | think it is true to say that the moleaular quantum chemists do nd in
general like to optimize basis sts by varying the exporents or contradion coefficients
to minimize the energy (and this is not necessarily their fault since the most popuar
codes suich as GAUSSAN do nd include afadlity for doing so, aher than by
laborious hand opimization). Rather, as we have seen, there is a hierarchy of basis
sets with percaved qualiti es, and for a difficult problem where acaracgy is important
onewould use a‘good quality’ standard besis st from alibrary withou modificaion.
The literature isfull of statements like ‘this cdculation was caried ou at the STO-2G
level’ (probable trandlation: this caculation is rublish, bu my moleaule is just too
big) or ‘this property was cdculated at the TZVP level’ (i.e. it’s probably quite good).
In crystalline systems by contrast, basis st optimization is usually necessary,
essentially for two reasons. Firstly, there is a much larger variety of binding than in
moleaules and hesis sts are thus lesstransferable. For example, carbon atoms may be
involved in strong covalent bonds, e.g. in pdyacedylene or diamond, as well as in
highly ionic systems such as Be,C, where the Mulli ken charge of carbonis close to —
4. Seoondy, hierarchicd libraries of basis sts comparable to those available for
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moleaules do nd redly exist. For cetain types of compound, such as molealar
crystals (e.g. ureg or many covalent materials, the molealar sets can sometimes be
used largely unmodified (athough | don't necessarily recommend it). However, for
strongly ionic aystals and metals the basis sts, particularly the valence states, need to
be redefined completely. In esentialy al cases, the wre states may be described
using the solutions of atomic cdculations, as even in the presence of strong crystal
fields the mre states are barely perturbed and may be described by the linea
variational parametersin the SCF cdculation.

Redefining basis sts in this way is obviously time @mnsuming and even more
obviously rather boring, and so ower the last five yeas various people invalved with
the CRY STAL program have ntributed to an effort to develop libraries of basis sts
for CRYSTAL to be made avail able ontheinternet. The URL of the officia siteis:

www.ch.unito.it/ifm/teorica/crystal/ AEbasissst/mende .html

The site shows a periodic table. Clicking on the symbad for the required element will
reved atext file containing various different basis sts which may have been used in
different materials containing that element type. Accompanying ead basis st islist of
authors, alist of materials where the set has been used, references to pulications and
hints on opimization where relevant. This table, which is obviously not complete,
grew out of a set of text files compiled largely by me whilst working in Torino in
1995. Since my departure to Cambridge in ealy 1997, have maintained my own
separate library whose content has now diverged significantly from that of the official
site. It is a little more ‘experimenta’ in the sense that it contains sts which have
never been used in pubished cdculations, and also sets which have simply been
optimized in atomic SCF cdculations but then never developed further. The am of
providing such urtried sets is to starting points for reoptimization where one hopes
that at least the wre functions are reasonable. In particular it contains aimost all of the
heavier elements beyond zinc in the periodic table up to aroundlanthanum where we
are forced to stop kecause of the lack of f functions in CRYSTAL. The URL of the
Cambridgelibrary is:

www.tcm.phy.cam.ac.uk/~mdt26&/crystal.html

There is a link from this page to the Cambridge quantum Monte Carlo page, which
will shortly include a table of basis sts found to have been useful in QMC
cdculations. Finaly, if you want to oltain standard molealar basis sts to use &
starting points for solid cdculations (or even to do moleallar cdculations), you can
find the very useful EMSL library at:

www.emsl.pnl.gov.2080for ms/basisform.html

For European users, this srviced is mirrored at Daresbury Laboratory at:

wservl.dl.ac.uk:800emdl-pnl/basisform.html

Presently | shall discuss reoptimization strategies for the basis ts given in the
standard CRY STAL libraries and also dscussthe alaptation o moleaular bases for
various types of solid. First of all a number of general principles are given that shoud
be taken into acaount when chocsing abasis st for a periodic problem.
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a. Diffuse functions

The pre-screening procedure used in CRY STAL is based on o\erlaps between
Gaussan s functions associated with ead shell whose exporents are set equal to the
lowest exporent of all the primitive Gaussans in the contradion. The number of
integrals to be cdculated thus increases very rapidly with deaeasing exporents of the
primitive Gaussans, an effed which is much less pronourced in molealar
cdculations. The foll owing table shows that the st of HF cdculations on sili con and
diamond, which for such small systems is determined amost exclusively by the
number of bieledronic integrals, can increase by afador of 10 simply by changing the
exporent of the most diffuse single Gaussan from 0.168to 0.078(Si) and from 0.296
to 0.176(C). The st is largely dominated by this dhell, despite the fad that large
contradions are used for the 1s, 2sp and the innermost valence shell. The last entries
in the table ae examples of weird behaviour - seepart c.

_Damond  Slcon |
N Ee a N Eie

a

0.296 58 —75.6633 0.168 46 -577.8099
0.276 74 —75.6728 0.153 53 -577.8181
0.256 83 —75.6779 0.138 72 —577.8231
0.236 109 —75.6800 0.123 104 —577.8268
0.216 148 —75.6802 0.108 151 —577.8276
0.196 241 —75.6783 0.093 250 —577.8266
0.176 349 naonvergence | 0.078 462 naonvergence

Table 4.1 - Total Hartree-Fock energy Ey per cell and number of bielectronic integrals in 10°

units (N) to be evaluated as a function of the exponent (a) of the outer shell for diamond and

silicon. In both cases a ‘split-valence’ 6-21G basis set was used. You can repeat the silicon
calculations with ‘test10’ in the CRYSTAL98 distribution if you want.

In atoms and moleaules a large part of the alditional variational freedom provided by
diffuse functions is used to describe the tail s of the wave function, which are poaly
described by the long-range decey of the Gausdan function. In crystalline compounds
by contrast, particular in nonmetalli c systems, the large overlap between neighbous
in al diredions drasticdly reduces the mntribution d low-exporent Gaussans to the
wave function. This has the mnsequencethat a small *‘ split-valence basis %t such as
6-21G is closer to the Hartree Fock limit i n crystals than in moleaules.

b. Number of primitives

As discussed previoudly, a typicd basis st will have ‘core functions with
higher exporents and a relatively large number of primitives - these will have alarge
weight in the expansion d the re states. The ‘valencefunctions’ with alarge weight
in the outer orbitals will have lower exporents and contradions of only a very few
primitives. We can get away with puiting a lot of primitives in the core since @re
states have very littl e overlap with neighbouing atoms and thus the use of a large
number of primitives in the GTF contradion is of limited cost in CPU time. The use
of many primitives in the valence shells would add significantly to the cst of a
cdculation.
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c. Numerical catastrophes

Under certain condtions a CRY STAL cdculation may fall into a nonphysicd
state during the SCF part charaderized by an oscill ating total energy significantly
higher than the true energy. Such cdculations will nat, in general, converge. It is
observed that the risks of numericd problems like this increases rapidly with
deaeasing value of the most diffuse Gausdan exporent in the basis . It happens,
for example, in the sili con cdculation reported in Table 4.1 where the exporent of the
most diffuse basis function is 0.073.1n general this behaviour may be atributed to
limitations in the acaracy of the Coulomb and exchange series evaluation. The
exchange is by far the more delicae of the two series snce long-range contributions
are not taken into acount and becaise the ‘pseudowerlap’ criteria asociated with the
two owerlap parameters ITOL4 and ITOL5 mimic the red behaviour of the density
matrix only in an approximate way. This means that cdculations which require exad
Fock exchange (i.e. HartreeFock, hybrid DFT) are & much greaer risk of showing
this behaviour. An LDA-DFT cdculation d our errant Si cdculation acdually works
perfedly well.

In order to oltain physicd solutions in situations like this, the usual remedy is
to increase the integral tolerances to give higher predsion via the TOLINTEG
keyword. For non-metalli ¢ systems with medium-sized basis sts, the default integral
tolerances of 6 6 6 6 12are alequate for the optimization o the exporents of the
valenceshell and for systematic studies of the energy versus volume airves. However,
in metals, the optimization d the energy versus exporent curve a the HartreeFock
level is often na even passble, even with much higher integral tolerances. If you
insist on studying metals with HF, reasonable values of the valence shell exporent
(say 0.23for beryllium and 0.10for lithium) can be used for the study of the structural
and eledronic properties of metalli c systems even though they don't correspondto a
variational minimum. Use DFT insteal.

d. Basis st superposition error

A rather serious problem associated with Gaussan basis ts is basis %t
superposition error (BSSE). A common resporse to this problem isto ignoreiit, since
it will go away in the limit of a complete basis. Sometimes this approad is justified,
but this requires investigation that is sldom performed, and some understanding of
BSE is indispensable in order to perform acarate and reliable cdculations. The
problem of BSSE isa simple one: in a system comprising interading fragments A and
B, the fad that in pradice the basis sts on A and B are incomplete means that the
fragment energy of A will necessarily be improved by the basis functions on B,
irrespedive of whether there is any genuine binding interadion in the wmpound
system or not. The improvement in the fragment energies will | ower the energy of the
combined system giving a spurious increase in the binding energy. It is often stated
that BSSE is an effed that one needs to worry abou only in cdculations on \very
wedly interading systems. This is not redly true. BSSE is an ever-present
phenomenon and acarate cdculations soud aways include an investigation o
BSSE. Examples of areas in which ore shoud be particularly wary are the study of the
binding energy of moleaules adsorbed on surfaces (see for example Ref ° for an
interesting discusson) or the cdculation d defed formation energies..

The gproach most commonly taken to estimate the dfed of BSSE is the
courterpoise @rredion® the separated fragment energies are mmputed nd in the
individua fragment basis sts, bu in thetotal basis st for the system including ‘ ghost
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functions’ for the fragment that is not present. These energies are then used to define a
courterpoise-correded (CPC) interadion energy, which by comparison with
perturbation theory, has been shown to converge to the BSE-free orred value’. An
example of how to compute the cunerpoise rredion wsing CRYSTAL in a
cdculation ona simple mode system (CO adsorbed onMgO (100 surface affeded
by BSSE will be givenin Exercise 2.

e. Pseudopdentials

It is well known that core states are not in general affeded by changes in
chemicd bondng. The idea behind pseudopdentias is therefore to trea the cre
eledrons as effedive averaged pdentials rather than adual particles. Pseudopdential
are thus nat orbitals but modificaions to the Hamiltonian and are used because they
can introduwce significant computational efficiencies. In plane wave cdculations,
pseudopdentials are esentially mandatory since the cre orbitals have very sharp
fedures in the region close to the nucleus and too many plane waves would be
required to expand them if they were included. The most important charaderistic of a
pseudo designed for such cdculations is that it is as snoath as posgble in the wre
region. Pseudopdentials in Gausdan basis &t cdculations are nat mandatory and
have different charaderistics to those designed for plane waves snce Gaussans
adualy have sharp feaures in the are region. If the CPU time in CRYSTAL is
dominated by the integrals cdculation, they will not even buy you very much sincethe
number of integrals is controlled by more diffuse functions which owerlap strongly
with neighbouing atoms — something which basis functions with large weight in the
core orbitals are nat very good at. However the use of pseudopdentials will deaease
the number of coefficients in the wave function and might give significant savingsin
the SCF part. It is adso qute eay to incorporate relativistic dfeds into
pseudopdentials which is increasingly important for heary atoms. All eledron
relativistic cdculations are very expensive and nd posshle in CRYSTAL anyway.
Some people have used pseudopdentials to overcome the problem of the missng f
Gaussan basis functions in CRYSTAL and have dore cdculations on heary atoms
containing f eledrons. How does the use of pseudopdentials modify the basis st in
Gausdan cdculations? Take an all-eledron basis st for that atom. First of al one
might hope that basis functions which have alarge weight only in the wre orbitals
might be removed. Remove them. Make sure you are left with the @rred number of
eledrons. The remaining basis functions must then be optimized (see later) with
referenceto the pseudopdential.

5. Practical optimization

So to summarize, there ae anumber of approadhes to developing a basis st
for a periodic HF/DFT cdculation. Obviously the eaiest way isto dowvnload standard
sets from the online libraries or ask experienced CRY STAL users andto use these sets
withou modificaion. The sscondway is to start from one of these standard sets and
improve it. The third way is to suitably modify a moleaular basis st for use in your
crystalli ne system. The fourth way isto develop a basis st from scratch using atomic
SCF cdculations, probably using a neaby atom in the periodic table & a starting
point. Let us Immarize first of all some ways ‘one might’ improve abasis t:

¢ Reoptimize the more diffuse exporents (and contradion coefficientsif necessary).
¢ Deontract i.e. convert the more diffuse @ntradions into single Gausdan
primiti ves.
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Convet sp functionsinto separate s and p functions.

Add pdarization functions if not already present

Add more primitives (watch ou for linea dependence problems).

¢ Usea better starting pant

Reoptimization in this s$nse means varying an appropriate subset of the basis st
parameters urtil the energy is minimized. In principle this is a reasonably complex
multidimensional minimization, bu there ae various gandard shell scripts avail able
to help youwith this (seelater). Be caeful that the ratio between succesive exporents
doesn't fall below 2-2.5, dherwise the basis may suffer from linea dependence
problems. Watch the CPU time, particularly when carying out decontradion, o
adding pdarization functions.

> & o

By means of some (very simple) examples | will now briefly consider the
adequacy of moleaular basis sts for diff erent types of crystalline cmmpound.Note that
the basis sts discused are hardly ‘state of the at’ and are meant to ill ustrate
particular principles only. Note dso that | have ‘adapted’ some of these discussons
from those given in the CRY STAL manual.

Covalent systems

Let's consider again two (stereo)typicdly covalent systems, diamond and
silicon. | will usethe CRYSTAL standard ‘split-valence€ 6-21G basis sts, that is, the
core shell s are described with a @wntradion d six primitive Gausgans and the inner
and ouer valence shells contain respedively two and ore Gaussans. sp shells are
used throughou, in that the s and p functions of the same shell share the same
exporent, and al contradion coefficients are variationally optimized in the isolated
atoms. The best exporent of the outer shell of the aom is 0.196for C and 0.093for
Si. Reoptimization d the valence shell of C in two moleales gave 0.24in CH, and
0.189in CO for these quantities'®. Repeaing the optimization in the two crystalli ne
compounds reveds that the most internal valence shell is essntially unatered with
resped to the aomic solution, while for the outer single-Gaussan shell the best
exporent is 0.22 for diamond and 0.11for silicon. These values are very similar to
those optimized in the isolated atoms. If a single-Gausdan d pdarization shell (which
is five separate functions) is added to the 6-21G basis (i.e. to give 6-21G*) and the
exporents optimized ore gets 0.8 for diamond and 0.4for silicon. These values are
very close to those resulting from the moleaular optimization, which are 0.8 for
diamond® and 0.45for sili cor?®. It seems therefore that small moleaular split-valence
basis wts can therefore be used with confidence and esentialy withou modificaion
to describe cvaent crystals. It is generally advisable however to reoptimize the
exporent of the most diffuse shell, which produces a dlightly improved basis, while
reducing the st of the cadculation. That said, 6-:21G* isnat redly all that goodand a
larger better basis &t with more variational freedom is quite eay to make for these
cases (seeweb libraries).

lonic aystals

The dasgficaion d materials as covalent or ionic is a mnventional one but
the division ketween the two is necessarily rather blurred. Examples of more or less
fully ionic compound are LiH and MgO, and for these systems the cdion valence
shell isamost completely empty. For such caions it often proves convenient to use a
basis st containing only ‘core’ functions plus an additional sp shell with arelatively
high exporent. As an example, in previous work using CRY STAL such sp shells were
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used for Mg in MgO and for Li in LiH, Li,O and Li;N with respedive exporents of
0.3-0.4and 0.50.6 %%, Tota energies obtained either by using only core functions for
Li/Mg or by adding a ‘valence shell to the cdion dffered by lessthan 0.1eV/atom.
This figure was esentialy the same for a relatively large range of exporents of the
outer shell, say 0.2-0.5for Mg. It isusually difficult, and diten impaossble, to ogimize
the exporents of functions which ony have gpredable weight in amost empty
orbitals, one finds that the energy deaeases dmost linealy with the exporent. As
discussed in the previous dion, very low exporent values require the cdculation o
enormous numbers of integrals and may lead to numericd instabiliti es. Thus for ionic
crystals with nealy empty shells, and where the energy gain o optimization is
relatively small (say, adeaease in energy of lessthan 1 mHartreefor a changeina of
around 0.2 it isusually convenient to use arelatively large exporent for this gell.

Anions present a different problem. Reference to isolated ion solutions is
passble only for halides, because in such casestheions are stable even at the Hartree
Fock level. For other anions, which are stabili zed by the aystaline field (such as H,
07, N* and C%), the basis %t must be redesigned with reference to the aystalline
environment. Consider, for example, the optimization o the O basis st in Li,O. The
difficulty is to alow the valence distribution to relax in the presence of two more
eledrons. We begin from a standard STO-6G basis st i.e. six contraded primitive
Gaussgans for the 1s shell, and six more to describe the 2sp shell. First of al, two
more Gaussans were introduced into the 1s contradion, in order to improve the virial
coefficient andtotal energy. The two ouer Gaussans of the valence sp shell were then
removed from the cntradion and alowed to vary independently. The exporents of
the two outer independent Gaussans and the wefficients of the four contraded ores
were optimized in Li,O. The best outer exporents of theionwere foundto be 0.45and
0.15and are therefore mnsiderably more diff use than the neutral isolated atom, where
the best exporents are 0.54and 0.24.The rest of the O valence shell is unchanged
with resped to the @omic situation. The introduction d d functions in the oxygen
basis st gives only a minor improvement in the energy of 1x10“ Hartree per cdl,
with a popdation d 0.02 eledrons/atom/cdl (d functions may be important in the
cdculation d certain properties however - seelater). Thus for anions, reoptimization
of the most diffuse valence shells is mandatory when starting from a standard basis
Set.

Semi-ionic aystals

Intermediate situations soud be mnsidered individually and the alequacy of
seleded basis sts must be caefully tested. Examples of semi-ionic compounds are a-
quartz (SI0,) and corundum (Al,O;). The exporents of the outer shell for the two
caions in the 6-21G basis are 0.093(Si) and 0.064(Al). In bah cases, this function
proves to be too dffuse, even causing numericd caastrophes at the HF level in the Al
case. For quartz, reoptimizationin the bulk gives a=0.15for Si (the dependence of the
total energy on a is much smaller than in pue silicon (Table 4.1) and the st at
0=0.15is only 50% of the one & a=0.09. In contrast the best moleaular and
crystalline exporent for oxygen (0=0.37) coincide. Corundum is more ionic than
quartz, and abou two valence dedrons are transferred to axygen. In this case it is
better to eliminate the most diffuse valence shell of Al, and to use & independent
functions two Gaussans of the inner valence shells (a=0.94and 0.3respedively).
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Metals

It is often stated®® that Gausdan besis ts are somehow inappropriate for
describing simple metals and that plane-waves, for example, are amore ‘natural’ basis
via some sort of analogy with the orbitals of the free éedron gas (which are plane-
waves). However urtil recently very few studies had been dore to argue properly one
way or the other. The reason for this has its origin in the fad that to reproduce the
nealy uniform density charaderizing simple metallic systems uch as lithium and
beryllium one needs to use very diffuse Gausdans. You will recdl from an ealier
sedion that this is a very bad ideain HartreeFock because of the Fock exchange
pathology and it is generally impassble to optimize the basis st in such cases. Until
DFT cdculations becane possble (with the 19951996release of CRYSTAL) it was
thus quite difficult to separate the dfeds of basis st and Hamiltonian. The few
Gausdan DFT studies that have been dore since then seam to indicae that GTFs are
ableto provide areliable and efficient description of simple metalli ¢ systems?®2*.

An interesting example of a CRY STAL study of a metalli c system is that of
Doll, Harrison and Saunders® who investigated the dfed of computational
parameters (including the basis st) on the cdculated surface ad buk properties of
metallic lithium. This g/stem will be used in Exercise 3, and therefore a certain
amount of apparently irrelevant detail will be presented here. Doll et al. began with
the foll owing core s function taken from an ealier study®™:

0062010
840.0 0.00264
217.5 0.00850
72.3 0.00335
19.66 0.1824
5.44 0.6379
15 1.0

Keegping this core function fixed, they then proceeaded to add functions to this basis of
increasing complexity and examined the convergence of various properties:

¢ BASIS ET 1 [s(6)sp(1)sp(1)]: The sp exporents were optimized with LDA (or
PWGGA) to 0.5and 0.08.However, as an exporent of 0.08gives rise to a diffuse
basis function close to numericd instability and was quite expensive, exporents of
0.5and 0.1werein fad used.

¢ BASIS ET 2 [s(6)sp(1)sp(1)sp(1)]: ‘even tempered” exporents (i.e. the ratio
between the exporentsis kept fixed - to 2.5in this case). Exporents 0.5, 0.2, 0.08.
This ratio is close to the lowest which can be tolerated before on-site (atomic)
linea dependence is xa. It is however aso knavn from previous work to
converge the aomic energy to within lessthan 0.0001Ha of the exad Hartree
Fock groundstate energy.

¢ BASIS &ET 3: [9(6)sp(1)sp(1)sp(1)d(1)] Just like BASIS ET 2 bu with ad
polarization function, whose exporent was optimized with a PWGGA functional
to be 0.15. However, the d function leads only to a minor change in the total
energy. Changing the exporent to 0.5changes the energy only by around 0.00005
Ha

As expeded from previous discussons abou the Fock exchange pathdogy, an
optimization d the basis st exporents was not possble dther at the Hartree Fock
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level or using the B3LYP hybrid DFT functional: the outermost exporent became
more and more diffuse until finally the solution kecane unstable.

One of the properties computed by Doll et al. was the mhesive energy for
which acarate energies of the free @aom are dso required. A richer basis %t is
required to compute this acarrately because of the need to describe the long-range
behaviour of the @omic wave function (note the asence of p functions):

¢ BASIS ET 4: [9(6)s(1)s(1)s(1)s(1)s(1)] with ouer exporents of 0.6, 0.24, 0.0096,
0.04and 0.0016.

In the LDA and PWGGA cdculationsiit is aso required to expand the exchange and
correlation pdentials in an auxiliary basis st. Doll et al. went beyond the defaults
and wsed a set consisting of 13 even-tempered s-functions with exporents from 0.1to
2000, 3even-tempered p-functions with exporents from 0.1to 0.8,and 2d-functions
with exporents of 0.12and 0.3.Thisis sufficient to integrate the dharge density to an
acaracy of 107 |g|. For the free @om, they used an auxili ary basis st with 18 even-
tempered s-functions with exporents from 0.0037to 4565.

In metals the redprocd spacesampling is also a aiticd and rather delicae
issue. In CRYSTAL the sampling is performed ona Monkhast-Padk net where the
density of paints is determined by a shrinking fador. The Fermi energy and shape of
the Fermi surface ae determined by interpolation orto a“Gilat’ net. This net is sSmply
related to the Monkhast-Padk net by an additional subdvision fador. To further
improve @nvergence, the finite temperature generdization o density functional
theory can be used to apply Fermi surfacesmeaing (with the SMEAR keyword). Note
that a higher number of sampling points in the Gilat net leads to a systematic
improvement at zero temperature. At finite temperature, the number of Gilat points
does nat influence the results o long as the MP net is aufficiently dense. Properties
were investigated using smeaing of 0.00Ha and 0.02 Ha. It was found that a
shrinking fador of 16 for the MP net and a temperature of 0.001Ha gave good results
(i.e. convergence of the energy to at least 0.0001Ha with resped to redprocd space
sampling.

The onclusions of Doll et al. were esentialy as follows. The amhesive energy
and lattice @nstant were stable even with the smallest of the basis sts. The dastic
constants and surface @ergies were more sensitive to basis st. The mwnverged values
of all properties were in full agreement with experiment and cdculated values from
the literature. The results in best agreement with experiment were obtained with the
Perdew-Wang GGA funtional. Hartree'Fock and hybrid functionals were very difficult
becaise of the Fock exchange pathology. Finite temperature cdculations could be
used to improve mnwvergence and an extrapolation to zero temperature was both
posshble and acaurate. [Now why naot try Exercise 37].

Transition elements

A particularly interesting new field to which CRY STAL has been applied over
the last six or seven yeas is that of magnetic compound containing transition
elements. These ae examples of what physicists refer to as ‘strongly correlated
materials. Such materials have been the subjed of controversy due to the grea
difficulties that density functional theory cdculations (based on LDA or GGA
functionals) have had in this areg with magnetic insulators being predicted to be
metals and so on. Lest previous ®dions of these notes have mnvinced you that
HartreeFock cdculations are adualy rather useless it turns out that UHF adually
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gets the groundstate qualitatively corred in magnetic insulators (I will briefly explain
this dortly). A collaboration ketween the Torino and Daresbury (and aher) groups
beginning in 1993was able to demonstrate this and helped to highlight the problem
with DFT. Relevant papers from that time can be foundin References?®2"2829.30313233
and sincethen agrea ded of other work has been dore by awide variety of groups>*,
A tak attempting to explain this topic in simple terms for first-yea graduate students
is avail able on the web at www.tcm.phy.cam.ac uk/~mdt26/tmo/scm_talk.html.

So, what is a strongly correlated material? * Strongly-correlated’ is aterm used
in many-body physicsto mean that a particular parameter in a‘toy’ model (referring to
‘onsite’ intratomic Coulomb interadions) is bigger than ather parameters in the
model (related to the band width, o kinetic energy). It shodd na be @nfused with
‘correlation’ in the quantum chemistry sense, which is the energy diff erence between
the exad nonrelativistic energy and the HartreeFock energy in the limit of a
complete basis st. What charaderistics of a material, from the point of view of its
eledronic structure, make it strongly correlated? This is a good guestion. To begin
with, it is generally assumed that eledrons in strongly-correlated materials are
‘locdized’ in some sense (seeProfessor Resta' s talk for a definition o this) and their
congtituent atoms retain much o ther freeatom-like daraderistics. It is thus
convenient to consider such problems in red, as oppased to redprocd space To a
first approximation you might think of the aystalli ne orbitals correspondng to the 3d
states in such materials as periodic arays of particular atomic d orbitals (such as the
dy, or dy, or whatever) multiplied by a phase fador with some k. As a function d k
these will form relatively narrow bands. To crede an insulating state, some of these
bands must be full and some must be anpty. What medhanism exists for splitti ng the
sub-bands within the d manifold?

¢ Crystal field splitti ng: in the presence of a aubic aystal field (for example) due to
the presence of neighbouing atoms the d manifold will be split into ey (dy-y2 and
dz) and tyg (dyy,dyz,0y,) subsets. The energy scde of thisis often rather small.

¢ Exchange splitti ng: Eledrons of the same spin tend to stay out of ead ather's way
becaise of the exchange interadion, and so the intereledronic Coulomb repulsion
will be smaler for the mgority-spin eledrons The majority-spin bands will
therefore be lowered in energy with resped to the minority spin bands (this can
split up-spin gy bands and davn-spin ey bands for example).

But what medhanism exists for splitting the subbands correspondng to the two
different gy orbitals of the same spin?

¢+ On-site Coulomb interactions: we popuate one of the ey orbitals with an up-spin
eledron and leave the other empty. Imagine there ae n eledrons on this particular
transition metal ion. Thus an eledron in the occupied e; sub-band feds the
potential of n-1 eledrons and an ‘added’ eledron in the virtual orbital would fed
the patential of n eledrons. The difference is the on-site Coulomb interadion U
(which is the ‘strong correlation’ i.e. a sort of screened intraatomic Hartree
interadion).

It turns out that such behaviour can be replicaed at the UHF level with a
single determinant wave function. The reason for the failure of LDA/GGA
cdculations to dothe same is interesting. Within the LDA, the patentia felt by eat
eledron is computed from a functional of the total eledron densities. For such simple
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density functionals this leals to eigenvalues which are relatively week functions of the
particular orbital occupancy. Ultimately this behaviour stems from the spurious
incluson d ‘'sef-interadion’ effeds in the exchange-correlation pdentia (the
intereledron Coulomb energy in a one-eledron atom is nonzero using the LDA!). In
HF theory, the nonloca exchange exadly cancds the self-interadion and introduces a
strongly orbitall y-dependent patential which splits the manifold of d statesin predsely
the manner expeded from a simple empiricd (‘Hubbard model’) estimate of the on-
site interadions between eledronsin dfferent orbitals. Indeed a variety of new ‘DFT’
schemes (e.g. LDA+U, SIC-LDA) which emulate important feaures of the Hartree
Fock Hamiltonian have now been developed which give better descriptions of the on-
site interadions than regular DFT. New 'exad-exchange’ DFT formulations are
currently the focus of intense reseach and also hdd a grea ded of promise. So the
point is that athough DFT isin principle exad and you can compute the total energy
asafunctiona of the density, the egenvalue spedrum does nat necessarily correspond
to anything physicd (since the orbitals are merely auxiliary functions used to
parameterize the density). Unfortunately having the wrong eigenval ue spedrum means
that KS-DFT cdculations will sometimes converge to an incorred ground state with
the wrong density.

To trea systems like these with any degree of acaracy at the UHF level in
CRYSTAL (or at the hybrid DFT level which is adso promising) reassonably good
basis sts for the transition elements are required. These ae naot that widely avail able
even to moleallar quantum chemists snce urtil relatively recently most of the dfort
in developing moleaular GTF basis sts has been for first- and second-row atoms. One
reason for this may be that moleaules containing transition metal atomstendto be very
badly described at the Hartree Fock level. Molealar bonds tend to have afairly high
degreeof ‘covalency’ and the eistence of partially-occupied d states leads to a grea
many nealy-degenerate levels, and thus to a large ‘static correlation’ (i.e. the weight
of the HF determinant in a Cl expansion would be small, and a multi-determinant
treament is more gpropriate). Basis ts to describe @rrelation wsing quantum
chemistry correlated wave function techniques need to be much richer than thaose for
systems well-described at the HartreeFock level since they nee to trea al of the
uncccupied levels. It may seem surprising that single-determinant HF could be so
succesdul in periodic aystaline magnetic insulators containing transition elements,
but this is an important charaderistic of these ionic materials. As we have see, the
highly symmetric environment and long-range Coulomb forces tend to separate the
orbitals into well-defined subsets with a significant gap between occupied and
uncccupied states. Hence the ground state of NiO (for example) is rather well
described by a single determinant. In this snse, a strongly correlated magnetic
insulator is in many ways a ‘simpler system’ than many moleaules. The success of
UHF cdculations in these materials (and also hybrid DFT schemes) has now been
well documented in avariety of puldications.

In order to study materials containing first and second transition series
elements, | carried ou an intermittent program of work between 1993and 1995aimed
at developing entirely new contraded atomic basis sts for elements beyond atomic
number 20 (Ca). These ae nat necessarily that good ky moleaular standards, bu in
many cases (particularly for the 3d elements Sc-Zn) these have since been reoptimized
in the solid state and wsed in pubished work. These sets are available on the Torino
and Cambridge Gausdan basis st library web sites referred to ealier. Since the
Torino site has afairly strict and entirely laudable no paper-no web pdicy, the @omic
basis sts beyond Zn as far as lanthanum including the 4d transition elements are
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largely only avail able from the Cambridge library. It is encouraging to nade however
that where these sets have been used in red materials, only relatively minor
reoptimizations of the most diff use functions were required.

Programs

There ae two programs (that we have accesto) which you can use to ogtimize basis
sets (and incidentally, geometries). Both are Unix shell scripts which work by
repeaedly cdling CRYSTAL whilst varying the requested basis st/geometry
parametersin a CRY STAL inpu file. You can dothis by hand o course but dying of
boredom is, | imagine, rather ungdeasant.

Billy

The first and dder program was originaly written by me in around 1991(the first
program | ever wrote. Aaadn...). For some reason it is cdled ‘hilly’ and it is a Unix
csh script. In most respeds however, it has been superseded by LoptCG (see below).
Billy is very easy to use and is pretty robust, bu generally requires more cdls to
CRYSTAL than LoptCG since it doesn't use awy gradient information in the
multidimensional minimization. Rather, it uses repeaed line minimizations. Since
basis %t parameters typicdly vary only in narrow ranges and roughly keep certain
ratios to ea ather, thisis adualy not as bad as it sounds and Lll'y usually finds the
same minimum as LoptCG (in basis st minimizations anyway), just more slowly. It is
adually better at riding over badly behaved inpu dedks where CRY STAL runsfail to
converge for certain values of the parameters. To useit, Smply precale any parameter
in the CRYSTAL inpu file you wish to optimize with an asterisk (**’) and type
something like ‘billy input_filename 5 * where 5 is an initial percentage scan range.
See the suppied dacumentation for additional command line flags for multiple
minimization cycles, and for controlling GUESSPrestarts. If your cdculation is not
particularly time-consuming and you dorit want to optimize too many parameters,
billy is gill perfedly servicedle.

Find Llly at : www.tcm.phy.cam.ac.uk/~mdt26/downloads/bill y.tar.gz

LoptCG

LoptCG was written in around 1996 # Claudio Zicovich-Wil son whil st working in
Torinowith the CRY STAL group,andis now avail able with the CRY STAL98
distribution onrequest. It isa Unix ksh script andis different from billy in that it
cdculates numerica energy gradients by finite diff erencing and wses this information
to help it carry out amultidimensional conjugate gradient (Polak-Ribiere)
minimization. It requires a cetain investment of timeto learn haw to useit properly,
and requires more complicated inpu, bu its minimization algorithm is quite abit
more intelli gent than hilly and | recommend its use. It also has many other nice
fedures sich asthe aility to change the minimization strategy halfway through an
optimization. Seethe suppied dacumentation for detail s. More information abou
LoptCG isaso avail able & www.ch.unito.it/ifm/teoricaLoptCG.html .

5. Examples®®
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In thisfinal sedion we shall discussafew brief but important examples of the
effeds of basis st seledion onthe total energy and aher related properties. First of
all we consider the perovskite KMnF;, described with the basis st reported in Table
5.1.Asthis g/stem is dmost fully ionic, the basis sts for bulk cdculations have been
derived from basis sts optimized for the isolated K*, Mn*" and F~ ions. The exporents
of the most diffuse single-Gaussan sp and d shell s were reoptimized in the bulk. The
basis %t in Table 5.1 is expeded to be reasonably good - there ae threevaence sp
shells on the anion and two onthe cdion (the 4s orbitals of K and Mn are dmost
completely empty). The d eledrons are described by two shells, a mntradion d four
Gaussans for the inner part, and a single Gausdan for the outer part. The caculation
with this basis is chea, taking only a few minutes on a medium-sized workstation.
This is becaise (a) the unit cdl contains only five aoms, (b) the system has high
symmetry and (c) the external Gaussans of the two caions have reasonably large
exporents (0.50and 0.22for Mn and K respedively) and that of the anionis not too
diffuse (0.18).

The basis %t of Table 9 can beimproved in anumber of ways:

(2) Polarization functions (d functions) may be alded to the K and F bases.

(2) Additional diffuse sp shells can be alded to Mn.

(3) the 4-1G contradionfor thed eledrons on Mn can be substituted with a 5-1G.
Some results of these basis &t improvements are shown in Table 5.2. The dfed both
on the run time and in cdculations of a number of properties (the binding energy,
lattice parameter, buk moduus, ferro-antiferromagnetic energy difference AE, and
two elastic constants) are given. Most of these quantities are very stable with resped
to basis st improvements, and orly in the cae of AE isamaximum variation d about
20% observed. This dability is a consequence of the fully ionic nature of KMnF;. and
of its high symmetry. The dedron charge distributions of K" and F~ are esentially
sphericd, so that polarization functions are nealy useless The 4sp shell of Mn is
empty and so the alditional sp shell with exporent 0.25is not used.

In order to undxstand the relationship between basis st flexibility,
polarizability of the ions and the aystalline symmetry, we will consider the influence
of d pdarization functions on two ionic compounds, NaO and K,O. In Table 5.3
some caculated buk properties of these materials are reported, oltained with and
withou d functions on the cdion. The d functions are seen to have negligible
influence on al but one of these properties, namely the C,, elastic constant, where
reductions of 10% and 426 are observed when d functions are introduced. These
results can be interpreted in the following way. The cdions are in a high symmetry
pasition, and when the unit cdl i s modified ac@rding to the deformations required for
the evaluation d B, C, and C,—C,,, their locd symmetry remains cubic. The d
functions are thus used essentialy for describing the ‘breahing’ of the ion. This may
also be described by the s and p functions of the valence shell however. For these
guantiti es the diff erence between K,O (with a variation d the order of 3%) and Na,O
(1%) is due to the larger pdlarizability of the potassum ion, a in ather words to the
smaller energy diff erence between the valences/p and \irtual d levels. On the @ntrary
the deformation required for the evaluation o the C,, éastic constant drasticdly
reduces the aomic point symmetry. The cdionisthus nolonger in a centrosymmetric
pasition and the ion can undergo a dipalar relaxation, for which a cmbination d p
and d functions is required. This effed is lessmarked for NaO, becaise the sodium
ionislesspdarizable.
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K | | F |

exporents Ccoeffs. Exporents coeffs. exporents Coeff s.
Sd) p sd p Sd) p
S 2926010 0.000227 172500 0.00022 1377® 0.000877
422650 0.0019 24320 0.00192 159® 0.00915
8947.29 00111 51400 0.01109 3266 0.0486
233032 00501 13430 0.04992 9166 01691
702047 Q1705 4045 0.1702 3046 03708
242907 Q3691 13A 0.3679 1150 041649
94.955 Q4035 5439 04036 476 01306
395777 01437 2271 01459
Sp 73214 -0.0053 00086 4020 -0.00603 00084 190 -0.1094 01244
175551 -0.0673 00612 935 -0.805 Q0602 453 -0.1289 05323
585093 -0.1293 02135 3075 -0.0109 02117 1387 10 10
23129 Q2535 04018 1192 0258 03726
9.7536 06345 04012 5167 0684 04022
3.4545 02714 02222 1582 Q399 0186
Sp 38.389 Q0157 -0.0311 1735 -0.0074 - 0.44 10 10
0.0321
154367 -0.2535 - 7.55 -0.129 -0.062
0.0969
6.1781 -0.8648 02563 2939 -0.6384 01691
2.8235 0.9937 16552 119 108 15
0.674 103 106
Sp 1.2086 10 10 0.389 10 10 0.179 10 10
Sp 0.4986 10 10 0.216 10 10
d 225929 Q0708
6.1674 Q3044
2.0638 05469
0.7401 05102
d 0.249
Atom
Sp = = = 0.4017 10 10 = = =
Sp = = = 0.2216 10 10 0.15 10 10
Sp 0.067 10 10 0.0281 10 10

Table 5.1 - Exponents and coefficients of the Gaussian-type basis functions adopted for the
study of KMnF;. The first and second part of the table refer to the bulk and atomic basis sets
respectively. In the lower part of the table the first two rows give the exponents and
coefficients of the functions modified in the atom with respect to the ion in the bulk; the last
row refers to the functions added for the description of the atomic tails. The atomic basis set is
used for the evaluation of the binding energies given in Table 5.2. The symbol ‘=" stands for

‘unmodified’.
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a) Table5.1 83 | 1198 | 0604 | 4280 | 646 | 0293 | 309 918
b) 5-1d nat 4-1d 83 | 1409 | 0605 | 4280 | 641 | 0292 | 308 909
0) b) + sp Mn(a=0.25 | 87 | 1858 | 0606 | 4284 | 633 | 0334 | 303 913
d) ) +donF (0=0.7) | 102 | 2541 | 08 | 4280 | 635 | 0319 | 302 898
5) d) + donK (0=0.4) | 107 | 3040 | 009 | 4276 | 639 | 0325 | 296 948

Table 5.2 - Effect of basis set on bulk properties of KMnF3. BE, ag, AE, B, Cy44, C13 and Cy—
C., are the binding energy (hartree), the lattice parameter (A), the energy difference between
ferromagnetic and antiferromagnetic phases (millihartree), the bulk modulus and two of the
elastic constants (GPa). M is the number of functions in the basis set; t is the total CPU time.

~ NaO KO |
nod d A% nod d A%

E; | -398.693| -398.695| -0.002 | -1273.184| -1273.193| -0.010

& 5.498 5.487 -0.2 6.550 6.466 -1.3
B 58.7 58.7 0.0 33.3 34.6 +3.5
Cu 127.3 126.14 | -0.9 71.8 74.1 +3.1
Co 23.9 23.8 -0.4 14.2 14.8 +4.1
Cu 37.8 34.4 -10.2 19.7 13.9 -41.7

Table 5.3 - Effect on bulk properties of simple oxides of adding d polarization functions to the
cations. A% is the percentage difference between the calculation with and without d functions
(for Er it is the absolute difference)
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1. Same simple properties of Gausgans

(&) Compute the overlap integral of two namalized s-type Gaussan functions with
exporents a and 3, and with a common centre.

(b) Compute the overlap integral between two s-type functions centred at A and B,
and with exporents a and 3 respedively.

(c) As(b), bu for p functions.

NB: Note the foll owing standard integral:

2.Basis st superpositionerror (BSE)

This exercise is concerned with the evaluation d the wurterpoise crredion
to the basis st superpasition error in a simple system, namely CO moleaules adsorbed
on the (100 surfaceof MgO. Experimentally, ore finds that the CO moleaules are
verticdly adsorbed via the C atom over the Mg ions at the (001 face with an
adsorption hea of around 3.6 kd/mol. Before we do any computations, we must first
examine the energetics of surfacdadsorbate interadions.

The interadion energy between an ad-moleaule M and a surfacesite Swithin a
surface omplex MSis obtained by cdculating the total energies of the three systems
involved and then finding

AE = E(MS) - E(M) - E(S).

Eadch o these quantities must be evaluated at the gopropriate eguili brium geometry.
Note that the interadion energy is defined to be negative for attradive interadions and
that the term ‘binding energy’ refers to the negative of the interadion energy. When
adsorption layers are treaed by periodic methods, as in CRYSTAL, a more spedfic
definition is required in order to take into acourt the ‘lateral interadion energy’,
which is the interadion energy per unit cdl between the moleaules in their periodic
array adsorbed on the surface This quantity can be ether positive (repulsion) or
negative (attradion) depending on the nature of the moleaules. In the limit of very low
coverage the distance between moleaules bewmes very large and the lateral
interadion energy tends to zero.

To compute the binding energy per unit cdl per adsorbate moleaule the
foll owing quantiti es must therefore be computed:
(1) Eswas : the energy per unit cdl of a aystal dab with an interading periodic aray of
adsorbed moleaules.
(2) Ess : the energy per unit cel of the dean crystal slab.
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(3) E. : the energy per unit cdl of the periodic aray of adsorbed moleaules in the
absence of the surface
(4) E.. : the energy of asingleisolated adsorbate moleaule.

The interadion energy per unit cdl between the whole alsorbate layer and the surface
is

AEgapn/ads = Edabrads ~ Edab ~ Eads-

The latera interadion energy is
L _
AE 45 = Eags = N [Epy

where N is the number of moleaulesin the unit cdl.

The experimental energy of adsorption AE,,, corresponds to a process where
the moleaules move from an ided gas gate into an adsorbed state where dtradive
interadions cause them to become dtaded to the host surface

AEgp = Eganradgs ~ Edap = N LEqy

One thus establishes the link between the computed interadion energy and the
experimental AE,:

— L
AE g = AEgap/ads T AEags
In the limit of low coverage, thisis effedively

AE gy = AEgap/ads

So anyway, having cdculated this quantity, we might susped that basis st
superpasition error has affeded the result. This error arises in the following way. As
the basis sts used in the cdculation are generally far from complete, bah the
adsorbate layer and the surface layer may use the alditional variationa freedon
offered by ead athers basis functionsto lower their energy. This gives anonphysicd,
stabili zing contribution to the energy of the surfaceadsorbate mwmplex, and may also
lead to artificial charge transfer if the basis st description d the two subsytems is
unbalanced. Hence there may be an error in the interadion energy which is conreded
with the superposition d the basis functions of the two subsystems.

The stability of the result with resped to this error may be deded by the
courterpoise @rredion. To dothis one must recdculate Ey,, and E.. supdementing
the basis st of ead subsystem with all the basis functions of the other but without
their eledrons and niclei. These aditional basis functions are referred to as ‘ghost
functions'. The energies obtained at the ejuili brium geometry of the complex for ead
subsystem e.g. E(M{S}) are lower than the energies cdculated at the same geometry
with the basis functions of the respedive subsystems aone eg. E(M) , and the
difference € isdefined asthe BSSE:
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€(M)=E(M)-E(M{g)
£(S) = E(S9) -E(S(M})

The BSSE vaues M) and &S are then used to define a ounerpoise-correded
interadion energy

AEg, = AEg, +£(M) +£(S).

This quantity shoud always be cdculated as a thedk of the quality and balance of the
basis .

In CRYSTAL, the murterpoise crredion for such a surfacdadsorbate system
is cdculated using the GHOSTS option, by means of which seleded atoms may be
turned into ‘ghosts’ by deleting their nuclea and eledronic charges, and setting their
conventional atomic number to zero.

Prepareinpu files for the following (using basis <t libraries and appropriate defaults)
mgo_Co: single layer MgO slab with adsorbed CO moleaules.
mgo_ghat: single layer MgO slab with ghast CO basis functions.

Co: periodic aray of CO atomswithou MgO dab (red or ghost).
co_ghcst: periodic aray of CO moleaules with ghost MgO basis functions.
co_mol: singleisolated CO moleaule.

mgo: single layer MgO dlab

The geometry for the MgO(100)+adsorbed CO system may be spedfied in CRY STAL
format as follows (you shoud be &le to work out al other geometries using this
example):

CRYSTAL

000

225

421

2

12 0.00.00.0

8 0.50.505

SLAB

001

11

BREAKSYM

ATOMINSE

2

6 1.488 —1.488 4.605
108 1.488 -1.488 5.729
ENDG

Can you explain why we use 108 for the @omic number of oxygen when adding the
CO molealle? Now modfy the inpus containing CO moleaules using the
SUPERCELL option to ensure an adsorbate mverage of one half, that is, half the
magnesium ions on the surface have an adsorbed CO molealle. Run CRY STAL
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Hartree Fock cdculations from your six files. They shoud run wvery quickly. Note the
total energies of these six caculations.

(a) Caculate the interadion energy (kcd/mol) per unit cdl between the MgO surface

and the CO overlayer AEggf),ads, ignoring BS&E. Is the interadion attradive or
repulsive?

(b) Calculate the lateral interadion energy. Do the CO moleaules on the surface #rad
or repel ead ather? Hence mrred the interadion energy of adsorption to form the
quantity AE,, which may be meaningfully compared with experiment. The
experimental hea of adsorptionis-3.6 kcd/mol. How well are we doing?

(c) Compute the murterpoise wrredion to AE,,. What is the magnitude and sign of
the murnterpoise-correded interadion energy? How big is the BSSE compared to the
uncorreded interadion energy?

(d) Repeda the whole exercise using a pasteriori correlation corredions to the Hartree
Fock energy using the PWGGA functional, and also regular DFT with the PWGGA
functional. How do the results compare with experiment and ead ather? How would
you suggest the cadculations presented here (which are reasonably crude) might be
improved?

NB: To avoid typing mistakes on cdculators, it is better to copy energies onto the
Unix cdculator with the mouse and dothe sums with that (type ‘bc -I’ to get the
cdculator).

Also, to convert from Hartreeto kcd/mol multiply by 627.50754.

3. Basis st devdopment and computation d propertiesin lithium retal

Rea again the description d the lithium metal cdculations of Doll, Harrison
and Saundersin sedion 5 d the notes (originaly reported in Ref. 24). Prepare
CRYSTAL inpu filesfor bulk Li using the threebasis ts gedfied (nating also the
detail s of the redprocd spacesampling and auxili ary basis sts, and wsing sensible
defaults for the rest of the inpu parameters). Prepare an inpu file dso for atomic
lithium using the suggested Li atomic set. Seeif you can come up with ways of
improving these basis sts (you might famili arize yourself with the optimizer scripts
billy and/or LoptCG while you're & it) and examine how these ‘improvements’ affed
the CPU time. Calculate some simple bulk properties of your choice (suggestions:
lattice @nstant, buk moduus, cohesive energy, surface @ergies.) and seehow they
change using diff erent Hamiltonians (HF and dfferent DFT functionals) and the
various basis sts (including your ‘improved’ one). Ask for the experimental values
when you' ve finished.

Note that the geometry of bulk Li can be spedfied in CRY STAL format as foll ows:

CRYSTAL
000

229

3.44

1
30.00.00.0
ENDG
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Answers

1(a). A useful property of Gausdan functions is that the product of Gaussans are
other Gausdans, and also that so many integrals fadorize. In cases like this, we use

e_arze_ﬂz - e_(a+B) 2

to convert to asingle Gausgan, and combine with the formula

3
[ e axdydz=[" e ™ axf” e dyf e dz= %ﬁ

Including red normali zation constants N, and N,, we get

Eliminating, we find

The fradion in parentheses in the last expresson onthe RHS is the ratio o the
geometric average to the aithmetic average of the paositive numbersa and 3. Thisis
lessthan 1, except when the numbers are equal, andthen it is 1.
(b) Another useful fad is that the product of two Gaussansis anew Gausdan, even if
they are not onthe same centre.

To show this, wefirst need the fad that

a(x- A2+ B(x-B)?=(a + B)x>-2(aA+ BB)x+aA%+ B%=(a + B)(x-C) 2+ D
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+ (B

A
which is easily solved to give C = aa and D= _ab_

+ B o+ B ——(A-B)2. This implies

that

2 2 -5 (A-B)? 2
Nle—a(r—A) Nze—ﬁ(f—B) = NlNﬁ a+B e—y(r—C)

with y =a + . For sfunctions, the overlap integral isthus

_9B

3
(A-BY 2
S=N;N,e 9*B 0

Oy O

With the known namali zation fadors from (a), we finally obtain

l / E? - +ﬁ(A B)?
0
Ha+/3)/2m

which is aso obvous from the solution o part (a). Note that the new centre
_aA+ 3B

3 is smply the weighted mean of the original centres.
(c) From the previous lution, it isobvious we can now generali ze:

@ = Nppy(r _A)e_a(r_A)2

@ = Nopyo(r - B)e_ﬁ(r_s)2

O
@10, = NyNFp(r - C)e VO

where p, is a paynomial of total degreen,, expressng the angular dependence aound
centre A, p, hastotal degreen, aroundcentre B, and

aA+/BB
a+p

: U ap oL
F_eXp%_a+ﬁ(A B)E

y=a+p

In particular, for two sp shells, we obtain x— A, = (x-C,) +(C,— A,) €etc,, so
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(x= A)(X=B,) = (x=C,)* = 2(Xca + Xc)(X— Cy) + XcaXce

and so on,where x., is hort for C-A, etc. The following integrals are standard:

e

Lhr
o = [[fexp(-y (r -C)?)du =

3
01 el |
2 2 0
2= [fJ-co?ew-yr -0 2dv=F o =5
The overlap integrals are thus
EIZ+XCAXCBIO XcaYesl o XcaZeglo t
S:NlNzFXE YeaXcslo I'2+YeaYeslo YeaZes! o

0 ZcaXeslo XcaYeslo 12+ ZcaZegl ol

Thisis an important general point. All the integrals invalving the various comporents
of complete shells of Cartesian (or sphericd harmonic) Gausdans are obtained from a
few values in common for al integrals, combined with simple expressons invalving
therelative c-ordinates of the centre.

2. Adsorption d CO onthe MgO (001) surface

Thisiswhat | get in the HF and a posteriori PWGGA cases (you will haveto do pue
DFT PWGGA yourself..).
(energy units Hartreeunlessotherwise stated)

STANDARD HARTREE-FOCK TREATMENT
total energies:

CcoO -112.6265204421

CO with MgO ghost -112.6287274346

MgO -549.2096009758

MgO with CO ghost -549.2153973595

MgO with adsorbed CO -661.8392701443
interadion energy per unit cal (Eguyas) -0.0031487264

i.e. -1.976 kcd/mol (attradive)
lateral interaction energy

energy of isolated CO moleaule -112.6270474548
energy of CO layer with noMgO -112.6265204421

|ateral interaction energy AE L +0.000527012repulsive)

[Note thisis half coverage - for full coverage, a AE L of +0.00624- twelve times
higher - was obtained]

Therefore AE,, is -0.0026217137

i.e. -1.645 lcd/mol (attradive)

which may be cmmpared with around-3.6 kcd/mol experimentally. Not too ked.
However,

counterpoise @rrection:



39

€(CO) +0.0022069925
e(MgO) +0.0057963837
Therefore total BSSE +0.0080033762
Courterpoise-correded energy Angp +0.0053816625repulsive)

Therefore all the binding observed in the original cdculationwas dueto basis st
superposition error. Such a cdculation wising CRY STAL, ignoring BSSE, was
pubished in 1986.It seems we must improve our treagment. For such awegk bond,
correlation may be important. One way to improve the results could therefore be to
estimate corr elation-corr eded interadion energies using density functionals of the
Hartree Fock density:

A POSTERIORI CORRELATION

correlation-corrected total energies:

CO -113.116080

CO with MgO ghost ~113.117780

MgO -550.756528

MgO with CO ghost -550.760809

MgO with adsorbed CO —-663.882652

interadion energy per unit cal (Equyas) -0.010044

i.e —6.302 kcd/mol (attradive)
lateral interaction energy

energy of isolated CO moleaule -113.116612

energy of CO layer with noMgO -113.116080

lateral interadion energy AE;‘dS +0.000532repulsive)
Therefore AE,, is -0.009512

i.e -5.968 Icd/mol (attradive)
counterpoise @rrection:

€(CO) +0.001700

e(MgO) +0.004281

Therefore total BSE +0.005981
Counterpoise-correded energy Angp —-0.003531 (attradive)

i.e. -2.215 kcd/mol

to be cmpared with around-3.6 kcd/mol experimentally. This is a reasonable result.
It suggests that much of the binding for CO on MgO is due to correlation effeds
beyondthe Hartree Fock level. Of course however, we have no reason to exped such
good agreament since we ae till using a rather poa model, and the next corredion
may shift the answer considerably and in the wrong diredion. We shoud probably
investigate:

(a) Use of better basis ®tsonall atoms.

(b) Slabs thicker than ore layer.

(c) Rumpling of dlabs at the surface

(d) Careful optimization d CO bondlength and pasition above surface

(e) More sophisticated correlation treaments than correlation-correded Hartree Fock
— quantum Monte Carlo being agood ket!

3. There aen’'t any right answers to this exercise. Just get some hands on experience
at playing with inpu files and running CRY STAL/bill y/LoptCG.
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