A Control-Based Framework for Self-Managing Distributed

Computing Systems

Sherif Abdelwahed
Institute for Software
Integrated Systems
Vanderbilt University
Nashville, TN 37203

sherif@isis.vanderbilt.edu

ABSTRACT

This paper describes an online control framework to design
self-managing distributed computing systems that contin-
ually optimize their performance in response to changing
computing demands and environmental conditions. An on-
line control technique is used in conjunction with predictive
filters to tune the performance of individual system com-
ponents based on their forecast behavior. In a distributed
setting, a global controller is used to manage the interaction
between components such that overall system requirements
are satisfied.

1. INTRODUCTION

Distributed computer systems host information technol-
ogy (IT) applications vital to commerce, transportation,
industrial process control, military command and control,
among others. Such systems typically comprise numerous
software and hardware components that must together sat-
isfy stringent quality-of-service (QoS) requirements while
operating in highly dynamic environments; for example, the
workload to be processed may be time varying and sys-
tem components may fail during operation. To operate
such computer systems efficiently while achieving the de-
sired QoS goals, multiple performance-related parameters
must be carefully tuned and the current state-of-the-art re-
quires substantial manual effort. Moreover, these parame-
ters must adapt dynamically to operating conditions and
as I'T applications become more complex and the underly-
ing computer systems more distributed in their operation,
it will become difficult for human operators to effectively
manage their performance.

This paper present a control-based approach to designing

*This work is sponsored in part by the DARPA /IXO Model-
Based Integration of Embedded Software program, under
contract F33615-02-C-4037 with the Air Force Research
Laboratory Information Directorate, Wright Patterson Air
Force Base.

Permission to make digital or hard copies of all or part of this work for

Nagarajan Kandasamy
Electrical and Computer
Engineering Department

Drexel University
Philadelphia, PA 19104

kandasamy@ece.drexel.edu

*

Sandeep Neema
Institute for Software
Integrated Systems
Vanderbilt University
Nashville, TN 37203

sandeep@isis.vanderbilt.edu

self-managing computing systems that aim to maintain a
specified QoS over a wide range of operating conditions. A
model-predictive (receding horizon) control approach [11] is
used where the control actions optimizing system QoS are
derived over a limited prediction horizon. The proposed ap-
proach addresses the design, online analysis and refinement,
and verification of systems that continually tune their be-
havior in response to changes in operating environment such
as resource failures and workload variations.

Recently, control-theoretic concepts, particularly feedback
control, have been used to design adaptive resource man-
agement schemes for various IT applications [4, 10, 14, 12].
If the computer system of interest is correctly modeled and
the effects of its operating environment estimated accurately
over a finite range of operation, appropriate control laws can
be derived to achieve the desired QoS objectives. Moreover,
established techniques in control theory can be used to ver-
ify, a priori, the system design itself by analyzing properties
such as stability, convergence, safety, and liveness [13].

The above methods all use classical feedback or reactive
control to first observe the current system state and then
take corrective action, if any, to achieve the desired QoS.
Simple feedback control, however, has some inherent lim-
itations. It usually assumes a linearized and discrete-time
model for system dynamics with a continuous input (output)
domain. Many practical systems, however, have a finite set
of possible control inputs, and exhibit hybrid behavior com-
prising both discrete-event and time-based dynamics. Also,
feedback control cannot be easily applied to systems with
long dead times, i.e., the time delay between a control input
and the corresponding system response.

We present a generic online control framework to address
resource management problems for distributed computing
systems whose components are modeled as switching hybrid
systems—a special class of hybrid systems where the set of
possible control inputs is finite [2]. At each time instant, the
control problem of interest is to optimize a (multi-variable)
objective function specifying the trade-offs between achiev-
ing the desired QoS and the corresponding cost incurred in
terms of resource usage. Control actions are obtained by
optimizing system behavior, as forecast by a mathematical
model, for the specified QoS criteria over a limited look-

personal or classroom use is granted without fee provided that copies areahead prediction horizon. Both the control objectives and
not made or distributed for profit or commercial advantage and that copies operating constraints are represented explicitly in the op-
bear this notice and the full citation on the first page. To copy otherwise, t0 timization problem and solved at each time instant. Our

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
WOSS’'040ct 31-Nov 1, 2004 Newport Beach, CA, USA
Copyright 2004 ACM 1-58113-989-6/04/001(5.00.

method applies to various resource management problems,
from those with simple dynamics to more complex ones, in-

cluding systems with long delay or dead times, and those
with non-linear behavior. It can also accommodate changes
to the behavioral model itself, caused by resource failures.

We have previously used the forementioned control scheme
to address various resource management problems in com-
puting systems with encouraging results [8, 1, 7]. This pa-
per describes the overall control framework and introduces
the hierarchical control concepts necessary to tackle com-
plex and large-scale distributed systems. We also present
case studies from [8] and [1], and discuss future work.

The rest of this paper is organized as follows. Section 2
discusses key control concepts while Section 3 presents two
case studies selected from previous work. We conclude the
paper with a discussion on future work in Section 4.

2. ONLINE CONTROL CONCEPTS

Fig. 1 shows the key components of a self-managing com-
puting system: (1) the behavioral model, (2) the online con-
troller, and (3) the QoS specification. Signal and parameter
estimators may also be added to extract information about,
and build an accurate model of the operating environment.

Forecasting Techniques. To estimate system behavior
over the prediction horizon, changes in operating conditions
such as workload variations and potential resource failures
must be predicted and supplied to the corresponding model.
We have previously used Box-Jenkins ARIMA models [3]
and Kalman filters [6] to predict variations in web server
workloads [8, 1].

System Model. The dynamics of a distributed system
can be very complex depending on the number and inter-
action between components and the operating environment.
However, the dynamics of individual components is usually
much simpler. Note that the control approach assumes a
switching hybrid system; only a finite number of options are
available to change its behavior. The following discrete-time
state-space equation describes the system dynamics:

z(t+ 1) = D(z(t), u(t))

where z(t) and u(t) € {u1,ua,...,ur} denote the sampled
form of the continuous state vector and the discrete valued
input vector at time ¢, respectively. This general model also
describes both nonlinear and piecewise linear hybrid sys-
tems. Behavioral models of individual components can be
composed using well-defined interaction schemes including
shared variables, input/output connections, and synchro-
nization events, to obtain the overall system model.
Complex distributed systems can be modeled using a hi-
erarchical approach where higher-level models capture ab-
stract and composite behavior of immediate low-level com-
ponents. The high-level models only contain information rel-
evant to the shared objectives of lower-level components. On
the other hand, the lower-level models contain specific in-
formation about the corresponding system component and,
therefore, may optimize performance with respect to local
specifications while maintaining those restrictions imposed
by the higher-level abstraction (global specification).
Performance Specifications. Computing systems must
achieve QoS objectives while satisfying certain constraints
imposed by the operating environment. Performance objec-
tives can assume two main forms: set-point regulation and
utility optimization. Set-point regulation requires that the
underlying parameters or variables be maintained at a spe-
cific level (region) or follow a certain pattern (trajectory);

for example, utilization level of a server, minimum accept-
able data transmission rate, and maximum response time
guaranteed to the end user. Utility optimization is used to
maximize (minimize) a given performance measure repre-
sented as a function of state and input variables. A weighted
norm is typically used as a performance function in which
the corresponding variables are lumped together with differ-
ent weights reflecting their contribution to the overall system
utility and operation cost. It is easy to see that set-point
regulation is a special case of utility optimization, namely,
when the optimal value of the utility function is known.

Operating requirements for computing systems may also
include strict and soft constraints on both system variables
and control inputs. Generally, strict constraints are ex-
pressed as a feasible domain (region) for the composite space
of a set of system variables (possible including control in-
puts). A soft constraint is also associated with a region
in the composite space of a set of system variables (typi-
cally in the neighborhood of a hard constraint region)and
is represented by a cost function mapping each point in the
underlying domain to a value denoting the corresponding
penalty. A soft constraint, therefore, is another form of an
optimization specification, in which the system is required
to minimize the associated cost function.

Online Control Algorithm. Given a hybrid system
model, the online controller aims to satisfy the desired QoS
requirements by continuously monitoring the current sys-
tem state and selecting the inputs that best satisfy them.
The controller must also keep the system stable within the
domain satisfying the specification. In this setting, the con-
troller is simply considered an agent that applies a given
sequence of events to achieve a certain objective.

The controller explores only a limited look-ahead horizon
within the system state space and selects the next event
based on the available information. In the case of a set-
point specification, the next step is selected using a distance
map defining how close the current state is to the desired set
point xs. The distance map can be defined for each system
state x as D(z) = ||z — x|, where |.|| is a proper norm.
For performance specifications, the control input minimiz-
ing (maximizing) the given utility function is selected. This
function assigns to each state, a cost associated with reach-
ing and maintaining it. Starting from the current state,
the control algorithm constructs a tree of all possible future
states for the specified look-ahead horizon. The exploration
procedure identifies the set of states that best satisfy the
given specification as discussed above. A state z,, is then
chosen from this set based on certain optimality criterion,
or simply picked at random. The chosen state is then traced
back to the current state and the input leading to x,, is used
for the next step. Online control, however, poses two main
technical challenges.

e Controller feasibility. To guarantee a working control
strategy, two questions must be addressed: (1) Does
there exist a set of initial states from which a sequence
of control inputs can move the system into the desired
operating region in a finite number of steps?; (2) Once
in the operating region, can such a trajectory be main-
tained inside that small neighborhood?

e Computational efficiency. Since the control algorithm
constructs a search tree up to the specified look-ahead
horizon, its worst-case complexity is exponential with

Global

- Local
Operation System component

Environment Ope_rat|on
Environment

1 Sensors I

I Actuators

Environment inputs Measurements Communication
Control inputs Middleware
Current state
v V A 4 VVY VY A Y
Signal System model Parameter Controller Formal Specs.
predictor_ estimator

X =0(x;,q;)
G =0(x;,9;)

min x"Qx +u" Ru
Reach(y)c ¥,

n n
2ax+ D fyi<w
i=1 i=1

Operation Platform

Figure 1: Key components of a self~-managing computing system

the depth of the exploration tree and the number of
control inputs. Therefore, information about the sys-
tem dynamics must be utilized to restrict the search
to a limited subset of possible future states.

Model Learning. Component behavior can be initially
captured using standard system identification techniques [9].
The parametric form of the component model is assumed
known, and the identification task is to estimate its para-
meters for various known operating modes. In most cases,
components are dynamic processes whose behavior may be
abstracted as simplified ARMA /ARIMA input-output mod-
els. Least-square estimation techniques may therefore be
applied to determine model coefficients using real or simu-
lated data available from the individual components. This
task may be computationally intensive, but is performed at
design time in off-line fashion.

When component behavior changes at run time due to
varying environmental and operating conditions, model learn-
ing must be applied online. To feasibly achieve this, we as-
sume that the new parameters affecting component behavior
are known, and their values are measurable. The task, there-
fore, is to estimate the incremental changes to the model
due to the new environmental parameters. Again, assuming
that the model form is known, and the effects of the envi-
ronmental variables are decoupled, the learning problem can
be posed as one of parameter estimation. Computationally
efficient algorithms must be developed to derive these esti-
mates. Model learning also affects system performance; due
to the delay in estimating new model parameters, controllers

may operate in the interim with incomplete (and incorrect)
models leading to short-term performance degradation.

Multilevel Distributed Control. Typically, in a distrib-
uted system with several components, each has its own re-
quirement specification defining a desired operating region.
In addition, a global performance requirement for the overall
system may also be specified. Therefore, the controller must
effectively coordinate (complex) interactions between the
various components to ensure overall system performance.
The nature of such systems suggests a decentralized and hi-
erarchical control structure where each component has a lo-
cal controller. Interaction between these controllers is man-
aged via a global controller that aims to satisfy the global
specifications of the overall system. Fig. 2 shows the struc-
ture of a two-level control scheme.

In Fig. 2, local-controller interactions are managed by a
higher-level controller using an abstract system model con-
taining information relevant to its objectives. The model
includes, for instance, details of interactions between system
components in terms of specific local variables contributing
to a global objective. The abstract dynamics then represents
how these variables would change in response to certain set-
tings that the global controller can enforce via commands
to the local controllers.

We envision a hierarchical structure where the high-level
controller takes a long-term perspective of system dynam-
ics, while the local ones act to optimize their components
on a shorter-term basis. High-level commands are directed
towards satisfying global QoS objectives, and act as a set

D Abstract
. system model

D Composition

function

Abstrract Global
subsystem models Controller

/ operation ™
/ constraints .
& 4 TN

Local Local Local
Controller 1 Controller 2 Controller N

Subsystem 1 Subsystem 2

Subsystem N

Figure 2: The Multilevel control structure

of operating constraints on each local controller. Each lo-
cal controller then tries to optimize the performance of its
underlying component using specific utility functions while
satisfying any constraints imposed on it. Interaction be-
tween these controllers takes place as follows. Each local
controller has a finite set of operating modes corresponding
to specific parameter settings within its controlled compo-
nent, e.g., a different operational requirement or input do-
main. The global controller then places (or restricts) each
one in a mode aimed at satisfying the QoS objective. Local
controllers optimize relevant parameters within that mode.

3. CASE STUDIES

The control approach proposed in Section 2 has been ap-
plied to some real-world applications. We briefly describe
two systems currently under development using elements of
our framework.

Low-Power Computing. We have applied the concepts
presented in Section 2 to manage the power consumed by
a computer processing a time-varying workload comprising
HTTP and e-commerce related requests [7, 8]. Assuming a
processor with multiple operating frequencies, an online con-
troller is developed to achieve a specified response time wye f
for these requests while minimizing the operating frequency,
and therefore, energy consumption (relates quadratically to
the supply voltage which can be reduced at lower frequen-
cies). Unlike classical feedback control where a continuous
input (output) domain is assumed, the controller optimizes
processor operation over a discrete state-space comprising a
small number of control inputs.

Fig. 3 shows the key components of the control frame-
work. Fig. 3(a) shows the processor model. Fig. 3(b) shows
the overall structure of the controller where a queuing model,
detailed in Fig. 3(c), describes processor behavior in terms
of its queue size q(t), average response time w(¢) and energy
consumption E(t), and an optimizer minimizes the utility
function shown in Fig. 3(d). Future processor outputs, for
a pre-determined prediction horizon are estimated during
each sampling instant ¢ using this model. These predictions
depend on known values (past inputs and outputs) up to the

sampling instant ¢, and on the future control signals which
are inputs to the processor that must be calculated. A se-
quence of control signals (frequency inputs) resulting in the
desired processor behavior is obtained for each step of the
prediction horizon by minimizing the utility function in Fig.
3(d). The control signal corresponding to the first frequency
in this sequence is applied as input to the processor during
sampling instant t; the other inputs are rejected. The above
steps are repeated again during the next sampling instant.

We have evaluated the performance of a prototype us-
ing e-commerce workloads with encouraging results. We are
currently using concepts discussed in Section 2 to develop,
and apply a hierarchical control scheme to distributed sys-
tems comprising multiple computers. During their opera-
tion, these system can be optimized for power consumption
at multiple levels. For example, computers may be switched
on (off) as needed in anticipation of future workload varia-
tions. Also, those operational computers can process their
workload at reduced operating frequencies. This implies the
need for a two-level control scheme where a global controller
uses the forecast workload to determine how many proces-
sors to operate and the corresponding operating modes. Lo-
cal controllers then aim to operate each processor in energy-
efficient fashion within the specified mode.

Signal Detection System. In [1], we discuss how the
control framework can be applied to a real-time signal de-
tection application comprising multiple processors operating
on digital signals to extract features such as human voice
and speech from them. Signal processing is performed in
distributed fashion. Incoming signals are stored in a global
buffer and distributed to individual processors where they
are locally queued. Each processor then examines a chunk
of signal to identify designer-specified features. Clearly, de-
tection accuracy improves with chunk size at the cost of
increased computational complexity.

The control approach addresses the trade-off between ac-
curacy and responsiveness to optimize overall system perfor-
mance. A global controller estimates the signal arrival rate
and receives average queue size and detection accuracy infor-
mation from each processor over the past sampling period.
This information is used to distribute a fraction of the new
arrivals to individual processors and set its operating mode.
We assume that the local controllers on processors oper-
ate in the following qualitative modes: (1) low mode, used
when the signal arrival rate is low and large signal chunks
may, therefore, be processed; (2) medium mode which ap-
plies to medium arrival rates; and (3) high mode used when
signals arrive at a high rate and signal processing must be
done in small chunks. Based on the signal arrival rate es-
timate, the global controller selects the appropriate modes
of operation for local controllers as well as their share of
the incoming signals to satisfy the system-level QoS goals.
The controller optimizes system utility, a weighted norm of
the quality of the signal detection and detection latency in
terms of response time or queue size. A prototype system
was developed for the Southwest Research Institute.

4. CONCLUSIONS

We have presented a generic online control framework to
design self-optimizing computer systems where actions gov-
erning system operation are obtained by optimizing its be-
havior, as forecast by a mathematical model, over a lim-
ited time horizon. As specific applications of our approach,

A1) a] |l (:> (2

Online controller

&J(r+kl

e(t+k)
> Processor

model

Workload

forecaster) >

E@+k)

-
o
=8
=,
N
[©)
=

Processor |

f+1)

(b)

g+ 1) =g +(A+ 1)7%) Y

s
o(t+1)=(1+g(t+1))-e(t+1)

E(t+ l)zaz(t+ 1)
©

J(t+1)=w -G+ 1)+wy E(z+1)

0if (t+1)— @ ;<0
G+ D=4 o+ - ¢ .
ifo(t+1)—w. >0

Opet

min{ > J(t+k)j
k=1

@

Figure 3: Application of online control to processor power management; (a) processor model, (b) overall
structure of the online controller, (c) behavioral model of the processor, and (d) the cost function as a

set-point specification

we presented two case studies. First, we developed an on-
line controller to efficiently manage power consumption in
processors under a time-varying workload. We then ex-
tended the online control method to distributed systems and
applied it to a signal detection application.

We believe that the proposed control approach is applica-
ble to other resource management problems in computer
systems; for example, energy-efficient load balancing in clus-
ters. A similar approach may also help design self-healing
distributed systems. Certain failures due to design mistakes
(configuration errors by system administrators) and hard-
ware faults may be predicted shortly before their occurrence
by analyzing corresponding performance variables [5]. The
controller can then initiate the appropriate reconfiguration
action such as switching on a backup computer in anticipa-
tion of such failures to prevent service disruptions.

5. REFERENCES
[1] S. Abdelwahed, N. Kandasamy, and S. Neema. Online

control for self-management in computing systems. In
IEEFE Real-Time & Embedded Tech. € Applications
Symp., pages 368-375, 2004.

[2] S. Abdelwahed, G. Karsai, and G. Biswas. Online
safety control of a class of hybrid systems. In IEFE
Conf. Decision and Control, pages 1988-1990, 2002.

[3] G. P. Box, G. M. Jenkins, and G. C. Reinsel. Time
Series Analysis: Forecasting and Control.
Prentice-Hall, Upper Saddle River, New Jersey, 3
edition, 1994.

[4] A. Cervin, J. Eker, B. Bernhardsson, and K. Arzen.
Feedback-feedforward scheduling of control tasks. J.
Real-Time Syst., 23(1-2), 2002.

(5]

R. V. et al. Predictive algorithms in the management
of computer systems. IBM Systems Journal,
41(3):461-474, 2002.

A. C. Harvey. Forecasting Structural Time Series
Models and the Kalman Filter. Cambridge University
Press, Cambridge, 1989.

N. Kandasamy and S. Abdelwahed. Designing
self-managing distributed systems via online
predictive control. Tech. Report ISIS-03-404,
Vanderbilt University, 2003.

N. Kandasamy, S. Abdelwahed, and J. P. Hayes.
Self-optimization in computer systems via online
control: Application to power management. In IEEE
Int’l Conf. Autonomic Computing, pages 54-62, 2004.
L. Ljung. System Identification: Theory for the User.
Prentice Hall, Englewood Cliffs, NJ, 2 edition, 1998.
C. Lu, J. Stankovic, G. Tao, and S. Son. Feedback
control real-time scheduling: Framework, modeling
and algorithms. J. Real-Time Syst., 23(1/2):85-126,
2002.

J. M. Maciejowski. Predictive Control with
Constraints. Prentice Hall, Englewood Cliffs, NJ, 2002.
S. Mascolo. Classical control theory for congestion
avoidance in high-speed internet. In Conf. Decision €
Control, pages 2709-2714, 1999.

K. Ogata. Modern Control Engineering. Prentice Hall,
Englewood Cliffs, NJ, 1997.

S. Parekh, N. Gandhi, J. Hellerstein, D. Tilbury,

T. Jayram, and J. Bigus. Using control theory to
achieve service level objectives in performance
management. 23(1/2):127-141, 2002.

