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Abstract

Nonlinear programming (NLP) has become an essential tool in process engineering,

leading to pro�t gains through improved plant designs and better control strategies.

The rapid advance in computer technology enables engineers to consider increasingly

complex systems, where existing optimization codes reach their practical limits. The

objective of this dissertation is the design, analysis, implementation, and evaluation

of a new NLP algorithm that is able to overcome the current bottlenecks, particularly

in the area of process engineering.

The proposed algorithm follows an interior point approach, thereby avoiding the

combinatorial complexity of identifying the active constraints. Emphasis is laid on

�exibility in the computation of search directions, which allows the tailoring of the

method to individual applications and is mandatory for the solution of very large

problems. In a full-space version the method can be used as general purpose NLP

solver, for example in modeling environments such as Ampl. The reduced space ver-

sion, based on coordinate decomposition, makes it possible to tailor linear algebra

work to particular problem structures, such as those arising in dynamic optimization,

or even to re-use existing simulation software. If second derivatives are available,

they can be exploited explicitly, or otherwise approximated by quasi-Newton meth-

ods. In addition, as a compromise between those two options, a conjugate gradient

method is implemented for the computation of the tangential step, for which two

preconditioners are proposed. This makes the reduced space approach attractive

even for problems with many degrees of freedom. Global convergence is enforced by

a novel �lter line search procedure, which aims to improve e�ciency and robustness

over traditional merit function approaches.

The discussion of the theoretical aspects includes a detailed analysis of a new type

of global convergence failure inherent to many current interior point NLP solvers.
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Global convergence of the �lter line search method, introduced to overcome this

convergence problem, is proven under mild assumptions. It is further shown that

the Maratos e�ect can be avoided in this framework by second order correction steps,

which enables fast local convergence.

The practical performance of the proposed method as a general purpose NLP

solver is tested on a large variety of NLP test problems. Among the implemented

line search methods, the new �lter approach seems superior to those based on merit

functions. The new optimization code also compares favorably with two other re-

cently developed interior point NLP solvers.

The potential of the new method in the area of process engineering is demon-

strated on two dynamic optimization examples with di�erent characteristics, which

are solved using orthogonal collocation in a new implementation of the elemental

decomposition. Here, the e�ectiveness of the individual strategies to handle second

derivative information is compared. The results con�rm that the best choice depends

on the particular application. The largest instance addressed is a model with 70 dif-

ferential and 356 algebraic equations, discretized over 1; 500 elements. The resulting

NLP with more than 2 million variables and 4; 500 degrees of freedom is solved in

less than 7 hours on a Linux workstation.
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Chapter 1

Introduction

1.1 Motivation

Many phenomena occurring in industrial chemical plants can be described in terms

of mathematical expressions, such as algebraic or di�erential equations. With the

advances in computer technology and the invention of numerical methods for solving

these models, it became possible to accurately predict the e�ciency of a new plant

design or the e�ect of new control strategies. This o�ers a very powerful instrument

to process engineers, who may want to evaluate the usability and bene�ts of their

ideas in a theoretical way before realizing them; in a safe, fast, and inexpensive

manner. As a consequence, process engineering has become a very important disci-

pline within chemical engineering over the past 30 years, avoiding the necessity of

expensive pilot plants and yielding pro�t increases by improving existing processes.

Naturally extending the work of process simulation, engineers soon asked the

question how certain parameters in a plant (e.g. equipment size) or controllable

quantities (e.g. �ow rates) should be chosen in order to optimize some objective. For

example, one may want to reduce building costs by avoiding over-sizing certain equip-

ment or to minimize the deviation from given speci�cations by �nding an optimal

control strategy. This optimization approach is more than just the automated exe-

cution of several simulations for di�erent options that an engineer might have tried.

1



CHAPTER 1. INTRODUCTION 2

It can indeed lead to optimal solutions that at �rst sight seem counter-intuitive, and

in this way o�er new insight into the underlying chemical process.

Over the past 50 years, many numerical methods have been proposed to solve

the resulting mathematical optimization problems and proved e�cient in practice.

However, the rapid advance of computer technology over the past decades enabled

engineers and researchers to consider increasingly larger applications in increasingly

detailed representation, leading to larger mathematical problem formulations. As a

consequence, existing optimization algorithms and their software implementations

keep reaching their practical limits, and new methods have to be devised that try to

overcome the bottlenecks of the existing ones.

1.2 Problem Statement

Depending on the particular type of process engineering application, the mathemat-

ical optimization problem has di�erent forms. Most of the quantities or variables

appearing in process models are continuous, such as temperature, �ow rates, etc.

Even though in some cases, discrete decisions have to be made, e.g. whether to

build a certain equipment in a new plant or not, only problem formulations with

continuous variables will be addressed in this dissertation.

The relationships between the quantities in process models are expressed by

equations, which are often nonlinear. In addition, many of the variables have to stay

within certain intervals, either to ensure physical meaningfulness (e.g. mass has to

be positive), or to guarantee certain operational constraints (e.g. maximum reactor

temperature).

Therefore, this dissertation addresses the solution of nonconvex, nonlinear, con-

tinuous and smooth optimization problems, also called Nonlinear Programs (NLPs),
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which will be assumed to be stated in the following way:

min
x2Rn

f(x) (1.1a)

s.t. c(x) = 0 (1.1b)

xL � x � xU : (1.1c)

The objective function f : Rn �! R and the equality constraints c : Rn �! Rm

with m < n are assumed to be su�ciently smooth. xL 2 (Rn [ f�1g)n and

xU 2 (Rn [ f1g)n are the lower and upper bounds on the optimization variables.

By allowing in�nite bounds we account for the option that some components x(i)

can have no lower and/or upper bound.

A more general formulation of an NLP might include nonlinear inequality con-

straints such as �d(x) � 0� instead of only simple bounds on variables (1.1c). How-

ever, since nonlinear inequality constraints can be reformulated as equality con-

straints by adding slack variables to the problem statement, and since most inequal-

ity constraints in the application classes considered in this dissertation are indeed

bounds on variables, we will focus on formulation (1.1).

Many numerical algorithms for the solution of NLP (1.1) have been developed

and implemented over the past 50 years. Driven by the fact that larger problem

formulations allow a more detailed and accurate representation of reality, increas-

ingly larger instances were addressed, facilitated by the drastic advances in computer

technology. During this development, bottlenecks of existing methods became ap-

parent. For example, the currently most popular algorithms, SQP methods, require

the explicit identi�cation of variable bounds (1.1c) that are active at the solution, an

NP-hard combinatorial problem. This can potentially lead to dramatic increase of

computation time as the problem size grows. Furthermore, new related mathematical

tools have been developed, for example the technique of automatic di�erentiation for

the e�cient and convenient computation of derivatives of f and c. Therefore, there

is still a need for the development of new optimization methods, aiming to overcome

bottlenecks and to exploit new advances. In addition, for the e�cient solution par-
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ticularly of very large problems it is important to tailor the methods at least in part

to characteristics of the optimization problem. In the next section the characteristics

for certain classes of process engineering applications will be discussed.

1.3 Challenges

Nonlinear programs (1.1) arise in process engineering for example in the following

classes of applications.

� Flowsheet Optimization: Optimize the design or operating conditions of a plant

in steady state, i.e. it is assumed that there is no change over time. Here,

the variables x usually correspond to physical quantities such as temperature,

pressure, �ow rates etc., and the constraints c consists of the model equations,

including balance equations, thermodynamic relationships etc. The Jacobian

of the constraints is typically very sparse.

� Multiperiod Design: Find the optimal values of certain parameters p (such

as reactor size), so that by adjusting control variables (such as �ow rates)

the resulting plant design can a) be operated under a given set of conditions

(periods) and b) in some optimal way. In this case, the constraint functions

c include �multiple copies� of the process model. These are �coupled� by the

parameters p, which have to be the same for each copy.

� Dynamic Optimization: Find the optimal (time-dependent) pro�le of control

variables for a plant, whose state is changing over time. Here, we may for

example want to maximize the amount of product gained in a batch process,

or to minimize the time required for the change-over between di�erent steady

states. If a discretization approach is used, the constraint functions c again

include multiple blocks of the process model equations, now coupled through

the condition that the state variables should have continuous pro�les over time.
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The mathematical problem formulations arising from those and other applica-

tions have certain characteristics, as discussed next.

The more details involved in the model formulation, the better will it represent

the actual process. Similarly, the accuracy of a discretization in a dynamic optimiza-

tion problem increases with the number of discretization points. As a consequence,

it is desirable to solve very large NLPs, and the number of optimization variables,

n, can exceed several millions. In addition, a plant model has typically only a few

control variables compared to the number of state variables necessary to describe

the process. As a consequence, the number of �degrees of freedom�, n�m, is often

very small compared to n, but it may still be on the order of thousands. Further-

more, frequently many of the optimization variables have bound constraints that are

potentially active at the solution, and active set SQP methods may require solution

times that grow exponentially with the problem size.

As indicated above, the constraint equations c often contain multiple blocks of

model equations, so that as a consequence the Jacobian AT of c is very sparse and

structured (see e.g. Eq. (5.10) on page 142). If mathematical operations with this

Jacobian are required by the optimization algorithm, such as solving linear systems

involving a square submatrix C of AT = [C N ], it is important for e�ciency that

this can be done in a way that exploits the structure of C. For very large problems,

this �exibility is even mandatory in order to obtain a solution at all.

Furthermore, one might want to re-use software that has been developed for the

simulation of a process, i.e. for solving �c(x) = 0�. In this case, the elements of the

Jacobian are often not explicitly available to the optimizer, and only operations with

the Jacobian or the submatrix C can be performed. Since most simulators are based

on Newton's method, they can solve linear systems involving C, but in many cases

not those involving CT .

When process models are implemented from scratch using new modeling tools,

automatic di�erentiation can provide second derivatives of the model equations,

which should be exploited by the optimization method for fast convergence. On



CHAPTER 1. INTRODUCTION 6

the other hand, particularly when existing simulation software is to be used, second

derivatives are typically not available and have to be approximated.

In summary, we are facing the following challenges:

� Very large problem formulations (n up to several millions);

� Large number of degrees of freedom (n�m up to 10; 000);

� Avoiding the combinatorial bottleneck of identifying the correct active bound

constraints;

� Providing �exibility regarding algorithmic requirements (such as access to sec-

ond derivatives or availability of CT ) to adapt to individual applications and

modeling environments;

� Providing �exibility regarding software interfaces to process models.

Many existing NLP solvers are currently not able to cope with these problem

sizes, nor do they o�er the �exibility to be tailored to speci�c applications.

Therefore, the goal of this Ph.D. project is the development and implementation

of an e�cient and robust NLP solver that can address the challenges above. Its

theoretical convergence properties are to be explored and its performance is to be

veri�ed on many test cases.

1.4 Outline

The next chapter presents some background on nonlinear programming with the

purpose of introducing the nomenclature and terminology used throughout this dis-

sertation.

A detailed description of Ipopt, the method developed within this Ph.D. project,

is given in Chapter 3. In order to avoid the combinatorial problem of identifying the

correct active set, Ipopt is designed as an interior point method (Section 3.1). As

a full-space approach (Section 3.2.1), it can be used as general purpose NLP solver
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using exact second derivatives. If on the other hand problem structure is to be ex-

ploited, Ipopt computes search directions in a reduced space version using a coordi-

nate decomposition (Section 3.2.2). Here, second derivatives can be approximated by

quasi-Newton methods (Sections 3.2.3�3.2.4). Alternatively, Hessian-vector products

(exact or approximated by �nite di�erences) can be exploited using a preconditioned

conjugate gradient method (Section 3.2.5), improving performance in problems with

many degrees of freedom.

Global convergence is enforced in Ipopt by a line search approach. Here, several

alternative merit functions are discussed (Sections 3.3.1�3.3.2). However, these op-

tions may fail to provide global convergence, as demonstrated on a counter example

(Section 3.3.3). As a remedy, a novel �lter line search method has been developed,

which is described in detail in Section 3.4.

Chapter 4 addresses the theoretical aspects of the method. First, the counter

example is analyzed in more detail in Section 4.1, including a discussion of other

a�ected interior point methods. The global convergence properties of the �lter line

search algorithm are examined in Section 4.2. Here it is shown under mild assump-

tions, that every limit point of the sequence of iterates is feasible, and that at least

one limit point is a �rst order optimal point for the barrier problem. Section 4.3

discusses the local convergence properties of the �lter method. Due to a �switch-

ing condition� that is di�erent from those in previously proposed �lter methods, it

can be shown that the Maratos e�ect can be prevented, if second order corrections

are applied to the search directions. Therefore, fast local convergence is ensured

under standard assumptions. Finally in Section 4.4 it is shown, how the obtained

convergence results can be applied to active set SQP methods.

The practical performance of Ipopt is examined in Chapter 5. First, Ipopt is

tested on a variety of standard test problems, in order to compare the performance

and robustness of the individual line search options (Section 5.1.2). The results

indicate that the new �lter line search approach is indeed the most robust and

e�cient option. In addition, Ipopt is compared with two other recently developed
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interior point NLP solvers in terms of robustness and e�ciency (Section 5.1.3). These

results are very encouraging and indicate a large potential of Ipopt as a general

purpose NLP solver.

In Section 5.2, Ipopt is used to solve two dynamic optimization applications,

using collocation on �nite elements in a new implementation of the elemental de-

composition (Section 5.2.1). The �rst example considers a continuous air separation

distillation column (Section 5.2.2) which is solved for a varying number of �nite el-

ements, comparing the di�erent options to handle second derivatives. The largest

instance gives rise to an NLP with more than 2 million variables and 4; 500 degrees

of freedom, which was solved in less than 7 hours on a Linux workstation. The same

options are compared in Section 5.2.3 on the smaller example of a batch cooling

crystallization process with di�erent problem characteristics.

Finally, the conclusions in Chapter 6 summarize the contributions of this disser-

tation, and discuss directions for future work.



Chapter 2

Background on Nonlinear

Programming

In this chapter some basic concepts and algorithms in nonlinear programming are

revisited, in order to introduce terminology and notation for this dissertation and to

lay foundations for the algorithm proposed in Chapter 3.

9
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2.1 Notation

Throughout this dissertation, the i-th component of a vector v 2 Rn will be denoted

by v(i). Norms k �k will indicate a �xed vector norm and its compatible matrix norm

unless otherwise speci�ed. For brevity, we will use the convention (x; �) = (xT ; �T )T

for vectors x; �. For a matrix A, we will denote by �min(A) the smallest singular

value of A, and for a symmetric, positive de�nite matrix A we call the smallest

eigenvalue �min(A). Given two vectors v; w 2 Rn , we de�ne the convex segment

[v; w] := fv + t(w � v) : t 2 [0; 1]g. We will denote by O(tk) a sequence fvkg
satisfying kvkk � � tk for some constant � > 0 independent of k, and by o(tk) a

sequence fvkg satisfying limk kvkk=tk = 0. Finally, for a set S we will denote with

card(S) the cardinality of S.

2.2 Optimality Conditions

In the next three chapters we consider the NLP formulation

min
x2Rn

f(x) (2.1a)

s.t. c(x) = 0 (2.1b)

x(i) � 0 for i 2 I; (2.1c)

where the objective function f : Rn �! R and the equality constraints c : Rn �! Rm

with m < n are su�ciently smooth. Note, that in contrast to (1.1) we assume here

that variables have only lower bounds of zero, where I � f1; : : : ; ng is the set

of indices of bounded variables. This simpli�es the notation, and the presented

algorithms and results can be easily adapted to the problem formulation (1.1).

We will denote with g(x) := rf(x) the gradient of the objective function, and

with A(x) := rc(x) the transpose of the Jacobian of the constraint functions.

Furthermore, it is common to de�ne the Lagrangian function associated with the
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NLP (2.1) as

L(x; �; v) := f(x) + c(x)T��
X
i2I

x(i)v(i) (2.2)

for some (Lagrangian) multipliers � 2 Rm and v 2 Rn (with v(i) = 0 for i 62
I) corresponding to the equality constraints (2.1b) and bound constraints (2.1c),

respectively.

The algorithms discussed in this dissertation are iterative procedures that aim

to generate a sequence of iterates fxkg which converges to a local solution x� of the

NLP (2.1). A point x� is called a local solution of the NLP (2.1) if it is feasible, i.e.

if it satis�es the constraints (2.1b)-(2.1c), and if in a su�ciently small neighborhood

of x� there is no other feasible point with a smaller value of the objective function.

Furthermore, we will refer to a point x� as strict local solution, if it is a local solution

and all other feasible points in a su�ciently small neighborhood of x� lead to strictly

larger values of the objective function.

Assuming certain properties of the constraint functions (a constraint quali�ca-

tion), necessary and su�cient conditions for local optimality can be established. In

this dissertation we will only employ the following constraint quali�cation at a local

solution x�.

De�nition 2.1 (LICQ) The linear independence constraint quali�cation (LICQ)

holds at x�, if the gradients of the equality constraints and active bound constraints

are linearly independent, i.e. if the matrix

[A(x�) ej1 : : : ejK ] (2.3)

with

A(x�) := fj : x(j)� = 0g = fj1; : : : ; jKg (2.4)

has full row rank.

With this, we are able to state the �rst order necessary optimality conditions,

also called Karush-Kuhn-Tucker (KKT) conditions.
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De�nition 2.2 (KKT Conditions) Let x� be a point at which LICQ holds. Then,

x� satis�es the Karush-Kuhn-Tucker (KKT) conditions for (2.1), if there exist vec-

tors �� 2 Rm and v� 2 Rn with v� � 0 and v�
(i) = 0 for i 62 I so that

rxL(x�; ��; v�) = g(x�) +A(x�)�� � v� = 0 (2.5a)

c(x�) = 0 (2.5b)

x� � 0 (2.5c)

xT� v� = 0: (2.5d)

We may refer to condition (2.5a) as dual feasibility, to (2.5b)-(2.5c) as (primal)

feasibility, and to (2.5d) as complementarity. We will call a point x� satisfying the

KKT conditions also KKT point or critical point for the NLP (2.1).

Proposition 2.1 Let x� be a local solution of the NLP (2.1) at which the LICQ

holds. Then x� satis�es the KKT conditions [69, Theorem 12.1].

Using second derivative information it is also possible to formulate su�cient

optimality conditions.

De�nition 2.3 (SOS Conditions) Let x� be a point at which LICQ hold. Then,

x� satis�es the Second Order Su�cient (SOS) conditions for (2.1), if

i) x� satis�es the KKT conditions for (2.1),

ii) strict complementarity holds at x�, i.e.

v
(i)
� > 0 for all i 2 I with x

(i)
� = 0;

and

iii) the Hessian r2
xxL(x�; ��; v�) of the Lagrangian is positive de�nite on the null

space of the active constraints, i.e. if Z� is a matrix whose columns form a basis

of the null space of the matrix (2.3), then the reduced Hessian

ZT
� r2

xxL(x�; ��; v�)Z� (2.6)

is positive de�nite.
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Proposition 2.2 If x� satis�es the SOS conditions, then x� is a strict local solution

of the NLP (2.1) [69, Theorem 12.5].

2.3 SQP Methods

Many of the currently popular algorithms for solving NLPs belong to the class of

Sequential Quadratic Programming (SQP) methods. Although there is a wide variety

of those algorithms (see e.g. [10, 14, 17, 37, 44, 64]), their basic idea may be described

as follows.

Assume for the moment that the NLP under consideration has no bound con-

straints, i.e. I = ;. Then, the KKT conditions are

g(x�) +A(x�)�� = 0 (2.7a)

c(x�) = 0: (2.7b)

Therefore, in order to �nd a critical point x� for the NLP with optimal multipliers ��,

we may apply Newton's method to the nonlinear system of equations (2.7): Given

an initial estimate (x0; �0) of the solution of (2.7) we generate a sequence f(xk; �k)g
by

(xk+1; �k+1) := (xk; �k) + (dk; d
�
k); (2.8)

where the steps (dk; d
�
k) are obtained as solution from the linearization24 Wk Ak

AT
k 0

350@dk

d�k

1A = �
0@gk +Ak�k

ck

1A (2.9)

of the KKT conditions (2.7). Here, we de�ne ck := c(xk), gk := g(xk), Ak := A(xk),

and Wk := r2
xxL(xk; �k). It is well known that if (x0; �0) is su�ciently close to a

strict local solution satisfying the SOS conditions, then the linear system (2.9) has

a unique solution for all k, and the sequence f(xk; �k)g converges quadratically to

(x�; ��) [28, Theorem 15.2.1].

The important observation is that obtaining the step (dk; d
�
k) from the linear

system (2.9) is equivalent to computing dk as a critical point for the Quadratic
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Program (QP)

min
d2Rn

gTk d+
1

2
dTWkd (2.10a)

s.t. AT
k d+ ck = 0 (2.10b)

with corresponding multipliers �+k , and setting

d�k := �+k � �k: (2.11)

IfWk is positive de�nite on the null space of AT
k , for example in the neighborhood of

a strict local solution x� satisfying the SOS conditions, then dk is indeed the optimal

solution of the QP (2.10).

The QP (2.10) can be interpreted as a local model of the original NLP at xk,

consisting of a quadratic approximation of the objective function (including curva-

ture information along the manifold fx : c(x) = c(xk)g) and a linear approximation

of the constraints. In order to handle NLPs with inequality constraints, we may

therefore include a linear approximation of the inequality constraints in the local

model and use the resulting QP

min
d2Rn

gTk d+
1

2
dTWkd (2.12a)

s.t. AT
k d+ ck = 0 (2.12b)

x
(i)
k + d

(i)
k � 0 for i 2 I (2.12c)

to obtain the steps (dk; d
�
k ; d

v
k), where d

v
k are now the steps for the bound multiplier

estimates vk.

If x� is a strict local solution satisfying the SOS conditions with corresponding

optimal multipliers �� and v�, and if (x0; �0; v0) is su�ciently close to (x�; ��; v�)

and the sequence f(xk; �k; vk)g is generated in analogy to (2.8), then for su�ciently

large k the QP (2.12) �identi�es the correct active set� in the sense that the index set

of bounds active at the solution of (2.12) coincides with A(x�) de�ned in (2.4) [69,

Theorem 18.1]. The algorithm then behaves as if all active bounds are included into

the equality constraints and the inactive bounds are discarded. Therefore, the steps
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again correspond to Newton steps for the system (2.9) (with �c(x)� now including

the active bounds) and fast local convergence is achieved.

So far, we have only addressed the local convergence behavior of the basic SQP

method. However, a su�ciently good starting guess (x0; �0; v0) is often unavailable,

and strategies have to be added to guarantee global convergence, i.e. convergence to a

solution (or at least a critical point) for the NLP (2.1) from any given starting point.

The various SQP algorithms di�er for example in the techniques used to achieve this

goal. Further di�erences consist in the way the QP (2.12) is solved and in the choice

of the Hessian matrix Wk in (2.12a), which, for example, might be a quasi-Newton

approximation of r2
xxL(xk; �k; vk). In the next sections some of those options are

revisited.

2.4 Global Convergence

In order to guarantee global convergence, the simple algorithm outlined in the pre-

vious section has to be modi�ed, since otherwise the generated sequence of iterates

might cycle or behave in some other undesired way. Currently, there are two main

approaches to modify the steps: Line search methods and trust region methods.

These techniques are not limited to the class of SQP methods; they are for example

also used in other optimization algorithms or methods for solving systems of nonlin-

ear equations. The optimization algorithm proposed in this dissertation follows the

line search approach.

In a line search framework, a search direction dk is computed for the current

iterate xk, in the case of SQP methods as a solution of the QP (2.12). Then, a step

length �k 2 (0; 1] is determined, and the next iterate xk+1 is chosen as

xk+1 := xk + �kdk:

To �nd an appropriate step size �k, we may perform a backtracking line search, i.e. a

sequence of decreasing trial step sizes �k;0; �k;1; : : : (usually starting with �k;0 = 1)
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is tried, until a step size �k;l is found, so that the resulting trial point

xk(�k;l) := xk + �k;ldk (2.13)

provides �su�cient progress� towards a local solution (or at least a critical point) for

the NLP (2.1).

In order to judge whether a trial step provides su�cient progress, previously

proposed SQP line search methods measure the quality of points x by means of a

merit function, such as an exact penalty function

��(x) := f(x) + �kc(x)k (2.14)

for some norm k � k; popular choices are the `1- and `2-norm. This function captures

the two goals of minimizing the objective function f(x) and at the same time reducing

the constraint violation kc(x)k, where the relative weight between these two measures

is determined by the penalty parameter � > 0. (It is assumed here that the iterates

xk always satisfy the bound constraints (2.1c), so that only the violation of the

equality constraints (2.1b) has to be penalized.) Therefore, a point xk+1 can be

considered to be �better� than a point xk, if it leads to a smaller value of the merit

function (2.14). Indeed, the merit function ��(x) is exact, i.e. it can be shown that

if x� is a strict local solution of the NLP (2.1) satisfying the SOS conditions with

optimal multipliers �� corresponding to the equality constraints (2.1b), and if the

penalty parameter satis�es � > k��kD (where k � kD is the norm dual to k � k), then
x� is also a strict local minimizer of the (unconstrained) penalty function ��(x) [28,

Theorem 14.5.1]. Note, however, that ��(x) is not di�erentiable at x� nor any other

feasible point.

At the beginning of the optimization, the optimal value of �� and therefore also

an appropriate value for � are not known. Hence, most methods using the exact

penalty function update a current estimate �k throughout the optimization process,

for example

�k := maxf�k�1; k�kkD + �g; (2.15)
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where �k is the current multiplier estimate, and � > 0 is a small number. In cases

when multiplier estimates are unavailable, �multiplier-free� update rules have been

proposed [15], as we will discuss in Section 3.3.1.

Having determined an appropriate value for the penalty parameter �k, many

SQP algorithms performing a backtracking line search procedure using (2.14) accept

a trial step size �k;l, if it satis�es the Armijo condition

��k (xk(�k;l)) � ��k(xk) + � � �k;l �D��k(xk; dk) (2.16)

for some �xed � 2 (0; 12), where D��k(xk; dk) denotes the directional derivative of

��k at xk into direction dk. In order to guarantee that such a step size exists and

that dk is indeed a descent direction (i.e. D��k(xk; dk) < 0), certain assumptions on

the Hessian Wk in (2.12a) (such as positive de�niteness of a projection of Wk onto a

certain subspace of Rn) are usually made. Since these assumptions are often violated

away from a strict local solution, precautions have to be taken or modi�cations on

Wk have to be made.

Another popular merit function is the augmented Lagrangian function

`�(x; �) := f(x) + c(x)T�+ �c(x)T c(x); (2.17)

which depends on the value of the multiplier estimates �k in addition to the primal

variables xk. This function is exact (in x), if the multipliers are chosen to be optimal,

��, but usually these values are not known. There is a variety of SQP algorithms

employing the augmented Lagrangian function (e.g. [12, 44, 64]). In a line search

context the progress is usually measured for trial points

(xk; �k) + �k;l(dk; d
�
l )

that take steps in both primal and dual variables simultaneously.

The alternative to a line search approach, where a search direction dk is computed

only once and its length is reduced if a trial point is not accepted, is to use a trust

region method. Here, the constraint

kdk[k] � �k (2.18)
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is added to the QP (2.12), where k � k[k] is some norm that might even change from

one iteration to the next, and �k is the trust region radius. In a sense, the trust

region radius indicates, how far away from the current iterate we want to trust the

QP (2.12) as a su�ciently accurate local model of the original NLP (2.1). At an

iterate xk a trial step dk is obtained as a solution (or approximate solution) for

the QP (2.12) augmented by (2.18). It is then checked if the resulting trial point

�xk := xk + dk provides su�cient progress towards the solution. If so, the trial step

is accepted as the new iterate xk+1 := �xk, and the size of the trust region radius is

adapted for the next iteration. If the trial step is not acceptable, �xk is discarded,

no step is taken (xk+1 := xk), and the trust region radius is reduced for the next

iteration, �k+1 < �k. (Note that here we also count unsuccessful trial points as

iterates in contrast to the above outlined line search approach.)

In order to decide whether a trial point is acceptable, most trust region methods

also employ a merit function. For example, in case of the exact penalty function

(2.14) a model for ��(x) may be de�ned as

m�
�k
(xk; d) := f(xk) + gTk d+

1

2
dTWkd+ �



ck +AT
k d


 :

Then the actual reduction

ared�k(xk; dk) := ��k(xk)� ��k(xk + dk)

is compared with the predicted reduction

pred�k(xk; dk) := m�
�k
(xk; 0) �m�

�k
(xk; dk):

Again, �k is an estimate of an appropriate value for the penalty parameter, usually

chosen in a way that ensures pred�k(xk; dk) > 0. A trial step is accepted if

ared�k(xk; dk) � � � pred�k(xk; dk)

for some � 2 (0; 1). The degree of agreement between the predicted and actual

reduction may also be used to decide whether to decrease or increase the trust

region radius for the next iteration.
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In the context of a trust region framework, Fletcher and Ley�er [37] recently

proposed an alternative to merit functions as a tool to measure progress towards the

solution. Within this Ph.D. project their �lter approach has been applied to line

search methods. Details will be discussed in Sections 3.4, 4.2 and 4.3.

2.5 Solution of the QP

In order to obtain a search direction or trial step in an SQP method, usually some

variant of the QP (2.12) (possibly including the trust region constraint (2.18)) has

to be solved.

There exists a variety of QP solvers [5, 43, 74, 76], most of which are active set

QP solvers, i.e. they iteratively guess which of the bound constraints (2.12c) are

active at the solution of the QP. As pointed out earlier, close to a solution of the

NLP satisfying the SOS conditions, the active set of the QP does not change from

one iteration to the next, so that a QP solver that is able to incorporate an initial

guess of the active set (warm start) can obtain the solution to the QP very quickly.

However, at the beginning of the optimization process a considerable amount of time

might be necessary for the identi�cation of the active set, which is known to be an

NP-hard combinatorial problem, so that the solution time increases in the worst case

exponentially with the size of the problem.

Alternatively, some QP solvers [76, 86] are based on the idea of an interior point

approach (see also Section 2.7). Here, the combinatorial problem is circumvented,

but at this point it is not clear whether those methods are able to e�ciently exploit

knowledge of a good initial guess for the active set in a warm start approach [90],

or if even at late stages of the optimization process a certain minimal amount of

computation time is required, which exceeds what an active set solver with warm

starts would need.

In some SQP methods [37] the full-space QP (2.12) (or (2.12)+(2.18)) are solved

�as is� by the QP solver. In the following, however, we concentrate on methods that
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decompose this QP into smaller components.

Assuming that the Jacobian AT
k of the constraints has full rank, we can choose

a matrix Zk 2 Rn�(n�m) , whose columns form a basis of the null space of AT
k ; in

particular we then have

AT
kZk = 0: (2.19)

We further choose a matrix Yk 2 Rn�m , so that the columns of [Yk Zk] form a basis

of Rn and can then decompose the solution dk of the QP (2.12)

dk = qk + pk (2.20)

into a (quasi-)normal component

qk := Yk�qk (2.21)

for some �qk 2 Rm , and a tangential component

pk := Zk�pk (2.22)

for some �pk 2 Rn�m .

Substituting (2.20) and (2.21) into (2.12b) and remembering (2.19), we have that

�qk = �
�
AT
k Yk

��1
ck: (2.23)

With this, we see together with (2.20), (2.23), and (2.12) that �pk is the solution of

the reduced QP

min
�p2Rn�m

�
ZT
k gk + �kwk

�T
�p+

1

2
�pTZT

kWkZk�p (2.24a)

s.t. (Zk�p)
(i) � �x(i)k � q(i)k for i 2 I (2.24b)

where we de�ned the cross term

wk := ZT
kWkqk: (2.25)

We also introduce the damping parameter �k 2 (0; 1], usually (close to) one, which

will be discussed below. Note, that QP (2.24) is only in the space of n�m variables,
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but that the number of inequality constraints (2.24b) is the same as in the full-space

QP (2.12), i.e. the combinatorial complexity for the identi�cation of the correct

active set has not changed.

The matrices Zk and Yk may be chosen in a way, so that [Yk Zk] is an orthonormal

matrix. For example, this can be done by performing an QR factorization of Ak (see

e.g. [42] for details). This particular choice of Yk and Zk enhances the numerical

stability of the resulting algorithm, but on the other hand is rather expensive, and

prohibitive for large-scale problems.

Alternatively, we may follow a coordinate decomposition approach, which has

been used in [14, 44], and partition the primal variables

x = P

0@xD

xI

1A; where P is a permutation matrix, (2.26)

into dependent variables xD and independent variables xI , so that the columns in

the constraint Jacobian

A(x)T = [C(x) N(x)]P T (2.27)

corresponding to the dependent variables form a non-singular, well-conditioned sub-

matrix C(x). We then de�ne the basis matrices as

Yk := P

24 I

0

35 and Zk := P

24 �C�1
k Nk

I

35; (2.28)

where Ck := C(xk) and Nk := N(xk). Note, that for a �xed partition P the matrix

C(x) may not remain non-singular for all x. As a consequence, we may choose a

partition at the beginning of the algorithm, estimate the condition number of Ck

throughout the optimization process, and perform a repartitioning if necessary.

The advantage of this particular choice of the basis matrices becomes apparent if

one considers the computation of the quasi-normal component from (2.23). The m�
m matrix

�
AT
k Yk

�
simpli�es to the (usually sparse and often structured) submatrix

Ck of A
T
k , so that we can employ special solution strategies for the large linear system

Ck�qk = �ck; (2.29)
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which can be tailored to speci�c problem structures (such as those described later

in Section 5.2.1). In addition, the upper m� (n�m) part of Zk can be computed

column-wise by the same procedure (using the columns of Nk as right hand sides in

the linear system (2.29)) and then passed to the QP solver addressing the reduced

QP (2.24).

In the case that estimates for the equality constraint multipliers are required by

the optimization algorithm, they might either be obtained from the full-space QP

solver, or � if the reduced space approach is applied � approximated as �rst order

multipliers

�k := �
�
Y T
k Ak

��1
Y T
k

�
gk � v+k

�
; (2.30)

where v+k are the optimal QP multipliers corresponding to the bound constraints

(2.24b). This approximation is obtained by premultiplying (2.5a) by Y T
k and re-

ordering terms; it is therefore exact at a critical point of the problem. In a line

search context with the exact penalty function (2.14) these multiplier estimates can

be used in the penalty parameter update rule (2.15).

Note, that the term in the square brackets simpli�es to CT
k , so that as for the

solution to (2.29) tailored procedures may be used to obtain �k. However, in some

circumstances it is not possible to solve linear systems involving CT
k , for example

when existing simulation software is to be used [16]. In this case, multiplier estimates

are not available, and multiplier free update rules for the penalty parameter, e.g.

�k := max

�
�k�1;

jqTk (gk � v+k )j
kckk + �

�
(2.31)

have been suggested [15]. In either case, it may be necessary to set the damping

parameter �k in (2.24a) to less than one, in order to ensure that the overall search

direction dk from (2.20) is indeed a descent direction for the merit function. In [14]

the choice

�k :=

8>><>>:
1 if gTk ZkB

�1
k wk � 0

min

�
1;

�0:1gTk ZkB
�1
k

ZT
k gk

gT
k
ZkB

�1
k

wk

�
otherwise

(2.32)
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has been suggested, where Bk is the (positive de�nite) approximation of ZkWkZk.

One issue that we have ignored so far is the fact that the QP (2.12) may be

infeasible, in particular if it is augmented by the trust region constraints (2.18) with

a small trust region radius �k. In this case, some SQP methods relax the QP

constraints (2.12b)-(2.12c) in order to be able to still obtain some search direction

[15, 44], or switch to a di�erent phase that tries to bring the iterates �nally into a

region in which the constraints are consistent again (such as the feasibility restoration

phase in [35, 37]).

2.6 Hessian Approximations

As mentioned in Section 1.3, second derivative information may not always be avail-

able. In this case, it is necessary to approximate the Hessian Wk in (2.12a) or

its reduced version Bk := ZT
k WkZk in (2.24a). This is usually done by means of

a quasi-Newton method where an estimate of the matrix involving the unavailable

second derivative information is maintained and updated based on changes in �rst

derivatives.

For simplicity we will assume until the end of this section, that the problem

formulation (2.1) does not include bound constraints, i.e. that I = ;. E�cient

approximation of second order information when active inequality constraints are

present is more complicated (see e.g. [58]) and not relevant for this work.

If I = ;, then the optimal reduced Hessian from (2.6),

B� = ZT
� W�Z�

with W� := r2
xxL(x�; ��), is positive de�nite if x� satis�es the SOS conditions.

Therefore, it is popular to employ the BFGS updating formula (see e.g. [69])

Bk+1  Bk � Bksks
T
kBk

sTkBksk
+
yky

T
k

yTk sk
(2.33)

with certain vectors sk; yk 2 Rn�m at every iteration in order to generate a sequence

fBkg approximating B�. Several choices for sk and yk have been proposed (see [68]),
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among those

sk := �pk (2.34a)

yk := ZT
k+1 (rxL(xk+1�k+1)�rxL(xk; �k)) (2.34b)

= ZT
k+1 (gk+1 � gk �Ak�k)

(see e.g. [13]), and the multiplier-free version

sk := �pk (2.35a)

yk := ZT
k+1gk+1 � ZT

k gk (2.35b)

(see [11, 15]), where no explicit knowledge of multiplier estimates �k is necessary.

Assuming that Bk is positive de�nite and sTk yk > 0, it is guaranteed that Bk+1

is positive de�nite as well. If at some iteration sTk yk � 0, one might either skip the

update, i.e. set Bk+1 := Bk, or modify yk according to

yk  �kyk + (1� �k)sTkBksk with (2.36a)

�k =
0:8 sTkBksk

sTkBksk � sTk yk
(2.36b)

whenever sTk yk < 0:2 sTkBksk. This will guarantee that the new matrix Bk+1 is still

positive de�nite. We will refer to this procedure as damped BFGS update [69].

Second order information is also required for the computation of the cross term

(2.25). Some methods simply ignore the cross term; in that case (at best) local two-

step superlinear convergence can be shown [68]. Alternatively one might approximate

the cross term by some �nite di�erence of the reduced gradient Z(x)T g(x), which

leads to local one-step superlinear convergence [11, 13].

For later reference we also recall the SR1 update [69]

Bk+1  Bk +
(yk �Bksk)(yk �Bksk)

T

(yk �Bksk)T sk
; (2.37)

which might be used if the approximated matrix B� is inde�nite.
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2.7 Barrier Methods

As pointed out in Section 2.5, a bottleneck for SQP methods applied to large-scale

NLPs is the combinatorial problem of identifying the active bound constraints dur-

ing the solution of the QP. Barrier methods, based on earlier work by Fiacco and

McCormick [34], completely avoid this problem by replacing the bound constraints

(2.1c) by a logarithmic barrier term which is added to the objective function to give

min '�(x) := f(x)� �
X
i2I

ln(x(i)) (2.38a)

s.t. c(x) = 0 (2.38b)

with a barrier parameter � > 0. Since the objective function of this barrier problem

(2.38) becomes arbitrarily large as x approaches the boundary of the region fx jx(i) �
0 for i 2 Ig de�ned by the inequality constraints, it is clear that a local solution x��

of this problem lies in the interior of this set, i.e., (x�� )
(i) > 0 for i 2 I. We

will refer to '�(x) as the barrier function. The degree of in�uence of the barrier

term �-�
P

i2I ln(x
(i))� is determined by the size of �, and under certain conditions

x�� converges to a local solution x� of the original problem (2.1) as � ! 0 [34].

Consequently, a strategy for solving the original NLP (2.1) is to solve a sequence of

barrier problems (2.38) for decreasing barrier parameters �l, where l is the counter

for the sequence of subproblems. Since the exact solution x�l� is not of interest for

large �l, the corresponding barrier problem is solved only to a relaxed accuracy �l,

and the approximate solution is then used as a starting point for the solution of next

barrier problem (with liml!1 �l = 0).

The KKT conditions for (2.38) are

r'�(x) +A(x)� = 0 (2.39a)

c(x) = 0: (2.39b)

Solving this system of equations directly by a Newton-type method, as in a straight-

forward application of an SQP method to (2.38), leads to a so-called primal method,
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which treats only the primal variables x and possible the equality multipliers � as it-

erates. However, the term �r'�(x)� has components including �=x(i), i.e. the system

(2.39) is not de�ned at a solution x� of the NLP (2.1) with an active bound x
(i)
� = 0,

and the radius of convergence of Newton's method applied to (2.39) converges to

zero as �! 0 [82]. It has been shown, that as a consequence after a change of � the

�rst search direction is not very good [85], but can be enhanced by an extrapolation

approach [66].

Instead of following this primal approach, it has been more popular to devise

primal-dual methods. Here, dual variables v are introduced, de�ned as

v(i) :=
�

x(i)
:

With this de�nition, the KKT conditions (2.39) are equivalent to the perturbed KKT

conditions or primal-dual equations

g(x) +A(x)� � v = 0 (2.40a)

c(x) = 0 (2.40b)

x(i)v(i) � � = 0 for i 2 I: (2.40c)

Note, that for � = 0 these conditions together with the inequalities

x(i) � 0 and v(i) � 0 for i 2 I (2.41)

are actually the KKT conditions for the original problem (2.1), and that the dual

variables v then correspond to the multipliers for the bound constraints (2.1c).

Primal-dual methods solve the system (2.40) by a Newton-type approach, main-

taining iterates for both xk and vk, and possibly �k. Since (2.41) holds strictly at

the optimal solution of the barrier problem (2.38) for � > 0, xk and vk are always

required to strictly satisfy the inequalities, that is

x
(i)
k > 0 and v

(i)
k > 0 for i 2 I (2.42)

for all k, and can approach zero only asymptotically as �! 0. For this reason, these

methods are also often called interior point (IP) methods.
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2.8 Previously Proposed Interior Point Algorithms for

Nonlinear Programming

Within the past decade several interior point methods for nonlinear programming

have been proposed (see e.g. [21, 22, 33, 39, 42, 65, 77, 78, 80, 88, 89]). These

methods come in di�erent varieties, such as primal or primal-dual methods, line

search or trust region methods, with di�erent merit functions, di�erent strategies to

update the barrier parameter, etc. In Section 5.1.3 we will compare the performance

of the algorithm proposed in this dissertation with two of those methods, which are

brie�y described next.

The �rst method, Knitro (formerly known as �Nitro�), has been developed by

Byrd, Gilbert, Hribar, Liu, Nocedal, and Waltz [21, 22, 23, 24]; for details consult

[22]. It addresses NLPs in the general formulation

min
x2Rn

f(x) (2.43a)

s.t. cE(x) = 0 (2.43b)

cI(x) � 0 (2.43c)

by introducing non-negative slack variables s for the inequality constraints (2.43c).

A sequence of corresponding barrier problems (similar to (2.38)) is solved for mono-

tonically decreasing values of the barrier parameter �, which are held constant for

several iterations until the barrier problem is solved su�ciently well. Global con-

vergence is ensured by a trust region approach (see Section 2.4) using the exact

`2-penalty function (2.14) (with �f(x)� replaced by �'�(x)�). Steps are generated

by a version of the Byrd-Omojokun trust region SQP algorithm [70] applied to the

barrier problem: At an iterate (xk; sk) with sk > 0 a trial step (dk; d
s
k) is computed
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as approximate solution of the subproblem

min
d;ds

gTk d+
1

2
dTWkd� �eTS�1k ds +

1

2
(ds)T�kd

s (2.44a)

s.t. (AEk )
Td+ cE(xk) = rE (2.44b)

(AIk )
T d� ds + cI(xk)� sk = rI (2.44c)

ds � ��sk (2.44d)

k(d; S�1k ds)k2 � �k; (2.44e)

where e = (1; : : : ; 1)T , AEk := rcE(xk), AIk := rcI(xk), Sk := diag(sk), and

�k := S�1k Vk with Vk := diag(vk) for some positive estimate vk of the multipliers

corresponding to (2.43c). Wk is the (exact) Hessian of the Lagrangian correspond-

ing to (2.43). The fraction-to-the-boundary rule (2.44d) for some constant � 2 (0; 1)

close to one ensures that also at the next iterate satis�es sk+1 > 0. Note the scaling

of the step for the slack variables in the trust region constraint (2.44e), which takes

into account the proximity of the individual components of the slack variables to

their bound. Also note that in contrast to the SQP methods described earlier, the

linearization of the constraints (2.44b) and (2.44c) do not have to be strictly satis�ed

by the trial steps (i.e. we might have rE ; rI 6= 0), which allows to deal with the case

where the �strict� QP with rE ; rI = 0 is infeasible.

The approximate solution to the subproblem (2.44) is obtained by a decom-

position of the overall trial step (dk; d
s
k) into a normal component (qk; q

s
k) and a

tangential component (pk; p
s
k) (in analogy to (2.20)). The normal component is an

(approximate) solution of the normal problem

min
q;qs

k(AEk )T q + cE (xk)k22 + k(AIk )T q � qs + cI(xk)� skk22 (2.45a)

s.t. qs � ��sk=2 (2.45b)

k(q; S�1k qs)k2 � 0:8�k; (2.45c)

which is obtained using the dogleg method. The resulting normal step is a linear

combination of the steepest descent direction (qsdk ; q
s;sd
k ) and the least square solu-

tion (qlsk ; q
s;ls
k ) for the QP (2.45a) without the constraints (2.45b) and (2.45c). An
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important point here is that both dogleg components are obtained after scaling the

space of the slack variables by S�1k (as in (2.44e)), again incorporating information

about the proximity to the boundary. For example, (qlsk ; q
s;ls
k ) is computed by �rst

solving the (scaled) augmented system266666664

I 0 AEk AIk

0 I 0 �Sk
(AEk )

T 0 0 0

(AIk )
T �Sk 0 0

377777775

0BBBBBBB@

yk

ysk

zk

zsk

1CCCCCCCA
=

0BBBBBBB@

0

0

cE (xk)

cI(xk)� sk

1CCCCCCCA
(2.46)

and then setting 0@ qlsk

qs;lsk

1A :=

24 AEk AIk

0 S2
k

350@zk

zsk

1A:
The horizontal component is obtained by a preconditioned conjugate gradient (PCG)

method as approximate solution of a reduced subproblem (similar to (2.24) without

inequality constraints, but constraints similar to (2.44d) and (2.44e)). The PCG

steps are computed using solutions of the (scaled) augmented system (2.46) with

di�erent right hand sides. If the projection of the Hessian in (2.44a) onto the null

space of the constraints (2.44b)�(2.44c) is not positive de�nite, the PCG method may

encounter directions of negative curvature which are followed until the boundary of

the trust region is hit.

Estimates �k and vk for the multipliers corresponding to (2.43b) and (2.43c),

respectively, are computed as least square multipliers, possibly corrected to ensure

vk > 0.

Global convergence of Knitro has been proven in [21], and superlinear local

convergence has been shown in [23] using a superlinear decrease rate for the barrier

parameter �. However, the current implementation of Knitro decreases � only by

a �xed factor of 0:2, therefore leading only to a linear local convergence rate.

The other interior point method, Loqo, with which we will compare the proposed

algorithm, has been developed by Benson, Shanno, and Vanderbei [8, 9, 75, 80]. The
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basic problem formulation addressed by Loqo has only inequality constraints, which

after introducing slack variables becomes

min
x;s

f(x) (2.47a)

s.t. cI(x)� s = 0 (2.47b)

s � 0: (2.47c)

Following a line search approach, Loqo maintains iterates for the primal variables

xk and sk, as well as for the multiplier estimates vk corresponding to (2.47b). Search

directions are obtained from the linearization of the corresponding primal-dual equa-

tions (similar to (2.40)) and computed from24 Wk �rcI(xk)
�(rcI(xk))T �SkV �1

k

350@dk

dvk

1A = �
0@ gk �rcI(xk)vk
cI(xk)� sk � SkV �1

k (vk � �S�1k e)

1A
(2.48)

and dsk := �SkV �1
k (vk � �S�1k e + dvk). Here, we again use Sk := diag(sk), Vk :=

diag(vk), e = (1; : : : ; 1)T , and Wk the Hessian of the Lagrangian associated with

(2.47).

In contrast to Knitro and the algorithm proposed in the next chapter, the value

of the barrier parameter � is updated non-monotonically in every iteration. In order

to choose a step size �k, Loqo originally used the (non-exact) merit function

~��(x; s) := f(x)� �
nX
i=1

ln(s(i))| {z }
=:'�(x;s)

+�kcI(x)� sk22: (2.49)

Recently, Benson, Shanno, and Vanderbei [8] have proposed alternative step accep-

tance mechanisms, which use elements of Fletcher and Ley�er's �lter concept [37]

in a heuristic manner, some of them reverting to the merit function (2.49) under

certain circumstances. The option implemented in the current version Loqo 6.02

is the �Markov Filter� presented in [8] and accepts a trial step size, if it leads to

su�cient reduction in either the barrier function '�(x; s) or the constraint violation
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kcI(x)� sk. In addition, some heuristics are included to avoid problems at (almost)

feasible points.

As a line search method, Loqo needs to ensure that the generated search di-

rections are descent directions, for example for the merit function (2.49). For this

purpose it is guaranteed that the matrix Wk +rcI(xk)S�1k Vk(rcI(xk))T is positive

de�nite by monitoring the sign of pivot elements during the factorization of the ma-

trix in (2.48) and adding some multiple of the identity matrix I to Wk, if necessary.

The method proposed in the next chapter borrows this idea (see Section 3.2.1).

In order to solve general NLPs (2.43) including equality constraints, Loqo in-

troduces another pair of non-negative slack variables w and p; the above procedures

are then applied to the following formulation:

min
x2Rn

f(x) (2.50a)

s.t. cI(x)� s = 0 (2.50b)

cE (x)� w = 0 (2.50c)

w + p = 0 (2.50d)

s; w; p � 0: (2.50e)

Interestingly, there are no values for (x; s; w; p) with s; w; p > 0 that satisfy (2.50b)�

(2.50d). Therefore, the strict relative interior of the corresponding barrier problem

is empty.

No theoretical global or local convergence proofs have been published for Loqo,

but good practical performance has been observed [31].
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Description of Ipopt

The algorithm proposed in this dissertation, called Ipopt, is a primal-dual barrier

method, solving a sequence of barrier problems (see Section 3.1). Search direc-

tions can be computed using a full-space (Section 3.2.1) or reduced space approach

(Section 3.2.2), the latter allowing exploitation of problem-dependent structure and

approximation of second derivative information (Sections 3.2.3�3.2.5). Global con-

vergence is ensured by means of line search approaches, allowing the user to choose

between di�erent merit functions (Section 3.3) or a novel line search �lter approach

(Section 3.4).

32
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3.1 The Outer Loop

Ipopt follows the primal-dual barrier approach described in Section 2.7. In an outer

loop a sequence of barrier problems (2.38) is solved for a superlinearly decreasing se-

quence for barrier parameters f�lg. Aggregating the terms on the left hand side of the

primal-dual equations (2.40) into a function F�(x; v; �), we require that each barrier

problem is solved approximately, so that approximate solution (~x�;l+1; ~v�;l+1; ~��;l+1)

satis�es 


F�l �~x�;l+1; ~v�;l+1; ~��;l+1

�



1
� �l (3.1)

for an error tolerance �l > 0 satisfying a certain relationship to �l. The precise

algorithm is as follows.

Algorithm Outer Loop.

Given: Starting point (~x�;0; ~v�;0; ~��;0); initial value of barrier parameter �0; constants

�� 2 (0; 1); ��; �max > 0; �� 2 (1; 2); �� 2 (1; 2=��).

1. Initialize outer iteration counter l 0.

2. Determine error tolerance

�l := min
n
�max; ��min

n
�l; �

��
l

oo
:

3. Obtain an approximate solution (~x�;l+1; ~v�;l+1; ~��;l+1) to the barrier problem (2.38)

for barrier parameter �l satisfying the error tolerance (3.1), using (~x�;l; ~v�;l; ~��;l)

as starting point. If l 6= 0 make sure that at least one step is taken in the algo-

rithm for the inner problem, even if the new error tolerance is already satis�ed at

the starting point.

4. Update barrier parameter

�l+1 := min
n
���l; �

��
l

o
and increase the outer iteration counter l l + 1.
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5. Go back to Step 2.

This procedure was essentially proposed by Gould, Orban, Sartenaer, and Toint

[47]. As a consequence, the local convergence analysis from [47] for �l ! 0 should

apply to Ipopt and guarantee superlinear local convergence to a local solution sat-

isfying the SOS conditions, assuming that exact second derivative information is

used. Note, that the �rst step during the solution of each barrier problem (explicitly

enforced in Step 3) corresponds to the extrapolation step in [47].

The default settings in Ipopt for the constants are �0 = 10�1, �� = 0:2, �� = 10,

�max = 1000, �� = 1:5, and �� = 1:1. In addition, in order to take into account the

scaling of di�erent problems, the error tolerance (3.1) is by default replaced by

max

(
maxfk~g�;l+1 + ~A�;l+1

~��;l+1 � ~v�;l+1k1; k ~X�;l+1~v�;l+1 � �lek1g
1 +

k~��;l+1k1+k~v�;l+1k1
n+m

;

k~c�;l+1k1
1 +

k~x�;l+1k1
n

)
� �l:

In the remainder of this chapter we will discuss the algorithm for solving the

barrier problem (2.38) for a �xed value of �.

3.2 Computation of Search Directions

3.2.1 Full-Space Version

Since a solution of the barrier problem satis�es the primal-dual equations (2.40),

we may apply Newton's method to this system of nonlinear equations. Then the

search direction (dk; d
�
k ; d

v
k) at an iterate (xk; �k; vk) is obtained as a solution of the

linearization of (2.40), that is266664
Wk Ak �I
AT
k 0 0

Vk 0 Xk

377775
0BBBB@
dk

d�k

dvk

1CCCCA = �

0BBBB@
gk +Ak�k � vk

ck

Xkvk � �e

1CCCCA; (3.2)

where e is the vector of ones of appropriate dimension, and Xk := diag(xk) and

Vk := diag(vk); for notational convenience it is assumed that I = f1; : : : ; ng. As
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before, Wk denotes the Hessian of the Lagrangian (2.2), i.e.

Wk := r2
xxL(xk; �k; vk):

We can obtain a solution to (3.2) by �rst solving24 Hk Ak

AT
k 0

350@ dk

�+k

1A = �
0@r'�(xk)

ck

1A; (3.3)

where

Hk :=Wk +�k (3.4)

with �k := X�1
k Vk, and then computing d�k from (2.11) and dvk from

dvk := �X�1
k e� vk � �kdk: (3.5)

As pointed out in Section 2.4, line search methods usually require that the pro-

jection of the Hessian (here Hk) onto some subspace of Rn is positive de�nite. Ipopt

guarantees that Hk projected onto the null space of AT
k is positive de�nite by adding

some multiple of the identity, i.e.

Hk :=Wk +�k + Æ1I (3.6)

for some Æ1 > 0, if necessary. It is known (under the assumption that Ak has full

rank) that the projection of Hk onto the null space of AT
k is positive de�nite if and

only if the iteration matrix in (3.3) has n positive and m negative eigenvalues [69,

Theorem 16.6]. Therefore, in order to detect whether a modi�cation of the Hessian

is necessary, the inertia of this iteration matrix is monitored, and possibly several

values of Æ1 � 0 in (3.6) are tried, until the inertia is correct. This heuristic is similar

to the one proposed by Vanderbei and Shanno [80].

In addition, the iteration matrix in (3.3) can only be non-singular, if the con-

straint Jacobian AT
k has full rank. In order to avoid failure if this condition is not

satis�ed at some iterate, we use a standard trick [67] and add small pivot elements

into the lower right corner of the iteration matrix, i.e. (3.3) is replaced by24 Hk Ak

AT
k �Æ2I

350@ dk

�+k

1A = �
0@gk � �X�1

k e

ck � Æ2�k

1A (3.7)
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with some small Æ2 > 0, whenever the inertia of the unmodi�ed iteration matrix is

incorrect.

In this full-space version, the initial multiplier estimates �0 are computed as

least-square estimates, i.e. as solution of24 I A0

AT
0 0

350@ z

�0

1A = �
0@r'�(x0)

0

1A:
3.2.2 Reduced Space Version

As mentioned in Section 2.3, the search direction dk obtained from the linear system

(3.3) is the solution of the QP

min
d2Rn

r'�(xk)Td+ 1

2
dTHkd (3.8a)

s.t. AT
k d+ ck = 0; (3.8b)

assuming thatHk is positive de�nite in the null space of A
T
k . Therefore, the decompo-

sition techniques previously developed for SQP methods (as described in Section 2.5)

can be applied here as well.

In its reduced space version, Ipopt partitions the variables into dependent and

independent variables as in (2.26), and de�nes basis matrices Yk and Zk by (2.28).

The (primal) search direction dk is decomposed as in (2.20) into its quasi-normal

component (2.21) and tangential component (2.22). The quasi-normal component

can again be computed by (2.23), which simpli�es to (2.29) and as before allows

e�cient exploitation of problem structure. The reduced QP (2.24) now becomes

min
�p2Rn�m

�
ZT
k r'�(xk) + �kwk

�T
�p+

1

2
�pTZT

k HkZk�p;

and can be solved directly by solving the (usually dense) symmetric linear system

�pk := � ~B�1
k

�
ZT
k r'�(xk) + �kwk

�
(3.9)

where ~Bk is the overall reduced Hessian

ZT
k HkZk

(3:4)
= ZT

k WkZk + ZT
k �kZk; (3.10)
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or some approximation to it.

Multiplier estimates may be obtained from

�k := �
�
Y T
k Ak

��1
Y T
k (gk � vk) ; (3.11)

(in analogy to (2.30)), where vk is now the current iterate for the dual variables.

3.2.3 Hessian Approximation

In Ipopt, several options have been implemented for the reduced space version

to compute or approximate second derivative information, and to solve the linear

system (3.9) e�ciently.

Some of these options assume that products of the exact Hessian Wk (or the

one-sided projection ZT
kWk) with vectors y 2 Rn can be performed. In cases, where

these products cannot be computed directly, they may be approximated by �nite

di�erences

ZT
kWk � y � ZT

k (rL(xk + t � y; �k)�rL(xk; �k))
t

; (3.12)

where t is a small scalar. In the current implementation the value of t is chosen as

large as possible, so that kt � yk2 � 10�6 and xk + t � y � 0.

Let us �rst discuss the cross term wk. If products with the Hessian are available,

we set

wk := ZT
k Hkqk; (3.13)

otherwise we approximate the cross term by

wk := ZT
k �kqk; (3.14)

which because of �k = X�1
k Vk is readily available, and captures important curvature

information corresponding to the barrier term.

Regarding the reduced Hessian ~Bk in (3.9), the following options have been

implemented:
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1. Construct the exact reduced Hessian (3.10) column-wise by computing the

products

ZT
k (Wk +�k)Zkei (3.15)

with the coordinate vectors ei, possibly employing �nite di�erences (3.12),

and use this as ~Bk in (3.9). However, it is not guaranteed that ~Bk constructed

in this fashion is positive de�nite, and modi�cations might be necessary, as

described later in Section 3.2.4.

2. Note, that the reduced Hessian (3.10) consists of two parts. The �rst is the

reduced Hessian of the original NLP (2.1) and contains in

Wk = r2f(xk) +
mX
j=1

�
(j)
k r2c(xk)

the second order information that might not be available. Therefore, we may

approximate it with a quasi-Newton estimate Bk, updated by the BFGS for-

mula (2.33), both with or without damping. The terms sk and yk in the update

formula are then chosen as in (2.34) or (2.35), depending on whether multi-

plier estimates are available. The second term in (3.10) corresponds to the

(�primal-dual�) Hessian of the barrier term and can be computed explicitly.

The approximation of the overall reduced Hessian used in (3.9) then is

~Bk := Bk + ZT
k �kZk: (3.16)

Since BFGS estimates are guaranteed to be positive de�nite, ~Bk is also positive

de�nite and can be used in (3.9) without modi�cation.

Splitting the two terms in (3.10) and computing the primal-dual Hessian ex-

actly has the advantage that the method can react quickly when components

of the iterates x(i) come close to their bounds. The algorithm then immedi-

ately �feels� the barrier term and can be expected to generate search directions

that are bent away from the boundary. Furthermore, after a change of the

barrier parameter � at the late stages of the optimization, the reduced Hessian



CHAPTER 3. DESCRIPTION OF IPOPT 39

ZT
k WkZk can be expected to change only slightly so that the quasi-Newton es-

timate from the previous barrier problem can be used e�ectively, whereas the

overall reduced Hessian (3.10) will change signi�cantly, if bounds (2.1c) are

active at the solution; in this case it even becomes singular as �! 0. Related

approaches can be found in [1, 87].

A disadvantage of this approach is that the term ZT
k �kZk has to be constructed

explicitly, which can be computationally expensive for large dimensions n, even

if the dimension of the reduced space n�m is small. In this case, one can avoid

the explicit construction of ZT
k �kZk by solving the full-space system (3.3) with

Hk := �k + P

24 0 0

0 Bk

35P T ;

where P is the permutation matrix in (2.26).

3. However, even if a local solution x�� of the barrier problem (2.38) satis�es the

SOS conditions, the term ZT
� W�Z�, which is a projection of the Hessian of

Lagrangian corresponding to the original NLP (2.1) only onto the null space

of the equality constraints (2.1b), can be inde�nite. Therefore, the previous

option might produce ine�cient estimates Bk, in particular, if the BFGS up-

date is skipped whenever sTk yk � 0. We therefore also implemented the option

to update the quasi-Newton estimate Bk by the SR1 formula (2.37). Since now

Bk may become inde�nite, we again might have to perform modi�cations of

~Bk obtained from (3.16), see Section 3.2.4.

In our numerical experiments it often seemed that the estimates obtained by

SR1 lead to better performance than those obtained by BFGS, unless too many

correction have to be made to make ~Bk positive de�nite. This is con�rmed in

the comparisons presented in Sections 5.2.2 and 5.2.3.

For the second approach, we showed in [84] local two-step superlinear conver-

gence of the algorithm solving the barrier problem (2.38) for a �xed value of the
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barrier parameter � under the (strong) assumption, that the reduced Hessian of the

Lagrangian corresponding to the original NLP is positive de�nite. Local one-step

superlinear convergence can be shown, if the cross term wk is computed using �nite

di�erences of the reduced gradients as proposed in [11, 13].

3.2.4 Solution of the Reduced System

Having discussed what matrix ~Bk to use in (3.9), we now consider the question, how

this dense, symmetric linear system can be solved.

If it is guaranteed that the reduced Hessian approximation ~Bk is positive de�nite,

like the BFGS case described as second option in the previous section, the standard

(dense) Cholesky factorization is used.

For the other cases, the following options have been implemented:

1. Use a modi�ed Cholesky factorization (see e.g. [69, p. 148]). This procedure

implicitly makes the factorized matrix positive de�nite by increasing very small

or negative pivot elements.

2. Compute the eigenvalues of ~Bk, and modify them to be (su�ciently) positive,

if necessary. If n � m � n, as for many of the applications described in

Section 1.3, the computational cost for this procedure is negligible compared

to the factorization of the basis matrix Ck in (2.29).

3. Another implemented heuristic is similar to the one used in the full-space

version described in Section 3.2.1. First, a standard Cholesky factorization is

tried, and if no negative pivot element is encountered, ~Bk is positive de�nite

and is used as is. If the Cholesky factorization cannot be performed because

~Bk has non-positive eigenvalues, we add (in analogy to (3.6)) a multiple of

identity

~Bk  ~Bk + Æ1I

for several trial values Æ1 > 0 until the resulting matrix ~Bk is positive de�nite.
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4. Since the e�ect of the previous modi�cation depends on the particular parti-

tion P in (2.26), we also implemented the exact translation of the (partition

independent) full-space heuristic (3.6) into the reduced space by choosing

~Bk  ~Bk + Æ1Z
T
k Zk

and also modifying the cross term

wk  wk + Æ1Z
T
k qk:

However, this option can be considerably computationally more expensive than

the previous one, since the dense matrix ZT
k Zk has to be constructed explicitly.

5. Finally, we also implemented the option to solve the reduced system (3.9) �rst

by a standard LU decomposition, ignoring the inertia of ~Bk. If, however, ~Bk

turns out to be singular, or the resulting solution is a direction of negative

curvature, i.e.

�pTk
~Bk�pk � 0;

we revert to one of the modi�cations above.

The third method described above is the default option in the reduced version of

Ipopt.

3.2.5 Preconditioned Conjugate Gradients

The usage of exact second derivative information can considerably reduce the number

of iterations compared to a quasi-Newton approach, particularly when the reduced

space (with dimension n�m) is not very small. However, the explicit construction

of the exact reduced Hessian using the Hessian-vector products (3.15) is computa-

tionally expensive.

Motivated by the desire to incorporate second order information without having

to construct the exact reduced Hessian ~Bk := ZT
k HkZk explicitly, the Precondi-

tioned Conjugate Gradient (PCG) algorithm (see e.g. [69, p. 118-119]) has been

implemented to solve the reduced system (3.9).
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For e�cient performance of the conjugate gradient method, it is essential to

supply an e�ective preconditioner Pk, that tries to approximate the inverse of ~Bk

and to simplify the spectrum of the eigenvalues of Pk ~Bk in order to speed up the

convergence behavior of the PCG method.

At this point, the following preconditioners are available in Ipopt:

1. The �rst one has been proposed by Morales and Nocedal in the context of

unconstrained optimization [63]. An approximation of the inverse of ~Bk is

maintained using the BFGS formula. At the beginning of the PCG procedure

for (3.9) in a given iteration k the current estimate is copied and used as the

(�xed) preconditioner. In order to prepare the preconditioner for the PCG

procedure in the next IP iteration k + 1, the inverse BFGS update formula

[69, Eq. (8.16)] is applied at every PCG iteration, using s := ��pk;l and y :=

ZT
k HkZk��pk;l for the PCG steps ��pk;l (where l is the iteration counter for

the PCG method). Note, that the product y has to be computed for the PCG

method in any case. Hence we are collecting as much second order information

as possible that is available without further computational e�ort.

2. For reasons similar to those mentioned in the discussion of the quasi-Newton

option around Eq. (3.16), splitting the two terms in the reduced Hessian (3.10)

has the advantage that the approximation can react quickly to changes in

the reduced primal-dual Hessian of the barrier term, ZT
k �kZk, which is the

component of ~Bk that leads to the ill-conditioning of the reduced system (3.9),

particularly as the barrier � approaches zero. We therefore also implemented

the option to construct the preconditioner Pk in an iteration k from a damped

BFGS approximation ~Pk of the reduced Hessian of the original NLP, ZT
k WkZk,

and the exact term ZT
k �kZk, namely as

Pk :=
h
~Pk + ZT

k �kZk

i�1
: (3.17)

In addition to the updates of ~Pk in every PCG iteration, we may optionally
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perform a �regular� BFGS update based on changes of the reduced gradients,

as in the second option in Section 3.2.3.

As we will see in Sections 5.2.2 and 5.2.3, this option provides better precon-

ditioners than the �rst choice, in the sense that the number of PCG iterations

is considerably reduced. On the other hand, the term ZT
k �kZk has to be con-

structed explicitly, possibly requiring a substantial amount of computational

work.

3. We also implemented the option to approximate the term ~Pk in (3.17) using

the SR1 updating formula (2.37). However, since the matrix sum in the square

brackets can then become inde�nite and the preconditioner has to be positive

de�nite, some modi�cation has to be performed. At this point we have not

found an e�ective modi�cation.

If the matrix in the linear system (3.9) is not positive de�nite, the PCG procedure

may encounter steps ��pk;l with

(��pk;l)
T [ZT

k HkZk]��pk;l � 0:

When this occurs, we simply terminate the PCG procedure prematurely, and use

the approximate solution for (3.9) that has been obtained so far.

As important di�erences to the standard PCG algorithm described in [69, p. 118-

119], we should mention that the starting point for the PCG procedure in our im-

plementation is not ��pk;0 = 0 but

��pk;0 = �Pk
�
ZT
k r'�(xk) +wk

�
;

in analogy to (3.9). The �nal horizontal step �pk can then be understood as the

�traditional� quasi-Newton step (3.9) improved by explicit second order information.

Also, in contrast to many PCG implementations, the termination criterion is based

on the reduction of the unscaled residual, not the preconditioned residual, since the

preconditioner can become very ill-conditioned. These modi�cations seem to work

well in practice.
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3.3 Merit Function Based Line Search

Having computed the primal-dual search directions (dk; d
v
k), we need to choose step

lengths �k; �
v
k 2 (0; 1] to obtain the next iterate

xk+1 := xk + �kdk (3.18a)

vk+1 := vk + �vkd
v
k: (3.18b)

Among other things, we need to ensure that the positivity constraints (2.42) are

satis�ed also for the new iterates, since a full step with �k = 1 and �vk = 1 might

violate these conditions. For this, we compute the largest step sizes �max
k ; �max;v

k 2
(0; 1] such that the �fraction-to-the-boundary-rule�

x
(i)
k + �max

k d
(i)
k � (1� �)x(i)k for i 2 I (3.19a)

v
(i)
k + �max;v

k (dvk)
(i) � (1� �)v(i)k for i 2 I (3.19b)

is satis�ed, where � 2 (0; 1) is some constant, usually chosen close to one (by default,

� = 0:99 in Ipopt). In a backtracking line search procedure, a suitable value is then

determined for the primal step size �k � �max
k in (3.18a). Regarding the dual step

size �vk, numerical evidence suggests that the choice �vk := �max;v
k is most e�cient,

but also the following choices have been implemented in Ipopt:

1. Choose the same step sizes for primal and dual variables, i.e. start the back-

tracking line from ~�max
k := minf�max

k ; �max;v
k g and choose �vk = �k.

2. Choose �vk := minf�max;v
k ; �kg.

If steps d�k are generated from (2.11) for equality constraint multiplier estimates �k,

the new estimates are computed by

�k+1 := �k + �kd
�
k ;

and used for example in the computation of the exact Hessian Wk.

In order to decide whether a trial step size �k;l and the corresponding trial point

(2.13) is acceptable, several options have been implemented in Ipopt. We �rst

describe those procedures that use merit functions.
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3.3.1 Exact Penalty Functions

The �rst set of line search options is based on the exact penalty function (2.14),

which for the barrier problem (2.38) becomes

��;�(x) := '�(x) + �kc(x)k: (3.20)

In the implementation of Ipopt, the norm in the infeasibility term can be chosen as

the `1- (default), `2-, or `1-norm. Since this function does not take the scaling of

individual equality constraints into account, we also implemented the more general

penalty function

���;��(x) := '�(x) +

mX
j=1

��(j)jc(j)(x)j (3.21)

with individual positive penalty parameters �� 2 Rm . This function is exact as well,

if ��(j) > j�(j)� j for all j, where �� are the constraint multipliers corresponding to an

optimal solution x�� .

Trial points are accepted when the Armijo condition (2.16) is satis�ed. It remains

to describe how the penalty parameters are updated. Here, several options have been

implemented.

1. In the full-space version, where multiplier estimates �+k are available from (3.3),

we use

�k :=

8>><>>:
�k�1 if �k�1 � k�+k kD + ��

k�+k kD + 2�� otherwise

(3.22)

for ��;� , and

��
(j)
k :=

8>><>>:
��
(j)
k�1 if ��

(j)
k�1 �

��(�+k )(j)��+ ����(�+k )(j)��+ 2�� otherwise

(3.23)

for ���;�� , where �� > 0 is a safeguard parameter (�� = 10�6 by default in

Ipopt).

However, due to the (undamped) cross term (3.13), which is implicitly incor-

porated in the solution of (3.3), the generated search direction dk might not
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be a descent direction for ��;� or ���;�� . We therefore increase �k or ��k by the

factor 10, until

D��;�k(xk; dk) � �� � �kkc(xk)k

for some constant � 2 (0; 1) (similarly for ���;�� ; default in Ipopt is � = 0:1).

This heuristic seems to work well in practice.

2. In the reduced space version of Ipopt, the same update rules (3.22) and (3.23)

can be applied, if multiplier estimates are available from (3.11). Again it is

not ensured that dk is then a descent direction for the penalty function, and

we may apply the same heuristic for increasing the penalty parameter(s) as

described in the previous option.

In analogy to the method described in [13], we may choose the damping pa-

rameter �k for the cross term wk from (2.32) (instead of always 1), with �gk�

replaced by �r'�(xk)� and �Bk� replaced by � ~Bk�. However, since the multi-

plier estimates are obtained from (3.11) and not from

�k := �
�
Y T
k Ak

��1
Y T
k r'�(xk)

as in [13], an additional increase of the penalty parameters might still be nec-

essary to ensure descent properties.

3. If multipliers are not available, an update rule similar to (2.31) can be used to

obtain estimates for the penalty parameter in ��;� :

�k :=

8>><>>:
�k+1 if (1� �)�kkckk � jr'�(xk)T qkj � �k
jr'�(xk)

T qkj��k
(1��)kckk

+ �� otherwise

(3.24)

with constants �� > 0 and � 2 (0; 1). Here, �k is zero, if the damping parameter

�k for the cross term wk in (3.9) is chosen according to (2.32), with �gk� replaced

by �r'�(xk)� and �Bk� replaced by � ~Bk�. This choice is in accordance with

earlier work in the context of an active set SQP method [15]. However, within

the presented barrier method, wk de�ned by (3.13) or (3.14) contains curvature
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information for the barrier term, and damping might then result in less e�cient

search directions. Therefore, also a damping-free version of the above rule has

been implemented. Here, we choose �k := minf0; wT
k �pkg. In [84] we analyze

this option, alternatively with an update without absolute values in (3.24),

leading to smaller values of the penalty parameter.

At the early stage of development (e.g. for the results reported in [26]), we instead

used the following primal-dual penalty function

�dp� (x; v) = '�(x) + V�(x; v) + �kc(x)k;

with the same penalty parameter updating rules, where the term

V�(x; v) =
X
i2I

�
x(i)v(i) � � ln(x(i)v(i))

�
penalizes the deviation of the primal-dual iterates from the relaxed complementarity

condition (2.40c). Since the penalty function then measures the progress in both

primal and dual variables, �k and �
v
k have to be chosen identical. The properties of

�dp� (x; v) are discussed in [84].

The function V� is for example used in [1] to enforce complementarity with strictly

convex inequality constraints. However, in the context of Ipopt, where all inequal-

ities are simple bound constraints, the (relaxed) complementarity condition (2.40c)

is bi-linear, and therefore convergence of the dual variables vk follows automatically

from convergence of the primal variables xk, if the step sizes �k and �vk in (3.18)

become one for su�ciently large k. As a consequence, the term V is not necessary,

and on the contrary in practice imposes a stronger requirement, leading in general

to smaller (and less e�cient) step sizes.

All of the above merit functions can su�er from the Maratos e�ect, where even

arbitrarily close to a strict local solution the value of both the barrier function '�(x)

and the constraint violation kc(x)k are increased by a full step. As a remedy, second

order correction steps (as described in Section 3.4.3) are used. Alternatively, the
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code also includes an implementation of watchdog technique by Chamberlain et. al.

[27].

3.3.2 The Augmented Lagrangian Function

A merit function that does not su�er the Maratos e�ect is the augmented Lagrangian

function (2.17), which for the barrier problem (2.38) becomes

`�;�(x; �) := '�(x) + �T c(x) + �c(x)T c(x): (3.25)

In Ipopt, the line search procedure proposed by Biegler and Cuthrell [12] using

(3.25) has been implemented. As an important feature, the update of the penalty

parameter � is performed in a non-monotone manner, trying to allow step sizes �k as

large as possible. Global convergence for this approach has not been shown, although

it seems to work well in practice (see Section 5.1.2).

When using (3.25), also iterates for � have to be maintained. For the reduced

space version, the corresponding search direction is obtained as d�k := �k � ~�k with

�k from (3.11), and ~�k is the current iterate.

3.3.3 Failure of Global Convergence

During the development and analysis of the merit function based line search op-

tions just described, we found a simple example problem, where Ipopt failed in an

unexpected way. When trying to solve the problem

min
x2R3

x(1) (3.26a)

s.t.
�
x(1)

�2
� x(2) � 1 = 0 (3.26b)

x(1) � x(3) � 0:5 = 0 (3.26c)

x(2); x(3) � 0 (3.26d)

starting from the point x0 = (�2; 3; 1), which satis�es the �rst equality constraint

(3.26b) and strictly satis�es the bound constraints (3.26d), Ipopt generates the
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k x
(1)
k x

(2)
k x

(3)
k �k

0 -2 3 1 �

1 -1.8077165354330709 2.2308661 0.01 0.338

2 -1.1941467232510745 0.0223087 0.0115512 0.264

3 -1.1827848033469259 0.223E-03 0.157E-02 0.125E-01

4 -1.1825077076013453 0.223E-05 0.160E-04 0.109E-02

5 -1.1825049104784042 0.223E-07 0.160E-06 0.111E-04

6 -1.1825048825066040 0.223E-09 0.160E-08 0.111E-06

7 -1.1825048822268860 0.223E-11 0.160E-10 0.111E-08

8 -1.1825048822240889 0.223E-13 0.160E-12 0.111E-10

9 -1.1825048822240609 0.223E-15 0.160E-14 0.111E-12

Table 3.1: Iterates for counter example

sequence of iterates as shown in Table 3.1, and aborts the optimization because the

step size �k becomes too small. Here, all previously described line search options

always accept the �rst trial step (i.e. �k = �max
k ). The above numbers are obtained

using exact second derivatives, but all other choices for the Hessian approximation

lead to similar failures.

However, the disconcerting observation is that the example problem (3.26) is

well posed: The objective and constraint functions are smooth, the Jacobian of the

equality constraints has full rank everywhere, and there is only one stationary point

x� = (1; 0; 0:5)T with corresponding multipliers �� = (�0:5; 0)T and (v
(2)
� ; v

(3)
� )T =

(0:5; 0)T , which satis�es the SOS conditions and is the global solution to the problem.

In order to discuss the reason for this failure, let us assume that we have an

iterate xk (such as x0 from above) with x
(2)
k ; x

(3)
k > 0 and c1(xk) � 0 as indicated in

Figure 3.1, which shows a projection of the �rst equality constraint into the space

of x(1) and x(2). Taking a full step xk + dk with dk satisfying the linearization

of the equality constraints (3.8b) leads into the plotted tangent to the parabola.
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x(1)

x(2)
c1(x) = 0

xk

xk + dk

�1 1

Figure 3.1: Example for new type of global convergence failure

Consequently, the next iterate of Ipopt will lie between the current point and this

tangent, or on this tangent, but in order to respect the bound constraint for x(2)

in the fraction-to-the-boundary rule (3.19a), it will again lie above the x(1)-axis. In

other words, from a starting point lying in the region above the x(1)-axis and on the

left side of the parabola, only points in that same region can be reached by Ipopt.

A repetition of this argument shows that the iterates are con�ned to this region.

However, for a point x� to satisfy the second equality constraint (3.26c) and the

bound constraint x(3) � 0, x
(1)
� has to be at least 0:5. Thus, Ipopt as described so

far can never converge to a feasible point if started from a point in the described

region.

The above argument does not depend on the particular choice of the objective

function f(x). Also, the quadratic term in (3.26b) can be replaced by any smooth

function g(x(1)), that is negative for x(1) 2 (t1; t2) with t1 < t2, positive only for

x(1) < t1 and x(1) > t2, and convex for x(1) < t1, if the remaining constraints

make x(1) � t1 infeasible. Interestingly, a more detailed analysis of this example in

Section 4.1 will show that the convergence problem also occurs in instances, in which
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the parabola in Figure 3.1 lies entirely above the x(1)-axis.

Clearly, any optimization method that takes steps that are fractions of search

directions satisfying the linearization of the equality constraints (3.8b) has to fail

in the same manner. As we will discuss in more detail in Section 4.1, most of the

current interior point NLP algorithms in the line search category as well as some

trust region methods fail on this innocuous example. As a consequence, the above

example has been cited and discussed by other researchers [9, 57, 77].

In the remainder of this chapter we will present a di�erent line search technique

for Ipopt that does not su�er the described convergence problem.

3.4 Filter Based Line Search

3.4.1 Introduction

Recently, Fletcher and Ley�er [37] have proposed �lter methods, o�ering an alter-

native to merit functions, as a tool to guarantee global convergence in algorithms

for nonlinear programming. The underlying concept is that trial points are accepted

if they improve the objective function or improve the constraint violation instead

of a combination of those two measures de�ned by a merit function. The practi-

cal results reported for the �lter trust region SQP method in [37] are encouraging,

and recently global convergence results for related algorithms have been established

[35, 38]. Other researchers have also proposed global convergence results for di�erent

trust region based �lter methods, such as for another trust region SQP method [45],

an interior point approach [78], a bundle method for non-smooth optimization [36],

and a pattern search algorithm for derivative-free optimization [3].

In the following, a �lter method framework based on line search is proposed and

analyzed, which can be applied to barrier methods and active set SQP methods. The

motivation given by Fletcher and Ley�er for the development of the �lter method

[37] is to avoid the necessity to determine a suitable value of the penalty parameter in

the merit function (2.14). In addition, numerical evidence presented in Section 5.1.2



CHAPTER 3. DESCRIPTION OF IPOPT 52

suggests that Newton directions are usually �good� directions (in particular if exact

second derivative information is used), and that a �lter approach has the potential

to be more e�cient than algorithms based on merit functions, as it generally accepts

larger steps. However, in the context of a line search method, the �lter approach

o�ers another important advantage regarding robustness. It has been known for

some time that line search methods can converge to �spurious solutions�, infeasible

points that are not even critical points for a measure of infeasibility, if the gradients

of the constraints become linearly dependent at non-feasible points. In [71], Powell

gives an example for this behavior. Another type of convergence problem has just

been described in Section 3.3.3. Using a �lter approach within a line search algorithm

helps to overcome these problems: If the trial step size becomes too small in order

to guarantee su�cient progress towards a solution of the problem, the �lter method

reverts to a feasibility restoration phase, whose goal is to deliver a new iterate that

is su�ciently less infeasible. As a consequence, the global convergence problems

mentioned above cannot occur.

The discussion of the line search �lter approach will be as follows. The derivation

will be presented in this chapter in the context of the barrier method Ipopt. Chapter

4 o�ers a convergence analysis, and in Sections 4.4.1 and 4.4.2 we will show how the

presented techniques can be applied to active set SQP methods.

In the following section we will motivate and state the algorithm for the solution

of the barrier problem (2.38) with a �xed value of the barrier parameter �. The

method is motivated by the trust region SQP method proposed and analyzed by

Fletcher et. al. [35]. An important di�erence, however, lies in the condition that

determines when to switch between certain su�cient decrease criteria; this allows us

to show fast local convergence of the proposed line search �lter method.

Later in Section 4.2 we prove that every limit point of the sequence of iterates

generated by the algorithm is feasible, and that there is at least one limit point

that satis�es the �rst order optimality conditions for the barrier problem. The

assumptions made are less restrictive than those made for previously proposed line
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search interior point methods for nonlinear programming (e.g. [33, 77, 88]).

As Fletcher and Ley�er pointed out in [37], �lter methods can su�er from the

so-called Maratos e�ect [56], which leads to short step sizes arbitrarily close to a

solution of the problem, and hence to a poor local convergence behavior. In Sec-

tion 3.4.3 we will present how second order corrections steps can be integrated into

the �lter method, and later in Section 4.3 we will show that this indeed guarantees

that full steps for the resulting search directions will eventually be accepted in the

neighborhood of a strict local solution of the barrier problem satisfying the SOS con-

ditions. As a consequence, fast local convergence can be established for the solution

of the barrier problem with a �xed value of the barrier parameter. In Section 3.4.5

we will then brie�y describe how the �lter method is applied as the barrier parameter

is driven to zero.

In Section 3.4.6 we propose an alternative measure for the �lter acceptance cri-

teria. Here, a trial point is accepted if it reduces the infeasibility or the value of the

Lagrangian function, instead of the (barrier) objective function. The global conver-

gence results still hold for this modi�cation. Having presented the line search �lter

framework on the example of a barrier method we will �nally show in Sections 4.4.1

and 4.4.2 how it can be applied to active set SQP methods, preserving the same

global and local convergence properties. In Section 4.4.3 we will brie�y point out

how our local convergence analysis can also be applied to a slightly modi�ed version

of the trust region �lter SQP method proposed by Fletcher et. al. [35].

The presented approach di�ers from the trust region interior point �lter algorithm

proposed by M. Ulbrich, S. Ulbrich, and Vicente [78] in that the barrier parameter

is kept constant for several iterations. This enables us to base the acceptance of trial

steps directly on the barrier function instead of only on the norm of the optimality

conditions. Therefore the presented method is less likely to converge to saddle points

or maxima than the algorithm proposed in [78].

Recently, Benson, Shanno, and Vanderbei [8] proposed several heuristics based on

the idea of �lter methods, which were integrated into Loqo and for which improved
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e�ciency compared to the previous merit function approach are reported. Their

approach is di�erent from the one proposed here in many aspects, and no global

convergence analysis is given.

3.4.2 Description of the Line Search Filter Approach

We now describe the �lter line search procedure for solving the barrier problem

(2.38) for a �xed value of the barrier parameter �. Here, we are only concerned with

the convergence of the primal variables xk. If the primal variables converge and

full steps are eventually taken for the dual variables vk, also those converge to the

corresponding multiplier estimates, because the relaxed complementarity condition

(2.40c) is bi-linear.

Let us assume that the search direction dk has been computed from (3.3), as well

as the maximal step size

�max
k := max f� 2 (0; 1] : xk + �dk � (1� �)xkg (3.27)

satisfying the fraction-to-the-boundary rule (3.19a). Now we perform a back-tracking

line search with decreasing trial step sizes �k;0 = �max
k ; �k;1; �k;2; : : : until the result-

ing trial point xk(�k;l) as de�ned in (2.13) satis�es certain conditions, which will be

discussed next.

The underlying idea is to interpret the barrier problem (2.38) as a bi-objective

optimization problem with two goals: Minimizing the constraint violation

�(x) = kc(x)k

and minimizing the barrier function '�(x). A certain emphasis is placed on the

�rst measure, since a point has to be feasible in order to be an optimal solution

of the barrier problem. Here, we do not require that a trial point xk(�k;l) provides

progress in a merit function such as (3.20), which combines these two goals as a linear

combination into one single measure. Instead, the trial point xk(�k;l) is accepted if it

improves feasibility, i.e. if �(xk(�k;l)) < �(xk), or if it improves the barrier function,
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i.e. if '�(xk(�k;l)) < '�(xk). Note, that this criterion is less demanding than the

enforcement of decrease in the penalty function (3.20) and will in general allow larger

steps.

Of course, this simple concept is not su�cient to guarantee global convergence.

Several precautions have to be added as we will outline in the following. (The overall

line search �lter algorithm is formally stated on page 62.)

1. Su�cient Reduction. Line search methods that use a merit function ensure

su�cient progress towards the solution. For example, they may do so by enforcing

the Armijo condition (2.16) for the exact penalty function (3.20) (as described in

Sections 2.4 and 3.3.1). Here, we borrow the idea from [35, 38] and replace this

condition by requiring that the next iterate provides at least as much progress in

one of the measures � or '� that corresponds to a small fraction of the current

constraint violation, �(xk). More precisely, for �xed constants 
�; 
' 2 (0; 1), we say

that a trial step size �k;l provides su�cient reduction with respect to the current

iterate xk, if

�(xk(�k;l)) � (1� 
�)�(xk) (3.28a)

or '�(xk(�k;l)) � '�(xk)� 
'�(xk): (3.28b)

In a practical implementation, the constants 
�; 
' typically are chosen to be small.

However, relying solely on this criterion would allow the acceptance of a sequence

fxkg that always provides su�cient reduction with respect to the constraint viola-

tion (3.28a) and converges to a feasible, but non-optimal point. In order to prevent

this, we change to a di�erent su�cient reduction criterion whenever

i) the constraint violation becomes small, i.e.

�(xk) � �sml (3.29)

for some �xed �sml 2 (0;1], and

ii) for the current trial step size �k;l the switching condition

mk(�k;l) < 0 and [�mk(�k;l)]
s' [�k;l]

1�s' > Æ [�(xk)]
s� (3.30)
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holds with �xed constants Æ > 0; s� > 1; s' > 2s�, where

mk(�) := �r'�(xk)T dk (3.31)

is the linear model of the barrier function '� into direction dk. We choose to

formulate the switching condition (3.30) in terms of a general model mk(�) as

it will allow us to de�ne the algorithm for an alternative measure that replaces

�'�(x)� in Section 3.4.6.

If both conditions (3.29) and (3.30) hold, instead of insisting on (3.28), we require

that an Armijo-type condition for the barrier function,

'�(xk(�k;l)) � '�(xk) + �'mk(�k;l); (3.32)

is satis�ed (see [35]). Here, �' 2 (0; 12) is a �xed constant. It is possible that

for several trial step sizes �k;l with l = 1; : : : ; ~l conditions (3.29) and (3.30), but

not (3.32) are satis�ed. In this case we note that for smaller step sizes the switching

condition (3.30) may no longer be valid, so that the method reverts to the acceptance

criterion (3.28).

The switching condition (3.30) deserves some discussion. If the current iterate

is close to a feasible but non-optimal point we need to ensure that the accepted

step satis�es the Armijo condition (3.32) and, therefore, leads to su�cient progress

in the barrier function, so that convergence to a feasible but non-optimal point

is prevented. Indeed, at a non-optimal point xk with su�ciently small infeasibility,

Lemma 4.2 on page 89 will show that mk(�) � ��� for some � > 0 and all � 2 (0; 1].

Condition (3.30) is then implied if �k;l > Æ=�[�(xk)]
s' , where the right hand side is

o(�(xk)). This property is essential for the proof of Lemma 4.10 on page 97, which

states that the next iterate xk+1 has to satisfy the Armijo condition (3.32). On the

other hand, if the switching condition (3.30) is true close to a strict local solution

x�� of the barrier problem (2.38), then the progress in the barrier function, predicted

by the model mk, needs to be su�ciently large compared to the current constraint

violation. This is important because we need to guarantee that a full step dk, possibly
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improved by a second order correction step (see Section 3.4.3), will be accepted. If

condition (3.30) is true with �k;0 = 1, then �(xk) = O(kdkk
s'
s� ) = o(kdkk2). This

property is crucial in the discussion of local convergence of the method in Section 4.3.

Note that the switching conditions used in [35, 38] do not imply this relationship,

but may be adapted; see Section 4.4.3.

2. Filter as taboo-region. It is also necessary to avoid cycling. For example, this may

occur between two points that alternatingly improve one of the measures, � and '�,

and worsen the other one. For this purpose, Fletcher and Ley�er [37] propose to

de�ne a �taboo region� in the half-plane f(�; '�) 2 R2 : � � 0g. They maintain a list

of (�(xp); '�(xp))-pairs (called �lter) corresponding to some of the previous iterates

xp. In order to be accepted, they require that a point has to improve at least one of

the two measures compared to those previous iterates. In other words, a trial step

xk(�k;l) can only be accepted, if

�(xk(�k;l)) < �(xp)

or '�(xk(�k;l)) < '�(xp)

for all (�(xp); '�(xp)) in the current �lter.

In contrast to the notation in [35, 37], we will de�ne the �lter not as a list but as

a set Fk � [0;1) � R containing all (�; '�)-pairs that are �prohibited� in iteration

k. We will say, that a trial point xk(�k;l) is acceptable to the �lter if its (�; '�)-pair

does not lie in the taboo-region, i.e. if

�
�(xk(�k;l)); '�(xk(�k;l))

�
62 Fk: (3.33)

During the optimization we will make sure that the current iterate xk is always

acceptable to the current �lter Fk.
At the beginning of the optimization, the �lter is initialized to be empty, F0 := ;,

or � if one wants to impose an explicit upper bound on the constraint violation � as

F0 := f(�; ') 2 R2 : � � �maxg for some �max > �(x0). Throughout the optimization
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the �lter is then augmented in some iterations after the new iterate xk+1 has been

accepted. For this, the updating formula

Fk+1 := Fk [
n
(�; ') 2 R2 : � � (1� 
�)�(xk) and ' � '�(xk)� 
'�(xk)

o
:

(3.34)

is used (see also [35]). If the �lter is not augmented, it remains unchanged, i.e.

Fk+1 := Fk. Note, that then Fk � Fk+1 for all k. This ensures that all later

iterates will have to provide su�cient reduction with respect to xk as de�ned by

criterion (3.28), if the �lter has been augmented in iteration k.

It remains to decide which iterations should augment the �lter. Since one moti-

vation of the �lter method is to make it generally less conservative than a penalty

function approach, we do not want to augment the �lter in every iteration. In ad-

dition, as we will see in the discussion of the next safeguard below, it is important

that we never include feasible points into the �lter. The following rule from [35] is

motivated by these considerations.

We will always augment the �lter if for the accepted trial step size �k;l the

switching condition (3.30) or the Armijo condition (3.32) does not hold, even if

�(xk) > �sml. Otherwise, if the �lter is not augmented, the value of the barrier

objective function is strictly decreased (see Eq. (4.31) on page 92). To see that this

indeed prevents cycling, let us assume for the moment that the algorithms generates

a cycle of length l,

xK ; xK+1; : : : ; xK+l�1; xK+l = xK ; xK+l+1 = xK+1; : : : (3.35)

Since a point xk can never be reached again, if the �lter is augmented in iteration k,

the existence of a cycle would imply that the �lter is not augmented for all k � K.

However, this would imply that '�(xk) is a strictly decreasing sequence for k � K,

so that (3.35) cannot be a cycle.

3. Feasibility restoration phase. Due to the fact that dk satis�es the linearization

of the constraints (from (3.3)), we have �(xk(�k;l)) < �(xk) whenever �k;l > 0 is
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su�ciently small. It is not guaranteed, however, that there exists a trial step size

�k;l > 0 that indeed provides su�cient reduction as de�ned by criterion (3.28).

Furthermore, if the search direction dk points outside of the non-negative orthant

fx 2 R : x(i) � 0 for i 2 Ig and xk is close to the boundary of this region, it is

possible (e.g. in the example problem described in Section 3.3.3) that the �rst trial

step size �k;0 = �max
k is already too small to allow su�cient decrease in � and '�.

In this situation, where no admissible step size can be found, the method switches

to a feasibility restoration phase, whose purpose is to �nd a new iterate xk+1 merely

by decreasing the constraint violation �, so that xk+1 satis�es (3.28) and is also ac-

ceptable to the current �lter. The procedure for this feasibility restoration phase is

not �xed. It could be any iterative algorithm for decreasing �, possibly ignoring the

objective function, and di�erent methods could be used at di�erent stages of the op-

timization procedure. In the current implementation of Ipopt we integrated Tron,

a gradient projection method for bound constrained optimization developed by Lin

and Moré [54], which follows a trust region approach using conjugate gradients. It

is applied to the feasibility problem

min
x2Rn

kc(x)k22 (3.36a)

x(i) � � for i 2 I (3.36b)

in order to obtain a su�ciently less infeasible new iterate xk+1 with �(xk+1) <

0:99 � �(xk) that both satis�es (3.28) and is acceptable to the current �lter. Here,

� 2 Rn is a vector with small positive numbers, since also xk+1 has to satisfy the

positivity requirement (2.42). However, before calling Tron within Ipopt, we �rst

try the procedure described later in Section 3.4.4, in order to avoid switching to

Tron very close to a local solution of the problem.

Since we will make sure that a feasible iterate is never included into the �lter, the

algorithm for the feasibility restoration phase usually should be able to �nd a new

acceptable iterate xk+1 unless it converges to a stationary point of �. The latter case

may be important information for the user, as it indicates that the problem seems (at
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least locally) infeasible. If the feasibility restoration phase terminates successfully by

delivering a new admissible iterate xk+1, the �lter is augmented according to (3.34)

to avoid cycling back to the problematic point xk.

In order to detect the situation where no admissible step size can be found and

the restoration phase has to be invoked, we propose the following rule. Consider the

case when �(xk) � �sml with �sml from (3.29), and the current trial step size �k;l

is still large enough so that the switching condition (3.30) holds for some � � �k;l.

In this case, we will not switch to the feasibility restoration phase, since there is

still the chance that a shorter step length might be accepted by the Armijo con-

dition (3.32). Therefore, we can see from the switching condition (3.30) and the

de�nition of mk (3.31) that we do not want to revert to the feasibility restoration

phase if r'�(xk)T dk < 0 and

�k;l >
Æ[�(xk)]

s�

[�r'�(xk)Tdk]s' :

However, if �(xk) > �sml or if the switching condition (3.30) is not satis�ed for the

current trial step size �k;l and all shorter trial step sizes, then the decision whether

to switch to the feasibility restoration phase is based on the linear approximations

�(xk + �dk) � �(xk)� ��(xk) (since AT
k dk + ck = 0) (3.37a)

'�(xk + �dk) � '�(xk) + �r'�(xk)T dk (3.37b)

of the two measures. This predicts that the su�cient decrease condition for the

infeasibility measure (3.28a) may not be satis�ed for step sizes with �k;l � 
�:

Similarly, in case r'�(xk)Tdk < 0, the su�cient decrease criterion for the barrier

function (3.28b) may not be satis�ed for step sizes satisfying

�k;l � 
'�(xk)

�r'�(xk)T dk :
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We can summarize this in the following formula for a minimal trial step size

�min
k := 
� �

8>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>:

min
n

�;


'�(xk)
�r'�(xk)T dk

; Æ[�(xk)]
s�

[�r'�(xk)T dk]
s'

o
if r'�(xk)Tdk < 0 and �(xk) � �sml

min
n

�;


'�(xk)
�r'�(xk)T dk

o
if r'�(xk)Tdk < 0 and �(xk) > �sml


� otherwise

(3.38)

and switch to the feasibility restoration phase when �k;l becomes smaller than �min
k .

Here, 
� 2 (0; 1] is a safety-factor that allows for inaccuracy of the linear predic-

tion (3.37).

It is possible, however, to employ more sophisticated rules for the decision when

to switch to the feasibility restoration phase while still retaining the convergence

analysis in Chapter 4. These rules, for example, they could be based on higher

order approximations of � and/or '�. We only need to ensure that the method does

not switch to the feasibility restoration phase as long as (3.30) holds for a step size

� � �k;l where �k;l is the current trial step size, and that the backtracking line search
procedure is �nite, i.e. it eventually either delivers a new iterate xk+1 or reverts to

the feasibility restoration phase.

The proposed method also allows to switch to the feasibility restoration phase

in any iteration, in which the infeasibility �(xk) is not too small. For example,

this might be necessary, when the Jacobian of the constraints AT
k is (nearly) rank-

de�cient, so that the linear system (3.3) is (nearly) singular and no search direction

can be computed from (3.3). In the context of Ipopt, iterations with Æ2 > 0 in (3.7)

can be interpreted as such feasibility restoration steps.

We are now ready to formally state the overall algorithm for solving the barrier

problem (2.38).
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Algorithm Filter

Given: Starting point x0 > 0; constants �max 2 (�(x0);1]; �sml 2 (0;1]; 
�; 
' 2
(0; 1); Æ > 0; 
� 2 (0; 1]; s� > 1; s' > 2s�; 0 < �1 � �2 < 1.

1. Initialize.

Initialize the �lter F0 := f(�; ') 2 R2 : � � �maxg and the iteration counter

k  0.

2. Check convergence.

Stop, if xk is a local solution (or at least stationary point) of the barrier prob-

lem (2.38), i.e. if it satis�es the KKT conditions (2.39) for some � 2 Rm .

3. Compute search direction.

Compute the search direction dk from the linear system (3.3). If this system is

(almost) singular, go to the feasibility restoration phase in Step 9.

4. Apply fraction-to-the-boundary rule.

Compute the maximal step size �max
k from (3.27).

5. Backtracking line search.

5.1. Initialize line search.

Set �k;0 = �max
k and l  0.

5.2. Compute new trial point.

If the trial step size becomes too small, i.e. �k;l < �min
k with �min

k de�ned by

(3.38), go to the feasibility restoration phase in Step 9.

Otherwise, compute the new trial point xk(�k;l) = xk + �k;ldk.

5.3. Check acceptability to the �lter.

If (�(xk(�k;l)); '�(xk(�k;l))) 2 Fk, reject the trial step size and go to Step 5.5.

5.4. Check su�cient decrease with respect to current iterate.
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5.4.1. Case I. �(xk) � �sml and the switching condition (3.30) holds:

If the Armijo condition for the barrier function (3.32) holds, accept

the trial step and go to Step 6.

Otherwise, go to Step 5.5.

5.4.2. Case II. �(xk) > �sml or the switching condition (3.30) is not satis�ed:

If (3.28) holds, accept the trial step and go to Step 6.

Otherwise, go to Step 5.5.

5.5. Choose new trial step size.

Choose �k;l+1 2 [�1�k;l; �2�k;l], set l l + 1, and go back to Step 5.2.

6. Accept trial point.

Set �k := �k;l and xk+1 := xk(�k).

7. Augment �lter if necessary.

If one of the conditions (3.30) or (3.32) does not hold, augment the �lter according

to (3.34); otherwise leave the �lter unchanged, i.e. set Fk+1 := Fk.

(Note, that Step 5.3 and Step 5.4.2 ensure, that (�(xk+1); '�(xk+1)) 62 Fk+1.)

8. Continue with next iteration.

Increase the iteration counter k  k + 1 and go back to Step 2.

9. Feasibility restoration phase.

Compute a new iterate xk+1 by decreasing the infeasibility measure �, so that

xk+1 satis�es the su�cient decrease conditions (3.28) and is acceptable to the

�lter, i.e. (�(xk+1); '�(xk+1)) 62 Fk. Augment the �lter according to (3.34) (for

xk) and continue with the regular barrier iteration in Step 8.

Remark 3.1 From Step 5.5 it is clear that liml �k;l = 0. In the case that �(xk) > 0

it can be seen from (3.38) that �min
k > 0. If �(xk) = 0 then the positive de�niteness

of Hk on the null space of Ak implies that r'�(xk)T dk < 0 (see Lemma 4.4 on
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page 90) and, therefore, �min
k = 0, but Lemma 4.7 on page 95 will show that the

Armijo condition (3.32) is satis�ed for a su�ciently small step size �k;l. Thus, the

inner loop in Step 5 will terminate in a �nite number of trial steps.

Remark 3.2 The mechanisms of the �lter ensure that (�(xk); '�(xk)) 62 Fk for all

k. Furthermore, the initialization of the �lter in Step 1 and the update rule (3.34)

imply that for all k the �lter has the following property.

(��; �') 62 Fk =) (�; ') 62 Fk if � � �� and ' � �': (3.39)

Remark 3.3 In Step 3, the search directions dk do not necessarily have to be ob-

tained as solutions of the linear system (3.3) directly. All options discussed in Sec-

tion 3.2 can also be interpreted as steps satisfying (3.3) by choosing the matrix Hk

appropriately.

3.4.3 Second Order Correction Steps

As it has been mentioned by Fletcher and Ley�er [37], the �lter approach can still

su�er from the Maratos e�ect [56], even though it is usually less restrictive in terms

of accepting steps than a penalty function approach. The Maratos e�ect occurs if

even arbitrarily close to a strict local solution of the barrier problem a full step

dk increases both the barrier function '� and the constraint violation �, and leads

therefore not to su�cient progress with respect to the current iterate and is rejected.

This can result in poor local convergence behavior. As a remedy, Fletcher and Ley�er

propose to improve the step dk, if it has been rejected, by means of a second order

correction which aims to further reduce infeasibility.

In this section will describe how second order correction steps can be incorporated

into the �lter line search approach. Later in Section 4.3 we will show this indeed

prevents the Maratos e�ect.

Let us now outline the procedure for the second order correction.
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If in iteration k

i) �max
k = 1 with �max

k de�ned in (3.27),

ii) the �rst trial step size �k;0 = 1 has been rejected in Step 5.3 or Step 5.4 of

Algorithm Filter, and

iii) �(xk) � �soc for some �xed constant �soc 2 (0;1],

then, instead of immediately continuing with the selection of a shorter trial step size

�k;1 in Step 5.5 of Algorithm Filter, we �rst compute a second order correction

step and accept it if it satis�es our usual acceptance criteria, as outlined next.

Algorithm Soc

5.1�. Compute second order correction step.

Solve the linear system24 Hsoc
k Asoc

k

(Asoc
k )T 0

350@dsock

�sock

1A = �
0@ gsock

c(xk + dk) + csock

1A; (3.40)

(particular admissible choices of Hsoc
k ; Asoc

k ; gsock ; csock are discussed below) to

obtain the second order correction step dsock and de�ne �xk+1 := xk + dk + dsock .

5.2�. Check fraction-to-the-boundary rule.

If

xk + dk + dsock � (1� �)xk (3.41)

is not satis�ed, reject second order correction step and continue with Step 5.5

(of Algorithm Filter).

5.3�. Check acceptability to the �lter.

If �xk+1 2 Fk, reject second order correction step and go to Step 5.5.

5.4�. Check su�cient decrease with respect to current iterate.
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5.4.1�. Case I. �(xk) � �sml and the switching condition

mk(1) < 0 and [�mk(1)]
s' > Æ [�(xk)]

s� (3.42)

holds:

If Armijo condition for barrier function

'�(�xk+1)� '�(xk) � �'mk(1) (3.43)

holds, accept �xk+1 and go to Step 6.

Otherwise, go to Step 5.5.

5.4.2�. Case II. �(xk) > �sml or the switching condition (3.42) is not satis�ed:

If

�(�xk+1) � (1� 
�)�(xk) (3.44a)

or '�(�xk+1) � '�(xk)� 
'�(xk) (3.44b)

hold, accept xk+1 := �xk+1 and go to Step 7� below.

Otherwise, go to Step 5.5.

If �xk+1 has been accepted by Algorithm Soc as the next iterate, we also replace

Step 7 of Algorithm Filter by

7�. If one of the conditions (3.42) or (3.43) does not hold, augment the �lter accord-

ing to (3.34); otherwise leave the �lter unchanged, i.e. set Fk+1 := Fk.

Second order correction steps of the form (3.40) are discussed by Conn, Gould,

and Toint in [28, Section 15.3.2.3]. Here we assume that Hsoc
k is uniformly positive

de�nite on the null space of (Asoc
k )T , and that in a neighborhood of a strict local

solution we have

gsock = o(kdkk); Ak �Asoc
k = O(kdkk); csock = o(kdkk2): (3.45)

In [28], the analysis is made for the particular choices csock = 0, Asoc
k = A(xk + pk)

for some pk = O(kdkk), and Hk = r2
xxL�(xk; �k) in (3.3) for multiplier estimates
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�k. However, the careful reader will be able to verify that the results that we will

use from [28] still hold as long as

(W �
k �Hk)dk = o(kdkk); (3.46)

if xk converges to a strict local solution x
�
� of the barrier problem with corresponding

multipliers ��� , where

W �
k = r2

xxL�(xk; ��� ) = r2'�(xk) +

mX
i=1

(��� )
(i)r2c(i)(xk) (3.47)

is the Hessian of the Lagrangian function

L�(x; �) := '�(x) + �T c(x) (3.48)

corresponding to the barrier problem (2.38).

Popular choices for the quantities in the computation of the second order correc-

tion step in (3.40) that satisfy (3.45) are for example the following.

(a) Hsoc
k = I, gsock = 0, csock = 0, and Asoc

k = Ak or Asoc
k = A(xk + dk), which

corresponds to a least-square step for the constraints.

(b) Hsoc
k = X2

k , g
soc
k = 0, csock = 0, and Asoc

k = Ak or Asoc
k = A(xk + dk), which

corresponds to a least-square step for the constraints in a di�erent norm which

takes the proximity to the boundary into account (similar to (2.46)).

(c) Hsoc
k = Hk, g

soc
k = 0, csock = 0, and Asoc

k = Ak, which is very inexpensive since

this choice allows to reuse the factorization of the linear system (3.3).

(d) Hsoc
k being the Hessian approximation corresponding to xk+dk, g

soc
k = r'�(xk+

dk) + A(xk + dk)
T�+k , c

soc
k = 0, and Asoc

k = A(xk + dk) which corresponds to

the step in the next iteration, supposing that xk + dk has been accepted. This

choice has the �avor of the watchdog technique [27].

(e) If dsock is a second order correction step, and �dsock is an additional second order

correction step (i.e. with �c(xk + dk)� replaced by �c(xk + dk + dsock )� in (3.40)),
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then dsock + �dsock can be understood as a single second order correction step for

dk (in that case with csock 6= 0). Similarly, several consecutive correction steps

can be considered as a single one.

In Ipopt, the options (c) and (d) have been implemented. In contrast to Condi-

tion i) on page 65, we even try a second order correction step, if the fraction to the

boundary is active for the normal step dk and may cut the overall step dk + dsock .

3.4.4 Feasibility Restoration Close to a Strict Local Solution

Even close to a strict local solution x�� of the barrier problem (2.38) the feasibility

restoration phase may still be invoked (see Remark 4.1 on page 100). In order to

avoid that the new iterate xk+1, returned from the feasibility restoration phase,

diverts from x�� , we propose the following procedure. If the restoration phase is

invoked at points where the KKT error (the norm of the left hand side of (2.39)

or for a primal-dual method (2.40)) is small, continue to take steps into the usual

search directions dk from (3.3) (now within the restoration phase), as long as the

KKT error is decreased by a �xed fraction. If this is not possible, we have to revert

to a di�erent algorithm for the feasibility restoration phase; e.g. Tron within Ipopt.

If xk is su�ciently close to a strict local solution x�� for the barrier problem (2.38)

satisfying the SOS conditions, then x�� is a point of attraction for Newton's method,

so that this procedure will be able to deliver a new iterate xk+1 which is su�ciently

feasible in order to be accepted by the current �lter and at the same time approaches

x�� , so that overall limk xk = x�� is guaranteed.

In Ipopt, this reduction of the KKT error is always tried before calling Tron,

even if the current error is not small.

3.4.5 Filter Modi�cation as �! 0

Local convergence of barrier methods has been discussed by other researchers, in

particular by Nash and Sofer [66] for primal methods, and by Gould, Orban, Sarte-
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naer, and Toint [48, 47] for primal-dual methods. In their approaches, the barrier

problem (2.38) is solved to a certain tolerance � > 0 for a �xed value of the barrier

parameter �. The parameter � is then decreased and the tolerance � is tightened for

the next barrier problem. It is shown that if the parameters � and � are updated in

a particular fashion (see also Section 3.1), a starting point enhanced by extrapola-

tion will eventually solve the next barrier problem already to the new tolerance �.

Then the barrier parameter � will be decreased again immediately, thus leading to

superlinear convergence rate of the overall interior point algorithm for solving the

original NLP (2.1). These techniques can also be applied to the barrier algorithm

proposed in this dissertation. For this, the current �lter is simply deleted and Algo-

rithm Filter is re-started in Step 1 after the value of the barrier parameter � has

been changed and the improved starting point for the new barrier problem has been

determined.

3.4.6 An Alternative Algorithm Based on Augmented Lagrangian

Function

The two measures '�(x) and �(x) can be considered as the two components of the

exact penalty function (3.20). Another popular merit function is the augmented

Lagrangian function (3.25). If ��� are the multipliers corresponding to a strict local

solution x�� of the barrier problem, then there exists a penalty parameter � > 0, so

that x�� is a strict local minimizer of `�;�(x; �
�
� ).

In the line search �lter method described in Section 3.4.2 we can alternatively

follow an approach based on the augmented Lagrangian function rather than on the

exact penalty function, by dividing the augmented Lagrangian function (3.25) into

its two components L�(x; �) (de�ned in (3.48)) and �(x). In Algorithm Filter we

then replace all occurrences of the measure �'�(x)� by �L�(x; �)�. In addition to

the iterates xk we now also keep iterates �k as estimates of the equality constraint

multipliers, and compute in each iteration k a search direction d�k for those variables,
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see Eq. (2.11). De�ning

�k(�k;l) := �k + �k;ld
�
k ;

the su�cient reduction criteria (3.28b) and (3.32) are then replaced by

L�(xk(�k;l); �k(�k;l)) � L�(xk; �k)� 
'�(xk) and

L�(xk(�k;l); �k(�k;l)) � L�(xk; �k) + �'mk(�k;l);

respectively, where the model mk for L� is now de�ned as

mk(�) := �r'�(xk)Tdk � ��Tk c(xk) + �(1� �)c(xk)T d�k (3.49)

� L�(xk + �dk; �k + �d�k)�L�(xk; �k)

which is obtained by Taylor expansion of '�(x) and c(x) around xk into direction

dk and the use of (3.3).

The switching condition (3.30) remains unchanged, but the de�nition of the

minimum step size (3.38) has to be changed accordingly. The only requirements for

this change are again that it is guaranteed that the method does not switch to the

feasibility restoration phase in Step 5.2 as long as the switching condition (3.30) is

satis�ed for a trial step size � � �k;l, and that the backtracking line search in Step 5

is �nite.

In Section 4.2.4 we will brie�y discuss how the global convergence analysis for

the original approach can be adapted to this alternative approach.



Chapter 4

Convergence Analysis

This chapter addresses the theoretical aspects regarding the convergence of the

method presented in the previous chapter. In Section 4.1 the counter example pre-

sented in Section 3.3.3 will be examined in more detail, including a discussion of the

implications for algorithms proposed by other researchers. In Section 4.2, the global

convergence properties of the line search �lter method introduced in Section 3.4 will

be proven under fairly mild assumptions. Section 4.3 examines its local convergence

properties, showing that the Maratos e�ect is successfully prevented by the second

order correction steps, allowing fast local convergence. Finally, Section 4.4 discusses

how the presented �lter line search techniques can be applied to active set SQP

methods.

71
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4.1 Discussion of a New Type of Global Convergence

Failure

In Section 3.3.3, a simple, well-posed example has been presented, on which an

unmodi�ed version of Ipopt failed in an unexpected way. In this section a more

general version of this example will be analyzed, and the implications for other

interior point methods will be discussed. As mentioned in Section 2.8, a number of

interior point methods for general nonlinear programming has been proposed over

the past years. For some of those theoretical global convergence properties have been

proved (see for example [21, 33, 77, 78, 88, 89]).

However, it will now be demonstrated that some of the current methods ([33,

42, 78, 80, 88, 89]), in particular many line search methods, can fail to converge to

feasible points when applied to a well-posed problem. In those cases, the limit point

of the sequence of iterates can depend arbitrarily on the choice of the starting point.

In the next section, the class of a�ected algorithms will be de�ned. The general

example problem is introduced in Section 4.1.2, and it is shown that those methods

fail to converge to feasible points when started from certain starting points. In

Section 4.1.3 the implications of this result will be discussed. In particular, it will

be examined how this result is compatible with the global analysis for some of the

a�ected methods, and why some other methods do not fail.

4.1.1 A�ected Class of Interior Point Methods for NLP

The algorithms that we want to consider fall into the class of barrier methods as

described in Section 2.7. They can be understood as Newton-type methods that

generate search directions by linearizing the �rst order optimality conditions for the

barrier problem (2.38), or by linearizing the equivalent primal-dual equations (2.40).

The barrier parameter � is eventually driven to zero, and the iterates are always

required to satisfy (2.42).

Let us now de�ne the algorithmic framework of those methods for which we will
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demonstrate the convergence problem:

Algorithm Gip (Generalized Interior Point).

Given a (primal) starting point x0 2 Rn that strictly satis�es the bound constraints,

i.e. x
(i)
0 > 0 for i 2 I. Initialize k := 0.

1. Compute a (primal) search direction dk that satis�es the linearization of the

equality constraints (2.38b), i.e.

AT
k dk + ck = 0: (4.1)

2. Determine a step length �k 2 (0; 1], so that the next iterate will still strictly

satisfy the bound constraints, i.e.

x
(i)
k+1 := x

(i)
k + �kd

(i)
k > 0 for i 2 I: (4.2)

3. Increase iteration counter k  k + 1, and go to 1.

This framework is fairly general and covers many of the current interior point

methods that use line searches (e.g. [26, 33, 42, 80, 88]). The method can be a

primal-only or primal-dual method, and is independent of the rule for choosing the

barrier parameter �k at every iteration, as well as the choice of a particular merit

function or line search procedure. There are also trust region methods (e.g. [78, 89]),

that can be understood to belong to the class of Algorithm Gip.

In general, however, trust region methods (such as Knitro [22]) may not belong

to this class, since the determination of direction and length of the step is usually

not separated into two successive events as above. Also, penalty barrier methods as

described by Forsgren and Gill [39] are not of the type Algorithm Gip, since in those

line search methods the search directions are obtained by linearizing system (2.40)

with equation (2.40b) replaced by

c(j)(x) + ��(j) = 0 for j 2 f1; : : : ;mg;

so that the search directions usually do not satisfy condition (4.1).
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We will argue in the following sections, that any method belonging to the class

of Algorithm Gip cannot be guaranteed to be globally convergent.

4.1.2 Analysis of the General Counter Example

The general version of the counter example (3.26) that we want to consider here is

min
x2R3

f(x) (4.3a)

s.t. c(x) :=

0@c1(x)

c2(x)

1A =

8<:
�
x(1)

�2 � x(2) + a

x(1) � x(3) � b

9=; = 0 (4.3b)

x(2); x(3) � 0; (4.3c)

where f(x) is some objective function, and a; b 2 R are constants with b � 0. As

we will see, the convergence problem is caused by the constraints only so that the

particular choice of f(x) is not important.

If for example f(x) = x1, it can easily be seen that there is only one stationary

point for this problem, which is the global minimizer of the problem. For a 6= �b2,
the su�cient second order optimality conditions and strict complementarity hold at

this solution. In addition, the smallest singular value of the Jacobian of the equality

constraints, A(x)T , is at least 1 for all x 2 R3 , i.e. there is no degeneracy hidden

in the equality constraints. In other words, this almost linear example problem is

well-posed.

However, the following theorem demonstrates, that a method of the type Algo-

rithm Gip will never converge to a feasible point, if started from within a fairly large

region.

Theorem 4.1 Let fxkg be a sequence generated by Algorithm Gip applied to problem

(4.3) with a starting point x0 satisfying x
(1)
0 < 0, x

(2)
0 ; x

(3)
0 > 0; note that this

implies c2(x0) < 0. In addition, assume that a � rb � minf0;�a
2g with the ratio

r := c1(x0)
jc2(x0)j

� 0. Then, for all k, we have x
(1)
k < �r, c1(xk) � (r + b)r, and

c2(xk) < �(r + b).
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Before we prove this theorem, we want to emphasize that the assumptions made

for the starting point x0 are not very strong: In case a � 0, r can take any nonneg-

ative value, so that all x0 with x
(1)
0 � �

q
x
(2)
0 � a and x

(2)
0 ; x

(3)
0 > 0 are allowed. In

case a > 0 (and consequently b > 0), we need to ensure r � 3a
2b , which is valid for all

x
(1)
0 � �

3a

4b
�
r

9a2

16b2
+
a

2
+ x

(2)
0 +

3a

2b
x
(3)
0 and x

(2)
0 ; x

(3)
0 > 0;

such as x0 = (�3; 1; 1)T for a = b = 1.

Proof. An essential ingredient for the proof is the ratio of the constraint values

c1(xk)
jc2(xk)j

, which will be shown to be bounded below by r. For later reference we note

that the conditions

c1(xk)

jc2(xk)j � r and c2(xk) < 0 (4.4)

imply

(x
(1)
k )2 � x(2)k + a � �r

�
x
(1)
k � x(3)k � b

�
=) (x

(1)
k )2 + rx

(1)
k + (a� rb) � x

(2)
k + rx

(3)
k > 0 (4.5)

since x
(2)
k ; x

(3)
k > 0. Denoting the roots of the quadratic function on the left hand

side of (4.5) by x
(1)
� and x

(1)
+ with x

(1)
� � x(1)+ , we see that, since a�rb � 0, conditions

(4.4) imply that

either x
(1)
k < x

(1)
� or x

(1)
k > x

(1)
+ : (4.6)

Note, that

x
(1)
� � �r � 0 � x(1)+ ; (4.7)

where we again used the assumption a� rb � 0.

In the following we show by induction that for all k

(ik) c2(xk) < 0 (iik)
c1(xk)

jc2(xk)j � r (iiik) x
(1)
k < x

(1)
� :

By assumption, (i0) and (ii0) are true, and (iii0) follows from (4.6), (4.7), and

the assumption x
(1)
0 < 0.
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Now assume that (ik)-(iiik) are true. It can easily be seen that the search direc-

tions satisfying condition (4.1) may be expressed in the form

dk =

0BBBB@
0

(x
(1)
k )2 � x(2)k + a

x
(1)
k � x(3)k � b

1CCCCA+ �k

0BBBB@
1

2x
(1)
k

1

1CCCCA (4.8)

for some �k 2 R, so that

x
(1)
k+1 = x

(1)
k + �k�k (4.9a)

x
(2)
k+1 = x

(2)
k + �k

�
(x

(1)
k )2 � x(2)k + a

�
+ 2x

(1)
k �k�k (4.9b)

x
(3)
k+1 = x

(3)
k + �k

�
x
(1)
k � x(3)k � b

�
+ �k�k (4.9c)

where �k 2 (0; 1] is the step length chosen to ensure (4.2).

We �rst show by contradiction that �k < 1. If �k = 1, x
(3)
k+1 = x

(1)
k � b+ �k > 0

would imply that x
(1)
k + �k > b � 0, and hence also ��k < x

(1)
k < �r < 0 by (iiik)

and equation (4.7). These inequalities, together with a� rb � 0, yield

x
(2)
k+1 + rx

(3)
k+1 = (x

(1)
k )2 + a+ 2x

(1)
k �k + r

�
x
(1)
k � b+ �k

�
=

�
x
(1)
k + �k

��
x
(1)
k + r

�
+ (a� rb) + x

(1)
k �k < 0:

This is a contradiction to (4.2) and r � 0. Hence,

�k < 1: (4.10)

Further, since c2 is linear, it is

c2(xk+1) = (1� �k) c2(xk); (4.11)

so that �k < 1 and (ik) validate (ik+1).

Looking at the �rst constraint, it is easy to verify that

c1(xk+1) = �2k�
2
k + (1� �k) c1(xk) � (1� �k) c1(xk): (4.12)

Since from (4.11) it is (1� �k) = jc2(xk+1)j=jc2(xk)j we obtain
c1(xk+1)

jc2(xk+1)j �
c1(xk)

jc2(xk)j
(iik)� r;
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i.e. we have shown (iik+1).

Finally, we prove (iiik+1) by contradiction. Suppose that x
(1)
k+1 � x

(1)
� , so that

from (4.6) x
(1)
k+1 > x

(1)
+ , and consequently from (4.9a)

�k�k > x
(1)
+ � x(1)k : (4.13)

For the case a � 0 it is

x
(1)
+

(4.7)

� 0 � � a

2x
(1)
k

whereas for the other case a > 0 we note that x
(1)
� x

(1)
+ = a� rb � �a=2 by assump-

tion, i.e. x
(1)
� < 0, and

x
(1)
+ � �

a

2x
(1)
�

(iiik)
> � a

2x
(1)
k

:

Thus, from (4.13)

�k�k > � a

2x
(1)
k

� x(1)k > � a

2x
(1)
k

� 1

2
x
(1)
k

=) 2x
(1)
k �k�k < �a� (x

(1)
k )2;

so that with (4.9b)

x
(2)
k+1 < x

(2)
k + �k

�
(x

(1)
k )2 � x(2)k + a

�
� a� (x

(1)
k )2

= �(1� �k)c1(xk)
(iik)� �(1� �k)r jc2(xk)j

� 0;

which contradicts (4.2). Thus, we have shown that (ik)�(iiik) are valid for all k.

Now, from (iiik) and (4.7), we have x
(1)
k < �r for all k, and consequently

c2(xk) = x
(1)
k � x(3)k � b < �r + 0� b:

Also, by induction on (4.12) and (4.11), we have

c1(xk) �
k�1Y
i=0

(1� �i)c1(x0)

�(r + b) > c2(xk) =

k�1Y
i=0

(1� �i)c2(x0) (4.14)
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so that
k�1Y
i=0

(1� �i) > r + b

jc2(x0)j
and

c1(xk) � (r + b)
c1(x0)

jc2(x0)j :

2

For the discussion in the next section we want to point out, that the sequence

fxkg in Theorem 4.1 is bounded: From (4.14) we see that the linear function c2(xk) is

monotonically increasing. As a consequence of this and the fact that x
(1)
k is bounded

above and x
(3)
k is bounded below, both x

(1)
k and x

(3)
k are bounded. The boundedness

of x
(1)
k and c1(xk) � 0 implies that x

(2)
k is also bounded.

4.1.3 Discussion

Theorem 4.1 shows, that if the starting point x0 is chosen such that b + r > 0,

Algorithm Gip cannot reach any feasible points, even asymptotically, since the value

of c2(x) is bounded away from zero. If in addition r > 0, the values of both equality

constraints are bounded away from zero, and by choosing appropriate starting points,

their values can be kept arbitrarily large.

One might hope that the limit points of the sequence of iterates fxkg generated
by Algorithm Gip are at least minimizers for the constraint violation kc(x)k in some

norm, and that in this sense they are points at which the problem seems �locally

infeasible�. But for r > 0 it is easy to see, that at every limit point x� of fxkg
the violation of both equality constraints can be made smaller by increasing x

(1)
�

and keeping x
(2)
� and x

(3)
� constant. One can even show, that for all 1 � p � 1

the directional derivative at x� of the infeasibility measure �p(x) := kc(x)kp in the

direction d� = (1; 0; 0)T is negative. In other words, d� is a descent direction for

the constraint violation (measured in any `p-norm), and since it does not a�ect

the bounded variables, it is �compatible� with the bounds in the sense that a step

into this direction does not lead to a violation of the bound constraints. There are,
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however, methods (see below) that can be shown not to produce such limit points,

which seem arbitrary and do not provide any useful insight to the user.

In numerical tests on this problem we observed that the methods that we applied

and that belong to the class of Algorithm Gip (namely Ipopt with exact penalty

function line search, see Section 3.3.3, and an earlier version of Loqo as described in

[80]), converge quickly to points of the form �x = (�x1; 0; 0), i.e. the iterates �crashed

into their bounds.� The �rst component could be almost arbitrarily chosen within

a su�ciently negative range by changing the starting point. Note, that those limit

points are degenerate in the sense that the gradients of the active constraints (both

equality constraints and both bound constraints) are linearly dependent.

What property of problem (4.3) could be responsible for the convergence prob-

lem? In the proof of Theorem 4.1 we showed for all iterates xk that independent

of the particular choice of a search direction dk satisfying the linearized equality

constraints (4.1), it is never possible to take a full step (see (4.10)). In other words,

one can show that Algorithm Gip is con�ned to a region where at all points the

linearized equality constraints (4.1) together with the linearized bound constraints

x
(i)
k + d

(i)
k � 0 for i 2 I

form an inconsistent system of equations and inequalities. This situation is a well-

known di�culty for another class of optimization methods. In an SQP framework

(see Section 2.3) this inconsistency would be detected immediately, since the QP

(2.12), which needs to be solved at an iterate xk in order to compute a search

direction, would be infeasible. In order to continue with the optimization process

at all, one would relax some of the constraints or switch to a restoration phase,

which tries to �nd a feasible point. In an interior point framework, however, the

immediate detection of such inconsistency is not obvious, and in many other cases

the methods will eventually reach points where the constraints are consistent. But

here it seems that search directions, which are con�ned to the a�ne subspace de�ned

by equation (4.1), cannot take the bound constraints (2.1c) su�ciently into account.
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The con�icting conditions (4.1) and (4.2) prevent us from taking steps with su�cient

progress towards stationary points for feasibility.

In summary, we claim that interior point methods for solving NLPs of the form

(2.1) following Algorithm Gip are not globally convergent since they can fail to

converge to a meaningful point if applied to a well-posed problem. For some a�ected

methods, as those in [33, 78, 88, 89], global convergence results have been published.

In the following discussion, we analyze which of the assumptions made for those

results are violated when the methods are applied to problem (4.3).

The algorithm proposed by El-Bakry et. al. [33] solves the problem formulation

(4.3) with f(x) = x1 according to Algorithm Gip after introducing slack variables

(x2 and x3) for the original problem

min
x12R

x1 (4.15a)

s.t. g(x) :=

8<: (x(1))2 + a

x(1) � b

9=; � 0: (4.15b)

It has been shown under certain assumptions (see Assumptions (C1)�(C4) on p. 532

in [33]) that all limit points of the sequence fxkg generated by this algorithm are

KKT points for problem (4.15) or (4.3). Since fxkg is bounded � as shown in the

last paragraph of Section 4.1.2 � three of those assumptions, namely (C1)�(C3),

are readily satis�ed. Thus, the remaining �Regularity Assumption� (C4) must be

violated. This assumption basically states that the gradients of those inequality

constraints (4.15b) belonging to slack variables that are not bounded away from

zero, are linearly independent. Since the (one-dimensional) gradients of (4.15b)

taken individually are always linearly independent, a violation of assumption (C4)

implies that the slack variables for both inequality constraints are not bounded away

from zero, i.e. this method will generate a sequence fxkg with lim infk!1 x
(2)
k =

lim infk!1 x
(3)
k = 0, which is con�ned to an infeasible region.

The analysis for the �lter method proposed by Ulbrich, Ulbrich, and Vicente [78]

makes essentially the same assumptions, here directly stated as uniform boundedness
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of inverse of the matrix in (3.2), a property implied by the assumptions made in [33].

We should point out, however, that also the feasibility restoration phase proposed

in [78] takes steps according to Algorithm Gip. If a di�erent method is chosen to

perform this task, the convergence problem can be prevented.

The algorithm analyzed by Yamashita [88], which follows a barrier approach, is

shown � for a �xed value of the barrier parameter � � to generate a sequence

of iterates, whose limit points are stationary points for the barrier problem (2.38).

However, as shown above in Theorem 4.1, this cannot be the case for all admissible

starting points. The assumptions made for the global convergence result (see The-

orem 6.3 in [88]) can be guaranteed to be satis�ed, except for the assumption, that

the (�xed) penalty parameter � for the exact `1-penalty function (3.20) is always

larger than k�kk1, where �k is the estimate of the multipliers for the equality con-

straints (2.38b) at iteration k. These multiplier estimates are treated as iterates, so

that a violation of the latter assumption indicates that the sequence f�kg must be
unbounded. Thus, this assumption, like the �Regularity Assumption� in [33], per-

tains to the behavior of the algorithm rather than to the problem statement itself. A

similar argument applies to the trust region method proposed by Yamashita, Yabe,

and Tanabe [89].

There are, however, interior point methods that can be shown in theory as well

as in practice to solve example (4.3) without any problems, such as the trust region

method Knitro analyzed by Byrd, Gilbert, and Nocedal [21]; see also Section 2.8

of a brief description. In contrast to Algorithm Gip, this method is not restricted

to take steps that are fractions of a direction leading into the linearized constraints

(4.1). Instead, at an iterate xk, the generated step dk is guaranteed to make at least

as much progress in the linearized feasibility measure ~�2
2(d) :=



AT
k d+ ck



2
2
as a

scaled Cauchy step qcsk [21]. This step qcsk is de�ned as a step into the direction of

steepest descent for ~�2
2(d) after an a�ne scaling of the variables. As a consequence

of this scaling, this direction is �bent away from the boundary� in the sense that it

is the smaller for a component i of xk, the closer x
(i)
k is to its bound. In this way,
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the proximity of xk to the boundary of the region de�ned by the bound constraints

(2.1c) is taken into account during the determination of the search direction. The

length of qcsk is chosen to minimize ~�2
2(d) subject to the trust region and a condition

that ensures that xk + qcsk is su�ciently within the bounds. Overall, this procedure

allows to show under very mild assumptions, that any limit point x� generated by

this algorithm is a stationary point for the feasibility measure �2
2(x) = kc(x)k22 under

consideration of active bounds, i.e.
@(�2

2)

@x(i)
(x�) = 0 for all i with x

(i)
� > 0 or i 62 I.

After the initial publication of the counter example and the above discussion in [83],

several researchers have addressed this global convergence problem. It has been

discussed by Marazzi and Nocedal [57] as an example where nonlinear optimization

methods fail to exert �feasibility control�. Benson, Shanno, and Vanderbei [9] propose

a shifting of slack variables s; w; p in (2.50) as a remedy for Loqo, which seems to

overcome the convergence problem in practice and is implemented in the current

version of Loqo. Tits, Urban, Bakhtiari, and Lawrence [77] stress in their analysis,

that their proposed line search interior point method does not su�er from the above

convergence problem. Here, equality constraints are handled by relaxing them into

inequality constraints that are penalized on the other side by a penalty term added

to the objective function. As a consequence, the generated search directions do not

necessarily satisfy the linearization of the equality constraints (4.1).

Ipopt encounters no problems solving (3.26) using the �lter approach, requiring

a total for 23 iterations, of which 4 are taken within Tron.

Interestingly, whereas the iterates in Table 3.1 have been obtained with Æ2 = 0 in

(3.7) for all iterations, Ipopt can solve the example problem with a merit function

line search (e.g. using the augmented Lagrangian), when Æ2 is set to a small value as

in the implemented heuristic � then the linearization (4.1) does no longer hold and

the iterates are not trapped in an infeasible region.
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4.2 Global Convergence Analysis of Line Search Filter

Methods

In this section we will discuss the global convergence properties of the �lter line

search method stated as Algorithm Filter in Section 3.4. As before we will assume

here for the sake of simpli�ed notation, that I = f1; : : : ; ng in (2.1c). However, it is

straightforward to generalize the analysis for the case with fewer bounds.

4.2.1 Assumptions and Preliminary Results

Notation. In the remainder of this chapter we will denote the set of indices of those

iterations, in which the �lter has been augmented according to (3.34), by A � N;

i.e.

Fk $ Fk+1 () k 2 A: (4.16)

The setR � N will be de�ned as the set of all iteration indices in which the feasibility

restoration phase is invoked. Since Step 9 in Algorithm Filter makes sure that the

�lter is augmented in every iteration in which the restoration phase is invoked, we

have R � A. We will denote with Rinc � R the set of those iteration counters, in

which the linear system (3.3) is too inconsistent and the restoration phase is invoked

from Step 3.

Let us �rst state the assumptions necessary for the global convergence analysis

of Algorithm Filter. Since the barrier objective function (2.38a) and its derivatives

become unbounded as xk approaches the boundary of the non-negative orthant fx 2
Rn : x � 0g, it is more convenient to scale the �rst row and column of the linear

system (3.3) by Xk to obtain24 ~Hk
~Ak

~AT
k 0

350@ ~dk

�+k

1A = �
0@Xkrf(xk)� �e

ck

1A; (4.17)

where ~Ak := ~Ak with ~A(x) := XA(x), ~dk := X�1
k dk, and ~Hk := XkHkXk.
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Assumptions G. Let fxkg be the sequence generated by Algorithm Filter, where

we assume that the feasibility restoration phase in Step 9 always terminates success-

fully and that the algorithm does not stop in Step 2 at a �rst-order optimal point of

the barrier problem.

(G1) There exists an open set C � Rn with [xk; xk + �max
k dk] � C for all k 62 Rinc,

so that f and c are di�erentiable on C, and their function values, as well as

their �rst derivatives, are bounded and Lipschitz-continuous over C.

(G2) The iterates are bounded, i.e. there exists Mx > 0 with kxkk �Mx for all k.

(G3) The matrices Hk approximating the Hessian of the Lagrangian in (3.3) are

uniformly bounded for all k 62 Rinc.

(G4) There exists a constant �inc, so that k 62 Rinc whenever �(xk) � �inc, i.e. the

linear system (3.3) is �su�ciently consistent� at su�ciently feasible points.

(G5) There exists a constant MA > 0, so that for all k 62 Rinc we have

�min( ~Ak) �MA:

(G6) The scaled Hessian approximations ~Hk are uniformly positive de�nite on the

null space of the scaled Jacobian ~AT
k . In other words, there exists a constant

MH > 0, so that for all k 62 Rinc

�min

�
~ZT
k
~Hk

~Zk

�
�MH ; (4.18)

where the columns of ~Zk 2 Rn�(n�m) form an orthonormal basis matrix of the

null space of ~AT
k .

Assumptions (G1) and (G3) merely establish smoothness and boundedness of the

problem data. Assumption (G2) may be considered rather strong since it explicitly

excludes divergence of the iterates. In particular in an interior point framework this

might constitute a problematic issue. However, it is necessary in our analysis to
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make this assumption as it guarantees that the barrier objective function (2.38a) is

bounded below.

As we will see later in Lemma 4.2, Assumption (G6) ensures a certain descent

property and it is similar to common assumptions on the reduced Hessian in SQP

line search methods (see e.g. [69]). To guarantee this requirement in a practical

implementation, one could compute a QR-factorization of ~Ak to obtain matrices

~Zk 2 Rn�(n�m) and ~Yk 2 Rn�m so that the columns of [ ~Zk ~Yk] form an orthonormal

basis of Rn , and the columns of ~Zk are a basis of the null space of ~AT
k (see e.g. [42]).

Then, as in (2.20), the overall scaled search direction can be decomposed into

~dk = qk + pk; (4.19)

where qk := ~Yk�qk and pk := ~Zk �pk with

�qk := �
h
~AT
k
~Yk

i�1
ck (4.20a)

�pk := �
h
~ZT
k
~Hk

~Zk

i�1
~ZT
k

�
Xkrf(xk)� �e+ ~Hkqk

�
(4.20b)

(similar to (2.23) and (3.9)). The eigenvalues for the reduced scaled Hessian in

(4.20b) (the term in square brackets) could be monitored and modi�ed if necessary.

However, this procedure is prohibitive for large-scale problems, and in those cases

one instead might employ heuristics to ensure at least positive de�niteness of the

reduced Hessian, for example, by monitoring and possibly modifying the inertia of

the iteration matrix in (3.3) or (4.17) (as for example proposed in Section 3.2.1).

Note, on the other hand, that (4.18) holds in the neighborhood of a local solution

x�� satisfying the SOS conditions, if Hk approaches the exact Hessian (3.47) of the

Lagrangian of the barrier problem. Then, close to x�� , no eigenvalue correction will

be necessary and fast local convergence can be expected, assuming that full steps

are taken close to x�� .

The regularity requirement (G5) ensures that, whenever the scaled gradients of

the constraints become (nearly) linearly dependent, the method has to switch to the

feasibility restoration phase in Step 3. In practice one could monitor the singular
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values of ~Y T
k

~Ak in (4.20a), which are identical to the singular values of ~A, as a

criterion when to switch to the restoration phase in Step 3.

Note that for x � 0, rank-de�ciency of the scaled Jacobian XA(x), that is

�min(XA(x)) = 0, is equivalent to the statement that the gradients of the equality

constraints and of the bound constraints active at x,

rc1(x); : : : ;rcm(x); and ei for i 2 fj : x(j) = 0g; (4.21)

are linearly dependent. With this in mind we can replace Assumptions (G4) and

(G5) by the following assumption.

(G5�) At all feasible points x the gradients of the active constraints (4.21) are lin-

early independent.

If (G5�) holds, there exists constants b1; b2 > 0, so that

�(xk) � b1 =) �min( ~Ak) � b2

due to the continuity of �min(XA(x)) as a function of x and the assumed boundedness

of the iterates. If we now decide to invoke the feasibility restoration phase in Step 3

whenever �min( ~Ak) � b3�(xk) for some �xed constant b3 > 0, then Assumptions (G4)

and (G5) hold.

In contrast to most previously analyzed interior point methods for general nonlin-

ear programming (with the exception of [21]), this allows the treatment of degenerate

constraints at non-feasible points. Assumption (G5�) is considerably less restrictive

than those made in the analysis of [33, 78, 88, 89], where it is essentially required

that the gradients of all equality constraints and active inequality constraints (4.21)

are linearly independent at all points, and not only at all feasible points. The as-

sumptions made in [77] are weaker than this, but still require at all points linear

independence of the gradients of all active equality and inequality constraints. Also

note that Assumption (G5�) is satis�ed in the problematic example presented in

Section 4.1.
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Similar to the analysis in [35], we will make use of a �rst order criticality mea-

sure �(xk) 2 [0;1] with the property that, if a subsequence fxkig of iterates with
�(xki) ! 0 converges to a feasible limit point x�, then x� corresponds to a �rst

order optimal solution (assuming that certain constraint quali�cations such as linear

independence of the constraint gradients hold at x�; see Assumption (G5)). In the

case of the barrier method Algorithm Filter this means that there exist ��, so that

the KKT conditions (2.39) are satis�ed for (x�; ��).

For the convergence analysis of the barrier method we will de�ne the criticality

measure for iterations k 62 Rinc as

�(xk) := k�pkk2 ; (4.22)

with �pk from (4.20b). Note that this de�nition is unique, since pk in (4.19) is unique

due to the orthogonality of ~Yk and ~Zk, and since k�pkk2 = kpkk2 due to the orthonor-
mality of ~Zk. For completeness, we may de�ne �(xk) :=1 for k 2 Rinc.

In order to see that �(xk) de�ned in this way is indeed a criticality measure under

Assumptions G, let us consider a subsequence of iterates fxkig with limi �(xki) = 0

and limi xki = x� for some feasible limit point x�. From Assumption (G4) we then

have ki 62 Rinc for i su�ciently large. Furthermore, from Assumption (G5) and

(4.20a) we have limi �qki = 0, and then from limi �(xki) = 0, (4.22), (4.20b), and

Assumption (G6) we have that

lim
i!1
k ~ZT

ki
(Xkirf(xki)� �e) k = lim

i!1
k ~ZT

ki
Xkir'�(xki)k = 0: (4.23)

Zki := X�1
ki

~Zki is a null space matrix of the unscaled Jacobian AT
ki
. If x� > 0, then

X�1
ki

is uniformly bounded, and from (4.23) we have limi kZT
ki
r'�(xki)k = 0, which

is a well-known optimality measure (see e.g. [69]).

However, we also need to consider the case where the l-th component x
(l)
� of the

limit point x� is zero. Since ~Yki and
~Zki in (4.19) have been chosen to be orthogonal

and ~Zki is an orthonormal basis of the null space of ~AT
ki
, premultiplying a vector by

~ZT
ki

gives the orthogonal projection of this vector onto the null space of the scaled
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Jacobian ~AT
k in the scaled space. Therefore, we can write (4.23) equivalently as

lim
i!1





�(I � ~Aki

h
~AT
ki
~Aki

i�1
~AT
ki

�
(Xkirf(xki)� �e)





 = 0:

Rearranging terms we then obtain

lim
i!1

Xki

�
rf(xki)�Aki

h
~AT
ki
~Aki

i�1
~AT
ki
(Xkirf(xki)� �e)

�
= �e: (4.24)

Since �min( ~Aki) is uniformly bounded away from zero due to Assumption (G5), the

expression in the large round brackets on the left hand side of (4.24) is bounded,

so that the l-th component of the left hand side expression would converge to zero,

whereas � on the right hand side is non-zero. This contradiction shows that x� > 0.

Before we begin the global convergence analysis, let us state some preliminary results.

Lemma 4.1 Suppose Assumptions G hold. Then there exist constantsM ~d, Md, M�,

Mm > 0, such that

k ~dkk �M ~d; kdkk �Md; k�+k k �M�; jmk(�)j �Mm� (4.25)

for all k 62 Rinc and � 2 (0; 1]. Furthermore, there exists a constant ��max > 0, so

that for all k 62 Rinc we have �max
k � ��max > 0.

Proof. From (G1) and (G2) it is clear that the right hand side of (4.17) is uni-

formly bounded. Additionally, Assumptions (G3), (G5), and (G6) guarantee that

the inverse of the matrix in (4.17) exists and is uniformly bounded for all k 62 Rinc.

Consequently, the solution of (4.17), ( ~dk; �
+
k ), as well as dk = Xk

~dk are uniformly

bounded. Then it also follows that

mk(�)=� = r'�(xk)T dk = (Xkrf(xk)� �e)T ~dk

is uniformly bounded.

The fraction-to-the-boundary rule (3.27) can be reformulated as

�max
k

~dk � ��e:
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Thus, since ~dk is uniformly bounded for all k 62 Rinc, �
max
k is uniformly bounded

away from zero for all k 62 Rinc. 2

The following result shows that the search direction is a direction of su�cient descent

for the barrier objective function at points that are su�ciently feasible and non-

optimal.

Lemma 4.2 Suppose Assumptions G hold. Then the following statement is true:

If fxkig is a subsequence of iterates for which �(xki) � � with
a constant � > 0 independent of i, then there exist constants

�1; �2 > 0, such that

�(xki) � �1 =) mki(�) � ��2�:

for all i and � 2 (0; 1].

Proof. Consider a subsequence fxkig with �(xki) = k�pkik2 � �. Then, by As-

sumption (G4), for all xki with �(xki) � �inc we have ki 62 Rinc. Furthermore, with

qki = O(kc(xki)k) (from (4.20a) and Assumption (G5)) it follows that for ki 62 Rinc

mki(�)=� = r'�(xki)Tdki
= r'�(xki)TXki

~dki

(4:19)
= r'�(xki)TXki

~Zki �pki +r'�(xki)TXkiqki

(4:20b)
= ��pTki

h
~ZT
ki
~Hki

~Zki

i
�pki � �pTki

~ZT
ki
~Hkiqki

+(Xkirf(xki)� �e)T qki (4.26)

(G3);(G6)

� �c1 k�pkik22 + c2 k�pkik2 kc(xki)k+ c3kc(xki)k

� �(xki)
�
�� c1 + c2�(xki) +

c3
�
�(xki)

�
for some constants c1; c2; c3 > 0, where we used �(xki) � � in the last inequality. If

we now de�ne

�1 := min

�
�inc;

�2 c1
2(c2 �+ c3)

�
;
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it follows for all xki with �(xki) � �1 that

mki(�) � ��
� c1
2
�(xki) � ��

�2 c1
2

=: ���2:

2

Lemma 4.3 Suppose Assumptions (G1) and (G2) hold. Then there exist constants

C�; C' > 0, so that for all k 62 Rinc and � � �max
k

j�(xk + �dk)� (1� �)�(xk)j � C��
2 kdkk2 (4.27a)

j'�(xk + �dk)� '�(xk)�mk(�)j � C'�
2k ~dkk2: (4.27b)

Since the proof of this lemma is similar to the proof of Lemma 3.1 in [21], we

omit it for the sake of brevity.

Finally, we show that Step 9 (feasibility restoration phase) of Algorithm Filter is

well-de�ned. Unless the feasiblity restoration phase terminates at a stationary point

of the constraint violation it is essential that reducing the infeasibility measure �(x)

eventually leads to a point that is acceptable to the �lter. This is guaranteed by the

following lemma which shows that no (�; ')-pair corresponding to a feasible point is

even included in the �lter.

Lemma 4.4 Suppose Assumptions G hold. Then

�(xk) = 0 =) mk(�) < 0 and (4.28)

�k := minf� : (�; ') 2 Fkg > 0 (4.29)

for all k and � 2 (0; 1].

Proof. If �(xk) = 0, we have from Assumption (G4) that k 62 Rinc. In addition,

it then follows �(xk) > 0 because Algorithm I would have terminated otherwise in

Step 2. Considering the decomposition (4.19), it follows with (4.26) that

mk(�)

�
= r'�(xk)Tdk � �c1�(xk)2 < 0;
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i.e. (4.28) holds.

The proof of (4.29) is by induction. It is clear from Step 1 of Algorithm Filter,

that the claim is valid for k = 0 since �max > 0. Suppose the claim is true for k.

Then, if �(xk) > 0 and the �lter is augmented in iteration k, it is clear from the

update rule (3.34), that �k+1 > 0, since 
� 2 (0; 1). If �(xk) = 0, Lemma 4.2 implies

that the switching condition (3.30) is true for all trial step sizes, so that in Step 5.4

�Case I� is always considered and �k must have been accepted, because it satis�es

(3.32). Consequently, the �lter is not augmented in Step 7. Hence, �k+1 = �k > 0.

2

4.2.2 Feasibility

In this section we will show that under Assumptions G the sequence �(xk) converges

to zero, i.e. all limit points of fxkg are feasible.

Lemma 4.5 Suppose that Assumptions G hold, and that the �lter is augmented only

a �nite number of times, i.e. jAj <1. Then

lim
k!1

�(xk) = 0: (4.30)

Proof. Choose K, so that for all iterations k � K the �lter is not augmented in

iteration k; in particular, k 62 Rinc � A for k � K. From Step 7 in Algorithm Filter

we then have, that for all k � K both conditions (3.30) and (3.32) are satis�ed for

�k. From (3.30) it follows with Mm from Lemma 4.1 that

Æ[�(xk)]
s� < [�mk(�k)]

s' [�k]
1�s' �M s'

m �k

and hence (since 1� 1=s' > 1=2)

c4[�(xk)]
s��

s�
s' < [�k]

1� 1
s' with c4 :=

�
Æ

M
s'
m

�1� 1
s'

;
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which with (3.32) and again (3.30) implies

'�(xk+1)� '�(xk) � �'mk(�k)

< ��'Æ
1
s' [�k]

1� 1
s' [�(xk)]

s�
s'

< ��'Æ
1
s' c4[�(xk)]

s� : (4.31)

Hence, for all i = 1; 2; : : :,

'�(xK+i) = '�(xK) +

K+i�1X
k=K

('�(xk+1)� '�(xk))

< '�(xK)� �'Æ
1
s' c4

K+i�1X
k=K

[�(xk)]
s� :

Since '�(xK+i) is bounded below (from Assumptions (G1) and (G2)), the series on

the right hand side in the last line is bounded, which in turn implies (4.30). 2

The following lemma considers a subsequence fxkig with ki 2 A for all i.

Lemma 4.6 Let fxkig be a subsequence of iterates, so that the �lter is augmented

in iteration ki, i.e. ki 2 A for all i. Furthermore assume that there exist constants

c' 2 R and C� > 0, so that

'�(xki) � c' and �(xki) � C�

for all i (for example, if Assumptions (G1) and (G2) hold). It then follows that

lim
i!1

�(xki) = 0:

Proof. We will prove the claim by contradiction. Suppose, that there exists

a constant c� > 0 so that for a subsequence fxkij g of fxkig we have �(xkij ) �
c�. Without loss of generality we can assume that �(xki) � c� for all i. Since

(�(xki); '�(xki)) 62 Fki , we can see from the �lter update formula (3.34), that the

�area� of the new �lter Fki+1 (in the 2-dimensional (�; ') plane) is at least by �� :=


�
'(c�)
2 > 0 larger than the area of Fki . This increase of the �lter in all iterations

ki by at least �� implies that the area of the �lter becomes in�nitely large, so that

because of '�(xki) � c' and c� � �(xki) � C� we obtain lim supi '�(xki) =1.
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Without loss of generality we can now assume that limi '�(xki) = 1 and that

f'�(xki)g is monotonically increasing. Since (�(xk(i+1)
); '�(xk(i+1)

)) 62 Fk(i+1)
�

F(ki+1) and '�(xk(i+1)
) � '�(xki), it follows from the �lter update rule (3.34) applied

in iteration ki that �(xk(i+1)
) � (1� 
�)�(xki) � �(xki)� 
�c�. From this, it follows

that limi �(xki) = �1, which is a contradiction to �(xki) � c�. Thus, the assumption

of the existence of c� > 0 must have been wrong, which concludes this proof. 2

The previous two lemmas prepare the proof of the following theorem.

Theorem 4.2 Suppose Assumptions G hold. Then

lim
k!1

�(xk) = 0:

Proof. In the case, that the �lter is augmented only a �nite number of times,

Lemma 4.5 implies the claim. If in the other extreme there exists some K 2 N, so
that the �lter is updated by (3.34) in all iterations k � K, then the claim follows

from Lemma 4.6. It remains to consider the case, where for all K 2 N there exist

k1; k2 � K with k1 2 A and k2 62 A.
The proof is by contradiction. Suppose, lim supk �(xk) =M > 0. Now construct

two subsequences fxkig and fxlig of fxkg in the following way.

1. Set i 0 and k�1 = �1.

2. Pick ki > ki�1 with

�(xki) �M=2 (4.32)

and ki 62 A. (Note that Lemma 4.6 ensures the existence of ki 62 A since

otherwise �(xki)! 0.)

3. Choose li := minfl 2 A : l > kig, i.e. li is the �rst iteration in ki in which the

�lter is augmented.

4. Set i i+ 1 and go back to Step 2.
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Thus, every xki satis�es (4.32), and for each xki the iterate xli is the �rst iterate

after xki for which (�(xli); '�(xli)) is included into the �lter.

Since (4.31) holds for all k = ki; : : : ; li � 1 62 A, we obtain for all i

'�(xli) � '�(x(ki+1)) < '�(xki)� �'Æ
1
s' c4[M=2]s� : (4.33)

This ensures that for all K 2 N there exists some i � K with '�(xk(i+1)
) � '�(xli)

because otherwise (4.33) would imply

'�(xk(i+1)
) < '�(xli) < '�(xki)� �'Æ

1
s' c4[M=2]s�

for all i and consequently limi '�(xki) = �1 in contradiction to the fact that

f'�(xk)g is bounded below (from Assumptions (G1) and (G2)). Thus, there ex-

ists a subsequence fijg of fig so that

'�(xk(ij+1)
) � '�(xlij ): (4.34)

Since xk(ij+1)
62 Fk(ij+1)

� Flij and lij 2 A, it follows from (4.34) and the �lter

update rule (3.34), that

�(xk(ij+1)
) � (1� 
�)�(xlij ): (4.35)

Since lij 2 A for all j, Lemma 4.6 yields limj �(xlij ) = 0, so that from (4.35) we

obtain limj �(xkij ) = 0 in contradiction to (4.32). 2

4.2.3 Optimality

In this section we will show that Assumptions G guarantee that at least one limit

point of fxkg is a �rst order optimal point for the barrier problem (2.38).

The �rst lemma shows conditions under which it can be guaranteed that there exists

a step length bounded away from zero so that the Armijo condition (3.32) for the

barrier function is satis�ed.
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Lemma 4.7 Suppose Assumptions G hold. Let fxkig be a subsequence with ki 62
Rinc and mki(�) � ���2 for a constant �2 > 0 independent of ki and for all � 2
(0; 1]. Then there exists some constant �� > 0, so that for all ki and � � ��

'�(xki + �dki)� '�(xki) � �'mki(�): (4.36)

Proof. Let M ~d; ��
max and C' be the constants from Lemma 4.1 and Lemma 4.3. It

then follows from (4.27b) for all � � �� with

�� := min

(
��max;

(1� �')�2
C'M2

~d

)
that

'�(xki + �dki)� '�(xki)�mki(�)

� C'�
2k ~dkik2 � �(1 � �')�2

� �(1� �')mki(�);

which implies (4.36). 2

Let us again �rst consider the �easy� case, in which the �lter is augmented only a

�nite number of times.

Lemma 4.8 Suppose that Assumptions G hold and that the �lter is augmented only

a �nite number of times, i.e. jAj <1. Then

lim
k!1

�(xk) = 0:

Proof. Since jAj < 1, there exists K 2 N so that k 62 A for all k � K. Suppose,

the claim is not true, i.e. there exists a subsequence fxkig and a constant � > 0,

so that �(xki) � � for all i. From (4.30) and Lemma 4.2 there exist �1; �2 > 0 and

~K � K, so that for all ki � ~K we have �(xki) � �1 and

mki(�) � ���2 for all � 2 (0; 1]: (4.37)

It then follows from (3.32) that for ki � ~K

'�(xki+1)� '�(xki) � �'mki(�ki) � ��ki�'�2:
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Reasoning similarly as in proof of Lemma 4.5, one can conclude that limi �ki = 0,

since '�(xki) is bounded below and since '�(xk) is monotonically decreasing (from

(4.31)) for all k � ~K. We can now assume without loss of generality that ~K is

su�ciently large, so that �ki < ��max with ��max from Lemma 4.1. This means that

for ki � ~K the �rst trial step �k;0 = �max
k has not been accepted. The last rejected

trial step size �ki;li 2 [�ki=�2; �ki=�1] during the backtracking line search procedure

then satis�es (3.30) since ki 62 A and �ki;li > �ki . Thus, it must have been rejected

because it violates (3.32), i.e. it satis�es

'�(xki + �ki;lidki)� '�(xki) > �'mki(�ki;li); (4.38)

or it has been rejected because it is not acceptable to the current �lter, i.e.

(�(xki + �ki;lidki); '�(xki + �ki;lidki)) 2 Fki = FK : (4.39)

We will conclude the proof by showing that neither (4.38) nor (4.39) can be true for

su�ciently large ki.

To (4.38): Since limi �ki = 0, we also have limi �ki;li = 0. In particular, for

su�ciently large ki we have �ki;li � �� with �� from Lemma 4.7, i.e. (4.38) cannot be

satis�ed for those ki.

To (4.39): Let �K := minf� : (�; ') 2 FKg. From Lemma 4.4 we have �K > 0.

Using Lemma 4.1 and Lemma 4.3, we then see that

�(xki + �ki;lidki) � (1� �ki;li)�(xki) + C�M
2
d [�ki;li ]

2:

Since limi �ki;li = 0 and from Theorem 4.2 also limi �(xki) = 0, it follows that for ki

su�ciently large we have �(xki + �ki;lidki) < �K which contradicts (4.39). 2

The next lemma establishes conditions under which a step size can be found that is

acceptable to the current �lter (see (3.33)).

Lemma 4.9 Suppose Assumptions G hold. Let fxkig be a subsequence with ki 62
Rinc and mki(�) � ���2 for a constant �2 > 0 independent of ki and for all � 2
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(0; 1]. Then there exist constants c5; c6 > 0 so that

(�(xki + �dki); '�(xki + �dki)) 62 Fki

for all ki and � � minfc5; c6�(xki)g.

Proof. LetMd;M ~d; ��
max; C�; C' be the constants from Lemma 4.1 and Lemma 4.3.

De�ne c5 := minf��max; �2=(M
2
~d
C')g and c6 := 1=(M2

d C�).

Now choose an iterate xki . The mechanisms of Algorithm Filter ensure (see

comment in Step 7), that

(�(xki); '�(xki)) 62 Fki : (4.40)

For � � c5 we have �2 � ��2
M2

~d
C'
� �mki

(�)

C'k ~dkik
2
, or equivalently

mki(�) + C'�
2k ~dkik2 � 0;

and it follows with (4.27b) that

'�(xki + �dki) � '�(xki); (4.41)

since � � c5 � ��max � �max
k . Similarly, for � � c6�(xki) �

�(xki)

kdkik
2 C�

, we have

���(xki) +C��
2kdkik2 � 0 and thus from (4.27a)

�(xki + �dki) � �(xki): (4.42)

The claim then follows from (4.40), (4.41) and (4.42) using (3.39). 2

The last lemma in this section shows that in iterations corresponding to a subse-

quence with only non-optimal limit points the �lter is eventually not augmented.

This result will be used in the proof of the main global convergence theorem to yield

a contradiction.

Lemma 4.10 Suppose Assumptions G hold and let fxkig be a subsequence with

�(xki) � � for a constant � > 0 independent of ki. Then there exists K 2 N, so

that for all ki � K the �lter is not augmented in iteration ki, i.e. ki 62 A.
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Proof. Since by Theorem 4.2 we have limi �(xki) = 0, it follows from Lemma 4.2

that there exist constants �1; �2 > 0, so that

�(xki) � �1 and mki(�) � ���2 (4.43)

for ki su�ciently large and � 2 (0; 1]; without loss of generality we can assume that

(4.43) is valid for all ki. We can now apply Lemma 4.7 and Lemma 4.9 to obtain

the constants ��; c5; c6 > 0. Choose K 2 N, so that for all ki � K

�(xki) < min

(
�sml; �inc;

��

c6
;
c5
c6
;

�
�1c6�

s'
2

Æ

� 1
s��1

)
(4.44)

with �1 from Step 5.5. Note, that this implies for all ki � K that ki 62 Rinc,

Æ [�(xki)]
s�

�
s'
2

< �1c6�(xki) (4.45)

(since s� > 1), as well as

c6�(xki) < minf��; c5g: (4.46)

Now choose an arbitrary ki � K and de�ne

�ki := c6�(xki)
(4:46)
= minf��; c5; c6�(xki)g: (4.47)

Lemma 4.7 and Lemma 4.9 then imply, that a trial step size �ki;l � �ki will satisfy

both

'�(xki(�ki;l)) � '�(xki) + �'mki(�ki;l) (4.48)

and �
�(xki(�ki;l)); '�(xki(�ki;l))

�
62 Fki : (4.49)

If we now denote with �ki;L the �rst trial step size satisfying both (4.48) and (4.49),

the backtracking line search procedure in Step 5.5 then implies that for � � �ki;L

� � �1�ki
(4:47)
= �1c6�(xki)

(4:45)
>

Æ[�(xki)]
s�

�
s'
2

and therefore from (4.43) for � � �ki;L

Æ[�(xki)]
s� < ��

s'
2 = [�]1�s' (��2)

s' � [�]1�s' [�mki(�)]
s' :
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This means, the switching condition (3.30) is satis�ed for �ki;L and all previous trial

step sizes. Consequently, for all trial step sizes �ki;l � �ki;L, Case I is considered in

Step 5.4. We also have �ki;l � �min
ki

, i.e. the method does not switch to the feasibility

restoration phase in Step 5.2 for those trial step sizes. Consequently, �ki;L is indeed

the accepted step size �ki . Since it satis�es both (3.30) and (4.48), the �lter is not

augmented in iteration ki. 2

We are now ready to prove the main global convergence result.

Theorem 4.3 Suppose Assumptions G hold. Then

lim
k!1

�(xk) = 0 (4.50a)

and lim inf
k!1

�(xk) = 0: (4.50b)

In other words, all limit points are feasible, and there exists a limit point x�� > 0 of

fxkg which is a �rst order optimal point for the barrier problem (2.38).

Proof. (4.50a) follows from Theorem 4.2. In order to show (4.50b), we have to

consider two cases:

i) The �lter is augmented only a �nite number of times. Then Lemma 4.8 proves

the claim.

ii) There exists a subsequence fxkig, so that ki 2 A for all i. Now suppose, that

lim supi �(xki) > 0. Then there exists a subsequence fxkij g of fxkig and a

constant � > 0, so that limj �(xkij ) = 0 and �(xkij ) > � for all kij . Applying

Lemma 4.10 to fxkij g, we see that there is an iteration kij , in which the �lter

is not augmented, i.e. kij 62 A. This contradicts the choice of fxkig, so that

limi �(xki) = 0, which proves (4.50b).

That a limit point x�� with �(x�� ) = �(x�� ) = 0 lies indeed in the interior of the non-

negative orthant, i.e. x�� > 0, has been argued in the paragraph before the statement

of Lemma 4.1. 2
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Remark 4.1 It is not possible to obtain a stronger results in Theorem 4.3 such as

�limk �(xk) = 0�. The reason is that even arbitrarily close to a strict local solution

the restoration phase might be invoked even though the search direction is very good.

This can happen if the current �lter contains �old historic information� corresponding

to previous iterates that were in a di�erent region of Rn but had values for � and '�

similar to those for the current iterate. If for the current iterate (�(xk); '�(xk)) is

very close to the current �lter (e.g. there exists �lter pairs (��; �') 2 Fk with �� < �(xk)

and �' � '�(xk)) and the barrier function '� has to be increased in order to approach

the optimal solution, the trial step sizes can be repeatedly rejected in Step 5.3 so that

�nally �k;l becomes smaller than �min
k and the restoration phase is triggered. Without

making additional assumptions on the restoration phase we only know that the next

iterate returned from the restoration phase is more feasible, but possibly far away

from any KKT point. This is the reason why we proposed the particular method for

the restoration phase close to KKT points in Section 3.4.4.

Remark 4.2 Performing SOC steps, as described in Section 3.4.3, does not a�ect

the global convergence properties just proved, since it leads to the same steps if the full

step size �max
k has not been accepted, so that the proofs of the critical Lemmas 4.8�

4.10 still hold.

4.2.4 Global Convergence with Measure L�(x; �)

In order to see that the global convergence analysis in Section 4.2 still holds for the

modi�cations in Section 3.4.6 under Assumptions G, let us quickly revisit the indi-

vidual results. Lemma 4.1 remains valid and in particular ensures, that the estimates

�k are uniformly bounded as well, and that hence the sequence fL�(xk; �k)g is uni-
formly bounded below. It is also easy to verify, that Lemma 4.2 and Lemma 4.4 are

still valid for the model de�nition (3.49), since the �rst line in (4.26) then becomes

mki(�)=� = r'�(xki)T dki +O(kc(xk)k);
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and thus only the constant c3 may change. Furthermore, Lemma 4.3 still holds

for the model de�nition (3.49) and with the measure �'�� replaced by �L��, still
with �C'�

2k ~dkk2� on the right hand side of (4.27b), as can be veri�ed easily using

Taylor expansions. Finally, the analysis in Sections 4.2.2 and 4.2.3 then holds with

replacing �'�� by �L�� where appropriate. The only point that deserves special

attention is the proof of Lemma 4.8. Here, it was essential that the last rejected

trial step size �ki;li 2 [�ki=�2; �ki=�1] satis�es the switching condition (3.30), at least

for ki su�ciently large. To see that this is also true for the model de�nition (3.49),

which is no longer linear in �, let us de�ne the function

hki(�) := [�mki(�)]
s' �1�s' � Æ[�(xki)]s� :

This function is well de�ned for all ki due to (4.37), and we have hki(�k;l) > 0 if and

only if (3.30) holds. Since we assume limi �(xki) = 0 and �(xki) � � in the proof, it

can then be shown (using arguments similar to those in the proof of Lemma 4.2) that

h0ki(0) � �3 for some �3 > 0 and ki su�ciently large, and that h00ki(0) is uniformly

bounded. Since �ki;li ! 0 and hki(�ki) > 0, it then follows that the switching

condition (3.30) holds for �ki;li 2 [�ki=�2; �ki=�1] when ki is su�ciently large.

Regarding local convergence, however, it is not clear at this point whether fast

local convergence is also achieved when the measure �L�(x; �)� is used, possibly even
without the need of a second order correction step. This may require more expensive

least square multiplier steps d�k := �lsk � �k with �lsk from24 X2
k A(xk + dk)

A(xk + dk)
T 0

350@dlsk

�lsk

1A = �
0@r'�(xk)

0

1A
(see e.g. [64]).
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4.3 Local Convergence Analysis of Line Search Filter

Methods

We start the analysis by stating the necessary assumptions.

Assumptions L. Assume that fxkg converges to a local solution x�� > 0 of the

barrier problem (2.38) and that the following holds.

(L1) The functions f and c are twice continuously di�erentiable in a neighborhood

of x�� .

(L2) x�� satis�es the following su�cient second order optimality conditions.

� x�� is feasible, i.e. �(x�� ) = 0,

� there exists ��� 2 Rm so that the KKT conditions (2.39) are satis�ed for

(x�� ; �
�
� ),

� the constraint Jacobian A(x�� ) has full rank, and

� the Hessian of the Lagrangian W �
� = r2

xxL�(x�� ; ��� ) is positive de�nite

on the null space of A(x�� )
T .

(L3) In (3.40), Hsoc
k is uniformly positive de�nite on the null space of (Asoc

k )T , and

(3.45) holds.

(L4) The Hessian approximations Hk in (3.3) satisfy (3.46).

The assumption xk ! x�� might be considered to be rather strong, in particular

since the feasibility restoration phase might be invoked arbitrarily close to x�� and

divert xk away from x�� , see Remark 4.1. However, in Section 3.4.4 we proposed

a particular restoration phase which ensures that the method will converge to a

solution x�� satisfying (L2), once xk is su�ciently close.

Assumption (L4) is reminiscent of the Dennis-Moré characterization of super-

linear convergence [29]. However, this assumption is stronger than necessary for
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superlinear convergence [18] which requires only that ZT
k (W

�
k � Hk)dk = o(kdkk),

where Zk is a null space matrix for AT
k .

First we summarize some preliminary results.

Lemma 4.11 Suppose Assumptions G and L hold. Then there exists a neighborhood

U1 of x�� , so that for all xk 2 U1 we have

dsock = o(kdkk) (4.51a)

�max
k = 1 (4.51b)

xk + dk + dsock � (1� �)xk (4.51c)

mk(1) = O(kdkk) (4.51d)

c(xk + dk + dsock ) = o(kdkk2) (4.51e)

Proof. Since from Assumption (L3) the matrix in (3.40) has a uniformly bounded

inverse and the right hand side is o(kdkk), claim (4.51a) follows. Furthermore, since

x�� > 0 and dk; d
soc
k ! 0 as xk ! x�� , we have (4.51b) and (4.51c). (4.51d) follows

from the boundedness of r'�(xk) and (3.31). Finally, from

c(xk + dk + dsock ) = c(xk + dk) +A(xk + dk)
Tdsock +O(kdsock k2)

(3:40)
= �csock � (Asoc

k )Tdsock + (A(xk) +O(kdkk))T dsock

+ O(kdsock k2)
(3:45)
= o(kdkk2) +O(kdkkkdsock k) +O(kdsock k2)

(4:51a)
= o(kdkk2)

for xk close to x�� the last claim (4.51e) follows. 2

In order to prove the local convergence result we will make use of two results es-

tablished in [28] regarding the e�ect of second order correction steps on the exact

penalty function (3.20). Note, that we will employ the exact penalty function only

as a technical device, but that the algorithm never refers to it explicitly. We will
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also use the following model of the penalty function

q�;�(xk; d) = '�(xk) +r'�(xk)T d+ 1

2
dTHkd+ �



AT
k d+ c(xk)



 : (4.52)

The �rst result follows from Theorem 15.3.7 in [28].

Lemma 4.12 Suppose Assumptions G and L hold. Let ��;� be the exact penalty

function (3.20) and q�;� de�ned by (4.52) with � > k��kD, where k � kD is the dual

norm to k � k. Then,

lim
k!1

��;�(xk + dk + dsock )� ��;�(xk)
q�;�(xk; dk)� q�;�(xk; 0) = 1: (4.53)

The next result follows from Theorem 15.3.2 in [28].

Lemma 4.13 Suppose Assumptions G hold. Let (dk; �
+
k ) be a solution of the linear

system (3.3), and let � > k�+k kD. Then

q�;�(xk; dk)� q�;�(xk; 0) � 0: (4.54)

The next lemma shows that in a neighborhood of x�� Step 5.4.1� of Algorithm Soc

will be successful if the switching condition (3.42) holds.

Lemma 4.14 Suppose Assumptions G and L hold. Then there exists a neighborhood

U2 � U1 of x�� so that whenever the switching condition (3.42) holds, the Armijo

condition (3.43) is satis�ed for the step dk + dsock .

Proof. Choose U1 to be the neighborhood from Lemma 4.11. It then follows that

for xk 2 U1 satisfying (3.42) that (3.41) holds and that

�(xk) < Æ
� 1

s� [�mk(1)]
s'
s�

(4:51d)
= O(kdkk

s'
s� ) = o(kdkk2); (4.55)

since
s'
s�
> 2.

Since �' <
1
2 , Lemma 4.12 and (4.54) imply that there exists K 2 N such that

for all k � K we have for some constant � > 0 with � > k�+k kD independent of k

that

��;�(xk + dk + dsock )� ��;�(xk) �
�
1

2
+ �'

�
(q�;�(xk; dk)� q�;�(xk; 0)) :
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Using the de�nitions of ��;� and q�;� as well as (4.55) and (4.51e) this gives

'�(xk + dk + dsock )� '�(xk) �
�
1

2
+ �'

��
r'�(xk)T dk + 1

2
dTkHkdk

�
+ o(kdkk2):

Since mk(1) = r'�(xk)Tdk, this implies with the boundedness of �+k , �pk, and qk

(from (4.19)) that

'�(xk + dk + dsock )� '�(xk)� �'mk(1)

� 1

2
r'�(xk)Tdk +

�
1

4
+
�'
2

�
dTkHkdk + o(kdkk2)

(3:3)
= �

�
1

4
� �'

2

�
dTkHkdk +

1

2
c(xk)

T�+k + o(kdkk2)
(4:55)
= �

�
1

4
� �'

2

�
dTkHkdk + o(kdkk2)

(4:19)
= �

�
1

4
� �'

2

�
�pTk

~ZT
k
~Hk

~Zk�pk +O(kqkk) + o(kdkk2): (4.56)

Finally, from (4.20a), Assumption (G5), (4.19), and the orthonormality of ~Zk and

~Yk we have

qk = O(�(xk))
(4:55)
= o(kdkk2) = o(k�pkk2) + o(kqkk2)

and therefore qk = o(k�pkk2), as well as dk = O(k�pkk), so that (3.43) is implied by

(4.56), Assumption (G6) and �' <
1
2 , if xk is su�ciently close to x�� . 2

It remains to show that also the �lter and the su�cient reduction criterion (3.28)

do not interfere with the acceptance of full steps close to x�� . The following techni-

cal lemmas address this issue and prepare the proof of the main local convergence

theorem.

Lemma 4.15 Suppose Assumptions G and L hold. Then there exists a neighborhood

U3 � U2 (with U2 from Lemma 4.14) and constants �1; �2; �3 > 0 with

�3 = (1� 
�)�2 � 
' (4.57a)

2
��2 < (1 + 
�)(�2 � �1)� 2
' (4.57b)

2�3 � (1 + 
�)�1 + (1� 
�)�2; (4.57c)



CHAPTER 4. CONVERGENCE ANALYSIS 106

so that for all xk 2 U3 we have k�+k kD < �i for i = 1; 2; 3, and the second order

correction step is always tried in Algorithm Soc if xk + dk is rejected. Furthermore,

for all xk 2 U3 we have

��;�i(xk + dk + �dsock )���;�i(xk) �
1 + 
�

2
(q�;�i(xk; dk)� q�;�i(xk; 0))

(4:54)

� 0 (4.58)

for i = 2; 3 and

�dsock = dsock ; (4.59a)

�dsock = �kd
soc
k + dk+1 + �k+1d

soc
k+1; (4.59b)

�dsock = �kd
soc
k + dk+1 + �k+1d

soc
k+1 + dk+2 + �k+2d

soc
k+2; (4.59c)

or �dsock = �kd
soc
k + dk+1 + �k+1d

soc
k+1 + dk+2 + �k+2d

soc
k+2

+dk+3 + �k+3d
soc
k+3; (4.59d)

with �k; �k+1; �k+2; �k+3 2 f0; 1g, as long as xl+1 = xl+dl+�ld
soc
k for l 2 fk; : : : ; k+

jg with j 2 f�1; 0; 1; 2g, respectively.

Proof. Let U3 � U2 be a neighborhood of x�� , so that for all xk 2 U3 we have

�(xk) � �sml and �(xk) � �soc. Therefore, due to (4.51b) and (4.51c) the second

order correction is always tried in Algorithm Soc if xk+dk has been rejected. Since

�+k is uniformly bounded for all k with xk 2 U3, we can �nd �1 > k���k with

�1 > k�+k kD (4.60)

for all k with xk 2 U3. De�ning now

�2 :=
1 + 
�
1� 
� �1 +

3
'
1� 
�

and �3 by (4.57a), it is then easy to verify that �2; �3 � �1 > k�+k kD and that (4.57b)

and (4.57c) hold. Since (1 + 
�) < 2, we have from Lemma 4.12 by possibly further

reducing U3 that (4.58) holds for xk 2 U3, since according to (d) and (e) on page 67

all choices of �dsock in (4.59) can be understood as second order correction steps to dk.

2
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Before proceeding with the next lemma, let us introduce some more notation.

Let U3 and �i be the neighborhood and constants from Lemma 4.15. Since

limk xk = x�� , we can �nd K1 2 N so that xk 2 U3 for all k � K1. Let us now de�ne

the level set

L := fx 2 U3 : ��;�3(x) � ��;�3(x�� ) + �g ; (4.61)

where � > 0 is chosen so that for all x 2 L we have (�(x); '�(x)) 62 FK1 . This is

possible, since �K1 > 0 from (4.29), and since maxf�(x) : x 2 Lg converges to zero

as �! 0, because x�� is a strict local minimizer of ��;�3 [50]. Obviously, x
�
� 2 L. For

later reference let K2 be the �rst iteration K2 � K1 with xK2 2 L.
Furthermore, let us de�ne for k 2 N

Gk :=
n
(�; ') : � � (1� 
�)�(xk) and ' � '�(xk)� 
'�(xk)

o
and Ik2k1 := fl = k1; : : : ; k2 � 1 : l 2 Ag for k1 � k2. Then it follows from the �lter

update rule (3.34) and the de�nition of A in (4.16) that for k1 � k2

Fk2 = Fk1 [
[
l2I

k2
k1

Gl: (4.62)

Also note, that l 2 Ik2k1 � A implies �(xl) > 0. Otherwise, we would have from (4.28)

that mk(�k;l) < 0, so that (3.30) holds for all trial step sizes �, and the step must

have been accepted in Step 5.4.1 or Step 5.4.1�, hence satisfying (3.32) or (3.43).

This would contradict the �lter update condition in Step 7 or 7�, respectively.

The last lemma will enable us to show in the main theorem of this section that,

once the iterates have reached the level set L, the full step will always be acceptable

to the current �lter.

Lemma 4.16 Suppose Assumptions G and L hold and let x > 0 and l � K1 with

�(xl) > 0. Then the following statements hold.

If ��;�2(x)� ��;�2(xl) � 1+
�
2 (q�;�2(xl; dl)� q�;�2(xl; 0)),

then (�(x); '�(x)) 62 Gl.

)
(4.63)
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If x 2 L and ��;�2(x)���;�2(xK2) � 1+
�
2 (q�;�2(xK2 ; dK2)� q�;�2(xK2 ; 0)),

then (�(x); '�(x)) 62 FK2.

)
(4.64)

Proof. To (4.63): Since �1 > k�+l kD we have from Lemma 4.13 that q�;�1(xl; dl)�
q�;�1(xl; 0) � 0, and hence using de�nition for q�;� (4.52) and

AT
l dl + c(xl) = 0 (from (3.3)) that

��;�2(x)� ��;�2(xl) �
1 + 
�

2
(q�;�2(xl; dl)� q�;�2(xl; 0))

=
1 + 
�

2
(q�;�1(xl; dl)� q�;�1(xl; 0) + (�1 � �2)�(xl))

� 1 + 
�
2

(�1 � �2)�(xl): (4.65)

If '�(x) < '�(xl)�
'�(xl), the claim follows immediately. Otherwise, suppose that

'�(x) � '�(xl)�
'�(xl). In that case, we have together with (4.65), (3.20), (4.57b),
and �(xl) > 0 that

�(x)� �(xl) � 1 + 
�
2�2

(�1 � �2)�(xl) + 1

�2
('�(xl)� '�(x))

� 1 + 
�
2�2

(�1 � �2)�(xl) + 
'
�2
�(xl)

< �
��(xl);

so that (�(x); '�(x)) 62 Gl.
To (4.64): Since x 2 L, it follows by the choice of � that (�(x); '�(x)) 62

FK1 . Thus, according to (4.62) it remains to show that for all l 2 IK2
K1

we have

(�(x); '�(x)) 62 Gl. Choose l 2 IK2
K1

. As in (4.65) we can show that

��;�2(x)� ��;�2(xK2) �
1 + 
�

2
(�1 � �2)�(xK2): (4.66)

Since x 2 L it follows from (4.61), the de�nitions of K2 and ��;� , and the fact that

l < K2 that

��;�3(xl) > ��;�3(xK2) = ��;�2(xK2) + (�3 � �2)�(xK2)

(4:66)

� ��;�2(x) +

�
�3 � 1 + 
�

2
�1 � 1� 
�

2
�2

�
�(xK2)

(4:57c)

� ��;�2(x): (4.67)
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If '�(x) < '�(xl)� 
'�(xl), we immediately have (�(x); '�(x)) 62 Gl. Otherwise we
have '�(x) � '�(xl)� 
'�(xl) which together with (4.67) and the de�nition of ��;�

yields

�(x) <
1

�2
('�(xl) + �3�(xl)� '�(x))

� �3 + 
'
�2

�(xl)

(4:57a)
= (1� 
�)�(xl);

so that (�(x); '�(x)) 62 Gl which concludes the proof of (4.64). 2

After these preparations we are �nally able to show the main local convergence

theorem.

Theorem 4.4 Suppose Assumptions G and L hold. Then, for k su�ciently large

full steps of the form xk+1 = xk + dk or xk+1 = xk + dk + dsock will be taken, and xk

converges to x�� superlinearly.

Proof. Recall that K2 � K1 is the �rst iteration after K1 with xK2 2 L � U3.

Hence, for all k � K2 Lemma 4.11 and Lemma 4.15 imply that the second order

correction step is always tried in Algorithm Soc if xk + dk is rejected, and that

�max
k = 1 and (3.41) hold, i.e. the fraction-to-the-boundary rule is never active.

We now show by induction that the following statements are true for k � K2+2:

(ik) ��;�i(xk)� ��;�i(xl) �
1 + 
�

2
(q�;�i(xl; dl)� q�;�i(xl; 0))

for i 2 f2; 3g and K2 � l � k � 2

(iik) xk 2 L

(iiik) xk = xk�1 + dk�1 + �k�1d
soc
k�1 with �k�1 2 f0; 1g:

We start by showing that these statements are true for k = K2 + 2.

Suppose, the point xK2 + dK2 is not accepted by the line search. In that case,

de�ne �xK2+1 := xK2 + dK2 + dsocK2
. Then, from (4.58) with i = 3, k = K2, and

(4.59a), we see from xK2 2 L and the de�nition of L that �xK2 2 L. After applying



CHAPTER 4. CONVERGENCE ANALYSIS 110

(4.58) again with i = 2 it follows from (4.64) that (�(�xK2+1); '�(�xK2+1)) 62 FK2 , i.e.

�xK2+1 is not rejected in Step 5.3�. Furthermore, if the switching condition (3.42)

holds, we see from Lemma 4.14 that the Armijo condition (3.43) with k = K2 is

satis�ed for the point �xK2+1. In the other case, i.e. if (3.42) is violated (note that

then (4.28) and (3.42) imply �(xK2) > 0), we see from (4.58) for i = 2, k = K2, and

(4.59a), together with (4.63) for l = K2, that (3.44) holds. Hence, �xK2+1 is also not

rejected in Step 5.4� and accepted as next iterate. Summarizing the discussion in

this paragraph we can write xK2+1 = xK2 + dK2 + �K2d
soc
K2

with �K2 2 f0; 1g.
Let us now consider iteration K2 + 1. For �K2+1 2 f0; 1g we have from (4.63)

for k = K2 and (4.59b) that

��;�i(xK2+1 + dK2+1 + �K2+1d
soc
K2+1)� ��;�i(xK2)

� 1 + 
�
2

(q�;�i(xK2 ; dK2)� q�;�i(xK2 ; 0)) (4.68)

for i = 2; 3, which yields

xK2+1 + dK2+1 + �K2+1d
soc
K2+1 2 L: (4.69)

If xK2+1+dK2+1 is accepted as next iterate xK2+2, we immediately obtain from (4.68)

and (4.69) that (iK2+2)�(iiiK2+2) hold. Otherwise, we consider the case �K2+1 = 1.

From (4.68), (4.69), and (4.64) we have for �xK2+2 := xK2+1 + dK2+1 + dsocK2+1 that

(�(�xK2+2); '�(�xK2+2)) 62 FK2 . If K2 62 IK2+1
K2

it immediately follows from (4.62)

that (�(�xK2+2); '�(�xK2+2)) 62 FK2+1. Otherwise, we have �(xK2) > 0. Then, (4.68)

for i = 2 together with (4.63) implies (�(�xK2+2); '�(�xK2+2)) 62 GK2 , and hence with

(4.62) we have (�(�xK2+2); '�(�xK2+2)) 62 FK2+1, so that �xK2+2 is not rejected in

Step 5.3�. Arguing similarly as in the previous paragraph we can conclude that

�xK2+1 is also not rejected in Step 5.4�. Therefore, xK2+2 = �xK2+2. Together with

(4.68) and (4.69) this proves (iK2+2)�(iiiK2+2) for the case �K2+1 = 1.

Now suppose that (il)�(iiil) are true for all K2+2 � l � k with some k � K2+2.

If xk + dk is accepted by the line search, de�ne �k := 0, otherwise �k := 1. Set
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�xk+1 := xk + dk + �kd
soc
k . From (4.58) we then have for i = 2; 3

��;�i(�xk+1)� ��;�i(xk�1) �
1 + 
�

2
(q�;�i(xk�1; dk�1)� q�;�i(xk�1; 0)) � 0: (4.70)

Choose l with K2 � l < k � 1 and consider two cases:

Case a): If k = K2+2, then l = K2, and it follows from (4.58) with (4.59d) that

for i = 2; 3

��;�i(�xk+1)� ��;�i(xl) �
1 + 
�

2
(q�;�i(xl; dl)� q�;�i(xl; 0)) � 0: (4.71)

Case b): If k > K2 + 2, we have from (4.70) that ��;�i(�xk+1) � ��;�i(xk�1) and

hence from (ik�1) it follows that (4.71) also holds in this case.

In either case, (4.71) implies in particular that ��;�3(�xk+1) � ��;�3(xK2), and

since xK2 2 L, we obtain
�xk+1 2 L: (4.72)

If xk + dk is accepted by the line search, (ik+1)�(iiik+1) follow from (4.71), (4.70)

and (4.72). If xk + dk is rejected, we see from (4.72), (4.71) for i = 2 and l = K2,

and (4.64) that (�(�xk+1); '�(�xk+1)) 62 FK2 . Furthermore, for l 2 IkK2
we have from

(4.71) and (4.63) that (�(�xk+1); '�(�xk+1)) 62 Gl, and hence from (4.62) that �xk+1 is

not rejected in Step 5.3�. We can again show as before that �xk+1 is not rejected in

Step 5.4�, so that xk+1 = �xk+1 which implies (ik+1)�(iiik+1).

That fxkg converges to x�� with a superlinear rate follows from (3.46) (see

e.g. [68]). 2

4.4 SQP Filter Methods

4.4.1 Line Search Filter SQP Method I

In this section we show how Algorithm Filter can be applied to active set SQP

methods for the solution of the NLP formulation (2.1). Here, at an iterate xk with

x
(i)
k � 0 for i 2 I, the search direction dk is then computed as the solution of the

QP (2.12).
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Starting from an initial point x0 with x
(i)
0 � 0 for i 2 I (and hence ensuring

x
(i)
k � 0 for all k), we can still apply Algorithm Filter as step acceptance mechanism

with the following modi�cations.

1. All occurrences of �'�� are replaced by �f �.

2. The computation of the search direction in Step 3 is replaced by the solution of

the QP (2.12). The restoration phase is invoked in this step, if the QP (2.12)

is infeasible or not su�ciently consistent (see Assumption (G5��) below).

3. The fraction-to-the-boundary rule is no longer necessary, i.e. in Step 4 we

always choose �max
k = 1.

4. The feasibility restoration phase in Step 9 has to return an iterate xk+1 satis-

fying x
(i)
k+1 � 0 for i 2 I.

In order to state the assumptions necessary for a global convergence analysis let us

de�ne the set of coordinates that are active at the current point xk and at xk + dk,

Sk :=
n
i 2 I : x

(i)
k = 0 and d

(i)
k = 0

o
;

and again consider a decomposition of the search direction as in (2.20), where qk is

now de�ned as the solution of the QP

min
q2Rn

qT q (4.73a)

s.t. AT
k q + ck = 0 (4.73b)

q(i) = 0 for i 2 Sk (4.73c)

x
(i)
k + q(i) � 0 for i 2 I n Sk: (4.73d)

whose solution is the shortest feasible step for the QP (2.12) that does not change

the components corresponding to Sk. We then choose Zk as an orthonormal null

space matrix for the matrixh
Ak ej1 � � � ejlk

iT
; where Sk = fj1; : : : ; jlkg;
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i.e. Zk is a basis of the null space of all equality constraints and bounds that are

active at xk and xk+dk. With this, we can obtain pk = Zk�pk with �pk as the solution

of the reduced QP

min
�p2Rn�m�lk

�
ZT
k gk + ZT

kWkqk
�T

�p+
1

2
�pTZT

kWkZk�p (4.74a)

s.t. xk + qk + Zk �p � 0: (4.74b)

Note that the set Sk is not known before the QP (2.12) has been solved. The

QPs (4.73) and (4.74) are de�ned only to state the assumptions and are not a

possible procedure to obtain the solution of (2.12).

With these de�nitions we can now replace Assumptions (G5) and (G6) by

(G5��) There exists a constant Mq > 0, so that for all k 62 Rinc we have

kqkk �Mq�(xk):

(G6��) There exists a constant MW > 0, so that for all k 62 Rinc we have

�min

�
ZT
k WkZk

� �MW ; (4.75)

where Zk has been de�ned above.

We furthermore replace �Hk� by �Wk� in statement of Assumption (G3).

Assumption (G5��) is similar in spirit to the assumption expressed by Eq. (2.10)

in [35]. Essentially, we assume that if the QPs (2.12) are becoming increasingly ill-

conditioned, eventually the restoration phase will be triggered in Step 3. Together

with Assumption (G4) this assumption also means that we suppose that the QP

(2.12) is su�ciently consistent when feasible points are approached.

Assumption (G6��) again ensures descent in the objective function at su�ciently

feasible points. Note that this assumption is natural in the sense that if the method

converges to a strict local solution x� of the NLP (2.1), the active set Sk �nally

becomes unchanged and Zk is a null space matrix for the constraints active at x�.

Hence, no correction of the reduced Hessian will be necessary close to x�, if exact

second derivatives are used.
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In order to see that the global convergence analysis in Section 4.2 still holds under the

modi�ed Assumptions G, let us �rst note that the objective function of the nonlinear

problem solved by Algorithm Filter is now bounded since no � ln�-terms appear in

the NLP (2.1) in contrast to the barrier problem (2.38). Therefore, the scaling (4.17)

of the linear system (3.3) is no longer necessary. After de�ning the criticality measure

again as �(xk) := k�pkk2 for k 62 Rinc, the proofs are valid with minor straightforward

modi�cations and with all occurrences of �'��, � ~dk�, and �Hk� replaced by �f �, �dk�,

and �Wk�, respectively. Only the proof of Lemma 4.2 deserves special attention. Let

us �rst state the optimality conditions of the reduced QP (4.74).

ZT
k WkZk�pk + (ZT

k gk + ZT
k Wkqk)� ZT

k v
+
k = 0 (4.76a)

xk + qk + Zk�pk = 0 (4.76b)

(xk + qk + Zk �pk)
T v+k = 0 (4.76c)

v+k � 0 (4.76d)

(v+k )
(i) = 0 for i 62 I (4.76e)

For k 62 Rinc we then have from (4.76a) and (4.76c) that

ZT
k gk = ZT

k v
+
k � ZT

kWkZk�pk � ZT
k Wkqk

(xk + qk)
T v+k = �(v+k )TZk �pk

and therefore

gTk Zk�pk = �(xk + qk)
T v+k � �pTkZ

T
k WkZk �pk � �pTkZ

T
k Wkqk

� ��pTkZT
k WkZk �pk � �pTkZ

T
k Wkqk

where we used (4.73c), (4.73d), and (4.76d) in the last inequality. This gives together

with the de�nition of mk (3.31), the decomposition (2.20), and Assumptions (G5��)
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and (G6��)

mk(�)=� = gTk dk

= gTk Zk �pk + gTk qk

� ��pTkZT
k WkZk �pk � �pTkZ

T
k Wkqk + gTk qk

� �MW [�(xk)]
2 +O (�(xk)�(xk)) +O(�(xk))

which corresponds to the second last line in (4.26), and we can conclude the proof

of Lemma 4.2 as before.

Finally, the discussion of local convergence in Section 4.3 also still applies if

we assume that eventually the active set is not changed. To guarantee this, the

computation of the second order correction step (3.40) and the feasibility restoration

phase proposed in Section 3.4.4 have to be adapted in order to take the active bound

constraints into account.

4.4.2 Line Search Filter SQP Method II

In this section we show how Algorithm Filter can be applied to line search SQP

methods for the solution of NLPs in the general formulation (2.43), where the func-

tions f and c := (cE ; cI) have the smoothness properties of f and c in Assump-

tions (G1) and (L1). Note that this formulation in contrast to (2.1) allows general

inequality constraints. Furthermore, the assumptions necessary in order to ensure

global convergence di�er from the ones stated in the previous section.

Here, search directions dk are obtained as the solution of the QP

min
d2Rn

gTk d+
1

2
dTWkd (4.77a)

s.t. (AEk )
Td+ cE (xk) = 0 (4.77b)

(AIk )
Td+ cI(xk) � 0; (4.77c)

where AEk := rcE(xk), AIk := rcI(xk), and Wk is (an approximation of) the Hessian

of the Lagrangian

L(x; �; v) = f(x) + (cE (x))T�� (cI(x))T v
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of the NLP (2.43) with the Lagrangian multipliers v � 0 corresponding to the in-

equality constraints (2.43c). We will denote the optimal QP multipliers correspond-

ing to (4.77b) and (4.77c) with �+k and v+k � 0, respectively.

We further de�ne the infeasibility measure by

�(x) :=








0@ cE (x)

cI(x)(�)

1A





 ;
where for a vector w the expression w(�) de�nes the vector with the components

maxf0;�w(i)g. Similarly to the discussion in the previous section, Algorithm Filter

can then be used with the following modi�cations.

1. All occurrences of �'�� are replaced by �f �.

2. The computation of the search direction in Step 3 is replaced by the solution of

the QP (4.77). The restoration phase is invoked in this step, if the QP (4.77)

is infeasible or not su�ciently consistent (see Assumption (G5���) below).

3. The fraction-to-the-boundary rule is no longer necessary, i.e. in Step 4 we

always choose �max
k = 1.

In order to state the assumptions necessary for a global convergence analysis let us

again consider a decomposition of the search direction (2.20), where qk is now de�ned

as the solution of the QP

min
q2Rn

qT q

s.t. (AEk )
T q + cE (xk) = 0

(AIk )
T q + cI(xk) � 0;

i.e. qk is the shortest vector satisfying the constraints in the QP (4.77). With these

de�nitions we can now replace Assumptions (G5) and (G6) by

(G5���) There exist constants Md;M�;Mv ;Mq > 0, so that for all k 62 Rinc we have

kdkk �Md; k�+k k �M�; kv+k k �Mv; kqkk �Mq�(xk)
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(G6���) There exists a constant MW > 0, so that for all k 62 Rinc we have

dTkWkdk �MWd
T
k dk: (4.78)

Also, in Assumption (G3) we replace �Hk� by �Wk�.

Assumption (G5���) is again similar to the assumption expressed by Eq. (2.10)

in [35]. Essentially, we assume that if the constraints of the QPs (4.77) become

increasingly ill-conditioned, eventually the restoration phase will be triggered in

Step 3. Together with Assumption (G4), this assumption also means that we suppose

that the QP (2.12) is su�ciently consistent when feasible points are approached.

Assumption (G6���) again ensures descent in the objective function at su�ciently

feasible points. This assumption has been made previously for global convergence

proofs of some SQP line search methods (see e.g. [73]). However, this assumption

can be rather strong since even close to a strict local solution the exact Hessian

might have to be modi�ed in order to satisfy (4.78). For this reason in the previ-

ous section, an alternative and more natural assumption is considered for the NLP

formulation (2.1) with only bound constraints as inequality constraints.

In order to see that the global convergence analysis in Section 4.2 still holds under

the modi�ed Assumptions G, let us �rst note that the objective function of the

nonlinear problem solved by Algorithm Filter is now bounded since no � ln�-terms

appear in the NLP (2.43) in contrast to the barrier problem (2.38). Therefore, the

scaling (4.17) of the linear system (3.3) is no longer necessary. After de�ning the

criticality measure as �(xk) := kdk � qkk2 for k 62 Rinc, the proofs are valid with

minor straightforward modi�cations and with all occurrences of �'��, � ~dk�, and �Hk�

replaced by �f �, �dk�, and �Wk�, respectively. Only the proof of Lemma 4.2 deserves

special attention. From the optimality conditions for the QP (4.77) it follows in
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particular that

gk +Wkdk +AEk�
+
k �AIkv+k = 0 (4.79a)�

(AIk )
Tdk + cI(xk)

�T
v+k = 0 (4.79b)

v+k � 0; (4.79c)

so that for all k 62 Rinc

gTk dk
(4:79a)
= �dTkWkdk � dTkAEk�+k + dTkA

I
kv

+
k

(4:77b);(4:79b)
= �dTkWkdk + cE (xk)

T�+k � cI(xk)T v+k
(4:79c)

� �dTkWkdk + cE (xk)
T�+k +

�
cI(xk)

(�)
�T

v+k

(2:20)

� �MW [�(xk)]
2 +O (�(xk)�(xk)) +O(�(xk))

where we used Assumptions (G5���) and (G6���) in the last inequality. This corre-

sponds to the second last line in (4.26), and we can conclude the proof of Lemma 4.2

as before.

Also the discussion of local convergence in Section 4.3 still applies if we assume

that eventually the active set is not changed. To guarantee this, the computation of

the second order correction step (3.40) and the feasibility restoration phase proposed

in Section 3.4.4 have to be adapted in order to take the active inequality constraints

into account.

4.4.3 Fast Local Convergence of a Trust Region Filter SQP Method

As brie�y mentioned in Section 3.4.2, the switching rule used in the trust region

SQP-�lter algorithm proposed by Fletcher, Gould, Ley�er, Toint, and Wächter [35],

for which global convergence has been proven, does not imply the relationship (4.55).

Therefore the proof of Lemma 4.14 in our local convergence analysis does not hold

for this method. However, it is easy to see that the global convergence analysis in

[35] is still valid (in particular Lemma 3.7 and Lemma 3.10 in [35]), if the switching
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rule Eq. (2.19) in [35] is modi�ed in analogy to (3.30) and replaced by

[mk(dk)]
s'�

1�s'
k � ���'k ;

where mk is now the change of the objective function predicted by a quadratic

model of the objective function, �k is the current trust region radius, ��; ' > 0 are

constants from [35] satisfying certain relationships, and the new constant s' > 0

satis�es s' > 2'. Then the local convergence analysis in Section 4.3 is still valid

(also for the quadratic model formulation), assuming that

1. su�ciently close to a strict local solution the trust region is inactive,

2. the trust region radius �k is uniformly bounded away from zero,

3. the (approximate) SQP steps sk are computed (su�ciently) exactly, and

4. and a second order correction as discussed in Section 3.4.3 is performed.



Chapter 5

Numerical Results

In this chapter the practical performance of the algorithm presented in Chapter 3

will be explored. In Section 5.1.2, the di�erent line search options are tested on

a large set of NLP test problems. Section 5.1.3 presents a numerical comparison

of Ipopt with two other recent interior point codes, demonstrating its potential as

general purpose NLP solver.

The second half of this chapter will show on the example of dynamic optimiza-

tion, how the optimization method can be tailored to particular problem structures,

in this case using an elemental decomposition approach (Section 5.2.1). As exam-

ple applications, a continuous air separation distillation column (Section 5.2.2) and

a batch cooling crystallization process (Section 5.2.3) will be solved and used to

compare the di�erent options for handling second derivative information.

120
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5.1 Performance of Ipopt on Test Problems

Ipopt has been interfaced to the Ampl Solver Library (ASL) [41], allowing to solve

NLPs formulated in the Ampl modelling language [40]. In Ampl, problems are

formulated as

min
x2Rn

f(x) (5.1a)

s.t. cL � c(x) � cU (5.1b)

xL � x � xU ; (5.1c)

with cL 2 f�1g [ Rm and cU 2 f+1g [ Rm satisfying cL � cU . For Ipopt,

this statement is automatically reformulated as (1.1) by means of slack variables for

those constraints (5.1b) with c
(j)
L < c

(j)
U . The ASL is able to provide �rst and second

derivatives of objective and constraints functions by automatic di�erentiation.

5.1.1 The Ampl Test Sets and Performance Pro�les

The �rst numerical results are obtained using the following collections of problems

formulated in Ampl.

� CUTE (Constrained and Unconstrained Test Environment); see Ta-

ble A.1 in Appendix A. This collection of NLPs has been assembled by Bon-

gartz, Conn, Gould, and Toint [20]. Originally, these problems were formulated

in the Standard Input Format (SIF); the SIF �le for each problem was trans-

lated into a set of Fortran routines that were linked to the optimization code.

Recently, Benson and Vanderbei [79] translated most of those problems into

Ampl. Some of the problems have been modi�ed during this process, and

whereas many of the original CUTE problem formulations in SIF were scal-

able, the Ampl translations are for a �xed size. However, we decided to use

the Ampl formulation (as obtained from [79] in March 2001), since interfaces

to the original CUTE software package for the solvers Knitro and Loqo (with

which Ipopt is compared in Section 5.1.3) are not available to us.
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Number of variables Number of problems
(incl. slacks) in CUTE set

2 : : : 9 220
10 : : : 99 87
100 : : : 999 73
1000 : : : 9999 68
10000 : : : 50000 38

Table 5.1: Distribution of problem size in CUTE test set

We excluded those problems that have less than one degree of freedom, or

that are Linear Programs (LPs) or QPs, since Ipopt has been developed to

solved general nonlinear optimization problems. We also excluded problems

with non-di�erentiable functions such as min, max, or j � j.

� COPS (Constrained Optimization Problems), Version 2.0; see Ta-

ble A.2 in Appendix A. This collection of 17 scalable NLP test problems

has been assembled and implemented in Ampl by Bondarenko, Bortz, and

Moré [19] and Dolan and Moré [30]. The test set �provides a modest selection

of di�cult nonlinearly constrained optimization problems from applications in

optimal design, �uid dynamics, parameter estimation, and optimal control.�

� MITT (�Mittelmann Collection�); see Table A.3 in Appendix A. These are

some of the problems that have been collected and implemented by Mittelmann

[60]. The scripts �cont*� implement parabolic boundary control problems from

[61] and [62], �ex*� implement discretizations of elliptic control problems with

control and state constraints [59], and �lukvl*� are linearly constrained NLPs

from [55], both in equality constrained and inequality constrained formulation.

Tables A.1�A.3 list for each problem the number of variables (not including the

slack variables for (5.1b)), how many of those have bounds, the number of equality

and inequality (or range) constraints, as well as the number of non-zero elements in

the Jacobian (rc(x))T of the constraints in (5.1b) and the number non-zero elements

in the Hessian r2
xxL of the Lagrangian (2.2).
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From the CUTE selection we consider 486 problems. The sizes of those problems

vary signi�cantly; in Table 5.1 we see the distribution of the number of variables

(after including the slack variables for the range constraints (5.1b)). In our COPS

set, we included from each of the 17 problems two large-scale instances of di�erent

sizes, with the number of variables varying between 12; 499 and 160; 000, except for

the two elec* instances, which have only 600 and 1; 200 variables, but where the

Hessian of the Lagrangian is 100% dense. Note, that these problem sizes exceed the

original formulations in [30] by up to 2 orders of magnitude. In MITT, the problem

size varies between 12; 097 and 99; 998 variables (including slacks). For each of the

ex* we have two instances, which both exceed the size of the original formulation.

In order to solve an NLP formulated in Ampl, the model �le is usually read by

the Ampl language interpreter, which translates it into an input �le (*.nl) that

is then read by the solver executable. For our experiments, those input �les were

created only once instead of being composed for each individual run, and passed to

the solver executables directly. Therefore, the reported CPU times do not include

the time required by Ampl for the creation of the input �les.

The Ampl interpreter o�ers the option to perform a pre-solve phase, which

tries to simplify the problem by eliminating variables and/or constraints, tightening

bounds, and providing improved starting points. By default, this option is activated,

and it was used to create the input �les for the COPS and MITT problems. However,

since some of the problems in the CUTE collection have purposely been formulated in

a way that might make them di�cult for NLP solvers (e.g. degeneracy), the pre-solve

option was disabled when creating the input �les for the CUTE set.

All numerical results have been obtained on PCs running Linux, imposing a 3

hour CPU time limit and an iteration limit of 3000. Those runs, for which CPU time

is reported, were done on identical 1 GHz dual Pentium III machines with 1 GB of

RAM. The presented CPU times are those reported as �User time� from the Unix

time command (the system time is negligible). Since we observed inconsistencies

in those CPU times when multiple applications were running, it was ensured that
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the solver executable was the only active program. Despite this precaution we still

observed deviations in some cases of up to 15% and therefore recommend to use the

reported CPU times with caution.

The Ipopt executable uses the ASL version 20010823, and was compiled with

the GNU compiler suite version 2.96, using the optimization �ag �-O�.

In order to compare di�erent options of Ipopt or Ipopt vs. other solvers, perfor-

mance pro�les as proposed by Dolan and Moré [31] will be used: Assume that we

have a test set P containing np problems, as well as ns runs (e.g. with di�erent solvers

or di�erent options for one solver) for each problem, and that we want to compare

quantities tp;s (such as number of iterations or required CPU times) obtained for

each problem p and each run s. Then the performance ratio for a problem p and

option s is de�ned as

rp;s :=
tp;s

min ftp;s : 1 � s � nsg : (5.2)

If the option s for problem p leads to a failure, we de�ne rp;s :=1. With this,

�s(�) :=
1

np
card fp 2 P : rp;s � �g

is the probability that a performance ratio rp;s is within a factor � � 1 of the best

obtained performance. The larger this number is for a run s, the better. For example,

the value of �s(1) is the probability that the option or solver s is the winner, �s(2)

indicates in what percentage of problems the option s was not more than twice as

bad as the best options, and the limit lim�!1 �s(�) gives the probability that the

option or solver s can successfully solve a problem from the test set P.
The comparisons in the next section will be presented in terms of performance

plots of �s versus � . (Note, that in our plots the � -axis will be logarithmic.) Since the

considered methods only guarantee convergence to local solutions of the NLP, it can

happen that one option or solver converges to a di�erent local solution than the other

ones. Therefore, in our performance plots we exclude those problems for which the

�nal values of the objective functions f(x1�); : : : ; f(x
ns
� ) were not su�ciently close,
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that is we discard those problems for which

fmax
� � fmin

�

1 +maxfjfmin
� j; jfmax

� jg > 10�3; (5.3)

where fmax
� = maxff(x1�); : : : ; f(xns� )g and fmin

� = minff(x1�); : : : ; f(xns� )g. Here,

objective functions values of unsuccessful runs are omitted. Eq. (5.3) is of course

only a simple heuristic.

5.1.2 Comparison of Di�erent Line Search Options

In Section 3.3 and Section 3.4 we presented di�erent line search approaches that have

been implemented in Ipopt. We will now compare the performance of the following

options to solve the problems from the CUTE test set.

1. auglag: Using the augmented Lagrangian function (3.25) as merit function

(with non-monotone update of the penalty parameter);

2. exact1: Using the exact penalty function (3.20) with one weight for all con-

straints as merit function (including second order correction);

3. exact2: Using the exact penalty function (3.21) with one weight for each con-

straint as merit function (including second order correction);

4. �lter: Using the �lter line search method as described in Section 3.4 (including

second order correction);

5. fullstep: Taking no precautions, i.e. the accepted step sizes are �k = �max
k

and �vk = �max;v
k and are therefore only cut by the fraction to the boundary

rule (3.19). If, however, the full step leads to a point with the IEEE numbers

NaN or Inf in the objective or constraint function, �k is reduced. This very

simple option is the closest to the �pure� Newton method applied to perturbed

KKT conditions (2.40). The performance of this option might give an idea

of the quality of the search directions and the �degree of nonlinearity� of the

considered problems.
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All other Ipopt options are chosen according to the default; in particular, search

directions have been generated by the full-space version (see Section 3.2.1) using

exact second derivatives. Table B.1 on page 194 lists the outcome for each individual

problem, together with the required number of function evaluations and iterations.

For �lter, also the number of iterates obtained from Tron within the feasibility

restoration phase is reported for each problem.

In Table 5.2 we can see the number of problems with di�erent outcomes for the

individual options. Here, �
p
� ' means that the error tolerance was reached, and the

error codes �z� and �y� are explained in Table B.5 on page 205. As we can see, all line
search options could solve at least 80% of the entire set, with the �lter line search

procedure being the most robust option (solving 89:1%). There were 29 problems

that could not be solved by any line search option, and in the third column of

Table 5.2 we see the number of problems solved successfully only by a given method,

con�rming the superior robustness of �lter over the other line search approaches.

There are also 11 problems where only fullstep could converge to a point satisfying

the error tolerance (but possibly reaching a saddle point of maximum).

When facing a relatively high failure rate of 11% we should keep in mind that the

CUTE test set is a fairly colorful selection of problems, and that there are a number

of problems that do not satisfy the assumptions made in Chapter 4 for the analysis of

Ipopt, and have for example degenerate constraints and singular reduced Hessians.

Surprisingly, using no precautions as in the fullstep option still solves the majority

of problems, and seems even more robust than line search with an exact penalty

function, which in more than 40 cases failed due to line search failure, i.e. the trial

step size is cut back by the merit function too much and is becoming smaller than

10�14.

In 27 cases, at least two options converged to points where the convergence

criterion was met and where the �nal values of the objective function were di�erent

(according to heuristic (5.3)). In Table 5.3 we see for each of those problems the

values of fmin
� and fmax

� , and which of the options converged to those values. For the
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Line solved by

search Outcome no other
like #func/

option option
fullstep #iter

421
p

1 z

42 y1

auglag
13 y2 1 41:1% 4:4666

8 y5

1 y9

393
p

1 z

exact1 40 y1 0 36:9% 7:2655

48 y2

4 y5

397
p

3 z

exact2 42 y1 1 40:1% 5:8151

39 y2

5 y5

433
p

3 z

24 y1

6 y3

�lter 1 y4 10 45:0% 2:6469

1 y5

3 y6

6 y7

9 y8

403
p

6 z

23 y1

fullstep
10 y2 11 100% 1:0003

17 y5

26 y9

Table 5.2: Outcome for individual line search options on CUTE problems
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Problem fmin
� Option fmax

� Option

bt7 3.0650000e+02 a,e1,e2,f 3.6037977e+02 n

camel6 -1.0316285e+00 a,e1,e2,f -2.1546382e-01 n

deconvc 5.6468218e-10 f,n 2.5694971e-03 a

drcavty2 6.5425099e-04 a 1.9243839e-03 e1

dtoc1nd� 1.2563879e+01 n 1.2786890e+01 a

eg3 9.5316949e-14 e1,e2 6.7179988e-02 a,f,n

fletcher 1.1656854e+01 a,f 1.9525366e+01 n

growth 1.0040406e+00 a,e1,e2,f 3.5421490e+03 n

growthls 1.0040406e+00 a,e1,e2,f 3.5421490e+03 n

haldmads 1.2238631e-04 a,e1 3.4659284e-02 f,n

himmelp2 -6.2053869e+01 e2 -8.1980317e+00 a,e1,f,n

hs059 -7.8027895e+00 a,f -6.7495053e+00 e2

hs061 -1.4364614e+02 n -8.1919096e+01 f

hs070 9.4019732e-03 a,e1,e2,f 1.6809117e-01 n

hs098 3.1358091e+00 e1,e2,n 4.0712464e+00 a,f

orthrds2� 3.0540043e+01 e2 1.5490713e+03 n

orthregd 1.5238997e+03 a,e1,e2 2.6066512e+03 f

orthrege� 6.7807800e-01 a,e1,e2 1.5173881e+00 n

orthrgds 1.5238997e+03 a,e1,f 7.8409872e+04 n

ssebnln 1.6844769e+07 e2 1.8047483e+07 f

steenbrc 1.8274717e+04 n 2.0357558e+04 a,f

steenbrd 9.2416335e+03 a,e1,e2,n 9.4372195e+03 f

steenbrf� 2.8267956e+02 f 3.1983506e+05 n

weeds 2.5872774e+00 n 9.2054352e+03 a,e1,e2,f

womflet 7.5177107e-09 a,e1,e2 6.0500000e+00 f,n

yfit 6.6697375e-13 a,e1,e2,f 5.9757165e+03 n

yfitu 6.6697206e-13 a,e1,e2,f 5.6141752e+03 n

Table 5.3: Diverting �nal objective function values; with �a� for auglag, �e1� for

exact1, �e2� for exact2, �f� for �lter, �n� for fullstep

problems marked by a start (�), there were additional �nal values of the objective

function, lying in between the values given in the table. As a trend we can see, that

pure Newton's method, taking no precautions, can be attracted to points with larger

values of the objective function, possibly even saddle points or maxima, whereas the

other options safely guide the algorithm to better points. On the other hand, for the

weeds problem, the willingness to take risks pays o� in a signi�cantly smaller value

of the objective function.



CHAPTER 5. NUMERICAL RESULTS 129

In order to see how conservative the individual line search mechanisms are, we

list in the fourth column of Table 5.2 the percentage of successfully solved problems,

for which the individual options took the same steps as the unguarded fullstep op-

tion. The last column shows the ratio of the total number of function evaluations

over the total number of iterations for all successfully solved problems1. From this

we see, that line search using the exact penalty function seems to be most conserva-

tive, as expected with exact1 being stricter than exact2, followed by the augmented

Lagrangian line search (which in our implementation has the �advantage� to be al-

lowed to decrease the value of the penalty parameter � but might not be guaranteed

to be globally convergent). The least conservative option seems to be the �lter op-

tion, requiring on average only about 21=2 function evaluations per iteration, and

in 45% of the successful cases behaving like the pure Newton's method. Among the

433 problems successfully solved by �lter, Tron was called only in 30 instances to

perform the feasibility restoration.

Finally, in order to evaluate the e�ciency of the individual line search options,

a performance plot comparing the required number of iterations is presented in

Figure 5.1, excluding the 26 problems from Table 5.3. It shows the superiority of the

�lter method over the other options, followed by the augmented Lagrangian option

and exact2. The observation, that fullstep shows the worst performance despite the

fact that all options took in more than 37% � 45% of the problems steps identical

to fullstep, seems to indicate that overall the step acceptance criteria interfere with

pure Newton's method in the appropriate circumstances, at least for the considered

test set.

Interestingly, exact2 is the winner, if one only considers the 335 problems solved

by all options, with ~�exact2(1) = 0:79, ~� for auglag, exact1, �lter around 0:74, and

~�exact2(1) = 0:67. This might indicate, that there is a number of instances where it

pays to be more cautious.

1The number of iterations was corrected by one, so that a value of 1:0 corresponds to always

taking full steps.
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Figure 5.1: Performance plot comparing di�erent line search options

5.1.3 Comparison with Knitro and Loqo

In this section we present a numerical comparison of Ipopt with two other interior

point solvers for general nonlinear programming, Knitro 2.00 and Loqo 6.02. A

brief description of the underlying algorithms has been presented in Section 2.8.

Ipopt and Loqo are relatively similar in the sense that they are both primal-

dual interior point methods which follow a line search approach and generate Newton

search directions for some formulation of the primal-dual equations. Both handle

negative curvature by adding a multiple of the identity to the Hessian, and require

the factorization of similar sparse inde�nite symmetric matrices, see (3.7) and (2.48).

Di�erences lie for example in the step acceptance criterion, the update procedure

for the barrier parameter, and in the way equality constraints are handled. Knitro

on the other hand is a trust region based barrier method that employs only inexact

Newton steps, which are obtained partly by a PCG method. All methods use exact

second derivatives.

Before presenting the results, we should point out the following caveats: The
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three codes have been developed by di�erent people, so that as a consequence the

implementations are very di�erent: Ipopt and Knitro are written in Fortran 77,

whereas Loqo is coded in C; Ipopt and Knitro use the generic Harwell routine

MA27 [32] to solve the occurring sparse symmetric inde�nite linear systems, whereas

Loqo uses its own linear solver; algorithmic constants such as pivot tolerances or

small factors in decrease conditions etc. might be chosen di�erently. Furthermore,

since the basic algorithms address di�erent NLP formulations ((1.1) vs. (2.43) and

(2.50)), the same Ampl formulation might lead to di�erent formulations seen by

the solvers. As a consequence, the presented results give only limited information

on performance comparisons of the mathematical algorithms, measured for exam-

ple in iteration count. In particular, implemented heuristics for special cases and

ill-conditioning have a large impact on robustness. Therefore, the present results

mainly compare the practical performance of software packages at a certain stage of

development. Here, the degree of robustness and the required computation time are

the important factors.

Appendices B�D present for each solver the details of the runs for the problems in

the CUTE, COPS, and MITT test set, in particular the number of iterations and CPU

seconds required, which are summarized in the performance plots in Figures 5.2�5.4.

All codes were run with default settings (i.e. line search option �lter for Ipopt),

except that the maximum number of iterations was increased to 3000. The termina-

tion criteria are not identical (due to di�erent scaling), but we tried to choose them

approximately similar by tightening the tolerances for Knitro to feastol = 10�8

and opttol = 10�8 (as for Ipopt). Loqo terminates (by default) when both (scaled)

primal and dual infeasibility are below 10�6 and the optimal value of the objective

function is correct by at least 8 digits. Also, all codes have been compiled with GNU

compilers (version 2.96) using the optimization �ag �-O�.

When comparing the number of iterations, we should keep in mind that the

major amount of computational work required by Ipopt and Loqo per iteration is in

principle very similar (factorization of a large symmetric inde�nite matrix (2.48) and
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(3.3)), unless the iteration in Ipopt is taking place within Tron when performing

the restoration phase. (Then the amount of time spent per iteration depends on the

number CG iterations and the number of rejected trial steps in Tron.) On the other

hand, Knitro counts each trial point as iteration, so that one Knitro iteration

always includes the solution of the reduced subproblem by PCG, but the factorization

of the augmented system (2.46) (which is simpler and less dense than the matrices

considered by Ipopt or Loqo) is only necessary after a successful iteration. Which of

those two tasks is more time consuming depends on the characteristics of a particular

problem. For this reason, we include in our iteration count comparison also an option

for Knitro (called �Knitro (fact)�), where the number of factorizations (which

equals the number of successful steps) is taken as iteration count. Finally, also the

results for Ipopt's unguarded fullstep option are included in the comparison, in order

to obtain an idea of the �di�culty� of the considered problems (in this case we count

failure for fullstep if the �nal value of the objective function is di�erent from the one

used by the other options).

When creating the performance plot for the CUTE iteration count comparison, we

excluded 50 of the total 486 instances, in which two methods successfully stopped at

points with di�erent values of the objective function (as de�ned by (5.3)). Since the

computation time is negligible for small sized problems, we included in the second

plot in Figure 5.2 only the 179 problems with at least 100 variables (including slacks;

see Table 5.1). Among those, 19 were excluded because of (5.3), as well as 2 among

the 34 COPS and 4 among the 56 MITT problems.

From the asymptotic behavior in the performance plots as � ! 1 we can see

that Ipopt seems to be the most robust solver (at least within the given timeframe

of 3 hours), which is supported by Table 5.4 where the number of successfully solved

problems for each test set are shown. In addition, the rows marked �only� show how

many problems in each set were solved only by the given code. Among the CUTE

problems there are 17 that could not be solved by any method, 4 among the COPS

and 2 among the MITT problems.
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Figure 5.2: Performance plots for CUTE test set
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Figure 5.3: Performance plots for (large-scale) COPS test set
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Figure 5.4: Performance plots for MITT test set
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Solver Code CUTE COPS MITTp
433 27 53

z 3 5
y1 24 1 1
y3 6
y4 1

Ipopt y5 1
y6 3 1
y7 6 1
y8 9 1 1
only 8 4 3p

399 20 51
z 13 12 2
y1 30 2

Knitro y2 42 3
y3 2
only 9 2 1p

420 15 41
z 2 11 6
y1 38 4 1

Loqo y2 10 2
y3 2 1
y4 14 2 5
y5 2
only 16 0 0

Table 5.4: Number of failures for test sets

We can further see that Ipopt is clearly superior in terms of iteration counts, even

compared to �Knitro (fact)�. Also with respect to CPU time, Ipopt is seemingly

the best method, but less outstandingly, closely followed by Loqo for the CUTE

set. Since in most cases the task required per iteration by Ipopt and Loqo is

relatively similar (factorization of (3.7) and (2.48), respectively), one could expect

Ipopt to win clearly regarding computation time as well, but the performance plots

do not support this conjecture. Possibly, this is due to the di�erent solvers used to

perform the factorization of the sparse, symmetric, inde�nite matrices: In Ipopt,

the generic Harwell routine MA27 (with �xed pivot tolerance 10�8) is used, whereas

in Loqo this is done by a specialized implementation (see e.g. [75]) which seems to

perform very well in many cases. Consider for example the MITT problem ex4_160,
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for which Loqo requires only 5:1 CPU seconds per iteration, but Ipopt needs 19:3

CPU seconds per iteration, although it never had to factorize the KKT system (3.3)

multiple times in order to �nd a suitable value for the regularization parameters

Æ1 and Æ2 (#reg = 0). Pro�ling of the code shows, that Ipopt spends 90% of

the computation time within the factorization routine MA27BD. Reducing the pivot

tolerance to 10�12 leads only to a marginal decrease in CPU time. Therefore, it

might be possible to enhance Ipopt's performance in the future by investigating

alternative options for solving the linear system (3.7).

In comparison, the overall performance of Knitro seems not as high. There are

signi�cant di�erences in the algorithmic principle compared to Ipopt and Loqo,

that might be responsible for this. In particular, for large-scale problems with many

degrees of freedom, Knitromay perform a large number of PCG steps (and therefore

many backsolves for the linear system (2.46)), in order to compute a trial step. On

the other hand, one might therefore expect that Knitro would outperform Ipopt

on large-scale problems with only few degrees of freedom, such as the parameter

estimation problems gasoil, marine, methanol, and pinene from COPS, but this

is not supported by the presented results. In particular the case pinene_5000 is

puzzling, since Knitro requires only 6 iterations, a very small fraction of the itera-

tion count for Ipopt, and only a total of 10 PCG iterations, but 1:7 times the CPU

time required by Ipopt. This weak performance might therefore be caused by some

ine�ciency hidden in the particular implementation. However, on the COPS prob-

lems elec, Knitro clearly performs better than Ipopt; in this particular case the

Hessian of the Lagrangian is dense, which leads to a considerable amount of work in

Ipopt's factorization of (3.3), whereas Knitro only has to perform products with

the Hessian.

Finally, it is interesting to note, that also for the COPS and MITT problems the

unguarded fullstep option of Ipopt performs surprisingly well; for the MITT suite it

even outperforms the regular �lter option. We can interpret this �nding in two ways.

Either the search directions generated by Ipopt, essentially Newton steps for the
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perturbed KKT conditions, are in many cases very good and need not be modi�ed,

or the considered problems are relatively easy to solve.

5.1.4 Summary

In conclusion, Ipopt seems to be a robust and e�cient method for solving large-scale

NLPs. Among the implemented line search options, the novel �lter approach seems

overall to be the most robust and e�ective method.

The comparison presented in Section 5.1.3 is intended to demonstrate Ipopt's

potential as a general purpose NLP solver, not as a thorough comparison of the

three discussed methods, which is beyond the scope of this dissertation. Such a

direct comparison should be performed by an independent party and would have

to ensure that the conditions for each method (such as convergence criteria) are as

similar as possible. Furthermore, one would have to examine in detail the individual

reasons for failure of the solvers on the individual problems.

For example, there are some instances among the considered test problems,

in which the error tolerance of 10�8 seems too tight, such as the MITT problem

ex4_2_80, in which Ipopt after 22 iterations makes no progress in the objective

function, the (unscaled) value of the infeasibility stays around 10�8, but the error

criterion does not go below 10�7. Loqo fails on this problem in a similar manner.

5.2 Dynamic Optimization Problems in Process System

Engineering

Many physical phenomena can be described in terms of algebraic and di�erential

equations (DAEs), and therefore models for chemical equipment such as reactors,

distillation columns, and entire chemical processes are frequently formulated as

F (z(t); _z(t); y(t); u(t); p) = 0 (5.4a)

G(z(t); y(t); u(t); p) = 0; (5.4b)
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where z : [t0; tf ] �! Rnz and y : [t0; tf ] �! Rny are time-dependent state variables,

whose pro�les depend on the initial conditions

z(t0) = z0 (5.5)

for some z0 2 Rnz , time-dependent control variables u : [t0; tf ] �! Rnu , and time-

independent parameters p 2 Rnp . Here, _z(t) denotes the derivative of z(t) with

respect to t. The (implicit) di�erential equations F : Rnz�nz�ny�nu�p �! Rnz and

algebraic equations G : Rnz�ny�nu�p �! Rny are assumed to be index one. This

ensures that discretizations of the equations (as described below) are full rank. In

many cases, t corresponds to time, and we will assume here that the length of the

interval [t0; tf ] is �xed.

There is a variety of computational methods that have been developed for the

solution of the DAE system (5.4)�(5.5) and are used for the simulation of chemical

processes [2]. In this case it is assumed that the pro�les of the control variables u(t)

as well as the parameters p are given.

As a natural extension one may then ask the question, how to choose the control

variables and parameters in a way that optimizes some objective. In what follows

we assume that such a dynamic optimization problem is of the form

min
z;y;u;p

f(z(tf ); y(tf ); u(tf ); p) (5.6a)

s.t. implicit DAE system (5.4) (5.6b)

initial conditions (5.5) (5.6c)

bound constraints for z; y; u; p (5.6d)

for some scalar objective function f .

In a sequential approach, the pro�le of the control variables u(t) is discretized

and approximated by piece-wise polynomial functions. The �unknowns� in this op-

timization approach are the values of the coe�cients in these polynomials as well

as the parameters p, whose optimal values are computed by a nonlinear optimizer.

For this, the DAE system (5.4)�(5.5) is solved for given values of these unknowns
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by an integrator, providing the corresponding values of the objective function and

the constraints. The derivatives can be obtained by solving either a DAE system of

sensitivity or adjoint equations.

The advantage of this approach is that existing integrators and simulators can

be used, and that the resulting NLP formulation is small. However, a possible

ine�ciency of this approach is that the DAE system has to be integrated in each

iteration of the optimization process, although the exact pro�le of the state variables

is not of interest at non-optimal points. In particular the evaluation of derivative

information is computationally very expensive.

The alternative simultaneous approach tries to avoid this ine�ciency by solving

the DAE system at the same time as �nding the optimal control pro�les and param-

eters. For this, the pro�les of the control variables as well as the state variables is

discretized, leading to a �nite dimensional approximation of the in�nite dimensional

problem (5.6). Such an approach based on orthogonal collocation [2] is described

next.

5.2.1 Orthogonal Collocation and Elemental Decomposition

The DAE optimization problem (5.6) is converted into an NLP by approximating

state and control variables by a family of polynomials on ne �nite elements (t0 <

t1 < : : : < tne = tf ). Here, we use a monomial basis representation [4] for the

di�erential state pro�les, which is

z(t) = zi�1 + hi

ncolX
q=1


q

�
t� ti�1
hi

�
_zi;q: (5.7)

Here, zi�1 is the value of the di�erential state variables at the beginning of element

i, hi is the length of element i, _zi;q is the value of its �rst derivative in element i at

the collocation point q, and 
q is the polynomial of degree ncol, satisfying


q(0) = 0 for q = 1; : : : ; ncol


0
q(�r) = Æq;r for q; r = 1; : : : ; ncol;
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where �r 2 [0; 1] is the location of the rth collocation point within a normalized

element. Continuity of the di�erential variables is enforced by

zi = zi�1 + hi

ncolX
q=1


q (1) _zi;q: (5.8)

Radau collocation points are used because they allow us to set constraints easily at

the end of each element and to stabilize the system more e�ciently if high index

DAEs are present.

In addition, the control and algebraic state pro�les are approximated using a

similar monomial basis representation, which takes the form

y(t) =
ncolX
q=1

 q

�
t� ti�1
hi

�
yi;q (5.9a)

u(t) =

ncolX
q=1

 q

�
t� ti�1
hi

�
ui;q: (5.9b)

Here, yi;q and ui;q represent the values of the algebraic state and control variables,

respectively, in element i at collocation point q.  q is the Lagrange polynomial of

degree ncol � 1 satisfying

 q(�r) = Æq;r for q; r = 1; : : : ; ncol:

From (5.8), the di�erential state variables are required to be continuous throughout

the time horizon, while the control and algebraic state variables are allowed to have

discontinuities at the boundaries of the elements. For the presented results we assume

that the number of �nite elements, ne, and their lengths, hi, are pre-determined.

The bound constraints (5.6d) are approximated by placing them on the coef-

�cients zi; yi;q; ui;q; p. It should be mentioned that with representation (5.7), the

bounds on the di�erential variables are enforced directly only at element boundaries;

however, they can be enforced at all collocation points by introducing identical al-

gebraic state variables. Substitution of equations (5.9) into (5.6) �nally leads to an

NLP of the form (1.1) where x = f _zi;q; zi; yi;q; ui;q; pg, and c(x) collects the DAEs

(5.4) at all collocation points, together with (5.5) and (5.8).
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Using the variable partition (2.26) within Ipopt's reduced space version (see

Sections 3.2.2�3.2.5) allows us to perform a special decomposition of the Jacobian

AT
k that we will brie�y explain. In the remainder of this section the iteration index

k will be omitted for simplicity.

First, consider the Jacobian of the discretized DAE system

AT =

26666666666666666666666666666664

Z0
init 0 0

Z0
1

_Z1
1 Y 1

1 U1
1 P 1

1

Z0
2

_Z1
2 Y 1

2 U1
2 P 1

2

...
...

...
...

...

Z0
ncol

_Z1
ncolY

1
ncol U1

ncol P 1
ncol

I D1 0 �I 0 0

Z1
1
_Z2
1 Y

2
1 0 U2

1 P 2
1

. . .
. . .

. . .
...

. . .
. . .

. . .
...

Zne�1
ncol

_Zne
ncolY

ne
ncol Une

ncolP
ne
ncol

I Dne 0 �I

37777777777777777777777777777775
(5.10)

where I represents the identity matrix of appropriate dimension, and Di is a matrix

containing the coe�cients of the continuity equations of the ith element. Zi
q, _Zi

q, Y
i
q ,

U i
q and P i

q represent the Jacobian of the collocation equations with respect to zi,

_zi;q, yi;q, ui;q and p, at collocation point q and element i. The factorization of this

matrix is performed over smaller matrices, each one representing a �nite element. To

explore this decomposition, consider the rows and columns of AT that correspond

to element i

(Ai)T =

266666666664

Zi�1
1

_Zi
1 Y i

1 0 U i
1 P i

1

Zi�1
2

_Zi
2 Y i

2 0 U i
2 P i

2

...
...

... 0
...

...

Zi�1
ncol

_Zi
ncol Y i

ncol 0 U i
ncol P i

ncol

I Di 0 �I 0 0

377777777775
: (5.11)
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In order to apply the reduced space algorithm, we need to partition the variables

according to (2.26). The overall partition is obtained by selecting dependent and

independent variables within each element. A user may specify this partition ex-

plicitly, for example choosing all control variables and parameters as independent

variables. Alternatively, we can apply an LU factorization with partial pivoting on

each rectangular system Ai. As discussed in [51], this LU factorization will yield a di-

chotomous system in each element. Thus, if an unstable mode is present in the DAE

system, (Ai)T is required to be partitioned so that, in e�ect, the end conditions of

any increasing mode are �xed or become decision variables. In the partitioning, if a

di�erential variable zj has an increasing mode, _zj;ncol would be identi�ed and shifted

from a column in C to a column in N . Correspondingly, a column corresponding to

a control variable would be shifted from N to C. By considering the independent

variables to be �xed, the decomposition approach then becomes equivalent to solving

a discretized, linear boundary value problem.

In the current implementation of the elemental decomposition it is assume that

the parameters are always chosen to be independent variables, so that the decompo-

sition of this matrix can be performed directly, as all the variables can be eliminated

locally. In the case that a parameter is present and chosen to be a dependent variable,

the last column of (Ai)T , which corresponds to the parameters, will be coupled to the

entire system. For this case, a two stage decomposition will have to be implemented

(see Section 6.2).

After the basis has been selected, we can represent the overall matrix AT with
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the following structure and partition

AT =

2666666666666666664

I

T 1 C1

I bC1 �I
T 2 C2

I bC2 �I
T 3 C3

. . .
. . .

j

0

N1

bN1

N2

bN2

N3

. . .

3777777777777777775

=

�
C j N

�
;

and the corresponding right hand sides are

cT =
h
c0 c1 bc1 c2 bc2 c3 � � �

i
:

Cervantes [25] had implemented a forward decomposition strategy for linear sys-

tems involving C, computing the entries of �q in (2.29) and rows of C�1N in (2.28)

for each element i = 1; : : : ; ne. The dense matrix C�1N was calculated and stored

explicitly, and the factorization of the individual matrices Ci was discarded after the

corresponding element had been addressed. The new approach, implemented within

this Ph.D. project, instead stores the factorization of the individual Ci matrices

and avoids the explicit storage of C�1N . This leads to a considerable reduction in

memory requirement and computation time for large-scale problems, and also al-

lows the computation of multiplier estimates from (3.11), in contrast to the previous

approach.

The current implementation of the elemental decomposition allows a user to

model the process

1. as a set of Fortran subroutines, that provide function and derivative infor-

mation of the model equations;

2. as a Fortran subroutine that implements only the model equations. The

source �le is then automatically translated into C++ and derivative informa-

tion is obtained from the automatic di�erentiation package ADOL-C [49];
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3. in the modeling environment gPROMS [72], which can communicate with the

solver executable using an �equation solver object�.

For convenient usage, Ipopt and the elemental decomposition has been integrated

into DynoPC developed by Lang and Biegler [52], which provides a graphical user

interface for easy de�nition of scenarios and monitoring of the optimization progress.

5.2.2 Continuous Air Separation Distillation

In the next two sections we compare the di�erent options described in Sections 3.2.3�

3.2.5 for approximating second order information and for solving the reduced system

(3.9).

The �rst example simulates a simple air separation using a continuous distillation

column with 15 trays. The feed is assumed to have a composition of 78.1% Nitrogen,

21% Oxygen, and 0.9% Argon. The purity of Nitrogen taken out at the top of the

column is 99.8%. The complete model consists of 70 di�erential equations and 356

algebraic equations. Here the objective is to minimize the o�set produced during

the change from one steady state to another by controlling the feed �ow rate F over

a time horizon of tf = 10h. These steady states are de�ned by the distillate �ow

rates operating at D(0) = 301:8 mol=h to Dset = 256:0 mol=h. With this, we pose

the optimization problem as follows.

min

Z tf

0
(D �Dset)2dt (5.12a)

s.t. DAE model (5.4)�(5.5) (5.12b)

0 kmol=h � F � 2 kmol=h: (5.12c)

The starting point for this problem is the steady state value at D(0) and the initial

control pro�le is speci�ed by F = 1:5kmol=h.

For model equations (5.4) have been implemented in Fortran, as well as their

(sparse) analytical gradients. Details of the model and the optimal solution can be

found in [26], where an early version of Ipopt was used to perform the optimization.
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The largest instance solved in [26] had 60 �nite elements with each 2 collocation

points, which corresponds to an NLP with 55; 510 optimization variables.

We now compare the following cases for solution of this problem.

� QN-BFGS: Use the BFGS update to approximate ZT
kWkZk (option 2 on page

38).

� QN-SR1: Use the SR1 update to approximate ZT
k WkZk (option 3 on page 39).

Here the overall reduced Hessian is possibly modi�ed by adding a multiple of

the identity to ensure positive de�nite (option 3 on page 40).

� Explicit: Use �nite di�erence approximations (3.12) to calculate ZT
k HkZk ex-

plicitly (option 1 on page 38).

� PCG1: Use the PCG method (described in Section 3.2.5) employing �nite

di�erences (3.12). In order to obtain the preconditioner, approximate the

overall reduced Hessian by BFGS (option 1 on page 42).

� PCG2: Use the PCG method (described in Section 3.2.5) employing �nite

di�erences (3.12). Here, approximate only the reduced Hessian corresponding

to the original NLP by damped BFGS, and construct an estimate of the overall

reduced Hessian by calculating ZT
k �kZk explicitly to obtain the preconditioner

(option 2 on page 42).

We note that for this example bounds are only imposed on control variables,

which are chosen to be the independent variables. As a result we have ZT
k �kZk = �u,

which is a diagonal matrix corresponding to the control bounds and their multipliers,

and which is therefore very easy to evaluate. This accounts for the fast performance

in options PCG2, QN-BFGS and QN-SR1. To present performance behavior with

the PCG2 case on more general control problems, we also provide the calculation of

the complete matrix ZT
k �kZk, even though only �u is relevant here. This option is

labeled as PCG2�.
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No. of Problem size QN-BFGS QN-SR1 Explicit

elements n / m Iter/ CPU Iter/ CPU Iter/ CPU

50 67; 620 / 67; 470 205/ 3:43 82 / 1:39 10 / 5:04

100 135; 170 / 134; 870 239/ 8:10 100/ 3:47 12 / 23:87

200 270; 270 / 269; 670 283/ 21:30 123/ 9:30 11 / 87:83

500 675; 570 / 674; 070 314/ 99:87 209/ 69:22 11 / 539:16

900 1; 215; 970/1; 213; 270 449/527:25 287/369:70 11 /1721:08

No. of PCG1 PCG2 PCG2�

elements Iter/ CPU [#cg ] Iter/ CPU [#cg] Iter/ CPU [#cg]

50 26 / 2:30 [ 558 ] 11 / 0:93 [169 ] 11 / 3:68 [ 169 ]

100 39 / 7:36 [ 897 ] 10 / 2:13 [199 ] 10 / 12:01 [ 199 ]

200 29 / 23:82 [1589] 12 / 8:65 [404 ] 12 / 56:44 [ 404 ]

500 76 /114:70 [2844] 12 / 33:10 [508 ] 12 / 325:51 [ 508 ]

900 39 /288:89 [4157] 12 /125:73 [871 ] 12 /1072:48 [ 871 ]

Table 5.5: Iteration count and CPU time (in minutes) for air separation example

All of these cases were run on an 1 GHz Pentium III Intel processor and were

initialized to a feasible solution corresponding to the steady state at t = 0. The

imposed convergence tolerance is 10�6, and for the PCG options the maximal number

of CG iterations per interior point iteration is limited to one third of the number of

degrees of freedom. The CG convergence factor is chosen 10�1.

Table 5.5 shows the computational performance for this example for three collo-

cation points and for di�erent numbers of elements. For each problem its size, the

required number of iterations (Iter) and CPU time (CPU; in minutes), and for the

PCG options also total number of conjugate gradient iterations (# cg) is listed.

From the results in this table, several features are worth noting. First it is clear

that the Newton-based options (Explicit, PCG1, PCG2 and PCG2�) require far fewer

interior point iterations than the quasi-Newton methods. In most cases this factor

exceeds an order of magnitude. However, the Newton methods clearly require more



CHAPTER 5. NUMERICAL RESULTS 148

work per iteration, with the explicit approach incurring a large cost due to n �m
of Hessian vector products per IP iteration. An interesting feature can also be seen

with the two PCG options. The �rst preconditioner is two to four times slower

than the second one. This can be explained because the �rst preconditioner requires

about three to six times more PCG iterations and Hessian vector products. PCG2

requires less work because its preconditioner has separated terms which are updated

more accurately. On the other hand, PCG2 (as well as QN-BFGS and QN-SR1) is

greatly aided by the simple form of ZT
k �kZk = �u for this particular example. For

more generally constrained problems, ZT
k �kZk is more costly to update. This can

be seen with option PCG2�, which requires the same low number of PCG iterations

as option PCG2 but is now about three times as expensive as PCG1.

The results also suggest that the SR1 update provides better quasi-Newton esti-

mates than the BFGS formula, requiring only about half the number of iterations.

In this example, QN-SR1 is almost competitive with PCG2. However, we should keep

in mind that the required tolerance of 10�6 is not extremely tight, and a more sig-

ni�cant di�erence can be expected choosing a stricter convergence criterion, where

PCG2 has the advantage of providing very fast local convergence.

Overall, we see that the proposed interior point algorithm is quite attractive for

solving very large nonlinear programming problems. The size of the problems in

Table 5.5 is limited by the memory requirements, and the largest problem with over

1:2 million variables and 2; 700 degrees of freedom could be solved in a little more

than 2 hours. We also solved a larger instance with 1; 500 �nite elements on a 1 GHz

dual-Pentium III machine with more memory, which corresponds to a problem with

2; 026; 570 variables and 4; 500 degrees of freedom. This instance was solved by the

PCG2 option in 11 iterations using 1; 222 PCG iterations. For this, a computation

time of only 411:09 CPU minutes was necessary.

The optimization problems arising from this example are very large, and have

only a moderate number of degrees of freedom compared to the total number of

variables. In addition, the matrix ZT
k �kZk is very easy to compute for this ap-
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plication, so that certain options are favored, such as the quasi-Newton methods.

In the following section, a considerably smaller example is presented with di�erent

characteristics.

5.2.3 Batch Cooling Crystallization

In this section we revisit the batch cooling crystallization process previously exam-

ined by Lang, Cervantes, and Biegler [53]. In this process, a solid-liquid separation

occurs by cooling a jacketed stirred vessel. Here we need to determine an optimal

cooling temperature pro�le. The driving force for growing crystals in the model is

the supercooling degree �� de�ned by

�� = maxf0; Tequ � Tg; (5.13)

where T is the temperature of the solution, and Tequ is the equilibrium temperature,

whose dependency from the solution concentration C is expressed by a third order

polynomial. Since (5.13) is a non-di�erentiable expression, it is approximated by a

�smoothing function�

�� =
1

2

�
�T +

p
�T 2 + �2

�
(5.14)

with �T = Tequ � T and � = 10�4. With this de�nition, the correlations between

the growth rate (G), the mean size of the crystals (Ls), the nucleation rate (Nu),

number of nuclei per liter of solvent (N), total length of the crystals per liter of

solvent (L), total surface area of the crystals per liter of solvent (A), total volume

of the crystals per liter of solvent (Vc), and the total mass of the crystals (M) are
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expressed by the following system of ordinary di�erential equations:

G =
dLs
dt

= Kg � L0:5
s � (��)en (5.15a)

Nu =
dN

dt
= Bn � (��)em (5.15b)

dL

dt
= N �G+Nu � Ln0 (5.15c)

dA

dt
= 2� � L �G+Nu � L2

n0 (5.15d)

dVc
dt

= 3� �A �G+Nu � L3
n0 (5.15e)

dM

dt
=

3Ws0

L3
s0

L2:5
s �G+ � � V dVc

dt
(5.15f)

dC

dt
= � 1

V

dM

dt
: (5.15g)

Here, the volume of the solvent (V ), the mass of seeds added (Ws0), the mean size

of the seeds (Ls0), the speci�c gravity of the crystals (�), the shape factors � and �

of the area and volume, as well as the empirical parameters en, em, Kg, and Bn are

constants (see [53]).

When growing crystals, impurities are usually accumulated on the crystal sur-

face. In order to improve product quality, one therefore strives to keep the total

crystal surface area small, i.e. to grow the crystals as large as possible. Hence, the

optimization problem consists in �nding the optimal control pro�le for the tempera-

ture Tcool of the cooling water in the jacket of the crystallizer, so that the mean size

of the crystals Ls after tf = 22 h is maximized. The relationship between Tcool and

the temperature T in the solution is characterized by the energy balance

dT

dt
=
Kc

dM
dt �KE (T � Tcool)

W � Cp
; (5.16)

where Kc is the speci�c melting latent heat of the product, W the total mass in

the crystallizer, Cp the mean heat capacity, and KE the heat-transfer coe�cient (see

[53]). Due to utility limitations, the temperature Tcool cannot go below 10 ÆC.

In order to prevent encrustation on the inside wall of the crystallizer, it is nec-

essary to ensure that the cooling water temperature does not fall too much below
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Figure 5.5: Control pro�les for crystallization process

the temperature of the solution. For this, an allowable temperature Talw is intro-

duced, which depends on the concentration in the solution, expressed by a third

order polynomial. An new algebraic (slack) variable y is then added to the problem,

y = Tcool � Talw; (5.17)

with a lower bound zero.

With this, the overall dynamic optimization problem consists of 8 di�erential

state variables and 1 algebraic state variable, with the DAE system (5.15)�(5.17);

Eq. (5.14) is directly substituted into (5.15). The model has been written in For-

tran. First derivatives and possibly matrix-vector products with exact Hessians are

obtained from ADOL-C [49].

As a starting point for the nonlinear optimization, the simulated pro�les for

the operating conditions originally applied in the plant are chosen, as presented

in Figure 5.5. Here we also see the optimal temperature pro�le, using 500 �nite

elements and 3 collocation points. The control variables are restricted to be linear in

each �nite element. In [53], only 15 unequally spaced �nite elements have been used,
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Figure 5.6: Crystal length for crystallization process

which required 130 iteration within rSQP [14]. The results obtained here con�rm

the �nding in [53] and o�er a very smooth representation of the optimal pro�les.

In Figure 5.6 we see the pro�le of the mean crystal size Ls, both for the original

and optimized operating conditions. The optimized control policy leads to a 50%

increase of the �nal crystal size. Note, that the lower bound on the algebraic variables

de�ned in (5.17) is active in several intervals of the time horizon, see Figure 5.7.

The model of the crystallization process is considerably smaller than the model

of the distillation column discussed in the previous section. Also, in contrast to the

problem statement (5.12), bounds are posed on all state and control variables for the

optimization of the crystallizer. Some of those are active at the solution (as seen in

Figures 5.5 and 5.7), and others are merely necessary to ensure that variables do not

deviate to far from the physically meaningful region during the solution procedure,

which could lead to convergence problems.

Therefore, the ratio of the numbers of degrees of freedom versus the total number

of variables is much larger than in the previous example, and the reduced primal-
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Figure 5.7: Active temperature constraint for crystallization process

dual Hessian of the barrier term, ZT
k �kZk, is not only a diagonal matrix but has to

be computed explicitly. Furthermore, function and derivative evaluations are more

time consuming (relative to the model size), since they are obtained by automatic

di�erentiation in ADOL-C, which requires a repeated interpretation of the �tape�

storing the description of the functions.

In order to see the performance of the individual options introduced in the pre-

vious section under these problem characteristics, the model was solved for di�erent

numbers of collocation points, as shown in Table 5.6. For options, for which prod-

ucts of the Hessian of the Lagrangian with vectors are required, either ADOL-C

functions were used which perform multiple Hessian-vector products with exact sec-

ond derivatives (Explicit, PCG1, PCG2), or the �nite di�erence formula (3.12) was

used employing only �rst derivatives provided by ADOL-C (fd-Explicit, fd-PCG1,

fd-PCG2).

As in the comparison in Section 5.2.2, the SR1 updating formula seems to provide

better estimates than BFGS, and both require iteration counts signi�cantly increas-
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No. of Problem size QN-BFGS QN-SR1

elements n / m Iter / CPU Iter / CPU

50 1; 908 / 1; 808 478 / 70:40 339 / 48:78

100 3; 808 / 3; 608 833 / 617:75 555 / 404:80

220 8; 368 / 7; 928 1323/ 5728:65 1090/ 4755:10

500 19; 008/18; 008 1953/50360:78 1712/46258:57

No. of Explicit PCG1 PCG2

elements Iter/ CPU Iter/ CPU [#cg ] Iter/ CPU [#cg ]

50 32 / 67:43 53 / 23:67 [ 955 ] 32 / 15:39 [ 398 ]

100 34 / 283:60 46 / 82:05 [1702] 37 / 69:01 [ 746 ]

220 35 /1435:03 45 / 418:90 [3806] 35 / 406:40 [1456]

500 42 /9063:01 47 /2574:31 [9180] 40 /2542:30 [2318]

No. of fd-Explicit fd-PCG1 fd-PCG2

elements Iter/ CPU Iter/ CPU [ #cg ] Iter/ CPU [#cg ]

50 32 / 33:39 65 / 15:04 [ 1097 ] 35 / 11:95 [ 429 ]

100 34 / 143:96 44 / 47:65 [ 1882 ] 35 / 49:46 [ 715 ]

220 35 / 742:84 46 / 269:49 [ 4282 ] 34 / 322:20 [1402]

500 53 /6010:54 45 /1848:38 [10470] 39 /2267:24 [2513]

Table 5.6: Iteration count and CPU time (in seconds) for crystallization example

ing with the problem size. However, for this example these quasi-Newton options

are not at all competitive in terms for CPU time with the remaining Newton-type

methods, for which the iteration counts increase only slightly. As before we see that

the PCG methods lead to signi�cant time savings compared to the Explicit option,

where the preconditioner in PCG2 is again more e�ective than the one in PCG1 in

the sense that overall less CG iterations are required.

Interestingly, when we compare the options using exact Hessian-vector products

from ADOL-C with those using the �nite di�erence formula (3.12), we see that the
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approximations lead for the PCG options to an increase in CG iterations, due to

the in-exactness of the products, but are faster in terms of computation time. This

speed-up is particularly visible for the options Explicit and PCG1 which require many

Hessian-vector products; for the �rst the time savings are about 50%, except for

the largest instance in which the number of iterations is signi�cantly increased when

inexact products are used. At this point it is not clear why the usage of exact second

derivatives from ADOL-C is not competitive in this example; it might be partly due

to the fact that during the computation of second derivatives, the �rst derivatives are

computed anyway. However, in other applications (e.g. [6]) Hessian-vector products

approximated via �nite di�erences were too inaccurate, leading to failures, and the

ability of obtain exact products from ADOL-C proved to be essential.

Finally, when the costs for evaluating Hessian-vector products are not very high

as for fd-PCG1 and fd-PCG2, we see that the �rst option actually becomes faster

than the second one; PCG2 requires less CG iterations, but the matrix ZT
k �kZk has

to be constructed in every iteration and is relatively large in this example.

In conclusion, the results in the last two sections indicate that none of the op-

tions for handling or approximating second order information in the reduced space

version of Ipopt is clearly superior to the others. On the contrary, the best choice

depends on problem characteristics, such as size, relative number of degrees of free-

dom, number of bounds, costs for function and derivative evaluations, and of course

the di�culty of the problem. This emphasizes the importance to be able to adapt

optimization strategies and their implementation to individual applications.
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Conclusions

Nonlinear programming remains a very active research area, particularly since ex-

isting optimization methods and software codes reach their practical limits. In the

�eld of process engineering, the emerging bottlenecks include limitations in problem

size and missing �exibility of algorithms and implementations for the exploitation of

problem dependent structures. The objective of this research project was the devel-

opment and implementation of a new algorithm for nonlinear optimization, aiming

to overcome those challenges.

The next section presents a summary of this work, and lists its contributions.

Suggestions for future work are made in the �nal Section 6.2.

156
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6.1 Thesis Summary and Contributions

After a short introduction to nonlinear programming in Chapter 2, a novel algorithm

for large-scale nonlinear, nonconvex optimization has been proposed in Chapter 3.

The challenges mentioned in Section 1.3 currently encountered for the solution of

optimization problems arising in process engineering, have motivated its design in

the following ways:

� The method follows a barrier approach, avoiding the potential bottleneck of

active set identi�cation in SQP methods.

� Search directions can be computed in di�erent ways, allowing to choose the

most appropriate option for individual purposes:

� In its full-space version, the method is a powerful general purpose opti-

mization solver, as demonstrated on a large number of test problems in

Section 5.1. Interfaced to the modeling language Ampl, NLPs with up to

160; 000 variables have been solved; these are not limited to a small num-

ber of degrees of freedom. Furthermore, the code compares favorably with

two other recent interior point codes in terms of robustness, computation

time, and iteration count on a large set of test problems (Section 5.1.3).

� Alternatively, in the reduced space version a step decomposition based on

variable partition allows the exploitation of constraint Jacobian structure.

The e�ectiveness of this approach has been demonstrated in Section 5.2

on dynamic optimization examples, where the linear algebra is tailored

to the problem structure by means of an improved implementation of the

elemental decomposition.

� The reduced space version of the proposed algorithm can also poten-

tially be used to work with process simulators in a tailored approach [16].

Here, linear systems are solved within the simulator, and the proposed

optimization algorithm can adapt to di�erent levels of �openness� of the
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simulation program, depending on whether systems involving the trans-

pose of the constraint Jacobian can be solved or not. In the latter case,

multiplier estimates are not available, but the algorithm can be applied

in its multiplier-free form.

� Also with respect to second order information, several options are available:

� In the full space version, the exact Hessian of the Lagrangian is used,

exploiting its sparsity structure. Alternatively, one may use a sparse

approximation, such as a Gauss-Newton approximation.

� If second order information is not available or too expensive, the reduced

space approach allows the approximation of the reduced Hessian by means

of BFGS or SR1. In the comparisons presented in Sections 5.2.2 and 5.2.3,

the latter update seems to provide faster performance.

� If the number of degrees of freedom is large, quasi-Newton approximations

may only provide slow convergence rates. In this case, Hessian-vector

products can be used by the proposed algorithm within a preconditioned

conjugate gradient (PCG) method. Here, two di�erent preconditioners for

the reduced barrier Hessian are proposed. If exact Hessian-vector prod-

ucts are not available, they can be approximated by �nite di�erences. The

e�ectiveness of the PCG approach has been demonstrated on a dynamic

optimization problem with many �nite elements for a process model with

426 DAEs, resulting in an NLP with more than 2 million variables and

4; 500 degrees of freedom. This was solved within 6:85 hours on a Linux

workstation (Section 5.2.2).

� The comparison of those di�erent options on two di�erent applications

in Sections 5.2.2 and 5.2.2 indicate that the best choice depends on the

particular problem characteristics. This emphasizes the importance of

�exibility of an optimization algorithm.
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� Global convergence is enforced by a line search approach, since it allows an

easy decomposition of the steps. Here, several merit functions have been im-

plemented, for the purpose of comparison. However, since these approaches

can fail to guarantee global convergence on some well-posed problems (Sec-

tion 3.3.3), a novel �lter line search method (Section 3.4) has been devised

and integrated into the code. A comparative study of the di�erent line search

options in Section 5.1.2 indicates that the new approach is overall the most

robust and e�cient one among the implemented strategies.

The theoretical contributions of this dissertation presented in Chapter 4 are:

� The discovery, analysis, and discussion of a new type of global convergence

failure inherent to many current interior point methods for nonlinear program-

ming (Section 4.1).

� First global convergence analysis for a line search �lter method under very mild

assumptions (Section 4.2). The results also hold for �lter line search active set

SQP methods.

� First local convergence analysis of a �lter method, showing that second order

correction steps indeed prevent the Maratos e�ect if the �switching condition�

is chosen in a way di�erent than previously proposed (Section 4.3).

6.2 Directions for Future Work

While the practical results of the proposed algorithm are very encouraging, there is

always room for improvement. Some possible aspects worthy of further investigation

are as follows:

Optimization Algorithm

� For convenience, the current implementation of the �lter line search method

uses Tron as the method performing the feasibility restoration phase, which



CHAPTER 6. CONCLUSIONS 160

is a general purpose code for bound constrained optimization employing con-

jugate gradients. While it is performing well in most of the considered test

problems, improvements regarding robustness are necessary, particularly since

the restoration phase is the only step where the �lter line search method can

fail, and therefore inherits all the di�cult cases. In addition, in some instances

the conjugate gradient procedure within Tron seems very time-consuming,

and an alternative direct approach, possibly based on a barrier method in-

stead of gradient projection, might be more e�cient. Furthermore, since the

objective function is currently ignored during the restoration phase, it has been

observed in some instances that the new iterates delivered from the restoration

phase can lead to extremely bad objective function values, so that safeguards

in this respect are necessary.

� The heuristic described in Section 3.2.1 for handling KKT matrices with wrong

inertia in the full space approach seems to work e�ciently in many cases. How-

ever, there are instances among the considered test problems, in which correc-

tions are made in a large number of successive iterations, during which only

small progress is made towards the solution. It might therefore be worthwhile

to explore inertia-controlling symmetric inde�nite factorizations and explicit

exploitation of directions of negative curvature (see [39]).

� As a related topic, the current strategy for handling negative curvature within

the preconditioned gradient method is not yet su�ciently robust and e�cient.

Here, a strategy similar to the one proposed in [46] for line search methods in

the context of unconstrained optimization might be helpful.

� Although the preconditioners proposed in this dissertation for the conjugate

gradient method work well in the considered examples, further investigation

might lead to improved e�ciency and robustness. In particular, even though

the preconditioner PCG2 is superior to PCG1 with regard to CG iteration count,

its construction can be prohibitive for very large problems, as indicated by the
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long computation times of option PCG2� in Table 5.5 on page 147. On the

other hand, the cheaper preconditioner PCG1 has been observed to impair

robustness of the overall algorithm in other applications.

� In the full space method, degeneracy in the equality constraints is handled

by introducing small pivot elements into the iteration matrix (see Eq. (3.7)).

While this procedure is a practical heuristic at iterates away from a solution,

it will not overcome impoverished local convergence to a solution of the barrier

problem, if the constraint gradients are linearly dependent at that point. Simi-

larly, degeneracy might also be introduced through bound constraints. In these

cases, stabilization techniques as those proposed in [81] might be necessary to

yield fast local convergence.

� In interior point algorithms for linear and quadratic programming, update

schemes of the barrier parameter �, that change its value in each iteration, have

been proven to be very e�cient. To follow such an approach in nonlinear and

nonconvex cases, the mechanisms for global convergence have to be adapted.

This also opens interesting theoretical questions.

Software Implementation

� Ipopt has been coded in Fortran 77, and will be available under an open

source license. Since it is a relatively new piece of software, continued testing

and improvements will be necessary. Also, continued usage is expected to reveal

bottlenecks, either in the implementation or in the underlying mathematical

algorithm, and might raise interesting research questions.

� As mentioned in Section 5.1.3, the choice of the linear solver used for the fac-

torization of the KKT matrix impacts the computational speed and robustness

of the full space version of Ipopt. Here, it might be worthwhile to compare

di�erent solvers, and to investigate how they can be tailored to the speci�c
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task in Ipopt. For example, the heuristic for handling negative curvature de-

scribed in Section 3.2.1 tries di�erent values of the regularization parameter

Æ1 in (3.6), until the inertia of the KKT matrix is correct. In the current im-

plementation, each trial corresponds to a complete factorization of the KKT

matrix. However, this search would be less time consuming if the factorization

could be aborted prematurely, as soon as a pivot element with a wrong sign is

detected (see also [39]).

� In the implementation of Ipopt, all operations with the constraints are re-

quested through one single subroutine, in order to make it easy to tailor de-

composition techniques etc. to particular applications. However, an even larger

degree of �exibility could be obtained by a re-implementation in C++, employ-

ing object-oriented concepts. Using vector abstraction concepts proposed by

Bartlett [5], this would also allow a very easy parallelization of the code.

Applications

� Ipopt and the new implementation of the elemental decomposition has already

been integrated into DynoPC [52]. A process model can be provided as a For-

tran 77 �le, which is automatically preprocessed, so that derivatives such as

the sparse Jacobian of the model equations and exact Hessian-vector products

are accessible to the optimizer. The two examples presented in Chapter 5 are

representations of many other problems that have been solved with this tool.

� Another promising new modeling environment for dynamic optimization and

nonlinear model predictive control (NMPC) is OCOMA [7]. Using this tool,

it is planned to investigate the potential of Ipopt as optimization code for

NMPC, in a comparison with rSQP++ [5].

� In the implementation of the elemental decomposition it is currently not pos-

sible to impose additional constraints, that couple the entire system. Here, a

two-stage decomposition strategy might provide the answer.
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� Finally, since Ipopt has been designed with the intention to make it possible to

tailor it to di�erent engineering applications, it would be worthwhile exploring

its potential in �elds like PDE-constrained optimization and circuit tuning.
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Appendix A

Characteristics of NLP Test

Problems

The tables in this appendix list the sizes of the individual problems in the CUTE,

COPS, and MITT test sets. For each problem, we show the number of variables

(#var; not including slack variables for inequality and range constraints (5.1b))

and how many of those have bounds (#bdd); the number of equality (#eq) and

inequality or range constraints (#ineq), as well as the number of non-zero elements

in constraint Jacobian (#nzJac), and number of non-zero elements in Hessian of

Lagrangian (#nzHes), counting symmetric o�-diagonal elements only once.

For COPS and MITT, these are the characteristics of the problem formulations

after Ampl's pre-solve phase.
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Problem #var #bdd #eq #ineq #nzJac #nzHes

airport 84 84 0 42 84 1806
aljazzaf 3 3 1 0 3 3
allinit 4 0 1 2 3 10
allinitc 4 0 1 3 5 10
allinitu 4 0 0 0 0 10
alsotame 2 0 1 2 4 3
arwhead 5000 0 0 0 0 9999
avion2 49 49 15 0 43 123
bard 3 0 0 0 0 6
batch 46 46 12 61 178 33
bdexp 5000 0 0 0 0 14997
bdqrtic 1000 0 0 0 0 4990
beale 2 0 0 0 0 3
bigbank 2230 1674 1112 0 4460 1366
biggs3 6 0 3 0 3 21
biggs5 6 0 1 0 1 21
biggs6 6 0 0 0 0 21
box2 3 0 1 0 1 6
box3 3 0 0 0 0 6
brainpc0 6905 6905 6900 0 41395 10478
brainpc1 6905 6905 6900 0 41395 10478
brainpc2 13805 13805 13800 0 82795 20828
brainpc3 6905 6905 6900 0 41395 10478
brainpc4 6905 6905 6900 0 41395 10478
brainpc5 6905 6905 6900 0 41395 10478
brainpc6 6905 6905 6900 0 41395 10478
brainpc7 6905 6905 6900 0 41395 10478
brainpc8 6905 6905 6900 0 41395 10478
brainpc9 6905 6905 6900 0 41395 10478
bratu1d 1001 0 0 0 0 2001
britgas 450 450 360 0 1576 735
brkmcc 2 0 0 0 0 3
brownal 10 0 0 0 0 55
brownbs 2 0 0 0 0 3
broydn7d 1000 0 0 0 0 3497
brybnd 5000 0 0 0 0 34979
bt1 2 0 1 0 2 2
bt2 3 0 1 0 3 5
bt4 3 0 2 0 6 3
bt5 3 0 2 0 6 5
bt6 5 0 2 0 5 9
bt7 5 0 3 0 8 6
bt8 5 0 2 0 6 5
bt9 4 0 2 0 6 3
bt11 5 0 3 0 8 9
bt12 5 0 3 0 8 5
bt13 5 0 1 1 6 8
byrdsphr 3 0 2 0 6 3
camel6 2 0 0 2 2 3
cantilvr 5 5 0 1 5 5
catena 32 0 11 0 62 61
catenary 496 0 166 0 826 989
cb2 3 0 0 3 9 3
cb3 3 0 0 3 9 3
chaconn1 3 0 0 3 9 3
chaconn2 3 0 0 3 9 3
chebyqad 50 50 0 0 0 1275
chnrosnb 50 0 0 0 0 99
cliff 2 0 0 0 0 3
clnlbeam 1499 998 1000 0 3994 1000
clplatea 4970 0 0 0 0 14700
clplateb 4970 0 0 0 0 14700
clplatec 4970 0 0 0 0 14700

Table A.1: Characteristics of CUTE test set (continued on next page)
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Problem #var #bdd #eq #ineq #nzJac #nzHes

concon 15 5 11 0 26 11
congigmz 3 0 0 5 13 2
core1 65 0 41 74 212 24
corkscrw 8997 4000 6000 1000 20988 5000
coshfun 61 0 0 20 118 80
cosine 10000 0 0 0 0 19999
cragglvy 5000 0 0 0 0 9999
cresc100 6 4 0 200 1100 17
cresc132 6 4 0 2654 14597 17
cresc4 6 4 0 8 44 17
cresc50 6 4 0 100 550 17
csfi1 5 5 2 2 11 7
csfi2 5 5 2 2 11 7
cube 2 0 0 0 0 3
curly10 10000 0 0 0 0 109945
curly20 10000 0 0 0 0 209790
curly30 10000 0 0 0 0 309535
dallasl 906 906 667 0 1812 888
dallasm 196 196 151 0 392 190
dallass 46 46 31 0 92 41
deconvc 51 51 1 0 11 891
demymalo 3 0 0 3 9 2
denschna 2 0 0 0 0 3
denschnb 2 0 0 0 0 3
denschnc 2 0 0 0 0 3
denschnd 3 0 0 0 0 6
denschne 3 0 0 0 0 3
denschnf 2 0 0 0 0 3
dipigri 7 0 0 4 19 9
disc2 28 6 17 6 81 43
discs 36 12 21 48 399 234
dittert 327 327 264 0 2431 1088
dixchlng 10 0 5 0 30 55
dixchlnv 100 100 50 0 2550 296
dixmaana 3000 0 0 0 0 6000
dixmaanb 3000 0 0 0 0 8999
dixmaanc 3000 0 0 0 0 8999
dixmaand 3000 0 0 0 0 8999
dixmaane 3000 0 0 0 0 6000
dixmaanf 3000 0 0 0 0 8999
dixmaang 3000 0 0 0 0 8999
dixmaanh 3000 0 0 0 0 8999
dixmaani 3000 0 0 0 0 6000
dixmaanj 3000 0 0 0 0 8999
dixmaank 3000 0 0 0 0 8999
dixmaanl 3000 0 0 0 0 8999
djtl 2 0 0 0 0 3
dnieper 61 60 24 0 128 79
dqrtic 5000 0 0 0 0 5000
drcavty1 10816 0 816 0 816 216802
drcavty2 10816 0 816 0 816 216802
drcavty3 10816 0 816 0 816 216802
dtoc1l 14985 0 9990 0 82889 14985
dtoc1na 1485 0 990 0 15740 6385
dtoc1nb 1485 0 990 0 15740 6385
dtoc1nc 1485 0 990 0 15740 6385
dtoc1nd 735 0 490 0 7740 3135
dtoc2 5994 0 3996 0 15980 14977
dtoc4 14997 0 9998 0 34989 19995
dtoc5 9998 0 4999 0 14996 9997
dtoc6 10000 0 5000 0 14999 14998
edensch 2000 0 0 0 0 3999
eg1 3 2 0 0 0 6

Table A.1: Characteristics of CUTE test set (continued on next page)
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Problem #var #bdd #eq #ineq #nzJac #nzHes

eg2 1000 0 0 0 0 1998
eg3 101 100 1 199 595 301
eigena 110 110 0 0 0 6105
eigena2 110 0 55 0 1000 660
eigenaco 110 0 55 0 1000 6105
eigenals 110 0 0 0 0 6105
eigenb 110 0 0 0 0 6105
eigenb2 110 0 55 0 1000 660
eigenbco 110 0 55 0 1000 6105
eigenbls 110 0 0 0 0 6105
eigenc2 462 0 231 0 9261 5313
eigencco 30 0 15 0 125 465
engval1 5000 0 0 0 0 9999
engval2 3 0 0 0 0 6
errinros 50 0 0 0 0 99
expfit 2 0 0 0 0 3
expfita 5 0 0 22 71 15
expfitb 5 0 0 102 351 15
expfitc 5 0 0 502 1751 15
explin 120 120 0 0 0 21
explin2 120 120 0 0 0 21
expquad 120 0 0 10 10 239
extrosnb 10 0 0 0 0 19
fletcbv2 100 0 0 0 0 199
fletcbv3 10000 0 0 0 0 19999
fletchbv 10000 0 0 0 0 19999
fletchcr 100 0 0 0 0 199
fletcher 4 0 1 4 11 10
flosp2hh 691 41 0 0 0 10011
flosp2hl 691 41 0 0 0 10011
flosp2hm 691 41 0 0 0 10011
flosp2th 691 41 0 0 0 10009
flosp2tl 691 41 0 0 0 10009
flosp2tm 691 41 0 0 0 10009
fminsrf2 1024 0 0 0 0 4930
fminsurf 1024 0 0 0 0 524800
freuroth 5000 0 0 0 0 9999
gausselm 1495 0 1240 2722 11145 1704
genhumps 5 0 0 0 0 9
genrose 500 0 0 0 0 999
gigomez1 3 0 0 3 9 2
gilbert 1000 0 1 0 1000 1000
gpp 250 0 0 498 996 31375
growth 3 0 0 0 0 6
growthls 3 0 0 0 0 6
gulf 3 0 0 0 0 6
hadamals 100 100 0 0 0 5050
hadamard 65 1 64 192 1280 289
hager2 10000 0 5000 0 14999 14999
hager4 10000 5000 5000 0 14999 14999
haifam 85 0 0 150 711 437
haifas 7 0 0 9 31 11
hairy 2 0 0 0 0 3
haldmads 6 0 0 42 244 15
hanging 300 12 0 180 1080 840
hart6 6 6 0 0 0 21
hatflda 4 4 0 0 0 7
hatfldb 4 4 0 1 1 7
hatfldc 4 0 0 3 3 6
hatfldd 3 0 0 0 0 6
hatflde 3 0 0 0 0 6
heart6ls 6 0 0 0 0 21
heart8ls 8 0 0 0 0 36

Table A.1: Characteristics of CUTE test set (continued on next page)
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Problem #var #bdd #eq #ineq #nzJac #nzHes

helix 3 0 0 0 0 6
himmelbb 2 0 0 0 0 3
himmelbf 4 0 0 0 0 10
himmelbg 2 0 0 0 0 3
himmelbh 2 0 0 0 0 2
himmelbi 100 100 0 12 135 143
himmelbj 45 45 16 0 88 290
himmelbk 24 24 14 0 336 144
himmelp1 2 0 0 2 2 3
himmelp2 2 0 0 3 4 3
himmelp3 2 0 0 4 6 3
himmelp4 2 0 0 5 8 3
himmelp5 2 0 0 5 8 3
himmelp6 2 2 0 5 10 3
hong 4 4 1 0 4 4
hs001 2 0 0 1 1 3
hs002 2 0 0 1 1 3
hs004 2 0 0 2 2 1
hs005 2 0 0 2 2 3
hs006 2 0 1 0 2 1
hs007 2 0 1 0 2 2
hs009 2 0 1 0 2 3
hs010 2 0 0 1 2 3
hs011 2 0 0 1 2 2
hs012 2 0 0 1 2 3
hs013 2 2 0 1 2 2
hs014 2 0 1 1 4 2
hs015 2 0 0 3 5 3
hs016 2 0 0 4 6 3
hs017 2 0 0 4 6 3
hs018 2 0 0 4 6 3
hs019 2 0 0 4 6 2
hs020 2 0 0 4 7 3
hs023 2 2 0 5 10 2
hs024 2 2 0 3 6 3
hs025 3 0 0 3 3 6
hs026 3 0 1 0 3 5
hs027 3 0 1 0 2 4
hs029 3 0 0 1 3 6
hs030 3 0 0 4 5 3
hs031 3 0 0 4 5 4
hs032 3 3 1 1 6 6
hs033 3 3 0 3 7 3
hs034 3 3 0 5 7 2
hs036 3 3 0 4 6 3
hs037 3 3 0 2 6 3
hs038 4 4 0 0 0 7
hs039 4 0 2 0 6 3
hs040 4 0 3 0 7 9
hs041 4 4 1 4 8 3
hs042 4 4 2 0 3 4
hs043 4 0 0 3 12 4
hs045 5 5 0 0 0 10
hs046 5 0 2 0 6 9
hs047 5 0 3 0 8 10
hs049 5 0 2 0 6 6
hs050 5 0 3 0 9 9
hs054 6 6 1 0 2 7
hs056 7 7 4 0 10 7
hs057 2 0 0 3 4 3
hs059 2 2 0 3 6 3
hs060 3 3 1 0 3 5
hs061 3 0 2 0 4 3

Table A.1: Characteristics of CUTE test set (continued on next page)
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Problem #var #bdd #eq #ineq #nzJac #nzHes

hs062 3 3 1 0 3 6
hs063 3 3 2 0 6 5
hs064 3 3 0 1 3 3
hs065 3 0 0 4 6 4
hs066 3 0 0 5 7 2
hs067 10 3 7 14 35 15
hs070 4 4 0 1 2 10
hs071 4 4 1 1 8 10
hs072 4 4 0 6 12 4
hs073 4 4 1 2 12 10
hs074 4 4 3 1 10 5
hs075 4 4 3 1 10 5
hs077 5 0 2 0 6 9
hs078 5 0 3 0 11 15
hs079 5 0 3 0 8 10
hs080 5 5 3 0 11 15
hs081 5 5 3 0 11 15
hs083 5 5 0 3 13 8
hs084 5 5 0 3 15 4
hs085 5 0 0 48 129 15
hs086 5 5 0 10 37 15
hs087 11 11 6 0 22 6
hs088 2 0 0 1 2 3
hs089 3 0 0 1 3 6
hs090 4 0 0 1 4 10
hs091 5 0 0 1 5 15
hs092 6 0 0 1 6 21
hs093 6 6 0 2 12 19
hs095 6 6 0 4 20 6
hs096 6 6 0 4 20 6
hs097 6 6 0 4 20 6
hs098 6 6 0 4 20 6
hs099 23 7 18 0 53 28
hs100 7 0 0 4 19 9
hs100lnp 7 0 2 0 10 9
hs100mod 7 0 0 4 21 9
hs101 7 7 0 6 38 28
hs102 7 7 0 6 38 28
hs103 7 7 0 6 38 28
hs104 8 8 0 6 21 16
hs105 8 0 0 9 10 36
hs106 8 0 0 14 25 5
hs107 9 0 6 8 42 17
hs108 9 0 0 14 40 25
hs109 9 9 6 4 42 19
hs110 10 10 0 0 0 55
hs111 10 10 3 0 14 55
hs111lnp 10 0 3 0 14 55
hs112 10 10 3 0 14 55
hs113 10 0 0 8 32 11
hs114 10 10 3 8 31 15
hs116 13 13 0 28 59 15
hs117 15 15 0 5 62 15
hs119 16 16 8 0 53 47
hs99exp 31 10 21 0 70 8
hubfit 2 1 0 1 2 3
humps 2 0 0 0 0 3
hvycrash 202 102 150 0 600 300
hypcir 2 0 2 0 4 3
indef 1000 0 0 0 0 2997
jensmp 2 0 0 0 0 3
kissing 127 0 42 861 6153 2709
kiwcresc 3 0 0 2 6 2

Table A.1: Characteristics of CUTE test set (continued on next page)
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Problem #var #bdd #eq #ineq #nzJac #nzHes

kowosb 4 0 0 0 0 10
lakes 90 18 78 0 240 102
launch 25 25 9 20 127 78
lch 600 0 1 0 400 2000
liarwhd 10000 0 0 0 0 19999
lminsurf 15625 0 496 0 496 77377
loadbal 31 31 11 20 91 41
loghairy 2 0 0 0 0 3
logros 2 2 0 0 0 3
lootsma 3 3 0 3 7 3
lsnnodoc 5 3 4 0 10 9
madsen 3 0 0 6 14 3
madsschj 81 0 0 158 12797 80
makela1 3 0 0 2 6 2
makela2 3 0 0 3 9 2
makela3 21 0 0 20 40 20
mancino 100 0 0 0 0 100
manne 1094 1094 0 730 2187 729
maratos 2 0 1 0 2 2
matrix2 6 4 0 2 6 11
maxlika 8 0 0 8 8 36
mccormck 50000 50000 0 0 0 99999
mdhole 2 1 0 0 0 3
methanb8 31 0 0 0 0 256
methanl8 31 0 0 0 0 256
mexhat 2 0 0 0 0 3
meyer3 3 0 0 0 0 6
mifflin1 3 0 0 2 5 2
mifflin2 3 0 0 2 6 2
minc44 311 311 262 0 2399 1016
minmaxbd 5 0 0 20 100 6
minmaxrb 3 0 0 4 10 1
minperm 1113 1113 1033 0 11433 5110
minsurf 64 0 32 0 32 274
mistake 9 1 0 13 39 25
morebv 5002 0 2 0 2 15003
msqrtals 1024 0 0 0 0 524800
msqrtbls 1024 0 0 0 0 524800
mwright 5 0 3 0 8 10
ngone 100 100 0 1273 4996 2698
noncvxu2 1000 0 0 0 0 3991
noncvxun 1000 0 0 0 0 1000
nondia 9999 0 0 0 0 19997
nondquar 10000 0 0 0 0 29997
nonmsqrt 9 0 0 0 0 18
nonscomp 10000 10000 0 0 0 19999
odfits 10 10 6 0 15 10
oet2 3 0 0 1002 3004 2
oet7 7 0 0 1002 7008 6
optcdeg2 1199 799 800 0 2795 799
optcdeg3 1199 799 800 0 2795 799
optcntrl 32 23 20 1 81 21
optctrl3 122 3 80 1 360 120
optctrl6 122 3 80 1 360 120
optmass 66 0 44 11 170 26
optprloc 30 30 0 30 170 5
orthrdm2 4003 0 2000 0 10000 18006
orthrds2 203 0 100 0 500 906
orthrega 517 0 256 0 1792 2304
orthregb 27 0 6 0 72 108
orthregc 10005 0 5000 0 35000 45000
orthregd 10003 0 5000 0 25000 45006
orthrege 36 1 20 0 120 77

Table A.1: Characteristics of CUTE test set (continued on next page)
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Problem #var #bdd #eq #ineq #nzJac #nzHes

orthrgdm 10003 0 5000 0 25000 45006
orthrgds 10003 0 5000 0 25000 45006
osbornea 5 0 0 0 0 15
osborneb 11 0 0 0 0 66
oslbqp 8 0 0 8 8 8
palmer1 4 3 0 0 0 10
palmer1a 6 2 0 0 0 21
palmer1b 4 2 0 0 0 10
palmer1e 8 0 0 0 0 36
palmer2 4 3 0 0 0 10
palmer2a 6 2 0 0 0 21
palmer2b 4 2 0 0 0 10
palmer2e 8 0 0 0 0 36
palmer3 4 3 0 0 0 10
palmer3a 6 2 0 0 0 21
palmer3b 4 2 0 0 0 10
palmer3e 8 0 0 0 0 36
palmer4 4 3 0 0 0 10
palmer4a 6 2 0 0 0 21
palmer4b 4 2 0 0 0 10
palmer4e 8 0 0 0 0 36
palmer5a 8 2 0 0 0 36
palmer5b 9 2 0 0 0 45
palmer5e 8 1 0 0 0 36
palmer6a 6 2 0 0 0 21
palmer6e 8 1 0 0 0 36
palmer7a 6 2 0 0 0 21
palmer7e 8 1 0 0 0 36
palmer8a 6 2 0 0 0 21
palmer8e 8 1 0 0 0 36
penalty1 1000 0 0 0 0 500500
penalty2 100 0 0 0 0 5050
pentagon 6 0 0 15 27 21
pfit1ls 3 0 0 0 0 6
pfit2ls 3 0 0 0 0 6
pfit3ls 3 0 0 0 0 6
pfit4ls 3 0 0 0 0 6
polak1 3 0 0 2 6 3
polak2 11 0 0 2 22 55
polak3 12 0 0 10 120 11
polak4 3 0 0 3 9 2
polak5 3 0 0 2 6 3
polak6 5 0 0 4 20 7
power 1000 0 0 0 0 1000
probpenl 500 500 0 0 0 125250
prodpl0 60 60 20 9 112 31
prodpl1 60 60 20 9 112 31
pspdoc 4 0 0 1 1 9
qr3d 155 10 0 0 0 9120
qr3dbd 127 10 0 0 0 5872
qr3dls 155 10 0 0 0 9120
qrtquad 120 0 0 10 10 239
quartc 10000 0 0 0 0 10000
reading1 10001 10001 5000 0 19999 10000
reading3 202 202 101 1 604 202
rk23 17 6 11 0 43 11
robot 14 0 9 0 21 21
rosenbr 2 0 0 0 0 3
s365mod 7 0 0 9 26 26
s368 100 100 0 0 0 5050
sawpath 593 0 590 196 3325 588
scon1dls 1000 1000 0 0 0 2997
scosine 10000 0 0 0 0 19999

Table A.1: Characteristics of CUTE test set (continued on next page)
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Problem #var #bdd #eq #ineq #nzJac #nzHes

scurly10 10000 0 0 0 0 109945
scurly20 10000 0 0 0 0 209790
scurly30 10000 0 0 0 0 309535
sineali 20 20 0 0 0 39
sineval 2 0 0 0 0 3
sinquad 10000 0 0 0 0 29997
sinrosnb 1000 0 0 1000 1999 1999
sisser 2 0 0 0 0 3
smbank 117 85 64 0 234 85
smmpsf 720 720 240 23 1213 56
snake 2 0 0 2 4 1
spanhyd 97 97 33 0 194 513
spiral 3 0 0 2 6 3
sreadin3 10001 10001 5001 0 20000 10000
srosenbr 10000 0 0 0 0 15000
ssebnln 194 194 72 24 360 24
ssnlbeam 33 22 20 0 80 22
stancmin 3 3 0 2 6 6
steenbrb 468 468 108 0 864 3276
steenbrc 540 540 126 0 1008 216
steenbrd 468 468 108 0 864 3276
steenbre 540 540 126 0 1008 4320
steenbrf 468 468 108 0 864 216
steenbrg 540 540 126 0 1008 4320
svanberg 5000 5000 0 5000 42504 5000
swopf 83 10 78 14 364 98
synthes1 6 6 0 6 16 3
trainf 20008 10008 10002 0 50010 10002
trainh 20008 10008 10002 0 60012 15004
trimloss 142 142 20 55 963 36
try-b 2 2 1 0 2 2
twirism1 343 343 224 89 4084 3738
twobars 2 2 0 2 4 3
ubh5 19997 6003 14000 0 63981 6003
vardim 100 0 0 0 0 5050
watson 31 0 0 0 0 496
weeds 3 1 0 0 0 6
womflet 3 0 0 3 9 2
woods 10000 0 0 0 0 17500
yfit 3 1 0 0 0 6
yfitu 3 0 0 0 0 6
zecevic3 2 0 0 4 6 3
zecevic4 2 0 0 4 6 3
zigzag 64 36 40 10 140 10
zy2 3 3 0 2 4 3

Table A.1: Characteristics of problems in the CUTE test set
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Problem #var #bdd #eq #ineq #nzJac #nzHes

bearing_200 40000 40000 0 0 0 119600
bearing_400 160000 160000 0 0 0 479200
camshape_10000 10000 10000 0 20000 49997 19998
camshape_20000 20000 20000 0 40000 99997 39998
catmix_10000 30001 10001 20000 0 119996 20000
catmix_20000 60001 20001 40000 0 239996 40000
chain_20000 40000 0 20001 0 99999 40000
chain_40000 80000 0 40001 0 199999 80000
channel_5000 39998 0 39998 0 309974 159989
channel_10000 79998 0 79998 0 619974 319989
elec_200 600 0 200 0 600 180300
elec_400 1200 0 400 0 1200 720600
gasoil_2500 25001 3 24998 0 219974 75292
gasoil_5000 50001 3 49998 0 439974 150292
glider_2500 12499 7501 10000 0 69983 74973
glider_5000 24999 15001 20000 0 139983 149973
marine_1000 24015 15 23992 0 165968 45208
marine_2000 48015 15 47992 0 331968 90208
methanol_5000 60002 5 59997 0 674964 340143
methanol_10000 120002 5 119997 0 1349964 680143
minsurf_200_200 40000 40000 0 0 0 159201
minsurf_300_300 90000 90000 0 0 0 358801
pinene_2500 50000 5 49995 0 422446 50395
pinene_5000 100000 5 99995 0 844946 100395
polygon_200 398 398 0 20098 79598 79401
polygon_400 798 798 0 80198 319198 318801
robot_5000 44999 30001 30001 0 179978 129980
robot_10000 89999 60001 60001 0 359978 259980
rocket_10000 40001 40001 30000 0 189992 259985
rocket_20000 80001 80001 60000 0 379992 519985
steering_10000 50000 10002 40001 0 199991 40000
steering_20000 100000 20002 80001 0 399991 80000
torsion_200_200 40000 40000 0 0 0 119600
torsion_400_400 160000 160000 0 0 0 479200

Table A.2: Characteristics of problems in the COPS test set
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Problem #var #bdd #eq #ineq #nzJac #nzHes

cont5_1 40400 40400 40200 0 239603 600
cont5_2_1 40400 40400 40200 0 239603 401
cont5_2_2 40400 40400 40200 0 239603 600
cont5_2_3 40400 40400 40200 0 239603 600
cont5_2_4 40400 200 40200 0 239603 120200
cont_p 12096 192 11904 1 82188 12096
ex1_80 12482 12482 6241 0 37130 12482
ex1_160 50562 50562 25281 0 151050 50562
ex2_80 12482 12482 6241 0 37130 6241
ex2_160 50562 50562 25281 0 151050 25281
ex3_80 12482 12482 6241 0 37130 12482
ex3_160 50562 50562 25281 0 151050 50562
ex4_80 12798 12798 6557 0 38078 12482
ex4_160 51198 51198 25917 0 152958 50562
ex4_2_80 12798 12798 6557 0 38078 18723
ex4_2_160 51198 51198 25917 0 152958 75843
ex5_80 12798 12798 6557 0 38078 6241
ex5_160 51198 51198 25917 0 152958 25281
ex6_80 12798 12798 6557 0 38078 18723
ex6_160 51198 51198 25917 0 152958 75843
lukvle1 50000 0 49998 0 149994 99999
lukvle2 50002 0 49993 0 399929 100003
lukvle3 50002 0 2 0 4 125003
lukvle4 50002 0 49998 0 149994 100003
lukvle5 50000 0 49996 0 249980 149997
lukvle6 49999 0 24999 0 74997 349972
lukvle7 50002 0 4 0 14 50005
lukvle8 50000 0 49998 0 149994 150000
lukvle9 50000 0 6 0 30 75002
lukvle10 50000 0 49998 0 149994 75000
lukvle11 49997 0 33330 0 99990 99993
lukvle12 49997 0 37497 0 99992 112492
lukvle13 49997 0 33330 0 133320 83327
lukvle14 49997 0 33330 0 99990 66662
lukvle15 49997 0 37497 0 112491 99993
lukvle16 49997 0 37497 0 87493 74995
lukvle17 49997 0 37497 0 87493 74995
lukvle18 49997 0 37497 0 87493 74995
lukvli1 50000 0 0 49998 149994 99999
lukvli2 50000 0 0 49993 399929 99999
lukvli3 50000 0 0 2 4 124998
lukvli4 50000 0 0 49998 149994 99999
lukvli5 50000 0 0 49996 249980 149997
lukvli6 49999 0 0 24999 74997 349972
lukvli7 50000 0 0 4 14 50003
lukvli8 50000 0 0 49998 149994 150000
lukvli9 50000 0 0 6 30 75002
lukvli10 50000 0 0 49998 149994 75000
lukvli11 49997 0 0 33330 99990 99993
lukvli12 49997 0 0 37497 99992 112492
lukvli13 49997 0 0 33330 133320 83327
lukvli14 49997 0 0 33330 99990 66662
lukvli15 49997 0 0 37497 112491 99993
lukvli16 49997 0 0 37497 87493 74995
lukvli17 49997 0 0 37497 87493 74995
lukvli18 49997 0 0 37497 87493 74995

Table A.3: Characteristics of problems in the MITT test set
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Results for Ipopt

Table B.1 lists the number of function evaluations (#f) and iteration counts (#iter)

for di�erent line search options discussed in Section 5.1.2 on each problem in the

CUTE test set. For the �lter option, in addition the total number of successful

iterations taken within Tron in the restoration phase (#Tit) is shown. A star (�)

after a problem name indicates that some options converged to points with di�erent

�nal values of the objective function, and the error codes z and y are explained in

Table B.5.

Tables B.2�B.4 document the runs of Ipopt on the test sets CUTE, COPS, and

MITT for the comparison in Section 5.1.3. For each problem, they list the following

numbers: number of iterations (#iter) and error code (see Table B.5), if failed;

number of evaluations of objective function (#f) and constraints (#c); required

CPU time in seconds; number of iterations in which a regularization (Æ1 or Æ2 in (3.6)

and (3.7) non-zero) was necessary (#ref); how often Tron was called to perform

feasibility restoration phase (#call) and the total number of successful iterations

(#it) and CG steps (#cg) within Tron; �nal value of the objective function (f(x�))

and (unscaled) constraint violation (kc(x�)k). A problem name is marked with a star

(�), if Knitro or Loqo successfully terminated at a point with a di�erent value of

the objective function (see Eq. (5.3)).
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auglag exact1 exact2 �lter fullstep
Problem

#f/#iter #f/#iter #f/#iter #f/#iter [#Tit] #f/#iter

airport 14/13 14/13 14/13 14/13 [0] 14/13
aljazzaf 42/38 98/28 98/28 87/29 [0] 35/34
allinit 16/12 24/12 24/12 18/12 [0] 18/17
allinitc 33/30y5 37/32y5 36/30y5 52/39 [0] 31/30y5

allinitu 15/14 15/14 15/14 15/14 [0] 15/14
alsotame 11/10 11/10 11/10 11/10 [0] 11/10
arwhead 7/6 7/6 7/6 7/6 [0] 7/6
avion2 17/16y5 24036/946 17/16y5 79/23 [0] 17/16y5

bard 9/8 9/8 9/8 9/8 [0] 9/8
batch 46/45 50/44 45/44 46/45 [0] 45/44
bdexp 18/17 18/17 18/17 18/17 [0] 18/17
bdqrtic 11/10 11/10 11/10 11/10 [0] 11/10
beale 12/6 14/6 14/6 13/6 [0] 1000/999y5

bigbank 27/26 36/28 31/27 27/26 [0] 27/26
biggs3 17/11 26/9 26/9 23/9 [0] 14/13
biggs5 28/23 31/20 31/20 27/20 [0] 49/48
biggs6 38/34 44/34 44/34 41/34 [0] 151/150y9

box2 9/8 9/8 9/8 9/8 [0] 9/8
box3 11/9 13/9 13/9 12/9 [0] 10/9
brainpc0 70487/3000y1 12625/643y2 3645/231y2 47610/3000y1 [0 ] 37/36
brainpc1 42327/3000y1 1053/72y2 66/5y2 0/0z [0 ] 111/110
brainpc2 295/81 1767/41y2 110/14y2 700/284y6 [178 ] 60/59
brainpc3 39734/3000y1 272/28y2 568/23y2 76/61 [0] 792/791y2

brainpc4 99167/3000y1 2327/133y2 626/25y2 73/57 [0] 145/144
brainpc5 34344/3000y1 3068/154y2 494/21y2 1562/129y8 [52 ] 515/514y5

brainpc6 38607/3000y1 2185/130y2 502/21y2 47942/3000y1 [24 ] 2830/2829y2

brainpc7 99076/3000y1 2142/130y2 745/27y2 92/57 [0] 161/160
brainpc8 99136/3000y1 267/28y2 221/15y2 120/66 [1] 117/116
brainpc9 99662/3000y1 2892/158y2 66/5y2 191/91 [1] 499/498y2

bratu1d 62819/3000y1 68807/3000y1 68807/3000y1 65813/3000y1 [0 ] 412/411
britgas 34819/3000y1 200/31 222/35 55/34 [0] 646/645y5

brkmcc 4/3 4/3 4/3 4/3 [0] 4/3
brownal 8/7 8/7 8/7 8/7 [0] 8/7
brownbs 10/8 12/8 12/8 11/8 [0] 10/9
broydn7d 96/93 98/93 98/93 97/93 [0] 89/88
brybnd 9/8 9/8 9/8 9/8 [0] 9/8
bt1 48/0 y2 11700/3000y1 11700/3000y1 161/15y4 [4 ] 19/18
bt2 13/12 26/11 26/11 13/12 [0] 13/12
bt4 34/6 41365/2088 143/16 14/13 [0] 14/13
bt5 8/6 10/6 10/6 8/7 [0] 8/7
bt6 11/9 23/9 23/9 18/13 [0] 14/13
bt7� 24/16 75/18 47/16 22/14 [0] 27/26
bt8 53/52 53/52 55/53 53/52 [0] 53/52
bt9 16/12 19/11 16/10 14/13 [0] 14/13
bt11 9/8 21/7 21/7 9/8 [0] 9/8
bt12 5/4 6/4 5/4 5/4 [0] 5/4
bt13 24/23 29/23 29/23 25/23 [0] 24/23
byrdsphr 364/33 92688/3000y1 92688/3000y1 25/24 [0] 25/24
camel6� 15/13 18/13 18/13 17/13 [0] 14/13
cantilvr 17/14 15/14 15/14 15/14 [0] 15/14
catena 8/6 7/6 7/6 7/6 [0] 7/6
catenary 12205/3000y1 188/47 8654/539 95/46 [0] 3001/3000y1

cb2 11/10 11/10 16/10 11/10 [0] 11/10
cb3 10/9 10/9 10/9 10/9 [0] 10/9
chaconn1 9/8 9/8 9/8 9/8 [0] 9/8
chaconn2 8/7 8/7 8/7 8/7 [0] 8/7
chebyqad 86/78 94/78 94/78 90/78 [0] 111/110
chnrosnb 55/43 71/43 71/43 63/43 [0] 43/42
cliff 28/27 28/27 28/27 28/27 [0] 28/27
clnlbeam 287/286 56/18y2 212/103y2 288/286 [0] 287/286
clplatea 8/6 10/6 10/6 9/6 [0] 9/8

Table B.1: Comparison of Ipopt's line search options (continued on next page)
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auglag exact1 exact2 �lter fullstep
Problem

#f/#iter #f/#iter #f/#iter #f/#iter [#Tit] #f/#iter

clplateb 9/6 11/6 11/6 10/6 [0] 10/9
clplatec 3/2 3/2 3/2 3/2 [0] 3/2
concon 12/11 15/12 13/12 12/11 [0] 13/12
congigmz 30/27 349/39y2 54787/3000y1 36/29 [0] 45/44
core1 552/150 414/136y2 1390/178y2 802/280 [147] 139/138
corkscrw 389/388y2 314/294y2 335/295y2 2829/2099 [214] 299/298y5

coshfun 71445/3000y1 57646/3000y1 9165/470y2 57740/3000y1 [1182 ] 877/822y2

cosine 11/10 11/10 11/10 11/10 [0] 11/10
cragglvy 16/15 16/15 16/15 16/15 [0] 16/15
cresc100 32023/3000y1 6494/235y2 5308/239y2 6684/1090y8 [192 ] 286/285y5

cresc132 501/278y2 440/51y2 419/46y2 20077/3000y1 [1258 ] 661/660y5

cresc4 158/66 66547/3000y1 66170/3000y1 15644/1304y8 [140 ] 139/138
cresc50 32973/3000y1 70002/2583y2 886/67y2 9748/1170y8 [132 ] 748/747y2

csfi1 82/31 810/54y2 94/26 22/21 [0] 18/17
csfi2 33/28 1315/77y2 1968/97y2 55/32 [2] 38/37
cube 38/27 48/27 48/27 43/27 [0] 9/8
curly10 23/22 23/22 23/22 23/22 [0] 23/22
curly20 27/21 31/21 31/21 29/21 [0] 24/23
curly30 27/26 27/26 27/26 27/26 [0] 27/26
dallasl 429/79 911/58y2 335/45y2 583/181y7 [4 ] 89/84y2

dallasm 198/40 265/28y2 522/44y2 56/33 [0] 39/38
dallass 168/42 698/55 255/32 110/30y7 [3 ] 40/30
deconvc� 183/146 52750/3000y1 52952/3000y1 158/105 [0] 93/92
demymalo 14/13 21/13 21/13 14/13 [0] 14/13
denschna 7/6 7/6 7/6 7/6 [0] 7/6
denschnb 21/7 23/7 23/7 22/7 [0] 27/26
denschnc 11/10 11/10 11/10 11/10 [0] 11/10
denschnd 49/47 51/47 51/47 50/47 [0] 53/52
denschne 15/10 17/10 17/10 16/10 [0] 117/116
denschnf 7/6 7/6 7/6 7/6 [0] 7/6
dipigri 19/11 21/11 21/11 22/12 [0] 28/27
disc2 104/95 164/54y2 116/53y2 91/79 [1] 145/144
discs 205/204y5 202/201y5 202/201y5 4449/1071y8 [809 ] 202/201y5

dittert 33/31 8717/329 280/38 37/31 [0] 37/36
dixchlng 25/10 23/9 23/9 11/10 [0] 11/10
dixchlnv 23/21 21/20 21/20 21/20 [0] 21/20
dixmaana 7/6 7/6 7/6 7/6 [0] 7/6
dixmaanb 8/7 8/7 8/7 8/7 [0] 8/7
dixmaanc 10/9 10/9 10/9 10/9 [0] 10/9
dixmaand 10/9 10/9 10/9 10/9 [0] 10/9
dixmaane 9/8 9/8 9/8 9/8 [0] 9/8
dixmaanf 23/22 23/22 23/22 23/22 [0] 23/22
dixmaang 17/16 17/16 17/16 17/16 [0] 17/16
dixmaanh 23/22 23/22 23/22 23/22 [0] 23/22
dixmaani 12/11 12/11 12/11 12/11 [0] 12/11
dixmaanj 21/20 21/20 21/20 21/20 [0] 21/20
dixmaank 29/24 33/24 33/24 31/24 [0] 25/24
dixmaanl 30/29 30/29 30/29 30/29 [0] 30/29
djtl 76/26 94/26 94/26 73/17y3 [0 ] 3001/3000y1

dnieper 31/30 71055/3000y1 388/60 33/30 [0] 31/30
dqrtic 39/38 39/38 39/38 39/38 [0] 39/38
drcavty1 228/203 840/327 0/0z 544/264 [0] 0/0z

drcavty2� 285/247 867/349 0/0z 0/0z [0 ] 0/0z

drcavty3 0/0z 0/0z 0/0z 0/0z [0 ] 0/0z

dtoc1l 7/6 7/6 7/6 7/6 [0] 7/6
dtoc1na 7/6 7/6 7/6 7/6 [0] 7/6
dtoc1nb 7/6 7/6 7/6 7/6 [0] 7/6
dtoc1nc 15/11 72/14 14/10 20/15 [0] 12/11
dtoc1nd� 33/22 5520/228y2 2127/176 35/26 [0] 40/39
dtoc2 16/15 91/15 17/9 17/10 [0] 16/15
dtoc4 4/3 4/3 4/3 4/3 [0] 4/3

Table B.1: Comparison of Ipopt's line search options (continued on next page)
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auglag exact1 exact2 �lter fullstep
Problem

#f/#iter #f/#iter #f/#iter #f/#iter [#Tit] #f/#iter

dtoc5 5/4 18/4 5/4 5/4 [0] 5/4
dtoc6 12/11 25/11 12/11 12/11 [0] 12/11
edensch 8/7 8/7 8/7 8/7 [0] 8/7
eg1 11/10 11/10 11/10 11/10 [0] 11/10
eg2 4/3 4/3 4/3 4/3 [0] 4/3
eg3� 35/33 85/26 99/26 37/36 [0] 31/30
eigena 30/28 32/28 32/28 31/28 [0] 34/33
eigena2 4/3 4/3 4/3 4/3 [0] 4/3
eigenaco 4/3 4/3 4/3 4/3 [0] 4/3
eigenals 27/25 29/25 29/25 28/25 [0] 31/30
eigenb 143/116 179/116 179/116 161/116 [0] 127/126
eigenb2 47633/1902 177/64 14371/516 73/62 [0] 56/55
eigenbco 85/73 30300/1982 62244/2013y2 91/71 [0] 71/70
eigenbls 154/114 194/114 194/114 174/114 [0] 101/100
eigenc2 19/18 40/18 21/18 19/18 [0] 19/18
eigencco 11/10 13/10 11/10 11/10 [0] 11/10
engval1 9/8 9/8 9/8 9/8 [0] 9/8
engval2 21/20 21/20 21/20 21/20 [0] 21/20
errinros 49/29 65/29 65/29 57/29 [0] 22/21
expfit 9/8 9/8 9/8 9/8 [0] 9/8
expfita 33/32 35/31 35/31 33/31 [0] 33/32
expfitb 76/75 76/75 76/75 76/75 [0] 76/75
expfitc 157/156 160/156 160/156 158/156 [0] 157/156
explin 22/21 22/21 22/21 22/21 [0] 22/21
explin2 22/21 22/21 22/21 22/21 [0] 22/21
expquad 24/23 24/23 24/23 24/23 [0] 24/23
extrosnb 1/0 1/0 1/0 1/0 [0] 1/0
fletcbv2 3/2 3/2 3/2 3/2 [0] 3/2
fletcbv3 3001/3000y1 3001/3000y1 3001/3000y1 3001/3000y1 [0 ] 3001/3000y1

fletchbv 3001/3000y1 3001/3000y1 3001/3000y1 3001/3000y1 [0 ] 3001/3000y1

fletchcr 50/48 52/48 52/48 51/48 [0] 46/45
fletcher� 29/25 357/9y2 1066/29y2 55/20 [3] 128/127
flosp2hh 3001/3000y1 3001/3000y1 3001/3000y1 3001/3000y1 [0 ] 3001/3000y1

flosp2hl 4/3 4/3 4/3 4/3 [0] 4/3
flosp2hm 9298/3000y1 10140/3000y1 10140/3000y1 2579/2578y3 [0 ] 2932/2931y9

flosp2th 3001/3000y1 3001/3000y1 3001/3000y1 3001/3000y1 [0 ] 3001/3000y1

flosp2tl 3/2 3/2 3/2 3/2 [0] 3/2
flosp2tm 3001/3000y1 3001/3000y1 3001/3000y1 1017/1016y3 [0 ] 3001/3000y1

fminsrf2 100/17 126/17 126/17 113/17 [0] 3001/3000y1

fminsurf 228/33 284/33 284/33 256/33 [0] 0/0z

freuroth 12/8 14/8 14/8 13/8 [0] 15/14
gausselm 10119/2119y5 1136/150y2 24536/3000y1 1721/1599y5 [1 ] 1203/1202y5

genhumps 202/194 210/194 210/194 206/194 [0] 380/379
genrose 849/744 1057/744 1057/744 953/744 [0] 666/665
gigomez1 18/15 36/14 77/18 19/16 [0] 20/19
gilbert 20/19 20/19 20/19 20/19 [0] 20/19
gpp 26/25 357/54 28/26 26/25 [0] 26/25
growth� 102/70 136/70 136/70 119/70 [0] 51/50
growthls� 107/74 145/74 145/74 126/74 [0] 51/50
gulf 28/22 36/22 36/22 32/22 [0] 33/32
hadamals 99/98 99/98 99/98 99/98 [0] 99/98
hadamard 7/6 7/6 7/6 13/9 [0] 7/6
hager2 2/1 2/1 2/1 2/1 [0] 2/1
hager4 14/13 14/13 14/13 14/13 [0] 14/13
haifam 7158/885 68338/3000y1 65547/3000y1 42/31 [0] 33/32
haifas 36/18 12/10 12/10 14/12 [0] 13/12
hairy 53/46 61/46 61/46 57/46 [0] 69/68
haldmads� 30/21 7900/567 7184/513y2 65/58 [0] 169/168
hanging 35/17 24/18 21/18 20/19 [0] 20/19
hart6 12/10 14/10 14/10 13/10 [0] 13/12
hatflda 12/11 12/11 12/11 12/11 [0] 12/11
hatfldb 13/12 13/12 13/12 13/12 [0] 13/12
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hatfldc 8/7 8/7 8/7 8/7 [0] 8/7
hatfldd 28/21 34/21 34/21 31/21 [0] 40/39
hatflde 31/26 37/26 37/26 34/26 [0] 12/11y9

heart6ls 1012/828 1204/828 1204/828 1108/828 [0] 3001/3000y1

heart8ls 111/88 129/88 129/88 120/88 [0] 85/84
helix 13/11 15/11 15/11 14/11 [0] 13/12
himmelbb 15/10 17/10 17/10 16/10 [0] 69/68
himmelbf 11/9 13/9 13/9 12/9 [0] 62/61
himmelbg 10/6 12/6 12/6 11/6 [0] 21/20
himmelbh 20/4 22/4 22/4 21/4 [0] 21/20
himmelbi 31/30 31/30 31/30 31/30 [0] 31/30
himmelbj 110/52 90/46 489/52 62/37y6 [3 ] 47/46
himmelbk 22/20 158/24 61/22 20/19 [0] 20/19
himmelp1 12/11 12/11 12/11 12/11 [0] 12/11
himmelp2� 167/41 60/23 32/24 15/14 [0] 15/14
himmelp3 39/19 14/13 14/13 14/13 [0] 14/13
himmelp4 59/25 70/22 24/17 18/17 [0] 18/17
himmelp5 42/36y5 371/44 54613/3000y1 30/29 [0] 30/29
himmelp6 10/9 10/9 10/9 10/9 [0] 10/9
hong 14/13 14/13 14/13 14/13 [0] 14/13
hs001 38/30 49/30 49/30 45/30 [0] 15/14
hs002 11/10 11/10 11/10 11/10 [0] 11/10
hs004 7/6 7/6 7/6 7/6 [0] 7/6
hs005 11/10 15/10 15/10 12/10 [0] 11/10
hs006 10/7 14/6 14/6 7/5 [0] 6/5
hs007 20/10 61/11 17/8 10/9 [0] 10/9
hs009 5/3 7/3 7/3 6/3 [0] 8/7
hs010 14/13 14/13 14/13 14/13 [0] 14/13
hs011 9/8 9/8 9/8 9/8 [0] 9/8
hs012 17/11 14/13 14/13 14/13 [0] 14/13
hs013 34/33 34/33 35/33 34/33 [0] 34/33
hs014 10/9 10/9 10/9 10/9 [0] 10/9
hs015 17/16 57/16 40/25 32/17 [0] 17/16
hs016 11/10 11/10 11/10 11/10 [0] 11/10
hs017 26/23 70/24 30/23 30/24 [0] 24/23
hs018 23/18 56/15 56/15 20/16 [0] 16/15
hs019 12/11 44/14 44/14 12/11 [0] 14/13
hs020 13/12 13/12 13/12 13/12 [0] 13/12
hs023 12/11 14/10 12/10 12/10 [0] 12/11
hs024 12/11 16/12 16/12 14/12 [0] 12/11
hs025 40/38 49/34 49/34 46/34 [0] 66/65
hs026 25/24 25/24 25/24 25/24 [0] 25/24
hs027 4388/3000y1 43576/3000y1 44389/3000y1 214/75 [2] 300/252y2

hs029 13/10 279/27 13/11 10/9 [0] 12/11
hs030 50/48 69/50 196/49 47/32 [0] 46/45
hs031 12/10 11/10 11/10 11/10 [0] 11/10
hs032 18/16 21/16 21/16 20/16 [0] 16/15
hs033 22/8 20/11 20/11 12/11 [0] 12/11
hs034 13/9 11/9 11/10 11/10 [0] 11/10
hs036 12/11 12/11 12/11 12/11 [0] 12/11
hs037 11/10 11/10 11/10 11/10 [0] 11/10
hs038 56/42 72/42 72/42 64/42 [0] 30/29
hs039 16/12 19/11 16/10 14/13 [0] 14/13
hs040 4/3 4/3 4/3 4/3 [0] 4/3
hs041 12/11 102/17 102/17 14/12 [0] 12/11
hs042 8/7 8/7 8/7 8/7 [0] 8/7
hs043 11/10 11/10 11/10 11/10 [0] 11/10
hs045 22/21 22/21 22/21 22/21 [0] 22/21
hs046 25/23 37/19 27/23 19/18 [0] 19/18
hs047 21/20 24/19 24/19 21/19 [0] 21/20
hs049 21/20 21/20 21/20 21/20 [0] 21/20
hs050 10/9 10/9 10/9 10/9 [0] 10/9
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hs054 9/8 9/8 9/8 9/8 [0] 9/8
hs056 23/17 89236/3000y1 41/17 103/70 [0] 60/59
hs057 1883/141 318/36y2 294/45 1151/48y8 [2 ] 445/390y2

hs059� 112/41 52222/3000y1 5114/414 164/46 [1] 30/29y5

hs060 9/8 9/8 9/8 9/8 [0] 9/8
hs061� 164/27y2 1162/46y2 1040/42y2 19969/1847 [188] 2281/2280
hs062 10/9 10/6 10/6 8/6 [0] 10/9
hs063 10/9 15/9 13/9 10/9 [0] 10/9
hs064 29/28 41/22 42/22 31/20 [0] 29/28
hs065 17/16 68815/3000y1 58053/3000y1 17/16 [0] 48/47
hs066 12/8 9/8 9/8 9/8 [0] 9/8
hs067 20/10 243/18 147/14 10/9 [0] 10/9
hs070� 29/21 61/19 61/19 31/20 [0] 26/25
hs071 10/9 15/9 15/9 10/9 [0] 10/9
hs072 17/16 17/16 17/16 17/16 [0] 17/16
hs073 10/9 10/9 10/9 10/9 [0] 10/9
hs074 12/11 15/11 18/11 12/11 [0] 12/11
hs075 11/10 10677/762 11016/784 11/10 [0] 11/10
hs077 11/9 23/9 23/9 13/11 [0] 12/11
hs078 5/4 5/4 5/4 5/4 [0] 5/4
hs079 5/4 5/4 5/4 5/4 [0] 5/4
hs080 9/8 9/8 9/8 9/8 [0] 9/8
hs081 9/8 11/8 14/8 9/8 [0] 9/8
hs083 18/17 18/17 18/17 18/17 [0] 18/17
hs084 20/19 231/50 259/53 20/19 [0] 33/32
hs085 7126/809 157/19 15/14 15/14 [0] 15/14
hs086 12/11 12/11 12/11 12/11 [0] 12/11
hs087 20/17 121/24 27/22 19/17 [0] 22/21
hs088 26/20 24/17 24/17 21/16 [0] 24/23
hs089 14/12 29/17 24/17 22/17 [0] 17/16
hs090 17/13 26/15 26/15 19/13 [0] 3001/3000y1

hs091 22/17 27/15 24/16 49/34 [0] 172/171y5

hs092 23/22 25/16 26/18 23/22 [0] 23/22
hs093 8/7 9/7 9/7 8/7 [0] 8/7
hs095 15/14 21/14 19/14 15/14 [0] 15/14
hs096 21/17 42/17 34/16 27/19 [0] 17/16
hs097 19/18 143/44 30/23 19/18 [0] 31/30
hs098� 25/23 77/40 87/40 25/23 [0] 38/37
hs099 7/6 16/7 7/6 7/6 [0] 7/6
hs100 19/11 21/11 21/11 22/12 [0] 28/27
hs100lnp 7/6 7/6 7/6 7/6 [0] 7/6
hs100mod 23/11 28/10 28/10 35/11 [0] 24/23
hs101 634/117 707/85 114/28 100/32 [0] 40/39
hs102 838/141 1147/96 57/21 82/27 [0] 117/116
hs103 195/55 2007/166 32/21 88/27 [0] 31/30
hs104 20/15 35/13 19/11 53/43 [0] 32/31
hs105 27/26 27/26 27/26 27/26 [0] 27/26
hs106 19/15 46/17 15/14 15/14 [0] 15/14
hs107 131/39y5 27686/741y5 57/22y5 55/39 [2] 124/123y9

hs108 22/17 38/17 34/18 25/22 [0] 21/20
hs109 76/32 548/39 55475/3000y1 28/17 [0] 20/19
hs110 8/7 8/7 8/7 8/7 [0] 8/7
hs111 14/11 17/11 17/11 24/23 [0] 24/23
hs111lnp 15/11 29/12 28/12 24/23 [0] 24/23
hs112 18/17 18/17 18/17 18/17 [0] 18/17
hs113 13/12 16/11 13/12 13/12 [0] 13/12
hs114 20/19 365/44 20/19 20/19 [0] 20/19
hs116 24/23 36/23 32/23 24/23 [0] 24/23
hs117 46/25 12259/3000y1 11555/325y2 51/24 [1] 27/26
hs119 17/16 17/16 17/16 17/16 [0] 17/16
hs99exp 17/16 13/12 13/12 17/16 [0] 13/12
hubfit 10/9 10/9 10/9 10/9 [0] 10/9
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humps 359/346 371/346 371/346 365/346 [0] 406/405
hvycrash 25/21y9 1021/137y2 50/11y2 5840/741y7 [409 ] 736/735y5

hypcir 6/4 8/5 8/5 8/5 [0] 6/5
indef 3002/3000y1 3004/3000y1 3004/3000y1 3003/3000y1 [0 ] 3001/3000y1

jensmp 11/10 11/10 11/10 11/10 [0] 11/10
kissing 445/130y2 58/8y2 117/36y2 256/178 [7] 548/547
kiwcresc 36/15 22/10 22/10 12/10 [0] 12/11
kowosb 15/8 19/8 19/8 17/8 [0] 255/254y9

lakes 55/1 y2 2419/54y2 778/18y2 353/117 [63] 107/106y9

launch 4021/241y5 7253/500y2 24/23y5 2257/762y8 [675 ] 24/23y5

lch 56/54 157/57 159/57 56/55 [0] 56/55
liarwhd 13/12 13/12 13/12 13/12 [0] 13/12
lminsurf 3/2 3/2 3/2 3/2 [0] 3/2
loadbal 18/16 20/16 20/16 19/16 [0] 21/20
loghairy 842/809 878/809 878/809 860/809 [0] 2949/2948
logros 94287/3000y1 10019/3000y1 10019/3000y1 97243/3000y1 [0 ] 98/97
lootsma 22/8 20/11 20/11 12/11 [0] 12/11
lsnnodoc 13/12 19/13 19/13 16/13 [0] 13/12
madsen 23/22 125/26 50/18 23/22 [0] 23/22
madsschj 239/95 6535/508 4612/404 69/47 [0] 231/230y2

makela1 16/15 56/20 55/20 16/15 [0] 18/17
makela2 10/9 11/9 10/9 10/9 [0] 10/9
makela3 36/18 46/20 65683/3000y1 19/18 [0] 19/18
mancino 11370/3000y1 11969/3000y1 11969/3000y1 7/6y3 [0 ] 3001/3000y1

manne 17038/2663 2482/428y2 1343/1124 1336/1324 [0] 1341/1340
maratos 5/4 5/4 5/4 5/4 [0] 5/4
matrix2 18/17 18/17 18/17 18/17 [0] 18/17
maxlika 30/26 40/25 40/25 30/25 [0] 29/28
mccormck 10/9 10/9 10/9 10/9 [0] 10/9
mdhole 64/48 80/48 80/48 72/48 [0] 12/11
methanb8 8/7 8/7 8/7 8/7 [0] 8/7
methanl8 66/46 82/46 82/46 74/46 [0] 125/124y9

mexhat 5/4 5/4 5/4 5/4 [0] 5/4
meyer3 34174/3000y1 39924/3000y1 39924/3000y1 37049/3000y1 [0 ] 102/101y9

mifflin1 9/8 9/8 9/8 9/8 [0] 9/8
mifflin2 36/15 23/12 16/12 17/16 [0] 17/16
minc44 26/25 146/28 111/26 27/25 [0] 26/25
minmaxbd 148/63 89369/3000y1 10646/3000y1 202/129 [2] 235/234
minmaxrb 38/15 25/9 25/9 15/11 [0] 12/11
minperm 9/8 9/8 9/8 9/8 [0] 9/8
minsurf 4/3 4/3 4/3 4/3 [0] 4/3
mistake 194/39 82473/3000y1 57/19 21/20 [0] 21/20
morebv 2/1 2/1 2/1 2/1 [0] 2/1
msqrtals 31/24 37/24 37/24 34/24 [0] 194/193
msqrtbls 41/28 49/28 49/28 45/28 [0] 0/0z

mwright 10/8 28/9 26/10 10/9 [0] 10/9
ngone 50/49 58617/3000y1 45461/3000y1 50/49 [0] 50/49
noncvxu2 451/404 481/404 481/404 466/404 [0] 530/529
noncvxun 36/30 40/30 40/30 38/30 [0] 57/56
nondia 6/5 6/5 6/5 6/5 [0] 6/5
nondquar 25/24 25/24 25/24 25/24 [0] 25/24
nonmsqrt 90331/3000y1 95729/3000y1 95729/3000y1 93030/3000y1 [0 ] 565/564
nonscomp 42/23 50/23 50/23 46/23 [0] 30/29
odfits 13/12 13/12 13/12 13/12 [0] 13/12
oet2 89/63 490/32y2 10094/3000y1 157/128 [3] 68/67y9

oet7 1564/379 13520/3000y1 287/97y2 150/129 [1] 375/374y5

optcdeg2 32/31 109/32 32/31 32/31 [0] 32/31
optcdeg3 29/28 142/36 29/28 29/28 [0] 29/28
optcntrl 52/50 84/76 75/73 78/50 [0] 75/74
optctrl3 1027/141 260/27 241/27 1058/90 [51] 56/55
optctrl6 1027/141 260/27 241/27 1058/90 [51] 56/55
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optmass 24/22 134/28 33/23 23/22 [0] 23/22
optprloc 78/32 105/28 45/25 21/20 [0] 24/23
orthrdm2 7/5 8/6 10/5 8/6 [0] 9/8
orthrds2� 70/14y2 1798/90y2 57/53 1320/143 [31] 288/287
orthrega 52/45 994/99 186/63 71/49 [0] 45/44
orthregb 3/2 3/2 3/2 3/2 [0] 3/2
orthregc 15/14 32/14 30/14 28/14 [0] 15/14
orthregd� 8/6 14/7 11/6 448/81 [1] 362/361y9

orthrege� 951/188 52/17 47046/2301 57/41 [0] 46/45
orthrgdm 63/13y2 153/43y2 1313/132 832/71y6 [25 ] 0/0z

orthrgds� 399/61 1966/194 93880/3000y1 24/16 [0] 68/67
osbornea 50/35 62/35 62/35 56/35 [0] 28/27y9

osborneb 19/17 21/17 21/17 20/17 [0] 17/15y9

oslbqp 15/14 15/14 15/14 15/14 [0] 15/14
palmer1 1280/893 1792/893 1792/893 1518/875y3 [0 ] 218/217
palmer1a 47340/3000y1 53268/3000y1 53268/3000y1 50304/3000y1 [0 ] 59/58y9

palmer1b 25/22 27/22 27/22 23/22 [0] 23/22
palmer1e 53/42 67/42 67/42 60/42 [0] 77/76y9

palmer2 25/23 27/23 27/23 26/23 [0] 65/64y9

palmer2a 203/153 277/153 277/153 240/153 [0] 24/23y9

palmer2b 23/20 27/20 27/20 25/20 [0] 22/21y9

palmer2e 51/39 63/39 63/39 57/39 [0] 77/75y9

palmer3 4420/3000y1 6292/3000y1 6292/3000y1 5356/3000y1 [0 ] 31/30y9

palmer3a 180/135 244/135 244/135 212/135 [0] 59/58
palmer3b 18/15 22/15 22/15 20/15 [0] 22/21y9

palmer3e 109/74 153/74 153/74 131/74 [0] 105/104
palmer4 60/38 78/38 78/38 55/35 [0] 51/50y9

palmer4a 166/124 230/124 230/124 198/124 [0] 27/26y9

palmer4b 21/15 23/15 23/15 16/15 [0] 16/15
palmer4e 35/27 41/27 41/27 38/27 [0] 28/27y9

palmer5a 7360/3000y1 10198/3000y1 10198/3000y1 8779/3000y1 [0 ] 1907/1906
palmer5b 481/237 657/237 657/237 569/237 [0] 200/199
palmer5e 4453/3000y1 6335/3000y1 6335/3000y1 5394/3000y1 [0 ] 301/300
palmer6a 427/308 587/308 587/308 507/308 [0] 185/184
palmer6e 43/29 55/29 55/29 49/29 [0] 88/87
palmer7a 4418/3000y1 6302/3000y1 6302/3000y1 5360/3000y1 [0 ] 78/77y9

palmer7e 6993/3000y1 9659/3000y1 9659/3000y1 8326/3000y1 [0 ] 3001/3000y1

palmer8a 64453/3000y1 70333/3000y1 70333/3000y1 67393/3000y1 [0 ] 73/72
palmer8e 19/16 23/16 23/16 21/16 [0] 24/23
penalty1 44/41 48/41 48/41 46/41 [0] 40/39
penalty2 20/19 20/19 20/19 20/19 [0] 20/19
pentagon 17/16 17/16 17/16 17/16 [0] 17/16
pfit1ls 20/19 20/19 20/19 20/19 [0] 20/19
pfit2ls 21/20 21/20 21/20 21/20 [0] 21/20
pfit3ls 22/21 22/21 22/21 22/21 [0] 22/21
pfit4ls 22/21 22/21 22/21 22/21 [0] 22/21
polak1 23/11 12/10 12/10 12/11 [0] 12/11
polak2 278/28 7/0y2 7/0y2 38/23 [0] 54/1y2

polak3 82/39 98/27 640/65 2635/200y8 [60 ] 16/11y9

polak4 45/43y5 20/11 26/14 41/18 [0] 25/24
polak5 32/31 32/31 32/31 32/31 [0] 32/31
polak6 448/81 93/8y2 247/21y2 236/95 [5] 22/21y9

power 2/1 2/1 2/1 2/1 [0] 2/1
probpenl 421/416 429/416 429/416 425/416 [0] 408/407
prodpl0 20/19 18/17 18/17 20/19 [0] 18/17
prodpl1 26984/3000y1 14992/494y2 28/26 6638/1216y7 [70 ] 27/26
pspdoc 564/400y2 25/11 25/11 29/10 [0] 3001/3000y1

qr3d 75/53 95/53 95/53 85/53 [0] 202/201
qr3dbd 40/26 54/26 54/26 47/26 [0] 244/243
qr3dls 75/53 95/53 95/53 85/53 [0] 189/188
qrtquad 27/24 32/23 32/23 29/23 [0] 33/32
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quartc 41/40 41/40 41/40 41/40 [0] 41/40
reading1 240/71 59252/3000y1 54875/3000y1 28/27 [0] 28/27
reading3 232/33y2 186/36y2 543/111 11011/799 [0] 61/60
rk23 13/12 634/59 577/56 16/14 [0] 18/17
robot 59/11y2 67/11y2 67/11y2 516/141 [11] 3001/3000y1

rosenbr 29/21 37/21 37/21 33/21 [0] 7/6
s365mod 17/14 287/54 18/16 37/20 [0] 16/15
s368 149/147 151/147 151/147 150/147 [0] 149/148
sawpath 144/50 843/50 1847/87 18/17y3 [0 ] 42/41
scon1dls 1220/370 1774/370 1774/370 1497/370 [0] 62/61y2

scosine 133/132 133/132 133/132 133/132 [0] 133/132
scurly10 3012/3000y1 3020/3000y1 3020/3000y1 3016/3000y1 [0 ] 3001/3000y1

scurly20 3007/3000y1 3011/3000y1 3011/3000y1 3009/3000y1 [0 ] 3001/3000y1

scurly30 3003/3000y1 3005/3000y1 3005/3000y1 3004/3000y1 [0 ] 3001/3000y1

sineali 4363/3000y1 6141/3000y1 6141/3000y1 5252/3000y1 [0 ] 68/67
sineval 66/42 88/42 88/42 77/42 [0] 3/2
sinquad 24/19 30/19 30/19 27/19 [0] 21/20
sinrosnb 8/7 8/7 8/7 8/7 [0] 8/7
sisser 19/18 19/18 19/18 19/18 [0] 19/18
smbank 18/17 22/18 18/17 18/17 [0] 18/17
smmpsf 69958/3000y1 5157/320y2 81410/3000y1 2003/379y8 [43 ] 3001/3000y1

snake 18/15 29/8 29/8 14/12 [0] 9/8
spanhyd 76/47 46/45 46/45 47/46 [0] 46/45
spiral 80/67 162/67 149/67 63/59 [0] 59/58
sreadin3 9/8 12/8 12/8 9/8 [0] 9/8
srosenbr 29/21 37/21 37/21 33/21 [0] 7/6
ssebnln� 282/259y2 409/248y2 607/377 263/205 [14] 360/359y5

ssnlbeam 23/22 23/19 23/19 23/22 [0] 20/19
stancmin 12/11 12/11 12/11 12/11 [0] 12/11
steenbrb 60/59 60/59 60/59 60/59 [0] 60/59
steenbrc� 532/511 599/261y2 613/251y2 1633/1236 [7] 552/551
steenbrd� 124/122 120/116 120/116 247/235 [3] 117/116
steenbre 201/199 269/226 271/226 2337/2203y7 [25 ] 215/214
steenbrf� 493/485 803/139y2 132/62y2 795/472 [5] 565/564
steenbrg 149/148 167/163 167/163 149/146 [0] 168/167
svanberg 31/28 45/28 39/28 30/29 [0] 30/29
swopf 268/47 874/58 449/40 87/30 [1] 29/28
synthes1 14/12 14/12 13/12 13/12 [0] 13/12
trainf 32/31 497/57y2 548/60y2 32/31 [0] 3001/3000y1

trainh 76/75 164/64y2 163/56y2 76/75 [0] 3001/3000y1

trimloss 29105/3000y1 33952/1403y2 58861/3000y1 1005/174 [36] 3001/3000y1

try-b 15/13 22/14 22/14 18/14 [0] 15/14
twirism1 122/91y2 56/9y2 81/28y2 6484/999y7 [630 ] 3001/3000y1

twobars 14/13 20/12 20/12 14/13 [0] 14/13
ubh5 8/7 8/7 8/7 8/7 [0] 8/7
vardim 26/25 26/25 26/25 26/25 [0] 26/25
watson 14/13 14/13 14/13 14/13 [0] 14/13
weeds� 27/24 29/24 29/24 28/24 [0] 56/55
womflet� 20/13 176/28 32/13 13/12 [0] 13/12
woods 59/41 83/41 83/41 71/41 [0] 39/38
yfit� 63/51 77/51 77/51 70/51 [0] 17/16
yfitu� 45/36 55/36 55/36 50/36 [0] 526/525
zecevic3 11313/3000y1 444/26y5 319/18y2 36/26 [4] 52/51y5

zecevic4 13/12 15/12 15/12 13/12 [0] 13/12
zigzag 28/27 265/54 29/24 28/27 [0] 28/27
zy2 12/11 15/11 15/11 12/11 [0] 12/11

Table B.1: Comparison of Ipopt's line search options.
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Tron
Problem #iter #f/#c CPU [s] #reg

#call/#it [#cgit]
f(x�) kc(x�)k

airport 13 14/14 0:17 0 0/0 [0] 4.79527017E+04 8.2E-12

aljazzaf 29 87/87 0:03 1 0/0 [0] 7.50050000E+01 1.1E-16

allinit 12 18/18 0:01 0 0/0 [0] 1.67059684E+01 0.0E+00

allinitc 39 52/52 0:02 1 0/0 [0] 3.04965452E+01 2.2E-16

allinitu 14 15/0 0:02 9 0/0 [0] 5.74438491E+00 0.0E+00

alsotame 10 11/11 0:02 0 0/0 [0] 8.20850011E-02 2.2E-16

arwhead 6 7/0 0:99 0 0/0 [0] -2.66453525E-15 0.0E+00

avion2 23 79/79 0:03 16 0/0 [0] 9.46801295E+07 7.9E-12

bard 8 9/0 0:02 3 0/0 [0] 8.21487730E-03 0.0E+00

batch 45 46/46 0:05 0 0/0 [0] 2.59180350E+05 1.7E-09

bdexp 17 18/0 1:53 1 0/0 [0] 1.32368539E-06 0.0E+00

bdqrtic 10 11/0 0:43 0 0/0 [0] 3.98381795E+03 0.0E+00

beale 6 13/0 0:00 1 0/0 [0] 2.24577204E-19 0.0E+00

bigbank 26 27/27 1:19 26 0/0 [0] -4.20569614E+06 4.2E-10

biggs3 9 23/23 0:01 2 0/0 [0] 1.30661717E-26 0.0E+00

biggs5 20 27/27 0:02 13 0/0 [0] 1.07536634E-19 0.0E+00

biggs6 34 41/0 0:02 19 0/0 [0] 5.98496860E-21 0.0E+00

box2 8 9/9 0:00 3 0/0 [0] 1.36456705E-27 0.0E+00

box3 9 12/0 0:01 1 0/0 [0] 1.69127241E-25 0.0E+00

brainpc0 y13000 47610/47610 1942 :68 64 0/0 [0 ] 3.43138764E-01 5.7E+02

brainpc1 z0 0/0 0 :00 0 0/0 [0 ] �- �-

brainpc2 y6284 497/700 3028 :74 111 25/178 [304270 ] 4.12445060E-04 6.4E-10

brainpc3 61 76/76 31:39 37 0/0 [0] 4.13823164E-04 4.9E-08

brainpc4 57 73/73 29:27 30 0/0 [0] 4.38684365E-04 3.1E-06

brainpc5 y8129 456/1562 180 :70 96 38/52 [9193 ] 3.67226284E-04 1.9E-12

brainpc6 y13000 47912/47942 1834 :37 77 3/24 [4082 ] 2.68997665E-04 5.6E-02

brainpc7 57 92/92 30:00 32 0/0 [0] 3.93138275E-04 1.4E-06

brainpc8 66 118/120 33:02 27 1/1 [79] 3.56039939E-04 8.5E-08

brainpc9 91 189/191 43:36 45 1/1 [1] 4.53505951E-04 1.2E-02

bratu1d y13000 65813/0 389 :14 0 0/0 [0 ] -8.51892727E+00 0.0E+00

britgas 34 55/55 0:54 9 0/0 [0] 6.02538457E-08 2.2E-08

brkmcc 3 4/0 0:00 0 0/0 [0] 1.69042679E-01 0.0E+00

brownal 7 8/0 0:00 0 0/0 [0] 1.49563507E-16 0.0E+00

brownbs 8 11/0 0:00 1 0/0 [0] 1.97215226E-31 0.0E+00

broydn7d� 93 97/0 2:51 87 0/0 [0] 3.45014948E+02 0.0E+00

brybnd 8 9/0 2:86 0 0/0 [0] 1.22478636E-26 0.0E+00

bt1 y415 153/161 0 :01 16 4/4 [4 ] -1.00000000E+00 0.0E+00

bt2 12 13/13 0:00 0 0/0 [0] 3.25682003E-02 2.2E-12

bt4 13 14/14 0:01 3 0/0 [0] -4.55105507E+01 2.5E-09

bt5 7 8/8 0:02 0 0/0 [0] 9.61715172E+02 5.0E-14

bt6 13 18/18 0:01 0 0/0 [0] 2.77044788E-01 5.3E-11

bt7� 14 22/22 0:00 7 0/0 [0] 3.06499999E+02 1.8E-13

bt8 52 53/53 0:02 47 0/0 [0] 1.00000000E+00 4.4E-16

bt9 13 14/14 0:02 1 0/0 [0] -1.00000000E+00 1.7E-12

bt11 8 9/9 0:01 0 0/0 [0] 8.24891778E-01 1.1E-16

bt12 4 5/5 0:02 0 0/0 [0] 6.18811881E+00 3.2E-13

bt13 23 25/25 0:02 1 0/0 [0] 2.50590355E-09 9.1E-10

byrdsphr 24 25/25 0:00 2 0/0 [0] -4.68330013E+00 9.4E-09

camel6 13 17/17 0:00 6 0/0 [0] -1.03162845E+00 0.0E+00

cantilvr 14 15/15 0:01 0 0/0 [0] 1.33995636E+00 6.7E-16

catena 6 7/7 0:01 0 0/0 [0] -2.30777462E+04 1.0E-10

catenary 46 95/95 3:15 9 0/0 [0] -3.48403157E+05 3.8E-09

cb2 10 11/11 0:01 0 0/0 [0] 1.95222449E+00 8.4E-15

cb3 9 10/10 0:02 0 0/0 [0] 2.00000000E+00 7.3E-15

chaconn1 8 9/9 0:01 0 0/0 [0] 1.95222449E+00 9.2E-15

chaconn2 7 8/8 0:00 0 0/0 [0] 2.00000000E+00 1.8E-15

chebyqad 78 90/0 69:21 72 0/0 [0] 5.38631531E-03 0.0E+00

chnrosnb 43 63/0 0:03 1 0/0 [0] 1.82240476E-26 0.0E+00

cliff 27 28/0 0:01 0 0/0 [0] 1.99786613E-01 0.0E+00

clnlbeam� 286 288/288 9:05 161 0/0 [0] 3.44876218E+02 4.2E-09

clplatea 6 9/0 1:59 0 0/0 [0] -1.25920948E-02 0.0E+00

clplateb 6 10/0 1:57 0 0/0 [0] -6.98822201E+00 0.0E+00

Table B.2: Numerical results of Ipopt on CUTE test set (continued on next page)
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Tron
Problem #iter #f/#c CPU [s] #reg

#call/#it [#cgit]
f(x�) kc(x�)k

clplatec 2 3/0 0:88 0 0/0 [0] -5.02072422E-03 0.0E+00

concon 11 12/12 0:00 0 0/0 [0] -6.23079556E+03 5.8E-10

congigmz 29 36/36 0:02 7 0/0 [0] 2.80000000E+01 3.1E-09

core1 280 524/802 0:37 25 58/147 [1704] 9.10562400E+01 2.0E-06

corkscrw 2099 2532/2829 4212:90 80 82/214 [1408526] 9.06878264E+01 1.3E-09

coshfun y13000 55380/57740 6 :50 2931 1178/1182 [5736 ] -7.27681504E-01 4.6E-06

cosine 10 11/0 2:35 8 0/0 [0] -9.99900000E+03 0.0E+00

cragglvy 15 16/0 1:76 0 0/0 [0] 1.68821530E+03 0.0E+00

cresc100 y81090 5434/6684 12 :14 907 23/192 [3465 ] 5.57632039E-01 5.6E-02

cresc132 y13000 17645/20077 817 :26 2100 369/1258 [6960 ] 2.33108592E+02 1.5E+02

cresc4 y81304 14351/15644 0 :98 1141 133/140 [1238 ] 1.97926739E+00 2.6E-06

cresc50 y81170 8936/9748 5 :66 1043 50/132 [1822 ] 7.36572566E-01 9.0E-02

csfi1 21 22/22 0:01 7 0/0 [0] -4.90752000E+01 6.2E-09

csfi2 32 51/55 0:02 11 2/2 [4] 5.50176056E+01 2.7E-12

cube 27 43/0 0:01 0 0/0 [0] 1.75356784E-24 0.0E+00

curly10 22 23/0 13:25 16 0/0 [0] -1.00316290E+06 0.0E+00

curly20 21 29/0 24:88 16 0/0 [0] -1.00316290E+06 0.0E+00

curly30 26 27/0 47:04 20 0/0 [0] -1.00316290E+06 0.0E+00

dallasl y7181 583/535 4 :94 94 3/4 [234 ] curly30 Inf

dallasm 33 56/56 0:16 14 0/0 [0] -4.81981886E+04 5.2E-10

dallass y730 110/106 0 :03 15 3/3 [45 ] dallasm Inf

deconvc� 105 158/158 0:42 62 0/0 [0] 5.64682184E-10 9.9E-13

demymalo 13 14/14 0:01 1 0/0 [0] -2.99999999E+00 2.4E-15

denschna 6 7/0 0:00 0 0/0 [0] 1.10283709E-23 0.0E+00

denschnb 7 22/0 0:01 1 0/0 [0] 9.86076131E-32 0.0E+00

denschnc 10 11/0 0:00 0 0/0 [0] 2.17767937E-20 0.0E+00

denschnd 47 50/0 0:02 9 0/0 [0] 6.97456686E-14 0.0E+00

denschne 10 16/0 0:01 5 0/0 [0] 2.59994751E-20 0.0E+00

denschnf 6 7/0 0:00 0 0/0 [0] 6.51324621E-22 0.0E+00

dipigri 12 22/22 0:01 0 0/0 [0] 6.80630057E+02 1.4E-14

disc2 79 89/91 0:07 60 1/1 [1] 1.56250000E+00 6.3E-10

discs y81071 2176/4449 3 :09 284 91/809 [55652 ] 8.50831859E+01 4.0E+00

dittert 31 37/37 3:74 27 0/0 [0] -1.99759674E+00 6.5E-10

dixchlng 10 11/11 0:01 0 0/0 [0] 2.47189781E+03 2.2E-16

dixchlnv 20 21/21 0:34 0 0/0 [0] 0.00000000E+00 0.0E+00

dixmaana 6 7/0 0:51 2 0/0 [0] 1.00000000E+00 0.0E+00

dixmaanb 7 8/0 0:99 2 0/0 [0] 1.00000000E+00 0.0E+00

dixmaanc 9 10/0 1:16 4 0/0 [0] 1.00000000E+00 0.0E+00

dixmaand 9 10/0 1:11 5 0/0 [0] 1.00000000E+00 0.0E+00

dixmaane 8 9/0 0:68 5 0/0 [0] 1.00000000E+00 0.0E+00

dixmaanf 22 23/0 2:43 17 0/0 [0] 1.00000000E+00 0.0E+00

dixmaang 16 17/0 1:86 12 0/0 [0] 1.00000000E+00 0.0E+00

dixmaanh 22 23/0 2:38 17 0/0 [0] 1.00000000E+00 0.0E+00

dixmaani 11 12/0 0:81 7 0/0 [0] 1.00000000E+00 0.0E+00

dixmaanj 20 21/0 2:27 17 0/0 [0] 1.00000000E+00 0.0E+00

dixmaank 24 31/0 2:77 20 0/0 [0] 1.00000000E+00 0.0E+00

dixmaanl 29 30/0 3:15 26 0/0 [0] 1.00000000E+00 0.0E+00

djtl y317 73/0 0 :01 3 0/0 [0 ] -8.95154472E+03 0.0E+00

dnieper 30 33/33 0:05 2 0/0 [0] 1.87440146E+04 5.0E-08

dqrtic 38 39/0 1:41 0 0/0 [0] 1.06993424E-09 0.0E+00

drcavty1 264 544/544 9668:83 178 0/0 [0] 1.96643634E-04 1.9E-17

drcavty2 z0 0/0 0 :00 0 0/0 [0 ] �- �-

drcavty3 z0 0/0 0 :00 0 0/0 [0 ] �- �-

dtoc1l 6 7/7 4:15 0 0/0 [0] 1.25338129E+02 2.6E-14

dtoc1na 6 7/7 2:93 0 0/0 [0] 1.27020299E+01 8.8E-14

dtoc1nb 6 7/7 3:01 0 0/0 [0] 1.59377776E+01 3.3E-16

dtoc1nc 15 20/20 5:87 4 0/0 [0] 2.49698127E+01 1.1E-13

dtoc1nd� 26 35/35 4:67 19 0/0 [0] 1.27515615E+01 2.6E-14

dtoc2 10 17/17 3:71 9 0/0 [0] 5.08676207E-01 2.9E-10

dtoc4 3 4/4 2:13 0 0/0 [0] 2.86853822E+00 1.6E-10

dtoc5 4 5/5 1:30 0 0/0 [0] 1.53511153E+00 2.0E-13

dtoc6 11 12/12 2:42 0 0/0 [0] 1.34850616E+05 1.1E-11

Table B.2: Numerical results of Ipopt on CUTE test set (continued on next page)
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Tron
Problem #iter #f/#c CPU [s] #reg

#call/#it [#cgit]
f(x�) kc(x�)k

edensch 7 8/0 0:39 0 0/0 [0] 1.20032845E+04 0.0E+00

eg1 10 11/0 0:01 0 0/0 [0] -1.42930675E+00 0.0E+00

eg2 3 4/0 0:08 1 0/0 [0] -9.98947393E+02 0.0E+00

eg3� 36 37/37 0:18 8 0/0 [0] 6.71799881E-02 1.7E-11

eigena 28 31/0 0:56 4 0/0 [0] 1.16995304E-07 0.0E+00

eigena2 3 4/4 0:08 1 0/0 [0] 8.68979590E-30 0.0E+00

eigenaco 3 4/4 0:11 1 0/0 [0] 0.00000000E+00 0.0E+00

eigenals 25 28/0 0:78 16 0/0 [0] 2.53328105E-24 0.0E+00

eigenb 116 161/0 2:65 61 0/0 [0] 4.73897786E-20 0.0E+00

eigenb2� 62 73/73 1:42 56 0/0 [0] 5.44579126E-20 1.2E-10

eigenbco� 71 91/91 3:38 54 0/0 [0] 3.96581044E-19 4.0E-11

eigenbls 114 174/0 3:65 56 0/0 [0] 1.20963254E-17 0.0E+00

eigenc2 18 19/19 52:22 12 0/0 [0] 4.11036638E-23 1.2E-12

eigencco 10 11/11 0:02 5 0/0 [0] 8.09393237E-23 1.3E-12

engval1 8 9/0 0:79 0 0/0 [0] 5.54866841E+03 0.0E+00

engval2 20 21/0 0:01 7 0/0 [0] 2.02010021E-28 0.0E+00

errinros� 29 57/0 0:02 6 0/0 [0] 4.04044907E+01 0.0E+00

expfit 8 9/0 0:01 4 0/0 [0] 2.40510593E-01 0.0E+00

expfita 31 33/33 0:01 11 0/0 [0] 1.13662181E-03 2.8E-14

expfitb 75 76/76 0:15 31 0/0 [0] 5.01937570E-03 4.3E-14

expfitc� 156 158/158 1:83 78 0/0 [0] 2.33025810E-02 3.6E-14

explin 21 22/0 0:03 0 0/0 [0] -7.23756265E+05 0.0E+00

explin2 21 22/0 0:02 0 0/0 [0] -7.24459142E+05 0.0E+00

expquad 23 24/24 0:04 13 0/0 [0] -3.62459988E+06 8.3E-25

extrosnb 0 1/0 0:01 0 0/0 [0] 0.00000000E+00 0.0E+00

fletcbv2 2 3/0 0:02 0 0/0 [0] -5.14006786E-01 0.0E+00

fletcbv3 y13000 3001/0 530 :25 2999 0/0 [0 ] -6.63200592E+07 0.0E+00

fletchbv y13000 3001/0 525 :27 2999 0/0 [0 ] -6.63728505E+15 0.0E+00

fletchcr 48 51/0 0:06 46 0/0 [0] 1.02489796E-16 0.0E+00

fletcher� 20 49/55 0:01 11 1/3 [13] 1.16568542E+01 2.1E-12

flosp2hh y13000 3001/0 324 :27 2999 0/0 [0 ] 3.88854290E+01 0.0E+00

flosp2hl 3 4/0 0:39 2 0/0 [0] 3.88705439E+01 0.0E+00

flosp2hm y32578 2579/0 214 :05 1571 0/0 [0 ] 3.88712559E+01 0.0E+00

flosp2th y13000 3001/0 319 :45 3000 0/0 [0 ] 1.93640772E+01 0.0E+00

flosp2tl 2 3/0 0:26 0 0/0 [0] 1.00000000E+01 0.0E+00

flosp2tm y31016 1017/0 85 :84 601 0/0 [0 ] 1.00000000E+01 0.0E+00

fminsrf2 17 113/0 0:98 3 0/0 [0] 1.00000000E+00 0.0E+00

fminsurf 33 256/0 632:75 17 0/0 [0] 1.00000000E+00 0.0E+00

freuroth 8 13/0 1:51 1 0/0 [0] 6.08159189E+05 0.0E+00

gausselm y51599 1719/1721 409 :08 1487 1/1 [265 ] -1.72755430E+01 1.7E-08

genhumps 194 206/0 0:05 179 0/0 [0] 1.28669686E-29 0.0E+00

genrose 744 953/0 4:25 5 0/0 [0] 1.00000000E+00 0.0E+00

gigomez1 16 19/19 0:01 2 0/0 [0] -2.99999999E+00 1.1E-15

gilbert 19 20/20 0:35 1 0/0 [0] 4.82027299E+02 2.2E-10

gpp 25 26/26 8:92 3 0/0 [0] 1.44009271E+04 1.5E-10

growth 70 119/0 0:02 9 0/0 [0] 1.00404058E+00 0.0E+00

growthls 74 126/0 0:02 9 0/0 [0] 1.00404058E+00 0.0E+00

gulf 22 32/0 0:02 7 0/0 [0] 3.89353644E-28 0.0E+00

hadamals� 98 99/0 1:58 85 0/0 [0] 2.53164161E+01 0.0E+00

hadamard 9 13/13 0:19 9 0/0 [0] 1.00000016E+00 1.1E-12

hager2 1 2/2 1:09 0 0/0 [0] 4.32082250E-01 2.9E-12

hager4 13 14/14 3:58 0 0/0 [0] 2.79403733E+00 9.5E-12

haifam 31 42/42 0:26 9 0/0 [0] -4.50003603E+01 1.4E-07

haifas 12 14/14 0:01 0 0/0 [0] -4.49999992E-01 5.7E-11

hairy 46 57/0 0:01 34 0/0 [0] 2.00000000E+01 0.0E+00

haldmads� 58 65/65 0:07 50 0/0 [0] 3.46592839E-02 9.0E-13

hanging 19 20/20 0:18 0 0/0 [0] -6.20176046E+02 2.3E-13

hart6 10 13/0 0:01 2 0/0 [0] -3.32288689E+00 0.0E+00

hatflda 11 12/0 0:01 0 0/0 [0] 7.23718446E-16 0.0E+00

hatfldb 12 13/13 0:01 0 0/0 [0] 5.57281150E-03 0.0E+00

hatfldc 7 8/8 0:00 0 0/0 [0] 2.94596279E-18 0.0E+00

hatfldd 21 31/0 0:01 3 0/0 [0] 6.61511391E-08 0.0E+00

Table B.2: Numerical results of Ipopt on CUTE test set (continued on next page)
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Tron
Problem #iter #f/#c CPU [s] #reg

#call/#it [#cgit]
f(x�) kc(x�)k

hatflde 26 34/0 0:01 2 0/0 [0] 4.43440070E-07 0.0E+00

heart6ls 828 1108/0 0:22 804 0/0 [0] 1.50485244E-30 0.0E+00

heart8ls 88 120/0 0:04 77 0/0 [0] 2.71111944E-27 0.0E+00

helix 11 14/0 0:02 5 0/0 [0] 8.10653032E-29 0.0E+00

himmelbb 10 16/0 0:02 8 0/0 [0] 1.13629984E-21 0.0E+00

himmelbf 9 12/0 0:02 2 0/0 [0] 3.18571748E+02 0.0E+00

himmelbg 6 11/0 0:00 1 0/0 [0] 3.63299957E-22 0.0E+00

himmelbh 4 21/0 0:02 1 0/0 [0] -1.00000000E+00 0.0E+00

himmelbi 30 31/31 0:07 14 0/0 [0] -1.75499999E+03 1.9E-09

himmelbj y637 57/62 0 :05 0 2/3 [20 ] -1.90897461E+03 3.0E-12

himmelbk 19 20/20 0:04 0 0/0 [0] 5.18143882E-02 4.4E-13

himmelp1 11 12/12 0:01 5 0/0 [0] -6.20538693E+01 0.0E+00

himmelp2� 14 15/15 0:00 3 0/0 [0] -8.19803173E+00 0.0E+00

himmelp3 13 14/14 0:01 2 0/0 [0] -5.90131235E+01 9.1E-13

himmelp4 17 18/18 0:01 3 0/0 [0] -5.90131235E+01 9.1E-13

himmelp5 29 30/30 0:03 2 0/0 [0] -5.90131235E+01 1.1E-14

himmelp6� 9 10/10 0:01 0 0/0 [0] -5.90131235E+01 9.1E-13

hong 13 14/14 0:01 0 0/0 [0] 1.34730660E+00 0.0E+00

hs001 30 45/45 0:01 0 0/0 [0] 1.00724019E-18 0.0E+00

hs002 10 11/11 0:02 0 0/0 [0] 4.94122933E+00 0.0E+00

hs004 6 7/7 0:01 0 0/0 [0] 2.66666670E+00 0.0E+00

hs005 10 12/12 0:01 1 0/0 [0] -1.91322295E+00 2.2E-16

hs006 5 7/7 0:01 2 0/0 [0] 0.00000000E+00 1.8E-15

hs007 9 10/10 0:00 2 0/0 [0] -1.73205080E+00 2.7E-15

hs009 3 6/6 0:01 1 0/0 [0] -4.99999999E-01 0.0E+00

hs010 13 14/14 0:00 0 0/0 [0] -9.99999997E-01 2.2E-16

hs011 8 9/9 0:01 0 0/0 [0] -8.49846420E+00 1.2E-12

hs012 13 14/14 0:02 0 0/0 [0] -2.99999999E+01 0.0E+00

hs013� 33 34/34 0:01 0 0/0 [0] 1.00006519E+00 3.5E-14

hs014 9 10/10 0:00 0 0/0 [0] 1.39346498E+00 2.2E-16

hs015� 17 32/32 0:01 5 0/0 [0] 3.06500003E+02 5.8E-13

hs016 10 11/11 0:00 0 0/0 [0] 2.31446609E+01 3.3E-13

hs017 24 30/30 0:00 0 0/0 [0] 1.00000000E+00 1.3E-11

hs018 16 20/20 0:01 2 0/0 [0] 5.00000000E+00 2.8E-14

hs019 11 12/12 0:00 2 0/0 [0] -6.96181387E+03 1.1E-13

hs020 12 13/13 0:01 0 0/0 [0] 4.01987298E+01 2.9E-14

hs023 10 12/12 0:01 0 0/0 [0] 2.00000000E+00 4.4E-16

hs024 12 14/14 0:00 4 0/0 [0] -9.99999994E-01 8.9E-16

hs025� 34 46/46 0:04 19 0/0 [0] 8.52763232E-16 0.0E+00

hs026 24 25/25 0:01 0 0/0 [0] 6.53763051E-16 1.4E-08

hs027 75 211/214 0:02 8 1/2 [2] 3.99999999E-02 1.7E-11

hs029 9 10/10 0:01 1 0/0 [0] -2.26274169E+01 0.0E+00

hs030 32 47/47 0:01 0 0/0 [0] 1.00000000E+00 2.0E-28

hs031 10 11/11 0:01 0 0/0 [0] 6.00000000E+00 2.2E-16

hs032 16 20/20 0:01 0 0/0 [0] 1.00000000E+00 5.3E-14

hs033 11 12/12 0:00 0 0/0 [0] -4.58578638E+00 6.4E-10

hs034 10 11/11 0:01 0 0/0 [0] -8.34032437E-01 3.2E-14

hs036 11 12/12 0:01 4 0/0 [0] -3.29999999E+03 1.4E-14

hs037 10 11/11 0:00 3 0/0 [0] -3.45599999E+03 0.0E+00

hs038 42 64/0 0:02 3 0/0 [0] 1.45502447E-22 0.0E+00

hs039 13 14/14 0:01 1 0/0 [0] -1.00000000E+00 1.7E-12

hs040 3 4/4 0:01 0 0/0 [0] -2.50000000E-01 1.9E-10

hs041 12 14/14 0:01 0 0/0 [0] 1.92592592E+00 1.5E-10

hs042 7 8/8 0:01 0 0/0 [0] 1.38578643E+01 4.4E-16

hs043 10 11/11 0:01 0 0/0 [0] -4.39999999E+01 8.9E-16

hs045 21 22/0 0:01 11 0/0 [0] 1.00000001E+00 0.0E+00

hs046 18 19/19 0:00 0 0/0 [0] 4.33010833E-15 1.6E-08

hs047 19 21/21 0:01 0 0/0 [0] 6.57516035E-14 1.6E-09

hs049 20 21/21 0:02 0 0/0 [0] 2.09381950E-12 0.0E+00

hs050 9 10/10 0:01 0 0/0 [0] 0.00000000E+00 0.0E+00

hs054 8 9/9 0:01 0 0/0 [0] 1.92857142E-01 0.0E+00

hs056 70 103/103 0:02 54 0/0 [0] -3.45600000E+00 1.8E-15
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Tron
Problem #iter #f/#c CPU [s] #reg

#call/#it [#cgit]
f(x�) kc(x�)k

hs057 y848 195/1151 0 :06 2 2/2 [954 ] 3.06487083E-02 3.2E+01

hs059� 46 162/164 0:02 2 1/1 [1] -7.80278946E+00 1.4E-14

hs060 8 9/9 0:01 0 0/0 [0] 3.25682002E-02 0.0E+00

hs061� 1847 19592/19969 0:51 1576 160/188 [471] -8.19190960E+01 1.3E-10

hs062 6 8/8 0:00 0 0/0 [0] -2.62725144E+04 0.0E+00

hs063 9 10/10 0:02 0 0/0 [0] 9.61715172E+02 4.3E-14

hs064 20 31/31 0:01 8 0/0 [0] 6.29984241E+03 3.5E-09

hs065 16 17/17 0:01 4 0/0 [0] 9.53528859E-01 1.4E-14

hs066 8 9/9 0:01 0 0/0 [0] 5.18163279E-01 8.0E-14

hs067 9 10/10 0:01 0 0/0 [0] -1.16202700E+03 1.7E-07

hs070 20 31/31 0:03 11 0/0 [0] 9.40197325E-03 0.0E+00

hs071 9 10/10 0:01 0 0/0 [0] 1.70140172E+01 7.1E-15

hs072 16 17/17 0:02 0 0/0 [0] 7.27679361E+02 4.5E-13

hs073 9 10/10 0:01 0 0/0 [0] 2.98943782E+01 7.7E-12

hs074 11 12/12 0:00 0 0/0 [0] 5.12649810E+03 2.3E-13

hs075 10 11/11 0:01 0 0/0 [0] 5.17441269E+03 1.6E-12

hs077 11 13/13 0:01 0 0/0 [0] 2.41505128E-01 2.3E-10

hs078 4 5/5 0:01 0 0/0 [0] -2.91970040E+00 5.6E-12

hs079 4 5/5 0:01 0 0/0 [0] 7.87768209E-02 3.9E-09

hs080 8 9/9 0:01 0 0/0 [0] 5.39498477E-02 1.8E-15

hs081 8 9/9 0:00 0 0/0 [0] 5.39498477E-02 8.9E-16

hs083 17 18/18 0:01 0 0/0 [0] -3.06655386E+04 1.8E-15

hs084 19 20/20 0:01 12 0/0 [0] -5.28033513E+06 2.3E-10

hs085 14 15/15 0:03 0 0/0 [0] -1.90515524E+00 4.7E-10

hs086 11 12/12 0:01 0 0/0 [0] -3.23486788E+01 5.6E-17

hs087 17 19/19 0:02 0 0/0 [0] 8.82759773E+03 3.3E-13

hs088 16 21/21 0:06 0 0/0 [0] 1.36265681E+00 2.2E-16

hs089 17 22/22 0:10 0 0/0 [0] 1.36265865E+00 7.7E-13

hs090 13 19/19 0:11 4 0/0 [0] 1.36265789E+00 7.2E-10

hs091 34 49/49 0:28 28 0/0 [0] 1.36265682E+00 1.1E-11

hs092 22 23/23 0:21 6 0/0 [0] 1.36265681E+00 8.3E-17

hs093 7 8/8 0:01 0 0/0 [0] 1.35075962E+02 1.1E-12

hs095 14 15/15 0:01 2 0/0 [0] 1.56196375E-02 2.1E-09

hs096 19 27/27 0:01 4 0/0 [0] 1.56196375E-02 2.1E-09

hs097� 18 19/19 0:01 5 0/0 [0] 4.07124637E+00 2.2E-09

hs098� 23 25/25 0:01 3 0/0 [0] 4.07124637E+00 1.3E-09

hs099 6 7/7 0:02 0 0/0 [0] -8.31079891E+08 2.0E-10

hs100 12 22/22 0:01 0 0/0 [0] 6.80630057E+02 1.4E-14

hs100lnp 6 7/7 0:00 2 0/0 [0] 6.80630057E+02 1.4E-14

hs100mod 11 35/35 0:02 0 0/0 [0] 6.78754727E+02 7.6E-14

hs101 32 100/100 0:04 11 0/0 [0] 1.80976476E+03 5.7E-11

hs102 27 82/82 0:03 5 0/0 [0] 9.11880576E+02 2.8E-10

hs103 27 88/88 0:02 4 0/0 [0] 5.43667958E+02 8.3E-12

hs104 43 53/53 0:01 23 0/0 [0] 3.95116345E+00 1.7E-15

hs105� 26 27/27 1:02 5 0/0 [0] 1.13630730E+03 0.0E+00

hs106 14 15/15 0:01 0 0/0 [0] 7.04924801E+03 7.8E-08

hs107 39 50/55 0:01 5 2/2 [10] 5.05501180E+03 4.5E-13

hs108� 22 25/25 0:02 6 0/0 [0] -6.74981427E-01 1.0E-13

hs109 17 28/28 0:02 2 0/0 [0] 5.32685133E+03 2.3E-10

hs110 7 8/0 0:01 0 0/0 [0] -4.57784697E+01 0.0E+00

hs111 23 24/24 0:02 13 0/0 [0] -4.77610908E+01 9.5E-15

hs111lnp 23 24/24 0:02 14 0/0 [0] -4.77610914E+01 2.2E-08

hs112 17 18/18 0:01 0 0/0 [0] -4.77610908E+01 2.2E-16

hs113 12 13/13 0:00 0 0/0 [0] 2.43062090E+01 1.4E-14

hs114 19 20/20 0:02 0 0/0 [0] -1.76880696E+03 4.5E-13

hs116 23 24/24 0:02 0 0/0 [0] 9.75875095E+01 1.6E-13

hs117 24 49/51 0:02 6 1/1 [9] 3.23486789E+01 1.4E-14

hs119 16 17/17 0:01 0 0/0 [0] 2.44899697E+02 4.4E-16

hs99exp 16 17/17 0:01 2 0/0 [0] -1.00806250E+09 2.8E-10

hubfit 9 10/10 0:01 0 0/0 [0] 1.68934964E-02 0.0E+00

humps 346 365/0 0:05 338 0/0 [0] 1.18677014E-24 0.0E+00

hvycrash y7741 5147/5840 9 :10 519 194/409 [24399 ] -2.18500000E-01 4.6E-12
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Tron
Problem #iter #f/#c CPU [s] #reg

#call/#it [#cgit]
f(x�) kc(x�)k

hypcir 5 8/8 0:01 0 0/0 [0] 0.00000000E+00 6.8E-13

indef y13000 3003/0 37 :95 3000 0/0 [0 ] -8.12220389E+12 0.0E+00

jensmp 10 11/0 0:01 0 0/0 [0] 1.24362182E+02 0.0E+00

kissing 178 242/256 14:38 167 4/7 [36] 8.44457950E-01 1.8E-09

kiwcresc 10 12/12 0:00 1 0/0 [0] 5.01180482E-09 8.9E-16

kowosb 8 17/0 0:03 3 0/0 [0] 3.07505603E-04 0.0E+00

lakes 117 267/353 0:16 34 3/63 [873] 3.50524793E+05 5.8E-11

launch y8762 1365/2257 0 :96 106 65/675 [11379 ] 1.21534320E+00 2.2E+02

lch 55 56/56 1:72 53 0/0 [0] -4.31828879E+00 1.7E-12

liarwhd 12 13/0 3:55 0 0/0 [0] 8.19834757E-22 0.0E+00

lminsurf 2 3/3 8:05 0 0/0 [0] 8.99999999E+00 0.0E+00

loadbal 16 19/19 0:02 0 0/0 [0] 4.52851064E-01 3.5E-12

loghairy 809 860/0 0:13 786 0/0 [0] 1.82321556E-01 0.0E+00

logros y13000 97243/0 0 :73 2 0/0 [0 ] 0.00000000E+00 0.0E+00

lootsma 11 12/12 0:02 0 0/0 [0] 1.41421361E+00 9.0E-10

lsnnodoc 13 16/16 0:01 13 0/0 [0] 1.23112448E+02 5.3E-14

madsen 22 23/23 0:02 7 0/0 [0] 6.16432440E-01 8.4E-15

madsschj 47 69/69 3:28 15 0/0 [0] -7.97283702E+02 5.6E-13

makela1 15 16/16 0:01 4 0/0 [0] -1.41421355E+00 1.6E-15

makela2 9 10/10 0:01 0 0/0 [0] 7.20000000E+00 1.4E-14

makela3 18 19/19 0:00 0 0/0 [0] 5.01180711E-08 1.1E-22

mancino y36 7/0 1 :27 0 0/0 [0 ] 8.29262700E-22 0.0E+00

manne 1324 1336/1336 35:10 1298 0/0 [0] -9.74203446E-01 5.7E-11

maratos 4 5/5 0:00 0 0/0 [0] -1.00000000E+00 1.8E-15

matrix2 17 18/18 0:01 0 0/0 [0] 3.61019574E-08 7.2E-09

maxlika� 25 30/30 1:00 4 0/0 [0] 1.13630730E+03 0.0E+00

mccormck 9 10/0 9:99 0 0/0 [0] -4.56616135E+04 0.0E+00

mdhole 48 72/0 0:01 9 0/0 [0] 2.50590355E-09 0.0E+00

methanb8 7 8/0 0:02 3 0/0 [0] 6.51263182E-24 0.0E+00

methanl8 46 74/0 0:10 38 0/0 [0] 6.10062715E-26 0.0E+00

mexhat 4 5/0 0:01 1 0/0 [0] -4.01000000E-02 0.0E+00

meyer3 y13000 37049/0 0 :94 7 0/0 [0 ] 8.79458551E+01 0.0E+00

mifflin1 8 9/9 0:01 0 0/0 [0] -9.99999994E-01 3.9E-17

mifflin2 16 17/17 0:01 3 0/0 [0] -9.99999994E-01 3.1E-15

minc44 25 27/27 2:15 13 0/0 [0] 2.57302897E-03 6.3E-12

minmaxbd 129 198/202 0:07 51 2/2 [2] 1.15706439E+02 1.7E-13

minmaxrb 11 15/15 0:00 0 0/0 [0] 1.00236130E-08 3.8E-15

minperm 8 9/9 105:88 6 0/0 [0] 3.62880000E-04 2.7E-14

minsurf 3 4/4 0:00 3 0/0 [0] 1.00000000E+00 2.2E-16

mistake 20 21/21 0:01 5 0/0 [0] -9.99999989E-01 1.6E-12

morebv 1 2/2 0:64 0 0/0 [0] 5.83437924E-15 0.0E+00

msqrtals 24 34/0 691:11 19 0/0 [0] 4.22369695E-16 0.0E+00

msqrtbls 28 45/0 789:91 22 0/0 [0] 8.02930283E-19 0.0E+00

mwright 9 10/10 0:01 3 0/0 [0] 2.49788095E+01 4.2E-10

ngone� 49 50/50 3:00 28 0/0 [0] -6.35969004E-01 7.7E-11

noncvxu2 404 466/0 828:96 401 0/0 [0] 2.31921213E+03 0.0E+00

noncvxun 30 38/0 0:33 25 0/0 [0] 2.31680841E+03 0.0E+00

nondia 5 6/0 2:30 0 0/0 [0] 4.76317222E-25 0.0E+00

nondquar 24 25/0 4:33 0 0/0 [0] 1.24495101E-13 0.0E+00

nonmsqrt y13000 93030/0 1 :09 2758 0/0 [0 ] 7.51800518E-01 0.0E+00

nonscomp 23 46/0 4:45 0 0/0 [0] 5.56279901E-06 0.0E+00

odfits 12 13/13 0:00 0 0/0 [0] -2.38002677E+03 2.8E-14

oet2 128 150/157 11:80 36 3/3 [7] 8.71596414E-02 1.3E-14

oet7� 129 147/150 6:46 106 1/1 [10] 4.45540319E-05 1.2E-09

optcdeg2 31 32/32 0:45 0 0/0 [0] 2.29573418E+02 6.4E-09

optcdeg3 28 29/29 0:45 0 0/0 [0] 4.61456698E+01 2.7E-09

optcntrl 50 78/78 0:03 0 0/0 [0] 5.49999999E+02 4.0E-11

optctrl3 90 962/1058 0:43 0 21/51 [1727] 2.04801654E+03 4.5E-13

optctrl6 90 962/1058 0:42 0 21/51 [1727] 2.04801654E+03 4.5E-13

optmass 22 23/23 0:05 11 0/0 [0] -1.89542472E-01 4.6E-11

optprloc 20 21/21 0:03 0 0/0 [0] -1.64197737E+01 1.1E-06

orthrdm2 6 8/8 1:52 0 0/0 [0] 1.55532815E+02 1.4E-13
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Tron
Problem #iter #f/#c CPU [s] #reg

#call/#it [#cgit]
f(x�) kc(x�)k

orthrds2 143 1250/1320 1:54 131 26/31 [260] 5.27758427E+02 3.4E-13

orthrega� 49 71/71 1:18 39 0/0 [0] 1.41405588E+03 1.1E-15

orthregb 2 3/3 0:01 2 0/0 [0] 4.52460763E-20 2.0E-10

orthregc 14 28/28 14:76 8 0/0 [0] 1.89597674E+02 6.7E-13

orthregd 81 446/448 58:83 42 1/1 [7] 2.60665123E+03 1.4E-13

orthrege� 41 57/57 0:02 13 0/0 [0] 1.28604709E+00 2.8E-09

orthrgdm y671 782/832 94 :80 70 24/25 [174 ] 3.63666639E+04 1.2E-08

orthrgds 16 24/24 11:13 7 0/0 [0] 1.52389973E+03 1.0E-10

osbornea 35 56/0 0:03 7 0/0 [0] 5.46489469E-05 0.0E+00

osborneb� 17 20/0 0:05 7 0/0 [0] 4.01377362E-02 0.0E+00

oslbqp 14 15/15 0:00 0 0/0 [0] 6.25000002E+00 1.4E-20

palmer1 y3875 1518/0 0 :23 5 0/0 [0 ] 1.17546025E+04 0.0E+00

palmer1a y13000 50304/0 1 :49 15 0/0 [0 ] 8.98836290E-02 0.0E+00

palmer1b 22 23/0 0:02 3 0/0 [0] 3.44735461E+00 0.0E+00

palmer1e 42 60/0 0:03 14 0/0 [0] 8.35268268E-04 0.0E+00

palmer2 23 26/0 0:02 21 0/0 [0] 3.65108950E+03 0.0E+00

palmer2a 153 240/0 0:06 25 0/0 [0] 1.71607394E-02 0.0E+00

palmer2b 20 25/0 0:01 7 0/0 [0] 6.23394652E-01 0.0E+00

palmer2e 39 57/0 0:02 12 0/0 [0] 2.15352481E-04 0.0E+00

palmer3 y13000 5356/0 0 :72 9 0/0 [0 ] 2.26595849E+03 0.0E+00

palmer3a 135 212/0 0:04 9 0/0 [0] 2.04314229E-02 0.0E+00

palmer3b 15 20/0 0:01 5 0/0 [0] 4.22764725E+00 0.0E+00

palmer3e 74 131/0 0:02 4 0/0 [0] 5.07408418E-05 0.0E+00

palmer4� 35 55/0 0:01 20 0/0 [0] 2.42401641E+03 0.0E+00

palmer4a 124 198/0 0:04 13 0/0 [0] 4.06061393E-02 0.0E+00

palmer4b 15 16/0 0:01 6 0/0 [0] 6.83513859E+00 0.0E+00

palmer4e 27 38/0 0:01 12 0/0 [0] 1.48004219E-04 0.0E+00

palmer5a y13000 8779/0 0 :73 1610 0/0 [0 ] 3.90202187E-02 0.0E+00

palmer5b 237 569/0 0:05 89 0/0 [0] 9.75249263E-03 0.0E+00

palmer5e y13000 5394/0 0 :67 6 0/0 [0 ] 2.09737858E-02 0.0E+00

palmer6a 308 507/0 0:06 10 0/0 [0] 5.59488389E-02 0.0E+00

palmer6e 29 49/0 0:01 6 0/0 [0] 2.23955033E-04 0.0E+00

palmer7a y13000 5360/0 0 :61 13 0/0 [0 ] 1.03348583E+01 0.0E+00

palmer7e y13000 8326/0 0 :79 1856 0/0 [0 ] 6.57509547E+00 0.0E+00

palmer8a y13000 67393/0 1 :03 16 0/0 [0 ] 7.40096979E-02 0.0E+00

palmer8e 16 21/0 0:01 4 0/0 [0] 6.33930743E-03 0.0E+00

penalty1 41 46/0 400:92 0 0/0 [0] 9.68617543E-03 0.0E+00

penalty2 19 20/0 0:18 0 0/0 [0] 9.70960839E+04 0.0E+00

pentagon 16 17/17 0:00 8 0/0 [0] 1.36532463E-04 1.1E-16

pfit1ls� 19 20/0 0:02 0 0/0 [0] 9.46567901E+02 0.0E+00

pfit2ls� 20 21/0 0:01 0 0/0 [0] 9.42143209E+03 0.0E+00

pfit3ls� 21 22/0 0:01 0 0/0 [0] 3.97340795E+04 0.0E+00

pfit4ls� 21 22/0 0:01 0 0/0 [0] 1.13934428E+05 0.0E+00

polak1 11 12/12 0:01 0 0/0 [0] 2.71828183E+00 1.5E-16

polak2 23 38/38 0:01 0 0/0 [0] 5.45981500E+01 6.1E-15

polak3 y8200 1491/2635 0 :45 187 48/60 [1621 ] 9.44865066E+01 6.8E-14

polak4 18 41/41 0:01 5 0/0 [0] 7.51800808E-09 1.5E-11

polak5 31 32/32 0:01 1 0/0 [0] 5.00000000E+01 8.4E-09

polak6 95 226/236 0:02 30 5/5 [10] -4.39999999E+01 1.4E-14

power 1 2/0 0:05 0 0/0 [0] 3.55601741E-24 0.0E+00

probpenl 416 425/0 1282:77 411 0/0 [0] -4.23825959E+03 0.0E+00

prodpl0 19 20/20 0:01 3 0/0 [0] 6.09192371E+01 9.7E-09

prodpl1 y71216 6503/6638 0 :93 8 65/70 [2491 ] 5.30370216E+01 7.4E-13

pspdoc 10 29/29 0:00 0 0/0 [0] 2.41421356E+00 0.0E+00

qr3d 53 85/0 1:74 36 0/0 [0] 1.01655251E-16 0.0E+00

qr3dbd 26 47/0 0:46 12 0/0 [0] 1.01655250E-16 0.0E+00

qr3dls 53 85/0 2:00 36 0/0 [0] 1.01655248E-16 0.0E+00

qrtquad 23 29/29 0:03 12 0/0 [0] -3.64808836E+06 0.0E+00

quartc 40 41/0 2:96 0 0/0 [0] 1.33691192E-09 0.0E+00

reading1 27 28/28 7:41 0 0/0 [0] -1.60457843E-01 2.5E-12

reading3 799 11011/11011 11:01 3 0/0 [0] -6.01814883E-34 8.4E-11

rk23 14 16/16 0:01 14 0/0 [0] 8.33333458E-02 1.9E-13

Table B.2: Numerical results of Ipopt on CUTE test set (continued on next page)
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Tron
Problem #iter #f/#c CPU [s] #reg

#call/#it [#cgit]
f(x�) kc(x�)k

robot� 141 495/516 0:07 129 8/11 [27] 5.46284122E+00 1.3E-10

rosenbr 21 33/0 0:02 0 0/0 [0] 3.74397564E-21 0.0E+00

s365mod� 20 37/37 0:01 9 0/0 [0] 5.21890765E+01 1.1E-10

s368� 147 150/0 17:87 137 0/0 [0] -7.96874997E+01 0.0E+00

sawpath y317 18/18 0 :43 4 0/0 [0 ] 1.81572992E+02 1.8E-14

scon1dls� 370 1497/0 10:20 117 0/0 [0] 1.25660022E-11 0.0E+00

scosine 132 133/0 23:98 128 0/0 [0] -9.99748214E+03 0.0E+00

scurly10 y13000 3016/0 1039 :66 221 0/0 [0 ] -1.00316290E+06 0.0E+00

scurly20 y13000 3009/0 1886 :71 199 0/0 [0 ] -1.00316290E+06 0.0E+00

scurly30 y13000 3004/0 2969 :55 203 0/0 [0 ] -1.00316290E+06 0.0E+00

sineali y13000 5252/0 0 :77 13 0/0 [0 ] -1.90096278E+03 0.0E+00

sineval 42 77/0 0:01 0 0/0 [0] 2.83150856E-41 0.0E+00

sinquad 19 27/0 6:94 7 0/0 [0] 5.81839093E-10 0.0E+00

sinrosnb 7 8/8 0:31 6 0/0 [0] -9.99010000E+04 2.6E-16

sisser 18 19/0 0:01 2 0/0 [0] 1.21113886E-12 0.0E+00

smbank 17 18/18 0:05 8 0/0 [0] -7.12929200E+06 1.2E-10

smmpsf y8379 923/2003 5 :56 204 12/43 [15584 ] 1.04698738E+06 7.5E-08

snake 12 14/14 0:01 4 0/0 [0] 3.68984008E-06 8.9E-12

spanhyd 46 47/47 0:18 46 0/0 [0] 2.39738000E+02 1.3E-09

spiral 59 63/63 0:00 12 0/0 [0] 5.01180711E-09 7.2E-22

sreadin3 8 9/9 3:53 0 0/0 [0] -6.45294901E-05 1.1E-08

srosenbr 21 33/0 2:52 0 0/0 [0] 1.87198782E-17 0.0E+00

ssebnln� 205 238/263 0:58 169 11/14 [925] 1.80474835E+07 5.5E-08

ssnlbeam� 22 23/23 0:01 18 0/0 [0] 3.41877235E+02 9.9E-12

stancmin 11 12/12 0:01 0 0/0 [0] 4.25000000E+00 2.2E-16

steenbrb� 59 60/60 13:21 59 0/0 [0] 9.07585537E+03 5.3E-13

steenbrc� 1236 1622/1633 8:07 1201 4/7 [7] 2.03575576E+04 4.5E-12

steenbrd� 235 243/247 55:57 233 1/3 [3] 9.43721949E+03 1.6E-10

steenbre y72203 2291/2337 1033 :92 2090 21/25 [392 ] 1.34864549E+10 3.7E-13

steenbrf 472 787/795 2:72 448 3/5 [21] 2.82679557E+02 7.3E-12

steenbrg� 146 149/149 87:61 146 0/0 [0] 2.74209296E+04 3.5E-12

svanberg 29 30/30 16:22 9 0/0 [0] 8.36142276E+03 1.0E-08

swopf 30 85/87 0:05 0 1/1 [154] 6.78601914E-02 3.2E-14

synthes1 12 13/13 0:01 0 0/0 [0] 7.59284421E-01 5.7E-09

trainf� 31 32/32 13:58 0 0/0 [0] 3.10340933E+00 2.3E-13

trainh 75 76/76 38:68 0 0/0 [0] 1.23119978E+01 2.0E-10

trimloss 174 955/1005 0:99 0 14/36 [5776] 9.06000027E+00 1.1E-08

try 14 18/18 0:00 4 0/0 [0] 1.56988806E-18 0.0E+00

twirism1 y7999 5794/6484 193 :48 423 53/630 [150137 ] -5.28215719E-01 4.2E-13

twobars 13 14/14 0:01 0 0/0 [0] 1.50865242E+00 2.2E-16

ubh5 7 8/8 4:49 0 0/0 [0] 1.11600081E+00 4.7E-12

vardim 25 26/0 0:20 0 0/0 [0] 0.00000000E+00 0.0E+00

watson 13 14/0 0:07 13 0/0 [0] 1.01769229E-13 0.0E+00

weeds� 24 28/0 0:02 9 0/0 [0] 9.20543519E+03 0.0E+00

womflet� 12 13/13 0:01 0 0/0 [0] 6.05000000E+00 4.4E-16

woods 41 71/0 5:78 3 0/0 [0] 0.00000000E+00 0.0E+00

yfit 51 70/0 0:02 1 0/0 [0] 6.66973750E-13 0.0E+00

yfitu 36 50/0 0:02 1 0/0 [0] 6.66972064E-13 0.0E+00

zecevic3 26 30/36 0:02 7 1/4 [11] 9.73094501E+01 1.1E-12

zecevic4 12 13/13 0:02 0 0/0 [0] 7.55750777E+00 3.2E-17

zigzag 27 28/28 0:03 5 0/0 [0] 3.16173499E+00 6.4E-09

zy2 11 12/12 0:02 5 0/0 [0] 2.00000005E+00 3.8E-10

Table B.2: Numerical results of Ipopt on CUTE test set
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Tron
Problem #iter #f/#c CPU [s] #reg

#call/#it [#cgit]
f(x�) kc(x�)k

bearing_200 16 17/0 79:88 0 0/0 [0] -1.54793459E-01 0.0E+00

bearing_400 16 17/0 979:31 0 0/0 [0] -1.54663515E-01 0.0E+00

camshape_10000 y633 51/65 1495 :00 0 4/10 [303076 ] -4.71483165E+00 7.5E-04

camshape_20000 67 89/95 346:70 0 3/3 [22132] -4.15661282E+00 1.7E-12

catmix_10000 14 15/15 16:01 0 0/0 [0] -4.80461940E-02 1.9E-11

catmix_20000 13 14/14 32:52 0 0/0 [0] -4.80372208E-02 1.2E-10

chain_20000 7 8/8 30:94 1 0/0 [0] 5.06848022E+00 5.5E-10

chain_40000 7 8/8 108:49 1 0/0 [0] 5.06848013E+00 7.4E-09

channel_5000 3 4/4 18:87 0 0/0 [0] 1.00000000E+00 2.7E-09

channel_10000 3 4/4 39:65 0 0/0 [0] 1.00000000E+00 2.7E-09

elec_200 147 229/229 1060:64 140 0/0 [0] 1.84390170E+04 1.7E-12

elec_400 115 120/120 7300:95 109 0/0 [0] 7.55830970E+04 8.4E-11

gasoil_2500 15 36/36 74:84 0 0/0 [0] 5.23659583E-03 2.4E-09

gasoil_5000 19 88/88 306:72 0 0/0 [0] 5.23659583E-03 1.1E-14

glider_2500 y13000 3479/5962 9372 :19 597 40/2443 [811328 ] -1.18203726E+02 2.2E-02

glider_5000 z0 0/0 0 :00 0 0/0 [0 ] �- �-

marine_1000 25 93/93 79:78 25 0/0 [0] 1.97465297E+07 2.9E-06

marine_2000 z0 0/0 0 :00 0 0/0 [0 ] �- �-

methanol_5000 17 24/24 523:28 1 0/0 [0] 9.02229235E-03 1.9E-12

methanol_10000 12 13/13 1995:36 3 0/0 [0] 9.02229235E-03 8.9E-11

minsurf_200_200 117 455/0 1150:95 0 0/0 [0] 2.48548796E+00 0.0E+00

minsurf_300_300 205 748/0 7779:50 0 0/0 [0] 2.48436567E+00 0.0E+00

pinene_2500 z0 0/0 0 :00 0 0/0 [0 ] �- �-

pinene_5000 66 188/194 898:80 3 3/3 [236] 1.98721669E+01 1.3E-13

polygon_200� 538 1437/1437 2838:46 528 0/0 [0] -6.74980929E-01 8.9E-15

polygon_400 z0 0/0 0 :00 0 0/0 [0 ] �- �-

robot_5000 z0 0/0 0 :00 0 0/0 [0 ] �- �-

robot_10000� 51 59/59 1290:81 1 0/0 [0] 9.14098006E+00 6.4E-10

rocket_10000 48 70/70 252:44 1 0/0 [0] -1.01280208E+00 5.6E-13

rocket_20000 49 61/61 803:63 1 0/0 [0] -1.01276715E+00 3.7E-12

steering_10000 24 31/31 329:52 0 0/0 [0] 5.54570880E-01 6.1E-12

steering_20000 25 32/32 1295:33 0 0/0 [0] 5.54570878E-01 7.1E-15

torsion_200_200 14 15/0 74:74 0 0/0 [0] -4.18436221E-01 0.0E+00

torsion_400_400 12 13/0 735:23 0 0/0 [0] -4.18337120E-01 0.0E+00

Table B.3: Numerical results of Ipopt on COPS test set
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Tron
Problem #iter #f/#c CPU [s] #reg

#call/#it [#cgit]
f(x�) kc(x�)k

cont5_1 17 18/18 1971:91 0 0/0 [0] 2.72155426E+00 1.2E-09

cont5_2_1 39 40/40 5165:02 1 0/0 [0] 6.57056636E-04 1.5E-11

cont5_2_2 47 48/48 6334:32 1 0/0 [0] 5.15824099E-04 8.0E-11

cont5_2_3 54 55/55 7180:00 1 0/0 [0] 5.15987516E-04 2.5E-11

cont5_2_4 13 14/14 1543:52 0 0/0 [0] 6.63714454E-02 3.8E-09

cont_p 21 22/22 80:57 1 0/0 [0] 2.31633886E+00 3.0E-10

ex1_80 13 14/14 15:43 0 0/0 [0] 6.10533233E-02 1.9E-12

ex1_160 10 11/11 248:09 0 0/0 [0] 6.38981163E-02 5.8E-10

ex2_80 17 18/18 14:64 0 0/0 [0] 5.53589470E-02 4.0E-13

ex2_160 15 16/16 290:42 0 0/0 [0] 5.81909441E-02 5.5E-14

ex3_80 15 16/16 14:04 0 0/0 [0] 1.10265620E-01 1.3E-12

ex3_160 14 15/15 270:86 0 0/0 [0] 1.10294268E-01 8.2E-12

ex4_80 14 15/15 13:37 0 0/0 [0] 7.78944721E-02 1.5E-12

ex4_160 11 12/12 212:80 0 0/0 [0] 7.83757517E-02 1.5E-09

ex4_2_80 y7590 4319/4475 5540 :36 0 51/105 [702214 ] 3.66772545E+00 3.9E-12

ex4_2_160 25 26/26 946:18 0 0/0 [0] 3.64611612E+00 2.4E-12

ex5_80 40 41/41 33:60 0 0/0 [0] 5.43472035E-02 1.3E-11

ex5_160 51 52/52 958:76 0 0/0 [0] 5.47653343E-02 3.7E-12

ex6_80 17 18/18 20:43 0 0/0 [0] -4.25501059E+00 2.5E-10

ex6_160 20 21/21 439:63 0 0/0 [0] -4.30667254E+00 1.1E-10

lukvle1 6 7/7 27:31 0 0/0 [0] 6.23245863E+00 8.4E-12

lukvle2 12 13/13 84:67 1 0/0 [0] 1.40923925E+06 5.6E-16

lukvle3 9 10/10 9:70 0 0/0 [0] 6.51214956E+01 8.9E-16

lukvle4 16 17/17 43:27 1 0/0 [0] 2.42907675E+05 3.8E-14

lukvle5 18 22/22 71:63 7 0/0 [0] 2.63928370E+00 4.4E-15

lukvle6 15 16/16 69:95 1 0/0 [0] 3.14422608E+06 4.4E-16

lukvle7 21 22/22 21:08 15 0/0 [0] -6.61396154E+04 3.2E-13

lukvle8� 19 20/20 46:86 1 0/0 [0] 4.13006909E+06 7.5E-10

lukvle9 y871 187/1225 222 :70 29 6/11 [1109 ] 1.08543084E+11 1.3E+00

lukvle10 10 11/11 23:71 2 0/0 [0] 1.76772385E+04 6.0E-10

lukvle11 8 9/9 13:82 0 0/0 [0] 4.41883326E-24 7.0E-12

lukvle12 6 7/7 11:22 0 0/0 [0] 7.72038783E+04 1.2E-09

lukvle13 22 23/23 35:42 9 0/0 [0] 4.01784151E+05 4.3E-14

lukvle14 26 27/27 28:59 0 0/0 [0] 3.80424848E+05 3.6E-15

lukvle15 40 52/52 73:77 30 0/0 [0] 6.18819459E-24 1.1E-11

lukvle16 17 27/27 30:71 9 0/0 [0] 6.42286851E-27 1.9E-14

lukvle17 8 9/9 11:67 0 0/0 [0] 7.14331493E+04 8.4E-12

lukvle18 10 11/11 16:79 2 0/0 [0] 5.99820079E+04 2.5E-09

lukvli1 y13000 3752/3752 8720 :08 8 0/0 [0 ] 4.72949856E+02 2.8E-03

lukvli2 30 31/31 166:32 6 0/0 [0] 1.32665589E+06 5.9E-11

lukvli3 13 14/14 12:88 0 0/0 [0] 1.15775416E+01 1.5E-12

lukvli4 22 24/24 61:40 0 0/0 [0] 2.01020546E+04 1.9E-13

lukvli5� 37 47/47 128:75 3 0/0 [0] 4.89055906E-01 9.1E-12

lukvli6 20 21/21 77:41 0 0/0 [0] 3.14422608E+06 4.4E-16

lukvli7 33 40/40 29:42 18 0/0 [0] -1.86338502E+04 3.6E-15

lukvli8 55 56/56 142:90 7 0/0 [0] 4.13048842E+06 4.5E-14

lukvli9 80 169/168 52:56 47 0/0 [0] 4.99466708E+03 1.8E-14

lukvli10 57 82/82 154:44 36 0/0 [0] 1.76795871E+04 4.2E-15

lukvli11 89 102/102 191:08 55 0/0 [0] 2.07964602E-05 3.4E-10

lukvli12 45 55/55 81:89 9 0/0 [0] 1.68010734E-09 8.1E-09

lukvli13 31 32/32 51:76 4 0/0 [0] 1.04302607E-05 3.7E-09

lukvli14 43 139/139 83:41 10 0/0 [0] 3.80424849E+05 2.5E-12

lukvli15� 86 87/87 182:77 48 0/0 [0] 4.69917742E-05 3.4E-09

lukvli16 26 27/27 36:05 0 0/0 [0] 4.69972613E-05 4.0E-09

lukvli17� 56 77/77 105:04 28 0/0 [0] 7.77008039E-01 9.3E-09

lukvli18 21 24/24 30:96 0 0/0 [0] 3.13339934E-05 8.2E-09

Table B.4: Numerical results of Ipopt on MITT test set
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Code Explanation

z
The CPU time limit of 10; 800 CPU seconds was exceeded.

y1
More than 3; 000 iterations were taken.

y2
The trial step size �k;l became smaller than 10�14.

y3
The size of the search direction kdkk is less than 10 � macheps times

kxkk (only checked in �lter option).

y4

The constraint violation is small (see (3.29)) and the switching con-

dition (3.30) is satis�ed, but r'�(xk)T dk is positive, probably due

to a poor solution to a very ill-conditioned linear system (3.3).

y5
The IEEE numbers NaN or Inf occurred in the KKT matrix (3.3).

y6

Tron converges to a point satisfying the convergence criterion for

the feasibility problem (3.36) and kc(xk)k is small, but the point is

not accepted by �lter method.

y7
The restoration phase with Tron is invoked at an (almost) feasible

point.

y8
Convergence problems within Tron (some trial step size in Tron

becomes zero).

y9
The regularization parameter Æ1 in (3.6) exceeded 1020.

Table B.5: Error codes for Ipopt



Appendix C

Results for Knitro

The tables in this appendix document the runs of Knitro on the test sets CUTE,

COPS, and MITT for the comparison in Section 5.1.3. For each problem, they list

the following numbers: number of iterations (#iter) and error code (as de�ned in

Table D.4), if failed; number of evaluations of objective function (#f) and Hessian

of the Lagrangian (#H; this corresponds to the number of successful iterations);

required CPU time in seconds; �nal value of the objective function (f(x�)) and

(unscaled) constraint violation (kc(x�)k). A problem name is marked with a star

(�), if Ipopt or Loqo successfully terminated at a point with a di�erent value of

the objective function (see Eq. (5.3)).

206
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Problem #iter #f/#H CPU [s] f(x�) kc(x�)k

airport 13 14/13 0:14 4.79527019E+04 2.4E-13

aljazzaf 146 147/129 0:01 7.50050002E+01 6.7E-13

allinit y13000 3001/1394 0 :35 1.14115009E+01 1.8E+00

allinitc y13000 3001/1394 0 :37 1.13135798E+01 1.7E+00

allinitu 7 8/6 0:01 5.74438491E+00 0.0E+00

alsotame 15 16/15 0:00 8.20850006E-02 1.1E-15

arwhead 6 7/6 0:49 0.00000000E+00 0.0E+00

avion2 13 14/13 0:01 9.46801293E+07 1.6E-06

bard 11 12/10 0:00 8.21487730E-03 0.0E+00

batch 308 309/172 0:25 2.59180350E+05 9.6E-09

bdexp 20 21/20 1:18 1.16133803E-06 0.0E+00

bdqrtic y245 46/16 0 :67 3.98381795E+03 0.0E+00

beale 8 9/8 0:01 2.56379794E-30 0.0E+00

bigbank 655 656/655 112:59 -4.20569614E+06 1.4E-11

biggs3 10 12/9 0:01 6.98691272E-30 0.0E+00

biggs5 52 77/28 0:01 2.14274239E-18 0.0E+00

biggs6 45 46/26 0:01 2.59629369E-16 0.0E+00

box2 7 8/7 0:00 6.04232135E-25 0.0E+00

box3 8 9/8 0:00 8.91962715E-21 0.0E+00

brainpc0 2008 2016/1023 1401:73 1.73900973E-03 7.9E-09

brainpc1 415 425/301 392:28 4.07353194E-04 3.4E-06

brainpc2 69 79/44 226:33 4.13958062E-04 2.1E-06

brainpc3 176 177/113 186:06 3.65881954E-04 3.6E-07

brainpc4 94 104/70 74:91 3.51823338E-04 3.0E-06

brainpc5 199 200/128 217:17 3.33646490E-04 1.7E-06

brainpc6 511 523/305 405:17 3.47144665E-04 4.4E-06

brainpc7 732 739/427 565:06 3.52375370E-04 4.2E-07

brainpc8 177 179/107 257:01 3.54358389E-04 1.0E-07

brainpc9 753 763/466 589:83 3.51480779E-04 4.0E-07

bratu1d y264 65/16 1 :64 -8.51892727E+00 0.0E+00

britgas 48 75/19 0:68 1.46509978E-06 1.5E-06

brkmcc 3 4/3 0:00 1.69042679E-01 0.0E+00

brownal 8 9/8 0:00 5.16009695E-26 0.0E+00

brownbs 1890 1891/1887 0:13 0.00000000E+00 0.0E+00

broydn7d y2205 206/87 2 :09 3.83895194E+02 0.0E+00

brybnd 11 12/11 2:57 4.93657750E-22 0.0E+00

bt1 6 7/6 0:00 -9.99999999E-01 1.3E-15

bt2 13 14/13 0:01 3.25682003E-02 1.7E-15

bt4 6 7/6 0:00 -4.55105507E+01 1.7E-08

bt5 6 7/6 0:00 9.61715172E+02 7.4E-11

bt6 10 12/9 0:01 2.77044788E-01 1.3E-11

bt7� 30 31/22 0:00 3.06499999E+02 2.1E-15

bt8 14 15/14 0:00 1.00000000E+00 3.7E-09

bt9 15 16/12 0:00 -1.00000000E+00 4.6E-14

bt11 7 8/7 0:01 8.24891778E-01 8.0E-12

bt12 6 8/6 0:00 6.18811881E+00 4.5E-13

bt13 53 54/43 0:01 2.04800033E-09 5.6E-09

byrdsphr 8 9/7 0:00 -4.68330013E+00 3.5E-09

camel6 y236 59/15 0 :00 -1.03162845E+00 3.3E-16

cantilvr 21 22/21 0:01 1.33995636E+00 8.8E-16

catena 68 70/45 0:02 -2.30777462E+04 3.3E-12

catenary y13000 3003/2959 11 :66 -7.27478712E+08 2.6E+07

cb2 24 25/24 0:01 1.95222451E+00 1.4E-14

cb3 17 18/17 0:00 2.00000003E+00 4.5E-15

chaconn1 23 24/23 0:01 1.95222451E+00 1.3E-14

chaconn2 17 18/17 0:00 2.00000003E+00 4.1E-15

chebyqad 473 717/230 206:30 5.38656016E-03 1.1E-16

chnrosnb 74 75/44 0:02 1.50605650E-19 0.0E+00

cliff y248 49/29 0 :00 1.99786613E-01 0.0E+00

clnlbeam� 15 16/15 1:24 3.54561508E+02 3.6E-08

clplatea 15 16/9 2:65 -1.25920948E-02 0.0E+00

clplateb 59 60/35 7:65 -6.98822201E+00 0.0E+00

clplatec 5 6/5 18:69 -5.02072422E-03 0.0E+00

Table C.1: Numerical results of Knitro on CUTE test set (continued on next page)
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Problem #iter #f/#H CPU [s] f(x�) kc(x�)k

concon 270 271/270 0:05 -6.23079556E+03 1.6E-10

congigmz 29 30/27 0:00 2.80000000E+01 4.1E-08

core1 473 474/473 0:68 9.10562118E+01 7.0E-05

corkscrw y13000 3001/3000 2313 :89 2.71576218E+01 1.2E+00

coshfun� 517 931/268 0:38 -7.98572820E-01 2.2E-09

cosine y253 54/16 3 :24 -9.99900000E+03 0.0E+00

cragglvy y253 54/18 2 :75 1.68821530E+03 0.0E+00

cresc100 z0 0/0 0 :00 �- �-

cresc132 z0 0/0 0 :00 �- �-

cresc4 y13000 3001/1744 0 :57 -3.50027981E-02 3.1E-02

cresc50 z0 0/0 0 :00 �- �-

csfi1 31 39/24 0:01 -4.90751998E+01 2.1E-07

csfi2 53 54/53 0:01 5.50176057E+01 9.7E-08

cube 39 40/26 0:01 4.70358314E-29 0.0E+00

curly10 y263 64/14 1103 :94 -1.00316290E+06 0.0E+00

curly20 y258 59/14 2080 :86 -1.00316290E+06 0.0E+00

curly30 y255 56/13 2605 :81 -1.00316290E+06 0.0E+00

dallasl 440 441/440 64:93 -2.02604132E+05 9.5E-11

dallasm z0 0/0 0 :00 �- �-

dallass z0 0/0 0 :00 �- �-

deconvc� 105 121/91 0:49 1.01153772E-08 2.4E-14

demymalo 30 33/26 0:00 -2.99999996E+00 3.4E-16

denschna 6 7/6 0:00 1.10283709E-23 0.0E+00

denschnb 6 7/6 0:00 4.43734259E-31 0.0E+00

denschnc 12 13/11 0:01 9.75515256E-27 0.0E+00

denschnd 46 47/36 0:01 1.38597369E-11 0.0E+00

denschne 14 15/11 0:00 9.02606828E-24 0.0E+00

denschnf 6 7/6 0:01 6.51324621E-22 0.0E+00

dipigri 15 18/13 0:00 6.80630057E+02 1.1E-13

disc2 33 38/25 0:02 1.56250002E+00 1.2E-07

discs y13000 3001/2872 11 :09 9.36339963E+00 8.0E-01

dittert 53 71/39 3:39 -1.99759674E+00 8.8E-10

dixchlng 9 10/9 0:00 2.47189781E+03 1.2E-11

dixchlnv 20 21/20 0:34 7.51226920E-20 8.8E-16

dixmaana 9 10/9 0:43 1.00000000E+00 0.0E+00

dixmaanb 9 10/9 0:72 1.00000000E+00 0.0E+00

dixmaanc 10 11/10 0:75 1.00000000E+00 0.0E+00

dixmaand 11 12/11 0:85 1.00000000E+00 0.0E+00

dixmaane 38 39/18 1:43 1.00000000E+00 0.0E+00

dixmaanf 35 36/17 1:97 1.00000000E+00 0.0E+00

dixmaang 35 36/22 2:18 1.00000000E+00 0.0E+00

dixmaanh 36 37/20 2:17 1.00000000E+00 0.0E+00

dixmaani 25 26/12 3:42 1.00000000E+00 0.0E+00

dixmaanj 73 74/34 9:11 1.00000000E+00 0.0E+00

dixmaank 66 67/28 10:98 1.00000000E+00 0.0E+00

dixmaanl 77 78/36 10:45 1.00000000E+00 0.0E+00

djtl y2147 148/41 0 :02 -8.95154472E+03 0.0E+00

dnieper 14 15/14 0:04 1.87440146E+04 6.5E-07

dqrtic 43 44/43 1:25 5.64156166E-09 0.0E+00

drcavty1 z0 0/0 0 :00 �- �-

drcavty2 z0 0/0 0 :00 �- �-

drcavty3 z0 0/0 0 :00 �- �-

dtoc1l 10 12/9 5:99 1.25338129E+02 2.2E-16

dtoc1na 8 9/8 2:85 1.27020299E+01 3.4E-15

dtoc1nb 7 8/7 2:64 1.59377776E+01 1.6E-15

dtoc1nc 11 13/8 3:17 2.49698127E+01 3.3E-11

dtoc1nd� 24 35/15 2:60 1.26444577E+01 1.9E-11

dtoc2 6 7/6 4:69 5.08676209E-01 5.7E-11

dtoc4 6 7/6 2:68 2.86853821E+00 6.7E-12

dtoc5 6 7/6 1:36 1.53510891E+00 3.3E-09

dtoc6 13 14/13 2:86 1.34850616E+05 5.4E-09

edensch 10 11/10 0:33 1.20032845E+04 0.0E+00

eg1 15 16/15 0:00 -1.42930675E+00 2.2E-16
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eg2 3 4/3 0:05 -9.98947393E+02 0.0E+00

eg3� 41 44/34 0:19 3.26224219E-01 3.4E-10

eigena 70 90/51 0:78 1.00386417E-07 8.8E-16

eigena2 2 3/2 0:03 2.18908901E-29 0.0E+00

eigenaco 3 4/3 0:04 0.00000000E+00 0.0E+00

eigenals 34 35/21 0:46 1.89923224E-17 0.0E+00

eigenb 113 114/67 1:31 1.02348755E-17 0.0E+00

eigenb2� 2 3/2 0:03 1.80000000E+01 0.0E+00

eigenbco� 2 3/2 0:03 9.00000000E+00 0.0E+00

eigenbls 121 122/69 2:13 7.47068015E-17 0.0E+00

eigenc2 14 18/11 3:39 5.25734152E-19 4.4E-16

eigencco 13 17/8 0:02 3.82039292E-17 5.4E-12

engval1 y256 57/16 1 :54 5.54866841E+03 0.0E+00

engval2 18 19/16 0:00 2.02540037E-28 0.0E+00

errinros� 93 94/58 0:02 3.99041539E+01 0.0E+00

expfit 12 13/8 0:00 2.40510593E-01 0.0E+00

expfita 36 38/35 0:02 1.13661997E-03 2.0E-14

expfitb 24 25/24 0:04 5.01940651E-03 8.4E-15

expfitc� 21 22/21 0:22 5.61320336E-02 3.3E-14

explin 61 65/58 0:21 -7.23756265E+05 7.9E-13

explin2 60 62/59 0:20 -7.24459142E+05 1.7E-15

expquad 23 24/23 0:03 -3.62459988E+06 1.7E-15

extrosnb y31 2/1 0 :00 0.00000000E+00 0.0E+00

fletcbv2 4 5/4 0:01 -5.14006786E-01 0.0E+00

fletcbv3 y13000 3001/3000 296 :01 -5.61355412E+11 0.0E+00

fletchbv y13000 3001/3000 297 :58 -2.97872845E+19 0.0E+00

fletchcr 100 101/57 0:03 3.44461749E-18 0.0E+00

fletcher� 61 106/46 0:01 1.95253669E+01 1.7E-15

flosp2hh y2448 450/448 157 :04 3.88730628E+01 0.0E+00

flosp2hl y13000 3001/3000 1901 :85 3.88705439E+01 0.0E+00

flosp2hm y22680 2688/2674 1049 :07 3.88712567E+01 0.0E+00

flosp2th y13000 3001/3000 1033 :30 1.00002724E+01 0.0E+00

flosp2tl y13000 3001/3000 1581 :59 1.00000000E+01 0.0E+00

flosp2tm y13000 3001/3000 1168 :79 1.00000006E+01 0.0E+00

fminsrf2 168 169/118 2:65 1.00000000E+00 0.0E+00

fminsurf 294 295/265 78:77 1.00000000E+00 0.0E+00

freuroth y252 53/14 2 :47 6.08159189E+05 0.0E+00

gausselm 690 706/666 4163:34 -1.63525883E+01 2.1E-07

genhumps 54 55/32 0:01 6.26529320E-18 0.0E+00

genrose y21112 1113/708 4 :52 1.00000000E+00 0.0E+00

gigomez1 31 32/27 0:01 -2.99999996E+00 0.0E+00

gilbert 34 35/30 0:56 4.82027299E+02 1.3E-13

gpp 19 20/19 17:24 1.44009271E+04 9.8E-09

growth 177 178/118 0:01 1.00404058E+00 0.0E+00

growthls 166 167/115 0:02 1.00404058E+00 0.0E+00

gulf 33 34/26 0:02 1.20555404E-25 0.0E+00

hadamals� 39 41/38 0:35 2.63083409E+01 6.6E-16

hadamard 3000 3001/164 73:35 NAN NAN

hager2 5 6/5 1:47 4.32082250E-01 1.8E-12

hager4 18 19/18 17:80 2.79403653E+00 9.5E-12

haifam 216 414/142 1:16 -4.50003600E+01 2.4E-06

haifas 63 89/35 0:01 -4.49999969E-01 1.8E-11

hairy y262 63/27 0 :00 2.00000000E+01 0.0E+00

haldmads� 41 53/30 0:02 1.22383283E-04 2.7E-14

hanging 42 43/39 0:52 -6.20176038E+02 3.1E-11

hart6 17 20/15 0:01 -3.32288689E+00 1.1E-16

hatflda 45 54/37 0:00 1.20847640E-14 0.0E+00

hatfldb 18 19/18 0:00 5.57281104E-03 1.1E-16

hatfldc 12 13/12 0:00 4.91920547E-17 1.7E-15

hatfldd 30 31/24 0:00 6.61511391E-08 0.0E+00

hatflde 39 40/30 0:01 4.43440235E-07 0.0E+00

heart6ls 1368 1369/944 0:15 6.42176864E-22 0.0E+00

heart8ls 1103 1104/774 0:20 6.52592151E-18 0.0E+00
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helix 17 18/13 0:00 1.53736012E-21 0.0E+00

himmelbb 13 14/8 0:00 7.66845976E-30 0.0E+00

himmelbf y247 48/15 0 :01 3.18571748E+02 0.0E+00

himmelbg 7 8/5 0:01 1.20187231E-18 0.0E+00

himmelbh y228 29/6 0 :00 -1.00000000E+00 0.0E+00

himmelbi 29 32/27 0:05 -1.75499999E+03 4.5E-13

himmelbj y2156 157/29 0 :05 0.00000000E+00 4.4E+01

himmelbk 32 35/30 0:04 5.18143791E-02 1.9E-10

himmelp1 y254 91/17 0 :01 -6.20538693E+01 3.5E-15

himmelp2 y247 78/17 0 :01 -6.20538693E+01 3.5E-15

himmelp3 12 13/12 0:00 -5.90131229E+01 2.8E-14

himmelp4 13 14/13 0:00 -5.90131229E+01 7.3E-14

himmelp5 32 35/32 0:01 -5.90131234E+01 8.5E-14

himmelp6� 20 21/20 0:01 -5.90131235E+01 1.3E-12

hong 14 15/14 0:01 1.34730680E+00 0.0E+00

hs001 42 51/34 0:00 1.68191627E-17 0.0E+00

hs002 19 20/19 0:00 4.94122932E+00 0.0E+00

hs004 11 12/11 0:00 2.66666668E+00 1.0E-18

hs005 21 27/16 0:01 -1.91322295E+00 0.0E+00

hs006 12 14/9 0:00 1.97215226E-31 3.5E-15

hs007 8 9/7 0:00 -1.73205080E+00 2.6E-14

hs009 6 7/6 0:00 -5.00000000E-01 0.0E+00

hs010 18 19/18 0:00 -9.99999989E-01 1.8E-15

hs011 13 14/13 0:00 -8.49846417E+00 5.6E-16

hs012 14 15/14 0:01 -2.99999999E+01 2.0E-15

hs013� 25 26/25 0:00 1.00333615E+00 1.6E-27

hs014 15 16/15 0:00 1.39346499E+00 1.9E-16

hs015� 14 15/12 0:00 3.60379773E+02 6.8E-15

hs016 16 17/16 0:01 2.31446614E+01 1.1E-16

hs017 28 29/28 0:00 1.00000000E+00 1.1E-12

hs018 24 27/23 0:01 5.00000001E+00 2.8E-14

hs019 36 37/33 0:01 -6.96181355E+03 1.6E-12

hs020 14 15/14 0:01 4.01987323E+01 2.7E-16

hs023 14 15/14 0:00 2.00000002E+00 1.4E-14

hs024 15 16/15 0:00 -9.99999979E-01 4.3E-17

hs025� 38 43/34 0:03 1.42406726E-14 7.7E-16

hs026 22 23/22 0:00 1.52788759E-15 2.2E-08

hs027 23 35/16 0:01 4.00000000E-02 0.0E+00

hs029 15 16/15 0:00 -2.26274169E+01 0.0E+00

hs030 241 242/143 0:03 9.99999990E-01 1.0E-08

hs031 13 14/13 0:01 6.00000005E+00 2.0E-15

hs032 16 17/16 0:01 1.00000002E+00 7.2E-13

hs033 20 21/17 0:00 -4.58578628E+00 4.4E-16

hs034 24 26/24 0:00 -8.34032414E-01 1.7E-13

hs036 11 12/11 0:00 -3.29999999E+03 6.2E-16

hs037 11 12/11 0:00 -3.45599999E+03 1.9E-16

hs038 65 86/45 0:01 1.54031258E-18 1.7E-15

hs039 15 16/12 0:00 -1.00000000E+00 4.6E-14

hs040 3 4/3 0:00 -2.50000000E-01 5.4E-10

hs041 20 21/20 0:01 1.92592592E+00 2.2E-16

hs042 11 12/11 0:01 1.38578643E+01 0.0E+00

hs043 13 14/13 0:00 -4.39999998E+01 2.2E-14

hs045 20 21/20 0:00 1.00000005E+00 4.4E-16

hs046 22 23/22 0:00 7.91792371E-15 2.2E-08

hs047 20 22/18 0:00 1.21948212E-13 2.4E-09

hs049 20 21/20 0:00 7.00266269E-12 0.0E+00

hs050 9 10/9 0:00 4.97968446E-30 0.0E+00

hs054 15 16/15 0:00 1.92857142E-01 5.5E-17

hs056 24 25/20 0:00 -3.45600000E+00 2.2E-16

hs057� 12 13/12 0:00 3.06476190E-02 3.5E-15

hs059� 25 29/24 0:01 -6.74950527E+00 7.1E-15

hs060 11 12/11 0:00 3.25682002E-02 1.7E-15

hs061� 6 7/6 0:01 -1.43646142E+02 2.6E-09
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hs062 8 9/8 0:00 -2.62725144E+04 1.1E-16

hs063 12 13/12 0:00 9.61715172E+02 2.8E-14

hs064 22 23/22 0:01 6.29984242E+03 2.8E-14

hs065 53 75/36 0:01 9.53528867E-01 3.0E-14

hs066 24 25/24 0:00 5.18163294E-01 8.3E-14

hs067 10 12/10 0:01 -1.16202697E+03 4.5E-13

hs070 25 29/22 0:02 9.40197325E-03 1.4E-14

hs071 14 15/14 0:01 1.70140173E+01 1.0E-12

hs072 20 21/20 0:00 7.27679357E+02 4.3E-18

hs073 14 15/14 0:01 2.98943789E+01 2.4E-12

hs074 16 17/16 0:01 5.12649810E+03 4.3E-08

hs075 100 101/100 0:01 5.17441272E+03 1.1E-12

hs077 10 12/9 0:01 2.41505128E-01 2.1E-11

hs078 4 5/4 0:00 -2.91970040E+00 6.1E-11

hs079 6 7/6 0:00 7.87768208E-02 1.2E-11

hs080 13 14/13 0:00 5.39498477E-02 3.3E-14

hs081 13 14/13 0:01 5.39498477E-02 3.3E-14

hs083 8 9/8 0:00 -3.06655385E+04 7.8E-13

hs084 8 9/8 0:01 -5.28033511E+06 1.7E-07

hs085 30 54/22 0:02 -1.90515524E+00 1.8E-09

hs086 16 17/16 0:00 -3.23486779E+01 1.1E-15

hs087 183 184/183 0:04 8.82759837E+03 5.1E-07

hs088 106 111/68 0:16 1.36265682E+00 3.6E-15

hs089 y13000 3002/2834 7 :13 1.54557189E+00 4.8E-05

hs090 y13000 3002/2950 10 :30 1.56762475E+00 3.4E-06

hs091 y13000 3002/2965 14 :73 1.50414824E+00 4.4E-05

hs092 y13000 3002/2592 17 :60 1.57705578E+00 2.0E-05

hs093 8 9/8 0:00 1.35075965E+02 1.4E-13

hs095 14 15/14 0:00 1.56210611E-02 6.9E-10

hs096 14 15/14 0:00 1.56210611E-02 6.9E-10

hs097� 20 21/19 0:01 3.13581680E+00 2.0E-09

hs098� 21 22/20 0:01 3.13581680E+00 1.9E-09

hs099 12 13/12 0:00 -8.31079891E+08 4.3E-11

hs100 15 18/13 0:01 6.80630057E+02 1.1E-13

hs100lnp 9 12/7 0:00 6.80630057E+02 4.7E-09

hs100mod 16 20/14 0:00 6.78754727E+02 3.2E-12

hs101 211 219/118 0:06 1.80976508E+03 1.0E-09

hs102 249 258/135 0:07 9.11880667E+02 1.8E-10

hs103 284 287/146 0:08 5.43668090E+02 1.6E-09

hs104 36 37/27 0:01 3.95116348E+00 4.4E-15

hs105� 15 16/15 0:65 1.15139630E+03 1.0E-14

hs106 76 95/68 0:02 7.04924801E+03 3.2E-10

hs107 166 167/161 0:05 5.05501181E+03 3.2E-11

hs108� 39 45/31 0:02 -6.74981430E-01 1.3E-14

hs109 154 155/131 0:04 5.32685139E+03 8.7E-08

hs110 13 14/13 0:01 -4.57784697E+01 1.1E-16

hs111 18 19/12 0:01 -4.77610911E+01 1.2E-08

hs111lnp 12 15/9 0:00 -4.77610911E+01 1.3E-08

hs112 10 11/10 0:01 -4.77610908E+01 2.2E-16

hs113 14 15/14 0:01 2.43062106E+01 4.5E-12

hs114 19 21/19 0:01 -1.76880696E+03 9.7E-08

hs116 70 71/70 0:04 9.75874950E+01 2.8E-06

hs117 68 81/56 0:02 3.23486820E+01 1.7E-15

hs119 36 37/36 0:03 2.44899703E+02 2.2E-15

hs99exp 17 18/17 0:01 -1.00806250E+09 6.7E-09

hubfit 26 28/25 0:00 1.68934959E-02 0.0E+00

humps 343 344/205 0:02 4.58020978E-22 0.0E+00

hvycrash y13000 3001/1499 11 :82 -4.41252558E-03 3.9E-04

hypcir 5 6/0 0:00 0.00000000E+00 1.6E-14

indef y13000 3001/3000 15 :04 -5.82899423E+10 0.0E+00

jensmp y232 33/12 0 :00 1.24362182E+02 0.0E+00

kissing 57 71/50 228:62 8.43331725E-01 8.4E-12

kiwcresc 22 24/19 0:01 2.04800033E-08 8.4E-16
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kowosb 14 15/9 0:01 3.07505603E-04 0.0E+00

lakes y2122 123/20 0 :09 7.34585760E+11 5.5E+02

launch y21193 1194/626 0 :86 4.22100149E-01 7.5E+02

lch 1660 2253/1045 12:16 -4.31828879E+00 4.4E-16

liarwhd 14 15/14 2:15 4.84230273E-22 0.0E+00

lminsurf y13000 3017/2984 1100 :50 1.80346838E+01 0.0E+00

loadbal 27 28/27 0:02 4.52851059E-01 1.7E-13

loghairy 1994 1995/1231 0:12 1.82321556E-01 0.0E+00

logros 67 89/46 0:01 2.22044604E-16 0.0E+00

lootsma 20 21/17 0:01 1.41421371E+00 4.4E-16

lsnnodoc 12 13/12 0:01 1.23112544E+02 2.2E-16

madsen 22 27/20 0:00 6.16432439E-01 2.1E-15

madsschj 46 53/36 3:40 -7.97283702E+02 2.7E-13

makela1 23 24/19 0:01 -1.41421355E+00 1.1E-16

makela2 16 17/16 0:00 7.20000002E+00 1.4E-15

makela3 21 22/20 0:01 4.09600067E-08 6.5E-18

mancino y217 18/14 1 :98 7.62261070E-22 0.0E+00

manne 80 91/74 4:04 -9.74567847E-01 3.5E-07

maratos 3 4/3 0:00 -1.00000000E+00 1.5E-08

matrix2 34 37/29 0:00 2.42736463E-08 8.7E-18

maxlika� 15 16/15 0:63 1.15139630E+03 1.9E-14

mccormck y13000 4508/2959 4886 :03 -4.56616135E+04 2.2E-17

mdhole 34 42/27 0:00 2.04800033E-09 7.6E-19

methanb8 734 735/734 1:31 1.59790569E-12 0.0E+00

methanl8 827 828/815 1:47 9.35712775E-12 0.0E+00

mexhat 4 5/4 0:00 -4.00999999E-02 0.0E+00

meyer3 y3555 556/384 0 :06 8.79458551E+01 0.0E+00

mifflin1 14 15/14 0:00 -9.99999995E-01 4.0E-17

mifflin2 29 33/25 0:01 -9.99999979E-01 2.0E-14

minc44 43 46/40 3:12 2.57302913E-03 3.1E-11

minmaxbd 84 85/81 0:02 1.15706440E+02 1.8E-13

minmaxrb 34 35/26 0:01 3.96511806E-08 5.5E-09

minperm 130 147/73 439:55 3.62879999E-04 1.4E-10

minsurf 6 7/6 0:01 1.00000000E+00 0.0E+00

mistake 32 36/26 0:01 -9.99999959E-01 6.8E-10

morebv 1 2/1 31:96 9.91978649E-12 0.0E+00

msqrtals 55 56/26 559:78 6.47575225E-18 0.0E+00

msqrtbls 49 50/25 293:81 3.56275386E-17 0.0E+00

mwright 7 8/7 0:00 2.49788095E+01 8.8E-16

ngone� 53 70/53 3:78 -6.37636664E-01 3.5E-11

noncvxu2 469 470/384 4:78 2.31798346E+03 0.0E+00

noncvxun y261 62/19 0 :23 2.31680841E+03 0.0E+00

nondia 7 8/7 0:98 4.53733530E-20 0.0E+00

nondquar 1670 1671/839 329:68 2.83124015E-08 0.0E+00

nonmsqrt y2221 222/138 0 :02 7.51825511E-01 0.0E+00

nonscomp 733 959/508 679:30 3.55253097E-06 1.4E-14

odfits 14 15/14 0:01 -2.38002677E+03 0.0E+00

oet2 108 177/79 31:38 8.71596399E-02 5.2E-16

oet7� 2728 3677/2166 145:96 2.06974434E-03 9.4E-10

optcdeg2 40 41/39 1:79 2.29573436E+02 2.1E-07

optcdeg3 35 36/35 1:76 4.61456762E+01 5.1E-08

optcntrl 41 42/41 0:02 5.49999951E+02 1.7E-07

optctrl3 35 36/22 0:04 2.04801654E+03 1.2E-15

optctrl6 35 36/22 0:04 2.04801654E+03 1.2E-15

optmass 23 24/23 0:01 -1.89542387E-01 2.1E-10

optprloc 83 95/60 0:06 -1.64197735E+01 6.7E-13

orthrdm2 6 7/6 1:12 1.55532815E+02 7.0E-10

orthrds2 y257 65/26 0 :16 3.05400434E+01 4.8E-13

orthrega� 7 8/7 0:16 1.66480113E+03 1.0E-06

orthregb 3 4/3 0:01 4.05749338E-17 1.1E-07

orthregc 21 27/12 7:97 1.89594597E+02 3.5E-09

orthregd y268 69/37 19 :62 2.28221561E+03 1.1E-12

orthrege� 95 169/51 0:04 1.23940973E+00 1.4E-08

Table C.1: Numerical results of Knitro on CUTE test set (continued on next page)
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Problem #iter #f/#H CPU [s] f(x�) kc(x�)k

orthrgdm 9 10/8 4:38 1.51380232E+03 1.5E-09

orthrgds y268 69/35 19 :28 2.86015358E+03 2.2E-13

osbornea 72 73/47 0:01 5.46489469E-05 0.0E+00

osborneb� 22 23/14 0:03 4.01377362E-02 0.0E+00

oslbqp 17 18/17 0:01 6.25000007E+00 8.8E-16

palmer1 y13000 3949/2052 0 :55 1.17546025E+04 1.1E-16

palmer1a y2146 216/79 0 :03 8.98836290E-02 0.0E+00

palmer1b 55 81/30 0:01 3.44735461E+00 0.0E+00

palmer1e 110 111/73 0:02 8.35268268E-04 0.0E+00

palmer2 y2186 303/71 0 :02 3.65108950E+03 0.0E+00

palmer2a 197 260/135 0:02 1.71607394E-02 0.0E+00

palmer2b 36 44/29 0:01 6.23394652E-01 5.5E-17

palmer2e 305 306/163 0:04 2.15352481E-04 0.0E+00

palmer3 y2142 234/53 0 :02 2.26595821E+03 0.0E+00

palmer3a 110 144/77 0:02 2.04314229E-02 0.0E+00

palmer3b y276 126/30 0 :01 4.22764725E+00 0.0E+00

palmer3e 299 300/165 0:05 5.07408418E-05 0.0E+00

palmer4 y2126 223/31 0 :02 2.28538322E+03 0.0E+00

palmer4a 130 174/87 0:02 4.06061393E-02 0.0E+00

palmer4b y258 91/27 0 :01 6.83513859E+00 0.0E+00

palmer4e 98 99/55 0:02 1.48004219E-04 0.0E+00

palmer5a y13000 3866/2135 0 :47 5.45306561E-02 6.6E-16

palmer5b y21574 2120/1030 0 :27 9.75249263E-03 0.0E+00

palmer5e y13000 3656/2345 0 :46 2.32243176E-02 0.0E+00

palmer6a 225 314/138 0:03 5.59488389E-02 0.0E+00

palmer6e 90 132/49 0:02 2.23955034E-04 0.0E+00

palmer7a y13000 3817/2184 0 :40 1.03764705E+01 9.0E-13

palmer7e 1577 2062/1093 0:25 1.01538986E+01 0.0E+00

palmer8a 100 130/71 0:02 7.40096979E-02 2.7E-17

palmer8e 46 65/28 0:00 6.33930743E-03 0.0E+00

penalty1 49 50/46 8:83 9.68617543E-03 0.0E+00

penalty2 y247 48/20 0 :10 9.70960839E+04 0.0E+00

pentagon 39 50/29 0:00 1.36529870E-04 4.4E-16

pfit1ls� 631 632/427 0:05 1.94977489E-18 0.0E+00

pfit2ls z0 0/0 0 :00 �- �-

pfit3ls� 269 270/182 0:03 2.77371292E-16 0.0E+00

pfit4ls z0 0/0 0 :00 �- �-

polak1 17 18/17 0:00 2.71828184E+00 0.0E+00

polak2 30 31/21 0:01 5.45981505E+01 9.7E-11

polak3 77 86/50 0:03 5.93300337E+00 4.7E-11

polak4 1482 1629/1317 0:15 3.07200057E-08 2.2E-11

polak5 17 18/17 0:00 5.00000006E+01 1.5E-07

polak6 26 30/24 0:00 -4.39999998E+01 2.3E-13

power 10 11/10 0:52 4.35721690E-23 0.0E+00

probpenl 42 44/41 3:16 -4.23825956E+03 1.7E-15

prodpl0 22 23/22 0:02 6.09192385E+01 4.5E-13

prodpl1 22 23/22 0:02 5.30370171E+01 5.3E-14

pspdoc 24 29/20 0:00 2.41421356E+00 5.4E-17

qr3d 72 95/50 1:48 1.79675293E-15 1.1E-16

qr3dbd 53 65/42 0:68 1.69695510E-15 1.7E-15

qr3dls 74 96/53 1:74 1.82782455E-15 0.0E+00

qrtquad 42 53/32 0:04 -3.64808836E+06 9.1E-13

quartc 45 46/45 2:68 1.59648928E-08 0.0E+00

reading1 54 74/47 34:95 -1.60461950E-01 3.8E-08

reading3 49 50/26 0:28 -6.51524329E-09 9.0E-09

rk23 34 41/22 0:01 8.33333845E-02 2.1E-15

robot� 7 8/6 0:00 6.59329888E+00 4.4E-16

rosenbr 26 27/21 0:00 5.37138236E-21 0.0E+00

s365mod� 31 32/25 0:01 1.24238670E+02 1.5E-15

s368� 8 9/8 1:17 0.00000000E+00 5.5E-17

sawpath 12 14/11 39:99 1.81573788E+02 2.4E-08

scon1dls� 1965 3208/723 176:85 2.47938744E+02 1.1E-13

scosine y13000 3001/2812 1128 :20 2.64446347E+03 0.0E+00

Table C.1: Numerical results of Knitro on CUTE test set (continued on next page)
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Problem #iter #f/#H CPU [s] f(x�) kc(x�)k

scurly10 z0 0/0 0 :00 �- �-

scurly20 z0 0/0 0 :00 �- �-

scurly30 z0 0/0 0 :00 �- �-

sineali y13000 4050/1952 1 :49 -1.90096186E+03 0.0E+00

sineval 65 66/43 0:01 1.49827998E-19 0.0E+00

sinquad 319 320/208 46:66 3.78173688E-09 0.0E+00

sinrosnb y241 75/7 0 :82 -9.99010000E+04 8.8E-16

sisser 19 20/18 0:01 6.05207195E-13 0.0E+00

smbank y267 92/25 0 :12 -7.12929200E+06 5.8E-11

smmpsf 102 103/102 1:94 1.04710853E+06 4.8E-09

snake y13000 3001/2733 0 :28 -1.10982802E+09 2.8E+07

spanhyd 27 29/26 0:12 2.39738000E+02 3.7E-11

spiral 184 228/93 0:02 4.09600590E-09 0.0E+00

sreadin3 3 4/3 2:72 -3.07837695E-05 2.4E-09

srosenbr 27 28/23 2:06 1.48166963E-18 0.0E+00

ssebnln� 92 93/92 0:49 1.81906025E+07 7.0E-07

ssnlbeam� 11 12/11 0:01 3.37772472E+02 5.7E-13

stancmin y2155 156/43 0 :02 3.61591084E+15 4.0E+00

steenbrb� 189 192/187 1:91 9.08618550E+03 7.2E-12

steenbrc� 218 265/172 1:85 2.02986138E+04 1.8E-12

steenbrd� 188 192/185 2:24 9.14991947E+03 1.8E-12

steenbre 302 310/295 4:10 2.75741831E+04 5.8E-11

steenbrf 79 87/72 0:61 2.82679952E+02 4.2E-09

steenbrg� 322 325/320 4:81 2.74712821E+04 1.8E-12

svanberg 17 18/17 1578:72 8.36142279E+03 4.0E-07

swopf 19 20/19 0:04 6.78603374E-02 1.2E-08

synthes1 14 15/14 0:01 7.59284648E-01 2.3E-15

trainf� 2159 2160/2159 2695:49 3.05848842E+00 1.8E-06

trainh 828 839/818 2016:07 1.23122591E+01 3.2E-09

trimloss 52 57/52 0:25 9.06000110E+00 2.9E-13

try 18 19/18 0:00 2.62144111E-17 2.2E-16

twirism1 1242 1251/802 192:29 -1.00513312E+00 4.5E-08

twobars 16 17/16 0:01 1.50865242E+00 4.4E-16

ubh5 y13000 3001/2380 1645 :49 -1.13709069E+03 7.4E+01

vardim 26 27/26 0:02 3.73421817E-25 0.0E+00

watson 14 15/14 0:03 1.46704094E-11 0.0E+00

weeds� 3000 3002/5 0:40 NAN NAN

womflet� 21 24/18 0:01 1.53600274E-07 7.6E-14

woods 64 65/41 5:34 0.00000000E+00 0.0E+00

yfit 80 105/57 0:02 6.84611152E-13 0.0E+00

yfitu 75 76/55 0:01 6.66972055E-13 0.0E+00

zecevic3 40 42/32 0:01 9.73094503E+01 6.8E-15

zecevic4 17 18/17 0:01 7.55750782E+00 2.6E-15

zigzag 46 50/40 0:04 3.16173497E+00 2.4E-09

zy2 12 14/12 0:02 2.00000015E+00 8.3E-14

Table C.1: Numerical results of Knitro on CUTE test set
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Problem #iter #f/#H CPU [s] f(x�) kc(x�)k

bearing_200 z0 0/0 0 :00 �- �-

bearing_400 z0 0/0 0 :00 �- �-

camshape_10000 z0 0/0 0 :00 �- �-

camshape_20000 z0 0/0 0 :00 �- �-

catmix_10000 19 20/19 28:60 -4.80191388E-02 6.6E-08

catmix_20000 19 20/19 55:70 -4.79857325E-02 4.7E-08

chain_20000 8 9/8 53:17 5.06848022E+00 6.3E-08

chain_40000 9 15/8 142:47 5.06848041E+00 3.5E-07

channel_5000 54 55/0 74:24 1.00000000E+00 1.1E-07

channel_10000 132 133/0 360:23 1.00000000E+00 2.8E-10

elec_200 70 127/36 32:59 1.84390521E+04 2.2E-16

elec_400 84 144/41 155:68 7.55832250E+04 3.3E-16

gasoil_2500 396 598/216 3224:25 5.23659583E-03 4.0E-11

gasoil_5000 z0 0/0 0 :00 �- �-

glider_2500 y13000 4061/1905 6137 :43 -8.86411736E+02 1.5E-03

glider_5000 z0 0/0 0 :00 �- �-

marine_1000 110 111/110 277:29 1.97465298E+07 3.3E-04

marine_2000 126 127/126 1205:35 1.97465299E+07 1.0E-03

methanol_5000 58 80/37 4759:15 9.02229189E-03 2.6E-11

methanol_10000 z0 0/0 0 :00 �- �-

minsurf_200_200 y13000 3021/2980 5509 :93 1.70155430E+02 7.1E-15

minsurf_300_300 z0 0/0 0 :00 �- �-

pinene_2500 6 7/6 327:40 1.98668203E+01 7.7E-07

pinene_5000 6 7/6 1482:12 1.98528294E+01 1.6E-06

polygon_200� 81 125/61 503:18 -7.32206184E-01 1.1E-07

polygon_400 z0 0/0 0 :00 �- �-

robot_5000 16 17/16 241:62 9.16351253E+00 1.3E-06

robot_10000� 16 17/16 1140:79 9.41186007E+00 1.8E-06

rocket_10000 14 15/14 2136:08 -1.01265487E+00 1.3E-06

rocket_20000 z0 0/0 0 :00 �- �-

steering_10000 14 15/14 140:40 5.54528353E-01 1.5E-05

steering_20000 13 14/13 760:55 5.54552974E-01 3.0E-06

torsion_200_200 z0 0/0 0 :00 �- �-

torsion_400_400 z0 0/0 0 :00 �- �-

Table C.2: Numerical results of Knitro on COPS test set
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Problem #iter #f/#H CPU [s] f(x�) kc(x�)k

cont5_1 15 16/15 621:69 2.72155548E+00 6.6E-07

cont5_2_1 35 36/35 1546:03 6.55077316E-04 2.9E-09

cont5_2_2 50 55/50 2272:22 5.13450384E-04 2.8E-09

cont5_2_3 44 48/44 1921:60 5.15371385E-04 3.4E-07

cont5_2_4 y230 31/30 3819 :01 6.63737777E-02 7.9E-15

cont_p y233 34/33 231 :98 2.31634290E+00 3.8E-14

ex1_80 237 238/237 318:36 6.10514304E-02 4.3E-11

ex1_160 121 122/119 2307:02 6.38725410E-02 2.0E-11

ex2_80 239 240/239 314:11 5.53569602E-02 9.0E-12

ex2_160 123 124/121 2328:35 5.82116045E-02 8.2E-12

ex3_80 21 22/21 40:09 1.10274800E-01 2.1E-11

ex3_160 21 22/21 482:25 1.10299153E-01 1.0E-11

ex4_80 17 18/17 42:85 7.78904832E-02 2.3E-11

ex4_160 15 16/15 341:73 7.83387208E-02 1.8E-10

ex4_2_80 12 13/12 71:48 3.66448742E+00 3.9E-06

ex4_2_160 13 14/13 1002:72 3.64744904E+00 8.7E-09

ex5_80 22 23/22 78:45 5.43568976E-02 3.3E-11

ex5_160 26 27/26 681:93 5.47639658E-02 1.3E-11

ex6_80 30 31/30 63:46 -4.25501474E+00 1.3E-10

ex6_160 32 33/32 673:40 -4.30666733E+00 3.9E-10

lukvle1 12 13/11 37:58 6.23245863E+00 1.0E-10

lukvle2 50 53/25 227:15 1.40922828E+06 8.2E-14

lukvle3 13 14/13 12:18 6.51214956E+01 8.8E-16

lukvle4 15 16/15 38:22 2.42907675E+05 4.8E-10

lukvle5 50 86/26 97:00 2.63928370E+00 6.5E-11

lukvle6 18 21/17 54:21 3.14422608E+06 1.2E-09

lukvle7 23 30/15 208:55 -6.61396154E+04 2.9E-14

lukvle8� 9 10/9 20:77 1.11165281E+07 2.2E-12

lukvle9 y2253 276/109 102 :67 0.00000000E+00 5.5E+22

lukvle10 9 10/9 19:78 1.76772385E+04 4.0E-08

lukvle11 10 11/10 16:91 2.90485500E-18 1.1E-15

lukvle12 8 9/8 10:94 7.72038795E+04 1.6E-07

lukvle13 29 40/19 30:84 4.01784151E+05 2.8E-14

lukvle14 22 23/22 29:24 3.80424848E+05 3.5E-15

lukvle15 42 51/24 36:83 3.04096065E-17 6.3E-13

lukvle16 22 31/12 21:15 3.57420915E-21 8.8E-16

lukvle17 17 18/12 15:82 7.14331493E+04 2.7E-08

lukvle18 13 14/11 13:66 5.99820079E+04 2.5E-09

lukvli1 z0 0/0 0 :00 �- �-

lukvli2 18 19/18 330:11 1.32665589E+06 7.1E-08

lukvli3 17 18/17 17:47 1.15775418E+01 0.0E+00

lukvli4 62 66/57 341:84 2.01020610E+04 5.4E-12

lukvli5� 61 66/47 233:26 3.70046480E-01 8.8E-13

lukvli6 18 19/18 84:73 3.14422616E+06 1.1E-11

lukvli7 31 48/15 201:98 -1.86338502E+04 1.3E-14

lukvli8 z0 0/0 0 :00 �- �-

lukvli9 258 472/156 159:96 4.99466708E+03 1.1E-08

lukvli10 101 123/78 179:40 1.76772536E+04 0.0E+00

lukvli11 103 136/86 559:81 1.70074270E-05 2.7E-07

lukvli12 193 252/130 1097:57 1.10330055E-08 6.3E-14

lukvli13 162 164/123 350:26 8.61187282E-06 6.2E-08

lukvli14 23 24/23 105:02 3.80424857E+05 2.0E-15

lukvli15� 45 46/45 177:72 3.84624825E-05 2.3E-08

lukvli16 23 24/23 113:31 7.43557685E-05 0.0E+00

lukvli17� 80 96/65 763:10 6.60456844E+00 5.3E-15

lukvli18 22 23/22 62:95 5.61599407E-05 2.3E-16

Table C.3: Numerical results of Knitro on MITT test set
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Code Explanation

z
The CPU time limit of 10; 800 CPU seconds was exceeded.

y1
More than 3; 000 iterations were taken.

y2
Halting because trust region radius < 10 � macheps.

y3
The size of the search direction kdkk is less than macheps.

Table C.4: Error codes for Knitro



Appendix D

Results for Loqo

The tables in this appendix document the runs of Loqo on the test sets CUTE,

COPS, and MITT for the comparison in Section 5.1.3. For each problem, they list

the following numbers: number of iterations (#iter) and error code (as de�ned in

Table D.4), if failed; number of evaluations of objective function (#f) and constraints

(#c); required CPU time in seconds; �nal value of the objective function (f(x�)) and

scaled constraint violation (k~c(x�)k). A problem name is marked with a star (�), if

Ipopt or Knitro successfully terminated at a point with a di�erent value of the

objective function (see Eq. (5.3)).

218
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Problem #iter #f/#c CPU [s] f(x�) k~c(x�)k

airport 20 39/39 0:19 4.79527016E+04 3.7E-11

aljazzaf 44 116/116 0:00 7.50049999E+01 1.3E-11

allinit 111 1616/1616 0:02 1.67059684E+01 2.4E-18

allinitc 367 7295/7295 0:11 3.04965495E+01 1.4E-19

allinitu 10 19/19 0:01 5.74438491E+00 3.1E-16

alsotame 11 21/21 0:00 8.20850009E-02 3.7E-10

arwhead 14 29/29 1:75 2.67928434E-09 3.1E-14

avion2 82 165/165 0:06 9.46801296E+07 7.2E-15

bard 17 34/34 0:00 8.21487730E-03 8.9E-16

batch 77 155/155 0:04 2.59180350E+05 2.0E-10

bdexp 33 65/65 3:39 4.54950613E-10 5.1E-14

bdqrtic 13 25/25 0:60 3.98381795E+03 1.0E-14

beale 10 19/19 0:00 6.47095106E-17 2.8E-16

bigbank 36 71/71 1:37 -4.20569614E+06 1.5E-10

biggs3 14 27/27 0:00 1.44901252E-17 4.6E-12

biggs5 36 80/80 0:01 1.75006359E-17 5.6E-16

biggs6 45 118/118 0:01 1.64098432E-18 2.0E-15

box2 y13000 6008/6008 0 :93 nan nan

box3 11 21/21 0:00 2.61661740E-15 1.8E-15

brainpc0 y10 6012/6012 1388 :61 0.00000000E+00 0.0E+00

brainpc1 y41802 15359/15359 1068 :26 4.07106300E-04 8.2E-01

brainpc2 y41467 11943/11943 2232 :99 4.11429700E-04 1.7E-07

brainpc3 y2574 2708/2708 287 :08 3.65877200E-04 4.1E-07

brainpc4 y13000 32657/32657 1952 :88 6.86410700E-04 2.7E-05

brainpc5 342 2344/2344 191:75 3.62667977E-04 1.0E-07

brainpc6 y13000 29199/29199 1927 :99 3.47901600E-04 4.7E-04

brainpc7 226 1020/1020 122:77 3.71789858E-04 2.2E-13

brainpc8 588 4390/4390 341:29 4.03303234E-04 6.2E-13

brainpc9 y4532 2600/2600 337 :66 3.51483100E-04 1.6E-06

bratu1d y255 190/190 2 :72 -2.66546400+166 2.1E-12

britgas 15 29/29 0:29 2.31376540E-08 3.2E-09

brkmcc 9 17/17 0:00 1.69042679E-01 5.0E-16

brownal 12 23/23 0:00 1.90597985E-19 8.4E-16

brownbs 35 72/72 0:00 6.10199884E-25 2.8E-10

broydn7d� 51 105/105 1:74 3.57687536E+02 1.7E-14

brybnd 15 29/29 4:82 6.17677961E-24 3.9E-15

bt1 18 36/36 0:00 -1.00000000E+00 4.1E-11

bt2 18 35/35 0:00 3.25682009E-02 1.7E-09

bt4 11 21/21 0:00 -4.55105507E+01 2.2E-10

bt5 9 17/17 0:00 9.61715171E+02 5.6E-09

bt6 12 24/24 0:00 2.77044783E-01 1.6E-09

bt7� 19 37/37 0:00 3.60379767E+02 5.5E-10

bt8 328 3884/3884 0:05 1.00000000E+00 3.4E-11

bt9 15 29/29 0:00 -1.00000000E+00 1.6E-09

bt11 12 23/23 0:00 8.24891764E-01 3.2E-09

bt12 13 25/25 0:01 6.18811881E+00 9.4E-11

bt13 39 79/79 0:01 7.67710802E-34 3.5E-07

byrdsphr 12 23/23 0:00 -4.68330020E+00 1.3E-08

camel6 10 19/19 0:01 -1.03162845E+00 2.4E-11

cantilvr 16 31/31 0:01 1.33995635E+00 3.6E-09

catena 27 53/53 0:02 -2.30777462E+04 1.1E-09

catenary 39 77/77 0:23 -3.48403157E+05 3.9E-10

cb2 11 21/21 0:00 1.95222443E+00 1.7E-08

cb3 11 21/21 0:00 1.99999999E+00 1.9E-09

chaconn1 11 21/21 0:00 1.95222446E+00 7.1E-09

chaconn2 11 21/21 0:00 2.00000002E+00 2.9E-09

chebyqad 67 151/151 60:09 5.38631531E-03 7.0E-16

chnrosnb 50 109/109 0:02 4.05599097E-20 3.6E-15

cliff 33 65/65 0:00 1.99786613E-01 8.9E-16

clnlbeam� 104 207/207 3:93 3.44876218E+02 1.4E-10

clplatea 9 17/17 1:97 -1.25920948E-02 1.3E-14

clplateb 12 24/24 2:51 -6.98822201E+00 1.8E-14
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clplatec 9 17/17 1:95 -5.02072422E-03 1.3E-14

concon y4333 873/873 0 :06 -6.23079600E+03 2.2E-03

congigmz 33 65/65 0:00 2.80000008E+01 4.1E-08

core1 56 111/111 0:04 9.10562401E+01 5.4E-11

corkscrw 37 73/73 8:62 9.06878240E+01 9.0E-11

coshfun� 21 44/44 0:01 -7.73266589E-01 2.0E-07

cosine 13 25/25 2:91 -9.99900000E+03 4.4E-14

cragglvy 17 33/33 2:59 1.68821530E+03 1.8E-14

cresc100 239 1300/1300 1:66 5.67602709E-01 9.8E-11

cresc132 y13000 6008/6008 313 :02 6.07729500E-01 9.9E-03

cresc4 56 111/111 0:01 8.71897585E-01 1.3E-09

cresc50 y13000 6027/6027 4 :63 -5.25518200E-06 1.3E-01

csfi1 16 31/31 0:00 -4.90752002E+01 4.8E-10

csfi2 17 33/33 0:00 5.50176053E+01 4.4E-10

cube 34 75/75 0:01 7.32928436E-19 9.9E-16

curly10 18 35/35 8:19 -1.00316290E+06 3.5E-14

curly20 18 35/35 14:38 -1.00316290E+06 4.5E-14

curly30 18 35/35 21:31 -1.00316290E+06 4.0E-14

dallasl 58 115/115 1:21 -2.02604132E+05 4.9E-15

dallasm 66 180/180 0:25 -4.81981888E+04 2.7E-13

dallass 42 86/86 0:03 -3.23932257E+04 1.7E-14

deconvc� 32 63/63 0:11 2.56947712E-03 1.5E-11

demymalo 15 29/29 0:00 -2.99999999E+00 2.4E-09

denschna 9 17/17 0:00 9.08811806E-14 0.0E+00

denschnb 10 19/19 0:00 1.22133871E-17 1.7E-16

denschnc 16 31/31 0:00 1.91291888E-19 4.4E-16

denschnd 37 74/74 0:00 2.81743430E-10 7.1E-15

denschne 14 29/29 0:00 4.30711719E-14 3.2E-15

denschnf 12 23/23 0:00 6.02653181E-20 8.7E-16

dipigri 11 22/22 0:00 6.80630059E+02 9.7E-09

disc2 29 57/57 0:02 1.56249999E+00 3.5E-10

discs y41531 3780/3780 2 :28 4.96642500E+02 1.7E+02

dittert 179 357/357 9:89 -1.99759674E+00 5.7E-15

dixchlng 27 53/53 0:00 2.47189778E+03 2.1E-09

dixchlnv y2271 595/595 3 :95 2.24419500E-25 1.1E-18

dixmaana 12 23/23 0:85 1.00000000E+00 2.0E-14

dixmaanb 13 25/25 1:54 1.00000000E+00 3.1E-14

dixmaanc 14 27/27 1:67 1.00000000E+00 2.5E-14

dixmaand 15 29/29 1:78 1.00000000E+00 2.8E-14

dixmaane 18 35/35 1:35 1.00000000E+00 5.1E-14

dixmaanf 18 35/35 2:32 1.00000000E+00 4.0E-14

dixmaang 20 39/39 2:54 1.00000000E+00 3.2E-14

dixmaanh 22 48/48 2:90 1.00000000E+00 3.1E-14

dixmaani 18 35/35 1:34 1.00000000E+00 7.1E-14

dixmaanj 22 43/43 2:80 1.00000000E+00 4.7E-14

dixmaank 24 47/47 2:97 1.00000000E+00 4.4E-14

dixmaanl 24 47/47 2:99 1.00000000E+00 5.4E-14

djtl 21 86/86 0:01 -8.95154472E+03 8.9E-15

dnieper 28 55/55 0:04 1.87440143E+04 8.9E-09

dqrtic 64 127/127 3:48 1.65455828E-17 3.3E-11

drcavty1 z0 0/0 0 :00 �- �-

drcavty2 z0 0/0 0 :00 �- �-

drcavty3 318 1171/1171 10350:23 2.02792795E-04 2.0E-14

dtoc1l 11 21/21 5:97 1.25338129E+02 3.7E-09

dtoc1na 11 21/21 3:36 1.27020299E+01 8.3E-10

dtoc1nb 10 19/19 3:17 1.59377776E+01 5.1E-09

dtoc1nc 16 47/47 5:47 2.49698130E+01 2.7E-07

dtoc1nd� 23 60/60 3:65 1.26444578E+01 4.1E-09

dtoc2 15 29/29 3:13 5.08676205E-01 4.1E-10

dtoc4 18 35/35 6:13 2.86853820E+00 6.4E-11

dtoc5 17 33/33 3:36 1.53511152E+00 5.0E-11

dtoc6 23 45/45 5:31 1.34850615E+05 7.6E-10

edensch 11 21/21 0:59 1.20032845E+04 2.0E-14
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eg1 10 19/19 0:01 -1.42930674E+00 3.9E-09

eg2 8 15/15 0:13 -9.98947393E+02 0.0E+00

eg3� 26 51/51 0:07 7.37420944E-18 3.2E-09

eigena 24 47/47 0:32 2.29623646E-09 5.1E-14

eigena2 15 29/29 0:11 4.29150330E-20 5.7E-12

eigenaco 21 41/41 0:31 1.64819236E-21 2.2E-13

eigenals 34 67/67 1:04 5.44183632E-21 3.9E-15

eigenb 84 192/192 1:22 3.03076683E-20 2.5E-15

eigenb2� 52 106/106 0:63 5.59222616E-02 5.5E-10

eigenbco� 68 145/145 1:19 7.51668111E-21 1.9E-12

eigenbls 83 191/191 2:08 1.17583598E-19 2.6E-15

eigenc2 48 108/108 23:87 1.53871767E-18 7.3E-11

eigencco 18 40/40 0:01 1.86991123E-18 1.3E-10

engval1 15 50/50 1:86 5.54866841E+03 3.4E-15

engval2 22 45/45 0:00 2.28050304E-21 1.2E-15

errinros� 50 125/125 0:03 3.99041539E+01 1.5E-14

expfit 11 23/23 0:00 2.40510593E-01 3.1E-16

expfita 23 45/45 0:01 1.13661243E-03 2.4E-15

expfitb 33 65/65 0:03 5.01936574E-03 8.3E-14

expfitc� 45 89/89 0:27 2.33025731E-02 9.3E-13

explin 23 45/45 0:01 -7.23756265E+05 2.1E-08

explin2 24 47/47 0:01 -7.24459142E+05 3.1E-07

expquad 32 63/63 0:03 -3.62459988E+06 3.1E-09

extrosnb 9 17/17 0:00 6.86422864E-20 1.4E-15

fletcbv2 9 17/17 0:01 -5.14006786E-01 2.2E-15

fletcbv3 y13000 6001/6001 1113 :19 nan nan

fletchbv y13000 6001/6001 1160 :68 nan nan

fletchcr 51 102/102 0:05 1.14506820E-20 3.5E-15

fletcher� 14 27/27 0:00 1.95253663E+01 2.2E-09

flosp2hh y13000 6231/6231 1107 :95 nan nan

flosp2hl 10 19/19 0:50 3.88705439E+01 1.5E-08

flosp2hm 10 19/19 0:52 3.88712559E+01 1.5E-08

flosp2th 11 21/21 0:56 1.00000000E+01 7.0E-10

flosp2tl 10 19/19 0:49 1.00000000E+01 1.5E-08

flosp2tm 10 19/19 0:53 1.00000000E+01 1.5E-08

fminsrf2 y13000 10316/10316 153 :94 1.57998200E+07 4.1E-03

fminsurf 55 192/192 159:10 1.00000000E+00 4.5E-13

freuroth 14 28/28 2:36 6.08159189E+05 2.9E-15

gausselm y13000 6048/6048 456 :21 -1.47918300E+00 1.4E-03

genhumps 108 227/227 0:01 2.13037341E-12 2.8E-13

genrose y13000 6035/6035 59 :43 nan nan

gigomez1 17 33/33 0:00 -3.00000000E+00 5.9E-10

gilbert 35 69/69 153:81 4.82027297E+02 6.7E-08

gpp 19 37/37 3:79 1.44009275E+04 6.9E-09

growth 80 192/192 0:01 1.00404058E+00 3.2E-13

growthls 78 176/176 0:01 1.00404058E+00 5.7E-14

gulf 27 57/57 0:03 1.08838278E-16 1.3E-14

hadamals y4431 861/861 5 :38 1.83059300E+02 1.7E+00

hadamard 15 29/29 0:06 1.00000000E+00 2.0E-13

hager2 y13000 6320/6320 1538 :57 nan nan

hager4 y41546 3319/3319 504 :29 2.80065400E+00 2.8E+01

haifam y13000 35148/35148 35 :47 -4.50003600E+01 1.2E-05

haifas 12 23/23 0:00 -4.50000079E-01 1.7E-07

hairy 53 130/130 0:01 2.00000000E+01 2.5E-15

haldmads� 26 56/56 0:01 3.26427063E-02 5.3E-10

hanging 16 31/31 0:11 -6.20176031E+02 6.6E-08

hart6 12 23/23 0:00 -3.32288689E+00 1.8E-16

hatflda 8 15/15 0:00 1.62036095E-15 9.9E-09

hatfldb 11 21/21 0:00 5.57280966E-03 1.3E-16

hatfldc 9 17/17 0:00 2.56709634E-21 1.3E-11

hatfldd 25 50/50 0:00 6.61511391E-08 7.1E-16

hatflde 30 60/60 0:01 4.43440070E-07 3.3E-16

heart6ls y13000 6760/6760 2 :04 nan nan
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heart8ls 55 157/157 0:02 2.29787047E-19 5.2E-16

helix 14 27/27 0:00 3.97130470E-20 2.2E-16

himmelbb 13 29/29 0:00 1.72373395E-19 5.6E-16

himmelbf 23 47/47 0:00 3.18571748E+02 9.2E-13

himmelbg 8 16/16 0:00 1.80160247E-15 2.2E-16

himmelbh 10 19/19 0:00 -1.00000000E+00 2.2E-16

himmelbi 26 51/51 0:02 -1.75499999E+03 3.6E-14

himmelbj 575 5387/5387 0:71 -1.91034472E+03 5.3E-14

himmelbk 21 43/43 0:02 5.18143470E-02 5.3E-08

himmelp1 20 39/39 0:01 -6.20538693E+01 3.6E-13

himmelp2� 17 33/33 0:00 -6.20538693E+01 7.1E-12

himmelp3 18 35/35 0:00 -5.90131234E+01 4.9E-11

himmelp4 32 75/75 0:01 -5.90131234E+01 1.6E-11

himmelp5 55 155/155 0:01 -5.90131235E+01 7.7E-11

himmelp6� 33 97/97 0:01 -8.19803172E+00 5.8E-12

hong 20 39/39 0:00 1.34730661E+00 4.2E-14

hs001 32 64/64 0:00 6.14828293E-19 4.0E-16

hs002 22 43/43 0:00 4.94122931E+00 3.7E-14

hs004 10 19/19 0:00 2.66666672E+00 1.9E-09

hs005 10 19/19 0:00 -1.91322295E+00 4.1E-16

hs006 11 21/21 0:00 2.71727114E-20 6.1E-09

hs007 14 27/27 0:00 -1.73205081E+00 1.3E-09

hs009 10 19/19 0:00 -4.99999999E-01 4.9E-09

hs010 15 29/29 0:00 -1.00000000E+00 3.0E-09

hs011 13 25/25 0:00 -8.49846423E+00 1.2E-09

hs012 10 19/19 0:00 -2.99999976E+01 5.2E-08

hs013 y13000 35741/35741 0 :23 1.01960900E+00 9.3E-07

hs014 11 21/21 0:00 1.39346495E+00 4.5E-09

hs015� 34 68/68 0:00 3.06500000E+02 4.1E-09

hs016 17 33/33 0:00 2.31446609E+01 2.9E-10

hs017 33 65/65 0:00 1.00000001E+00 5.1E-11

hs018 16 31/31 0:00 5.00000001E+00 1.8E-09

hs019 27 54/54 0:01 -6.96181389E+03 2.1E-10

hs020 22 43/43 0:01 4.01987301E+01 2.0E-09

hs023 18 35/35 0:00 2.00000000E+00 1.3E-10

hs024 15 29/29 0:00 -9.99999998E-01 2.5E-16

hs025� 16 31/31 0:02 3.28350000E+01 7.4E-12

hs026 15 29/29 0:00 2.49476766E-10 9.5E-07

hs027 17 33/33 0:01 3.99999999E-02 4.2E-10

hs029 10 19/19 0:00 -2.26274169E+01 5.2E-09

hs030 10 19/19 0:00 1.00000000E+00 3.6E-11

hs031 9 17/17 0:00 5.99999999E+00 3.2E-10

hs032 23 46/46 0:00 1.00000002E+00 8.1E-13

hs033 11 21/21 0:00 -4.58578640E+00 1.5E-08

hs034 14 27/27 0:00 -8.34032404E-01 1.4E-09

hs036 16 35/35 0:00 -3.29999999E+03 6.7E-17

hs037 11 21/21 0:00 -3.45599998E+03 2.4E-16

hs038 44 99/99 0:00 3.32350040E-18 1.8E-15

hs039 15 29/29 0:00 -1.00000000E+00 1.6E-09

hs040 9 17/17 0:01 -2.50000004E-01 3.9E-09

hs041 16 31/31 0:01 1.92592592E+00 1.6E-10

hs042 9 17/17 0:01 1.38578643E+01 7.8E-09

hs043 11 21/21 0:01 -4.40000057E+01 2.1E-07

hs045 23 45/45 0:00 1.00000000E+00 7.3E-16

hs046 22 44/44 0:00 5.24551316E-15 3.0E-08

hs047 21 44/44 0:01 3.70273175E-11 1.6E-08

hs049 24 47/47 0:00 1.21310590E-11 5.5E-16

hs050 16 31/31 0:00 7.65690604E-15 1.1E-14

hs054 12 23/23 0:00 1.92857142E-01 1.3E-11

hs056 13 25/25 0:00 -3.45600000E+00 4.5E-10

hs057� 24 47/47 0:01 2.84596697E-02 8.4E-12

hs059� 22 47/47 0:01 -7.80278944E+00 5.8E-10

hs060 9 17/17 0:00 3.25682006E-02 1.1E-09
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hs061� 11 21/21 0:00 -1.43646142E+02 2.4E-08

hs062 13 25/25 0:00 -2.62725144E+04 1.0E-09

hs063 9 17/17 0:00 9.61715171E+02 1.0E-08

hs064 27 53/53 0:00 6.29984242E+03 1.4E-09

hs065 16 31/31 0:00 9.53528855E-01 2.4E-10

hs066 15 29/29 0:00 5.18163272E-01 1.0E-08

hs067 26 51/51 0:02 -1.16202698E+03 6.1E-13

hs070 23 47/47 0:02 9.40197325E-03 2.5E-09

hs071 13 25/25 0:00 1.70140172E+01 8.6E-10

hs072 26 51/51 0:01 7.27679349E+02 1.5E-15

hs073 19 39/39 0:00 2.98943781E+01 2.1E-10

hs074 16 31/31 0:00 5.12649809E+03 1.8E-09

hs075 18 35/35 0:00 5.17441268E+03 9.2E-10

hs077 13 25/25 0:00 2.41505128E-01 4.6E-11

hs078 9 17/17 0:00 -2.91970041E+00 6.4E-10

hs079 9 17/17 0:00 7.87768214E-02 9.0E-10

hs080 9 17/17 0:00 5.39498450E-02 2.3E-09

hs081 16 31/31 0:00 5.39498464E-02 1.2E-09

hs083 13 25/25 0:00 -3.06655394E+04 1.9E-08

hs084 21 64/64 0:00 -5.28033512E+06 2.1E-11

hs085 29 58/58 0:03 -1.90515525E+00 1.1E-12

hs086 14 27/27 0:00 -3.23486789E+01 7.2E-14

hs087 24 47/47 0:00 8.82759772E+03 6.9E-09

hs088 28 55/55 0:08 1.36265681E+00 3.5E-13

hs089 28 58/58 0:09 1.36265681E+00 2.8E-12

hs090 29 58/58 0:15 1.36265681E+00 1.3E-12

hs091 29 57/57 0:19 1.36265681E+00 2.0E-13

hs092 23 45/45 0:21 1.36265681E+00 3.1E-12

hs093 12 23/23 0:00 1.35075962E+02 3.8E-09

hs095 16 32/32 0:00 1.56195261E-02 2.4E-13

hs096 19 40/40 0:00 1.56195279E-02 1.0E-10

hs097� 18 36/36 0:00 4.07124635E+00 2.4E-10

hs098� 45 137/137 0:01 3.13580914E+00 6.5E-11

hs099 21 41/41 0:02 -8.31079891E+08 2.1E-09

hs100 11 22/22 0:01 6.80630059E+02 9.7E-09

hs100lnp 12 23/23 0:01 6.80630057E+02 2.2E-11

hs100mod 15 29/29 0:00 6.78754727E+02 2.8E-10

hs101 37 100/100 0:01 1.80976475E+03 2.1E-09

hs102 55 208/208 0:02 9.11880565E+02 1.0E-09

hs103 48 136/136 0:02 5.43667958E+02 5.3E-11

hs104 14 27/27 0:00 3.95116344E+00 9.6E-11

hs105� 22 43/43 0:92 1.13636098E+03 2.5E-15

hs106 24 47/47 0:00 7.04924804E+03 1.8E-09

hs107 47 93/93 0:01 5.05501179E+03 3.9E-10

hs108� 21 41/41 0:00 -8.66025433E-01 2.3E-08

hs109 33 91/91 0:01 5.32685133E+03 4.9E-10

hs110 9 17/17 0:01 -4.57784697E+01 5.8E-13

hs111 15 30/30 0:00 -4.77610911E+01 6.8E-09

hs111lnp 19 37/37 0:01 -4.77610909E+01 3.0E-09

hs112 17 35/35 0:01 -4.77610908E+01 1.7E-10

hs113 16 31/31 0:00 2.43062098E+01 1.6E-09

hs114 24 53/53 0:00 -1.76880696E+03 1.3E-08

hs116 31 63/63 0:00 9.75875095E+01 7.7E-13

hs117 19 37/37 0:00 3.23486789E+01 2.1E-10

hs119 29 57/57 0:01 2.44899697E+02 2.8E-15

hs99exp 556 1122/1122 0:27 -1.00806249E+09 4.5E-12

hubfit 12 23/23 0:01 1.68934998E-02 1.7E-11

humps 228 502/502 0:02 2.76489068E-12 3.2E-13

hvycrash y13000 25503/25503 32 :57 -1.70430000E-01 9.3E-05

hypcir 9 17/17 0:01 0.00000000E+00 2.7E-10

indef y4299 602/602 3 :40 -3.15744400E+15 8.1E+05

jensmp 14 27/27 0:00 1.24362182E+02 3.1E-16

kissing y13000 6001/6001 124 :65 9.18478500E-01 4.3E-02
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kiwcresc 14 27/27 0:00 -1.94430919E-09 6.6E-09

kowosb 11 22/22 0:00 3.07505603E-04 5.9E-16

lakes 280 559/559 0:28 3.50524793E+05 7.3E-14

launch y13000 23820/23820 4 :31 1.56743500E+01 2.6E-03

lch 26 51/51 15:17 -4.31828879E+00 3.5E-10

liarwhd 22 43/43 6:13 7.97139002E-23 1.8E-13

lminsurf y13000 15516/15516 4486 :86 9.99924600E+06 2.2E+01

loadbal 23 45/45 0:01 4.52851040E-01 1.3E-16

loghairy y13000 6001/6001 0 :38 nan nan

logros 294 740/740 0:02 0.00000000E+00 0.0E+00

lootsma 12 23/23 0:00 1.41421356E+00 7.2E-10

lsnnodoc 21 41/41 0:00 1.23112449E+02 3.2E-13

madsen 24 48/48 0:01 6.16432379E-01 9.2E-08

madsschj 24 47/47 0:49 -7.97283704E+02 2.1E-09

makela1 14 28/28 0:00 -1.41421356E+00 7.6E-09

makela2 12 23/23 0:00 7.19999993E+00 4.0E-09

makela3 18 35/35 0:00 1.64774205E-09 2.5E-08

mancino 19 37/37 2:80 2.48962260E-21 3.7E-13

manne y13000 6003/6003 50 :59 -9.74548300E-01 1.0E-06

maratos 8 15/15 0:00 -1.00000000E+00 9.2E-09

matrix2 26 51/51 0:00 9.34717613E-09 2.5E-09

maxlika� 21 41/41 0:89 1.13636098E+03 9.8E-16

mccormck 10 19/19 9:96 -4.56616135E+04 1.4E-14

mdhole y248 104/104 0 :00 1.84517800E-01 1.1E+09

methanb8 93 317/317 0:17 1.43326372E-20 3.3E-11

methanl8 160 604/604 0:34 3.78072374E-20 5.8E-11

mexhat 8 15/15 0:00 -4.01000000E-02 0.0E+00

meyer3 y3287 644/644 0 :05 8.79458600E+01 3.2E+05

mifflin1 9 17/17 0:00 -9.99999964E-01 4.0E-09

mifflin2 13 25/25 0:00 -1.00000001E+00 1.3E-08

minc44 y13000 6001/6001 786 :40 nan nan

minmaxbd 31 61/61 0:01 1.15706439E+02 4.4E-10

minmaxrb 13 25/25 0:01 1.45439470E-08 1.1E-07

minperm 23 45/45 51:23 3.62879997E-04 9.9E-12

minsurf 11 21/21 0:01 1.00000000E+00 2.2E-10

mistake 15 29/29 0:00 -1.00000001E+00 9.9E-09

morebv 8 15/15 1:35 9.29711973E-12 2.5E-09

msqrtals 33 81/81 449:22 2.69194843E-18 7.0E-15

msqrtbls 28 60/60 341:84 8.56377377E-21 6.6E-15

mwright 12 23/23 0:01 2.49788094E+01 1.0E-09

ngone y13000 17629/17629 163 :40 -6.36936500E-01 1.9E-16

noncvxu2 277 668/668 210:86 2.31741140E+03 5.2E-11

noncvxun 47 95/95 0:65 2.31680841E+03 3.3E-11

nondia 13 25/25 3:48 2.46347567E-22 0.0E+00

nondquar 24 47/47 5:01 7.17668965E-11 4.0E-14

nonmsqrt y13000 6106/6106 1 :36 nan nan

nonscomp 33 67/67 6:70 2.40942120E-09 1.3E-11

odfits 15 29/29 0:00 -2.38002677E+03 3.1E-09

oet2 179 357/357 2:41 8.71596338E-02 2.1E-16

oet7 y3460 1146/1146 18 :68 4.44559800E-05 3.2E+05

optcdeg2 72 143/143 1:18 2.29573418E+02 5.7E-09

optcdeg3 53 105/105 0:89 4.61456692E+01 2.6E-10

optcntrl 48 126/126 0:02 5.49999974E+02 5.5E-09

optctrl3 36 131/131 0:12 2.04801654E+03 9.8E-09

optctrl6 36 131/131 0:11 2.04801654E+03 9.8E-09

optmass 15 29/29 0:01 -1.89542498E-01 5.6E-08

optprloc 23 45/45 0:01 -1.64197737E+01 2.7E-11

orthrdm2 y13000 64787/64787 2598 :23 1.05387800E+04 6.4E-12

orthrds2 y13000 56509/56509 47 :09 1.16206200E+03 1.7E-13

orthrega� 61 149/149 1:50 1.41405588E+03 9.0E-12

orthregb 10 19/19 0:01 4.50318011E-20 1.1E-09

orthregc 16 36/36 20:97 1.89609222E+02 6.5E-09

orthregd y13000 64932/64932 6524 :44 4.24577900E+04 5.6E-12

Table D.1: Numerical results of Loqo on CUTE test set (continued on next page)
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Problem #iter #f/#c CPU [s] f(x�) k~c(x�)k

orthrege y13000 6111/6111 7 :58 nan nan

orthrgdm y13000 64478/64478 6374 :12 3.11824600E+04 3.7E-12

orthrgds y13000 64931/64931 6274 :11 2.59299700E+04 4.7E-12

osbornea y13000 6943/6943 3 :87 nan nan

osborneb� 28 58/58 0:03 8.75947240E-02 3.1E-15

oslbqp 27 53/53 0:00 6.25000003E+00 2.0E-11

palmer1 21 41/41 0:01 1.17546025E+04 1.7E-15

palmer1a 46 93/93 0:01 8.98836290E-02 6.5E-14

palmer1b 28 79/79 0:00 3.44735461E+00 1.4E-14

palmer1e 85 187/187 0:02 8.35268268E-04 3.4E-14

palmer2 12 24/24 0:00 3.65108950E+03 5.3E-15

palmer2a 85 192/192 0:01 1.71607394E-02 1.2E-14

palmer2b 26 52/52 0:00 6.23394652E-01 1.4E-14

palmer2e 78 170/170 0:01 2.15352481E-04 2.7E-15

palmer3 15 32/32 0:01 2.26595821E+03 3.6E-15

palmer3a 73 153/153 0:02 2.04314229E-02 4.8E-15

palmer3b 19 37/37 0:00 4.22764725E+00 2.2E-15

palmer3e 106 247/247 0:03 5.07408418E-05 1.6E-14

palmer4� 16 35/35 0:01 2.28538322E+03 5.6E-17

palmer4a 70 151/151 0:01 4.06061393E-02 2.1E-14

palmer4b 18 35/35 0:01 6.83513859E+00 2.9E-15

palmer4e 43 87/87 0:01 1.48004219E-04 1.4E-14

palmer5a y440 79/79 0 :00 6.64342200E+02 2.4E+00

palmer5b y427 53/53 0 :00 2.34272800E+04 6.8E+02

palmer5e y4294 653/653 0 :05 2.69984600E-02 6.3E+05

palmer6a 139 293/293 0:02 5.59488389E-02 3.6E-12

palmer6e 60 128/128 0:01 2.23955033E-04 1.1E-14

palmer7a y13000 6112/6112 1 :41 nan nan

palmer7e 289 1080/1080 0:07 1.01538986E+01 1.7E-08

palmer8a 74 147/147 0:01 7.40096979E-02 5.5E-12

palmer8e 27 53/53 0:00 6.33930743E-03 7.7E-15

penalty1 56 113/113 179:59 9.68617543E-03 3.7E-11

penalty2 22 43/43 0:13 9.70960839E+04 2.7E-15

pentagon 28 55/55 0:01 1.36521683E-04 1.6E-13

pfit1ls� 196 408/408 0:02 2.19912367E-20 6.0E-16

pfit2ls� 73 150/150 0:02 1.97310021E-20 6.4E-16

pfit3ls� 109 243/243 0:02 1.52436769E-20 5.1E-16

pfit4ls� 208 477/477 0:02 1.44548780E-20 9.2E-16

polak1 14 27/27 0:01 2.71828188E+00 1.7E-09

polak2 24 47/47 0:00 5.45981490E+01 1.7E-08

polak3 22 43/43 0:01 5.93300349E+00 1.3E-07

polak4 13 25/25 0:00 2.28583287E-13 2.0E-15

polak5 37 103/103 0:00 5.00000000E+01 3.3E-08

polak6 27 53/53 0:00 -4.40000002E+01 5.8E-09

power 13 25/25 0:13 7.25022095E-20 8.8E-15

probpenl y13000 6006/6006 3024 :81 -9.56770800E+24 5.4E+00

prodpl0 23 46/46 0:01 6.09192365E+01 1.2E-13

prodpl1 20 40/40 0:01 5.30370157E+01 4.4E-12

pspdoc 12 23/23 0:00 2.41421357E+00 1.5E-10

qr3d 47 118/118 1:36 6.08118330E-20 5.3E-15

qr3dbd 31 67/67 0:47 1.14107098E-19 5.0E-15

qr3dls 48 118/118 1:62 3.58297110E-19 5.8E-15

qrtquad 21 41/41 0:03 -3.64753029E+06 1.7E-08

quartc 69 137/137 8:86 2.40605658E-18 9.3E-11

reading1 y2392 797/797 151 :24 -1.60447700E-01 1.2E-07

reading3 49 100/100 0:31 -6.74327290E-14 6.9E-11

rk23 13 25/25 0:01 8.33333344E-02 3.0E-10

robot� 21 41/41 0:01 6.59329888E+00 2.6E-11

rosenbr 26 52/52 0:00 4.62370031E-20 8.0E-16

s365mod� 22 46/46 0:00 5.21399044E+01 1.0E-08

s368� 10 19/19 1:96 0.00000000E+00 0.0E+00

sawpath 122 491/491 2:33 1.81572992E+02 4.1E-10

scon1dls� 287 1365/1365 11:73 5.97380915E-21 2.1E-12

Table D.1: Numerical results of Loqo on CUTE test set (continued on next page)
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Problem #iter #f/#c CPU [s] f(x�) k~c(x�)k

scosine 80 159/159 19:19 -9.99899999E+03 1.9E-14

scurly10 103 236/236 58:26 -1.00316290E+06 2.3E-14

scurly20 94 219/219 86:14 -1.00316290E+06 2.1E-14

scurly30 88 198/198 117:05 -1.00316290E+06 2.2E-14

sineali y13000 6097/6097 1 :99 nan nan

sineval 47 103/103 0:00 4.98691229E-18 8.9E-16

sinquad 53 129/129 25:90 4.45192520E-12 2.2E-14

sinrosnb 6 11/11 0:20 -9.99010000E+04 8.2E-11

sisser 16 31/31 0:00 8.70623343E-10 2.2E-16

smbank 27 53/53 0:03 -7.12929200E+06 4.7E-10

smmpsf y2285 3166/3166 2 :88 1.04698500E+06 3.4E-13

snake 2033 23398/23398 0:22 -2.62457999E-08 1.7E-09

spanhyd 104 585/585 0:37 2.39738000E+02 3.4E-16

spiral y4205 420/420 0 :01 1.24602400E+02 4.4E+09

sreadin3 25 51/51 8:86 -7.30798006E-05 2.6E-12

srosenbr 27 53/53 4:33 1.77349539E-21 4.7E-14

ssebnln� 602 1203/1203 0:93 1.61706000E+07 1.4E-13

ssnlbeam� 63 125/125 0:04 3.37772470E+02 4.2E-10

stancmin 17 33/33 0:00 4.25000008E+00 3.6E-17

steenbrb y4167 364/364 24 :58 9.92219300E+03 9.9E-01

steenbrc y13000 33485/33485 23 :29 -7.72809100E+08 8.7E-01

steenbrd y2394 863/863 30 :32 9.03008200E+03 1.5E-17

steenbre y2445 969/969 61 :64 2.75679300E+04 9.6E-16

steenbrf y13000 33072/33072 21 :58 -4.95250200E+05 8.4E-01

steenbrg y2576 1550/1550 53 :52 2.74209300E+04 2.8E-16

svanberg 20 39/39 7:59 8.36142280E+03 1.5E-08

swopf 19 38/38 0:03 6.78601826E-02 1.3E-08

synthes1 17 33/33 0:00 7.59284395E-01 9.1E-12

trainf� 77 153/153 35:91 3.10338433E+00 2.2E-11

trainh y4854 4170/4170 774 :94 1.29593600E+01 2.7E+05

trimloss 50 110/110 0:06 9.06000001E+00 3.3E-07

try 18 35/35 0:00 3.64260966E-22 9.0E-11

twirism1 y22666 11906/11906 217 :64 -1.00636300E+00 1.6E-16

twobars 10 19/19 0:00 1.50865241E+00 1.6E-09

ubh5 y13000 6001/6001 5807 :64 nan nan

vardim 37 77/77 0:13 3.77693010E-21 2.0E-15

watson 18 35/35 0:05 9.15855152E-13 1.3E-15

weeds� 34 74/74 0:01 2.58727739E+00 1.0E-14

womflet� 11 21/21 0:00 6.04999993E+00 1.9E-08

woods 48 106/106 9:62 4.47371053E-22 1.5E-13

yfit 41 84/84 0:01 6.66972074E-13 2.2E-16

yfitu 42 86/86 0:01 6.66972049E-13 8.9E-15

zecevic3 13 25/25 0:00 9.73094501E+01 2.4E-10

zecevic4 15 29/29 0:00 7.55750784E+00 1.2E-09

zigzag 30 59/59 0:02 3.16173497E+00 1.1E-09

zy2 13 26/26 0:00 2.00000000E+00 1.3E-10

Table D.1: Numerical results of Loqo on CUTE test set
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Problem #iter #f/#c CPU [s] f(x�) k~c(x�)k

bearing_200 23 45/45 54:87 -1.54828675E-01 1.2E-15

bearing_400 24 47/47 508:12 -1.54818368E-01 2.2E-15

camshape_10000 y13000 6001/6001 1316 :86 -4.92666800E+00 2.8E-04

camshape_20000 y13000 6005/6005 2676 :32 -5.14288900E+00 1.2E-06

catmix_10000 26 51/51 29:17 -4.80556771E-02 7.2E-09

catmix_20000 27 53/53 58:00 -4.80556797E-02 3.7E-09

chain_20000 y59999 0/0 351 :57 0.00000000E+00 0.0E+00

chain_40000 y59999 0/0 60 :96 0.00000000E+00 0.0E+00

channel_5000 64 229/229 153:10 1.00000000E+00 3.7E-12

channel_10000 64 231/231 306:50 1.00000000E+00 4.7E-11

elec_200 z0 0/0 0 :00 �- �-

elec_400 z0 0/0 0 :00 �- �-

gasoil_2500 145 793/793 298:21 5.23659583E-03 2.4E-16

gasoil_5000 264 1499/1499 1187:84 5.23659583E-03 2.3E-16

glider_2500 y13000 26214/26214 5825 :77 -1.37220000E+02 7.7E-01

glider_5000 z0 0/0 0 :00 �- �-

marine_1000 93 191/191 298:68 1.97465297E+07 1.2E-10

marine_2000 y4511 1167/1167 2326 :11 1.97465300E+07 6.9E+04

methanol_5000 z0 0/0 0 :00 �- �-

methanol_10000 y4122 501/501 5441 :45 9.03481500E-03 1.5E+05

minsurf_200_200 z0 0/0 0 :00 �- �-

minsurf_300_300 z0 0/0 0 :00 �- �-

pinene_2500 20 39/39 199:60 1.98721669E+01 4.7E-13

pinene_5000 25 49/49 924:52 1.98721669E+01 4.4E-13

polygon_200 y13000 20503/20503 4826 :21 -7.59593700E-01 1.3E-06

polygon_400 z0 0/0 0 :00 �- �-

robot_5000 z0 0/0 0 :00 �- �-

robot_10000 z0 0/0 0 :00 �- �-

rocket_10000 52 135/135 178:07 -1.01283691E+00 5.9E-10

rocket_20000 56 143/143 565:03 -1.01283691E+00 3.0E-10

steering_10000 z0 0/0 0 :00 �- �-

steering_20000 z0 0/0 0 :00 �- �-

torsion_200_200 21 41/41 57:73 -4.18468661E-01 1.0E-14

torsion_400_400 22 43/43 493:90 -4.18488299E-01 2.0E-14

Table D.2: Numerical results of Loqo on COPS test set
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Problem #iter #f/#c CPU [s] f(x�) k~c(x�)k

cont5_1 z0 0/0 0 :00 �- �-

cont5_2_1 z0 0/0 0 :00 �- �-

cont5_2_2 z0 0/0 0 :00 �- �-

cont5_2_3 z0 0/0 0 :00 �- �-

cont5_2_4 y450 109/109 1350 :36 6.63747200E-02 4.2E+04

cont_p y4180 359/359 343 :93 2.31635300E+00 8.1E+03

ex1_80 31 61/61 19:07 6.10491161E-02 2.6E-12

ex1_160 35 69/69 164:86 6.38548278E-02 1.3E-12

ex2_80 35 69/69 20:18 5.53434247E-02 1.2E-12

ex2_160 43 85/85 195:99 5.81291703E-02 1.3E-13

ex3_80 34 67/67 21:02 1.10258843E-01 1.1E-12

ex3_160 40 79/79 189:30 1.10267560E-01 1.4E-12

ex4_80 31 61/61 21:38 7.78894879E-02 1.0E-11

ex4_160 24 47/47 122:94 7.83339986E-02 2.9E-11

ex4_2_80 y2431 2838/2838 842 :51 3.66771200E+00 9.5E-14

ex4_2_160 y2310 728/728 5868 :31 3.64606500E+00 2.5E-13

ex5_80 y13000 29439/29439 2772 :34 5.43315800E-02 5.3E-13

ex5_160 y4311 893/893 1610 :23 5.47023400E-02 1.6E-01

ex6_80 30 59/59 38:47 -4.25502418E+00 3.7E-11

ex6_160 33 65/65 457:87 -4.30672759E+00 5.3E-12

lukvle1 23 45/45 68:44 6.23245863E+00 2.8E-15

lukvle2 28 55/55 108:80 1.40923924E+06 1.3E-08

lukvle3 17 33/33 16:56 6.51214956E+01 1.7E-13

lukvle4 24 47/47 59:27 2.42907675E+05 8.9E-10

lukvle5 26 52/52 86:36 2.63928370E+00 4.6E-13

lukvle6 58 115/115 205:00 3.14422608E+06 1.6E-11

lukvle7 18 35/35 19:00 -6.61396154E+04 1.4E-07

lukvle8 z0 0/0 0 :00 �- �-

lukvle9 y4776 7334/7334 1459 :91 7.85801400E+10 1.5E+05

lukvle10 18 35/35 35:43 1.76772386E+04 8.6E-10

lukvle11 14 27/27 21:13 4.29515309E-21 1.2E-13

lukvle12 19 37/37 26:58 7.72038784E+04 3.3E-09

lukvle13 15 30/30 20:17 4.01792565E+05 7.3E-10

lukvle14 26 51/51 34:85 3.80424848E+05 2.5E-13

lukvle15 33 76/76 48:38 5.20548219E-23 5.9E-14

lukvle16 18 35/35 22:93 2.61088237E-22 6.9E-14

lukvle17 15 29/29 19:27 7.14331509E+04 1.9E-07

lukvle18 13 25/25 16:80 5.99820083E+04 5.1E-08

lukvli1 y4136 279/279 361 :89 4.94283900E+02 1.2E+06

lukvli2 26 51/51 98:59 1.32665589E+06 5.6E-09

lukvli3 15 29/29 14:68 1.15775416E+01 3.5E-13

lukvli4 36 71/71 81:61 2.01020546E+04 3.4E-09

lukvli5 y3116 248/248 327 :56 5.26762400E-01 2.7E+05

lukvli6 48 95/95 167:55 3.14422608E+06 3.3E-11

lukvli7 23 45/45 25:09 -1.86338502E+04 1.7E-07

lukvli8 z0 0/0 0 :00 �- �-

lukvli9 33 65/65 22:33 4.99466708E+03 5.4E-07

lukvli10 28 55/55 53:99 1.76772387E+04 6.1E-10

lukvli11 45 89/89 65:29 9.06047748E-13 3.2E-08

lukvli12 23 45/45 30:55 4.32556328E-09 6.7E-07

lukvli13 34 67/67 40:60 7.79697552E-09 2.2E-08

lukvli14 32 63/63 39:52 3.80424848E+05 5.0E-09

lukvli15� 52 103/103 62:30 5.87188731E+00 5.2E-12

lukvli16 45 89/89 52:42 4.02122909E-09 1.6E-07

lukvli17� 77 153/153 112:34 1.94252005E+00 8.6E-10

lukvli18 35 69/69 41:05 1.91432678E-08 1.1E-07

Table D.3: Numerical results of Loqo on MITT test set
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Code Explanation

z
The CPU time limit of 10; 800 CPU seconds was exceeded.

y1
More than 3; 000 iterations were taken.

y2
The dual problem is reported to be infeasible.

y3
The primal problem is reported to be infeasible.

y4
The primal or the dual problem is reported to be infeasible.

y5
More than 2 GB of memory was allocated.

Table D.4: Error codes for Loqo


