
LEAP into Ad-Hoc Networks
Jamie Lawrence

Media Lab Europe
Sugar House Lane, Bellevue,

Dublin 8, Ireland.
+353 1 474 2868

jamiel@mle.media.mit.edu

ABSTRACT
This paper provides an overview of the work currently underway
at Media Lab Europe to enable an existing, open-source, FIPA-
compliant agent platform with the ability to operate in an ad-hoc
environment. The motivations for using agents in ad-hoc
networks and the requirements this places on an agent platform
are discussed. A mechanism for discovering instances of an agent
platform using current service discovery techniques is presented
and we detail how an existing platform will be modified to
support this. Finally, modifications to the existing FIPA
standards are proposed to support ad-hoc environments.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Multi-agent systems

General Terms
Standardization, Design, Management

Keywords
Agent platforms, wireless, ad-hoc networks, resource-limited
devices, standards, FIPA.

1. INTRODUCTION
Mobile ad-hoc networks (MANETs) are to data communication
what the walkie-talkie is to telephony; they allow peer-to-peer
communication without the use of an established third-party
infrastructure in an asynchronous but relatively unreliable
manner. These networks have two interesting properties: their
spontaneity creates transient local connections between individual
nodes and the use of multi-hop routing allows a short-range radio
to span large distances. To date, the majority of research in
MANETs has been in the area of routing protocols designed to
cope with high-levels of node mobility, route changes and a
constantly changing network membership[15]. This use of multi-
hop routing allows existing software to operate in new ways but it
doesn’t create fundamentally new applications. However, we
believe the dynamic connections formed between nodes will

enable novel applications to be developed.
There is a natural synergy between agents, entities that are
capable of complex, dynamic interactions, and mobile ad-hoc
networks, environments that inherently require such interactions.
In this paper, we describe our initial exploration into the coupling
of these two technologies.
As a first step towards exploring agent-enabled applications, an
agent platform is required which is capable of operating on
mobile devices without a fixed infrastructure. It is clear that a
completely new agent platform is not required to fulfil this role,
as there are a number of suitable, stable and functional open-
source platforms available. One of most advanced platforms is
the Lightweight Extensible Agent Platform, JADE-LEAP; a Java-
based, FIPA-compliant platform that allows deployment of agents
on devices as small as a mobile phone [1,3].
Four main modifications to the JADE-LEAP platform are
proposed in order to support an ad-hoc environment: leased
directory entries, a notification mechanism for directory changes,
the removal of the Directory Facilitator (DF) and Agent
Management System (AMS) as mandatory components, and the
addition of a Discovery Agent (DA) to handle platform discovery
and peer-to-peer agent discovery.
Sections 1.1 and 2 discuss our approach and motivations for this
project. Section 3 describes the basic mechanisms and steps for
performing discovery and Section 4 goes into further detail
regarding the modifications required to the JADE-LEAP platform.
Finally, Section 5 compares this work to current agent platforms
and FIPA standards.

1.1 Approach
Although other alternatives exist, JADE-LEAP was chosen for a
number of reasons. JADE-LEAP is an evolution of the popular
JADE agent platform [2] from which it has inherited a lightweight
behaviour scheduling mechanism, a container-based deployment
mechanism and a set of FIPA-compliant content languages,
transport protocols and directory services. The LEAP
development team have squeezed the core JADE features onto
mobile phones running Java 2 Micro Edition (J2ME) whilst
retaining compatibility with existing JADE agents. This ability to
deploy agents on small devices will become invaluable when
building applications such as sensor networks that require large
numbers of simple, inexpensive nodes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference ’00, Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

Other agent platforms were also considered but they were rejected
due to the dependency on more powerful Java VMs or weak
interoperability. Micro-FIPAOS is dependant on PersonalJava
which limits its deployment to relatively powerful PDAs such as
Compaq iPAQs[13]. The Java Agent Services (JAS) is a J2ME-

mailto:jamiel@mle.media.mit.edu

compliant API specification based on the FIPA Abstract
Architecture, however the reference implementation is targeted at
the standard version of Java[11]. As the JAS platform is only
concerned with the abstract notion of an agent platform, it has
considerably weaker interoperability in a heterogeneous
environment than platforms which implement the FIPA message
transport, agent management and communication specifications.
The focus of the modifications proposed to JADE-LEAP is on
providing the platform with the ability to recognise the
appearance of other available platforms. This is termed platform
discovery. Upon discovering another platform, a routine is
initiated to perform agent discovery. Platform discovery differs
from agent discovery since it’s performed using existing service
discovery technologies whereas agent discovery will use agent-
level interactions. This allows us to reuse both existing peer-to-
peer (P2P) and service discovery technologies for platform
discovery and current agent standards specified by the Foundation
for Intelligent Physical Agents (FIPA) for agent discovery.
Service Discovery is a higher-level concept referring to the
dynamic composition of atomic services to fulfil a larger-scale
application, but it is beyond the scope of this paper.
As shown in Figure 1, the platform discovery mechanism may be
tightly coupled with the transport medium (such as the Service
Discovery Protocol in Bluetooth) or a generic system such as
JXTA[16] or Jini[18]. Routing algorithms are expected to handle
the creation and maintenance of routes between platforms to
avoid the inefficient message routing done at the level of the
agent platform. Active routing protocols (such as OLSR[5],
ZRP[10]) or information gathered directly from the physical layer
may be used to aid the platform discovery process.
In contrast to existing agent platforms which are required to host
many agents, we assume that a constrained device will host only a
few application agents (typically just one) and therefore less
emphasis is placed on common services (such as directories).
However, the concept of a platform is still valid as it allows the
abstraction of common functionality from the agent code and
compatibility with larger environments.

UDP/IP

Bluetooth

802.11b

JADE-LEAP Platform

JXTA
Bluetooth

SDP

OLSR

Discovery

Dynamic
Routing

Network

Figure 1: The "Big" Picture. The modified JADE-LEAP
platform will utilise existing discovery and routing
technologies.

Therefore, the approach taken by this project is to integrate
existing P2P, service discovery and ad-hoc networking
technologies into the JADE-LEAP platform to provide a robust
infrastructure for deploying agents within an ad-hoc network.

2. MOTIVATIONS
We believe that the transient connections, which exist in an ad-
hoc network, will enable innovative applications in addition to
allowing us to study complex systems and emergent behaviour.
By allowing an application to become aware of other agents
passing by in the street, analogies can be drawn with the
interactions that occur between ants. In ant colonies, these
interactions are used to calculate colony density and current task
allocations without conveying significant meaning [9]. In a
colony of agents, each carried around the city by a user or
vehicle, we can envisage applications emerging from the
(possibly complex) communication between agents. These
applications include networks of autonomous sensors, capable of
analysing and processing data “in the field” and the sharing of
information between people: file sharing, news filtering and even
the construction and visualisation of networks of personal stories.
For this vision to be realised, the current limitations in both
existing platforms and standards discussed below must be
addressed. In particular, they both assume the stability of the
connections and the full connectedness of the whole network,
leaving them vulnerable to changes in topology.

Platform
internal
comms

Main ContainerLightweight
Container

external
FIPA
comms

Figure 2: The current JADE-LEAP architecture of multiple
containers forming a logical FIPA platform
As shown in Figure 2, the current implementation of JADE-
LEAP, like that of its JADE ancestor, has a static, distributed
platform structure consisting of one main container providing
FIPA interoperability to one or more (possibly lightweight)
containers. Each container may be hosted on separate JVMs that
are distributed across a network using internal JADE-LEAP
protocols for management and communication. From an external
perspective, these containers appear as a single FIPA-compliant
platform that allows for advanced features (such as agent mobility
and management tools) and optimisation within the platform yet
retains interoperability with other platforms.
JADE-LEAP contains no mechanism to actively discover other
containers or platforms (it must be specified in a configuration
file) or to start a lightweight container without the existence of a
main container. In a mobile ad-hoc network, platform discovery
and the lack of reliance on a fixed infrastructure are crucial
properties and for this reason a Discovery Agent (DA) is
introduced to handle platform discovery. Our modifications will
also remove the distributed container support, as it is important

for each ad-hoc node to represent a self-contained platform to
enable interoperability in, what is by definition, an open
environment.
FIPA has specified two mandatory components of an agent
platform: the directory facilitator (DF) and agent management
system (AMS) that act as yellow and white page directories,
respectively. These directories are necessary to support multiple
agents on a single platform and efficient agent discovery but they
also represent large, resource-consuming components (some 40
classes in total), not suitable for deployment on embedded
devices. It is clear then that both of these components must be
removed from small ad-hoc nodes. However, since directories
improve the scalability of the network, our modified platform will
host directory services if the device is capable (in terms of
memory, processor and network resources) and when the
surrounding environment makes it necessary to do so (i.e. there
exists a high density of small, unregistered nodes).
The current AMS and DF directories contain no mechanisms to
actively heal themselves if a client fails to deregister before being
disconnected from the network or moving out of range. This will
quickly lead to inconsistent directories in an environment of
frequent changes to the network topology. The Jini technology
has popularised a leasing approach whereby directory entries are
leased to individual services for a specified period. It is the
responsibility of the service to renew the lease before it expires;
when this occurs the entry is removed from the directory. A
similar mechanism allows our modified DF and AMS to “self-
heal” within the specified leasing period if an agent disappears
from the network (or indeed becomes too overloaded to maintain
the lease).
The typical request-response interaction requires the agents to
actively poll a directory to receive new directory entries. A more
efficient publish-subscribe method would allow agents to
subscribe to notifications when a new entry is added to the
directory.
In summary, the proposed modifications avoid the restrictions
imposed by the JADE-LEAP platform and current FIPA standards
by:

• adding a Discovery Agent (DA) to handle peer-to-peer
platform and agent discovery.

• removing the distributed container concepts currently
present in JADE-LEAP to allow an ad-hoc node to be a
fully contained platform.

• removing the DF and AMS as mandatory components
of a platform, but allowing their activation should a
device be capable and an environment require them.

• leasing directory entries within the DF and AMS

• providing a notification mechanism to allow the
propagation of directory changes

3. BASIC DISCOVERY EVENTS
The discovery process can be broken down into a number of
individual events, each described below and shown in Figure 3.
Within these descriptions, the term “fragment” is used to refer to a
self-contained instance of our modified JADE-LEAP platform
which is not hosting an AMS or DF. These fragments can form
“compounds” by registering their agents with a platform (i.e., a

FIPA-compliant entity with an AMS and DF). A compound is
simply an abstract concept used to group together the fragments
registered with a common platform and has no physical or virtual
representation. The terms defined above are inspired by the FIPA
Ad-hoc technical committee [6].

Key:

Fragment Registration

FederationPlatform (i.e., hosting
a Directory Service)

Compound

Communication

3.1

3.2
3.7

3.6

3.5

3.4

3.3

3.8
3.9

Figure 3: Basic Discovery Events

3.1 Direct Communication between
Fragments
When two fragments meet in isolation, a form of peer-to-peer
discovery must take place in order to allow communication
between them. As the two devices discover each other, the
discovery protocol notifies each discovery agent and they
exchange their platform descriptions and the descriptions of all
the agents each fragment is hosting. In addition, each fragment
internally notifies each hosted agent of the newly discovered
agents in the other fragment. The individual agents are
responsible for examining the agent descriptions of the newly
discovered agents and deciding if communication is possible,
desirable or necessary.
This scenario is limited in scalability and will only support a few
fragments.

3.2 Activation of Directory Services
One or more directory services (typically an AMS and DF) will
be activated within a fragment according to a pre-defined
strategy. On a constrained device (such as a mobile phone), this
strategy may be simply “never host a directory”. On a more
capable device (that perhaps forms part of a backbone), the
strategy would be “always host a directory”, mimicking the
current JADE-LEAP functionality. A wealth of strategies exists
between these two extremes.
A possible strategy would involve monitoring metrics such as the
number of discovery requests made and the number of local
fragments not registered in a directory. If either of these
measures crosses a specified threshold then a directory service is
created (with a suitable random back-off time to ensure every
fragment doesn’t come to the same conclusion).
Once an AMS or DF is created, the discovery agent on that
fragment will register the local agents with it (as explained more
fully below). In addition, from this point on only the directory
services will be advertised, and the individual agents must be
discovered by first searching the directory service.

The deactivation of directory services will follow a similar
pattern.

3.3 A Fragment Connects
When a fragment moves into range, it can detect another fragment
hosting a directory service and subsequently register its hosted
agents with this directory. Once the agents are registered with at
least one (local or remote) directory, the fragment will only
advertise that directory (not all of the hosted agents) unless
specifically asked to do so. This mechanism forms a compound
and allows smaller fragments to reduce their load during
discovery by referring all search requests to the fragment with a
directory service.
In cases where a fragment is discovered but its associated
directory cannot be contacted (see Figure 4), the basic P2P
discovery can take place between the two fragments (see section
3.1).

3.4 A Fragment Disconnects
When a fragment shuts down it may intentionally disconnect by
deregistering its hosted agents from all directory services.
However, more often a fragment is unexpectedly disconnected
due to user intervention or network disruption. In these
circumstances, the directory should self-heal as the leases on the
directory listings begin to expire. The fragment will also
recognise the disappearance of a directory through the same
method (i.e., it will attempt to renew the lease only to find the
directory not contactable). The fragment will continue to attempt
discovery of other nearby fragments and the hosted agents will
only be able to contact each other.

3.5 Registration of an Agent
Upon start-up, an agent registers its description with the local
discovery agent. The discovery agent registers these descriptions
with a directory service once one is discovered (covered in
section 3.3).

3.6 Multiple Registrations of an Agent
An agent may be registered with multiple directory services at
any one time, i.e., it may exist in more than one compound.

3.7 Federation of Directory Services
When a fragment hosting a directory service discovers another
directory service, the two may federate together based upon some
pre-defined strategy. This strategy may be simple: a timer to
ensure the link is stable enough and to prevent spurious and short-
lived federations.

3.8 Disconnected Fragments
A fragment may be completely disconnected from all other
fragments (see section 3.4).

3.9 Communication between Fragments
Communication between agents happens as usual, with one
caveat: due to the nature of wireless networks, it is possible for an
agent to be discovered on a remote fragment that it is not possible
to directly communicate with (see Figure 4). It seems intuitive
that a route should exist between the two agents by using the
directory to route the messages and in some cases the underlying
transport protocols will provide multi-hop routing to fulfil this.
However, it is worth noting that although a valid route might exist

it does not guarantee that a routing protocol will have discovered
it.

Key:
Registration

Communication

Platform

Fragment

Radio range

Figure 4: Wireless networks are not fully connected. An
agent discovered through a directory may not be contactable
due to the limitations of the wireless technology and the
routing protocols in use.

4. MODIFICATIONS TO THE JADE-LEAP
PLATFORM

Fragment A
(Discoverable Container)

MTS

AMS DFAgent

DA

Fragment B

DA

MTS

1
2

3
4

Discovery

Communication

Figure 5: Overview of the modifications to JADE-LEAP.
Grey indicates new discovery-related communications or
components. Dotted lines indicate an optional component.
As shown in Figure 5, several modifications must be made to
enable the JADE-LEAP platform within an ad-hoc environment.
We have endeavoured to maintain the current JADE-LEAP API
so that existing agents will only require modifications to handle
the new functionality. The modifications have the minimum
overlap with the existing platform to ensure future compatibility
(as both JADE, JADE-LEAP, and our modifications will evolve).
In particular, most modifications consist of sub-classing, relaxing
access modifiers (to allow sub-classing), creating new classes, and
in a few unavoidable cases, modifying the existing source code to
allow abstract instantiation of either the existing classes or our
modified versions.

4.1 Discoverable Container
JADE-LEAP provides two types of containers that are central to
the way the platform operates: the main container for FIPA-
compliant communication and the lightweight containers that
depend upon this main container. Both of these container types
represent a considerable body of code and have a number of
dependencies that need to be removed, but to do so would
seriously impact existing source code. Our solution is to create
our own container type which implements the appropriate JADE-
LEAP interfaces to allow it to replace the existing containers. In
particular, our “Discoverable Container” will not require either an
AMS or DF and will remove the support for intra-platform

communication, distribution, and support for various tools. Some
of these features will be reintroduced if needed at a later stage.

4.2 Discovery agent
The largest addition is the discovery agent (DA), which is
responsible for advertising and discovering the presence of
fragments, agents and directories in addition to controlling the
activation of the local directory services. The DA is implemented
as an agent with support for one or more discovery protocols and
is executed when a discoverable container starts up.
The minimum information advertised by a discovery protocol is
the agent identifier (AID) of the discovery agent. Further
information may then be requested directly from the DA using
standard agent communication. Reducing the amount of
information shared by the discovery protocol allows the use of
very simple protocols that cannot represent a whole agent
description (such as SSDP). The discovery agent will support the
following functions: register, deregister, subscribe, unsubscribe,
get-advertisement, get-all-agent-descriptions, and get-directories.

4.2.1 Internal Functions
1. register, deregister. This function allows an agent to register

or remove its description with the discovery agent.
2. subscribe, unsubscribe. This allows a local agent to

subscribe to the notifications that are broadcast when agents
are discovered or disappear.

3. get-directories. This function returns all directories, both
local and remote, where the discovery agent has registered
the hosted agents.

4.2.2 External Functions
4. get-advertisement. This function enables a remote discovery

agent to retrieve the advertisement for this fragment. If the
agents on this fragment are registered with a directory then a
reference to this directory is returned, otherwise the
descriptions of each agent is sent back to the remote DA. In
both cases, the platform description is also returned. This is
not a replacement AMS/DF service as there are no methods
for querying or searching – the descriptions for all currently
registered agents are returned in response to a discovery
request. Hence, this discovery mechanism is appropriate for
only a small number of agents per fragment.

5. get-all-agent-descriptions. This performs exactly the same
as the get-advertisement function when the agents are not
registered with a directory service. This is used to force P2P
discovery in the case where the initiator cannot access the
directory service where the agents are registered (see section
3.9).

In response to a notification from the service discovery
middleware, the local discovery agent will call the remote
fragment’s get-advertisement action. When one or more
directories are returned two possible actions may occur. If the
local agents are not registered with a directory, they will be
registered with the directories returned. If a local directory exists
then it will be federated with the returned directories (based on
some strategy as previously mentioned).

4.3 Directory Services (AMS, DF)
The removal of the AMS and DF as mandatory entities allows for
lower network, memory and processor costs, particularly in

embedded environments where each fragment only supports a
single agent. The costs of these services are related to the storage
of the directory entries and the time required to process search
requests. It is for these reasons that the discovery agent presented
above does not perform any searching and only allows local
registrations. On devices that are more capable the AMS and DF
can be activated and utilised not only by local agents but also by
those on nearby constrained devices.
In contrast with the existing DF/AMS all directory entries are
leased and must be renewed prior to expiration, in a similar
manner to Jini[18]. The additional functions subscribe and
unsubscribe are also required to allow the propagation of
directory changes to individual agents.

4.4 Agent
The core Agent class requires only a few modifications that
include default registration with the local discovery agent rather
than with the AMS and modifications to the DF and AMS
communicators to hide the possible absence of these directories.

5. COMPATIBILITY ISSUES
5.1 Target Environment
The eventual target environment for these modifications will be
smaller-than-phone embedded devices. Therefore, the platform
should be able to comfortably operate with a single agent in
(much) less than 512KB of RAM.

5.2 FIPA Compatibility
FIPA is aware of the potential benefits and problems with using
agents in ad-hoc networks and they have recently formed a
technical committee with the task of creating standards in this
area[6]. Although this project is taking a pragmatic approach, it is
intended that the results will be applicable to the standardisation
efforts of FIPA.
With regards to FIPA compatibility, it is debatable whether this
platform can comply with the current standards. On the surface,
the removal of the AMS and DF as mandatory platform
components fails to comply with both the FIPA Agent
Management[8] and Abstract Architecture specifications[7].
However, the DA can be viewed as an inefficient directory
service, which in response to a query performs no filtering and
returns all registered entries. Viewed in this way, each DA fulfils
the role of a directory and our fragments can therefore comply
with the abstract notion of an agent system but not with the
current Agent Management specification.
The removal of the AMS has significant side effects that have not
been mentioned previously; in addition to providing a white pages
directory, the AMS is responsible for platform and agent lifecycle
management. In our implementation, the discoverable container
will actually perform these functions since they are only
notionally under the control of the present AMS. A more
amenable modification to the design presented here would be to
leave the AMS as a mandatory component of a fragment and
integrate the DA functionality with that of the current AMS. We
have not taken this route because the AMS in JADE-LEAP
already has a large number of responsibilities other than those
specified by FIPA, including the support for add-on tools, intra-
platform notifications, debugging, “sniffing”, and transport
protocol management – most of which will not be required in our
platform.

5.3 Expected Benefits
The purpose of making the DF an optional component on small
devices is to conserve the limited memory and processing
resources available. The DF does not provide any discovery
functionality and therefore cannot replace the DA but, if present,
the DF would exist in addition to the DA.
Currently, a JADE-LEAP lightweight container will occupy about
100KB of memory but this relies on a main container to be
available elsewhere in the network to provide FIPA compatibility
(DF, AMS and transport protocols). It is possible for a modified
JADE-LEAP main container to run in roughly 700KB memory
using PersonalJava[17]. Although further optimisations may be
possible, sufficient free memory is also required to prevent
excessive garbage collection and to allow for memory
fluctuations due to temporary objects such as message buffers.
For example, the memory usage of the current DF will change
over time as it allows registrations by external agents and the
searching of these directories entries. In addition, any directory
service will need some form of self-healing mechanism (such as
the leasing discussed in Section 3.4) that further increases the
processing burden on the device. By contrast, the DA only allows
local agents to register and simply returns a pre-built
advertisement in response to get-advertisement requests.
Memory is not the only limited resource on mobile devices; in
some embedded Java products (such as the TINI[14]), the number
of threads is restricted and there is a high processing cost
associated with switching threads. In practice, as each agent
consumes a single thread this translates into minimising the
number of mandatory agents on the platform.
Obviously, minimising the resources that are consumed by the
platform increases the resources available to the agents and
provides greater flexibility to the application developer.

5.4 Related Work
Related work has been performed by Langley et al [12] on using
the Simple Service Discovery Protocol (SSDP) and the Gnutella
P2P network to discover agent platforms . Their RETSINA agent
platform utilised SSDP to broadcast discovery announcements
and requests within the local network. The Gnutella protocols
that were used extend the reach of these messages, thereby
enabling the discovery of services both locally and from across
the Internet.
Other agent platforms such as the Ronin Agent Framework [4]
use Jini as a basis for discovering agents but these are not suitable
for ad-hoc networks due to the high resource requirements of Jini
and centralised lookup servers.
In contrast, the solution presented here is specifically designed for
use on resource-constrained devices in an ad-hoc network. We
have emphatically avoided defining the routing protocols or
actual discovery protocols in use, but have described a
mechanism which abstracts the platform discovery from the actual
protocols used. This will allow greater flexibility for future
projects, experiments and demonstrations.

6. CONCLUSIONS
The design presented here will allow the deployment of agents in
an ad-hoc network. A number of modifications have been
proposed to an existing platform that will allow it to discover

other platforms, thereby allowing the agents to begin interacting
with each other without the existence of a fixed infrastructure.
These modifications are specifically targeted to embedded devices
and are independent of the discovery or routing protocols
employed. The work on applying these modifications and
analysing the performance gains has already begun.
Future work beyond these modifications will focus on developing
emergent applications in the areas of sensor networks and
information sharing. Further work is also required to ensure our
agents can handle the unreliable nature of an ad-hoc network, in
terms of both individual message loss and the premature
termination of whole conversations.

7. ACKNOWLEDGMENTS
This work would not be possible without the availability of the
JADE and JADE-LEAP agent platforms in open-source and the
commitment by their respective development teams to continually
improve and support them.

Thanks to the Dynamic Interactions group at Media Lab Europe
for supporting this work.

8. REFERENCES
 [1] Adorni, G., Bergenti, F., Poggi, A., and Rimassa, G.

Enabling FIPA agents on small devices. Cooperative
Information Agents, 2001 (Modena, Italy). 2001

 [2] Bellifemine, F., Poggi, A., Rimassa, G., and Turci, P. An
Object-Oriented Framework to Realize Agent Systems.
WOA, 2001 (Parma, Italy). 2001

 [3] Berger, M., Bauer, B., and Watzke, M. A Scalable Agent
Infrastructure. Workshop on Infrastructure for Agents,
MAS and Scalable MAS at Autonomous Agents'01
(Montreal). 2001

 [4] Chen, H. L. Developing a Dynamic Distributed Intelligent
Agent Framework Based on the Jini Architecture. Masters
thesis, University of Maryland Baltimore County.1999.

 [5] Clausen, T., Jacquet, P., Laouiti, A., Minet, P.,
Muhlethaler, P., Qayyum, A., and Viennot, L. Optimized
Link State Routing Protocol. http://www.ietf.org/internet-
drafts/draft-ietf-manet-olsr-06.txt.

 [6] Foundation for Intelligent Physical Agents. [f-out-00105]
FIPA TC Ad-hoc First Call For Technology.

 [7] Foundation for Intelligent Physical Agents. [FIPA00001]
FIPA Abstract Architecture Specification.

 [8] Foundation for Intelligent Physical Agents. [FIPA00023]
FIPA Agent Management Specification.

 [9] Gordon, D. Ants at Work - How an Insect Society is
Organised. Norton, London, 1999.

http://www.ietf.org/internet-drafts/draft-ietf-manet-olsr-06.txt
http://www.ietf.org/internet-drafts/draft-ietf-manet-olsr-06.txt

 [10] Haas, Z. J. and Pearlman, M. R. ZRP - A Hybrid
Framework for Routing in Ad Hoc Networks. Ad Hoc
Networking, Perkins, C., 2001, 221-253.

 [11] JSR-87 Expert Group. Java Agent Services.
http://www.java-agent.org.

 [12] Langley, B., Paolucci, M., and Sycara, K. Discovery
Infrastructure in Multi-Agent Systems. Workshop on
Infrastructure for Agents, MAS, and Scalable MAS at
Autonomous Agents'01 (Montreal). 2001

 [13] Laukkanen, M., Tarkoma, S., and Leinonen, J. FIPA-OS
Agent Platform for Small-footprint Devices. ATAL, 2001
(Seattle, USA). 2001

 [14] Loomis, D. The TINI Specification and Developer's
Guide. Addison-Wesley, 2001.

 [15] Perkins, C. Ad Hoc Networking. Addison Wesley, 2001.

 [16] Project JXTA. JXTA v1.0 Protocol Specification.
http://www.jxta.org.

 [17] Ratsimor, O., Chakraborty, D., Tolia, S., Khushraj, D.,
Gupta, G., Kunjithapatham, A., Joshi, A., and Finin, T.
Allia: Policy-based Alliance Formation for Agents in Ad
hoc Environments.
http://gentoo.cs.umbc.edu/~oratsi2/FIPA-Ad-Hoc/FIPA-
Paper/AlliaFipaAhHocUMBC.pdf.

 [18] Waldo, J., Arnold, K., and The Jini Team. The Jini
Specifications. Addison-Wesley, 2000.

http://www.java-agent.org/
http://www.jxta.org/
http://gentoo.cs.umbc.edu/~oratsi2/FIPA-Ad-Hoc/FIPA-Paper/AlliaFipaAhHocUMBC.pdf
http://gentoo.cs.umbc.edu/~oratsi2/FIPA-Ad-Hoc/FIPA-Paper/AlliaFipaAhHocUMBC.pdf

	INTRODUCTION
	Approach

	MOTIVATIONS
	BASIC DISCOVERY EVENTS
	Direct Communication between Fragments
	Activation of Directory Services
	A Fragment Connects
	A Fragment Disconnects
	Registration of an Agent
	Multiple Registrations of an Agent
	Federation of Directory Services
	Disconnected Fragments
	Communication between Fragments

	MODIFICATIONS TO THE JADE-LEAP PLATFORM
	Discoverable Container
	Discovery agent
	Internal Functions
	External Functions

	Directory Services (AMS, DF)
	Agent

	COMPATIBILITY ISSUES
	Target Environment
	FIPA Compatibility
	Expected Benefits
	Related Work

	CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

