
Automated Verification of Multi-Agent Programs
Rafael H. Bordini∗, Louise A. Dennis†, Berndt Farwer∗, Michael Fisher†

∗ Deptartment of Computer Science, Durham University, UK
Email: {R.Bordini,berndt.farwer}@durham.ac.uk

† Dept. of Computer Science, University of Liverpool, UK
Email: {l.a.dennis,mfisher}@liverpool.ac.uk

Abstract—In this paper, we show that the flexible model-
checking of multi-agent systems, implemented using agent-
oriented programming languages, is viable thus paving the
way for the construction of verifiably correct applications of
autonomous agents and multi-agent systems. Model checking
experiments were carried out on AJPF (Agent JPF), our ex-
tension of Java PathFinder that incorporates the Agent Infras-
tructure Layer, our unifying framework for agent programming
languages. In our approach, properties are specified in a temporal
language extended with (shallow) agent-related modalities. The
framework then allows the verification of programs written in
a variety of agent programming languages, thus removing the
need for individual languages to implement their own verification
framework. It even allows the verification of multi-agent systems
comprised of agents developed in a variety of different (agent)
programming languages. As an example, we also provide model
checking results for the verification of a multi-agent system
implementing a well-known task sharing protocol.

I. INTRODUCTION

We view an agent as an autonomous computational entity
making its own decisions about what activities to pursue.
Often, this involves having explicit representation of goals to
achieve and being able to communicate with other agents in
order to accomplish these goals [1]. Rational agents make
such decisions in a rational and explainable way and, since
agents are autonomous, understanding why an agent chooses
a particular course of action is vital. Therefore, when designing
or analysing such agents, it is vital to consider not just what
they do but why they do it.

The ability of agents to act independently, to react to
unexpected situations, and to co-operate with other agents,
has made them a popular choice for developing software in a
number of areas. At one extreme there are agents that are used
to search the INTERNET, navigating autonomously in order to
retrieve information; these are relatively lightweight agents,
with few goals but significant domain-specific knowledge. At
the other end of the spectrum, there are agents developed for
independent process control in unpredictable environments.
This second form of agent is often constructed using complex
software architectures, and they have been applied in areas
such as autonomous spacecraft control [2], health care [3],
and process control [4], [5]. Clearly, these are areas for which
we often demand both dependability and security.

As agent-based solutions are used in increasingly complex
and critical areas, there is greater need to analyse comprehen-

sively the behaviour of such systems. Not surprisingly, formal
verification techniques tailored specifically for agent-based
systems is an area that is now attracting a great deal of atten-
tion [6], [7]. While program verification is well advanced, for
example Java verification using Java PathFinder [8], [9], the
verification of agent-oriented programs poses new challenges
that have not yet been adequately addressed, particularly
in the context of practical model-checking tools. In agent
verification, we must verify not only what the agent does, but
why it chose that particular course of action, what it believed
that made it choose to act in a particular way, and what its
intentions were in doing so. This often leads to the need to
extend the temporal basis of verification with notions such as
agent belief and agent intention, both of which are typically
characterised as modal dimensions.

However, there are now very many agent programming
languages and agent platforms (often provided as extensions
of Java). Rather than providing an approach in which the
complex logical properties of systems using just one partic-
ular agent approach can be verified, we have developed a
flexible framework allowing the verification of a wide range
of agent-based programs, produced using various high-level
agent programming languages. As this is a complex endeavour,
we have built up its basis over a number of years. Thus,
the modelling and verification framework implemented here
is based on several earlier results:

• in [10], we provided an overview of the proposed systems
architecture;

• in [11], we provided the formal basis for the libraries
into which various agent programming languages can be
translated;

• in [12], we analysed the operational semantics of such
agent languages using a formal tool (Maude); and

• in [13], we showed that heterogeneous multi-agent pro-
grams (with agents implemented in different languages)
can be translated into in our framework.

In this paper, we show that the proposed framework not only
works in practice but provides a viable approach to devel-
oping verifiable multi-agent programs across several agent
programming languages. We here present, for the first time,
the results of using our framework to model check a multi-
agent system where agents use a well-known protocol for task

sharing among agents.
The structure of the paper is as follows. In Section II, we

discuss agent programming languages, and introduce some key
issues concerning the verification of agent-based systems. In
Section III, we provide an overview of our Agent Infrastructure
Layer (AIL) followed, in Section IV, by some details on
how we are incorporating existing BDI languages into our
framework. We motivate the key characteristics of our prop-
erty specification language and discuss our extension (AJPF)
of Java PathFinder (JPF) in Section V. In Section VI, we
present examples of the verification of multi-agent systems,
and finally, in Section VII, we provide concluding remarks.

II. BACKGROUND

A. BDI Programming Languages

The key reason why an agent-based approach is advan-
tageous in the modelling and programming of autonomous
systems is that it permits the clear and concise representation
not only of what the autonomous components within the
system do, but also why they do it. This allows us to abstract
away from the low-level control aspects and to concentrate on
the key feature of autonomy, namely the goals each component
has and the choices it makes. Thus, in modelling a system
in terms of agents, we often describe each agent’s beliefs
and goals (also called desires), which in turn determine the
agent’s intentions. Such agents then make decisions about
what actions to perform, given their current beliefs, goals,
and intentions. This kind of approach has been popularised
through the influential BDI (Belief-Desire-Intention) model of
agency [4] and, although this representation of behaviour using
mental notions is initially unusual, it has several benefits. The
first is that, ideally, it abstracts away from low-level issues: we
simply present some goal that we wish to be achieved, and we
expect the agent to act in what we would consider a reasonable,
or rational, way given such a goal. Secondly, because we are
used to understanding and predicting the behaviour of rational
(human) agents, the behaviour of autonomous software should
be relatively easy for humans to understand and predict too.
The modelling of complex systems in terms of rational agents
captured within the BDI approach has been very successful,
for example [14], [15].

While agent-based systems were originally programmed
using standard programming languages, such as Java, there
is now a recognition that such languages, on their own, are
not sufficient to concisely represent the key aspects of agents,
in particular the motivation the agent has for undertaking some
action. As a consequence, a range of agent programming
languages and platforms are being seriously developed, for
example 3APL, Jason, Jadex, and METATEM; see [14] for an
overview of some such languages. The nature of the area is
such that it is unlikely that one single agent language will be
used in all the areas of application for multi-agent systems.
As a result as well as providing a generic approach to the
verification of multi-agent systems written in a single agent
programming language, our approach is also an important step

towards code reusability crossing the borders of single (agent)
programming languages.

B. Verification via Model Checking

The growing complexity of software systems combined with
their increasing use in security, data protection, health, etc.
make formal verification of key aspects of such systems vital.
Following this trend, there is an increasing need for verifi-
cation of agent-based systems, especially where dependable
agent-based applications need to be developed.

Formal verification has traditionally been approached via
mathematical theorem proving, usually undertaken on a model
of the real system and requiring a high degree of mathematical
ability on the part of the user operating the proof tools.
However formal verification can also be achieved through
model checking [16], [17], [18] an area of research that has
produced impressive results in recent years. Model checking
is increasingly used in industry, since the process is fully
automatic once a formal model of the system is obtained and
a property has been specified.

More specifically, model checking is a technique whereby
a finite description of a system is analysed with respect to a
property in order to ascertain whether all possible executions
of the system satisfy this property. Different application areas
may require specialised property specification languages, but
temporal logics have proved to provide a sufficiently generic
basis. Temporal logic is a mathematically strict formalism
applicable in a variety of theoretical and practical aspects of
Computer Science and Artificial Intelligence, including its use
as a property specification language for aspects of hardware
and software verification [19], [20].

As mentioned above, in our work it is vital to verify not
only the behaviour that the agent system has, but to verify
why the agents are undertaking certain courses of action. Thus,
the temporal basis of model checking must be extended with
notions such as agent belief and agent intention, both of which
are characterised as intensional modal operators [21]. While
the temporal component captures the dynamic nature of agent
behaviour, the modal components capture the informational
(‘beliefs’), motivational (‘desires’) and deliberative (‘inten-
tions’) aspects of a rational agent. Such pioneering work on
model checking techniques for the verification of agent-based
systems has appeared, for example, in [22], [23], [24], [25]

III. AGENT INFRASTRUCTURE LAYER

Previous approaches to model checking agent-based systems
have mostly been specific to one particular programming
language (e.g., [24]), while in practice there is a wide variety
of relevant agent programming languages. Such approaches to
model checking agent programs have also relied on encoding
beliefs, goals, etc., within the state of the the model checker’s
transition system, e.g. the JPF [8] or Spin [17] state machine.
This is a complex task, and one that would need to be (at
least partly) redone to allow model checking of different
programming languages. Consequently, the need for a unifying
framework arises. Drawing from previous work on verifying

AgentSpeak

''OOOOOO 3APL

��

Jadex

xxqqqqqq
METATEM

ssgggggggggggggg
· · ·

AIL

&&

________ property

vv
em

%-RRRRRR
RRRRRR

Java code +3 AJPFKS
��

ks +3 Java listener

JPF ks +3 Java listener
��
KS

pairing

translation
//

implementation
//

input
+3 ks

interaction
+3

Fig. 1. Our Approach [10]

agent-based systems developed in AgentSpeak [22], [26], [24],
we have developed a framework for bringing a large part
of the verification-related aspects of that work together. The
Agent Infrastructure Layer (AIL) [11] encompasses the main
concepts from a wide range of agent programming languages.
Technically speaking, it is a toolkit collecting together Java
classes that:
(i) facilitates implementation of interpreters for various agent

programming languages;
(ii) contains adaptable, clear semantics; and

(iii) can be verified through AJPF, an extended version of the
open source Java model checker JPF [9].

AJPF is a customisation of JPF that was optimised for AIL-
based interpreters; see Section V. Figure 1 shows the overall
architecture of our new approach [10].

The AIL is further extended with the MCAPL interface1,
which is required for actual model checking. This interface
also allows programming languages that do not have their own
AIL-based interpreters to be model checked against specifi-
cations written in the same property specification language,
using AJPF. However these languages will not benefit from
the efficiency improvements that the optimised AIL classes
provide.

Within the AIL we assume that agents, written in any
agent programming language, all possess a reasoning cycle
consisting of a number (possibly only one) of stages (a rea-
soning cycle can often be broken down in various identifiable
stages that help formalisation and understanding). Each stage
is typically formalised as a disjunction of semantic rules which
define how an agent’s state may change during the execution
of that stage. The combined rules of the various stages of
the reasoning cycle define the operational semantics of that
language. The construction of an interpreter for a language
involves the implementation of these rules (which in some
cases may already exist in the toolkit) and the implementation
of a reasoning cycle, by organising the rules into (the stages
of) such a cycle. In this way, we have implemented, for ex-
ample, both GOAL [27] and SAAPL (Simple Abstract Agent
Programming Language) [28] interpreters [13], following their
respective operational semantics. The implementations of these

1MCAPL stands for “Model Checking Agent Programming Languages”.

interpreters make use of the AIL operations together with some
additional classes specifically added to faithfully reproduce the
semantics of those languages.

Initially, we developed the AIL by implementing an opera-
tional semantics introduced in [11]. This turned out to be too
inflexible to accommodate the reasoning cycle of some agent
languages. Instead, we now identify key operations that many
(BDI-)languages use and treat these operations as part of the
AIL toolkit. The rules in [11] (together with some obvious
alternatives) then become a part of this toolkit. For any given
language, it may be sufficient to use only a selection of these
rules (when developing its own AIL-based interpreter), or it
may be necessary to add custom rules built from the basic
operations. These operations and rules have formal semantics
and are implemented as Java classes or methods.

An agent originally programmed in some agent program-
ming language ‘APL’ and running in an AIL-based interpreter
uses the AIL data structures to store its internal state com-
prising, for instance, a belief base, a plan library, a current
intention, and a set of intentions, as well as other temporary
state information. The interpreter defines the reasoning cycle
for ‘APL’ which interacts with the model checker, essentially
notifying it when a new state is reached that is potentially
relevant for verification. This functionality is obtained simply
through the use of AIL for the development of the inter-
preter; AIL also makes it easier to develop an interpreter
for a programming language than doing it “from scratch” in
Java. Figure 2 provides a diagrammatic representation of the
AIL within the AJPF model checking architecture which is
discussed in more detail in Section V-B.

A typical rule used in the operational semantics of an agent
programming language is one for adding a belief to the belief
base:

〈BB,+b : I,S〉 → 〈BB ∪ {b}, I,S’〉

In this rule, we represent the belief base (a set of beliefs)
component of the agent state, as BB, and also a stack (the
intention, I) of things to do2, with +b (add belief b) on the
top of this stack. The rule represents the change made to the
agent state by processing the +b at the top of the stack. The

2For simplicity of presentation, we omit other parts of the agent state from
the statement of the rule.

MCAPL

JPF verification target
(Java bytecode

program)

library
abstraction

choice
generator

Virtual Machine

Search Strategy

data/scheduling
heuristics

state
management

MCAPL
listener

MJI
mixed execution

LTL-based PSL
property checker

VM
driver

search
listener

property
checker

AIL

search
observation

system/
apps

Core JPF

Legend: optionalAIL

MCAPL optimisation

Multi-Agent Program
AJPF verification target

(AgentSpeak , 3APL,
Jadex, MetateM, GOAL,
Gwendolen, SAAPL, ...)

AJPF

language
translation

AIL
toolkit

MCAPL
interface

Fig. 2. Overview of the AJPF architecture

stage of the reasoning cycle is also updated by the rule (from
S to S’, according to the semantics of the language being
interpreted). This rule is available in the AIL Toolkit for use in
the development of language interpreters. When it is assigned
to a stage of a reasoning cycle, S and S’ are instantiated
appropriately. The data structures used in the above example
(i.e., BB, +b, and I) are all part of the default AIL agent
class, making the rule usable without modification for most
language implementations.

The agent runs in the JPF virtual machine. This is a
Java virtual machine specially designed to maintain backtrack
points and explore, for instance, all possible thread scheduling
options (that can affect the result of the verification) [9].
The JPF model checker is extensible and configurable, which
allows us to optimise its performance for AIL-based systems.

IV. DEVELOPING BDI-BASED INTERPRETERS USING AIL

Among agent programming languages, some of the
most widely used rely on the belief-desire-intention (BDI)
paradigm. For this reason, we have chosen to focus on some
major BDI languages as primary case study candidates for
the use of AIL; in particular, we started from 3APL [29] and
the variant of AgentSpeak [30] encapsulated by Jason [31].
However, our approach does not exclude other languages, even
those based on completely different paradigms.

Another prerequisite of our endeavour was to include lan-
guages that have practical relevance. That is, we did not
want to restrict ourselves to (abstract) programming languages
that cannot be considered for serious software development
projects. We have already shown that “leaner” languages

which have simple semantics will mostly embed quickly and
straightforwardly into our framework [13].

A. BDI Foundations of AIL

The architecture presented in this paper is based upon our
study of common concepts and structures appearing in the
operational semantics of various BDI programming languages.
In [11], we tackled issues in the treatment of events, goals,
intentions, and other components central to the design of these
languages.

The AIL semantics include appropriate data structures and
operations for beliefs, plans, constraints, messages, content,
and context of an agent. Furthermore, the semantics formally
define a number of rules that are associated with different
stages of a typical agent reasoning cycle, such as rules for
the selection of an intention, generating the set of applicable
plans, updating the components of an agent’s state, adding
beliefs, executing actions, dropping goals, handling messages
(i.e., inter-agent communication) and perception (of the envi-
ronment state), etc.

We introduced the term “deed” in [11] as a way to refer to
the various types of formula one can typically have in the body
of plans. A deed stack is the core of the AIL’s most complex
data structure which represents an intention. BDI languages
use intentions to store the intended means for achieving goals.
Intention structures may also maintain information about the
(sub-)goals they are intended to achieve or the event that
triggered them. In the AIL, new events are associated with
an empty deed (ε).

The AIL’s basic plan data structure associates a trigger with
a guard and a deed stack. The AIL includes operations for

using such plans to modify intentions in a way which supports
the use of plans in many BDI languages. Mapping plans
from common agent programming languages onto an AIL
representation has been, in our experience, straightforward.

By way of example, consider the following AIL plan for
cleaning rooms.

trigger guard body
+!clean() dirty(Room) +!Goto(Room)

+!Vacuum(Room)

This plan has a trigger which is a goal to clean a room, a
guard which is a requirement the agent believes the room to
be dirty, and a body to be executed which consists of two new
goals to be adopted: first to go to the dirty room; second to
vacuum that room.

The following shows the operation of AIL’s default plan
execution on an intention, given the plan above.

trigger deed
+!clean() ε

→
trigger deed
+!clean() +!Goto(Room)
+!clean() +!Vacuum(Room)

The plan’s trigger matched the top event of this intention3. If
the guard is a logical consequence of the agent’s beliefs, the
AIL removes the top row of the intention and replaces it with
the two rows representing the body of this plan. Semantic rules
can then be used, as appropriate to the language, to move the
top deed (the goal to go to the dirty room) to an event stack
and to trigger further plan matching to achieve that sub-goal.

B. Translating Languages

Common to all language interpreters implemented using
AIL methods are the AIL-agent data structures for beliefs,
intentions, goals, etc., which are accessed by the model
checker and on which the default semantics for the modalities
of the property specification language are defined. The implicit
data structures of a given BDI language need to be translated
into the AIL data structures. In particular, the initial state of
an agent has to be translated into an AIL agent state.

Once an agent (in a supported programming language) has
been translated so that it uses the AIL, not only can it be
verified, but also executed, given an appropriate execution
environment, together with any other agents, possibly pro-
grammed in other languages translated into the AIL. This also
makes it possible to verify such heterogeneous multi-agent
systems.

The AIL data structures and rules facilitate the implemen-
tation of language interpreters. These building blocks can be
used to re-create the operational semantic rules of the target
language. Using these Java classes and their associated meth-
ods makes programming the language interpreter much easier
than doing it “from scratch” using Java. The AIL provides all
the infrastructure that is needed for a full implementation of an
agent programming language (and associated agent execution
platform) so that the only major task required to implement

3In fact the AIL’s default plan execution mechanism allows for matching of
the deed stack prefix as well, as required in a 3APL interpreter for example,
but we omit this for simplicity.

a language is the combination of AIL operations to form the
specific semantic rules. Taking into consideration that those
operations include all the basic querying and updating of agent
state components, the rules are relatively easily constructed.

An interpreter written using the AIL toolkit provides its own
custom sub-class of the AIL agent class which is suitable for
the implicit data-structures of the language under considera-
tion. It is our experience that many of the AIL data structures
can be used without modification for this purpose. It is, of
course, then also necessary to provide a parser for that given
language in order to generate the appropriate instance of the
respective agent class. This way, from the user’s perspective,
no effort is required to prepare the program to be verified since
the original program code is directly fed into AJPF. After this
is done, it will still be necessary for the user to define the
properties to be (model) checked.

C. Implementing the AIL

Based upon the AIL semantics presented in [11], we have
implemented Java classes forming the AIL toolkit. The toolkit
has classes for all the AIL data structures, including the agent
class which embodies the state of an AIL agent. This agent
class assumes the provision of a language-specific reasoning
cycle constructed from (custom) operational semantic rules; it
is this agent class which an interpreter for a specific language
is expected to subclass. All the semantic rules presented in [11]
are available for use in specific reasoning cycles but it is also
possible to construct new rules and use them in a particular
reasoning cycle.

In addition to the AIL, there is also the MCAPL interface
(see Figure 2) provided for model checking a multi-agent pro-
gram against a property specification written in the Property
Specification Language (PSL) introduced later in Section V-A.

The MCAPL layer requires that, for any given agent
programming language, two interfaces are implemented: one
for individual agents and another for the overall multi-agent
system. This software layer provides a MCAPL controller
which requests a list of agents from the multi-agent system
and encapsulates these in a special object which alternately
calls one reasoning step of each agent, anticipated to be one
full run of the reasoning cycle and then checks it against the
specification by calling, for instance, methods that implement
belief checking as defined by the specific language. Properties
are also checked when JPF detects that an “end state” is
reached (this could indicate a cycle in the states of a run as
well as program termination).

As shown in Figure 2, the combination of the translated
agent program(s) with the AIL and MCAPL machinery (in-
cluding the translated property specification) constitute the JPF
verification target. The original program(s) with the original
property specification are the AJPF verification target; they
are fed into the appropriate translators available as part of our
framework.

V. MODEL CHECKING

A. Property Specification Language

Since we aim to provide a general framework for model
checking with which various agent languages can interface
(whether AIL-based or not), the properties to be checked
are specified at the MCAPL level. For agents running on
an AIL-based interpreter, the semantics of the properties is
already specified as part of the AIL toolkit itself. The property
specification language (PSL) allows users to refer to agent
concepts at a high level, even though JPF carries out model
checking at the Java bytecode level.

The MCAPL layer allows agents to be model checked
using essentially the same property specification language
without using the AIL’s data structures or implementing
an AIL interpreter for that language. To use the MCAPL
interface, the language must implement the MCAPL interface
classes appropriately. This implementation defines the required
modalities of the property specification language. For instance,
agents implementing the MCAPL agent interface must provide
a method which succeeds when the agent believes the given
parameter (represented as a “formula”) is true. Typically,
agent programming languages do not fully implement logics
of belief, so the property specification language contains no
provision for nesting the modal operators and assumes that
the modalities are very simple — however, this does not
preclude users, when implementing the MCAPL interface,
from developing such a logic based on their agent state. The
implementation of the modalities defines their semantics (e.g.,
for belief) in that specific language. The AIL implements
these interfaces and so defines an AIL specific semantics for
the property specification language; supported languages that
use the AIL must ensure that their AIL-based interpreters are
constructed in a way that makes the AIL semantics of the
properties consistent with the language’s individual semantics
for those modalities (otherwise they cannot use the AIL
implementation and will need to override it using the MCAPL
interface).

The property specification language is based on a fragment
of LTL (Linear Temporal Logic) [20] containing ¬,∨,∧,U,R
and enriched by modalities such as B,G (‘ag believes’ and
‘ag has goal’). The temporal operators ♦ (eventually) and �
(always) are derived from the above, as usual.

Properties specified through the MCAPL interface can be
checked using the JPF model checker. At present we can verify
properties of programs using properties of the form:

ag ::= “agent constant”
f ::= “ground first order atomic formula”
φ ::= B(ag , f) | G(ag , f) | A(ag , f) | I(ag , f) | P(f)

| φ ∧ φ | φ ∨ φ | ¬φ | φUφ | φRφ

Consider a program, P , describing a multi-agent system and
let MAS be the state of the multi-agent system at one point
in the run of P . Consider an agent, ag ∈MAS, at this point
in the program execution. Then

MAS |=MC B(ag , f) iff f ∈ agBB

where agBB is the belief base of the agent, ag . An agent’s
belief base consists of a set of ground formulae4. Similarly,
the interpretation of G(ag , f) is given as5

MAS |=MC G(ag , f) iff !af ∈ agG

where agG is the set of goal commitment events stored in the
intentions of agent ag . MAS |=MC A(ag , f) iff the last action
changing the environment was action f taken by agent ag .
MAS |=MC I(ag , f) iff !af ∈ agG and there is an intended
means for f (i.e., it is not associated with the “no plan yet”
element ε). MAS |=MC P(f) iff f is a percept that holds true
in the environment.

The other operators in the MCAPL property specification
language have standard LTL semantics and are implemented
by the MCAPL interface:

MAS |=MC ϕ ∧ ψ iff MAS |=MC ϕ and MAS |=MC ψ
MAS |=MC ϕ ∨ ψ iff MAS |=MC ϕ or MAS |=MC ψ

MAS |=MC ¬φ iff MAS 6|=MC φ.

The temporal formulæ apply to runs of the programs in the
JPF model checker. A run consists of a (possibly infinite)
sequence of program states MAS i, i ≥ 0 where MAS 0

is the initial state of the program (note, however, that for
model checking the number of different states in any run is
assumed to be finite). Let P be a multi-agent program, then
P |=MC ϕUψ holds iff in all runs of the P there exists a
state MAS j such that MAS i |=MC ϕ for all 0 ≤ i < j and
MAS j |=MC ψ. Similarly, P |=MC ϕRψ holds iff either
MAS i |=MC ϕ for all i or there exists MAS j such that
MAS i |=MC ϕ for all i ∈ {0, . . . , j} and MAS j |=MC ϕ∧ψ.
The temporal operators ♦ (eventually) and � (always) are
derivable from U and R [20]. It should be noted that this
implementation represents a significant addition to JPF which,
since it was released as Open Source, no longer supports LTL
model checking.

B. AJPF

Central to the aim of bringing uniform model checking
techniques to different agent programming languages is the
extension of an existing — known to be efficient — model
checker. We opted for JPF because of its flexibility and
extensibility, and because most agent platforms are based on
Java and allow legacy Java code to be used by the agents. We
have embedded the AIL classes into JPF, and we have also
provided the means for temporal logic model checking. The
embedding of the AIL classes, in turn, aims to optimise model
checking for multi-agent systems by using JPF techniques that
help minimise the state space that needs to be checked. For
instance, our implementation of the classes makes use of a

4We intend to extend this to include Prolog-style reasoning on the belief
base using belief rules e.g., as in 3APL and Jason

5NB: The notation !g is typical for a goal in BDI languages. We use !ag
specifically for achievement goals — used to state that the agent wishes the
associated propositions to hold in the future — and !pg for perform goals
— which encapsulate a sequence of deeds but do not relate to a particular
belief the agent expects to acquire after they are executed, as is the case with
achievement goals.

technique that allows the execution of certain methods to be
moved from the (slow) virtual machine provided by JPF to the
(faster) host virtual machine when appropriate — we discuss
this further below.

Property specification in our extension to JPF is possible in a
meaningful, yet generic, way at the level of the MCAPL layer.
In principle, model checking could be carried out without the
development of the MCAPL or AIL classes and interfaces by
feeding the Java code of the interpreter of an agent language
directly to JPF. This would, however, not allow access to
any agent-specific components in a transparent way (besides
being heavily language dependent). Furthermore, in practice
the memory and time required for model checking would be
prohibitive (e.g., because the Java interpreters include heavy
and unnecessary code such as for parsing). Before we discuss
our JPF extension in more detail, let us first consider some
important features of JPF.

1) Java PathFinder (JPF): JPF is an explicit state model
checker for runtime-based verification of Java bytecode. Es-
sentially, JPF implements its own Java virtual machine on top
of the host system’s virtual machine6. The JPF Java virtual
machine is changed to explore all possible paths that may
be taken in a program’s execution, continuously checking for
deadlocks, violated assertions, and unhandled exceptions. (To
enable this, the state space of the program has to be finite, of
course.) If JPF finds an error in one of the possible executions,
it immediately reports to the user all the steps leading to that
error.

Model checking in any application area is subject to scal-
ability problems, i.e., with the linear growth of the size of
the system to be checked, there is an exponential growth
of the state space that has to be explored. In particular,
systems involving concurrency, such as multi-agent systems,
lead to interleavings in the transition system on which model
checking is to be carried out. To cope with the time and
memory requirements of large systems, the model checker has
to provide techniques for dealing with large memory structures
representing system states, and ideally reducing the state space
while still ensuring that all possible paths of the system
(relevant for a given property) are checked. JPF can be adapted
in several ways to suit different applications and should be
viewed as an extensible framework for Java bytecode model
checking. Out of the box, JPF is equipped with a number of
settings and abstraction techniques that can be configured to
suit the requirements of specific model-checking exercises.

2) Properties and JPF Listeners: The latest version of
JPF (4.1) does not include a logic-based property-specification
language. Since, in industry, JPF is used mainly for debugging
(rather than verification), by default JPF only checks for inline
Java assertions, deadlocks, and Java exceptions. However,
JPF allows the user to program listeners that monitor certain
aspects of the Java execution in JPF’s virtual machine.

We use AJPF listeners to implement model checking of

6As JPF itself is written in Java, the “host virtual machine” is the Java
virtual machine used to run JPF itself.

properties specified in our property specification language.
Listeners can be used to monitor various types of events in the
execution environment, expanding the internal model checking
mechanism of JPF. To check a specific property given in
our property specification language, the property is negated
and then translated into a property automaton using standard
authomata-theoretic approaches [32], [33]. This automaton
maintains a set of valid current states. The automaton object
is part of the the MCAPL layer (i.e., the code is run in the
JPF virtual machine) and, at the end of each round of the
reasoning cycle in any of the agents, the automaton’s current
state set is updated and checked for emptiness (which implies
the (negated) property has been satisfied) or if it has entered
a loop consisting only of accepting states (which implies the
property is violated). By running the property automaton in
the JPF virtual machine alongside the program, we create an
automaton in JPF that represents the product automaton of the
multi-agent program and the property to be checked. Each time
the property automaton is updated, the JPF listener is notified
of the current status of the automaton and generates a violation
or prunes the search space as appropriate. The listener also
detects when the program/property automata pair running in
the MCAPL layer has reached an end state and checks that
the property automaton is not in any accepting state.

3) Efficiency Issues: The success of model checking is due
in great part to various state-space reduction techniques that
are available in the most successful model checkers. Not all
such techniques work well on agent programs, requiring agent-
specific techniques to be developed (an example of such a
technique can be found in [26]).

JPF employs various state-space reduction techniques, for
example on-the-fly partial-order reduction (i.e., combining in-
struction sequences that only have effects inside a single thread
and executing them as a single transition). Nevertheless, we
have to ensure that the state space relevant to an agent system
remains as small as possible. We need to ensure that only
relevant backtracking points are stored, thereby limiting the
state space and improving the efficiency of model checking.

In our approach, we have decided to restrict the states
that are generated during model checked to the states that
are reached after a complete round of an agent’s reasoning
cycle. The effect is a dramatic reduction in the size of the
state space, but as a consequence users need to ensure that the
system properties they specify are not sensitive to intermediate
changes in the agent state. Executing the initialisation of the
agents and of the MAS atomically, reduces typical verifica-
tion times by 30%–40%. The substantial speed-up happens
because this portion of the code is executed many times as JPF
backtracks. Further use of atomic sections within the reasoning
cycle dramatically improves efficiency (see Section VI-A).

VI. CASE STUDIES

In this section we summarise the results of two model
checking experiments: one consisting of a simple agent pro-
gram and another of a system of multiple communicating

TABLE I
MODEL CHECKING STATISTICS

♦ag1pickup JPF AJPF
elapsed time: 0:07:03 0:00:04
states: visited=11080, backtracked=22223 visited=11, backtracked=34
choice generators: thread=11145 thread=25
heap: gc=28161 gc=65
instructions: 235599025 1051314
max memory: 59MB 26MB

agents. All the following examples are implemented in a proto-
type agent language [34] that has been useful in various stages
of our project. The details of the language are unimportant
and we use standard BDI-style syntax — a plan is a triple
e : g ← ds consisting of a triggering event e, a guard g,
and a body ds (a stack of deeds). As common in BDI-style
languages, an event +b means belief b has just been acquired,
+!ag denotes the adoption of a new achievement goal g, and
similarly +!pg for a perform (rather than achievement) goal
g being adopted7; in a plan body, a is used to represent an
action that the agent will perform when executing the plan.
This prototype language has an interpreter written in AIL and
so verification can be undertaken with all the optimisations of
AJPF in place.

A. Simple Agent Systems

We show how using AJPF to model check a simple (single)
agent program improves the performance of JPF by juxtapos-
ing the model checking runs and their statistics. The improved
performance is a result of the use of optimised code for the
underlying AIL classes. This optimisation is, to a large extent,
due to the introduction of atomic sections reducing the number
of possible interleavings8 in the non-optimised version.

In the following example, the environment provides some
shared resources, the availability of which are perceived by the
agent. The agent updates its beliefs about the world based upon
its perception. The agent beliefs, updated with such percepts,
are used to achieve the goal of picking up a block by using
two plans. The first plan establishes a new goal to be adopted
whenever the agent perceives a new block. The second plan
actually tries to get hold of the block.

+blocki : > ← +!apickupi

+!apickupi : blocki ∧ empty ← pickupi ;−empty ; +busy

In a similar example, the property that the initial goal of
picking up an object is eventually achieved by the single agent
is verified by AJPF in 4 seconds, while JPF needed more than
7 minutes (on the same machine). While the number of classes
and methods remain the same, the optimised AJPF requires
less than half of the memory, only about 1/1000 of visited
and backtracked states as well as choice generators, 1/200 of

7Achievement and perform goals are as described in Section V-A.
8Note that even in the single agent case there are 2 execution threads, one

for the agent itself and another representing the agent’s environment.

instructions, and 1/50 of garbage collections (gc) within JPF’s
heap, resulting in a speed-up of more than 150× (see Table I).

As expected, a two-agent version of this example increases
the state space significantly due to concurrency.

B. Multi-Agent System with Communication

The system studied in this section comprises two agents,
ag1 and ag2, and an object to be picked up. ag1 asks ag2 to
pick the object up, since only ag2 has the know-how (i.e., a
plan) to do so.

Agent ag1 has the initial achievement goal, !apickup, and
one plan, as follows.

+!apickup : > ←send(ag2, (achieve, pickup));
wait

This plan tells agent ag2 to pick up the object and then wait.
Agent ag2 has the following two plans:

+!apickup : > ← pickup

+receive(ag1, (achieve,Goal)) : > ← +!aGoal

We are able to show, for instance, the achievement of an
agent’s initial goal, e.g., ♦(B(ag1, pickup)) (“eventually, ag1

believes that the object is picked up”)
We have also used our approach to check the main proper-

ties of interest for a variation of the contract net scenario we
used in [13]. This has been carried out for two- and three-agent
versions of the protocol.

The agents’ plans for achieving a goal g , either by per-
forming an appropriate action a , or committing to performing
a call for proposals (cfp) are:

+!ag : cando(g) ← a
+!ag : ¬cando(g) ← +!pcfp(g)

Similar plans exist for a second goal g ′. The contract net proto-
col assumes a message semantics consisting of a performative
and a ground formula. Two performatives are used: perform
instructs an agent to perform an action (or more generally
to achieve a goal) and tell instructs an agent to update its
belief base. The implementation of the protocol includes a plan
asking an agent to respond to a perform request, together
with a number of plans for responding and how to act if an
agent has a proposal or is awarded a contract (see Figure 3).

One of the properties that can be checked for this program
is that eventually an agent ag i achieves the initial goal g —
formally ♦(B(ag i, g)).

+!pcfp(T) : ag(A) ∧my name(N)∧ ∼ send(A, (perform, respond(T ,N))) ← send(A, (perform, respond(T ,N)); wait)

+!pcfp(T) : proposal(T ,A) ← wait

+!prespond(T ,A) : cando(T) ∧my name(N) ← send(A, (tell, proposal(T ,N)))

+!prespond(T ,A) : ¬cando(T) ∧my name(N) ← send(A, (tell, sorry(T ,N)))

+proposal(T ,A) : > ← send(A, (tell, award(T)))

+award(T) : > ← +!aT

Fig. 3. Contract-Net Example

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an overview of our
framework for verifying multi-agent systems where agents can
be programmed in a variey of agent-oriented programming
languages. This unifying approach to model checking and
execution of heterogeneous agent systems will have significant
benefits, as dependable systems are required in many areas of
applications of agent technology.

The architecture presented in this paper is much more
flexible than previous approaches to model checking for agent-
based systems. Despite the greater flexibility, we have reason
to believe that it works efficiently, due to the precautions
we have taken in building the architecture and the internal
optimisations of AJPF, our extension of JPF.

We have developed the AIL so that new agent programming
languages can easily be incorporated into our framework. Even
without re-programming a language interpreter using the AIL
classes, it is possible to integrate agent programs written in
a variety of languages into our verification and execution
framework by interfacing directly with the MCAPL layer.
However, in the latter case, the user will not be able to take
advantage of the AJPF optimisations which we have shown to
make model checking of AIL-based systems significantly more
efficient. Our future work aims to utilise more sophisticated
aspects of JPF, such as its “Model java Interface” [35], to
improve performance further.

In [12], we describe a prototype in Maude [36] of the AIL
and an implementation of AgentSpeak. In future work, we also
aim to use those prototypes to help proving correctness of the
automated translations into the AIL classes.

We further plan to carry out more case studies so as to
test the framework in more realistic scenarios, and to further
optimise the AIL code and AJPF. The areas in which we
seek to tackle case studies include: (i) autonomous spacecraft
control; (ii) network security; (iii) negotiation/cooperation in
commercial/industrial applications of multi-agent systems; and
(iv) autonomous agents for pervasive computing. The idea is
to implement the case studies in different agent programming
languages. Our automatic translators can then be used to
translate these to the AIL platform, and AJPF can be used
to verify that the systems satisfy specifications written in our
property specification language. These case studies will be
generated through our close collaboration with organisations

such as NASA and industrial partners.

Acknowledgements

The work reported in this paper has been supported through
EPSRC grants EP/D054788 (Durham) and EP/D052548 (Liv-
erpool).

REFERENCES

[1] M. Wooldridge and N. R. Jennings, “Intelligent Agents: Theory and
Practice,” The Knowledge Engineering Review, vol. 10, no. 2, pp. 115–
152, 1995.

[2] N. Muscettola, P. P. Nayak, B. Pell, and B. Williams, “Remote Agent:
To Boldly Go Where No AI System Has Gone Before,” Artificial
Intelligence, vol. 103, no. 1-2, pp. 5–48, 1998.

[3] A. Moreno and C. Garbay, “Software Agents in Health Care,” Artificial
Intelligence in Medicine, vol. 27, no. 3, pp. 229–232, 2003.

[4] A. S. Rao and M. Georgeff, “BDI Agents: From Theory to Practice,”
in Proceedings of the First International Conference on Multi-Agent
Systems (ICMAS), San Francisco, CA, Jun. 1995, pp. 312–319.

[5] N. R. Jennings and M. Wooldridge, “Applications of agent technol-
ogy,” in Agent Technology: Foundations, Applications, and Markets.
Springer-Verlag, Heidelberg, 1998.

[6] M. Greaves, V. Stavridou-Coleman, and R. Laddaga, “Dependable Agent
Systems (Editorial),” IEEE Intelligent Systems, vol. 19, no. 5, pp. 20–23,
2004.

[7] M. Fisher, M. P. Singh, D. F. Spears, and M. Wooldridge, “Logic-Based
Agent Verification (Editorial),” Journal of Applied Logic, vol. 5, no. 2,
pp. 193–195, 2007.

[8] “Java PathFinder,” http://javapathfinder.sourceforge.net.
[9] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda, “Model

Checking Programs,” Automated Software Engineering, vol. 10, no. 2,
pp. 203–232, 2003.

[10] L. A. Dennis, B. Farwer, R. H. Bordini, and M. Fisher, “A Flexible
Framework for Verifying Agent Programs (Short Paper),” in Proc. 7th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008). ACM, 2008, to Appear.

[11] L. A. Dennis, B. Farwer, R. H. Bordini, M. Fisher, and M. Wooldridge,
“A Common Semantic Basis for BDI Languages,” in Proc. 7th Interna-
tional Workshop on Programming Multiagent Systems (ProMAS), ser.
Lecture Notes in Artificial Intelligence. Springer Verlag, 2007 (to
appear).

[12] B. Farwer and L. A. Dennis, “Translating into an Intermediate Agent
Layer: A Prototype in Maude,” in Proc. International Workshop on
Concurrency, Specification and Programming (CS&P), Lagow, Poland,
September 2007.

[13] L. A. Dennis and M. Fisher, “Programming Verifiable Heterogeneous
Agent Systems,” in Proc. 6th International Workshop on Programming
Multiagent Systems (ProMAS), 2008, (To appear).

[14] R. H. Bordini, M. Dastani, J. Dix, and A. El Fallah Seghrouchni, Eds.,
Multi-Agent Programming: Languages, Platforms and Applications.
Springer-Verlag, 2005.

[15] M. Sierhuis, J. M. Bradshaw, A. Acquisti, R. V. Hoof, R. Jeffers, and
A. Uszok, “Human-Agent Teamwork and Adjustable Autonomy in Prac-
tice,” in Proc. 7th International Symposium on Artificial Intelligence,
Robotics and Automation in Space (i-SAIRAS), Nara, Japan, 2003.

[16] E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press,
Dec. 1999.

[17] G. J. Holzmann, The Spin Model Checker: Primer and Reference
Manual. Addison-Wesley, November 2003.

[18] J. C. Corbett, M. B. Dwyer, J. Hatcliff, and Robby, “Expressing
checkable properties of dynamic systems: the Bandera Specification
Language,” International Journal on Software Tools for Technology
Transfer, vol. 4, no. 1, pp. 34–56, 2002.

[19] Z. Manna and A. Pnueli, The Temporal Logic of Reactive and Concur-
rent Systems: Specification. New York: Springer-Verlag, 1992.

[20] E. A. Emerson, “Temporal and Modal Logic,” in Handbook of Theo-
retical Computer Science, J. van Leeuwen, Ed. Elsevier, 1990, pp.
996–1072.

[21] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev, Many-
Dimensional Modal Logics: Theory and Applications, ser. Studies in
Logic and the Foundations of Mathematics. Elsevier Science, 2003,
no. 148.

[22] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge, “Model
Checking Rational Agents,” IEEE Intelligent Systems, vol. 19, no. 5,
pp. 46–52, September/October 2004.

[23] M. Kacprzak, A. Lomuscio, and W. Penczek, “Verification of Multia-
gent Systems via Unbounded Model Checking,” in Proc. 3rd Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS). IEEE Computer Society, 2004, pp. 638–645.

[24] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge, “Verifying
Multi-Agent Programs by Model Checking,” Journal of Autonomous
Agents and Multi-Agent Systems, vol. 12, no. 2, pp. 239–256, March
2006.

[25] F. Raimondi and A. Lomuscio, “Automatic Verification of Multi-agent
Systems by Model Checking via Ordered Binary Decision Diagrams,”
Journal of Applied Logic, vol. 5, no. 2, pp. 235–251, 2007.

[26] R. H. Bordini, M. Fisher, W. Visser, and M. Wooldridge, “State-Space
Reduction Techniques in Agent Verification,” in Proc. 3rd Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS). IEEE Computer Society, 2004, pp. 896–903.

[27] F. S. de Boer, K. V. Hindriks, W. van der Hoek, and J.-J. C. Meyer, “A
verification framework for agent programming with declarative goals,”
Journal of Applied Logic, vol. 5, no. 2, pp. 277–302, 2007.

[28] M. Winikoff, “Implementing Commitment-Based Interactions,” in Proc.
6th International Joint Conference on Autonomous Agents and Multia-
gent Systems (AAMAS). New York, NY, USA: ACM, 2007, pp. 1–8.

[29] M. Dastani, M. B. van Riemsdijk, and J.-J. C. Meyer, “Programming
Multi-Agent Systems in 3APL,” in Multi-Agent Programming: Lan-
guages, Platforms and Applications, R. H. Bordini, M. Dastani, J. Dix,
and A. El Fallah Seghrouchni, Eds. Springer-Verlag, 2005, ch. 2, pp.
39–67.

[30] A. Rao, “AgentSpeak(L): BDI Agents Speak Out in a Logical Com-
putable Language,” in Proc. 7th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World (MAAMAW), ser. Lecture
Notes in Computer Science, vol. 1038. Springer, 1996, pp. 42–55.

[31] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak Using Jason, ser. Wiley Series in Agent
Technology. John Wiley & Sons, 2007.

[32] A. P. Sistla, M. Vardi, and P. Wolper, “The Complementation Problem
for Büchi Automata with Applications to Temporal Logic,” Theoretical
Computer Science, vol. 49, pp. 217–237, 1987.

[33] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper, “Simple On-the-
fly Automatic Verification of Linear Temporal Logic,” in Proc. 15th
Workshop on Protocol Specification Testing and Verification. Warsaw,
Poland: Chapman & Hall, 1995, pp. 3–18.

[34] L. A. Dennis and B. Farwer, “Gwendolen: A BDI Language for
Verifiable Agents,” in Logic and the Simulation of Interaction and
Reasoning, B. Löwe, Ed. Aberdeen: AISB, 2008, AISB’08 Workshop.

[35] “Java PathFinder: Model Java Interface (MJI),”
http://javapathfinder.sourceforge.net/
The_Model_Java_Interface.html.

[36] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. Talcott, “The Maude 2.0 system,” in Rewriting Techniques and
Applications (RTA 2003), ser. Lecture Notes in Computer Science,
R. Nieuwenhuis, Ed., no. 2706. Springer-Verlag, June 2003, pp. 76–87.

