
Computing Longest Duration Flocks in Trajectory Data

Joachim Gudmundsson
∗

National ICT Australia Ltd
Sydney, Australia.

joachim.gudmundsson@nicta.com.au

Marc van Kreveld
†

Institute for Information and Computing Sciences
Utrecht University, Utrecht, The Netherlands.

marc@cs.uu.nl

ABSTRACT
Moving point object data can be analyzed through the dis-
covery of patterns. We consider the computational efficiency
of computing two of the most basic spatio-temporal pat-
terns in trajectories, namely flocks and meetings. The pat-
terns are large enough subgroups of the moving point objects
that exhibit similar movement and proximity for a certain
amount of time. We consider the problem of computing a
longest duration flock or meeting. We give several exact and
approximation algorithms, and also show that some variants
are as hard as MaxClique to compute and approximate.

Categories and Subject Descriptors: F.2.2 [Analysis of
Algorithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems

General Terms: Algorithms, Theory.

Keywords: Spatio-temporal patterns, Moving objects, Ge-
ometric algorithms, Approximation algorithms.

1. INTRODUCTION
Moving point object data is becoming increasingly more

available since the development of GPS and radio transmit-
ters. One of the objectives of spatio-temporal data min-
ing [11, 16, 20] is to analyze such data sets for interesting
patterns. For example, a group of caribou with radio collars
gives rise to the positions of each caribou in a sequence of
time steps. More examples are moose in Sweden (25 ani-
mals reported every 30 minutes), leopards in South Africa
(32 animals reported daily), mountain goats in USA (32 an-
imals reported every 3 hours), and so on [23]. Analyzing
this data gives insight into entity behavior, in particular,
migration patterns [18]. The analysis of moving objects also

∗NICTA is funded by the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian
Research Council.†Supported by the Netherlands Organisation for Scientific
Research (NWO) under FOCUS/BRICKS grant number
642.065.503 (GADGET).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM-GIS’06,November 10-11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-529-0/06/0011 ...$5.00.

has applications in socio-economic geography [4], transport
analysis [19] and in defense and surveillance areas [17].

In general the input is a set P of n moving point objects
p1, . . . , pn in the plane whose locations are known at τ con-
secutive time steps t1, . . . , tτ , that is, the trajectory of each
object is a polygonal line that can self-intersect. For brevity,
we will call moving point objects entities from now on. It is
assumed that the velocity of an entity along a line segment
of the trajectory is constant.

There are several slightly different definitions of flocks [2,
13, 14]. We will use the following definition, see Fig. 1 (a).

Definition 1. flock(m, k, r): Given a set of n trajecto-
ries of entities in the plane, where each trajectory consists
of τ line segments, a flock in a time interval I, where the
duration of I is at least k, consists of at least m entities such
that for every point in time within I there is a disk of radius
r that contains all the m entities (note that m ∈ N, k ∈ R
and r > 0 are given constants).

This definition is almost identical to Definition 1 in [2] with
the difference that k is not restricted to be an integer.

We consider two variants of flocks. Either the same m en-
tities stay together during the entire interval (fixed-flock), or
the entities in the flock change during the interval (varying-
flock). If the entities may change, we require that the disk
of radius r changes location in a continuous way. Note that
both cases require at least m entities to be within the disc
at every moment in I.

A meeting pattern is defined as follows, see Fig. 1 (b):

Definition 2. meet(m, k, r): Given a set of n trajecto-
ries of entities in the plane, where each trajectory consists
of τ line segments, a meeting in a time interval I, where the
duration of I is at least k, consists of at least m entities that
stay within a stationary disk of radius r during I (note that
m ∈ N, k ∈ R and r > 0 are given constants).

We also consider two variants of meetings: either the same
m entities stay together during the entire interval (fixed-
meet), or the entities in the meeting region change during
the interval (varying-meet). In this paper we consider opti-
mization variants of the flock and meeting problems:

flock(m, max, r)/meet(m, max, r): compute the longest
duration pattern.

We will show that varying-flock, fixed-meet, and varying-
meet can be solved in time polynomial in n and τ , whereas
fixed-flock is NP-hard. For all four problems, we also present

(a) (b)

p2

t9

t1

t1

t3 t2

t9

p1

p1

p2

p3

p4

t2 t3

Figure 1: (a) A flock for p1, p2, p3 marked in grey. (b)
A meeting for p1 and p2 marked in grey.

approximation algorithms by allowing slightly larger radius,
i.e., the radius of the reported group may not be bounded
by r, but instead it is bounded by cr, where c > 1. Consider
a longest duration flock F ′ for the flock(m, max, r)-problem
and let I ′ denote the time interval during which F ′ is de-
fined. A flock F during a time interval I is said to be a
c-radius approximation of the flock(m, max, r)-problem, if
and only if F consists of at least m entities such that for
every point in time within I there is a disk of radius cr that
contains all the m entities, and I is at least as long as I ′.
This definition applies to the fixed and varying versions, and
is analogous for the meeting patterns.

Approximating the radius of the region or subset size for
spatio-temporal data mining was first considered by Gud-
mundsson et al. [6]. They proposed to approximate the pat-
terns: “Any exact values of m and r hardly have a special
significance—20 caribou meeting in a circle with radius 50
meters form as interesting a pattern as 19 caribou meeting
in a circle with radius 51 meters.” In this paper we only con-
sider approximations of the radius, not of the subset size.

Previous results.From a data mining and database per-
spective the research has mainly been focusing on modeling,
querying and indexing spatio-temporal data, see for exam-
ple [7, 9, 12, 21]. A common approach in database research
is to take an existing spatial query type and then study its
generalizations to spatio-temporal data, see for example [8,
15]. Recent advances in data mining have been accomplished
by using associated rule mining to distinguish regions with
high activity [22], for example, sinks, sources and thorough-
fares. A different approach was suggested by Laube and
Imfeld [13]: the REMO framework (RElative MOtion) con-
siders similar behavior in groups of entities. They define
several spatio-temporal patterns for trajectories, based on
similar direction of motion or change of direction. Laube et
al. [14] extended the framework by not only including direc-
tion of motion, but also location itself. They defined several
spatio-temporal patterns, including flock, leadership, conver-
gence, and encounter, and gave algorithms to compute them
efficiently. Among other results they developed an algorithm
for finding the largest flock pattern (maximum number of
entities) using the higher-order Voronoi diagram with run-
ning time O(τ(nm2 + n log n)); they also proved that the
detection problem can be answered in O(τ(nm + n log n))
time. Applying the algorithm by Aronov and Har-Peled [1]
to the problem gives a (1 + ε)-approximation with expected
running time O(τn log2 n/ε2), where the algorithm approx-
imates the flock size. Gudmundsson et al. [6] showed that if
the disk is (1+ ε)-approximated then the detection problem
can be solved in O(τ(n log(1/ε)/ε2 + n log n)) time.

However, the algorithms listed above use a different def-
inition of flock than used in this paper. Their definition
only considers the entities at one time step, i.e., a set of
at least m entities within a circular region of radius r is
a flock if they move in the same direction. Benkert et
al. [2] argue that this is not sufficient for many applica-
tions. Flocks may need many time steps to be properly
defined. For example, in some of the aforementioned ap-
plications the coordinates of the tracked animals are re-
ported every 30 minutes and a group of animals must stay
together for days to form a flock. Benkert et al. [2] re-
cently used a different approach to compute “approximate”
flocks. They transform a subpath of length k (assumed
to be an integer) of each trajectory into a point in 2k-
dimensional space. Then the problem is reduced to find
2k-dimensional balls that contain at least m points. They
give a (1 + ε)-radius approximation to fixed-flock(m, k, r)

with running time O(nτk2

mε2k (log n + ε1−2k)). Note however
that the optimization version of the flock problem is not
considered in [2], and the running time of their algorithm is
exponential in k.

This paper is organized as follows. In the next section
we show that the fixed-flock(m, max, r) problem is as hard
as MaxClique to compute and approximate. In Section 3,
we study the flock problem further, give a polynomial time,
exact algorithm for varying-flock(m, max, r), and approxima-
tion algorithms for both variants. In Section 4 we consider
the meeting problem and give exact and approximation algo-
rithms for both variants. We conclude with future research.
Our algorithmic results are summarized in Table 1.

2. HARDNESS RESULTS
We start with proving two hardness results, which also

motivates why we study c-radius approximation algorithms
in the following sections. The first concerns maximizing
the subset size of the flock, whereas the second concerns
maximizing the duration. Both reductions use MaxClique,
which is NP-hard [5], and furthermore, cannot be approxi-
mated well.

Fact 1. (H̊astad 1999 [10])
For any constant ε > 0, MaxClique cannot be approxi-
mated in polynomial time within a factor of n1/2−ε unless
P = NP , and not within a factor of n1−ε unless NP=ZPP.

Theorem 1. The problem of computing a (2− δ)-radius
approximation of fixed-flock(max, k, r), for any 0 < δ ≤ 1,
is NP-hard.

Proof. The reduction is from MaxClique. Let G =
(V, E) be some graph with n vertices, and suppose we wish
to determine whether a clique of size m exists.

We construct an instance of the flock problem as follows.
Every vertex is represented by an entity. At time step zero,
all entities are at the origin of the plane. Assume that r = 1;
the instance can be scaled to realize any value of r. We define
the locations of all entities at all time steps as follows. For
0 < i ≤ n and time steps 3i − 2 and 3i, we let all entities
be at (5i, 0). At time step 3i − 1, the entity of vertex vi is
at (5i, 2), and all entities of vertices that are not connected
to vi in G are at (5i,−2), as shown in Fig. 2. We easily
observe that at time 3i− 1, a circle of radius 1 can contain
the i-th entity and all entities whose vertices are connected
to vi in G, or a circle of radius 1 contains all entities except

Subset \ Pattern Meeting Flock

Varying subset O(n4τ2 log n + n2τ3) (Exact) O(n3τ log n) (Exact)

O(n2τ
mε2 log n log τ) ((1 + ε)-apx. (∗)) O(n2τ

ε2 log n) ((2 + ε)-apx.)

Ω(n2τ) (Any apx.) Ω(n2τ) (Any apx.)

Fixed subset O(n4τ2 log n + n2τ3) (Exact) NP-hard (Any (2− ε)-apx.)

O(n2τ
mε2 log n log τ) ((1 + ε)-apx. (∗)) O(n2τ log n) (2-apx.)

Ω(n2τ) (Any apx.) Ω(n2τ) (Any apx.)

Table 1: A summary of the results in this paper. The results marked with a star assume that the longest
duration meeting spans a time step. The lower bounds hold in the model of [3].

for vi. Hence, the question whether a clique of size m exists
in G can be answered by answering the question whether a
flock of size m exists for the duration of all k = τ = 3n time
steps. This proves NP-completeness of the decision version
of the maximum subset fixed flock problem.

The proof holds for any circle radius in [1, 2). Hence,
allowing an approximate radius with a factor less than 2
leaves the problem NP-hard.

The above result can easily be strengthened by noting
that an α-approximation of flock(max, k, r) also corresponds
to an α-approximation of MaxClique, that is, we cannot
hope to find a flock of approximately the maximum size
efficiently.

Corollary 1. The problem of computing a (2−δ)-radius
approximation of fixed-flock(max, k, r), for any constant 0 <
δ < 1, is at least as hard as approximating MaxClique.

v1

v3

v4 v5

v2
v1

v2, v3, v4

v5

v1, v5

v2

v3, v4

v1, v4

v2, v5

v3

v1, v3, v5

v2

v4

v1, v3

v2, v4

v5

2010 255 15

2

0

-2

y

x

Figure 2: Illustrating the reduction from MaxClique
to fixed-flock(max, k, r). The trajectory of v2 is shown.

3. FLOCK PATTERNS
In the next two sections we will present several algo-

rithms for the flock and meeting problems. In this sec-
tion we focus on the flock patterns and give three algo-
rithms; a 2-radius approximation algorithm for the fixed-
flock(m, max, r) problem, an exact algorithm for the varying-
flock(m, max, r) problem and a (2+ε)-radius approximation
algorithm for the varying-flock(m, max, r) problem.

3.1 Approximating a fixed flock
We present a 2-radius approximation algorithm for the

fixed-flock(m, max, r) problem. That is, if a flock of duration
T exists for a radius r disc, then our algorithm finds a flock
of duration at least T for a radius 2r disc. The algorithm
runs in O(n2τ log n) time, where n is the number of entities
and τ is the total number of time steps.

Transform all the trajectories into three dimensions where
the third dimension is time. For every entity v, consider

the region of all points that are within distance 2r from
v at some moment in time. This region, denoted ∆2r(v),
is represented by a cylindric region, such that every cross-
section with a horizontal plane is a disc of radius 2r, as
shown in Fig. 3 (a).

Let v be some entity. Determine for all other entities vi

the time intervals that they are within ∆2r(v). Since an
entity can enter and/or leave the cylinder at most once per
time step, the number of intervals is bounded by O(nτ).
From now on we will ignore the entities and only consider
the time intervals, see Fig. 3 (b). The problem is now to
find a longest interval containing at least m intervals.

The endpoints of the intervals can be sorted in O(nτ log n)
time, because we merge n sorted sequences of O(τ) intervals.
Go through the O(nτ) possible start points t′1, t

′
2, . . . of max-

imum duration flocks in non-decreasing order. They are the
starting times of the intervals. For t′1, take all O(n) inter-
vals that contain t′1, sort on the endpoint of these intervals,
and store them in an augmented binary search tree where
integers with internal nodes represent the number of leaves
in the subtree. Then we find the (m − 1)-th last endpoint
and its corresponding time, which is the maximum duration
flock for the starting time t′1 (the m-th entity is the one
defining the cylindric region). To process t′2, we first remove
all intervals with endpoint between t′1 and t′2, then we add
the interval that starts at t′2 to the augmented binary tree,
and again determine the (m − 1)-th last endpoint. For t′1
we need O(n log n) time due to initialization of the tree, and
for every subsequent t′j we only need O(log n) time if we dis-
regard the removals between t′j−1 and t′j . Throughout the
whole process there are only O(nτ) such deletions, and each
deletion can be performed in O(log n) time. In total there
are O(nτ) operations on the tree, leading to O(nτ log n) time
to handle ∆2r(v). We perform these steps for each entity,
taking O(n2τ log n) time in total.

It remains to prove that the proposed algorithm gives a
2-radius approximation. Consider a longest duration fixed
flock F with entity set f , and let v be an arbitrary entity
in f . The algorithm will process v at some point, i.e., it will
consider the cylinder ∆2r(v) and entity v will be at distance
at most 2r from the m− 1 other entities in f . Hence, a disc
with radius 2r centered at v will contain all entities of f
during the full duration of F .

Theorem 2. There is a 2-radius approximation algorithm
for the fixed-flock(m, max, r)-problem that uses O(n2τ log n)
time and O(nτ) space.

If we treat the entities in random order, we expect to find
a flock of duration T already after O(n/m) entities, albeit

v1 v

v3

v2

v1

v2

v2

v3

v3

(a) (b)

v5v3v2v1 v4 v6

Figure 3: (a) The shaded cylindric region around v
is denoted ∆2r(v). (b) The intervals computed from
the intersection of the cylinder.

the algorithm would not know that a flock of duration at
least T has been found. Hence, a Monte Carlo algorithm for

longest duration flock takes O(n2τ
m

log n) time.

Remark.It is likely that every c-radius approximation algo-
rithm requires Ω(n2τ) time. Consider the flocking problem
on the real line instead of the plane, and suppose we wish
to determine a flock of size at least 3 for radius 0. We can
transform the n moving entities between time steps ti and
ti+1 to n lines in the plane, where the second dimension rep-
resents time. A flock of size at least 3 exists if and only if
at least 3 lines pass through a single point between ti and
ti+1. For this problem, a lower bound of Ω(n2) is known,
albeit in a weak model of computation [3].

Using the same argumentation one can argue that the run-
ning time for any c-radius approximation algorithm for each
of the four problems considered in this paper (varying/fixed-
flock/meet problem) is bounded by Ω(n2τ).

3.2 Longest duration varying flock
In this section we consider the varying-flock(m, max, r)

problem, in other words, we wish to determine the longest
time interval for a continuously moving circle of radius r
such that it contains at least m entities throughout the whole
interval. Recall that the set of entities inside the circle need
not be the same throughout the flock duration.

Let F be a longest duration varying flock, and assume the
time interval of F is I. The set of entities of F at time t ∈ I
is denoted f(t).

Property 1. At every fixed moment t in I there exists a
disc D of radius r that contains f(t), such that at least two
entities of f(t) lie on the perimeter of D.

Assume that at some point t the set of entities in the flock
changes. In general this change can happen at any time dur-
ing a time interval, however, if we assume that the number
of entities is always maximized then an entity will join as
early as possible, an entity will leave as late as possible, and
an exchange may either occur as early as possible or as late
as possible. The following property then holds.

Property 2. Consider a moment t ∈ I when the set of
entities in the flock changes. There is a disc D of radius r

that contains f(t) with either three entities on the boundary,
or two points on the boundary at distance 2r.

Next we design an algorithm making use of the above
properties. Let us first study the problem between two con-
secutive time steps, so that each entity moves with constant
speed along a line. The final running time is obtained by
multiplying the running time needed to handle one time step
with the total number of time steps.

Imagine any disc movement through time for a varying
flock, the disc moves continuously with two entities on the
boundary, until a third entity lies on the disc as well, accord-
ing to Properties 1 and 2. It may come from the inside and
go out, or it may come from the outside and go in. At this
moment, there is a choice which two out of the three entities
will determine the motion of the disc. An example is given
in Fig. 4 (a) where p1 and p2 initially define a disc, and at
some point in time p2 leaves the flock and the two entities
p1 and p3 define the disc. Note that if the third point on the
circle will go outside, it may be that the flock stops because
there is no longer a disc with at least m points inside.

Between two consecutive time steps, the entities can be
viewed as straight lines in 3-space. Every triple of lines
defines a constant number of moments where all three lie on
the boundary of a circle of radius r. Furthermore, every pair
of lines has a constant number of moments where they are
at distance exactly 2r. These two types of event are the only
ones where a flock can start, end, or exchange a point that
defines the circle. From the above discussion the following
observation trivially follows.

Observation 1. The number of events between two con-
secutive time steps is O(n3).

Next we show how to handle the events efficiently. For
each pair of lines in space ` and `′, and for each fixed moment
t, there are (at most) two discs of radius r with ` and `′ on its
boundary. As a first step, compute all time intervals where
` and `′ define a disc of radius r with at least m − 2 other
lines inside, and no third line on the boundary. These open
intervals can be computed by tracing each disc through time
and computing all intervals for which the disc contains at
least m − 2 other entities. This can be done in O(n log n)
time per disc. At the start point or end point of each time
interval for which ` and `′ lie on the boundary of a disc, there
is a third line `′′ on the boundary, or ` and `′ are at distance
exactly 2r. In the first case, there are also intervals for the
pairs `, `′′ and `′, `′′ that have the same disc with `, `′ and
`′′ on the boundary as start point or end point. When the
intervals for two lines are computed one can also compute
all the events for which three lines lie on a circle of radius r
and contain at least m− 3 other lines inside, thus the total
time required to compute all the events is O(n3τ log n).

We define a directed acyclic graph G = (V, E) where each
node in V represents a disc of radius r through three lines
at a time instance, or through two lines and they are at
distance 2r. Two nodes are connected by an edge in E if
these two nodes represent discs that are the start point and
end point of a time interval for a pair. We direct the edge
from earlier to later in time, and assign a weight that is its
duration. Then we compute a maximum cost directed path
in G by a bottom-to-top traversal. Starting at all leafs we
propagate the cost of the longest path up the graph, thus
each node v will store the value of the maximum cost path

p3

p2

p1

(a) (b)

Figure 4: (a) The entities p1 and p2 initially define
a disc, and at some point in time p2 leaves the flock
and the two entities p1 and p3 define the disc. (b)
Illustrating the placement of the rectangles with re-
spect to the entities.

to any of its descendants. We claim that this path defines
a longest duration flock. The claim follows since the graph
models all the events and all the possible outcomes of an
event, thus Properties 1 and 2 guarantee that the optimal
solution is the maximum weight path in G.

Theorem 3. varying-flock(m, max, r) can be computed in
time O(n3τ log n).

3.3 Approximating a varying flock
In this section we will present a c-radius approximation

algorithm for the varying-flock(m, max, r)-problem, for any
constant c > 2. As in the exact algorithm, the idea is to
build a graph on possible movements of the disc, based on
the geometry. A path in the graph will correspond to a con-
tinuous movement of a horizontal disc of radius cr through
time with m entities inside the disc at every moment.

For each pair of entities we will generate two types of
events: type 1 and type 2 events. Consider an entity v. A
type 1 event is generated at every moment when another
entity, say v′, is at distance exactly cr from v; the event
corresponds to the disc of radius cr with center at v and
with v′ on its boundary. A type 2 event is generated at
every moment when another entity is at distance exactly 2r
from v. There will be O(nτ) events per entity, so O(n2τ)
events overall.

We define a graph G = (V, E), where each node in V rep-
resents an event. We will add two sets of edges to the graph.
Consider an entity v and every two consecutive events gen-
erated by v. If the cylindric region ∆cr(v) (Figure 3 (a))
contains at least m entities between the two events then an
edge is added between the two corresponding nodes of V .
The weight of the edge is the time span between the two
events. The edges can be computed in time O(n2τ log n),
as described in Section 3.1. These edges represent a path
within the cylindric region of one entity only, so we must
consider what other edges are needed to represent the sit-
uation that a flock may consist of a changing subset of m
entities. The second set of edges is to guarantee that a disc
centered at the one entity can be moved horizontally to a
disc centered at the other entity while keeping at least m

entities inside. If that is the case, then we add an edge be-
tween the two nodes in G. More precisely, for any two type 2
event nodes νi and νj in V of entities vi and vj , we add an
edge to G from νi to νj if (i) the corresponding events occur
at the same time t; (ii) vi and vj are at distance exactly 2r
at time t, and (iii) there is a disc of radius r in the inter-
section of ∆cr(vi) and ∆cr(vj) with vi on its boundary that
contains at least m entities at time t.

A slight complication is that the second set of edges may
generate cycles in G; an edge from νi to νj and an edge
from νj to νi. A simple graph augmentation can easily fix
the problem: we make two nodes νi and ν′i for vi with a
directed, zero-duration edge from νi to ν′i. We do the same
for vj . Then we make a zero-duration edge from νi to ν′j ,
and another zero-duration edge from νj to ν′i. The non-zero
duration edges from νi are moved to originate from ν′i.

Theorem 4. If the longest path in G has weight W then
1. there is a c-radius approximation of meet(m, max, r)

with duration at least W , and
2. meet(m, max, r) has duration at most W .

Summarizing our results, the total number of events is
O(n2τ) and the total number of edges is bounded by O(n2τ)
as well. Furthermore, the set of edges can be computed in

O(n2τ
(c−2)2

log n) time, as will be shown in Section 3.3.1. As

a result the graph is constructed in O(n2τ
(c−2)2

log n) time,

and if the longest duration flock has duration I, then G
contains a path of duration at least I. As in the previous
section, we compute a maximum cost directed path in G by
a bottom-to-top traversal. Starting at all leafs we propagate
the cost of the longest path up the graph, thus each node v
will store the value of the maximum cost path to any of its
descendants. We obtain:

Theorem 5. A c-radius approximation of varying-flock

(m, max, r) can be computed in time O(n2τ
(c−2)2

log n), for any

constant c > 2.

3.3.1 Computing valid transitions
In this section we consider the problem of deciding if the

intersection of two cylinders, ∆cr(vi) and ∆cr(vj), at time
t contains a disc of radius r with vi on its boundary and at
least m− 1 other entities inside. This step will be too time
consuming if exact queries would be performed, instead we
will approximate the number of entities within a radius-r
disc. As a consequence some extra edges will be added even
if the above property is not fulfilled. However, an edge will
only be added if the number of entities within the intersec-
tion of ∆cr(vi) and ∆cr(vj) contains at least m − 2 points,
which is a property that suffices to prove Theorem 4.

The idea is to define a constant number of (overlapping)
skew boxes for each entity. Each skew box can be seen as
a rectangle at a fixed moment in time. The position of
the rectangle will be fixed with respect to the entity, as
illustrated in Fig. 4 (b). Produce a set of skew boxes for each
entity v, such that at every moment and for every radius-r
disc that has vi on its boundary the disc is contained in at
least one of the skewed boxes.

One way to achieve the above properties is to place a
constant number of rectangles around each entity that then
are traced through time. The number of rectangles, denoted
κ, can be bounded by O(1/(c − 2)2) which can be derived

using standard trigonometric calculations. The placement
is illustrated in Fig. 4 (b).

For every entity v, consider the κ boxes obtained by mov-
ing the rectangles along the trajectory described by v; in
total there are O(nτκ) boxes. For every box, trace the rect-
angle through time and maintain the entities that enter and
leave. Since there are O(τ) events per entity, a box can be
processed in O(nτ log n) time, so O(n2τκ log n) time overall.
In this way, we can compute the time intervals for each box
for which there are at least m entities inside.

Given two entities vi and vj at distance exactly 2r at
time t, let C(vi) and C(vj) be the two discs of radius cr
with center at vi and vj respectively. One can decide in
O(κ log n) time if there is a rectangle in the intersection of
C(vi) and C(vj) that contains at least m points. Note that
the above construction guarantees that the disc of radius r
with vi and vj on its boundary will lie entirely within the
rectangle. Computing all the valid transitions can in this
way be done in O(n2τκ log n) time.

4. MEETING PATTERNS
In this section we solve the problem of computing longest

duration meeting patterns. Unlike the corresponding flock
pattern this problem is not NP-complete and below we will
give a polynomial time algorithm for fixed-meet(m, max, r),
followed by a faster (1+ ε)-radius approximation algorithm.

As in the previous section we consider the n trajectories
in three dimensions, where the third dimension is time. The
longest duration meeting with radius r is represented by a
vertical column of maximum height and radius r, where m
entities are inside throughout the full height of the column.
For the fixed subset meet pattern these must be the same m
entities, for the varying subset meet they may be different.
In both versions, the bottom and top disks of the column
represent the start and end time of the longest meeting.

Cs

Ce

v

lv

Cs

Ce

Cs

Ce

Figure 5: The three cases of a maximum height col-
umn. Grey squares show where a trajectory passes
through the top or bottom disk, and black squares
show intersection points or vertices that determine
the column. In the rightmost case the vertical line
around which is swept is also shown.

A maximum height, fixed radius vertical column can be
described by four parameters. We need up to four entities
to fix such a shape. Clearly, one entity must have its trajec-
tory pass through the bounding circle Cs at the start time
and one entity must have its trajectory pass through the
bounding circle Ce of the end time. Furthermore, one of the
following situations must also arise in the maximum height

column (see Figure 5):
1. One more trajectory passes through Cs.
2. One more trajectory passes through Ce.
3. A vertex of a trajectory lies on the boundary of the

column between Cs and Ce; this may be a vertex of the
trajectory that passes through Cs or Ce.

The cases do not capture exactly when a maximum height
column arises, but they contain all possibilities. Hence, if
we examine all these cases, we will not miss the maximum
height column. Cases 1 and 2 are symmetric so we will
describe only one of them. We start with the description
of the fixed subset meeting pattern, then we briefly describe
what must be changed to adapt the algorithm for the varying
subset meeting pattern.

4.1 Longest duration fixed meeting
Assuming case 1, we make all possible choices of the two

edges that determine Cs, and sweep a column of radius r in
contact with these edges. More precisely, if the two edges
are in the time interval [ti, ti+1], we sweep through this time
interval so that the two edges give two points which deter-
mine two possible vertical columns. We need to determine
the maximum height column that starts at the time mo-
ment that we are sweeping. In total, we must do O(n2τ)
such sweeps.

Consider any one such sweep. We will maintain infor-
mation on all intersections of trajectories with the vertical
half-column above the lower disk whose boundary is in con-
tact with the two chosen edges. In particular, for the ac-
tive subset of trajectories (which intersect the lower disk),
we maintain the order in which they leave the half-column.
Consequently, we always know when the m-th last trajec-
tory leaves the half-column, which determines the maximum
height of the column for the current lower disk location.

When the half-column moves “up and sideways” to keep
the contacts, the following events occur. (i) A vertex of some
trajectory leaves or enters the half-column. (ii) The lower
disk intersects an edge (a trajectory enters or leaves the ini-
tial subset). (iii) The order in which trajectories leave the
half-column changes (swap in the time-coordinate of two
intersections of trajectories with the half-column). There
are O(nτ) events of type (i), O(n) events of type (ii), and
O(n2τ) events of type (iii). Events of type (i) can easily
be handled in O(τ + log n) time by checking the O(τ) ver-
tices and edges of the trajectory against the current half-
column. Possibly, we must update leaving order of the tra-
jectories by one deletion and one insertion. Events of type
(ii) can also be handled in O(τ + log n) time in the same
way. Events of type (iii) take O(log n) time. Events of type
(i) and (ii) are precomputed, whereas type (iii) events are
computed on the fly. We conclude that the whole sweep
process takes O(n2τ log n) time. Hence, all sweeps together
take O(n4τ2 log n) time.

Case 3 is treated as follows. We choose any vertex v of a
trajectory, take the vertical line lv through it, and rotation-
ally sweep a column of radius r that contains lv. Let Dv be
the horizontal disk in the column with v on its boundary.
We will maintain for all trajectories that intersect Dv the
time interval that they are inside the column, but only the
interval that contains the time of vertex v. Since the start
and end times of these intervals change continuously when
the column rotates, we only maintain the order of entry of
the trajectories in the column, and the order of leaving the

column. For any location of the column in the sweep, the
exact times of entry and leaving can be computed easily.

The following events occur. (i) A vertex of some trajectory
leaves or enters the column. (ii) Dv intersects an edge (a
trajectory enters or leaves the subset at the time of v). (iii)
The order in which trajectories enter or leave the column
changes (swap in the time-coordinate of two intersections
of trajectories with the column). There are O(nτ) events
of type (i) and they can be handled in O(τ + log n) time.
There are O(n) events of type (ii) and they can be handled
in O(τ + log n) time. There are O(n2τ) events of type (iii)
and they can be handled in O(log n) time. Events of type
(i) and (ii) are precomputed, whereas type (iii) events are
computed on the fly. After restoring the orders at an event,
we check in O(n) time by a scan through the two ordered
sets what the longest meet is for this location of the column.
Actually, we compute this for a location and also for angular
intervals between two sweep events, where the structure does
not change. Multiplying and adding gives an O(n3τ + nτ2)
time bound for a single sweep in case 3. We need to do
O(nτ) such sweeps.

Theorem 6. fixed-meet(m,max, r) can be computed in
O(n4τ2 log n + n2τ3) time.

4.2 Longest duration varying meeting
To solve the varying subset longest meeting problem, we

use the same two sweeps as in the fixed subset longest meet-
ing problem. The main difference is that we must maintain
all connected components of trajectories inside the column
or half-column. Consequently, for the half-column sweep
of case 1, type (ii) events are replaced by all events where
an edge intersects the boundary of the half-column; there
can be O(nτ) of such events. We maintain all O(nτ) inter-
vals of trajectories inside the half-column and the order of
their endpoints in an augmented segment tree; augmenta-
tion stores the minimum coverage of any point (in time) in
the subtree. We do not need to know explicitly which inter-
vals are stored with nodes, only how many. Therefore, we
can use a segment tree for stabbing counting queries. The
running time for a sweep of this type is O(n2τ log nτ).

For the rotating column sweeps of case 3, we also adapt
the type (ii) events and will have O(nτ) of them. It is easy to
again attain the O(n3τ +nτ2) time bound for a single sweep,
since we only need to know the number of trajectories inside
the column at each point in time.

Theorem 7. varying-meet(m,max, r) can be computed in
O(n4τ2 log n + n2τ3) time.

We could replace the factor log nτ by log n, because either
these bounds are asymptotically the same, or the second
term n2τ3 dominates the running time anyway.

4.3 Approximating a fixed meeting
We give a (1 + ε)-radius approximation for the fixed-meet

(m, max, r) problem. There are two cases to consider: either
the meeting spans a time step, or the meeting lies within one
time step. We start with the first case.

Case 1.Let F be a longest duration fixed meeting and let f
be the entities of F . Assume that F spans some time step t.
At some time step t, let Copt be a disc of radius r that

(a) (b)

t̂
vi

Figure 6: (a) One of the generated discs of radius
(1+ε)·r will contain Copt. (b) A vertical column from
the disc at time t̂ both upwards and downwards.

contains f ; disc Copt has an unknown location and occurs
at an unknown time step.

We will first try a time step t̂ = τ/2. We determine a
set of discs of radius (1 + ε)r such that at least one of them
will contain the optimal disc Copt, if F occurs at t̂. For each
entity vi, place O(1/ε2) points inside a circle of radius 2r
centered at vi in a regular grid configuration with spacing
ε · r/4. These points will be centers of discs with radius
(1+ε)·r which we will test further. Note that if Copt contains
vi, then one of the generated O(1/ε2) discs of radius (1+ε)·r
will contain Copt completely, as illustrated in Fig. 6 (a).

For all n entities we generate O(n/ε2) discs to be tested
further. We may generate the same disc multiple times if its
center lies closer than 2r from multiple entities, and we use
the same base grid to choose center points from. However,
we only need to test each disc once. Furthermore, we are
only interested in discs that contain at least m entities thus
the same disc will in this case be generated m times but only
tested once. A simple counting argument now shows that
only O(n/(mε2)) distinct discs contain at least m points.

To test a disc, we consider the time dimension again, and
erect a vertical column from the disc both upwards and
downwards, see Fig. 6 (b). We trace the trajectories of all
entities that are in the disc at time t̂ and test when they
first leave the column, both in upward and downward direc-
tion. By examining the two ordered sequences of departure
times we can find the longest duration meeting of the radius
(1 + ε) · r disc, which is assumed to span time t̂. Testing a
disc takes O(nτ log n) time.

Next we go into recursion on the time spans before and
after t̂; the relevant trajectories contain τ/2 time steps in
each half. The recursion bottoms out when all time steps
have been considered. If a longest duration meeting spans
at least one time step then we are certain to have found a
radius (1 + ε) · r meeting of duration at least as long as the

longest radius-r meeting in O(n2τ
mε2 log n log τ) time.

Theorem 8. For any given constant ε > 0, if a longest
duration meeting spans a time step, then a (1 + ε)-radius
approximation of fixed-meet(m, max, r) can be computed in

time O(n2τ
mε2 log n log τ).

Case 2.To approximate the longest duration meeting be-
tween two time steps ti and ti+1 when the duration can be
arbitrarily short, we need to use an approach that is less

efficient. At time ti, compute the O(n/ε2) disks of radius
(1+ε) ·r as above. However, this time we do not remove the
ones that contain less than m entities, nor do we remove du-
plicates. Consider one disk, corresponding to an entity vj .
We sweep a vertical column abutted at time ti+1 upwards
in the same direction as vj , and maintain when the other
entities are inside. The sweep is similar to the one for ex-
act meetings, but simpler. All O(n2) events can be handled
in O(log n) time because we only consider subtrajectories
between two time steps. Hence, all O(nτ/ε2) sweeps take

O(n3τ
ε2 log n) time in total.

Theorem 9. For any given constant ε > 0, a (1 + ε)-
radius approximation of fixed-meet(m, max, r) can be com-

puted in time O(n2τ
mε2 log n log τ + n3τ

ε2 log n).

4.4 Approximating a varying meeting
The algorithm is almost identical to case 1 of the above

algorithm that computes a (1 + ε)-radius approximation of
fixed-meet(m, max, r), given that the meeting spans a time
step. We perform divide-and-conquer on τ as before, and
test the same O(n/(mε2)) vertical columns.

To test a column at time t̂, perform two sweeps of a disk
inside the column starting at t̂ to the top and to the bottom.
We determine for all entities the time intervals that they are
within the sweeping disk. Since an entity can enter and/or
leave the column at most once per time step, the number of
intervals is bounded by O(nτ). The problem is now to find
a longest interval containing at least m intervals, which is
done before and after t̂ independently.

Next we go into recursion on the time spans before and
after t̂; the relevant trajectories contain τ/2 time steps in
each half. If a longest duration meeting spans at least one
time step then we are certain to have found a radius (1+ε)·r
meeting of duration at least as long as the longest radius-r

meeting; and its running time so far is O(n2τ
mε2 log n log τ).

To detect the pattern within two time steps we have to
spend extra time and sweep abutted columns, like before.
The running time is the same as for the fixed-meet problem.

5. CONCLUSIONS
In this paper we considered the problem of computing the

longest duration flock, or meeting, given a set of n mov-
ing points in the plane. We gave several exact algorithms
and approximation algorithms, and we also proved that the
problem of computing a (2− ε)-radius approximate longest
duration flock is as hard as MaxClique.

There are many open problems in this area, for example,
define and design algorithms for more complex patterns and
develop algorithms that can handle spatio-temporal data
with errors or with missing information.

6. REFERENCES
[1] B. Aronov and S. Har-Peled. On approximating the

depth and related problems. In Proc. 16th
ACM-SIAM Symposium on Discrete Algorithms,
pages 886–894, 2005.

[2] M. Benkert, J. Gudmundsson, F. Huebner and
T. Wolle. Reporting flock patterns. In Proc. of the
14th European Symposium on Algorithms, 2006.

[3] J. Erickson and R. Seidel. Better lower bounds on
detecting affine and spherical degeneracies. Discrete &
Computational Geometry 13:41–57, 1995.

[4] A. U. Frank and J. F. Raper and J.-P. Cheylan (Eds.).
Life and motion of spatial socio-economic units.
Taylor & Francis, 2001.

[5] M. R. Garey and D. S. Johnson. Computers and
intractability. W. H. Freeman, 1979.

[6] J. Gudmundsson, M. van Kreveld and B. Speckmann.
Efficient Detection of Patterns in 2D Trajectories of
Moving Points. To appear in GeoInformatica, 2006.

[7] R. H. Güting and M. Schneider. Moving objects
databases. Morgan Kaufmann Publishers, 2005

[8] M. Hadjieleftheriou, G. Kollios, P. Bakalov and
V. J. Tsotras. Complex Spatio-Temporal Pattern
Queries. In Proc. 31st International Conf. on Very
Large Data Bases, pages 877–888, 2005.

[9] K. Hornsby and M. Egenhofer. Modeling moving
objects over multiple granularities. Annals of
Mathematics and Artificial Intelligence,
36(1-2):177–194, 2002.

[10] J. H̊astad. Clique is hard to approximate within n1−ε.
ACTA Mathematica, 182:105–142, 1999.

[11] P. Kalnis, N. Mamoulis and S. Bakiras. On
discovering moving clusters in spatio-temporal data.
In Proc. 9th International Symposium on Spatial and
Temporal Databases, pages 364–381, 2005.

[12] G. Kollios, S. Sclaroff and M. Betke. Motion mining:
discovering spatio-temporal patterns in databases of
human motion. In ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge
Discovery, 2001.

[13] P. Laube and S. Imfeld. Analyzing relative motion
within groups of trackable moving point objects. In
Proc. 2nd International Conference on Geographic
Information Science, pages 132–144, 2002.

[14] P. Laube, M. van Kreveld and S. Imfeld. Finding
REMO – detecting relative motion patterns in
geospatial lifelines. In Proc. 11th International Symp.
on Spatial Data Handling, pages 201–214, 2004.

[15] N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou,
Y. Tao and D. W. Cheung Mining, Indexing, and
Querying Historical Spatiotemporal Data. In Proc.
10th International Conf. on Knowledge Discovery and
Data Mining, 2004.

[16] H. J. Miller and J. Han (Eds.) Geographic data mining
and knowledge discovery, Taylor & Francis, 2001.

[17] R. T. Ng. Detecting outliers from large datasets. In H.
J. Miller and J. Han, editors, Geographic data mining
and knowledge discovery, pages 218-235. Taylor &
Francis, 2001.

[18] Porcupine Caribou Herd Satellite Collar project.
http://www.taiga.net/satellite/.

[19] Y. Qu, C. Wang and X. S. Wang. Supporting fast
search in time series for movement patterns in multiple
scales. In Proc. 7th International ACM Conference on
Information and Knowledge Management, 1998.

[20] J. Roddick, K. Hornsby and M. Spiliopoulou. An
updated bibliography of temporal, spatial, and
spatio-temporal data mining research. In Proc. 1st
Int. Workshop on Temporal, Spatial, and
Spatio-Temporal Data Mining, pages 147–163, 2001.

[21] N. Sumpter and A. J. Bulpitt. Learning
spatio-temporal patterns for predicting object
behaviour. Image Vision and Computing,
18(9):697–704, 2000.

[22] F. Verhein and S. Chawla. Mining spatio-temporal
association rules, sources, sinks, stationary regions
and thoroughfares in object mobility databases. In
Proc. of the 11th International Conference on
Database Systems for Advanced Applications, 2006.

[23] Wildlife tracking projects with GPS GSM collars.
http://www.environmental-studies.de.

