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ABSTRACT

In this paper a switching network with

n inputs and m outputs is considered. The
network satisfies the following condition: any
k<&m inputs can be simultaneously connected
to some k outputs. Such networks are referred
to as (n, m) concentrators. The problem of con-
structing a concentrator with a minimum possib-
le number of crosspoints is investigated.

A concentrator with less than 29n crosspoints
is constructed. Two cases are considered:

a) g——»o for n—<°, b) :—:-—-1 for n—vo<,

The constructed concentrator has asymptotical-
ly no more than 3n crosspoints in the case
(a) and 4n crosspoints in the case (b).
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The paper is concerned with a switching network
having n inputs and m outputs (m<n) and sa-
tisfying the following condition: any k { m
inputs can be simultaneously connected to some
k outputs. Such networks are referred to as
(n, m) - concentrators.

The paper deals with the problem of constructing
concentrators with a minimum possible number of
crosspoints.

As in [1], the problem is formulated and solved
in terms of the theory of graphs. It is necessa-
ry to construct an oriented n inputs m out-
puts graph f in which any m of n inputs
can be connected to m outputs by non-inter—

secting paths, The number Q(f) of cross-
points of a concentrator is determined as the

number of edges in this graph f .

Let F be a set of all oriented graphs f
which are (n, m) - concentrators and
Q(m, m) = min Q(f) ™M
! f€ Fn,m

The main results of the work can be summarized
in the following theorem.

Theorem:
(a) 2n-2 (Q(my m) <cn, w32 , (@)
where the constant ¢ <29 is independent of n
and m;

(®) Q(n, ®Xn) L3n(1+0(1) ), o(1)—0 2
forA >0, n—>o° (3
(¢) Q(n,an) L4n(1+0(1) ), 0(1)—0
for&a—1, n—>°° , (4)

The proof of the Theorem is based on e 'veral
lemmas.

Let us first introduce some definitions. An
oriented graph with n inputs and r outputs
is called
(where n>r>m; n, r, m areintegers ) i
if any m of n 1inputs can be connected
by non-intersecting paths to some m out-
puts. When r = m an (n, r, m) - concentrator

an (n, r, m) - concentrator

*)For the sake of simplicity of notions, it is
assumed that «{n, B n, etc. are integers.
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becomes an (n, m) - concentrator. The set of
all (n, r, m) concentrators will be denoted by
and
Q(n,r,m) = min Q(f)
z n,r,n

An oriented graph containing no vertices other
than inputs and outputs is called an elementary
graph. An elementary graph each input of which
outputs is called an s =

F
n,r,n

is connected to s
regular graph.

Let us also consider the following operations
with oriented graphs:

(a) inversion: graph f is obtained frow graph
f by reversing the orientation of each edge
of thegraph f; the outputs of the graph £

are the inputs of the graph f, and vice versa;

(b) multiplication: if the number of outputs
of the graph f is equal to the number of in-
puts of the graph g, then a graph f x g is
obtained by identifying the outputs of the graph f
with the inputs of the graph g (the inputs and
outputs of each graph are assumed to be enumer-
ated);

(¢) addition: if the graphs f and g have
no common edges and its common vertices are
common inputs or common outputs of both
graphs, a graph f+g 1is obtained by joining
the vertices and edges of the graphs f and g;
the inputs and outputs of the graph f+g are
obtained by joining the inputs and outputs
respec tively of the graphs f and g.

Lemma 1.
Q(n,r,m) £sn, m<ryn )
for any integer s satisfying the inequelities:

[E@ + Zu® + 3 log ZE=8Jy - £ 10g D) < s¢

2/ r—-m)
<G ory@mle 6
where H(A) = -Alog X =(1=-)log(1-X),
0< X 1

The proof of Lemma 1 and its discussion are
given in the Appendix.

Lemma 2., For 2m > n 2.

Q@,m){m+ QR (n-m), n-uw) +Q(m,n-m) (7)

Proof of Leuwa 2.
Let us construct a graph f , which can be
represented in the form

£ = LpEy, £p=EyxE,, (8
where f,‘ is an elementary greph with m 1nputs,
m outpuss and mn edges; the j-th edge connects

the j-th input to the Jj-th output; f3 and
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f, are arbitrary (2(n-m), n-m) and (m,n-m)
concentrators; graphs f,] and f2 have
outputs and n-m comwon inputs. It is obvious
that in the graph f, any n-n of 2(n-m) in-
puts can be connected by non-intersecting paths
to any n-m of m inputs.

m common

Let us show that £ € Fn,m' then (7) follows

from (8). let A ©be an arbitrary set of m in-

puts of the graph f£. Let us now divide the set

A into two disjoint subsets A1 and A2 H

A, contains n-m vertices of the graph £y, includ-

ing all the vertices from A which are not in-

puts of the graph f,, while A,] contains 2m-n

vertices from A which are the inputs of the

graph f,. To obtain the desired pathswe connect
the vertices of A, in the graph f,I to 2m-n

outputs by non-intersecting paths and the verti-

ces of A, in the graph f2 to the remaining non-

occupied n-m outputs.

Lemma 2 is proved.

Lemma 3., For m<r {(n
Q(n.m) ¢ Q(a,r,m) + Q(r,m) )
Q.(rom) S Q(nom) (10)

Froof of lemma 3.

Relation (9) follows from the fact that the
graph f, representable in the form f=f, x fa,
where £,€ Fn,r,m’ £, € Fr,m' is a (n,m) -
concentrator.

Inequality (10) is obvious, since considering o
inputs of a concentrator with n inputs and m
outputs, we obtain a concentrator with r in-
puts and m outputs.

Lemua 3 is proved.

Proof of the Theorem.
Let us show, first of all, that

w(n, %n ) £ 22n. 1)
If n ( 26, then connecting each input with
each of % n outputs by edges we obtain a
concentrator f for which Q(£f)< 22n; it pro--
ves (11). Let now n} 26 . From (7) and (10) we

obtain the following results:

Q(m, o) 20 + Q( 32, 20) + QC 20, 20)

o=

( gn. 16n) £ Q( gn, %n, %n)+ Q(%n, :'G-n) §

( dn, 2 dp, dp, 1 1p, 1
Q( Snv gn) \< Q( 311, 5n1 Gn) + Q( 5n’ 61'1) .
Hence,
; 2 2 T, b dn, 2
Qn, 6n) K4 o+ 2Q( %n, .s.n, 6n)+ 2Q( 5n, 6n) 4
* Q( g n, %n’ %n)' (12)




By (5)

Al /e 2 .
Q( 3n1 =0, gn)\<11 ® §n — 3-3. n;

=n, %n)\<6~ g n = 5n.

1

Q( 20,
Substituting the right sides of these relations
into (12), the following result is obtained:

Q(n, gn) < gn + 7 %n +2Q (:'5-11. %n)+ 5n = 13%11 +

1
+2Q(%ns -Gn) ’
from which it follows thnat inequality (11) hold-
ing for n{26 remains valid for any _}nteger
n>26.

To get the right inequality in

(2), let us consider three cases: (1) gg g 215
1

@ 3 <82, @ o<z<3 .

(1) From (10) and (11) we have

Q(n,m) LQ( g m.m)\<22-§ m K 26.2n . (13)

(2) From (9) we obtain the inequality

Q(n,m) sQ.(n’ gmvm) + Q( g m, m),

from which, using (11) and (5), follows
sn + 26.2m < 29

(,m) £ sn + 22 + gm
(3) By (9)

o(n,m) <Q(n, %n,no + Q( 2 n,m). “4)

win

From (5), Q(n, -2-n,m) £6n. Substitution of the
right side of tgis inequality into (14) gives
Q@,m<en + Q Gn,m)

and the inequality Q(n,m) <29n follows obvious-

i : 1
ly from validity of this inequality for '—nn ;-5 .

Thus, the right inequality in (2)
is proved.

Let us turn now to deriving inequality (3).
From (9), we obtains

Q(n,fX.n) < Q(nsd,@n’ An) + Q( 311, on). (15)

It can be seen from (5) and (6) that for suf-
ficiently small %4, 3 and - % log /3,(<9)

Q(n, /6 n, ol n) S 3n.
Therefore

Q(@m,Xn) {3n + 29 4n =3n(1+0 (1) ), o(1)—0

for d —> 0, n—>22,
Finally, to derive (4), let us use (7) and (3):

Q(n,0n) =%n+ Q2 (n-An),n-An) + Q(An,n-Xn)g

£®n +29.2(n-Xn) +3Xn(1+0(1) ) = 4Xn(1+0(1))=

=4n(1+0(1) ), o(1)—0 for—1, n—>o2.
It now remains to prove the left
inequalityin (2).Two cases are possible:
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(1) At least two different paths issue from each
input of the concentrator fEFn pe et us assign
to each input vertex a; » 1 =7T,n, a vertex cy
where the paths issuing from a; branch off for
the first time. It is easy to see that different
&; and aj are associated with different cy and
5 otherwise it would be impossible to connect
the vertices a; and & to output vertices with
non-intersecting paths, which would imply that
f is not a concentrator.

Since at least two edges issue from each vertex
Cj» the following holds in the case under consi-
deration:

Q) > 2n 16)

(2) Assume that a single path issues from a cer—
tain vertex a; and ends at an output vertex bi.
Then some input different from ay can
be connected to +the output bi 5 RN
is the end of the edge not

included in the péth. Therefore, examining the
concentrator obtained from f by removing the
vertices a; and by, we find that

Q(n,m)),2+Q(n -1, m1). 17)

ik

The number of input vertices 1 from which on-
ly one path issues cannot exceed the number of 3
outputs m, therefore Q(n,2)> 2n-2,

Hence, from (16) and (17) follows
Qn,m) £ 21 + Q(n~-1, m-1)
a1 + 2(n-1) =2n, m-122;

Q(n,n) {2 (m-2) + Q(n-m2,2) = 2(m-2)+2 (n~m2)=2=

= 2n—2, m-1 <2.
This proves the Theorem,

RemarkThe estimate ¢ <29 is a rough one; it can

be somewhat improved if to use (5) more
accurately.

APPENDIX

Proof of Lemma 1.

An auxiliary concept is introduced. £n elementary
graph f with n inputs and r outputs is cal-
led an m expanding greph if any set of k { m
inputs is connected by edges to at least k
outputs.

According to the Konig's theorem [2] , if an ele-
mentary graph is m-expanding, then any k { m
inputs can be connected to the outputs in such

a way that different outputs would correspond to
different inputs. Therefore, to prove Lemma 1

it is sufficient to show that for s satisfy-
ing (6) there exists an elementary s - regular

m - expanding graph with n inputs and r out-

puts.
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Let us relate cach clementary graph £ to its
incicence matrix, i.e. a matrix in vwhich the
number of rows is equal to the number of inputs
and the nuwmber of columns to the number of out—
puts, with 1% & the intersectims of rows and co-
lumns if the corresponding inputs and outputs
are connected and O otherwise. An elementary
graph is m-expanding if and only if ifs incidence
matrix contains no minor of the dimensjon

k x (r-k#1), k = m, equal to zero.
There exist ( Cf, @, 82 r, incidence
matrices of elementary s-regular graphs
with n inputs and r outputs, i.e. n x r mat-
rices with s ones in each row. Among them
there are no more than (C§_1)k(ci)mk matrices
whose fixed minor of the dimension
k x (r~k+1) is equal to zero.Totally there are
no more than

IR

nxr matrices,where each row contains s
ones and one of k x (r-k+l) minors is equal
to zero. Therefore, when

Bkt o MR @D an
k=g+1
there exists an elementary s-regular m - expand-
ing graph. Let us rewrite the relation (A1) in
the form
& ok kTR 7 e <1 *2)
k=s5+1
It is easy to see that either the last or the
first term in (A2) is the largest and conse-
quently to fulfil (A1) it is sufficient to
fulfil each of the inequalities

(ws) 0,21 /7 (6% ¢ 43)
(m-s) ¢2 ¢ ™1(cq_ D™/ @D ¢ 1 “4)
We have

(@-5) C8*1 / (0% am ( 2 )55/ (cE® =
n, ,s-1
= mn( 22/ ¢ ® (45)
and using the inequality(see [3], & 7.1)
log CL<n H( %) - 3log@ )~ Jlog (L(1- 3))
(46)
we derive
log [(m-s)cBc ™"(c.8 )Y (€ %"
{log 5-(5':5-; + nH( g ) + rH( 1—?) - logi2 7 4

(r-m)
+mslog % = (A7)

Comparing (A3) with (45) and (A4) with (A7) we
find that to fulfil (6) it is sufficient 1o

fulfil inequality(a1).
Lemma 1 is proved.
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Remark, There is only one non-constructive part
in the proof of the Theorem - the proof
of existence of an expanding graph
in Lemma 1. Recently, G.A.Margulis [4]
has get regular methods for
constructing such graphs.
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