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ABSTRACT 

In this paper a swi tcbing network with 
n inputs and m outputs is considered. The 
network satisfies the following condition: any 
k ~ m inputs can be simultaneously connected 
to some k outputs. Such networks are r eferred 
to as (n, m) concentrators. The problem of con­
structing a concentrator with a mini mum possib­
le number of crosspoints is investigated. 

A c oncentrator with less t han 29n c IQ sspoints 
is constructed. Two cases are considered: 

a) ~-O for n- oO , b) ~-1 for n--OG • 
n n 

The constructed concentrator has asymptotical­
ly no more than 3n c rosspoints in the case 
(a) and 4n c rosspoints in the case (b). 
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The paper is concerned with a switching network 
having n inputs and m outputs (m <n) and sa­
tisfying the following condition: any k ~ m 
inputs can be simultaneously connected to some 
k outputs. Such networks are referred to as 
(n, m) - concentrators. 

The paper deals with the problem of constructing 
concentrators with a minimum possible number of 
c rosspoint s. 

As in [1J, the problem is formulated and solved 
in terms of the theory of graphs. It is necessa-

ry to construct an oriented n 
puts graph f in which any m 

inputs 
of n 

m out­
inputs 

can be connected to m outputs by non-inter­
secting paths. The number Q(f) of cross­
points of a concentrator is determined as the 
number of edges in this graph f. 

Let Fn,m be a set of all ~riented graphs f 
which are (n, m) - concentrators and 

Q(n, m) = min Q(f) 
fE Fn,m 

(1 ) 

The main results of the work can be summarized 
in the following theorem. 

Theorem: 
(a) 2n-2 ~ Q(n, m) < cn, m~2 (2) 
where the constant c <29 is independent of n 
and m; 

(b) Q(n, an) ~3n(1+o(1) ), 0(1 )-0 

forv<. - -~ 0, n --.:.- 00 

(c) Q (n,o(n)~4n(1+0(1) ), 0(1)--0 
fora---1, n- 00 

(3) it) 

(4) 

The proof of the Theorem is based on e ~eral 
lemmas • . 

Let us first introduce some definitions. An 
oriented gpaph with n inputs and r outputs 
is called an (n, r, m) - .concentrator 
(where n> r) m; n t r, m are integers ) 
if any ill of n inputs can be connected 

by non-intersecting paths to some m out-
puts. t,\tLen r = m an (n, r, m) - concentrator 

. ) 

iJ--------------~ For the sake of simplicity of notions it is 
assumed that oL. n t /3 D t etc. are integ~rs. 
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becomes an (n, m) - concentrator. The set of 

all (n, r, m) concentrators will be denoted by 

F and 
n,r.m 

Q(n,r,m) = min Q(f) 
fE Fn,r,m 

An oriented grapb containing no vertices other 

than inputs and outputs is called an elemen-cary 

graph. An elementary graph each input of V'bich 

is connected to s outputs is called an s­

regular graph. 

Let us also consider the following operations 
with oriented graphs: 

(a) inversion: graph f is obtained fronl graph 

f by reversing the orientation of each edge 

of thegmphf; the outputs of the graph f 

are the inputs of the graph f, and vice versa; 

(b) multiplication: if the number of out-puts 

of the 6raph f is equal to the number of in­

puts of the graph g, then a graph f x g is 

obtained by id~ng the outputs of the ~ f 

with the inputs of the graph g (the inputs and 

outputs of each graph are assumed to be enumer­

ated) ; 

(c) addition: if the graphs f and g have 

no common edges and its common vertices are 

common inputs or common outputs of both 

graphs, a graph f+g is obtained by joining 

the vertices and edges of the graphs f and gi 

the inputs and outputs of the grap h f+g are 

obtained by joining the inp uts and outputs 

respec tively of the graphs f and g. 

Lemma. 1. 
Q(n,r,m) ~ sn, m < r,n (5) 

for any integer s satisfying the inequalities: 

[H(~ + 1: H(~) + :!. log ~(~211 (- li log ~) < so( 
n r n 2J1( r-m)2Y r 

where H( d.) - V(log a - (1-d )10g(1- d) , 

o < d < 1. 

The proof of Lemma 1 and its discussion are 

given in the Appendix. 

Lemma 2. 

(6) 

Q(n,m) ~ ID + Q(2 (n-m), n-m) +Q(m,n-m) (7) 

~roof of Le illilla 2. 

Let us construct a Grapb f ,which can be 

represented in the form 

f = f1+f2 ' f2=f)xf4' (8) 
where f1 is an elementar,y g raph with ill inputs, 

m out~uts and ill edges; the j-th edge connects 

the j-th input to the j-th output; f) and 
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f 4 are arbi trar-J (2 (n-m), n-m) and (m,n-m) 

concentrators; graphs f1 and f2 have m common 

outputs and n-m common inputs. It is obvious 

that in the graph f2 any n-m of 2(n-,m) in­

puts can be connected by non-intersecting paths 

to any n-m of m inputs. 

Let us show that f E F n, m' then (7) follows 

fro m (8). Let A be an arbi trar,y set of m in­

puts of the graph f. Let us now divide the set 

A ·into two disjoint subsets A1 and A2 ; 

A2 contains n-ill vertices of the graph f 2 , includ­

ing all the vertices from A which are not in­

puts of the graph f 1 , v.hile A1 contains 2~n 

vertices from A Vlhich are the inputs of the 

graph f 1 • To obtain the desired paths ,we cormect 

the vertices of A1 in the graph f1 to 2m-n 

outputs by non-:-intersecting paths and the verti­

ces of A2 in the graph f2 to the remaining non­

occ upied n-m outputs. 

Lemma. 2 is proved. 

Lemma. 3. For m < r < n 

Q(n.m) ~ Q(n,r,m) + Q(r,m) 

Q(r,m) ~ Q(n.m) 

Proof of I.ern:na ). 

(9) 

(10) 

Relation (9) follows from the fact that tEe 

graph f, representable in the form f=f1 x f 2 , 

whe re f 1 E F n ,r, ill' f 2 € F r, m' is a (n. m) -
c onc entra tor. 

Inequali~(10) is obvious, since considering r 

input s of a corcentrator \vl.th n inputs and m 
outputs, we obtain a concentrator with r in­

puts and m outputs. 

Lemma 3 is proved. 

Proof of the rrheorem. 

Let us show, first of all, that 

, ~(n, ~n ) ~ 22n. (11 ) 

If n ~ 26, then connecting each input with 

each of t n outputs by edges we obtain a 

concentrator f for which QCf) <.. 22n; it pro- . 
ves (11). Let now n> 26 • From (7) and (10) we 

obtain the following results: 

Q(n, ~n)~ ~n + Q( )n, ~n) + Q( ~n, in) 

Q( ~n, ~n) ~ Q( ~n, 3n, ~n)+ Q(}n, in) 
1 1 111 1 1 QC -n, -n) ~ QC -n, -n, -n) + QC -5n, -6n) • 
) 6 ~ ) 5 6 

Hence, 

Q(n, 2n) ~ 2n + 
6 6 

2Q( ~n, 1n, 
) 5 

2n)+ 
6 

2Q( 2n , 
5 

.:!n) + 
6 

+ QC .2 n, 
1 1n ). (12) 

6 3n , 6 
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By (5) 

Q( 1n , 3n , ~n)~11 • 3n = J~ n; 

Q( 2n , :!.n, :!.n) ~ 6· 26 n = 5n. 
6 J 6 '.;: 

Substituting the right sides of these relations 

into (12), the following result is obtained: 

Q(n, tn) ~ ~n + 7 jn + 2Q (~n, ~n)+ 5n = 1J~n + 

+2Q(.:!n, :!.n), 
5 , 6 

from which it follows that inequality (11) hold-

ing for n~26 remains valid for any ~nteger 

n)26. 

To get the right , inequality in 

(2), let us consi de r three cases: (1) ~ ~ ~ ~ 1, 

1 m2 () m1 
(2) 3 ~ ii ~ 6' J 0 < ii <"3 • 
(1) From (10) and (11) we have 

6 6 Q(n,m)~Q( '5 m,m)~22.j m~26.2n (1 J) 

(2) From (9) we obtain the inequality 
6 6) Q(n,m) ~Q(n, 5m,m) + Q( '5 m, m , 

from Which, using (11) and (5), follows 

Q(n,m) ~ sn + 22 • § m = sn + 26.2m < 29r. 
5 

(3) By (9) 

Q(n,m)~Q(n, 3n ,m) + Q( 3 n,m). (14) 

From (5), Q(n, gn,m) ~6n. Substitution of the 

right side of t~is inequality into (14) gives 

2 
Q(n,m)~6n + Q (3n ,m) 

and the inequality Q(n, m) < 29n follows obvi ous-
m 1 

1y from va1idi"ty of this inequality for ii ~ '3 • 
Thus, the right inequality in (2) 
is proved. 

Let us tUrn now to deriving inequality (J). 

From (9), we obtain: 

Q(n,O::n) ~ Q(n,jn, cXn) + Q(..;,8n, <x"n). (15) 

It can be seen from (5) and (6) that for suf­

ficiently small d, ,9 and - ~ log ;9, (cX<3) 
v ' J v 

Q(n, / 1 n, d n) ~ In. 

Therefore 

Q(n,<Xn) ~3n + 2~/9n =3n(1+0(1) ), 0(1)----"0 

for d. -- 0, n-oc • 

Finally, to derive (4), let us use (7) and (3): 

Q(n,dn) =all+ Q(2(n-dn),n-v(n) + Q(a'n,n-dn)~ 

~dn +29.2 (n-dn) +JeXn(1+o(1)) 4<Xn(1+0(1));: 

=4n.(1+0 (1) ), 0 (1 )-0 foro(~1, n~ 00. 

It now remains to prove the left 

inequality:in (2).Two cases are possible: 
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(1) At least t'A() different paths issue from each 

input of the concentrator f E F • Let us assign 
n,m 

to each input vertex a i ' i = ~, a vertex c
i 

where the paths issuing from a i branch off for 

the first time. It is easy to see that different 

a i and a j are assoc iated with different c i and 

c j ' otherwise it would be impossible to connect 

the vertices a i and ~ to output vertices with 
non-intersecting paths, which would imply that 

f is not a concentrator. 

Since at least two edges issue from each vertex 

c l' the following holds in the case under consi­
deration: 

Q(f) ? 2n (16) 

(2) Assume that a single path issues from a cer­

tain vertex a i and ends at an output vertex b i • 

Then some input different from ~ can 

be connected to the output b
i 

if b
i 

is the end of the edge not 

included in the path. Therefore, examining the 

concentrator obtained from f by removing the 

vertices a i and b i , we find that 

Q(n,m) ,?2+Q(n - 1, m-1). (17) 

The number of input vertices 1 from which on­

ly one path issues cannot exceed the number of ; 

outputs m, therefore Q(n,2) ~ 2n-2. 

Henc e, from (16) and (17) follows 

Q(n,m)!: 21 + Q(n-I, m-I) 

~ 21 + 2(n-1) = 2n; m-1?2; 

Q (n, m) ~ 2 (m-2) + Q (n-IIl+2.2) = 2 (m-2 )+2 (n-IIl+2 )-2= 

= 2n-2, m-1 < 2. 

This proves the 'rheorem. 

Remark.The estimate c<29 is a rough one; it can 
be somewhat improved if to use (5) more 

accurately. 

APPENDIX 

Proof of Lemma 1. 

An auri1iary concept is introduced. Ln e1emen tar,y 

graph f with n inputs and r outputs is cal­

led an III expanding 5rap h if any set of k ~ m 

inputs is connected by edges to at least k 

outputs. 

According to the Konig's theorem [2J t if an ele­

mentary graph is ~expanding, then any k ~ m 
inputs can be connected to the outputs in S.lch 

a w;J.:y that different outputs would correspond to 
different inputs. Therefore, to prove Lemma 1 

it is sufficient to show that for s satisfy­

ine (6) there exists an elementary s - regular 
ID - expanding graph with n inputs and rout­

puts. 
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Let us relate 0ac h s ler:;e:otaQ graph f to its 

inc idenc e matrix, 1. e. a matrix in v.hic h the 

number of' rows is equal to the number of inputs 

and the number of columns to t he number of out­

puts, with 1's at tile intersectims of rows and co­
lumns if the corresponding inputs and outputs 

are c onnec ted, and 0 otherwise. An elementary 

graph is ~expanding if and only if its inc idence 
matrix contains no minor of the dimens~on 

k x Cr-k~1), k:.: m, equal to zero. 

,There exist (C~ )n, s~ r) incidence 
:matrices of elementary s-regular graphs 

wi th n inputs and r outputs, 1. e. n x r mat­

rices with s ones in each row. Among them 

there are no more than (C~_1 )k(C~)n-k matrices 

whose fixed minor of the dimension 

k x Cr-k+1) is equal to zero.Totally there are 

no more than 
Ck Ck- 1 (Cs )kCCs)n-k 

n r k-1 r 

n x r matrices)where each row contains s 

ones an<;l one of k x (r-ktl) minors is equal 
to zero. Therefore, when 

there exists an elementary s-regular m - expand.,.. 

ing graph. Let us rewrite the relation (A1) in 

the form 

~ Ck Ck- 1 (Cs )k / (C s)k < 1 (A2) 
L. n r k-1 r 

k=s+1 
It is easy to see that either the last or the 

first term in (A2) is the lar~est and conse­

quently to fulfil (A1) it is sufficient to 

fulfil each of the inequalities 

(~s) C s+1 / (Cs)s < 1 n r (A)) 

(A4) 

We have 

(m-s) c~1 / (C~)s~ nm ( ~ )sss/(C~~)s = 

nm( ~/ CS-
1 ) s (A5) 

r r-1 

and using the inequality(see [3J, ~ 7.1) 

1 1 1 ~) 1 1),) log Cn <n H( n ) - 2log (2.J( - 2log (1(1- DJ 
(A6) 

we derive 

log [(m-s)C~C/p..1 (C:1 )m/ (C
r 

S)illJ ~ 

~log r(~s) + nH( ~ ) + rH( ~) _ log \2 .7l1+ 
(r-m)2 n n 

m 
+mslog r . CA?) 

Comparing CA3) with (A5) and (A4) with (A7) we 
find that to fulfil (6) it is sufficient 1;0 

fulfil inequality (A1). 
Lemma 1 is proved. 
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REIIlark. '!here is only one non-constructive part 
lon the proof of the Theorem - the proof 
of existence of an expanding graph 
in Lemma 1. Recently, G.A.Margulis [4J 
has get regular ~ethods for 
constructing such graphs. 
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