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In this paper we de�ne a number of fragments of Lisp, by means of a progres-sive sequence of restrictions to (unlimited) recursion; and we show the equiva-lence between these fragments and the polynomial classes. Lisp has been chosen,instead of other models of computation, because it o�ers the obvious advantagesof a richer data type and of a higher-level language, and because it �ts tradi-tional mathematical methods of investigation, like induction on the constructionof functions and arguments. A preliminary validation of this choice is discussedin the last section of this paper, together with perspectives and other aspects ofour work.We now outline the adopted recursion schemes. A function f [x; y] is de�nedby course-of-values recursion if its value depends on a pre-assigned number nof values f [x; yi] for n previous values of y. What makes the di�erence is themeaning of previous. For Pspacef and PH we mean any z such that jzj < jyj(that is we may choose n values among O(2cjyj) previous values). For Ptimef wemean any subexpression of y (n among O(jyj) values). The restriction of Pspaceto PH is obtained by asking that the invariant function of the recursion be inthe form f [x; y1] or : : : or f [x; yn]. Classes �k are de�ned by counting in themost obvious way the levels of nesting of this form of recursion.A rather extreme formulation of an aspect of the work presented here is thatit allows a position of some celebrated problems in terms of comparison betweensimilar operators, of an apparently increasing strength, instead than in terms ofcontrast between heterogeneous resources.2 Recursion Free LispAn atom is a sequence of capital letters and decimal digits. A special role isassigned to atoms T (F ), associated with the truth-values true (false), and NIL.An (S-)expression is an atom, or a dotted couple (x � y), where x and y areexpressions. !; !1; : : : are (variables de�ned on the) atoms; s; : : : ; z; s1; : : : are S-expressions. s; : : : ; z are tuples of expressions of the form x1; : : : ;xn (n � 0). An(S-)function f takes a tuple of arguments x into an expression f [x]; d; e; f; g; hare functions, and d;d 1 : : : are tuples of functions. If a tuple of syntacticalentities has been introduced by means of a notation of the form E, we denoteby Ei its i-th member (for example xi; zji are the i-th expression of x; z j ; andf ji is the i-th function of f j).A list is an expression of the particular form we now describe: atom NIL isthe empty list, also denoted by (); all other lists x are in the form (xn � (: : : � (x1 �NIL) : : :), and are shown as (xn; : : : ; x1); (x)i = xi is the i-th component of x,and #(x) = n � 0 is its number of components.Sometimes, along a computation, we mark an (occurrence of an) expressionx by a superscript � = A;B;AB, and we say that x� is of type � ; when x hasnot been marked, we say that it is of type 0, and we write x0. (Thus marked S-expressions are the actual constants of our language.) The type of all atoms is 0.The type of all non-atomic sub-expressions of x� is � . A relation of compatibilityis established by stating that:



1. all expressions are compatible with those of type 0;2. all expressions of type � 6= 0 are incompatible with those of their same type� and with those of type AB.x � (x 6=� ) is a tuple of variables of the same type � (of type 6= �). Types arenot speci�ed in the de�nition of a function, when they don't change (cf. 2.2.2)or when they don't a�ect the result (cf. 2.2.1).2.1 Basic functionsThe class B of the basic functions consists of:1. predicates at and eq, such that at[x] = T (F ) if x is (not) an atom, andeq[x; y] = T (F ) if x and y are (not) the same atom;2. the conditional cond[x; y; z] = y if x = T , and = z if x 6= T ; cond[x1; y1; : : : ;cond[xn; yn; z] : : :] is usually displayed as [x1 ! y1; : : : ;xn ! yn;T ! z].3. the selectors selnj [x] = xj , and, for every atom !, the constant functions![x] = !; we often let these functions be denoted by their results; id is theidentity sel11;4. the predecessors car and cdr, such that: car[!] = cdr[!] = !; car[(y � z)] = yand cdr[(y � z)] = z; sometimes we write x0 for car[x] and x00 for cdr[x];5. the constructorcons[x�1 ; y�2 ]=8>><>>: (NIL)AB if the arguments are incompatible(x � y)0 if both �i are 0(x � y)� if one of the �i is � and the other is 0(x � y)AB if one of the �i is A and the other is B;6. functions �; �; �, which leave un-changed the atoms, and such, otherwise,that �[x0] = xA; �[x0] = xB , �[x 6=0] = �[x 6=0] =NIL; �[x� ] = x0;7. function unite, which leaves its argument x un-changed if x0 or x00 are notlists; and takes ((x1; : : : ; xm); xm+1; : : : ; xm+n) into (x1; : : : ; xm+n) other-wise; for example unite[((A;B;C); D;E)] = (A;B;C;D;E).These basic functions di�er from those of pure Lisp for a few changes, adoptedto handle the types and to exclude marginal cases of unde�ned functions.2.2 SubstitutionsBy a composite notation like f [x], we mean that all arguments of f occur (notnecessarily once) in x, but we don't imply that every xi is an actual argumentof f .A main di�erence with pure Lisp is that we renounce to its �'s to showsubstitutions (SBST) explicitly, by replacing the substituted variable with thesubstituend function. This rudimental way allows simpler de�nitions and space-complexity evaluations, at the price of a systematic ambiguity between functionsand values. Thus, deciding for example whether car[x] and car[y] are the samething is left to context. A SBST to an absent variable has no e�ect; all occurrences



of the substituted variable are replaced by the substituend function. No kind ofdisjunction between original and new variables is assumed.We write f [x] for f1[x]; : : : ; fn[x]. Given n functions h[u], and given g[x; z],we write g[x;h[u]] for the simultaneous SBST of h[u] to the n variables z in g.The special form of substitution we now introduce allows to by-pass the type-restrictions on the cons's one should otherwise handle, in order to re-assemblethe parts of the argument, after processing them separately.De�nition 1. The unary function f is de�ned by internal substitution (IN-SBST) in g1; : : : ; gk if we havef [x] = �NIL if #(x) < k(g1[(x)1]; : : : ; gk[(x)k ]; (x)k+1; : : : ; (x)#(x)) otherwise,or �f [!] = NILf [(u � w)] = (g1[u] � g2[w]);Notation: f = �(g). Functions g are the scope of the INSBST.Given a class C of functions, we denote by C� its closure under SBST andINSBST. For example, the class of all recursion-free functions is B�.2.3 LengthsThe length jzj of z is the number of atoms and dots occurring in (the valueassigned to) z. jxj and max(x) are respectively Pi jxij and maxi(jxij).jf [x]j is the length of the value of f [x] when a system of values is assigned tox; jf [x]j is Pi jfi[x]j. For example jcons[x;x]j = 2jxj+ 1; jy00j � max(1; jyj � 2).We say that f [x] is limited by the numerical function � (possibly a constant) iffor all x we have jf [x]j � �(jxj).De�ne lhc(f) to be 2n+ 1, where n is the number of cons occurring in theconstruction of f .The idea of next lemma is rather simple: types allow cobbling together, with-out any limitation, the arguments of type 0; but at most one A and/or one Bmay contribute to the function being computed.Lemma2. For all recursion-free function f in which � doesn't occur, we havejf [x 0; s 1A; s 2B ]j � lhc(f)max(1; jxj) + max(s 1) + max(s 2):Proof. Let us write m for lhc(f)max(1; jxj), and Mi for max(s i). We show thatz� = f [x; s 1; s 2] implies jzj � m+ n, where:� = 0 (case 1) implies n = 0;� = A (� = B) (case 2) implies n �M1 (n �M2); and� = AB (case 3) implies n �M1 +M2.Induction on the construction of f . Base. Assume that f is cons, since else theresult is trivial. We have, for example, jcons[tA; tB ]j = 2jtAB j+1 � 3+2jtj. Etc.



Step. (1) Let us �rst assume that f begins by a basic function. Then we mayassume further that the form of f is cons[g1[x; s 1A; s 2B ]; g2[x; s 1A; s 2B ]], sincethe lemma is an immediate consequence of the ind. hyp. for all other basicfunctions. Let gi[x; s 1; s 2] = z�ii ; i = 1; 2; thus z� = cons[z1; z2]. Let us writemi for lhc(gi)max(1; jxj) Cases 1-3 as above.Case 1. We have �1 = �2 = 0 The ind. hyp. gives jzij � mi. The result follows,since lhc(f) = lhc(g1) + lhc(g2) + 1.Case 2. We have � = A or � = B, one of the �i is � , and the other is 0; let forexample �1 = B. The ind. hyp. gives jg1j � m1 +M2, jg2j � m2. The resultfollows by immediate computations.Subcase 3.1. One of the �i, say �1, is A, and the other is B. The ind. hyp. givesjzij � mi +Mi and the result follows immediately, since m1 +m2 � m.Subcase 3.2. One of the �i is AB, and the other is 0. Similarly.(2) The possibility remains that the form of f is �(g1; : : : ; gk)[h[x; s 1; s 2]]. Leth[: : :] = y� . Assume #(y) = k. Case 1. � 6= 0. Then, since all components of yare of the same type � , the ind. hyp. gives jf j �Pi(j(y)ij+ lhc(gi)) + k � 1 �jyj +Pi(lhc(gi)), and the result follows by the ind. hyp. applied to h, sincelhc(f) � lhc(h) +Pi lhc(gi). Case 2. � = 0. Immediately from the ind. hyp.,applied to h and to the g's.2.4 Some classes of recursion-free functions(1) A proper cut of order n is a composition of n � 0 predecessors. We regard theidentity as an improper cut of order 0. Two cuts g1; g2 are disjoint if they don'treturn two overlapping sub-expressions of their argument. In syntactic terms,the g's are disjoint if for no gi there is a cut h, such that gi[x] = h[g3�i[x]]. Afully disjoint tuple (of cuts) C is a tuple e, such that: (a) every ei is either acut gi, or is in the form �(h i), where every hij is a cut; and (b) all couplesgi; hij are disjoint.De�ne the cuts 1st; 2d; 3d; : : : ;i-th, such that i � #(x) implies i-th[x] = (x)i;any tuple of cuts of this form is an example of fully disjoint tuple.(2) For every list y = (!1; : : : ; !n), we call unary append (of order n), and wedenote by app(y), function cons[!1; [: : : ; cons[!n;x] : : :]]; if x is a list, it appendsits components to those of y. For example, for y = (A;B) and for every listx = (x1; : : : ; xn), we have app(A;B)[x] = (A;B; x1; : : : ; xn).De�ne list[x] = cons[x;NIL[x]]; for all n de�ne list[xn+1; : : : ;x1] = cons[xn+1;list[xn; : : : ;x1]].For example, we have list[()] = (()); list[A; (A); ((A))] = (A; (A); ((A))).(3) De�ne the sentential connectives not, or, and fromnot[x] = [x! F ;T ! T ]; x or y = [x! T ; y ! T ;T ! F ].A simple boolean function is built-up from eq; at and the connectives. A booleanfunction is obtained by substitution of some cuts to some variables in a simpleboolean function.(4) For all list of atoms q; s; t de�ne functions g(q; s; t) by (see proof of Lemma3 for their use) g(q; s; t)[x] = �(app(s); q; t; cdr); we have



g(q; s; t)[((x1; : : : ; xn); u; w; (y1; : : : ; ym))] = ((s; x1; : : : ; xn); q; t; (y2; : : : ; ym)):(5) A function is trivially decreasing if is a proper cut; or if it is in the form�(g1; : : : ; gm), and: (a) every gi is a cut, or a unary app; and (b) the sum of theorders of all cuts is higher than the sum of the orders of all unary app's. Forexample, �(app(T ); 3d; id) is trivially decreasing. If f = �(g1; : : : ; gm) is triviallydecreasing, and if no gi[y] is an atom, then jf [y]j < jyj.3 Recursion schemesAn obvious condition to ensure that a recursion scheme de�nes total functionsis that its recursive calls refer to values of the recursion variable, which preceed,according to some (partial) order, its current value. In the Conclusion, doubtsare expressed about closure of the polynomial classes under recursion schemesbased on an order isomorphic to the natural numbers. Hence our �rst restrictionis to the order x < y i� jxj < jyj.De�nition 3. Given (1) m parameters x, a principal variable y, and n auxiliaryvariables s;(2) an n-ple d of trivially decreasing functions, together with a terminatingboolean function g�[y], depending on the form of the d's in some trival way thatwe don't specify here;(3) an initial function g[x; y] and an invariant function h[x; y; s];function f is de�ned by course-of-values recursion (CVR) in g; h if we havef [x; y]�g[x; y] if g�[y] = Th[x; y; f [x; d1[y]]; : : : ; f [x; dn[y]]]] otherwise.The following example shows that an exponential space complexity may eas-ily be reached with very poor means: no nesting, and a single recursive call to themost obvious sub-expression of the recursion variable. Thus restrictions to theinvariant h have to be adopted. We have two alternatives: either we drasticallyimpose that h be boolean, or we use the types machinery to rule its growth.� ex[x;!] = cons[x;x]ex[x; y] = cons[ex[x; y00]; ex[x; y00]]:De�nition 4. 1. Function f is (recursively) boolean if is boolean and recursion-free, or if is de�ned by CVR with boolean invariant function.2. Function f [x; y] is de�ned by short CVR (SCV) if it is de�ned by CVR, ifthe initial function g is in the class PL de�ned below, and if the invariant isboolean.3. Function f is de�ned by or-SCV (OR-CV) if it is de�ned by SCV, and theform of its invariant ish[x;y; s] = s1 or s2 or : : : or sn:



4. Function f is de�ned by fast CVR (FCV) if: is de�ned by SCV; the decreasingfunctions form a fully disjoint tuple of cuts; and the invariant h is(a) either boolean, or(b) is recursion-free, and there is a function h�, in which � doesn't occur,and a tuple e of �'s and �'s, such thath[x; y; s] = �[h�[x; y; e1[s1]; : : : ; en[sn]]]:The sense of clause (b) above is that, if z1; : : : ; zn are the previous values of f ,then h is not allowed to cons any zi with itself, though it may cons at most oneof the z's in the scope of an � with at most one of those in the scope of a �.Examples of FCV. De�ne the numeral num(m) for m to be the list whosem+1 components are all 0. A function mult , such that mult [num(h);num(k)] =num(hk) may be obtained from function mult0 below, by some trivial changesmult0[x; y] = �x if y is an atom�[unite[cons[x;�[mult0[x; cdr[y00]]]]]] otherwise:Thus FCV, with cdr as decreasing function, may be regarded as an analogueof number-theoretic PR. Next example shows that, with car; cdr as decreasingfunctions, FCV is the analogue of the form of recursion known in Literature astree PR. In the concluding section the advantages of taking less trivial cuts asdecreasing functions are discussed. The following function lh computes num(jyj)� lh[!] = (0)lh[y] = �[cons[0;unite[list[�[lh[y0]];�[lh[y00]]]]]]:De�ne the equality by x = y := eqc[cons[x; y]], where eqc is de�ned by FCV,with d1 = �(car; car) and d2 = �(cdr; cdr), byeqc[y] = � eq[y0; y00] if at[y0] or at[y00] = Teqc[d1[y]] and eqc[d2[y]] otherwise:Example of OR-CV: SAT. Assume de�ned function true[(v; u; w; z)], which, ifv is a list of atoms and z is (the code for) a sentential formula: (a) assigns true(false) to the i-th literal of z if the i-th component of v is (not) T ; (b) returnsT (F ) if z is true (false) under this truth-assignment. De�ne by OR-CV, withdecreasing tuplesd1 = �(app(T ); cdr; cdr; id) d2 = �(app(F ); cdr; cdr; id)st[y] = � true[y] if at[(y)2]st[d1[y]] or st[d2[y]] otherwise:Satis�ability is decided by sat[x] = list[(); lh[x]; lh[x];x].



Example of SCV : QBF. We show that thepspace-complete language QBF isaccepted by a function qbf de�nable in PSL. Let b; b1; : : : be (boolean) literals,and let �; � be quanti�ed boolean formulas. Let num2(i) be the binary numeralfor i, and de�ne the code �� for � by0� = T ; 1� = F ; b�i = (V AR; num2(i)); (:�)� = (NOT; ��); (8b�)� =(ALL; b�; ��);(9b�)� = (EX; b�; ��); (� ^  )� = (AND;��;  �); (� _  )� = (OR;��;  �):We associate each occurrence b̂ of literal b in formula � with a list AV (b̂; �),to be used as address and truth-assignment, and de�ned by1. let � be �_ or � = �^ ; if b̂ is in � (is in  ) then AV (b̂; �) is (L;AV (b̂; �))(is (R;AV (b̂;  ))); it says that b̂ is in the left (right) principal sub-formulaof �;2. if � is 8(9)bi�, and we wish to assign T; F to the occurrences of bi in the scopeof the indicated quanti�er, then AV (b̂; �) = (T;AV (b̂; �)) or, respectively,(F;AV (b̂; �)).A function val[(x; u; z)] can be de�ned in PL, which, by an input of the form(AV (b̂; �); u; ��) returns T (F ) if AV (b̂; �) is the address and truth-assignmentof an occurrence in � of a true (false) literal. De�neqb[y] = 8>>>>>>>><>>>>>>>>:
val[y] if at[(y)02][(y)02 = AND ! qb[d11[y]] and qb[d12[y]];(y)02 = OR ! qb[d11[y]] or qb[d12[y]];(y)02 = ALL ! qb[d21[y]] and qb[d22[y]];(y)02 = EX ! qb[d21[y]] or qb[d22[y]];(y)02 = NOT ! not[qb[d3[y]]];(y)02 = V AR ! qb[d3[y]]] otherwise;function qb is de�ned by SCV, with the following trivially decreasing tuplesd11 = �(app(L); 2d; id) d12 = �(app(R); 3d; id)d21 = �(app(T ); 3d; id) d22 = �(app(F ); 3d; id) d3 = �(id; 2d; id)We can now de�ne qbf [x] = qb[list[();x;x]].4 CharacterizationGiven an operator O taking functions to functions, and a class C of functions,we write O(C), for the class of all functions obtained by at most one applicationof O to the elements of C; O�(C) is the closure of C under O. Thus, O(C)� andO�(C)� are the closures of O(C) and O�(C) under substitution.De�nition 5. De�nepolytimef Lisp(PL, also �p1L) = FCV�(B�)�;�pn+2L = OR-SCV(�pn+1L)�;polynomial hierarchy Lisp(PHL) = OR-SCV�(PL)�.polyspacef lisp(PSL) = SCV�(PL)�.



Theorem6. All Lisp classes above are equivalent to the complexity classes theirnames suggest.Proof. We have polytimef� PL by lemma 8. By lemma 7, all functions inPL are limited by a polynomial; hence, by lemma 9, PL �polytimef. Bythe same lemma, since the invariant in de�nitions by SCV is boolean, we havePSL �pspacef. We have pspacef� PSL, since, by the example above, thepspace-complete set QBF can be decided in PSL, and since PL � PSL. Lemma10 shows the equivalence of the two hierarchies.5 EquivalenceLemma7. 1 If f [x; y] is FCV in g and h, with recursion variable y, then thereis a constant m such that jf [x; y]j � mjx; yj � jyj:2 Every function de�nable in PL is limited by a polynomial.Proof. 1 Notations like under de�nition 4(4). Assume that h is not boolean, andde�ne M = max(lhc(g); lhc(h)). Induction on jyj. Base. Immediately by lemma1 (with s absent). Step. Assume N := jxj � 1. Let s 1A denote the tuple ofexpressions such that ej = � and s1Aj = ej [f [x; dj [y]]] for some j; similarly fors 2B . By lemma 1, since lhc(h) �M , we havejf [x; y]j �M(N + jyj) + max(s 1A) + max(s 2B).Since d is fully disjoint, there exist two sub-expressions u and w, such thatmax(s 1A) = jf [x;u]j, max(s 2B) = jf [x;w]j and juj+ jwj < jyj. By the ind. hyp.we then havejf [x; y]j �M(N+jyj)+M(N+juj)juj+M(N+jwj)jwj � m(n+jyj)(1+juj+jwj).2 Induction on the construction of f . Step. If f is de�ned by FCV, part 1 applies.If f [x] is de�ned by SBST in g1[x;u] of g2[x] to u, by the ind. hyp. there arek1; k2, such that gi is limited by �n:minmi + mi, with mi = 2ki ; f is thenlimited by �n:mnm+m, with m = 2k1(k2+1). If f [y] = �(g)[y], the result followsimmediately by the ind. hyp. applied to the g's.5.1 Simulation of TM'sLemma8. All functions computable in polynomial time are de�nable in PL.Proof. We restrict ourselves to TM's with a single semitape, that conclude theiroperations by entering an endless loop. Productions are in the form (qiSj )qijIij) (i � s; j � t) where qi; qij are states, Sj is a tape symbol, and instructionIij is a new symbol or 2 fright,leftg. We use the same notations for states(tape symbols) and for their codes, which are lists of s (t) atoms. Instantaneous



descriptions (i.d.) are coded by a list of the form (l; q; o; r), where: q and o arethe state and the observed symbol; the j-th component of list r (list l) is the listof t atoms coding the j-th symbol at the right (left) of the observed symbol. Arecursion-free function nextM can be de�ned that takes an i.d. of a given TMM into the next one. Its form is[eql(q1)[2d[x]]! [eql(S1)[3d[x]]! exec11; : : : ; eql(St)[3d[x]]! exec1t[x]];: : :;[eql(qs)[2d[x]]! [eql(S1)[3d[x]]! execs1; : : : ; eql(St)[3d[x]]! execst[x]];,where, for all lists of atoms p, predicate eql(p)[x] is true i� x = p, and whereexecij is the function that executes instruction Iij . For example, if qij is q, andIij is right, then execij is[eql(S1)[car[4th[x]]! exij1[x]; : : : ; eql(St)[car[4th[x]]! exijt[x]],where exijk is obtained from functions g(qi; Sj ; Sk) in 2.5(4), by replacing (inorder to add a blank symbol BL when M moves right to visit for the �rst timea new cell) the indicated cdr by[eq[NIL; cdr[u]]! (BL);T ! cdr[u]].Let a TMM be given, together with an input (coded by) x, and with a polynomialbound of the form �n:(h + n)k. From functions mult and lh of Section 3, afunction phk can be de�ned which takes x into num((h+ jxj)k); a function startcan be de�ned, which takes x into the initial i.d. (x; q1; BL; (BL)), where BLis the code for M 's blank symbol. The following function sM , by input x andy = num(h), simulates the behaviour of M for h steps�sM [x;!] = xsM [x; y] = nextM [sM [x; y00]];the required simulation is performed by simM [x] = sM [start[x]; phk [x]].5.2 Simulation of CVR by TM'sLemma9. If f is de�ned by CVR (FCV) and is limited by a polynomial, if itsinitial function is in polytimef, then f is in polyspacef (polytimef).Proof. Outline of the simulation. Let f be de�ned by CVR with notations ofDe�nition 2. Let g; g�; h;d be simulated by the TM's G;G�; H;Di. Assume thatf is limited by a polynomial p. A TM F simulating f can be de�ned, whichbehaves in the following way.Let � be a n-ary tree of height � jyj, whose root is (labelled by) y, andsuch that: every internal node z has n children d1[z]; : : : ; dn[z]; and every leafsatis�es the terminating condition decided by G�. F visits � in the mode knownas post-order. It records in a stack �1 the sequence of recursive calls; and itstores in a second stack �2 the values f [x; dj [z]] which are needed to computeh[x; z; f [x; d1[z]]; : : : ; f [x; dn[z]]].Space complexity. In addition to space used by G and H , F needs space for thestacks; the amount for�1 is linear in jyj, since we have to store� jyj objects, each� n. When in �1 there are r numbers jq , in �2 there are Prq=1(n � jq) � njyjvalues of f ; thus space for j�2j is linear in p(jx; yj) � jyj.



Time complexity. Let f be de�ned by FCV in g; h. Since d is fully disjoint, thetree � has � jyj nodes, and, therefore, G;H are applied less than jyj times. Theresult follows, since their input is bounded above by p.5.3 Equivalence of PH and PHLLemma10. For all n we have �pn = �pnL.Proof. (Outline) �. Induction on n. Step. Let language L 2 �pn over al-phabet � = fS1; : : : ; Sqg be given. Let atom !i code Si, and let word w =Si(1); : : : ; Si(n) 2 � � be coded by the list of atoms X = (!i(1); : : : ; !i(n)). Letg[x;u] 2 �pnL be the characteristic function of L, which is granted by the ind.hyp. We show that the characteristic function f ofL0 = f(X1; : : : ; Xm; Y ) : 9U(jU j � jY j ^ (X1; : : : ; Xm; U) 2 L)gis in �pn+1L. With decreasing tuples �(app(!i); cdr; cdr), de�ne by OR-SCVf�[x; y] = � g[x; y] if at[3d[y]]f�[x; d1[y]] or : : : or f�[x; dq [y]] otherwise:Language L0 is accepted by f [x; y] = f�[x; (); y; y].�. Induction on n and on the construction of function f 2 PHL to be simulated.Assume that f [x; y] is de�ned by OR-SCV in g 2 �pnL and h, with decreasingfunctions dj (since else the result is an immediate consequence of the induction onf or of the fact that ptimef= �p1L). Let g decide language L. A nondeterministicTM Mf with oracle L can be de�ned, which: (1) at each call to h, iterates aninvariant cycle, including, at each or of h, the choice of a j and the simulationof dj ; (2) at each g, queries the oracle. The time complexity of Mf is quadratic(� jyj applications of the TM's simulating functions dj).6 ConclusionsNormal form From proof of Lemma 8 (from the example on QBF), we see thatonly one level of nesting of FCV (SCV) is actually needed to compute polytimef(polyspacef). This may be used to give an analogue for these classes of Kleene'snormal form theorem for PR functions.Classes dtimef(nk). The fact above implies that to characterize these classes wehave to rule the number and quality of the SBST's. For example, let PL3 be theLisp class which is obtained from FCV(B�)� by excluding substitutions of thearguments of a recursive function by other recursive functions; and let PL2 be thefurther retriction of PL3 to recusively boolean functions; it can be proved thatPL3 �dtimef(n3), that PL2 �dtime(n2); and that if f is recursively booleanin functions in dtimef(nk), then it is in dtime(nk+1). A classi�cation of allclasses dtimespacef(nk ; nm) can be easily obtained by following this approach.



Validation By scanning [7], x51,57 we see that all algorithms for the �rst G�odeltheorem and for predicate T (a universal function) are written in a languagequite close to our PL (besides notations, we have just to replace all boundedquanti�ers by a program for search of sub-expressions). This is not surprising,since Kleene's arithmetization methods are based on his generalized arithmetic([7], x50) which, in turn, may be regarded as a form of primitive recursive Lisp.This might point out a certain adequacy of our dialects of Lisp to representalgorithms. It might then be sensible to show the time/space complexity of analgorithm by just describing it in the language of PL, and then checking towhich element of the classi�cation above does it belong.Improvements to the language Types are only an apparent burden for concreteuse of PL, since we may forget them, and just watch that the previous values ofthe function under de�nition by FCV be not cons-ed together by the invariant,if not boolean. A more serious obstacle is that we are free to nest any numberof boolean FCV's above at most one not-boolean FCV. We plan to remove thislimitation by means of a re-de�nition of the types.A point dividing these authors We have de�ned only the �-subclasses of PH, andnot the �'s and � 's, like NP, co-NP, etc. Some among us believe that class OR-SCV(PL) characterizes NP, while others maintain that it is too large. To discussthis point, let us say that language L is accepted by f when we have x 2 L i�f [x] = T . Indeed SAT is accepted by function not[sat[x]], and this function isin OR-SCV(PL)�, and not in OR-SCV(PL), since is de�ned by substitution ofsat[x] in function not[x]. Thus, from a strictly syntactic point-of-view, we mightpretend that classes OR-SCV(�pkL) are characterizations of �pk+1, and de�ne�pkL to be the class of all functions of the form not[f [x]]; f 2 �pkL. But perhapswe should look at more substantial facts than mere syntax: it is undeniable that,so to say, sat knows SAT ; thus one is entitled to say that OR-SCV(PL) is notwell-de�ned with respect to resources, and is not an acceptable characterizationof NP.Stronger forms of recursion. Let <S be a total order of the S-expressions. Letus say that f is de�ned by n-strong CVR if f [y] depends on n values f [yi], suchthat, for all i, we have yi <S y. It can be easily proved that polyspacef isclosed under 1-strong CVR. Apparently ([3]), it can be proved that polytimefis not closed under 2-strong CVR; and that if polyspacef is closed under 2-strong CVR, then polyspace = exptime. The proof of this result fails whenrelativized to oracle-TM's. ReferencesReferences1. S. Bellantoni and S. Cook, A new recursive characterization of the polytime func-tions, in 24th Annual ACM STOC (1992) 283-293.
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