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ABSTRACT 
 
Autonomy is required to support current and future 
space robotics missions. Planetary exploration robots 
and unmanned reusable space vehicles will require a 
high level of autonomy to perform tasks more 
efficiently. 
 
Over the last 5 years, the Canadian Space Agency has 
designed, implemented and tested different autonomy 
techniques on typical autonomous robotics scenarios.  
The approaches that were tested include Finite State 
Machines (FSM), Hierarchical Task Networks (HTN) 
and Goal Decomposition Hierarchies (GDH).   
 
The ARGO Cortex Toolbox merges some of these 
techniques and allows the implementation of 
hierarchies of finite state machines.  It allows state 
machines to be designed modularly in order to be 
reused in different contexts.  This feature permits the 
creation of FSM Libraries.  The Cortex Panel provides 
features to design, manage, generate code, execute, and 
to monitor execution in real-time or offline.  The 
current release supports Java and code generation.  The 
code generated can then be integrated into the specific 
framework depending of the application.  

1 INTRODUCTION 

Over the last few decades, robots have played an 
increasingly important role in the success of space 
missions. The Shuttle Remote Manipulator System 
(also known as Canadarm) on the Space Shuttle has 
enabled the on-orbit maintenance of precious space 
assets such as the Hubble Space Telescope. On the 
International Space Station (ISS), the Canadarm 2 has 
been a crucial element in all construction activities. Its 
sibling, Dextre, will be essential to the maintenance of 
the ISS. In the context of planetary exploration, 
robotics has also played a central role on most landed 
missions. The rovers “Spirit” and “Opportunity” are 
vibrant examples of how robots can allow scientists to 
make discoveries that would be otherwise impossible. 
One of the current drawbacks of space robots is that 
their operation is very human-intensive. On manned 
platforms such as the Space Shuttle and the ISS, the 

baseline for operations requires the involvement of an 
astronaut for control and monitoring and the support of 
ground support personnel to monitor the operations in 
real-time. The advent of ground control for the 
Canadarm2 on the ISS has freed up the crew from 
having to perform all robotic operations. Ground-based 
operators now have the capability to uplink individual 
commands for automatic execution on the ISS.  
 
In the case of robotic planetary exploration missions, 
the constraints associated with the communications 
between the robot on the surface of a remote planet and 
Earth-based operators are much more stringent. For 
example, in the case of Mars exploration missions, the 
round-trip time delays are on the order of 10 to 40 
minutes. Furthermore, it is not uncommon to have 
situations where there are communication windows of 
only one hour over a period of 12 hours. In addition, 
the robot must operate in an environment that is not 
known a-priori. Environment models are built on the 
fly and are made available to the operations teams 
every cycle.  
 
So far very little is implemented in terms of 
autonomous decision-making capability. Operations 
are based on pre-planned, pre-verified command 
scripts. When situations requiring some sort of decision 
are encountered, the robot must usually stop and wait 
for a human operator to intervene. For example, in the 
case of the rovers “Spirit” and “Opportunity”, once an 
interesting geological feature has been identified, it 
takes three command cycles (of 12 hours each) to go 
apply an instrument to it [1]. The scientific return on 
investment is therefore severely limited by the lack of 
on-board autonomy capability. 
 
Several architectures have been developed to address 
the issues associated with ground control of space-
based robots. However, since the usual mode of 
operation for space robotics in the past has been tele-
operation with direct operator control or supervision, 
most of the approaches have not focused on the 
implementation of autonomy. In the late 1990’s, the 
Canadian Space Agency and their industrial partner, 
MD Robotics, have developed the Intelligent, 
Interactive Robotic Operations (IIRO) framework 

Proc. of 'The 8th International Symposium on Artifical Intelligence, Robotics and Automation in Space - iSAIRAS’, Munich, Germany.
5-8  September 2005, (ESA SP-603, August 2005)



 

[2][3], which allowed the teleoperation of remote 
equipment in operational settings. The Remote 
Operations with Supervised Autonomy (ROSA) 
architecture was a follow-on to IIRO and addressed the 
issue of scripted control and basic autonomy 
requirements [4]. ROSA has been used as the basis for 
the development of the ground control station for the 
robotic elements on the Orbital Express satellite-
servicing mission [5]. 
 
Similar architectures were developed in Europe at the 
same time. The Modular Architecture for Robot 
Control (MARCO) developed by DLR addresses 
similar issues in the context of tele-operation and some 
aspects of scripted play-back [6]. The MARCO 
architecture and its relatives have been used on several 
missions including ROTEX and ETS-7. Two other 
architectures were also developed under the leadership 
of the European Space Agency: FAMOUS and 
DREAMS also concentrated on the issues associated 
with the teleoperation of robots in space. In both cases, 
special attention was dedicated to the issues 
surrounding planning, verification and execution of 
command sequences. 
 
Despite the wealth of research in autonomous robotics 
and in control architectures for space robots, relatively 
little has been done to address specifically the needs of 
autonomous space robots. NASA/JPL have been 
developing/proposing two different architectures for 
applications with a higher degree of autonomy in the 
last few years: CAMPOUT and CLARAty. 
CAMPOUT [7] is a control architecture for the real 
time operation of multiple rovers. CLARAty [8][9] is a 
proprietary architecture that is becoming a requirement 
for many missions. The main goal of CLARAty is to 
provide a systematic framework for treating all the 
different vehicles/robots/instruments involved in Mars 
missions. CLARAty is object oriented and according to 
the publications provides a high degree of reusability. 
 
In parallel with these efforts, the Canadian Space 
Agency has been developing the Autonomous Robotics 
and Ground Operations (ARGO) software suite. ARGO 
provides a framework for the integration of the space 
operations process from planning to post-flight 
analysis. The objective of ARGO is to reduce 
operational costs and increase efficiency by providing 
operator aids and permitting the implementation of a 
level of autonomy appropriate to the application.  
 
The target applications of the ARGO framework [10] 
cover the full spectrum of autonomy from supervisory 
control such as might be expected for ISS robotics to 
more autonomous operations such as would be 
encountered in planetary exploration missions. It also 
covers the full range of space robotic applications from 

orbital manipulators to planetary exploration rovers. 
One of the important features of the ARGO framework 
is that it does not provide a universal architecture for 
ground control and autonomy.  Instead, ARGO 
provides a set of toolboxes that can be assembled in a 
variety of manners depending on the application and its 
requirements.  To facilitate the re-use of software, the 
design is modular and portable to the maximum extent 
possible 
 
Several toolboxes already exist within the ARGO 
framework.  The central element of the ARGO 
framework is the Cortex Toolbox, which provides a set 
of tools to implement on-board autonomy software 
based on the concept of hierarchical finite state 
machines.  The Cortex Toolbox allows an operator to 
graphically generate the behaviours to be implemented 
on the remote system.  It automatically generates the 
code to be uploaded and it can be used to debug and 
monitor the execution of the autonomy software on-
line and off-line. 

2 CONCEPT OF OPERATION 

The basic premise behind the design of ARGO is the 
integration into a single environment of the operations 
process from planning through verification to 
execution and post-flight analysis. ARGO provides a 
set of tools that can be connected in context-dependent 
configurations. For example, to plan and verify 
command sequences, the command and telemetry 
interfaces can be connected to a virtual environment 
composed of a simulation model of the system to be 
controlled along with a graphical rendering of the 
system and its environment. At run-time, the same 
command and telemetry interfaces get connected 
seamlessly to the real system in space to upload the 
pre-verified command scripts. After execution, it is 
possible to connect the telemetry interface to the 
logged telemetry files to conduct off-line post-flight 
analyses. 
One key feature of ARGO is the capability to 
implement varying levels of autonomy as appropriate 
for the target application. This is usually dictated by 
the quality of the information being fed back to the 
operator. Autonomy is not required when the operator 
has adequate, up-to-date information and the ability to 
intervene in a timely manner. However, if the operator 
only receives out-of-date information or loses the 
ability to intervene, then he is not capable of making 
timely decisions and some amount of local decision-
making capability is required at the remote site. Factors 
that can influence the level of autonomy required 
include long time delays, low communication 
bandwidths, intermittent windows of communication, 
poor situational awareness and a dynamic environment. 
 

 



 

For example, in the presence of communication links 
with low latency, high bandwidth and high reliability, 
it is possible to maintain the operator in the loop for 
every decision. Primitive commands can be sent to the 
remote robot one at a time and confirmations can be 
requested from the operator before any command is 
executed. In such a case, the operator can intervene and 
over-ride the robot in case of anomaly.  
 
In contrast, a rover on the surface of another planet is 
subject to communications with long delays, narrow 
bandwidth and frequent blackouts. The operator has 
relatively poor situational awareness because of the 
bandwidth limitations and no ability to intervene in a 
timely manner because of the long delays and frequent 
blackouts. The environment is unstructured and, in 
some cases, could even be unknown to the operator. In 
this case, it is preferable to implement some 
autonomous decision-making capability. Relying on 
the operator for every decision will result in long idle 
times between communication windows while the 
robot is waiting for instructions. 
 
To implement such a variety of levels of autonomy, the 
ARGO framework makes use of concepts such as 
command scripts and autonomous behaviours. 
Command scripts are files in which sequences of 
commands are recorded for automatic execution. The 
scripts are built using the finite state machine 
formalism, which is a convenient powerful way to 
represent logical rules. Commands are represented as 
discrete states that are linked by event-driven state 
transitions. In this context, states represent individual 
actions to be performed by the robot and transitions are 
events that cause the script to leave its current state to 
move into the next one. Typical state transitions can 
include external events such as sensor values and 
operator inputs, as well as internal events such as 
completion of the previous command or failure to 
complete it. The finite state machine formalism allows 
the implementation of decision-based branching as 
well as loops in the script. The simplest incarnation of 
a command script is a linear series of primitive 
commands for the robot to execute from start to finish.  
Autonomous behaviours are built using the same 
methodology as scripts. In fact, behaviours can be seen 
as sub-scripts that can be invoked to handle some pre-
determined conditions that the robot is expected to face 
during its mission. Whereas scripts are specific to one 
particular scenario, behaviours are libraries of action 
sequences to be undertaken by the robot under 
triggering conditions. Behaviours, therefore, provide 
the robot with some amount of reactive autonomy to 
make decision and take action on a determined set of 
events or conditions.  
 

Behaviours can be hierarchical in nature: i.e. the states 
in the finite state machine representing a behaviour can 
themselves be behaviours. Behaviours provide the 
capability for operators to generate much more 
compact command scripts since complex operation 
sequences can be encapsulated in a single command 
that can be invoked at different times in a script or 
even by another behaviour.  
 
The fact that ARGO treats behaviours in the same 
manner as command scripts allows the operator to 
program, verify and uplink autonomous behaviours in 
the same development environment that is used for 
operations planning. Thus, ARGO truly provides an 
integrated environment for all operations-related issues 
from design and testing of autonomous behaviours to 
planning, verification and execution of command 
scripts.  

3 THE CORTEX TOOLBOX 

The central element of the ARGO framework is the 
Cortex Toolbox, which is used to implement command 
scripts and sets of reactive behaviours. Cortex has been 
developed in light of the fact that the development of 
such behaviour sets rapidly becomes labour intensive 
even for relatively simple systems when using low 
level programming languages, thus making reusability 
very difficult if not impossible. Cortex is based on the 
Finite State Machine (FSM) formalism, which provides 
a higher-level way of creating, modifying, debugging, 
and monitoring such reactive autonomy engines. Some 
advantages of this representation are its intuitiveness 
and ease with which it can be graphically constructed 
and monitored by human operators. 
 
The concept of hierarchical FSM allows a high-level 
FSM to invoke a lower-level FSM. This provides the 
capability to implement hierarchical task 
decomposition from a high-level task into a sequence 
of lower-level tasks. If the FSM is implemented in a 
modular fashion, it allows the implementation of the 
concept of libraries that provide the operator with the 
re-use of FSM from one application to another. 
 
In general, FSMs are used to represent a system using a 
finite number of configurations, called states, defined 
by the system parameters or its current actions. In the 
FSM shown in Figure 1, the states are 
Starting_Motion, Turning, and Stopping_Motion.  
In this case, actions are defined in state, and they occur 
during state entry, re-entry and exit. For example, in 
Figure 1, when entering the Turning state, the current 
robot azimuth angle could be recorded to serve as a 
starting point for the destination angle computation. 
 

 



 

 
Figure 1 - A Simple Finite State Machine 

The system can transition from one state to another 
based on its current state, conditions and outside 
events. Conditions on transitions are often referred to 
as Guards, and are implemented as statements that can 
be evaluated as being either true or false. Outside 
events, called Triggers, make the FSM evaluate its 
transition's guards and enable a transition to occur. In 
Figure 1, the system will transition from 
Starting_Motion to Turning once the robot motion is 
confirmed, or from Turning to Stopping_Motion if 
the compass is functioning correctly and its readings 
confirms the robot has turned by the specified angle. In 
this particular FSM, no specific Triggers have been 
defined, so any Trigger (such as a periodic "CLOCK" 
event) will make the FSM evaluate its transitions. 
 
A set of states connected together by transitions forms 
a state machine.  In Figure 1, the block 
Turn_on_Spot_by_Angle is an FSM that implements 
a behaviour that has a mobile robot turn on the spot.  
The FSM also contains parameters it uses to make 
decisions (such as the current robot heading and the 
commanded angle of the turn) or on which it acts (the 
robot itself). 
 

 
Figure 2 - A Hierarchical Finite State Machine 

In Figure 1, Starting_Motion is represented as a 
single state.  However the logic to be used in this state 

could be complex.  In order to represent the state logic, 
the user can decide to use a sub-FSM in its place.  The 
result is a Hierarchical Finite State Machine (HFSM) 
as shown in Figure 2. 
 
In this case, the Starting_Motion sub-FSM can be 
made modular by specifying the robot on which it acts 
as an input parameter. Defining parameters required or 
produced by a FSM defines its interface to the outside 
world thus allowing its reuse in various higher levels 
FSMs, an approach that has been successfully used in 
software libraries for years. This is the strategy used by 
Cortex to provide FSM modularity and reusability. 

3.1 Cortex Architecture 
The architecture provides modules that implement the 
functionalities of the Cortex framework. Figure 3 
shows the two parts of the Cortex architecture.  The 
Development Environment refers to the environment 
used by the developers to create, design, generate, 
deploy, control, command and monitor autonomy 
engines.  The Target System Environment refers to the 
system where the autonomy engine is running.  The 
modules are portable and have been developed with 
Java.  They have been tested on Windows, Linux and 
Solaris.  In addition, ARGO provides Java packages to 
interface with non-java code (e.g. Simulink, C, C++). 
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Figure 3 - Cortex Architecture 

3.2 Graphical User Interface 
Cortex modules are all bound into a single Graphical 
User Interface (GUI).  This interface provides all the 
features required to execute all the steps mentioned in 
the previous section:  It provides panels to  

• edit and create Cortex projects; 
• generate and compile real-time code; 
• deploy the real-time code onto the target 

system; 
• execute, command, control and monitor local 

and remote instances of the real-time code; 
• playback previous state and parameter 

changes; 
 
The use of an intuitive graphical representation of FSM 
(see Figure 4 and Figure 5) by Cortex allows the 
developer/operator to concentrate on the problem to be 

 



 

solved instead of concentrating on the programming 
skills to implement the solution.  
 

 
Figure 4 – Cortex GUI: FSM Editing 

 

 
Figure 5 – Cortex GUI: FSM Monitoring 

 
FSM are assembled graphically using States, sub-FSM, 
junctions (a construct used to combine transitions) and 
transitions. The operator can provide JAVA code 
snippets for state actions and transition's guard 
expressions and can define the inputs, local variables, 
and output parameters of each sub-FSM. The user can 
also assign a priority to each transition to force the 
order in which their guards are tested during execution. 
Constructs from other FSM can also be graphically 
"cut-and-pasted" to the current FSM to allow for the 
reuse of existing FSMs. 

3.3 Cortex Code Generation 
The current implementation of Cortex provides an 
automatic code generator that produces JAVA source 
code to implement the FSM defined by the user. The 
code generator provides FSM topology checking to 
detect unreachable states and transition loops. A 
compiler module then compiles the code, report 
problems, and helps the operator localise errors by 
highlighting FSM components where code is in errors.  
 
The Cortex Coder generates real-time code mainly 
composed of conditional logic statements.  It is free of 
threads and performs computation only on trigger 
invocations.  It is self-contained and does not require 
the Cortex framework to be executed.  The developer 

may decide to take the real-time code and integrate it 
by hand in his application.  The Cortex Coder currently 
supports Java but its architecture will eventually 
support C++. 
 
Cortex supports the distribution of autonomy among 
multiple systems: for example across several robots or 
throughout a distributed ground control station.  A state 
from a Cortex project may submit a trigger to another 
Cortex project using the ARGO REMOTE Toolbox.  It 
is also possible for multiple operators to control, 
command and monitor the same autonomy engine. 

4 SAMPLE CASE 

The ARGO framework has been applied to a few 
reference cases typical of space robotics applications. 
The application described in this paper is a satellite 
servicing application in Low-Earth orbit. This is 
representative of most robotic manipulation tasks in 
Earth orbit where the environment is known and 
structured but it is dynamic since the satellite to be 
captured is in free flight. Bandwidth limitations and 
communication dropouts dominate the quality of the 
communication link.  
 
The sample application described below is a laboratory 
implementation of an autonomous satellite capture 
scenario based using an active vision system. This 
implementation is performed on the Canadian Space 
Agency’s (CSA) Automation and Robotics Test-bed 
(CART) to validate the Cortex Toolbox in preparation 
for the TECSAS mission [11]. 
 

 
Figure 6- CSA Automation Robotics Testbed  

In preparation for TECSAS, the ARGO technologies 
are being validated in laboratory on the CSA 
Automation and Robotics Test-bed (CART). This test-
bed, shown in Figure 6, is composed of two 7-
degrees-of-freedom manipulators.  One of the 
manipulator arms is used to emulate the motion of the 
client satellite whereas the other emulates the motion 
of the manipulator on the servicer satellite.  
 

 



 

The overall implementation of this OOS demonstration 
on the CART test-bed is presented in Figure 7.  The 
overall control architecture of the two robotic arms is 
implemented in Matlab/Simulink. The execution code 
is automatically generated using the Real-Time 
Workshop toolbox of Matlab and is compiled and run 
on a cluster of Pentium IV computers operating under 
the realtime QNX environment.  
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Figure 7: Overall implementation of the CART testbed 

The Cortex Toolbox is used to implement the 
behaviours required for the autonomous capture of the 
client satellite. On TECSAS, the operator will be 
responsible for the planning and execution of the long-
range rendezvous of the two spacecrafts. The 
autonomy engine will take control when the two 
spacecraft are distant by a few meters. It will be 
responsible for performing the final approach of the 
servicer spacecraft to the client, deploying the 
manipulator arm and performing the capture of the 
slow spinning/tumbling client satellite. 
 
Transitions between phases of the operation are 
triggered by sensory events.  The Cortex engine 
considers anomalies such as the possibility of the client 
spacecraft to drift out of the capture envelope of the 
manipulator (through translation or rotation), blinding 
of the vision sensor or loss of sight, reduction of the 

safe distance between the two manipulators below an 
acceptable limit, or failed capture which results in the 
client satellite to be sent into a tumble mode. Figure 8 
presents a Cortex implementation of a typical OOS 
scenario that would include an autonomous far 
rendezvous. 
 

5 CONCLUSION 

The Canadian Space Agency has developed the 
Autonomous Robotics and Ground Operations (ARGO) 
Framework for space robotic operations. The two 
objectives of ARGO are: 
• To streamline the operation cycle by providing an 

integrated environment for planning, verification, 
execution and post-flight analysis. 

• To reduce operations costs by enhancing the local 
decision-making capabilities of space robots 
through the inclusion of local autonomy. 

 
One of the central building blocks of ARGO is the 
Cortex Toolbox. This toolbox is used to implement 
autonomy using the concept of hierarchical finite state 
machines. The fact that ARGO treats autonomous 
behaviours in the same manner as command scripts 
allows the operator to program, verify and uplink 
autonomous behaviours in the same development 
environment that is used for operations planning. Thus, 
ARGO truly provides an integrated environment for all 
operations-related issues from design and testing of 
autonomous behaviours to planning, verification and 
execution of command scripts. 
 
A sample application of the Cortex Toolbox to a 
laboratory demonstration of a satellite-servicing 
mission is described. This demonstration is performed 
in preparation for the validation of the ARGO tools for 
their usage in the TECSAS satellite servicing 
technology demonstration mission. 

 

 
Figure 8: Cortex implementation of a typical autonomous On-Orbit Servicing scenario 
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