

AUTONOMOUS ROBOTICS TOOLBOX

Erick Dupuis, Pierre Allard, Régent L’Archevêque

Canadian Space Agency, Space Technologies

6767 route de l’Aéroport, St-Hubert (Qc), J3Y 8Y9, Canada
Email:firstname.lastname@space.gc.ca

ABSTRACT

Autonomy is required to support current and future
space robotics missions. Planetary exploration robots
and unmanned reusable space vehicles will require a
high level of autonomy to perform tasks more
efficiently.

Over the last 5 years, the Canadian Space Agency has
designed, implemented and tested different autonomy
techniques on typical autonomous robotics scenarios.
The approaches that were tested include Finite State
Machines (FSM), Hierarchical Task Networks (HTN)
and Goal Decomposition Hierarchies (GDH).

The ARGO Cortex Toolbox merges some of these
techniques and allows the implementation of
hierarchies of finite state machines. It allows state
machines to be designed modularly in order to be
reused in different contexts. This feature permits the
creation of FSM Libraries. The Cortex Panel provides
features to design, manage, generate code, execute, and
to monitor execution in real-time or offline. The
current release supports Java and code generation. The
code generated can then be integrated into the specific
framework depending of the application.

1 INTRODUCTION

Over the last few decades, robots have played an
increasingly important role in the success of space
missions. The Shuttle Remote Manipulator System
(also known as Canadarm) on the Space Shuttle has
enabled the on-orbit maintenance of precious space
assets such as the Hubble Space Telescope. On the
International Space Station (ISS), the Canadarm 2 has
been a crucial element in all construction activities. Its
sibling, Dextre, will be essential to the maintenance of
the ISS. In the context of planetary exploration,
robotics has also played a central role on most landed
missions. The rovers “Spirit” and “Opportunity” are
vibrant examples of how robots can allow scientists to
make discoveries that would be otherwise impossible.
One of the current drawbacks of space robots is that
their operation is very human-intensive. On manned
platforms such as the Space Shuttle and the ISS, the

baseline for operations requires the involvement of an
astronaut for control and monitoring and the support of
ground support personnel to monitor the operations in
real-time. The advent of ground control for the
Canadarm2 on the ISS has freed up the crew from
having to perform all robotic operations. Ground-based
operators now have the capability to uplink individual
commands for automatic execution on the ISS.

In the case of robotic planetary exploration missions,
the constraints associated with the communications
between the robot on the surface of a remote planet and
Earth-based operators are much more stringent. For
example, in the case of Mars exploration missions, the
round-trip time delays are on the order of 10 to 40
minutes. Furthermore, it is not uncommon to have
situations where there are communication windows of
only one hour over a period of 12 hours. In addition,
the robot must operate in an environment that is not
known a-priori. Environment models are built on the
fly and are made available to the operations teams
every cycle.

So far very little is implemented in terms of
autonomous decision-making capability. Operations
are based on pre-planned, pre-verified command
scripts. When situations requiring some sort of decision
are encountered, the robot must usually stop and wait
for a human operator to intervene. For example, in the
case of the rovers “Spirit” and “Opportunity”, once an
interesting geological feature has been identified, it
takes three command cycles (of 12 hours each) to go
apply an instrument to it [1]. The scientific return on
investment is therefore severely limited by the lack of
on-board autonomy capability.

Several architectures have been developed to address
the issues associated with ground control of space-
based robots. However, since the usual mode of
operation for space robotics in the past has been tele-
operation with direct operator control or supervision,
most of the approaches have not focused on the
implementation of autonomy. In the late 1990’s, the
Canadian Space Agency and their industrial partner,
MD Robotics, have developed the Intelligent,
Interactive Robotic Operations (IIRO) framework

Proc. of 'The 8th International Symposium on Artifical Intelligence, Robotics and Automation in Space - iSAIRAS’, Munich, Germany.
5-8 September 2005, (ESA SP-603, August 2005)

[2][3], which allowed the teleoperation of remote
equipment in operational settings. The Remote
Operations with Supervised Autonomy (ROSA)
architecture was a follow-on to IIRO and addressed the
issue of scripted control and basic autonomy
requirements [4]. ROSA has been used as the basis for
the development of the ground control station for the
robotic elements on the Orbital Express satellite-
servicing mission [5].

Similar architectures were developed in Europe at the
same time. The Modular Architecture for Robot
Control (MARCO) developed by DLR addresses
similar issues in the context of tele-operation and some
aspects of scripted play-back [6]. The MARCO
architecture and its relatives have been used on several
missions including ROTEX and ETS-7. Two other
architectures were also developed under the leadership
of the European Space Agency: FAMOUS and
DREAMS also concentrated on the issues associated
with the teleoperation of robots in space. In both cases,
special attention was dedicated to the issues
surrounding planning, verification and execution of
command sequences.

Despite the wealth of research in autonomous robotics
and in control architectures for space robots, relatively
little has been done to address specifically the needs of
autonomous space robots. NASA/JPL have been
developing/proposing two different architectures for
applications with a higher degree of autonomy in the
last few years: CAMPOUT and CLARAty.
CAMPOUT [7] is a control architecture for the real
time operation of multiple rovers. CLARAty [8][9] is a
proprietary architecture that is becoming a requirement
for many missions. The main goal of CLARAty is to
provide a systematic framework for treating all the
different vehicles/robots/instruments involved in Mars
missions. CLARAty is object oriented and according to
the publications provides a high degree of reusability.

In parallel with these efforts, the Canadian Space
Agency has been developing the Autonomous Robotics
and Ground Operations (ARGO) software suite. ARGO
provides a framework for the integration of the space
operations process from planning to post-flight
analysis. The objective of ARGO is to reduce
operational costs and increase efficiency by providing
operator aids and permitting the implementation of a
level of autonomy appropriate to the application.

The target applications of the ARGO framework [10]
cover the full spectrum of autonomy from supervisory
control such as might be expected for ISS robotics to
more autonomous operations such as would be
encountered in planetary exploration missions. It also
covers the full range of space robotic applications from

orbital manipulators to planetary exploration rovers.
One of the important features of the ARGO framework
is that it does not provide a universal architecture for
ground control and autonomy. Instead, ARGO
provides a set of toolboxes that can be assembled in a
variety of manners depending on the application and its
requirements. To facilitate the re-use of software, the
design is modular and portable to the maximum extent
possible

Several toolboxes already exist within the ARGO
framework. The central element of the ARGO
framework is the Cortex Toolbox, which provides a set
of tools to implement on-board autonomy software
based on the concept of hierarchical finite state
machines. The Cortex Toolbox allows an operator to
graphically generate the behaviours to be implemented
on the remote system. It automatically generates the
code to be uploaded and it can be used to debug and
monitor the execution of the autonomy software on-
line and off-line.

2 CONCEPT OF OPERATION

The basic premise behind the design of ARGO is the
integration into a single environment of the operations
process from planning through verification to
execution and post-flight analysis. ARGO provides a
set of tools that can be connected in context-dependent
configurations. For example, to plan and verify
command sequences, the command and telemetry
interfaces can be connected to a virtual environment
composed of a simulation model of the system to be
controlled along with a graphical rendering of the
system and its environment. At run-time, the same
command and telemetry interfaces get connected
seamlessly to the real system in space to upload the
pre-verified command scripts. After execution, it is
possible to connect the telemetry interface to the
logged telemetry files to conduct off-line post-flight
analyses.
One key feature of ARGO is the capability to
implement varying levels of autonomy as appropriate
for the target application. This is usually dictated by
the quality of the information being fed back to the
operator. Autonomy is not required when the operator
has adequate, up-to-date information and the ability to
intervene in a timely manner. However, if the operator
only receives out-of-date information or loses the
ability to intervene, then he is not capable of making
timely decisions and some amount of local decision-
making capability is required at the remote site. Factors
that can influence the level of autonomy required
include long time delays, low communication
bandwidths, intermittent windows of communication,
poor situational awareness and a dynamic environment.

For example, in the presence of communication links
with low latency, high bandwidth and high reliability,
it is possible to maintain the operator in the loop for
every decision. Primitive commands can be sent to the
remote robot one at a time and confirmations can be
requested from the operator before any command is
executed. In such a case, the operator can intervene and
over-ride the robot in case of anomaly.

In contrast, a rover on the surface of another planet is
subject to communications with long delays, narrow
bandwidth and frequent blackouts. The operator has
relatively poor situational awareness because of the
bandwidth limitations and no ability to intervene in a
timely manner because of the long delays and frequent
blackouts. The environment is unstructured and, in
some cases, could even be unknown to the operator. In
this case, it is preferable to implement some
autonomous decision-making capability. Relying on
the operator for every decision will result in long idle
times between communication windows while the
robot is waiting for instructions.

To implement such a variety of levels of autonomy, the
ARGO framework makes use of concepts such as
command scripts and autonomous behaviours.
Command scripts are files in which sequences of
commands are recorded for automatic execution. The
scripts are built using the finite state machine
formalism, which is a convenient powerful way to
represent logical rules. Commands are represented as
discrete states that are linked by event-driven state
transitions. In this context, states represent individual
actions to be performed by the robot and transitions are
events that cause the script to leave its current state to
move into the next one. Typical state transitions can
include external events such as sensor values and
operator inputs, as well as internal events such as
completion of the previous command or failure to
complete it. The finite state machine formalism allows
the implementation of decision-based branching as
well as loops in the script. The simplest incarnation of
a command script is a linear series of primitive
commands for the robot to execute from start to finish.
Autonomous behaviours are built using the same
methodology as scripts. In fact, behaviours can be seen
as sub-scripts that can be invoked to handle some pre-
determined conditions that the robot is expected to face
during its mission. Whereas scripts are specific to one
particular scenario, behaviours are libraries of action
sequences to be undertaken by the robot under
triggering conditions. Behaviours, therefore, provide
the robot with some amount of reactive autonomy to
make decision and take action on a determined set of
events or conditions.

Behaviours can be hierarchical in nature: i.e. the states
in the finite state machine representing a behaviour can
themselves be behaviours. Behaviours provide the
capability for operators to generate much more
compact command scripts since complex operation
sequences can be encapsulated in a single command
that can be invoked at different times in a script or
even by another behaviour.

The fact that ARGO treats behaviours in the same
manner as command scripts allows the operator to
program, verify and uplink autonomous behaviours in
the same development environment that is used for
operations planning. Thus, ARGO truly provides an
integrated environment for all operations-related issues
from design and testing of autonomous behaviours to
planning, verification and execution of command
scripts.

3 THE CORTEX TOOLBOX

The central element of the ARGO framework is the
Cortex Toolbox, which is used to implement command
scripts and sets of reactive behaviours. Cortex has been
developed in light of the fact that the development of
such behaviour sets rapidly becomes labour intensive
even for relatively simple systems when using low
level programming languages, thus making reusability
very difficult if not impossible. Cortex is based on the
Finite State Machine (FSM) formalism, which provides
a higher-level way of creating, modifying, debugging,
and monitoring such reactive autonomy engines. Some
advantages of this representation are its intuitiveness
and ease with which it can be graphically constructed
and monitored by human operators.

The concept of hierarchical FSM allows a high-level
FSM to invoke a lower-level FSM. This provides the
capability to implement hierarchical task
decomposition from a high-level task into a sequence
of lower-level tasks. If the FSM is implemented in a
modular fashion, it allows the implementation of the
concept of libraries that provide the operator with the
re-use of FSM from one application to another.

In general, FSMs are used to represent a system using a
finite number of configurations, called states, defined
by the system parameters or its current actions. In the
FSM shown in Figure 1, the states are
Starting_Motion, Turning, and Stopping_Motion.
In this case, actions are defined in state, and they occur
during state entry, re-entry and exit. For example, in
Figure 1, when entering the Turning state, the current
robot azimuth angle could be recorded to serve as a
starting point for the destination angle computation.

Figure 1 - A Simple Finite State Machine

The system can transition from one state to another
based on its current state, conditions and outside
events. Conditions on transitions are often referred to
as Guards, and are implemented as statements that can
be evaluated as being either true or false. Outside
events, called Triggers, make the FSM evaluate its
transition's guards and enable a transition to occur. In
Figure 1, the system will transition from
Starting_Motion to Turning once the robot motion is
confirmed, or from Turning to Stopping_Motion if
the compass is functioning correctly and its readings
confirms the robot has turned by the specified angle. In
this particular FSM, no specific Triggers have been
defined, so any Trigger (such as a periodic "CLOCK"
event) will make the FSM evaluate its transitions.

A set of states connected together by transitions forms
a state machine. In Figure 1, the block
Turn_on_Spot_by_Angle is an FSM that implements
a behaviour that has a mobile robot turn on the spot.
The FSM also contains parameters it uses to make
decisions (such as the current robot heading and the
commanded angle of the turn) or on which it acts (the
robot itself).

Figure 2 - A Hierarchical Finite State Machine

In Figure 1, Starting_Motion is represented as a
single state. However the logic to be used in this state

could be complex. In order to represent the state logic,
the user can decide to use a sub-FSM in its place. The
result is a Hierarchical Finite State Machine (HFSM)
as shown in Figure 2.

In this case, the Starting_Motion sub-FSM can be
made modular by specifying the robot on which it acts
as an input parameter. Defining parameters required or
produced by a FSM defines its interface to the outside
world thus allowing its reuse in various higher levels
FSMs, an approach that has been successfully used in
software libraries for years. This is the strategy used by
Cortex to provide FSM modularity and reusability.

3.1 Cortex Architecture
The architecture provides modules that implement the
functionalities of the Cortex framework. Figure 3
shows the two parts of the Cortex architecture. The
Development Environment refers to the environment
used by the developers to create, design, generate,
deploy, control, command and monitor autonomy
engines. The Target System Environment refers to the
system where the autonomy engine is running. The
modules are portable and have been developed with
Java. They have been tested on Windows, Linux and
Solaris. In addition, ARGO provides Java packages to
interface with non-java code (e.g. Simulink, C, C++).

ARGO
Resource
Toolbox

Target System Environment

Executor RT Code

Target System Environment

Executor RT Code

File
Storage

Cortex
Database

Cortex
File

Coder ReportsReportsReport

RT Code

Development Environment

Executor

File
Storage

Cortex
Database

Cortex
File

Coder ReportsReportsReport

RT Code

Development Environment

Executor

File
Storage

Cortex
Database

Cortex
File

Coder ReportsReportsReport

RT Code

Development Environment

Executor

Figure 3 - Cortex Architecture

3.2 Graphical User Interface
Cortex modules are all bound into a single Graphical
User Interface (GUI). This interface provides all the
features required to execute all the steps mentioned in
the previous section: It provides panels to

• edit and create Cortex projects;
• generate and compile real-time code;
• deploy the real-time code onto the target

system;
• execute, command, control and monitor local

and remote instances of the real-time code;
• playback previous state and parameter

changes;

The use of an intuitive graphical representation of FSM
(see Figure 4 and Figure 5) by Cortex allows the
developer/operator to concentrate on the problem to be

solved instead of concentrating on the programming
skills to implement the solution.

Figure 4 – Cortex GUI: FSM Editing

Figure 5 – Cortex GUI: FSM Monitoring

FSM are assembled graphically using States, sub-FSM,
junctions (a construct used to combine transitions) and
transitions. The operator can provide JAVA code
snippets for state actions and transition's guard
expressions and can define the inputs, local variables,
and output parameters of each sub-FSM. The user can
also assign a priority to each transition to force the
order in which their guards are tested during execution.
Constructs from other FSM can also be graphically
"cut-and-pasted" to the current FSM to allow for the
reuse of existing FSMs.

3.3 Cortex Code Generation
The current implementation of Cortex provides an
automatic code generator that produces JAVA source
code to implement the FSM defined by the user. The
code generator provides FSM topology checking to
detect unreachable states and transition loops. A
compiler module then compiles the code, report
problems, and helps the operator localise errors by
highlighting FSM components where code is in errors.

The Cortex Coder generates real-time code mainly
composed of conditional logic statements. It is free of
threads and performs computation only on trigger
invocations. It is self-contained and does not require
the Cortex framework to be executed. The developer

may decide to take the real-time code and integrate it
by hand in his application. The Cortex Coder currently
supports Java but its architecture will eventually
support C++.

Cortex supports the distribution of autonomy among
multiple systems: for example across several robots or
throughout a distributed ground control station. A state
from a Cortex project may submit a trigger to another
Cortex project using the ARGO REMOTE Toolbox. It
is also possible for multiple operators to control,
command and monitor the same autonomy engine.

4 SAMPLE CASE

The ARGO framework has been applied to a few
reference cases typical of space robotics applications.
The application described in this paper is a satellite
servicing application in Low-Earth orbit. This is
representative of most robotic manipulation tasks in
Earth orbit where the environment is known and
structured but it is dynamic since the satellite to be
captured is in free flight. Bandwidth limitations and
communication dropouts dominate the quality of the
communication link.

The sample application described below is a laboratory
implementation of an autonomous satellite capture
scenario based using an active vision system. This
implementation is performed on the Canadian Space
Agency’s (CSA) Automation and Robotics Test-bed
(CART) to validate the Cortex Toolbox in preparation
for the TECSAS mission [11].

Figure 6- CSA Automation Robotics Testbed

In preparation for TECSAS, the ARGO technologies
are being validated in laboratory on the CSA
Automation and Robotics Test-bed (CART). This test-
bed, shown in Figure 6, is composed of two 7-
degrees-of-freedom manipulators. One of the
manipulator arms is used to emulate the motion of the
client satellite whereas the other emulates the motion
of the manipulator on the servicer satellite.

The overall implementation of this OOS demonstration
on the CART test-bed is presented in Figure 7. The
overall control architecture of the two robotic arms is
implemented in Matlab/Simulink. The execution code
is automatically generated using the Real-Time
Workshop toolbox of Matlab and is compiled and run
on a cluster of Pentium IV computers operating under
the realtime QNX environment.

Remote Server

Cortex

ARGO Resource ServerARGO Resource ServerARGO Resource Server
Remote ServerRemote ServerRemote Server

Cortex

TCP-IP / Flight SCPSTCP-IP / Flight SCPS Internet

Hardware

CART SARAHLCS

CART
Simulator

Ground Control Station Surveillance cameras

Figure 7: Overall implementation of the CART testbed

The Cortex Toolbox is used to implement the
behaviours required for the autonomous capture of the
client satellite. On TECSAS, the operator will be
responsible for the planning and execution of the long-
range rendezvous of the two spacecrafts. The
autonomy engine will take control when the two
spacecraft are distant by a few meters. It will be
responsible for performing the final approach of the
servicer spacecraft to the client, deploying the
manipulator arm and performing the capture of the
slow spinning/tumbling client satellite.

Transitions between phases of the operation are
triggered by sensory events. The Cortex engine
considers anomalies such as the possibility of the client
spacecraft to drift out of the capture envelope of the
manipulator (through translation or rotation), blinding
of the vision sensor or loss of sight, reduction of the

safe distance between the two manipulators below an
acceptable limit, or failed capture which results in the
client satellite to be sent into a tumble mode. Figure 8
presents a Cortex implementation of a typical OOS
scenario that would include an autonomous far
rendezvous.

5 CONCLUSION

The Canadian Space Agency has developed the
Autonomous Robotics and Ground Operations (ARGO)
Framework for space robotic operations. The two
objectives of ARGO are:
• To streamline the operation cycle by providing an

integrated environment for planning, verification,
execution and post-flight analysis.

• To reduce operations costs by enhancing the local
decision-making capabilities of space robots
through the inclusion of local autonomy.

One of the central building blocks of ARGO is the
Cortex Toolbox. This toolbox is used to implement
autonomy using the concept of hierarchical finite state
machines. The fact that ARGO treats autonomous
behaviours in the same manner as command scripts
allows the operator to program, verify and uplink
autonomous behaviours in the same development
environment that is used for operations planning. Thus,
ARGO truly provides an integrated environment for all
operations-related issues from design and testing of
autonomous behaviours to planning, verification and
execution of command scripts.

A sample application of the Cortex Toolbox to a
laboratory demonstration of a satellite-servicing
mission is described. This demonstration is performed
in preparation for the validation of the ARGO tools for
their usage in the TECSAS satellite servicing
technology demonstration mission.

Figure 8: Cortex implementation of a typical autonomous On-Orbit Servicing scenario

6 REFERENCES

[1] L. Pedersen, R. Sargent, M. Bualat, C. Kunz,
S. Lee, and A. Wright, “Single-Cycle
Instrument Deployment for Mars Rovers”,
Proc. of 7th International Symposium on
Artificial Intelligence, Robotics and
Automation in Space, Nara, Japan, May 2003.

[2] http://www.mdrobotics.ca/iiro.htm

[3] E. Dupuis, R. Gillett, P. Boulanger, E.
Edwards and M. Lipsett, “Interactive,
Intelligent Remote Operations: Application to
Space Robotics”, SPIE Telemanipulator and
Telepresence Technologies VI, Boston,
Septembre 1999.

[4] E. Dupuis and R. Gillett, “Remote Operation
with Supervised Autonomy”, 7th ESA
Workshop on Avanced Space Technologies
in Robotics and Automation (ASTRA 2002),
Noordwijk, The Netherlands, November
2002.

[5] Background, challenges, and solutions for
guidance, navigation, and control for satellite
servicing, DARPA Presentation on the
Industry Day for Orbital Express Program,
Nov. 1999.

[6] B. Brunner, K. Landzettel, G. Schreiber, B.
M. Steinmetz and G. Hirzinger, “A Universal
Task-Level Ground Control and
Programming System for Space Robot
Applications - the MARCO Concept and its
Applications to the ETS-VII Project”, Proc.
Fifth International Symposium on Artificial
Intelligence, Robotics and Automation in
Space (iSAIRAS 99), ESTEC, Noordwijk,
The Netherlands, pp.217-224, June 1-3 1999.

[7] T. Huntsberger, P. Pirjanian, A. Trebi-
Ollennu, H. Das, H. Nayar, H. Aghazarian,
A. J. Ganino, M. Garrett, S.S. Joshi and P. S.
Schenker, CAMPOUT: a control architecture

for tightly coupled coordination of multirobot
systems for planetary surface exploration
IEEE Transactions on Systems, Man and
Cybernetics, Part A, Volume: 33 , Issue: 5 ,
Sept. 2003 Pages: 550 – 559

[8] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R.
Petras and H. Das, “The CLARAty
Architecture for Robotic Autonomy”,
Proceedings of the 2001 IEEE Aerospace
Conference, Big Sky, Montana, March 10-17,
2001

[9] I.A. Nesnas, A. Wright, M. Bajracharya, R.
Simmons, T. Estlin, "CLARAty and
Challenges of Developing Interoperable
Robotic Software," invited to International
Conference on Intelligent Robots and Systems
(IROS), Nevada, October 2003.

[10] R. L'Archevêque and E. Dupuis,
"Autonomous Robotics and Ground
Operations", Proc. of the 7th International
Symposium on Artificial Intelligence,
Robotics and Automation in Space –
iSAIRAS 2003, Nara, Japan, May 2003.

[11] B. Sommer, On-Orbit Servicing of Satellites
(OOS) as a major application field – The
TECSAS mission, 54th International
Astronautical Congress of the International
Astronautical Federation (IAF); Bremen,
Germany; Sep. 29 - Oct. 3, 2003.

	INTRODUCTION
	CONCEPT OF OPERATION
	THE CORTEX TOOLBOX
	Cortex Architecture
	Graphical User Interface
	Cortex Code Generation

	SAMPLE CASE
	CONCLUSION
	REFERENCES

