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Abstract

Ž .Two depth inÕersion algorithms DIA applicable to coastal waters are developed, calibrated,
and validated based on results of computations of periodic waves shoaling over mild slopes, in a

Ž .two-dimensional numerical waÕe tank based on fully nonlinear potential flow FNPF theory. In
actual field situations, these algorithms would be used to predict the cross-shore depth variation h
based on sets of values of wave celerity c and length L, and either wave height H or left–right
asymmetry s rs , simultaneously measured at a number of locations in the direction of wave2 1

propagation, e.g., using video or radar remote sensing techniques. In these DIAs, an empirical
relationship, calibrated for a series of computations in the numerical wave tank, is used to express
c as a function of relative depth k h and deep water steepness k H . To carry out deptho o o

inversion, wave period is first predicted as the mean of observed Lrc values, and H is theno

predicted, either based on observed H or s rs values. The celerity relationship is finally inverted2 1

to predict depth h. The algorithms are validated by applying them to results of computations for
cases with more complex bottom topography and different incident waves than in the original

Ž .calibration computations. In all cases, root-mean-square rms -errors for the depth predictions are
found to be less than a few percent, whereas depth predictions based on the linear dispersion
relationship—which is still the basis for many state-of-the-art DIAs—have rms-errors 5 to 10
times larger. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Detailed knowledge of the ocean bottom topography is of great importance in many
coastal engineering problems. In shallow water, more particularly, due to active sedi-
ment transport, the bottom topography is subjected to large changes on various time
scales and it is thus desirable for a variety of applications to develop methods allowing
for easy and continuous monitoring of topographical changes. The present study deals
with a class of depth prediction methods, developed for coastal areas, which use
characteristics of shoaling waves measured on the ocean surface to predict the bottom

Ž .topography; such methods are referred to as depth inÕersion algorithms DIAs .
Real ocean waves propagating toward a shore usually appear to be multi-frequency

Žand multi-directional their frequency–direction distribution of energy can be repre-
. Ž .sented using a directional wave spectrum with, often, a leading or spectral peak wave

frequency and a main direction of propagation generally oblique to the coast, with some
directional spreading. Coastal currents resulting from the combined effects of tides,
wind, local estuaries, and meso-scale oceanic circulation may also exist and influence
wave propagation. Although more complex cases will be addressed in future work
following the same methodology, for demonstrating the proposed DIAs, the present
study will be limited to periodic waves propagatingrshoaling in a direction normal to
the shore. The coastal topography will be assumed to be constant in the along-shore
direction and mildly sloping in the cross-shore direction. Hence, this study will
essentially be a two-dimensional one in a vertical plane. It will also be assumed that
there are no significant mean currents, except for those induced by waves in the

Ž .cross-shore direction mean mass transport, undertow .
In the coastal region, measurements of shoaling wave characteristics have been made

using shore-based video techniques, usually following the methodology introduced by
Ž . ŽLippmann and Holman 1989, 1990 , or longer range remote sensing techniques radar,

. Ž . Ž .electro-optical , such as in the work of Dugan et al. 1996 , Dugan 1997 and Williams
Ž .and Dugan 1997 . In the DIAs used to process the data obtained with such methods, the

nearshore bathymetry is retrieved using measured wave celerities, by inÕerting a
Žwave-celerity-to-depth relationship obtained from a wave theory i.e., a dispersion

.relationship . In radar remote sensing techniques, measurements are made for the
Žmodulations of the slope of scatterers dispersed on the ocean surface e.g., capillary

.waves , due to longer propagating gravity waves. Assuming a long-crested periodic
swell shoaling-up towards a long straight coast, spatial wave phase variations in the
direction x normal to the shore can be retrieved from the scatterers’ slope modulations,

Ž .using a relevant modulation transfer function Dugan, 1997; Williams and Dugan, 1997 .
In video techniques, wave phases are similarly estimated based on variations of average

Žsurface brightness obtained in video time exposures Lippmann and Holman, 1989,
. Ž .1990, 1991, 1992 . Phases, in turn, provide spatial variations of wavelength L x and,

when multiple ‘snapshots’ of the ocean surface are used over a short period of time,
Žensuring a quasi-steady wave field typically several tens of seconds for airborne

. Ž .remotely sensed data , phase celerity variations can be obtained as, c x ,D x rD tp
Žwith D x , the distance between two successive locations of a line of constant phase inp

.the snapshots, and D t the time interval between snapshots . From the L and c data,
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Žwave period can be estimated as, T, Lrc where the overline indicates the mean of
. Ž .measured values . The bottom depth variation h x is finally obtained from an inÕerted

dispersion relationship, relating c and h, for a given T.
In shoaling waves, particularly in shallow water when approaching breaking, nonlin-

earity continuously increases and strongly influences wave celerity, resulting in well-
known amplitude dispersion effects, which lead to larger propagation speeds for higher

Ž .waves e.g., Svendsen and Jonsson, 1980; Dean and Dalrymple, 1984 . In state-of-the-art
ŽDIAs used in remote sensing, the linear dispersion relationship Dean and Dalrymple,

. Ž1984 is often used to perform depth inversion Dugan, 1997; Williams and Dugan,

.1997 ; hence, no amplitude dispersion effects are included and frequency dispersion is
only included to first-order. In DIAs used in combination with video techniques, which
are mostly applied to nearshore regions and to the surf-zone, wave celerity is typically

Ž . (based on the nonlinear shallow water waÕe equations NSWE , i.e., cs g hqH ,Ž .
Ž .with H the wave height Lippmann and Holman, 1989, 1990, 1991 ; hence, amplitude

dispersion effects are included to first-order in nonlinearity, but there is no frequency
dispersion. No theoretical relationship exists that exactly predicts the celerity of fully
nonlinear shoaling waves. Numerical computations, however, can be used to do so.

Ž .Using a model solving fully nonlinear potential flow FNPF equations, i.e., a numeri-
Ž .cal waÕe tank, Grilli and Horrillo 1996, 1997b computed detailed characteristics of

periodic waves shoaling over mild slopes. This model is both numerically exact and
experimentally validated up to and slightly beyond the breaking point. Results showed,
for various incident waves, both significant frequency and amplitude dispersion effects
on wave celerity, up to the breaking point, as well as effects due to increasing wave left
to right asymmetry. The results also showed that the celerity variations predicted by
linear, cubic, or even higher-order Stokes theories failed to capture the correct celerity
variation, particularly, closer to the breaking point. Using a similar model, Grilli et al.
Ž .1994 showed that the NSWE failed, even for long waves such as solitary waves, to
correctly predict the celerity variation, when approaching breaking. This is in part
because of the increasing left to right asymmetry in the waves, as they shoal-up the
slope, and in part because of the lack of dispersive effects in the equation. The latter was

Ž .confirmed by the computations of Wei et al. 1995 , who used a long wave Boussinesq
model including both linear dispersive and fully nonlinear effects, and showed a better
agreement with FNPF results for long waves than the NSWE.

As we will see, significant errors in depth prediction can result from neglecting or not
correctly accounting for both amplitude and frequency dispersion effects on wave
celerity in DIAs. If celerity corrections due to wave nonlinearity are to be calculated,

Ž .however, simultaneous wave height information H x is also required. In the depth
prediction methods based on video techniques, wave elevation can be obtained through

Ž .correlation with variations of surface brightness Lippmann and Holman, 1991 . Wave
Ž .height information H x can also be obtained using radar altimetry, based on traveling

times of radar waves. Accurate height measurements based on remote sensing tech-
niques such as synthetic aperture radar, however, are still quite problematic under the
current state of the technology.

In the present study, results of the fully nonlinear computations by Grilli and Horrillo
Ž .1996, 1997b wave shoaling in a numerical wave tank are used to develop, calibrate,
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and test two new DIAs which could be used to predict depth in coastal areas, in
combination with measurements of surface waves obtained, e.g., from video or radar

Ž .remote sensing techniques. In the first algorithm referred to as DIA1 , it is assumed that
Ž .a data set of simultaneous c, L, H values is available for a series of x locations in the

Žcross-shore direction. After validating and testing DIA1, a second algorithm referred to
.as DIA2 is proposed which eliminates the use of H and only relies on phase

informations. The new DIAs are validated by predicting the bottom topography, using
wave shoaling characteristics computed in the numerical wave tank, for more complex
cases than in the original calibration computations.

It should be pointed out that, in addition to the restriction to normally incident
periodic waves, there are many other uncertainties in this problem, not considered here,
pertaining to the generation of the data set itself using, video, remote sensing, or other
techniques. These uncertainties will affect the accuracy of the depth prediction using the
present DIAs, the same way as when using other existing DIAs.

2. Periodic wave shoaling and the depth inversion problem

Periodic progressive waves in intermediate and shallow water undergo transforma-
Ž .tions which, according to classical wave theories Dean and Dalrymple, 1984 , are

Ž .Fig. 1. a Typical sketch for periodic wave shoaling computations in the numerical waÕe tank. The bottom
Ž .topography corresponds to the average of five depth transects taken at Ft. Walton Beach, FL on

Ž .Sept. 29, 1994, with h s18.53 m and an average slope 1:82; and — - — is the least square fit to theo
Ž .0.64 Ž 2 . Ž . Ž .topography: hrh s0.0758 74.20y xrh with R s0.98 . b Blow-up of a and definition of someo o

of the wave geometric characteristics used in DIA1 and DIA2.
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function of their deep water characteristics, namely height H and period T , and of theo

ocean bottom topography, i.e., depth h. For idealized two-dimensional problems in a
Ž .vertical plane normal to the shore Fig. 1 , these transformations, referred to as waÕe

shoaling, are usually expressed as the variation of wave celerity c, or length LscT ,
and height H, as a function of the distance x measured from a deep water depth limit or

Žfrom the shore. To the first-order in wave steepness kH ks2prL being the wave
.number and in the absence of a mean current, linear Stokes theory predicts wave

Žcelerity c as a function of depth as e.g., Dean and Dalrymple, 1984; note, an index ll
.will be used from now on to indicate values predicted by linear wave theory ,

2p gT
c sc tanh kh; with ks , c s , 1Ž .l o oTc 2pl

Ž .the deep water linear wave celerity, and g the acceleration of gravity. Eq. 1 is referred
to as the linear frequency dispersion relationship and predicts a decrease in wave
celerity with decreasing T or h. By inverting this equation for a given T , it is possible to

Ž . Ž .estimate the depth variation h x in the direction x of wave propagation, based on c x
values measured at the free surface. This simple method is in fact the basis for most
state-of-the-art DIAs used in combination with remotely sensed field data to estimate the

Ž .ocean bottom topography in coastal areas Dugan, 1997; Williams and Dugan, 1997 .
Ž .No effects of wave height are included in Eq. 1 . These, according to Stokes theory,

only show up at third-order in kH as so-called amplitude dispersion effects; we thus get,
Ž .for the third-order celerity e.g., Svendsen and Jonsson, 1980 ,

28qcosh 4khy2 tanh kh2c sc 1q kH FF kh ; with FF s , 2Ž . Ž . Ž .3 l l l 432 sinh kh

a monotonously increasing function for decreasing relative depth kh. A simple predic-
Ž .tion of amplitude dispersion effects can be made with Eq. 2 , by estimating the

variation of wave steepness as a function of both kh and the deep water steepness k H ,o o
Ž .using linear wave theory where, k s2prL ; L sc T ; this is found as,o o o o

y1r22khy3r2k H sk H GG kh ; with GG s tanh kh 1q , 3Ž . Ž . Ž .l l o o l l sinh 2kh

Ž .a monotonously increasing function, when kh decreases Dean and Dalrymple, 1984 .
The ratio c rc can thus be calculated and we see, for instance, that for a weakly3 l

nonlinear incident wave with k H s0.01, the increase in celerity with respect to linearo o

wave theory reaches 0.07% for khspr5 and 5.9% for khspr10, the usual shallow
Ž .water depth limit Dean and Dalrymple, 1984 ; for a mildly nonlinear incident wave

Žwith k H s0.05, these increases become 1.7% and 246%, respectively. Note, theo o
Ž .third-order dispersion Eq. 2 diverges in shallower water andror for strong wave

nonlinearity; actual shoaling waves also do not keep the permanent symmetric shape
.assumed in Stokes theory. Hence, for sufficiently nonlinear waves and shallow water,

due to amplitude dispersion effects, linear wave theory may greatly underestimate wave
Ž .celerity, leading to poor depth prediction with DIAs based on Eq. 1 , particularly in
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areas where depth is the more subject to change and thus depth information is the most
Ž .needed. This is well known and was recently illustrated by Dugan 1997 and Williams

Ž .and Dugan 1997 , in the analysis of their field measurements using a DIA based on
linear wave theory.

The above analysis is rather approximate but, nevertheless, gives the key indication
that, as waves shoal-up over a sloping bottom and become both higher and steeper,
amplitude dispersion effects on wave celerity cannot be neglected in the depth inversion
problem. Such effects alone, however, are not sufficient to predict celerity and, as

Ž .discussed in the introduction, the celerity of non-dispersive NSWE fails, even for long
shoaling waves, to accurately predict the correct celerity variation. For instance, for
solitary waves of height initially 0.2 and 0.4 times the depth, shoaling over a 1:35 slope,

Ž .Grilli et al. 1994 reported maximum errors of 52% and 24%, respectively, on the wave
celerity up to the breaking point, for the prediction of NSWE as compared to FNPF
results.

More accurate celerity variations over complex bottom topographies can be obtained
using numerical models which include both frequency and amplitude dispersion effects.
Many numerical studies have dealt with the modeling of wave shoaling over an arbitrary
bottom topography, i.e., the direct problem, using models based, e.g., on weakly
nonlinear Boussinesq equations with modified or extended linear dispersion properties
Ž . ŽMadsen et al., 1991; Nwogu, 1993 , andror extended nonlinear properties Wei et al.,

. Ž .1995 , or on fully nonlinear steady wave theories e.g., Sobey and Bando, 1991 . Linear
dispersion properties of shoaling waves are correctly represented in modified Boussinesq
models, but nonlinear properties are only included up to limited order, depending on the

Žtruncation error of the series used to represent free surface boundary conditions Wei et
.al., 1995 . Hence, despite their satisfactory predictions for a wide range of water depth,

Boussinesq models may not be sufficiently accurate to predict wave shape and kinemat-
ics in very shallow water and close to breaking, where nonlinearity is strong and wave
height is on the order of water depth. Quasi-steady models based on higher-order wave

Ž .theories, such as the Fourier steady wave theory Sobey and Bando, 1991 , which lack
the key influence of wave left–right asymmetry, also do not provide accurate predictions
of shoaling wave characteristics in shallow water, where waves take a forward tilted

Ž .shape Grilli and Horrillo, 1996, 1997b; see also Fig. 1b . Recent advances in fully
nonlinear models based on potential flow theory, i.e., so-called numerical waÕe tanks
Ž Ž . .see the work of Tsai and Yue 1996 for a review , have made it possible to calculate
‘numerically exact’ properties of shoaling waves, up to the breaking point, to within a

Žfew percent of laboratory measurements Grilli et al., 1994; Ohyama et al., 1994; Grilli
and Horrillo, 1996; Grilli et al., 1997; Grilli and Horrillo, 1997a; Grilli and Horrillo,

.1997b . FNPF equations, in fact, are the governing equations from which most approxi-
Ž .mate wave theories or models such as Boussinesq equations are derived, and are thus

able to provide an accurate representation of surface waves, independent of depth or
nonlinearity parameters such as kh or kH. The only limitation is that friction and
vorticity must be negligible, which is a rather good approximation before waves break
Ž .Dommermuth et al., 1988 . In numerical waÕe tanks, mechanisms must be provided for
wave generation at an offshore boundary and wave energy absorption at the shore,

Ž .before breaking occurs Fig. 1a . More details are given in the Section 3.
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Ž .Thus, for periodic waves shoaling over mild slopes, Grilli and Horrillo 1996, 1997b
Ž .used the FNPF numerical waÕe tank by Grilli and Subramanya 1996 , with the wave
Ž .generation and absorption methods developed by Grilli and Horrillo 1997a , to calculate

celerity and height variations for many different incident waves shoaling over mild
slopes ranging from 1:35 to 1:70. They showed that, although a slope is needed in the
tank to induce the necessary left–right asymmetry in shoaling waves, for a mild slope,
the variations of c and H do not depend very much on the magnitude of the slope,
provided they are compared for the same normalized depth k h or kh. Full nonlinearity,o

Ž .however, is important in shallow water and large differences up to 80% for c and H
may occur between predictions of linear or weakly nonlinear wave theories, and the
fully nonlinear results. In the present study, Grilli and Horrillo’s computations for

Žperiodic waves shoaling over a 1:50 plane slope i.e., in the middle of the tested range of
.slopes are used to develop and calibrate two new DIAs for coastal waters.

3. Review of FNPF numerical wave tank

3.1. GoÕerning equations and boundary conditions

A typical domain for wave shoaling computations is sketched in Fig. 1a. Waves are
long-crested and propagate in the x direction normal to the shore. FNPF equations are
solved in the numerical waÕe tank, defined by the free surface, the bottom, a leftward
wavemaking boundary and a rightward absorbing boundary. These equations are the
governing continuity equation, a no-flow condition on the bottom, nonlinear kinematic
and dynamic conditions on the free surface and specified velocity and accelerations on

Ž Ž .the leftward and rightward boundaries see the works of Grilli and Subramanya 1996
Ž . .and Grilli and Horrillo 1997a for details .

Although this numerical waÕe tank is general, incident waves in the present study
have been limited to periodic progressive waves. Following the work of Grilli and

Ž .Horrillo 1997a , in order to get permanent form finite amplitude incident waves,
Ž .so-called streamfunction waÕes Dean and Dalrymple, 1984 are generated on the model

leftward boundary. These waves, unlike finite amplitude waves produced by a wave-
maker, do not exhibit the generation of higher-order harmonics and the beat phe-
nomenon observed in wave tanks, as they propagate over constant depth. Since
nonlinear waves have a nonzero mass flux, to ensure constant volume in the tank,
incident streamfunction waves are generated together with a mean current, equal and
opposite to their period-averaged mass transport velocity. For an actual beach, this
situation would correspond to specifying a vertical boundary at some distance from the
shore, for which the undertow current balances the incident mass flux. Note that, despite
this offshore zero-mass-flux condition, a mean flow circulation occurs within the tank,
as it does on a beach, i.e., with an onshore mean mass transport above wave troughs and
an offshore mean mass transport below wave troughs; mean-water-level set-down also

Ž .occurs in the tank Dean and Dalrymple, 1984; Svendsen and Jonsson, 1980 .
In a FNPF numerical waÕe tank, computations can model overturning waves but, by

nature, are limited to the time prior to that at which touch-down of a breaker jet first
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Žoccurs. This does not pose problems when solitary waves are used in the analysis Grilli
.et al., 1994, 1997 . For periodic waves, however, an absorbing beach must be used to

dissipate the energy of each successive incident wave, hence both eliminating reflection
and preventing waves from breaking at the top of the slope, while letting them shoal up
to very close to breaking. Here, the absorbing beach is specified over a shallower region
in the upper part of the slope, whose geometry is assumed somewhat similar to a natural

Ž .bar on a beach Fig. 1a . Energy absorption combines both free surface and lateral
Žabsorption, with an adaptive calibration of the absorption coefficient Grilli and Horrillo,

.1997a .
Ž .i An exterior counteracting pressure is specified on the absorbing beach free

surface, as proportional to the normal particle velocity, to create a negative work against
incident waves; this method can be shown to absorb high frequency wave energy well.

Ž .ii An active piston-like absorbing boundary condition is specified at the tank
rightward extremity; this can be shown to absorb low frequency wave energy well.

Ž .iii The absorption coefficient in the beach is adaptively calibrated in time to absorb
the period-averaged energy of incident waves entering the beach at xsx .l

Grilli and Horrillo showed that, when using the above methods, reflection from the
beach can be reduced to a few percent. Reflection from the sloping bottom, however,
still occurs as it does in nature, but is rather small for mild slopes.

In the results, when not otherwise mentioned, primes indicate nondimensional
variables in which lengths have been divided by h , a reference depth, and times byo

h rg , a characteristic time.( o

3.2. Numerical methods

The continuity equation is solved using a higher-order boundary element method
Ž . Ž .BEM based on Green’s 2nd identity Grilli et al., 1989 . Boundaries are discretized
using nodes and higher-order elements are specified to interpolate in between the nodes.
Quadratic elements are used on lateral and bottom boundaries and cubic elements

Žensuring continuity of the slope are used on the free surface boundary Grilli and
.Subramanya, 1996 . Fully nonlinear kinematic and dynamic boundary conditions are

used on the free surface without any approximation. Time stepping of the geometry and
boundary conditions is based on second-order Taylor series expansions, expressed in
terms of a time step and of the Lagrangian time derivative. Numerical errors are kept to
a very small value by adaptively selecting the time step based on a mesh Courant
number. In shoaling computations, as waves become increasingly steep towards the top
of the slope, discretization nodes may get too close to each other and create almost
singular values for the BEM integrals, leading to poor accuracy. To prevent this, an
adaptive regridding method is used to automatically regrid nodes three by three when
the distance between two nodes is either more than 4 times or less than 0.25 times the
distance between the previous two nodes. In the present applications, a minimum of 20
nodes per wavelength has been maintained on the free surface throughout shoaling
computations.

Details of model equations, numerical methods, and validation applications can be
found in the above-referenced papers. In the present study, numerical parameters have
been selected such as to ensure optimal accuracy of computations.
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3.3. Computation of shoaling waÕe properties

In computations of periodic wave shoaling, the numerical waÕe tank is assumed to
Ž .be initially at rest cold start . At the start of computations, incident periodic waves are

generated in the tank by specifying their shape and kinematics along the leftward
Ž .waÕemaking boundary a tapering function is used over the first three periods . For

zero-mass-flux streamfunction waves, kinematics is obtained as a function of initial
wave height H , period T , and initial depth h . When starting computations in deepo o

Ž .water i.e., for h GL r2 , it was observed that small incident periodic waves closelyo o

followed results of linear wave theory, up to a relative depth k h,0.4–0.5. Hence, too

limit the extension of the computational domain, computations were initiated at a depth
) Žh corresponding to only a fraction of the deep water depth in the present caseo
) . )h s0.6 h , with a height H . The corresponding deep water wave height H waso o o o

Ž . Ž .calculated using the linear wave shoaling coefficient, K s c rc GG kh , as H ss l l o l o
) Ž ) .H rK h .o s l o

Table 1 gives a summary of input parameters for the nine waves used in the
calibration of the DIAs and Table 2, for five DIAs’ validation applications. All of the
initial waves in Table 1 and most of the waves in Table 2 are specified with H )-H ,o o

Ži.e., in the region of initial decrease in wave height which occurs during shoaling as
.predicted by linear wave theory .

In computations, each crest and trough of the shoaling wave train are independently
identified and followed in space and time, from their generation at the wavemaking
boundary to their absorption in the absorbing beach. From these results, envelopes of

Ž .crest and trough elevations are calculated for successive waves, and wave height H x
is thus obtained. Using the same results, the phase velocity of successive waves is

Ž . Ž .calculated as c x sd x rd t, where x t denotes the instantaneous crest location for ac c
Ž .given wave Fig. 1b . The wavelength is calculated two ways from the spatial wave

Ž . Ž .profiles, as the horizontal distance between Fig. 1b : i a crest and the previous one,
Ž . Ž . Ž .L x ; or ii between a trough and the next one, L x . Results will show that, for ac t

Ž .given depth or x location , the mean of L and L is a good prediction of thec t

Table 1
X X X ) X X

)Number H T H k k h k H co o o o o o o o

1 0.0435 5.5 0.04 1.305 0.79 0.0568 0.8754
2 0.0653 5.5 0.06 1.305 0.79 0.0852 0.8754
3 0.0871 5.5 0.08 1.305 0.79 0.1137 0.8754
4 0.0424 6.5 0.04 0.934 0.56 0.0396 1.0345
5 0.0636 6.5 0.06 0.934 0.56 0.0594 1.0345
6 0.0848 6.5 0.08 0.934 0.56 0.0792 1.0345
7 0.0409 7.5 0.04 0.702 0.42 0.0287 1.1937
8 0.0614 7.5 0.06 0.702 0.42 0.0431 1.1937
9 0.0819 7.5 0.08 0.702 0.42 0.0575 1.1937

Input characteristics of incident waves in the numerical wave tank for shoaling over a 1:50 slope: H X so
X ) Ž X ) . X X X )H rK h deep water wave height; T wave period; H wave height at initial offshore depth h s0.6;o s l o o o

X Ž X .2 X X Ž .k s 2p rT and c sT r2p linear deep water wave number and celerity, respectively.o o
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Table 2
Data and global results for five depth inversion cases

X X X ) X XCase H T H T H rms ´ rms ´ rms rmso o p po m l lm c H

b1 0.0352 11.47 0.04 11.55 0.0349 3.6 17.2 15.6 47.6 1.2 2.8
b2 0.0352 11.47 0.04 11.50 0.0350 2.7 8.6 16.2 50.8 1.1 3.8
n1 0.0653 5.5 0.06 5.52 0.0646 2.1 8.0 14.6 50.3 0.6 2.7
n2 0.0636 6.5 0.06 6.52 0.0625 1.7 7.1 17.0 57.6 0.5 2.0
n3 0.0614 7.5 0.06 7.51 0.0602 2.0 13.9 20.5 67.9 0.4 2.0

Input characteristics of incident waves in the numerical wave tank for both DIAs: H X deep water wave height;o

T X wave period; H X ) wave height specified at initial offshore depth, hX ) s0.6. Note k H s0.0105 for caseso o o o

b1 and b2 and can be found in Table 1 for cases n1–n3.
X X Ž .Predicted wave characteristics in DIA1: T wave period; H deep water wave height; rms, ´ , rms andp po m

Ž . Ž .maximum relative errors % for depth prediction with DIA1; rms , ´ , rms and maximum relative errorsl lm
Ž . Ž .% for depth prediction with the linear dispersion relation; rms , rms rms-errors for direct celerity andc H

depth predictions, in Fig. 9 and Fig. 11.

Ž . Ž . Ž .unknown ‘true’ wavelength L x sc x T , needed to predict the wave period in the
Ž .DIAs, based on the wave celerity see Section 4 .

After the initial transient wave front has been absorbed in the absorbing beach, results
show that values of H, c, and L are well reproduced for successive incident waves.
Hence, this indicates that computations have reached a quasi-steady state for which
reflection, from the slope and from the absorbing beach, is insignificant. To eliminate
the small remaining differences between successive waves, in the present applications,
wave properties have been averaged over four to six successive waves.

4. Depth inversion algorithms

4.1. Analysis of celerity and height Õariations for periodic waÕes

Ž .Results of the computations of Grilli and Horrillo 1996, 1997b for the nine cases in
Ž .Table 1 are given in Fig. 2 for the phase celerity normalized by the linear deep water

celerity crc , and in Fig. 3 for the shoaling coefficient K sHrH , both as a functiono s o

of normalized depth k h.o

In Fig. 2, as expected from earlier discussions, for k h-0.5, the shallower theo
Žnormalized depth and the larger the incident wave steepness k H i.e., the larger theo o

.incident wave height and the smaller the period , the larger the increase of the nonlinear
wave celerity with respect to c . As discussed above, such celerity increases mostlyl

result from amplitude dispersion effects due to increasing wave steepness kH during
Ž .shoaling. For the nine computed cases, these effects lead, in shallow water kh-pr10 ,

to a 40 to 85% maximum increase in celerity with respect to c . Note that the Urselll
Ž . Ž .3 Ž .number Svendsen and Jonsson, 1980 , U skHr kh , used in weakly nonlinear longr

wave theories such as Boussinesq’s to express the ratio of nonlinear to dispersive
effects, does not collapse the celerity curves in Fig. 2 to a single curve, when used as an
abscissa instead of k h. This indicates that a single parameter such as U is noto r
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Fig. 2. Wave celerity crc computed in the numerical waÕe tank over a 1:50 slope, for the nine cases listedo
Ž .in Table 1. - - - c rc s tanh kh, linear wave celerity.l o

sufficient to describe strongly nonlinear and dispersive effects observed in shoaling
waves. In Fig. 3, a similar analysis is presented for the nonlinear shoaling coefficient,
and we see that linear wave theory also significantly underpredicts wave height in the
same depth region where celerity is underpredicted in Fig. 2; for the nine studied cases
the underprediction of K by K reaches up to 55%.s s l

Ž .In view of these results, Grilli and Horrillo 1996, 1997b computed the quantity
Ž . Ž . ŽK r crc skHr k H i.e., the local wave steepness normalized by the deep waters o o o

.steepness and, due to the partial compensation of underpredictions of wave height and
celerity, observed that this ratio showed much less variations with respect to the linear

Ž . Ž Ž ..wave result, k H r k H sGG see Eq. 3 , than its numerator and denominator takenl l o o l

Fig. 3. Wave height HrH computed in the numerical waÕe tank over a 1:50 slope, for the nine cases listedo
Ž . Ž . Ž .in Table 1. - - - K s c rc GG kh , linear wave shoaling coefficient.s l l o l
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independently. Fig. 4 shows a comparison of normalized nonlinear steepnesses
Ž .kHrk H sHr H crc , calculated for the cases in Table 1, with GG . The latter iso o o o l

found to explain at least 98% of the variance of the numerical results. This rather
unexpected result will be used as a basis for predicting H , from observed values of Ho

Ž .and c, in one of the DIAs presented in Section 4.2 DIA1 .
To be able to express the nonlinear celerity variation for other values of the two

parameters k H and k h than for the cases in Table 1, and considering the lowo o o
Ž .sensitivity of results to detailed bottom shape provided the slope is mild , an empirical

function was fitted to the celerities computed in Fig. 2, in the depth region where
Ž .discrepancies with linear wave theory are significant k hF0.5 . A bi-quadratic func-o

tion of the two parameters was found to give good results.

c 2 2sA qA k h qA k H qA k h k H qA k h qA k HŽ . Ž . Ž . Ž . Ž . Ž .0 1 o 2 o o 3 o o o 4 o 5 o oco

4Ž .

Values of coefficients A to A where found with a least square method, using about0 5

100 multivariate data points per wave case in Table 1, as A s0.2397, A s1.0063,0 1

A s0.9118, A sy2.2405, A sy0.3299, and A s1.3292. The coefficient of2 3 4 5

determination for this curve fit was R2 s99.8%. Fig. 5 shows crc variationso
Ž .calculated based on Eq. 4 , for k hs0 to 0.5 and k H s0.02 to 0.14 by steps ofo o o

0.02, which approximately covers the range of variation of k H in Table 1, where ano o

accurate prediction of celerity can be expected.
ŽIn Fig. 5, the nonlinear celerity curve a k H s0.02, i.e., for the smaller incidento o

.steepness agrees well with linear wave theory, down to depth k hs0.2. For shallowero

depth and smaller incident steepness, however, no numerical results are available in
Table 1. To be able to cover this parametric region in DIAs, we assumed that the

Fig. 4. Normalized wave steepness kHrk H s Hc rH c computed in the numerical waÕe tank for the nineo o o o
Ž . Ž . Ž Ž ..cases listed in Table 1, using results of Fig. 2 and Fig. 3. Linear theory gives: - - - - GG kh Eq. 3 .l
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Ž .Fig. 5. Empirical curve fit, based on Eq. 4 , of wave celerities crc computed in numerical waÕe tank foro
Ž .the cases in Table 1. Curves a to g correspond to k H s0.02 to 0.14 by step 0.02. - - - c rc , linear waveo o l o

celerity.

Žcelerity could be found by linear interpolation between results in Fig. 5 for curve a or a
. Ž .nearby curve and linear wave theory Eq. 1 as,

c k H co o a
s tanh khq y tanh kh ; for k H -g 5Ž .o o oac g co oa o

Ž .where c rc is the celerity obtained with Eq. 4 for k H sg . Since kh is needed toa o o o oa

calculate the tanh function, the following approximation was also made: kh,
Ž . Ž .k hr c rc . Eq. 5 was tested in the applications and it was found that the valueo a o

g s0.017 provided better results than the value 0.02, corresponding to curve a in Fig.oa

4. Hence, the former value is used in the DIAs.

( ) ( )4.2. Depth inÕersion algorithm for c, H, L data DIA1

Ž .In this depth inversion problem, referred to as DIA1, N sets of values of c x ,i
Ž . Ž Ž . Ž ..H x and L x , L x are assumed to be known from simultaneous free surfacei c i t i

Ž .observations at locations x , for is1, . . . , N e.g., through remote sensing . Thei
Ž .problem thus consists in predicting h x , for is1, . . . , N, based on these observations.i

Ž .Assuming that, for mildly and monotonously sloping bottom, Eq. 4 with the interpola-
Ž . Ž .tion Eq. 5 for small incident wave steepness represent the true nonlinear celerity

variation, independent of the details of bottom topography, these equations can be
inverted to predict the depth corresponding to a known celerity. As celerity significantly

Ž .varies with k H , particularly in shallow water Figs. 2 and 5 , both the wave period To o
Ž Ž .2 Ž 2 ..or, k s 2p r gT and the deep water wave height H must be calculated fromo o

the data before depth inversion can be performed.
For periodic waves, TsLrc where L is the ‘true’ wavelength corresponding to the

local depth. After several numerical tests, it was found that L could locally be well
Žpredicted using the average of L and L i.e., the wavelengths measured between twoc t
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.successive crests and troughs, respectively; Fig. 1b ; thus, in DIA1, T is calculated as
wŽ Ž . Ž .. Ž Ž ..x Žthe mean of measured L x qL x r 2c x values, over the x locations isc t i

. Ž .1, . . . , N . As indicated before, the wave height H is well predicted by H crc GG ,o o l
Ž . Ž .with crc the observed nonlinear celerity Fig. 5 . Eq. 3 for GG can thus be used ino l

DIA1 to estimate H , when a set of simultaneous values of H and c is available.o
Ž .Based on the above, the layout for DIA1 is as follows is1, . . . , N .

Ž . Ž . Ž .1 The period T and thus k is first predicted, as explained above, using L x ,o c i
Ž . Ž .L x and c x values.t i i
Ž .2 A first guess is made for H , say H , as the wave height observed at the mosto o1

Ž . Žoffshore location, and a first depth variation h x is calculated for this guess i.e., for1 i
. Ž . Ž . Ž .k H using the inverted Eqs. 4 and 5 and the c x values.o o1 i

Ž . Ž .3 Based on h x , a new corrected value of H , say H , is obtained by calculating1 i o o2
w Ž . Ž Ž .Ž Ž . ..x Ž . Ž Ž . .the mean of H x r GG kh c x rc values, with kh sk h x r c x rc andi l 1 i o 1 o 1 i i o

Ž .Eq. 3 for GG .l
Ž . Ž . Ž .4 Steps 2 and 3 are iteratively repeated, for ns2,3, . . . , until convergence is

Ž .reached on H and h x according to some preset criteria.o n n
Ž .Note that, for specified crc and k H values, Eq. 4 is easily inverted as ao o o

Ž .quadratic equation for k h. When coupled to Eq. 5 , however, an iterative method iso
Ž .needed to calculate the depth for each x location Newton’s iterative method is used .i

( ) ( )4.3. Depth inÕersion algorithm for c, L, s rs data DIA22 1

As explained above, wave height is not easily obtained from remotely sensed data
whereas wave phase is more readily available from current techniques. A modification
of DIA1, referred to as DIA2, which eliminates the use of H and only relies on phase
information is proposed in the following.

When initially left–right symmetrical waves shoal-up a sloping bottom, due to
Žnonlinearity, they become increasingly asymmetric and skewed Grilli and Horrillo,

. Ž .1996, 1997b . Here, asymmetry defined below refers to a measure of left–right
Ž .differences with respect to a crest in a spatial wave profile Fig. 1b , whereas skewness

Ž .refers to the distribution of wave elevation h x , t measured at a given location, sayg

xsx , about the mean water level. For a m points time series, skewness is thus definedg

as,
m1 3

h yhŽ .Ý im is1s s 6Ž .k 3r2m1 2
h yhŽ .Ý iž /m is1

with h the mean elevation at xsx . In actual depth inversion problems, long timeg

series of wave elevation from which skewness could be calculated are not available
Ž .whereas spatial variations are i.e., the ‘snapshots’ . Hence, wave left–right asymmetry

can be spatially quantified in DIAs. In the present applications, asymmetry is defined as
Ž . Ž .the ratio of forward to backward wave slopes s rs , with s x sH rL and s x s2 1 2 2 2 1

Ž . Ž .H rL , in which L , L and H , H denote horizontal and vertical distances from a1 1 1 2 1 2
Ž . Ž . Žcrest to the previous i.e., seaward and next i.e., landward troughs, respectively Fig.
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.1b . Since wave height does not change too much over one wavelength, in the
Ž .applications we further assume, s rs ,L rL . Grilli and Horrillo 1996, 1997b2 1 1 2

Ž . Ž .calculated s rs x , for the nine cases in Table 1 Fig. 6 , and showed that this2 1
Ž .parameter has a high degree of correlation with wave skewness s x .k

Now, all that DIA1 really needs as far as wave height information is the deep water
Ž .wave height H . As a substitute to the wave height data H x used in DIA1 to retrieveo i

Ž . Ž Ž . Ž ..H , values of s rs x calculated from measured phases i.e., L x and L x cano 2 1 i 1 i 2 i

be used to estimate k H . To do so, an empirical function of kh and k H is fitted too o o o

the data in Fig. 6. After several trials, the following function of the two parameters was
found to give good results,

s2 2 3 2s B qB kh qB kh qB kh q B qB kh qB khŽ . Ž . Ž . Ž . Ž .� 4 �0 1 2 3 4 5 6s1

3 2 3 2qB kh k H q B qB kh qB kh qB kh k H .Ž . Ž . Ž . Ž . Ž . Ž .4 � 47 o o 8 9 10 11 o o

7Ž .

Values of coefficients B to B where found with a least square method, using0 11

about 100 multivariate data points per wave case in Table 1. The coefficient of
determination for this curve fit was R2 s96.6%. For reasons explained later, however,
in the validation applications for DIA2, it was necessary to repeat this curve fit using
results of both the nine cases in Table 1 and the five cases in Table 2. The coefficient of
determination for this second curve fit was R2 s95.7%, and the values of coefficients
B to B where found as, B s22.329, B sy138.01, B s284.70, B sy187.90,0 11 0 1 2 3

B sy3.7352, B s80.763, B sy2708.3, B s2260.0, B sy1228.8, B s3561.2,4 5 6 7 8 9

B sy670.52 and B sy2907.8. Fig. 7 shows s rs variations calculated based on10 11 2 1
Ž .Eq. 7 , using these coefficients, for khs0 to 0.6 and k H s0.02 to 0.14 by steps ofo o

0.02, as in Fig. 4. This more or less covers the range of variation of k H in Tables 1o o

and 2, except for k H s0.01, which is also plotted as curve o on the figure.o o

Ž .Fig. 6. Wave asymmetry s r s s L rL Fig. 1b computed in the numerical waÕe tank over a 1:50 slope,2 1 1 2

for the nine cases listed in Table 1. Linear theory gives s r s s1.2 1
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Ž .Fig. 7. Empirical curve fit, based on Eq. 7 , of wave left-right asymmetry s r s computed in numerical2 1

waÕe tank for nine cases in Table 1 and for five cases in Table 2. Curves a to g correspond to k H s0.02 too o

0.14 by step 0.02, as in Fig. 5, and curve o to k H s0.01. Note, curves have been limited based ono o

s r s G1 and on the estimation of breaking locations for the steeper waves.2 1

Ž .Based on the above, the layout for DIA2 is as follows is1, . . . , N .
Ž . Ž . Ž . Ž .1 The period T and thus k is first predicted, as for DIA1, using L x , L xo c i t i

Ž .and c x values.i
Ž .2 A first guess is made for H , say H , as a small but finite value, and a first deptho o1

Ž . Ž .variation h x is calculated for this guess as in DIA1 i.e., for k H , using the1 i o o1
Ž . Ž . Ž .inverted Eqs. 4 and 5 and the c x values.i

Ž . Ž . Ž . Ž . Ž Ž . .3 Based on h x , kh x sk h x r c x rc is obtained, and a new corrected1 i 1 i o 1 i i o
Ž . Ž .value of H , say H , is predicted using s rs x values, by inverting Eq. 7 for eacho o2 2 1 i

x , as a quadratic equation for k H , and taking the mean of all such predictions.i o o2
Ž . Ž . Ž .4 Steps 2 and 3 are iteratively repeated, for ns2,3, . . . , until convergence is

Ž .reached on H and h x according to some preset criteria.o n n

5. Numerical validation of depth inversion algorithms

( ) ( )5.1. Depth inÕersion algorithm for c, H, L data DIA1

Figs. 8 and 10 show five validation tests of the application of DIA1 to the depth
inversion problem. In each case, direct computations are first made in the numerical
wave tank, using the corresponding bottom topography, for the shoaling of an incident
streamfunction wave with height H and period T at depth h , and a data set ofo o

Ž .simultaneous x, c, H, L , L values is numerically generated. DIA1 is applied to thisc t
Ž .data set and a prediction of the bottom topography h x is made, which is then

compared to the actual topography. The accuracy of the depth prediction is finally
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Ž . Ž . Ž . X X Ž .Fig. 8. Depth inversion cases: a b1 broken slope 1:50, 1:70, 1:35 with h x at t s146.3s12.8T ; b b2
X XŽ . Ž . Ž .broken slope 1:50, 1:100, 1:35 with h x at t s156.3s13.6T . True bottom topography

Ž . Ž . Ž Ž . .h x ; - - - - - - estimated topography with DIA1 note: h x estimates are found closely similar with DIA2 ;
Ž .— - — estimated topography with linear dispersion relation. h is a reference depth scale. Note: bottom iso

Ž .plotted up to the entrance of the absorbing beach in the numerical waÕe tank Fig. 1 .

Ž .assessed in terms of both root-mean-square rms and maximum errors. Note, for N
values y of a variable y at points x , and N predictions y , the rms-error is defined as,˜i i i

1r22N1 y y ỹi i
rms y s . 8Ž . Ž .Ý½ 5ž /N yiis1

Table 2 gives general data and results for these cases.

5.1.1. Broken slopes
ŽFor the two cases in Fig. 8, the bottom is made of a succession of three slopes which

. Ž .is somewhat similar to the natural beach profile sketched in Fig. 1 : a 1:50, 1:70, and
Ž . Ž . Ž .1:35 case b1 ; or b 1:50, 1:100, and 1:35 case b2 . Shoaling of a long incident

periodic wave with period T X s11.47 and height H X s0.035 is computed in both cases.o
Ž . Ž .Fig. 8a and b upper parts show examples of computed free surface elevations h x and

we can see that incident waves are fairly long with respect to depth and that many
smaller scale oscillations are being generated on the waves as they shoal up in the
shallower water region, indicating the transfer of energy to higher-order harmonics

Žresulting from increasing nonlinearity. No attempts were made in these computations to
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.more accurately resolve these small scale oscillations. Selected results of these compu-
Ž .tations, i.e., about Ns100 values of c, H, L , L as a function of x, taken betweenc t

depth 0.6h and 0.1h , were used in DIA1. Due to the low incident wave steepnesso o
Ž .k H s0.0105-g , the interpolation defined by Eq. 5 was used in the calculations,o o oa

Ž .together with the nonlinear celerity Eq. 4 . The wave period was first predicted, as
explained above, using the computed values of c, L , and L ; predicted periods arec t

given in Table 2 as T X and are found to be within 0.7 and 0.3% of the true period, forp

cases b1 and b2, respectively. Deep water wave heights and bottom depth variations
were then predicted iteratively for each case, using the computed c and H values and
T X. Deep water wave heights are given in Table 2 as H X and are found to be within 0.8p po

and 0.7% of the true height, for cases b1 and b2, respectively.
To assess the validity of applying results of computations on a 1:50 slope to these

more complex bottom topographies, Fig. 9 shows comparisons between the values of c,
H, and h, computed as a function of kh, and their predictions with both DIA1 and linear
wave theory. Note that cases b1 and b2 have a significant part of their results in the

Ž .shallow water region kh-pr10 . For the direct prediction of c, despite the use of
Ž .interpolation Eq. 5 , the present algorithm gives small rms-errors, rms , of 1.2 andc

Ž . Ž Ž1.1% for cases b1 and b2, respectively Table 2 . Note that, despite the different mildly
.varying bottom topography, due to the same k H value for cases b1 and b2, aso o

expected from Grilli and Horrillo’s conclusions, both calculated c and H variations are

Ž . Ž . Ž . Ž .Fig. 9. Depth inversion cases: a b1; b b2. True h, and computed HrH , crc ; - - - - - -o o
Ž . Žestimated values with DIA1 note: estimates of crc and hrh are found closely similar with DIA2 ; — -o o

.— estimated values with linear dispersion relation.
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.closely identical in Fig. 9a and b, when plotted as a function of kh. In each case, wave
celerity is underpredicted by linear wave theory, particularly for kh-0.35. For the final
prediction of H, after iterations have converged in DIA1, the algorithm gives rmsH

Ž .errors of 2.8 and 3.8% for cases b1 and b2, respectively Table 2 .
Ž .Fig. 8 bottom parts gives the comparison, as a function of x, between the true

Ž .bottom depth h x , the depth predicted using DIA1, and the depth predicted using the
linear dispersion relation. Clearly, DIA1 provides a much closer prediction of the bottom
topography than when using the linear dispersion relation. This is further illustrated in
Fig. 12a which shows, for each case, the relative error between the nonlinear or the

Ž . Ž .Fig. 10. Depth inversion for an equilibrium beach with average slope 1:50, cases: a n1 with h x at
X X Ž . Ž . X X Ž . Ž . X Xt s112.8s20.5T ; b n2 with h x at t s112.1s17.3T ; c n3 with h x at t s106.9s14.3T .
Ž . Ž . Ž . Ž Ž .True bottom topography h x ; - - - - - - estimated topography with DIA1 note: h x estimates

. Ž .are found closely similar with DIA2 ; — - — estimated topography with linear dispersion relation. Note:
Ž .bottom is plotted up to the entrance of the absorbing beach in the numerical waÕe tank Fig. 1 .
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linear predictions of depth, and the actual depth h at points x . Corresponding rms andi i

maximum errors are given in Table 2. Errors of the DIA are only a few percent for most
Ž .of the wave propagation distance rms-errors are 3.6 and 2.7%, respectively , whereas

errors of the method based on linear dispersion are always larger and reach very large
Ž .values order 50% , in the shallower water region, particularly for kh-pr10.

5.1.2. Natural slopes
Ž .According to the theory of Dean 1991 , in average, natural beaches tend to follow a

Ž ) .2r3 )bottom depth variation defined as, hsA x yx , with x denoting the location of
depth h) at the toe of the slope, and A a constant depending on the specified averageo

Ž .slope which actually is related to the mean sediment grain size . In Fig. 1, the measured

Ž . Ž . Ž . Ž .Fig. 11. Depth inversion cases: a n1; b n2; c n3. True h, and computed HrH , crc ;o o
Ž . Ž- - - - - - estimated values with DIA1 note: estimates of crc and hrh are found closely similar witho o

. Ž .DIA2 ; — - — estimated values with linear dispersion relation.
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bottom topography at Ft. Walton Beach, FL, was sketched as an example, and an
Ž .0.64average equilibrium shape was fitted as hrh s0.0758 74.20yxrh ; hence, 0.64o o

,2r3. The curve fit had a R2 s0.98, which indicates a good overall agreement. As
Ž .can be seen on Fig. 1 chained line , the equilibrium beach profile has a milder slope in

deeper water and a steeper slope in shallower water, than the average value, 1:82 in this
case.

Three shoaling cases, referred to as n1, n2, and, n3 in Table 2, were computed for the
same bottom topography in the numerical wave tank, consisting in Dean’s equilibrium
beach profile with an average slope 1:50, using three different incident waves of height
H X ) s0.06 and periods T X s5.5, 6.5, and 7.5, respectively, resulting in waves ofo

decreasing incident steepness; Fig. 10a–c show examples of free surface elevations
Ž . Ž .h x calculated for these waves upper parts . Selected results of these computations,

Ž .i.e., about Ns100 values of c, H, L , L as a function of x, again taken betweenc t

depth 0.6h and 0.1h , were used in DIA1. Due to the larger incident wave steepnesso o
Ž .for these cases, k H s0.0846, 0.0591, 0.0430, the interpolation defined by Eq. 5 waso o

Ž .not used in the calculations but only the nonlinear celerity Eq. 4 . Predicted wave
periods T X were found to be within 0.4, 0.3, and 0.1% of the true period, and deep waterp

wave heights H X within 1.1, 1.7, and 1.9% of the true height, for cases n1, n2 and n3,po
Ž .respectively Table 2 .

As for the broken slope cases, Fig. 11 gives simultaneous comparisons between the
values of c, H, and h, computed as a function of kh, and their predictions with DIA1

˜Ž . wŽ . Ž . xFig. 12. Relative errors, ´ s h y h rh , for five cases in Table 2: a a: b1, b: b2; b a: n1, b: n2, c: n3 fori i i
˜ Ž . Ž .depth prediction h at x with: - - - - - - DIA1; — - — linear dispersion relation.i i
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and linear wave theory. These waves were barely entering shallow water at the upper
part of the slope. For the direct prediction of c, DIA1 gives very small rms errors ofc

Ž .0.6, 0.7, and 0.4% for cases n1, n2 and n3, respectively Table 2 . All the k H valueso o
Ž .for these cases are in the range of the original computations based on which Eq. 4 was

derived; the bottom topography, however, is different. The low rms values, hence,
further confirm the hypothesis at the basis of our DIAs that celerity can be predicted for
a variety of mildly sloping topographies based on results obtained for a simple plane
slope. As for cases b1 and b2, in each case, wave celerity is underpredicted by linear
wave theory, particularly for kh-0.60. For the final prediction of H, after iterations
have converged in DIA1, the algorithm gives rms errors of 2.7, 2.0 and 2.0% for casesH

Ž .n1, n2 and n3, respectively Table 2 .
Ž .Fig. 10 bottom part gives the comparison, as a function of x, between the true

Ž .bottom depth h x , the depth predicted using DIA1, and the depth predicted using the
linear dispersion relation. Again, it is clear that DIA1 provides a much closer prediction
of the bottom topography than when using the linear dispersion relation. This is further
illustrated in Fig. 12b which shows, for each case, the relative error between the
nonlinear and linear predictions of depth, and the actual depth, respectively. Values of
rms and maximum errors are also given in Table 2. Errors of the DIA are only a few

Žpercent for most of the wave propagation distance rms-errors are 2.1, 1.7 and 2.0%,
.respectively , whereas errors of the method based on linear dispersion are always larger

Ž .and reach very large values order 50–70% , particularly, in the shallower water region
for kh-0.60. Finally, it should also be pointed out that the single bottom topography

Ž .for cases n1, n2, and n3 was predicted with the same level of accuracy rms-error for
the three different incident waves. This indicates that in actual field situations, results of
the DIA obtained for several incident waves, with different characteristics, can be
averaged to obtain a better prediction of the depth variation.

( ) ( )5.2. Depth inÕersion algorithm for c, L, s rs data DIA22 1

Depth inversion for the five test cases of Table 2, used to validate DIA1, was
repeated using DIA2. For the natural slope cases n1, n2, n3, small rms-errors of 2.1, 3.4,
and 3.2%, respectively, were readily obtained for the depth prediction, using the curve

Ž .fit of Eq. 7 to the data from the nine cases in Table 1 to estimate H . Results in Fig. 11o

for crc and hrh were also closely reproduced using DIA2. Errors on the directo o
Ž . Žprediction of H x , however, were larger than with DIA1 rms s2.7, 13.4, andH

.13.1%, respectively , indicating that detailed information on wave height is not so
important, provided H is correctly estimated. These good results confirmed that DIA2o

is also a viable depth inversion method. For the broken slope cases b1 and b2,
rms-errors on depth were initially much larger, at 19.2 and 20.9%, respectively. This
was later explained by the fact that none of the calibration computations in Table 1 were
performed for a small enough value of k H , whereas k H s0.01 in cases b1 and b2.o o o o

Ž .For the celerity, the interpolation Eq. 5 provided accurate results for cases b1 and b2.
The initial empirical fit of s rs for the cases in Table 1, however, did not cover the2 1

Ž .range of small k H values. The curve fit of s rs values with Eq. 7 was thuso o 2 1
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repeated, including all the cases in Table 2 in addition to those in Table 1. Coefficients
2 ŽB ’s slightly changed but a good R s95.7% was still obtained note, these changes didi

.not affect the accuracy of results for cases n1, n2, and n3 . Using the new empirical
equation for s rs in DIA2, the algorithm was re-applied to cases b1 and b2 and2 1

rms-errors on depth were significantly reduced to 5.7 and 3.9%, respectively. For these
cases, using DIA2, detailed results in Fig. 9 for crc and hrh were also wello o

reproduced; again, larger errors occurred on the direct H prediction than when using
Ž .DIA1 rms s11.4 and 10.3%, respectively .H

6. Conclusions

In this paper, two DIAs were developed and validated based on results of computa-
tions for the shoaling of periodic waves over mild slopes, in a two-dimensional

Ž .numerical wave tank based on FNPF theory Grilli and Horrillo, 1996, 1997b . In actual
field situations, the first algorithm, DIA1, uses sets of values of wave celerity c, height
H, and spatial wavelengths L and L , simultaneously measured at a number ofc t

Ž .locations x is1, . . . , N in the direction of wave propagation, e.g., using video ori
Ž .radar remote sensing techniques, to predict the depth variation h x . The secondi

algorithm, DIA2, uses spatial wave asymmetry s rs calculated from wave phase,2 1

instead of wave height information.
In the DIAs, a bi-quadratic empirical relationship is first derived to express c as a

function of relative depth k h and deep water steepness k H , based on results of FNPFo o o

computations for nine cases of periodic waves shoaling over a 1:50 slopes, with
k H s0.029–0.114 and k hF0.5. This relationship has a R2 s99.8% coefficient ofo o o

determination. An extension of this relationship for smaller wave steepness is proposed,
using an interpolation with results of linear wave theory.

To carry out depth inversion, wave period is first predicted based on the mean of
observed Lrc values, where L is found as the average of L and L , and H is found:c t o
Ž .i in DIA1, based on the observed H values, using the wave steepness variation from

Ž .linear wave theory and the nonlinear celerity; ii in DIA2, based on an empirical fit of
wave asymmetry values s rs , calculated in the numerical waÕe tank, as a function of2 1

Ž 2 .kh and k H R s96% . Due to the dependence of c on H , an iterative method iso o o

needed in both algorithms. The celerity relationship is then inverted to predict depth h.
The DIAs were validated by applying them to results of computations for five cases

with more complex bottom topographies and different incident waves than in the
original computations. In all cases, rms-errors for the depth predictions were found to be

Ž .less than a few percent 1.7–3.6% for DIA1; 2.1–5.7% for DIA2 , whereas depth
predictions based on the linear dispersion relation gave rms-errors 5 to 10 times larger
Ž .14.6–20.5% . The direct predictions of c and H were also found to be accurate within
a few percent, particularly for DIA1. This indicates that both DIAs are applicable to
realistic mildly and monotonously sloping bottom topographies. Overall, although
rms-errors on depth prediction are slightly larger with DIA2 than with DIA1, they are

Žstill significantly smaller than those corresponding to linear wave theory three to seven
.times smaller . This clearly confirms the relevance of DIA2’s approach for carrying out



( )S.T. GrillirCoastal Engineering 35 1998 185–209208

depth inversion. Since it is purely based on parameters derived from wave phase, DIA2
is more easily applicable to field data than DIA1.

Results also indicate that depth inversion methods solely based on the linear
Ž .dispersion relation may lead to large errors 50–70% for the depth prediction in very

shallow water, where wave nonlinearity and asymmetry are large and amplitude
dispersion effects cannot be neglected in the celerity relationship.

Besides being based on a two-dimensional method, the main limitations of the
proposed DIAs, and hence sources of errors in depth prediction, are the use of periodic
incident waves and topographies with monotonously decreasing and mildly varying
depth. Computations could be run in the numerical waÕe tank, however, to assess how
incident wave groups with fairly narrow band could be used in the DIAs, instead of
purely periodic waves. Also variations of c, H, and s rs for waves propagating over2 1

shallow bars, i.e., with a decreasing depth onshore of the bar’s crest, could be studied in
Žthe numerical waÕe tank and included in the DIAs see the work of Grilli and Horrillo

Ž . .1998 for preliminary results for barred-beaches . Finally, nothing prevents the present
approach to be extended to three dimensions, although a three-dimensional FNPF
numerical waÕe tank will be computationally very expensive. These studies will be the
object of continuations of this work.
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