
A Proof of the Kahn Principle for Input/Output AutomataNancy A. LynchM.I.T. Laboratory for Computer Science545 Technology SquareCambridge, MA 02139 USA Eugene W. StarkDepartment of Computer ScienceState University of New York at Stony BrookStony Brook, NY 11794 USAJune 12, 1988

1

Proposed Running Head: Kahn Principle for I/O AutomataSend Proofs to: Eugene W. StarkDepartment of Computer ScienceState University of New York at Stony BrookStony Brook, NY 11794 USA

2

AbstractWe use input/output automata to de�ne a simple and general model of networks of concur-rently executing, nondeterministic processes that communicate through unidirectional, namedports. A notion of the input/output relation computed by a process is de�ned, and determinateprocesses are de�ned to be processes whose input/output relations are single-valued. We showthat determinate processes compute continuous functions, and that networks of determinateprocesses obey Kahn's �xed-point principle. Although these results are already known, our con-tribution lies in the fact that the input/output automata model yields extremely simple proofsof them (the simplest we have seen), in spite of its generality.

3

1 IntroductionKahn (1974) describes a simple parallel programming language based on the concept of a networkof concurrently executing sequential processes that can communicate by sending values over \chan-nels." The communication primitives available to processes are su�ciently restrictive that onlyfunctional processes can be programmed. That is, each process may be viewed as computing afunction from the complete history of values received on its input channels, to the complete historyof values emitted on its output channels. Kahn argues that such processes in fact compute functionsthat are continuous with respect to a suitable complete partial order (cpo) structure on the setsof input and output histories. Moreover, a network of such processes also computes a continuousfunction, which can be characterized as the least �xed-point of a continuous functional associatedwith the network. The advantage of this least �xed-point characterization is that it permits theuse of Scott's induction rule to prove properties of process networks.Kahn's original conception of a process network has subsequently been elaborated to serve asa basis for \data
ow" models of computation. In the data
ow literature, a network of processesis typically represented by a \data
ow graph," which is a directed graph whose nodes correspondto processes, and whose arcs correspond to unidirectional FIFO communication channels betweenprocesses. The program for a process designates particular channels to be used for input or outputthrough the use of \ports," which are names assigned by a process to each channel attached to thatprocess. In contrast to Kahn's original model, both functional and nonfunctional processes are ofinterest in data
ow computation. Although it is straightforward to give an operational semanticsfor such networks by describing the
ow of data values through them, it is unfortunately the casethat Kahn's denotational semantics for networks of functional processes is not known to have anequally elegant generalization to networks of processes with non-functional behaviors. Brock andAckerman (1981) have shown that naive generalizations, in which relations, rather than functions,are used to represent the input/output behavior of processes, fail to be consistent with the intuitiveoperational model of network execution. An extensive literature has arisen from attempts to resolvethe so-called \Brock-Ackerman anomaly." Although we cannot adequately review this literaturehere, the reader may refer to the recent papers (Gaifman and Pratt, 1987; Kok, 1987; Stark, 1987)for references to earlier work.Kahn did not give a proof of the consistency of his �xed-point principle with respect to an op-erational semantics. However, Kahn's principle is similar to results that had already been proved(Cadiou, 1972) for recursive program schemes, and thus was generally accepted without an explicitproof. In the search for extensions to the non-functional case, though, consistency proofs are essen-tial, since it is fairly easy to de�ne denotational \semantics" which, although seemingly plausible,do not agree with an intuitively correct operational semantics. Recently, some attention has beenpaid to the problem of establishing the Kahn principle as a theorem about an operational model.Faustini (1982) de�nes a reasonably general model of networks of nondeterministic processes. Us-ing some game-theoretic ideas, Faustini de�nes a subclass of networks of functional processes, andshows that such networks obey the Kahn principle. Stark (1987) de�nes a class of nondeterministicprocesses, through axioms that constrain the structure of processes viewed as a kind of generalizedtransition system. \Kahn processes" are de�ned to be processes whose underlying transition sys-tems obey an additional Church-Rosser-like property. Stark shows that the Kahn principle can bederived from the axioms. Gaifman and Pratt (1987) , and Rabinovich (1987) show that the Kahnprinciple holds for the \pomset" model. 4

Although the technical complexities of the three papers (Gaifman and Pratt, 1987; Rabinovich,1987; Stark, 1987) make anything other than qualitative comparisons di�cult, all seem to be talkingabout essentially similar sets of ideas. Each of the proofs involves the use of the properties:1. A process is capable of accepting any input at any time.2. Production of output by a process depends only on previously received input, and not oninput received later than or simultaneously with the output.3. If the input history of a process in one computation is consistent with its input history inanother computation, then the output histories in the two computations are also consistent.These three properties are used in an inductive argument to show that a network must produceoutput less than or equal to the output speci�ed by the Kahn principle. The additional property:4. A process can always make progress toward a complete computation, regardless of the inputreceived.is used to establish that a network must produce at least as much output as that speci�ed by theKahn principle.In this paper, we prove the consistency of the Kahn principle with respect to an operationalmodel based on the \input/output automata" of Lynch and Tuttle (1987) . Our proof shares withothers the four central ideas listed above, but has the advantage of being extremely simple (thesimplest we have yet seen). In part, this simplicity is attained because we are able to make use oftwo powerful general theorems (Lemma 1 and Proposition 2) about input/output automata. Ourmodel is more general than Faustini's (1982) , since we do not make any concrete assumption aboutthe structure of \channel bu�ers." Faustini postulates channel bu�ers whose states are sequencesof messages in transit. In contrast, we think of each process as containing, as components of itsstate, the bu�ers for the channels from which it takes its input. We also do not require for ourde�nitions and proofs the game theory used by Faustini. Our work can be seen as complementaryin a sense to that of Stark (1987) . Whereas the latter work can be viewed as a search for as weak acondition as possible on nondeterministic processes, from which the Kahn principle can be proved,our results show that the simple restriction to \determinate" processes (those with single-valuedinput/output relations) is already an extremely strong constraint, from which the Kahn principlefollows almost automatically.Even though the truth of the Kahn principle is not really in doubt, we believe it is importantto search for semantic models in which the principle can be proved as simply and generally aspossible. Since this principle is perhaps the simplest and most elegant result we have to date in thetheory of concurrency, it seems reasonable to expect that any purportedly useful semantic modelshould admit a simple proof of it. The ultimate goals of the search would be the identi�cation of aminimal set of properties that a model of nondeterministic process networks must have if the Kahnprinciple is to hold, and a determination of the extent to which the theory of functional processescan be usefully generalized. The results of this paper show the input/output automata model doesindeed admit a simple proof of the Kahn principle. The recent results of Panangaden and Stark(1988), concerning a closely related model, suggest that input/output automata are also well-suitedfor the study of nondeterministic process networks.5

2 Input/Output AutomataAn action signature is a triple A = (Ain; Aout; Aint), where the sets Ain, Aout, and Aint are pairwisedisjoint. The elements of Ain are called input actions, those of Aout are called output actions, andthose of Aint, internal actions. We use the same symbol A to denote both an action signature andthe set Ain [Aout [Aint of all its actions.An input/output automaton is a tuple M = (A;Q;Q�; T;�), where� A is an action signature.� Q is a set of states.� Q� � Q is a distinguished set of start states.� T � Q � A � Q is a set of transitions, with the property that for all q 2 Q and all inputactions a, there exists a transition (q; a; r) in T .� � is an equivalence relation on the set (Aout[Aint) of non-input actions, such that the numberof equivalence classes of � is at most countable.If (q; a; r) 2 T , and T is clear from the context, then we write q a�!r. An action a is said to beenabled in state q if there exists a state r such that q a�!r. The de�nition of an input/outputautomaton requires that all input actions be enabled in every state.A comment is in order concerning the equivalence relation �. We use input/output automatanot just to model single processes, but also systems of concurrently executing processes. When wemodel a system of processes, we are interested only in \fair" computations, that is, in computationsin which no process that desires to execute is forever prevented from doing so. To impose therequirement of fairness, we need a certain amount of information about the correspondence betweenactions and processes. The equivalence relation � provides this information, in the sense that wethink of each equivalence class of � as the set of actions of a single process that should receive fairtreatment.An execution fragment of an input/output automaton is either a �nite sequence of the formq0 a0�!q1 a1�! . . . an�1�!qn;or an in�nite sequence of the form q0 a0�!q1 a1�! . . . ;where for each k � 0, we require that qkak+1�!qk+1 2 T . An execution is an execution fragment whose�rst state q0 is a start state.A �nite execution fragment q0 a0�!q1 a1�! . . . an�1�!qn;is fair if no non-input actions are enabled in state qn. An in�nite execution fragmentq0 a0�!q1 a1�! . . . :is fair if, for every �-equivalence class C of actions, either there exist in�nitely many k � 0 withak 2 C, or else there exist in�nitely many k � 0 for which no action in C is enabled in state qk.6

If U is any set, then let U1 denote the set of all �nite and in�nite sequences of elements of U .If A is an action signature, then we call A1 the set of action sequences for A. If � is an actionsequence, and U is a set, then the restriction of � to U is the subsequence �jU of � consisting only ofthose actions that are in U . If M is an input/output automaton, then the schedule of an executionfragment ofM is the sequence of actions appearing in that fragment. The set �nscheds(M) of �niteschedules of M is the set of all schedules of �nite executions of M . The set fairscheds(M) of fairschedules of M is the set of all schedules of fair executions of M .Lemma 1 Let M be an input/output automaton, and suppose � 2 �nscheds(M). Then givenany action sequence � consisting only of input actions, there exists a sequence � such that �� 2fairscheds(M), and such that � jAin = �.Proof { We �rst claim that given any state q 2 Q, and sequence � consisting only of inputactions, there exists a fair execution fragment, starting from state q and having schedule � , suchthat � jAin = �. This fair execution fragment can be obtained by a dovetailing construction in whichactions in � are interleaved with actions from the various equivalence classes of �. The conditionthat every input action is enabled in every state of an input/output automaton ensures that actionsin � can be executed whenever required. The condition that the set of equivalence classes of � isat most countable ensures that the dovetailing can be carried out in such a way that the resultingexecution fragment is fair.It is now easy to prove our result. Given � 2 �nscheds(M), obtain a �nite executionq0 a0�!q1 a1�! . . . an�1�!qnwith schedule �. Given a sequence � consisting only of input actions, apply the claim of the previousparagraph to obtain a fair execution fragment, starting from state qn and having schedule � , suchthat � jAin = �. Concatenating the �nite execution with schedule � with the fair execution fragmentwith schedule � yields a fair execution with schedule �� , thus showing �� 2 fairscheds(M).Suppose I is a �nite or countably in�nite index set. A collection A = fAi : i 2 Ig of actionsignatures is called compatible if for all i; j 2 I with i 6= j we have Aouti \Aoutj = ; and Ainti \Aj = ;.If A is compatible, then the sets Aout = Si2I Aouti , Ain = (Si2I Aini) n Aout, and Aint = Si2I Aintiare pairwise disjoint, and we may therefore de�ne the composition of A to be the action signatureQA = (Ain; Aout; Aint).A collectionM = fMi : i 2 Ig of input/output automata, where Mi has signature Ai, is calledcompatible if the collection A = fAi : i 2 Ig of action signatures is compatible. IfM is compatible,then the composition of M is the quintuple QM = (A;Q;Q�; T;�); where� A = QA.� Q = Qi2I Qi.� Q� = Qi2I Q�i .� T is the set of all ((qi : i 2 I); a; (ri : i 2 I)) such that for all i 2 I , if a 2 Ai, then(qi; a; ri) 2 Ti, and if a 62 Ai, then ri = qi.� � = Si2I �i. 7

It is not di�cult to see that QM is an input/output automaton. An action a 2 A is an inputaction of A i� it is an input action of each Ai that contains it. Since for all i 2 I , all input actionsof Ai are enabled in every state of Mi, it follows by the de�nition of QM that all input actionsof A are enabled in every state of QM. Also, since the compatibility condition ensures that thecollection fAouti [Ainti : i 2 Ig is pairwise disjoint, it follows that � = Si2I �i is an equivalencerelation on Aout [Aint.The following result characterizes the set of �nite or fair schedules of QM in terms of the setsof �nite or fair schedules of the Mi. A proof can be found in (Lynch and Tuttle, 1987) . Thefollowing consequence of the compatibility condition is essential to this proof: Each output actiona of A is an output action of Ai for exactly one i 2 I , and a is an input action of Aj for all j 6= isuch that a 2 Aj .Proposition 2 Suppose M = fMi : i 2 Ig is a compatible collection of input/output automata.For each i 2 I, let Ai be the action signature of Mi. Then1. Suppose � is a �nite sequence of actions from QfAi : i 2 Ig. Then � 2 �nscheds(QM) i��jAi 2 �nscheds(Mi) for all i 2 I.2. � 2 fairscheds(QM) i� �jAi 2 fairscheds(Mi) for all i 2 I.3 Port AutomataLet V be a set of data values. A port signature is an action signature A, whose sets of input andoutput actions have the particular form Ain = P in � V and Aout = P out � V , with P in and P outdisjoint and at most countable. The elements of P in and P out are called input ports and outputports, respectively. If a = (p; v) 2 Ain [Aout, then we write port(a) for the port component p, andvalue(a) for the value component v, of a. A port automaton is an input/output automaton whoseaction signature is a port signature.Suppose A = fAi : i 2 Ig is a compatible collection of port signatures. Then the compositionQA is also a port signature, with output port set P out = Si2I P outi and input port set P in =(Si2I P ini) n P out. It follows that the composition of a compatible collection of port automata isalso a port automaton.The composition of a compatible collection of port automata models a network of communicat-ing, concurrently executing, component processes. Communication between components in such anetwork occurs when an output transition of one component, with a particular port and data value,occurs simultaneously with input transitions, with the same port and data value, for a number ofother components. We allow arbitrary \fanout" in the sense that a single action may be shared bymore than two components, as long as it is an output action for at most one of them. This is a bitmore general than the usual de�nition of \linking" in the data
ow literature, in which each port ofa process may be connected with at most one port of another process. We do not have any formalnotion of \input bu�ers" or \channel processes." Rather, we think of a bu�er for each input portof a process as already incorporated into the state of that process.If P is a set of ports, then a history over P is a function H : P ! V1. Let Hist(P) denotethe set of all histories over P . If A is a port signature, then each sequence � in A1 determines acorresponding history H� 2 Hist(P in [P out), de�ned byH�(p) = value(�jfa 2 Ain [Aout : port(a) = pg);8

where we have extended the `value' notation to sequences � = a1a2 . . . 2 (Ain[Aout)1, by de�ningvalue(�) = value(a1)value(a2) The restrictions H in� = H�jP in and Hout� = H�jP out to thesets of input and output ports, respectively, are called the input history and output history of �.The input/output relation of a port automaton M is the set Reln(M) of all pairs (H in� ; Hout�) with� 2 fairscheds(M).It is important for our purposes that the setsA1 and V1, and the set Hist(P) of all historiesH :P ! V1, form algebraic, directed-complete posets1 when equipped with suitable partial orderings.The ordering of interest on A1 and V1 is the pre�x ordering, and on Hist(P) it is the orderingv obtained componentwise from the pre�x ordering on V1. The �nite elements of A1 and V1are the �nite sequences, and the �nite elements of Hist(P) are exactly those functions from P toV � that map all but a �nite subset of P to the empty sequence. Moreover, the map that takesa sequence � 2 A1 to the corresponding history H� is continuous, and maps �nite sequences to�nite histories. Finally, note that the assumption that P is at most countable ensures that everyhistory H 2 Hist(P) is H� for some sequence � 2 A1.4 DeterminacyA port automatonM is determinate if its input/output relation Reln(M) is single-valued, hence isthe graph of a function Fun(M) : Hist(P in)! Hist(P out):Lemma 3 Suppose M is determinate. Suppose � 2 �nscheds(M) and � 2 fairscheds(M) are suchthat H in� v H in� . Then Hout� v Hout� .Proof { By Lemma 1, � extends to a schedule � in fairscheds(M), such that H in� = H in� . Bydeterminacy, we must have Hout� = Hout� . Since Hout� v Hout� by construction, it follows thatHout� v Hout� .Lemma 4 Suppose M is determinate, with Fun(M) = f . Then Hout� v f(H in�) for all � 2�nscheds(M).Proof { Given � 2 �nscheds(M), we may use Lemma 1 to extend � to � 2 fairscheds(M), withH in� = H in� . Then Hout� v Hout� by Lemma 3, and Hout� = f(H in�) by the fact that � 2 fairscheds(M).Since H in� = H in� , f(H in�) = f(H in�). Thus, Hout� v f(H in�).Theorem 1 If M is determinate, then Fun(M) is continuous.Proof { We �rst show monotonicity. Suppose �; � 2 fairscheds(M), with H in� v H in� . ThenH in� v H in� holds for all �nite pre�xes � of �, so by Lemma 3, Hout� v Hout� holds for all �nitepre�xes � of �. It follows that Hout� v Hout� .1A subset U of a partially ordered set (poset) (D;v) is directed if it is nonempty and every pair of elements of Uhas an upper bound in U . The poset (D;v) is directed-complete if it has a least element, and every directed subsetU of D has a supremum FU 2 D. A function between directed-complete posets is called continuous if it preservessuprema of directed sets. If (D;v) is directed-complete, then an element e 2 D is called �nite (also isolated, orcompact) if whenever U � D is directed, and e v FU , then e v d for some d 2 U . The poset (D;v) is algebraic ifevery element d 2 D is the supremum of the set of all �nite e 2 D with e v d.9

Next, we show continuity. Suppose � � fairscheds(M), such that the collection fH in� : � 2 �gis directed, with supremumH in. By Lemma 1 and the fact that H in is the history of some sequenceconsisting only of input actions, we know there exists a schedule � 2 fairscheds(M) withH in� = H in.Then by monotonicity, Hout� v Hout� for all � 2 �. This implies that the collection fHout� : � 2 �gis directed, hence has a supremum Hout v Hout� . We claim that Hout� v Hout. By the continuityof the map that takes each action sequence to the corresponding history, it su�ces to show thatHout� v Hout for all �nite pre�xes � of � . But if � is a �nite pre�x of � , then H in� v H in, henceH in� v H in� for some � 2 � by the �niteness of H in� . Thus Hout� v Hout� by Lemma 3, and thereforeHout� v Hout.5 The Kahn PrincipleLet A = fAi : i 2 Ig be a compatible collection of port signatures. Let P denote the set of portsof QA, and for each i 2 I , let Pi denote the set of ports of Ai. Suppose F = ffi : i 2 Ig is acollection of continuous functions, where for each i 2 I ,fi : Hist(P ini)! Hist(P outi):The network equations associated with F are the equations (in the unknown history H 2 Hist(P)):H jP outi = fi(H jP ini) (i 2 I):The network functional associated with F is the function� : [Hist(P in)! Hist(P)]! [Hist(P in)! Hist(P)]that takes each continuous function f : Hist(P in)! Hist(P)to the function �(f) : Hist(P in)! Hist(P)de�ned by �(f)(H in)jP in = H in; �(f)(H in)jP outi = fi(f(H in)jP ini):The compatibility condition on A ensures that � is well-de�ned, and it is straightforward to verifythat �(f) is continuous whenever f is continuous.The following result can be proved by standard techniques in the theory of cpo's (see, e.g. Kahn,1974, Section 3).Proposition 5 Suppose port signatures A and functions F are as above. Then the network func-tional � associated with F is continuous, hence has a least �xed point ��. Moreover, �� takeseach history H in 2 Hist(P in) to the least history H 2 Hist(P) such that H jP in = H in, and suchthat H satis�es the network equations associated with F .10

Theorem 2 (Kahn Principle) Suppose M = fMi : i 2 Ig is a compatible collection of determi-nate port automata, let F = fFun(Mi) : i 2 Ig, and let � be the network functional associated withF . Then QM is determinate, and Fun(QM) satis�esFun(YM)(H in) = ��(H in)jP outfor all H in 2 Hist(P in).Proof { Let fi = Fun(Mi) for each i 2 I . By Proposition 5, it su�ces to show that for each schedule� 2 fairscheds(QM), the history H� is the least history H 2 Hist(P) such that H jP in = H in� , andsuch that H satis�es the network equations associated with F .Suppose � 2 fairscheds(QM). Since �jAi 2 fairscheds(Mi) by Proposition 2, it follows that foreach i 2 I , H�jP outi = H�jAouti = fi(H�jAini) = fi(H�jP ini): Thus, the network equations are satis�edby H�.It remains to be shown that ifH is any history withH in = H in� such thatH satis�es the networkequations, then H� v H . It su�ces to show that H� v H for all �nite pre�xes � of �. We proceedby induction on the length j�j of �. The basis j�j = 0 is immediate. For the induction step, let� = �0a where a 2 A and H�0 v H . There are three cases:(Case a 2 Aint) Then H� = H�0 v H .(Case a 2 Ain) Since H in� = H in, we have H in� v H in. Then H�0 v H and H in� v H in togetherimply H� v H .(Case a 2 Aout) Then a 2 Aouti for some i 2 I , so that H�jP ini = H�0 jP ini . By Proposition 2and Lemma 4 we know that H�jP outi v fi(H�jP ini) = fi(H�0 jP ini). But H�0 jP ini v H jP ini , hencefi(H�0 jP ini) v fi(H jP ini) = H jP outi by the monotonicity of fi and the assumption that H satis�esthe network equations. Thus, H�jP outi v H jP outi . This fact, together with H�0 v H , impliesH� v H .6 ConclusionWe have used input/output automata to de�ne a rather general model of networks of nondetermin-istic processes. A notion of the input/output relation computed by a process has been de�ned, andused to de�ne the class of determinate (or functional) processes. We have shown that determinacyis a very strong property, from which it follows almost immediately that the functions computed bydeterminate processes are continuous, and that networks of determinate processes obey the Kahnprinciple.AcknowledgementsN. A. Lynch was supported in part by DARPA grant N00014-83-K-0125, ONR grant N00014-85-K-0168, and NSF grant CCR-8611442. E. W. Stark was supported in part by NSF grantCCR-8702247. 11

ReferencesBrock, J. D. and Ackerman, W. B. (1981) Scenarios: a model of non-determinate computation.In Formalization of Programming Concepts, pages 252{259, Springer-Verlag. Volume 107 ofLecture Notes in Computer Science.Cadiou, J. M. (1972) Recursive De�nitions of Partial Functions and Their Computations. PhDthesis, Stanford University.Faustini, A. A. (1982) An operational semantics for pure data
ow. In Automata, Languages, andProgramming, 9th Colloquium, pages 212{224, Springer-Verlag. Volume 140 of Lecture Notesin Computer Science.Gaifman, H. and Pratt, V. (1987) Partial order models of concurrency and the computation offunctions. In Symposium on Logic in Computer Science, pages 72{85.Kahn, G. (1974) The semantics of a simple language for parallel programming. In J. L. Rosenfeld,editor, Information Processing 74, North-Holland.Kok, J. N. (1987) A fully abstract semantics for data
ow nets. pages 351{368, Springer-Verlag.Volume 259 of Lecture Notes in Computer Science.Lynch, N. A. and Tuttle, M. (1987) Hierarchical Correctness Proofs for Distributed Algorithms.Technical Report MIT/LCS/TR-387, M. I. T. Laboratory for Computer Science.Panangaden, P. and Stark, E. W. (1988) Computations, Residuals, and the Power of Indetermi-nacy. In Automata, Languages, and Programming, 15th Colloquium, Springer-Verlag. LectureNotes in Computer Science (to appear, July 1988).Rabinovich, A. (1987) Pomset semantics is consistent with data
ow semantics. EATCS Bulletin,107{117, June, 1987.Stark, E. W., (1987) Concurrent transition system semantics of process networks. In FourteenthACM Symposium on Principles of Programming Languages, pages 199{210.
12

