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Abstract

The resource-bounded measures of complexity classes are shown
to be robust with respect to certain changes in the underlying proba-
bility measure. Speci�cally, for any real number � > 0, any uniformly
polynomial-time computable sequence ~� = (�0; �1; �2; : : : ) of real num-
bers (biases) �i 2 [�; 1 � �], and any complexity class C (such as P,
NP, BPP, P/Poly, PH, PSPACE, etc.) that is closed under positive,
polynomial-time, truth-table reductions with queries of at most linear
length, it is shown that the following two conditions are equivalent.

(1) C has p-measure 0 (respectively, measure 0 in E, measure 0 in
E2) relative to the coin-toss probability measure given by the

sequence ~�.

(2) C has p-measure 0 (respectively, measure 0 in E, measure 0 in
E2) relative to the uniform probability measure.

The proof introduces three techniques that may be useful in other
contexts, namely, (i) the transformation of an e�cient martingale for
one probability measure into an e�cient martingale for a \nearby"
probability measure; (ii) the construction of a positive bias reduction,
a truth-table reduction that encodes a positive, e�cient, approximate
simulation of one bias sequence by another; and (iii) the use of such a
reduction to dilate an e�cient martingale for the simulated probabil-
ity measure into an e�cient martingale for the simulating probability
measure.
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1 Introduction

In the 1990's, the measure-theoretic study of complexity classes has yielded
a growing body of new, quantitative insights into various much-studied as-
pects of computational complexity. Bene�ts of this study to date include
improved bounds on the densities of hard languages [15]; newly discovered
relationships among circuit-size complexity, pseudorandom generators, and
natural proofs [21]; strong new hypotheses that may have su�cient explana-
tory power (in terms of provable, plausible consequences) to help unify our
present plethora of unsolved fundamental problems [18, 15, 7, 16, 11]; and
a new generalization of the completeness phenomenon that dramatically
enlarges the set of computational problems that are provably strongly in-
tractable [14, 6, 2, 7, 8, 1]. See [13] for a survey of these and related devel-
opments.

Intuitively, suppose that a language A � f0; 1g� is chosen according to
a random experiment in which an independent toss of a fair coin is used
to decide whether each string is in A. Then classical Lebesgue measure
theory (described in [5, 20], for example) identi�es certain measure 0 sets
X of languages, for which the probability that A 2 X in this experiment
is 0. E�ective measure theory, which says what it means for a set of de-
cidable languages to have measure 0 as a subset of the set of all such lan-
guages, has been investigated by Freidzon [4], Mehlhorn [19], and others.
The resource-bounded measure theory introduced by Lutz [12] is a power-
ful generalization of Lebesgue measure. Special cases of resource-bounded
measure include classical Lebesgue measure; a strengthened version of ef-
fective measure; and most importantly, measures in E = DTIME(2linear),
E2 = DTIME(2polynomial), and other complexity classes. The small subsets
of such a complexity class are then the measure 0 sets; the large subsets are
the measure 1 sets (complements of measure 0 sets). We say that almost
every language in a complexity class C has a given property if the set of
languages in C that exhibit the property has measure 1 in C.

All work to date on the measure-theoretic structure of complexity classes
has employed the resource-bounded measure that is described briey and
intuitively above. This resource-bounded measure is based on the uniform
probability measure, corresponding to the fact that the coin tosses are fair
and independent in the above-described random experiment. The uniform
probability measure has been a natural and fruitful starting point for the
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investigation of resource-bounded measure (just as it was for the investi-
gation of classical measure), but there are good reasons to also investigate
resource bounded measures that are based on other probability measures.
For example, the study of such alternative resource-bounded measures may
be expected to have the following bene�ts.

(i) The study will enable us to determine which results of resource-bounded
measure are particular to the uniform probability measure and which
are not. This, in turn, will provide some criteria for identifying con-
texts in which the uniform probability measure is, or is not, the natural
choice.

(ii) The study is likely to help us understand how the complexity of the
underlying probability measure interacts with other complexity pa-
rameters, especially in such areas as algorithmic information theory,
average case complexity, cryptography, and computational learning,
where the variety of probability measures already plays a major role.

(iii) The study will provide new tools for proving results concerning resource-
bounded measure based on the uniform probability measure.

The present paper initiates the study of resource-bounded measures that
are based on nonuniform probability measures.

Let C be the set of all languages A � f0; 1g�. (The set C is often
called Cantor space.) Given a probability measure � on C (a term de�ned
precisely below), section 3 of this paper describes the basic ideas of resource-
bounded �-measure, generalizing de�nitions and results from [12, 14, 13] to
� in a natural way. In particular, section 3 speci�es what it means for a
set X � C to have p-�-measure 0 (written �p(X) = 0), p-�-measure 1, �-
measure 0 in E (written �(X jE) = 0), �-measure 1 in E, �-measure 0 in E2,
or �-measure 1 in E2.

Most of the results in the present paper concern a restricted (but broad)
class of probability measures on C, namely, coin-toss probability measures
that are given by P-computable, strongly positive sequences of biases. These
probability measures are described intuitively in the following paragraphs
(and precisely in section 3).

Given a sequence ~� = (�0; �1; �2; : : :) of real numbers (biases) �i 2 [0; 1],
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the coin-toss probability measure (also call the product probability measure)

given by ~� is the probability measure �
~� on C that corresponds to the

random experiment in which a language A 2 C is chosen probabilistically
as follows. For each string si in the standard enumeration s0; s1; s2; : : : of
f0; 1g�, we toss a special coin, whose probability is �i of coming up heads,
in which case si 2 A, and 1 � �i of coming up tails, in which case si 62 A.
The coin tosses are independent of one another.

In the special case where ~� = (�; �; �; : : :), i.e., the biases in the sequence
~� are all �, we write �� for �

~� . In particular, �
1
2 is the uniform probability

measure, which, in the literature of resource-bounded measure, is denoted
simply by �.

A sequence ~� = (�0; �1; �2; : : :) of biases is strongly positive if there is
a real number � > 0 such that each �i 2 [�; 1 � �]. The sequence ~� is P-
computable (and we call it a P-sequences of biases) if there is a polynomial-
time algorithm that, on input (si; 0

r), computes a rational approximation
of �i to within 2�r.

In section 4, we prove the Summable Equivalence Theorem, which im-
plies that, if ~� and ~� are strongly positive P-sequences of biases that are
\close" to one another, in the sense that

P1
i=0 j�i� �ij <1, then for every

set X � C,

�~�p(X) = 0() �
~�
p(X) = 0:

That is, the p-measure based on ~� and the p-measure based on ~� are in
absolute agreement as to which sets of languages are small.

In general, if ~� and ~� are not in some sense close to one another, then
the p-measures based on ~� and ~� need not agree in the above manner. For
example, if �; � 2 [0; 1], � 6= �, and

X� =
n
A 2 C

�� lim
n!1

2�njA \ f0; 1gnj = �
o
;

then a routine extension of the Weak Stochasticity Theorem of [15] shows

that ��p(X�) = 1, while ��p(X�) = 0.

Notwithstanding this example, many applications of resource-bounded
measure do not involve arbitrary sets X � C, but rather are concerned
with the measures of complexity classes and other closely related classes of
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languages. Many such classes of interest, including P, NP, co-NP, R, BPP,
AM, P/Poly, PH, PSPACE, etc., are closed under positive, polynomial-time
truth-table reductions (�P

pos�tt-reductions), and their intersections with E

are closed under �P
pos�tt-reductions with linear bounds on the lengths of the

queries ( �P;lin
pos�tt-reductions).

The main theorem of this paper is the Bias Equivalence Theorem. This
result, proven in section 8, says that, for every class C of languages that is
closed under �

P;lin
pos�tt-reductions, the p-measure of C is somewhat robust with

respect to changes in the underlying probability measure. Speci�cally, if ~�
and ~� are strongly positive P-sequences of biases and C is a class of languages
that is closed under �P;lin

pos�tt-reductions, then the Bias Equivalence Theorem
says that

�~�p(C) = 0() �
~�
p(C) = 0:

To put the matter di�erently, for every strongly positive P-sequence ~� of
biases and every class C that is closed under �P;lin

pos�tt-reductions,

�
~�
p(C) = 0() �p(C) = 0:

This result implies that most applications of resource-bounded measure to
date can be immediately generalized from the uniform probability measure
(in which they were developed) to arbitrary coin-toss probability measures
given by strongly positive P-sequences of biases.

The Bias Equivalence Theorem also o�ers the following new technique
for proving resource-bounded measure results. If C is a class that is closed
under �P;lin

pos�tt-reductions, then in order to prove that �p(C) = 0, it su�ces

to prove that �
~�
p(C) = 0 for some conveniently chosen strongly positive P-

sequence ~� of biases. (The Bias Equivalence Theorem has already been put
to this use in the forthcoming paper [17].)

The plausibility and consequences of the hypothesis �p(NP) 6= 0 are
subjects of recent and ongoing research [18, 15, 7, 16, 11, 3, 17]. The Bias
Equivalence Theorem immediately implies that the following three state-
ments are equivalent.

(H1) �p(NP) 6= 0.

(H2) For every strongly positive P-sequence ~� of biases, �
~�
p(NP) 6= 0.
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(H3) There exists a strongly positive P-sequence ~� of biases such that

�
~�
p(NP) 6= 0.

The statements (H2) and (H3) are thus new, equivalent formulations of the
hypothesis (H1).

The proof of the Bias Equivalence Theorem uses three main tools. The
�rst is the Summable Equivalence Theorem, which we have already dis-
cussed. The second is the Martingale Dilation Theorem, which is proven
in section 6. This result concerns martingales (de�ned in section 3), which
are the betting algorithms on which resource-bounded measure is based.
Roughly speaking, the Martingale Dilation Theorem gives a method of trans-
forming (\dilating") a martingale for one coin-toss probability measure into
a martingale for another, perhaps very di�erent, coin-toss probability mea-
sure, provided that the former measure is obtained from the latter via an
\orderly" truth-table reduction.

The third tool used in the proof of our main theorem is the Positive Bias
Reduction Theorem, which is presented in section 7. If ~� and ~� are two
strongly positive sequences of biases that are exactly P-computable (with
no approximation), then the positive bias reduction of ~� to ~� is a truth-table

reduction (in fact, an orderly �P;lin
pos�tt-reduction) that uses the sequence

~�

to \approximately simulate" the sequence ~�. It is especially crucial for
our main result that this reduction is e�cient and positive. (The circuits
constructed by the truth-table reduction contain AND gates and OR gates,
but no NOT gates.)

The Summable Equivalence Theorem, the Martingale Dilation Theorem,
and the Positive Bias Reduction Theorem are only developed and used here
as tools to prove our main result. Nevertheless, these three results are of
independent interest, and are likely to be useful in future investigations.

2 Preliminaries

In this paper, N denotes the set of all nonnegative integers, Zdenotes the
set of all integers, Z+ denotes the set of all positive integers, Q denotes the
set of all rational numbers, and R denotes the set of all real numbers.
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We write f0; 1g� for the set of all (�nite, binary) strings, and we write
jxj for the length of a string x. The empty string, �, is the unique string of
length 0. The standard enumeration of f0; 1g� is the sequence s0 = �; s1 =
0; s2 = 1; s3 = 00; : : : , ordered �rst by length and then lexicographically. For
x; y 2 f0; 1g�, we write x < y if x precedes y in this standard enumeration.
For n 2 N, f0; 1gn denotes the set of all strings of length n, and f0; 1g�n

denotes the set of all strings of length at most n.

If x is a string or an (in�nite, binary) sequence, and if 0 � i � j < jxj,
then x[i::j] is the string consisting of the ith through jth bits of x. In
particular, x[0::i� 1] is the i-bit pre�x of x. We write x[i] for x[i::i], the ith

bit of x. (Note that the leftmost bit of x is x[0], the 0th bit of x.)

If w is a string and x is a string or sequence, then we write w v x if w
is a pre�x of x, i.e., if there is a string or sequence y such that x = wy.

The Boolean value of a condition � is [[�]] = if � then 1 else 0.

In this paper we use both the binary logarithm log� = log2 � and the
natural logarithm ln� = loge �.

Many of the functions in this paper are real-valued functions on discrete
domains. These typically have the form

f : Nd � f0; 1g� �! R; (2.1)

where d 2 N. (If d = 0, we interpret this to mean that f : f0; 1g� �! R.)
Such a function f is de�ned to be p-computable if there is a function

f̂ : N�Nd � f0; 1g� �! Q (2.2)

with the following two properties.

(i) For all r; k1; : : : ; kd 2 N and w 2 f0; 1g�,

jf̂(r; k1; : : : ; kd; w)� f(k1; : : : ; kd; w)j � 2�r:

(ii) There is an algorithm that, on input (r; k1; : : : ; kd; w), computes the
value f̂(r; k1; : : : ; kd; w) in (r + k1 + : : :+ kd + jwj)O(1) time.

Similarly, f is de�ned to be p2-computable if there is a function f̂ as in (2.2)
that satis�es condition (i) above and the following condition.
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(ii0) There is an algorithm that, on input (r; k1; : : : ; kd; w), computes the

value f̂(r; k1; : : : ; kd; w) in 2log(r+k1+:::+kd+jwj)
O(1)

time.

In this paper, functions of the form (2.1) always have the form

f : Nd � f0; 1g� �! [0;1)

or the form
f : Nd � f0; 1g� �! [0; 1]:

If such a function is p-computable or p2-computable, then we assume with-
out loss of generality that the approximating function f̂ of (2.2) actually has
the form

f̂ : N� Nd � f0; 1g� �! Q\ [0;1)

or the form
f̂ : N�Nd � f0; 1g� �! Q \ [0; 1];

respectively.

3 Resource-Bounded �-Measure

In this section, we develop basic elements of resource-bounded measure based
on an arbitrary (Borel) probability measure �. The ideas here generalize the
corresponding ideas of \ordinary" resource-bounded measure (based on the
uniform probability measure �) in a straightforward and natural way, so
our presentation is relatively brief. The reader is referred to [12, 13] for
additional discussion.

We work in the Cantor space C, consisting of all languages A � f0; 1g�.
We identify each language A with its characteristic sequence, which is the
in�nite binary sequence �A de�ned by

�A[n] = [[sn 2 A]]

for each n 2 N. Relying on this identi�cation, we also consider C to be the
set of all in�nite binary sequences.

For each string w 2 f0; 1g�, the cylinder generated by w is the set

Cw = fA 2 C j w v �Ag :
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Note that C� = C.

We �rst review the well-known notion of a (Borel) probability measure
on C.

De�nition. A probability measure on C is a function

� : f0; 1g� �! [0; 1]

such that �(�) = 1, and for all w 2 f0; 1g�,

�(w) = �(w0) + �(w1):

Intuitively, �(w) is the probability that A 2 Cw when we \choose a
language A 2 C according to the probability measure �." We sometimes
write �(Cw) for �(w).

Examples.

1. The uniform probability measure � is de�ned by

�(w) = 2�jwj

for all w 2 f0; 1g�.

2. A sequence of biases is a sequence ~� = (�0; �1; �2; : : :), where each
�i 2 [0; 1]. Given a sequence of biases ~�, the ~�-coin-toss probability

measure (also called the ~�-product probability measure) is the proba-

bility measure �
~� de�ned by

�
~�(w) =

jwj�1Y
i=0

((1� �i) � (1� w[i]) + �i � w[i])

for all w 2 f0; 1g�.

3. If � = �0 = �1 = �2 = : : : , then we write �� for �
~� . In this case, we

have the simpler formula

��(w) = (1� �)#(0;w) � �#(1;w);

where #(b; w) denotes the number of b's in w. Note that �
1
2 = �.
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Intuitively, �
~�(w) is the probability that w v A when the language

A � f0; 1g� is chosen probabilistically according to the following random
experiment. For each string si in the standard enumeration s0; s1; s2; : : :

of f0; 1g�, we (independently of all other strings) toss a special coin, whose
probability is �i of coming up heads, in which case si 2 A, and 1 � �i of
coming up tails, in which case si 62 A.

De�nition. A probability measure � on C is positive if, for all w 2 f0; 1g�,
�(w) > 0.

De�nition. If � is a positive probability measure and u; v 2 f0; 1g�, then
the conditional �-measure of u given v is

�(ujv) =

8><
>:

1 if u v v
�(u)
�(v) if v v u

0 otherwise.

Note that �(ujv) is the conditional probability that A 2 Cu, given that
A 2 Cv, when A 2 C is chosen according to the probability measure �.

Most of this paper concerns the following special type of probability
measure.

De�nition. A probability measure � onC is strongly positive if (� is positive
and) there is a constant � > 0 such that, for all w 2 f0; 1g� and b 2 f0; 1g,
�(wbjw) � �.

De�nition. A sequence of biases ~� = (�0; �1; �2; : : :) is strongly positive if
there is a constant � > 0 such that, for all i 2 N, �i 2 [�; 1� �].

If ~� is a sequence of biases, then the following two observations are clear.

1. �
~� is positive if and only if �i 2 (0; 1) for all i 2 N.
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2. If �
~� is positive, then for each w 2 f0; 1g�,

�
~�(w0jw) = 1� �jwj

and
�
~�(w1jw) = �jwj:

It follows immediately from these two things that the probability measure

�
~� is strongly positive if and only if the sequence of biases ~� is strongly

positive.

In this paper, we are primarily interested in strongly positive probability
measures � that are p-computable in the sense de�ned in section 2.

We next review the well-known notion of a martingale over a probability
measure �. Computable martingales were used by Schnorr [23, 24, 25, 26]
in his investigations of randomness, and have more recently been used by
Lutz [12] in the development of resource-bounded measure.

De�nition. Let � be a probability measure on C. Then a �-martingale is a
function d : f0; 1g� �! [0;1) such that, for all w 2 f0; 1g�,

d(w)�(w) = d(w0)�(w0)+ d(w1)�(w1): (3.1)

If ~� is a sequence of biases, then a �
~�-martingale is simply called a ~�-

martingale. A �-martingale is even more simply called a martingale. (That
is, when the probability measure is not speci�ed, it is assumed to be the
uniform probability measure �.)

Intuitively, a �-martingale d is a \strategy for betting" on the successive
bits of (the characteristic sequence of) a language A 2 C. The real number
�(�) is regarded as the amount of money that the strategy starts with. The
real number �(w) is the amount of money that the strategy has after betting
on a pre�x w of �A. The identity (3.1) ensures that the betting is \fair"
in the sense that, if A is chosen according to the probability measure �,
then the expected amount of money is constant as the betting proceeds.
(See [23, 24, 25, 26, 27, 12, 14, 13] for further discussion.) Of course, the
\objective" of a strategy is to win a lot of money.
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De�nition. A �-martingale d succeeds on a language A 2 C if

lim sup
n�!1

d(�A[0::n� 1]) =1:

The success set of a �-martingale d is the set

S1[d] = fA 2 C j d succeeds on Ag :

We are especially interested in martingales that are computable within
some resource bound. (Recall that the p-computability and p2-computability
of real valued functions were de�ned in section 2.)

De�nition. Let � be a probability measure on C.

1. A p-�-martingale is a �-martingale that is p-computable.

2. A p2-�-martingale is a �-martingale that is p2-computable.

A p-�
~�-martingale is called a p-~�-martingale, a p-�-martingale is called

a p-martingale, and similarly for p2.

We now come to the fundamental ideas of resource-bounded �-measure.

De�nition. Let � be a probability measure on C, and let X � C.

1. X has p-�-measure 0, and we write �p(X) = 0, if there is a p-�-
martingale d such that X � S1[d].

2. X has p-�-measure 1, and we write �p(X) = 1, if �p(X
c) = 0, where

Xc = C�X .

The conditions �p2(X) = 0 and �p2(X) = 1 are de�ned analogously.

De�nition. Let � be a probability measure on C, and let X � C.

1. X has �-measure 0 in E, and we write �(X jE) = 0, if �p(X \E) = 0.
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2. X has �-measure 1 in E, and we write �(X jE) = 1, if �(XcjE) = 0.

3. X has �-measure 0 in E2, and we write �(X jE2) = 0, if �p2(X\E2) = 0.

4. X has �-measure 1 in E2, and we write �(X jE2) = 1, if �(XcjE2) = 0.

Just as in the uniform case [12], the resource bounds p and p2 of the
above de�nitions are only two possible values of a very general parameter.
Other choices of this parameter yield classical �-measure [5], constructive
�-measure (as used in algorithmic information theory [29, 27]), �-measure in
the set REC, consisting of all decidable languages, �-measure in ESPACE,
etc.

The rest of this section is devoted to a very brief presentation of some
of the fundamental theorems of resource-bounded �-measure. One of the
main objectives of these results is to justify the intuition that a set with

�-measure 0 in E contains only a \negligibly small" part of E (with respect
to �). For the purpose of this paper, it su�ces to present these results for p-
�-measure and �-measure in E. We note, however, that all these results hold
a fortiori for p2-�-measure, rec-�-measure, classical �-measure, �-measure
in E2, �-measure in ESPACE, etc.

We �rst note that �-measure 0 sets exhibit the set-theoretic behavior of
small sets.

De�nition. Let X;X0; X1; X2; : : :� C.

1. X is a p-union of the p-�-measure 0 setsX0; X1; X2; : : : ifX = [1k=0Xk

and there is a sequence d0; d1; d2; : : : of �-martingales with the follow-
ing two properties.

(i) For each k 2 N, Xk � S1[dk].

(ii) The function (k; w) 7! dk(w) is p-computable.

2. X is a p-union of the sets X0; X1; X2; : : : of �-measure 0 in E if
X = \1k=0Xk and there is a sequence d0; d1; d2; : : : of �-martingales
with the following two properties.

(i) For each k 2 N, Xk \ E � S1[dk].

13



(ii) The function (k; w) 7! dk(w) is p-computable.

Lemma 3.1. Let � be a probability measure on C, and let I be either the
collection of all p-�-measure 0 subsets of C, or the collection of all subsets
of C that have �-measure 0 in E. Then I has the following three closure
properties.

1. If X � Y 2 I, then X 2 I.

2. If X is a �nite union of elements of I, then X 2 I

3. If X is a p-union of elements of I, then X 2 I.

Proof (sketch). Assume that X is a p-union of the p-�-measure 0 sets
X0; X1; X2; : : : , and let d0; d1; d2; : : : be as in the de�nition of this condition.
Without loss of generality, assume that dk(�) > 0 for each k 2 N. It su�ces
to show that �p(X) = 0. (The remaining parts of the lemma are obvious or
follow directly from this.) De�ne

d : f0; 1g� �! [0;1)

dk(w) =
1X
k=0

dk(w)

2k � dk(�)
:

Its is easily checked that d is a p-�-martingale and that X � S1[d], so
�p(X) = 0. �

We next note that, if � is strongly positive and p-computable, then every
singleton subset of E has p-�-measure 0.

Lemma 3.2. If � is a strongly positive, p-computable probability measure
on C, then for every A 2 E,

�p(fAg) = �(fAgjE) = 0:

Proof (sketch). Assume the hypothesis, and �x � > 0 such that, for all
w 2 f0; 1g� and b 2 f0; 1g, �(wbjw) � �. De�ne

d : f0; 1g� �! [0;1)
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d(�) = 1

d(wb) =
d(w)

�(wbjw)
� [[sjwj 2 A]]:

It is easily checked that d is a p-�-martingale and that, for all n 2 N,
d(�A[0::n� 1]) � (1� �)�n, whence A 2 S1[d]. �.

Note that, for A 2 E, the \point-mass" probability measure

�A : f0; 1g� �! [0; 1]

�A(w) =

�
1 if w v �A
0 if w 6v �A

is p-computable, and fAg does not have p-�A-measure 0. Thus, the strong
positivity hypothesis cannot be removed from Lemma 3.2.

We now come to the most crucial issue in the development of resource-
bounded measure. If a set X has �-measure 0 in E, then we want to say
that X contains only a \negligible small" part of E. In particular, then, it
is critical that E itself not have �-measure 0 in E. The following theorem
establishes this and more.

Theorem 3.3. Let � be a probability measure on C, and let w 2 f0; 1g�.
If �(w) > 0, then Cw does not have �-measure 0 in E.

Proof (sketch). Assume the hypothesis, and let d be a p-�-martingale. It
su�ces to show that Cw \ E 6� S1[d].

Since d is p-computable, there is a function d̂ : N�f0; 1g� �! Q\ [0;1)
with the following two properties.

(i) For all r 2 N and w 2 f0; 1g�, jd̂(r; w)� d(w)j � 2�r:

(ii) There is an algorithm that computes d̂(r; w) in time polynomial in
r + jwj.

De�ne a language A recursively as follows. First, for 0 � i < jwj, [[si 2 A]] =
w[i]. Next assume that the string xi = �A[0::i� 1] has been de�ned, where
i � jwj. Then

[[si 2 A]] = [[d̂(i+ 1; xi1) � d̂(i+ 1; xi0)]]:
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With the language A so de�ned, it is easy to check that A 2 Cw \ E. It
is also routine to check that, for all i � jwj,

d(xi+1) � d̂(i+ 1; xi+1) + 2�(i+1)

= min
n
d̂(i+ 1; xi0); d̂(i+ 1; xi1)

o
+ 2�(i+1)

� min fd(xi0); d(xi1)g+ 2�i

� d(xi) + 2�i:

It follows inductively that, for all n � jwj,

d(xn) � d(w) +
n�1X
i=jwj

2�i

< d(w) +
1X

i=jwj

2�i = d(w) + 21�jwj:

This implies that

lim sup
n�!1

d(�A[0::n� 1]) � d(w) + 21�jwj <1;

whence A 62 S1[d]. �

As in the case of the uniform probability measure [12], more quantitative
results on resource-bounded �-measure can be obtained by considering the
unitary success set

S1[d] =
[
w

d(w) � 1

Cw

and the initial value d(�) of a p-�-martingale d. For example, generalizing
the arguments in [12] in a straightforward manner, this approach yields a
Measure Conservation Theorem for �-measure (a quantitative extension of
Theorem 3.3 ) and a uniform, resource-bounded extension of the classical
�rst Borel-Cantelli lemma. As these results are not used in the present
paper, we refrain from elaborating here.

4 Summable Equivalence

If two probability measures onC are su�ciently \close" to one another, then
the Summable Equivalence Theorem says that the two probability measures
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are in absolute agreement as to which sets of languages have p-measure 0
and which do not. In this section, we de�ne this notion of \close" and prove
this result.

De�nition. Let � be a positive probability measure on C, let A � f0; 1g�,
and let i 2 N. Then the ith conditional �-probability along A is

�A(i+ 1ji) = �(�A[0::i] j �A[0::i� 1]):

De�nition. Two positive probability measures � and �0 on C are summably
equivalent, and we write � t �0, if for every A � f0; 1g�,

1X
i=0

j�A(i+ 1ji)� �0A(i+ 1ji)j <1:

It is clear that summable equivalence is an equivalence relation on the
collection of all positive probability measures on C. The following fact is
also easily veri�ed.

Lemma 4.1. Let � and �0 be positive probability measures on C. If � t �0,
then � is strongly positive if and only if �0 is strongly positive.

The following de�nition gives the most obvious way to transform a mar-
tingale for one probability measure into a martingale for another.

De�nition. Let � and �0 be probability measures on C with �0 positive,
and let d be a �-martingale. Then the canonical adjustment of d to �0 is the
�0-martingale d0 de�ned by

d0(w) =
�(w)

�0(w)
d(w)

for all w 2 f0; 1g�.

It is trivial to check that the above function d0 is indeed a �0-martingale.
The following lemma shows that, for strongly positive probability measures,
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summable equivalence is a su�cient condition for d0 to succeed whenever d
succeeds.

Lemma 4.2. Let � and �0 be strongly positive probability measures on C,
let d be a �-martingale, and let d0 be the canonical adjustment of d to �0. If
� t �0, then S1[d] � S1[d0].

Proof. Assume the hypothesis, and let A 2 S1[d]. For each i 2 N, let

�i = �A(i+ 1ji); �0i = �0A(i+ 1ji); �i = �i � �0i:

The hypothesis � t �0 says that
P1

i=0 j�ij < 1. In particular, this implies
that �i �! 0 as i �! 1, so we have the Taylor approximation

ln
�i

�0i
= ln(1 +

�i

�0i
) =

�i

�0i
+ o(

�i

�0i
)

as i �! 1. Thus j ln �i
�0i
j is asymptotically equivalent to j�ij

�0i
as i �! 1.

Since �0 is strongly positive, it follows that
P1

i=0 j ln
�i
�0i
j < 1. Thus, if we

let wk = �A[0::k � 1], then there is a positive constant c such that, for all
k 2 N,

c �
k�1X
i=0

(� ln
�i

�0i
) = � ln

k�1Y
i=0

�i

�0i
= � ln

�(wk)

�0(wk)
;

whence

d0(wk) =
�(wk)

�0(wk)
d(wk) � e�cd(wk):

Since A 2 S1[d], we thus have

lim sup
k�!1

d0(wk) � lim sup
k�!1

e�cd(wk) =1;

so A 2 S1[d0]. �

The following useful result is now easily established.

Theorem 4.3 (Summable Equivalence Theorem). If � and �0 are strongly
positive, p-computable probability measures on C such that � t �0, then
for every set X � C,

�p(X) = 0() �0p(X) = 0:
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Proof. Assume the hypothesis, and assume that �p(X) = 0. By symmetry,
it su�ces to show that �0p(X) = 0. Since �p(X) = 0, there is a p-computable
�-martingale d such that X � S1[d]. Let d0 be the canonical adjustment of
d to �0. Since d; �; and �0 are all p-computable, it is easy to see that d0 is
p-computable. Since � t �0, Lemma 4.2 tells us that

X � S1[d] � S1[d0]:

Thus �0p(X) = 0. �

5 Exact Computation

It is sometimes useful or convenient to work with probability measures that
are rational-valued and e�ciently computable in an exact sense, with no
approximation. This section presents two very easy results identifying situ-
ations in which such probability measures are available.

De�nition. A probability measure � on C is exactly p-computable if � :
f0; 1g� �! Q\ [0; 1] and there is an algorithm that computes �(w) in time
polynomial in jwj.

Lemma 5.1. For every strongly positive, p-computable probability measure
� on C, there is an exactly p-computable probability measure �0 on C such
that � t �0.

Proof. Let � be a p-computable probability measure onC, and �x a function
�̂ : N�f0; 1g� �! Q\ [0; 1] that testi�es to the p-computability of �. Since
� is strongly positive, there is a constant c 2 N such that, for all w 2 f0; 1g�,
2�cjwj � �(w) � 1� 2�cjwj. Fix such a c and, for all w 2 f0; 1g�, de�ne

�0(w0jw) = min

�
1;
�̂((2c+ 1)jwj+ 3; w0)

�̂((2c+ 1)jwj+ 3; w)

�
;

�0(w1jw) = 1� �0(w0jw);

�0(w) =

jwj�1Y
i=0

�0(w[0::i]
��w[0::i� 1]):
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It is clear that �0 is an exactly p-computable probability measure on C.

Now let w 2 f0; 1g� and b 2 f0; 1g. For convenience, let

� = 2�(1+cjwj);

� = 2�(2c+1)jwj�3;

a1 = �(wb);

a2 = �(w):

Note that

�̂((2c+ 1)jwj+ 3; w) � �(w)� � > �(w)� � � �:

It is clear by inspection that �0(wbjw) can be written in the form

�0(wbjw) =
a01
a02
;

where
ja01 � a1j � � and ja02 � a2j � �:

We thus have

ja01a2 � a1a
0
2j � ja01a2 � a1a2j+ ja1a2 � a1a

0
2j

� ja01 � a1j+ ja02 � a2j

� 2�;

whence

j�0(wbjw)� �(wbjw)j =

����a01a02 �
a1

a2

����
=

ja01a2 � a1a
0
2j

a2a
0
2

� 2���2

= 2�jwj:

For all A � f0; 1g�, then, we have

1X
i=0

���A(i+ 1
��i)� �0A(i+ 1

��i)�� � 1X
i=0

2�i = 2;

so � t �0. �

20



For some purposes (including those of this paper), the requirement of
p-computability is too weak, because it allows �(w) to be computed (or
approximated) in time polynomial in jwj, which is exponential in the length
of the last string decided by w when we regard w as a pre�x of a language A.
In such situations, the following sort of requirement is often more useful. (We
only give the de�nitions for sequences of biases, i.e., coin-toss probability
measures, because this su�ces for our purposes in this paper. It is clearly a
routine matter to generalize further.)

De�nition.

1. A P-sequence of biases is a sequence ~� = (�0; �1; �2; : : :) of biases
�i 2 [0; 1] for which there is a function

�̂ : N�N �! Q\ [0; 1]

with the following two properties.

(i) For all i; r 2 N, j�̂(i; r)� �ij � 2�r.

(ii) There is an algorithm that, for all i; r 2 N, computes �̂(i; r) in
time polynomial in jsij+r (i.e., in time polynomial in log(i+1)+
r).

2. A P-exact sequence of biases is a sequence ~� = (�0; �1; �2; : : :) of (ra-
tional) biases �i 2 Q \ [0; 1] such that the function i 7�! �i is com-
putable in time polynomial in jsij.

De�nition. If ~� and ~� are sequences of biases, then ~� and ~� are summably
equivalent, and we write ~� t ~�, if

P1
i=0 j�i � �ij <1.

It is clear that ~� t ~� if and only if �~� t �
~� .

Lemma 5.2. For every P-sequence of biases ~�, there is a P-exact sequence
of biases ~�0 such that ~� t ~�0.

Proof. Let ~� be a strongly positive P-sequence of biases, and let �̂ : N�
N �! Q\ [0; 1] be a function that testi�es to this fact. For each i 2 N, let

�0i = �̂(i; 2jsij);
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and let ~�0 = (�00; �
0
1; �

0
2; � � �). Then

~�0 is a P-exact sequence of biases, and

1X
i=0

j�i � �0ij �
1X
i=0

2�2jsij

�
1X
i=0

2�2 log(i+1)

=
1X
i=0

1

(i+ 1)2
<1;

so ~� t ~�0. �

6 Martingale Dilation

In this section we show that certain truth-table reductions can be used to
dilate martingales for one probability measure into martingales for another,
perhaps dissimilar, probability measure on C. We �rst present some ter-
minology and notation on truth-table reductions. (Most of this notation is
standard [22], but some is specialized to our purposes.)

A truth-table reduction (briey, a �tt-reduction) is an ordered pair (f; g)
of total recursive functions such that for each x 2 f0; 1g�, there exists n(x) 2
Z+ such that the following two conditions hold.

(i) f(x) is (the standard encoding of) an n(x)-tuple (f1(x); : : : ; fn(x)(x))
of strings fi(x) 2 f0; 1g�, which are called the queries of the reduction
(f; g) on input x. We use the notationQ(f;g)(x) = ff1(x); : : : ; fn(x)(x)g
for the set of such queries.

(ii) g(x) is (the standard encoding of) an n(x)-input, 1-output Boolean
circuit, called the truth table of the reduction (f; g) on input x. We
identify g(x) with the Boolean function computed by this circuit, i.e.,

g(x) : f0; 1gn(x) �! f0; 1g :

A truth-table reduction (f; g) induces the function

F(f;g) : C �! C
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F(f;g)(A) =
�
x 2 f0; 1g� j g(x)

�
[[f1(x) 2 A]] � � � [[fn(x)(x) 2 A]]

�
= 1
	
:

If A and B are languages and (f; g) is a �tt-reduction, then (f; g) reduces
B to A, and we write

B �tt A via (f; g);

if B = F(f;g)(A). More generally, if A and B are languages, then B is truth-
table reducible (briey, �tt-reducible) to A, and we write B �tt A, if there
exists a �tt-reduction (f; g) such that B �tt A via (f; g).

If (f; g) is a �tt-reduction, then the function F(f;g) : C �! C de�ned
above induces a corresponding function

F(f;g) : f0; 1g
� �! f0; 1g� [C

de�ned as follows. (It is standard practice to use the same notation for
these two functions, and no confusion will result from this practice here.)
Intuitively, if A 2 C and w v A, then F(f;g)(w) is the largest pre�x of
F(f;g)(A) such that w answers all queries in this pre�x. Formally, let w 2
f0; 1g�, and let

Aw =
�
si
�� 0 � i < jwj and w[i] = 1

	
:

If Q(f;g)(x) � fs0; : : :sjwj�1g for all x 2 f0; 1g
�, then

F(f;g)(w) = F(f;g)(Aw):

Otherwise,
F(f;g)(w) = �F(f;g)(Aw)[0::m� 1];

where m is the greatest nonnegative integer such that

m�1[
i=0

Q(f;g)(si) �
�
s0; : : : ; sjwj�1

	

Now let (f; g) be a �tt-reduction, and let z 2 f0; 1g�. Then the inverse
image of the cylinder Cz under the reduction (f; g) is

F�1
(f;g)(Cz) =

�
A 2 C j F(f;g)(A) 2 Cz

	
=

�
A 2 C j z v F(f;g)(A)

	
:
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We can write this set in the form

F�1
(f;g)(Cz) =

[
w2I

Cw;

where I is the set of all strings w 2 f0; 1g� with the following properties.

(i) z v F(f;g)(w).

(ii) If w0 is a proper pre�x of w, then z 6v F(f;g)(w
0).

Moreover, the cylinders Cw in this union are disjoint, so if � is a probability
measure on C, then

�(F�1
(f;g)(Cz)) =

X
w2I

�(w):

The following well-known fact is easily veri�ed.

Lemma 6.1. If � is a probability measure onC and (f; g) is a �tt-reduction,
then the function

�(f;g) : f0; 1g� �! [0; 1]

�(f;g)(z) = �(F�1
(f;g)

(Cz))

is also a probability measure on C.

The probability measure �(f;g) of Lemma 6.1 is called the probability

measure induced by � and (f; g).

In this paper, we only use the following special type of �tt-reduction.

De�nition. A �tt-reduction (f; g) is orderly if, for all x; y; u; v 2 f0; 1g�, if
x < y, u 2 Q(f;g)(x), and v 2 Q(f;g)(y), then u < v. That is, if x precedes y
(in the standard ordering of f0; 1g�), then every query of (f; g) on input x
precedes every query of (f; g) on input y.

The following is an obvious property of orderly �tt-reductions.
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Lemma 6.2. If � is a coin-toss probability measure on C and (f; g) is an
orderly �tt-reduction, then �(f;g) is also a coin-toss probability measure on
C.

Note that, if (f; g) is an orderly �tt-reduction, then F(f;g)(w) 2 f0; 1g�

for all w 2 f0; 1g�. Note also that the length of F(f;g)(w) depends only
upon the length of w (i.e., jwj = jw0j implies that jF(f;g)(w)j = jF(f;g)(w

0)j).

Finally, note that for each m 2 N there exists l 2 N such that jF(f;g)(0
l)j =

m.

De�nition. Let (f; g) be an orderly �tt-reduction.

1. An (f; g)-step is a positive integer l such that F(f;g)(0
l�1) 6= F(f;g)(0

l).

2. For k 2 N, we let step(k) be the least (f; g)-step l such that l � k.

The following construction is crucial to the proof of our main theorem.

De�nition. Let � be a positive probability measure on C, let (f; g) be an
orderly �tt-reduction, and let d be a �(f;g)-martingale. Then the (f; g)-
dilation of d is the function

(f; g)bd : f0; 1g� �! [0;1)

(f; g)bd(w) = X
u2f0;1gl�k

d(F(f;g)(wu))�(wujw);

where k = jwj and l = step(k).

In other words, (f; g)bd(w) is the conditional �-expected value of d(F(f;g)(w0)),
given that w v w0 and jw0j = step(jwj). We do not include the probability
measure � in the notation (f; g)bd because � (being positive) is implicit in
d.

Intuitively, the function (f; g)bd is a strategy for betting on a language
A, assuming that d itself is a strategy for betting on the language F(f;g)(A).
The following theorem makes this intuition precise.
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Theorem 6.3 (Martingale Dilation Theorem). Assume that � is a positive
coin-toss probability measure on C, (f; g) is an orderly �tt-reduction, and d

is a �(f;g)-martingale. Then (f; g)bd is a �-martingale. Moreover, for every
language A � f0; 1g�, if d succeeds on F(f;g)(A), then (f; g)bd succeeds on
A.

A very special case of the above result (for strictly increasing �P
m-reductions

under the uniform probability measure) was developed by Ambos-Spies, Ter-
wijn, and Zheng [2], and made explicit by Juedes and Lutz [8]. Our use of
martingale dilation in the present paper is very di�erent from the simple
padding arguments of [2, 8].

The following two technical lemmas are used in the proof of Theorem
6.3.

Lemma 6.4. Assume that � is a positive coin-toss probability measure on
C and (f; g) is an orderly �tt-reduction. Let F = F(f;g), let w 2 f0; 1g�,
and assume that k = jwj is an (f; g)-step. Let l = step(k + 1). Then, for
b 2 f0; 1g,

�(f;g)(F (w)bjF (w)) =
X

u 2 f0;1gl�k

F (wu) = F (w)b

�(wujw):

Proof. Assume the hypothesis. Then

�(f;g)(F (w)b) =
X

w0 2 f0;1gk

F (w0) = F (w)

X
u 2 f0;1gl�k

F (w0u) = F (w0)b

�(w0u)

=
X

w0 2 f0;1gk

F (w0) = F (w)

�(w0)
X

u 2 f0;1gl�k

F (w0u) = F (w0)b

�(w0ujw0):

Now, since � is a coin-toss probability measure, we have �(w0ujw0) = �(wujw)
for each w0 2 f0; 1gk such that F (w0) = F (w). Also, since (f; g) is orderly,
the conditions F (w0u) = F (w0)b and F (wu) = F (w)b are equivalent for each
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u 2 f0; 1gl�k. Hence,

�(f;g)(F (w)b) =
X

w0 2 f0;1gk

F (w0) = F (w)

�(w0)
X

u 2 f0;1gl�k

F (wu) = F (w)b

�(wujw)

= �(f;g)(F (w))
X

u 2 f0;1gl�k

F (wu) = F (w)b

�(wujw):

�

Lemma 6.5. Assume that � is a positive coin-toss probability measure on
C and (f; g) is an orderly �tt-reduction. Let F = F(f;g), and assume that d

is a �(f;g)-martingale. Let w 2 f0; 1g�, assume that k = jwj is an (f; g)-step,
and let l = step(k + 1). Then

d(F (w)) =
X

u2f0;1gl�k

d(F (wu))�(wujw):

Proof.Assume the hypothesis. Since d is a �(f;g)-martingale and �(f;g)(F (w))
is positive, we have

d(F (w)) =
1X

b=0

d(F (w)b)�(f;g)(F (w)bjF (w)):

It follows by Lemma 6.4 that

d(F (w)) =
1X

b=0

d(F (w)b)
X

u 2 f0;1gl�k

F (wu) = F (w)b

�(wujw)

=
1X

b=0

X
u 2 f0;1gl�k

F (wu) = F (w)b

d(F (wu))�(wujw)

=
X

u2f0;1gl�k

d(F (wu))�(wujw):

�
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Proof of Theorem 6.3. Assume the hypothesis, and let F = F(f;g).

To see that (f; g)bd is a �-martingale, let w 2 f0; 1g�, let k = jwj, and
let l = step(k + 1). We have two cases.

Case I. step(k) = l. Then

1X
b=0

(f; g)bd(wb)�(wb) =
1X

b=0

X
u2f0;1gl�k�1

d(F (wbu))�(wbujwb)�(wb)

=
1X

b=0

X
u2f0;1gl�k�1

d(F (wbu))�(wbu)

=
X

u2f0;1gl�k

d(F (wu))�(wu)

= (f; g)bd(w)�(w):
Case II. step(k) < l. Then k is an (f; g)-step, so (f; g)bd(w) = d(F (w)),

whence by Lemma 6.5

(f; g)bd(w)�(w) = X
u2f0;1gl�k

d(F (wu))�(wu):

Calculating as in Case I, it follows that

(f; g)bd(w)�(w) = 1X
b=0

(f; g)bd(wb)�(wb):
This completes the proof that (f; g)bd is a �-martingale.

To complete the proof, let A � f0; 1g�, and assume that d succeeds
on F (A). For each n 2 N, let wn = �A[0::ln � 1], where ln is the unique
(f; g)-step such that jF (0ln)j = n. Then, for all n 2 N,

(f; g)bd(wn) = d(F (wn)) = d(�F (A)[0::n� 1]);

so

lim sup
k�!1

(f; g)bd(�A[0::k� 1]) � lim sup
n�!1

(f; g)bd(wn)

= lim sup
n�!1

d(�F (A)[0::n� 1])

= 1:

Thus (f; g)bd succeeds on A. �
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7 Positive Bias Reduction

In this section, we de�ne and analyze a positive truth-table reduction that
encodes an e�cient, approximate simulation of one sequence of biases by
another.

Intuitively, if ~� and ~� are strongly positive sequences of biases, then
the positive bias reduction of ~� to ~� is a �tt-reduction (f; g) that \tries
to simulate" the sequence ~� with the sequence ~� by causing �~� to be the

probability distribution induced by �
~� and (f; g). In general, this objective

will only be approximately achieved, in the sense that the probability distri-

bution induced by �
~� and (f; g) will actually be a probability distribution

�~�
0
, where ~�0 is a sequence of biases such that ~�0 t ~�. This situation is

depicted schematically in Figure 1, where the broken arrow indicates that
(f; g) \tries" to reduce ~� to ~�, while the solid arrow indicates that (f; g)
actually reduces ~�0 to ~�.

Figure 1: Schematic depiction of positive bias reduction

The reduction (f; g) is constructed precisely as follows.

Construction 7.1 (Positive Bias Reduction). Let ~� and ~� be strongly
positive sequences of biases. Let

� = inf f�i; 1� �i; �i; 1� �i j i 2 Ng ;

c = d
�4 log e

log(1� �2)
e:

For each x 2 f0; 1g� and 0 � n < 2cjxj, let q(x; n) = xy, where y is the
nth element of f0; 1gcjxj, and let j(x; n) be the index of the string q(x; n),
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begin

input x = si;
n := 0;
g(x; 0) := 0; �0i(0) = 0;
k := 0;
while �0i(k) < �i � (i+ 1)�2 do

begin

h(x; k; 0) := 1; i;k(0) := 1;
l := 0;
while �0i(k) + i;k(l)� �0i(k) � i;k(l) > �i do

begin

h(x; k; l+ 1) := h(x; k; l) AND vn;
i;k(l+ 1) := i;k(l) � �j(x;n);
l := l+ 1;
n := n+ 1;
end ;

l(x; k) := l;
h(x; k) := h(x; k; l(x; k));
i;k := i;k(l(x; k));
g(x; k+ 1) := g(x; k) OR h(x; k);
�0i(k + 1) := �0i(k) + i;k � �0i(k) � i;k;
k := k + 1
end ;

k(x) := k;
n(x) := n;
f(x) := (q(x; 0); : : : ; q(x; n(x)� 1));
g(x) := g(x; n(x));
�0i := �i(k(x))
end .

Figure 2: Construction of positive bias reduction

i.e., sj(x; n) = q(x; n). Then the positive bias reduction of ~� to ~� is the
ordered pair (f; g) of functions de�ned by the procedure in Figure 2. (For
convenience, the procedure de�nes additional parameters that are useful in
the subsequent analysis.)

The following general remarks will be helpful in understanding Construc-
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tion 7.1.

(a) The boldface variables v0; v1; : : : denote Boolean inputs to the Boolean
function g(x) being constructed. The Boolean function g(x) is an OR
of k(x) Boolean functions h(x; k), i.e.,

g(x) =

k(x)�1_
k=0

h(x; k):

The Boolean functions g(x; 0); g(x; 1); : : : are preliminary approxima-
tions of the Boolean function g(x). In particular,

g(x; k) =
k�1_
k=0

h(x; j)

for all 0 � k � k(x). Thus g(x; 0) is the constant-0 Boolean function.

(b) The Boolean function h(x; k) is an AND of l(x; k) consecutive input
variables. The subscript n is incremented globally so that no input
variable appears more than once in g(x). Just as g(x; k) is the kth

\partial OR" of g(x), h(x; k; l) is the lth \partial AND" of h(x; k).
Thus h(x; k; 0) is the constant-1 Boolean function.

(c) The input variables v0, v1; : : : of g correspond to the respective queries
q(x; 0); q(x; 1); : : : of f . If A = F(f;g)(B), then we have [[x 2 A]] =
g(x)(v0 � � �vn(x)�1), where each vn = [[q(x; n) 2 B]]. If B is chosen

according to the sequence of biases ~�, then �j(x;n) is the probability
that vn = 1, i;k is the probability that h(x; k) = 1, and �0i is the
probability that g(x) = 1. The while-loops ensure that �i�(i+1)�2 �
�0i � �i.

The following lemmas provide some quantitative analysis of the behavior
of Construction 7.1.

Lemma 7.2. In Construction 7.1, for all x 2 f0; 1g� and 0 � k � k(x),

l(x; k) � 1 +
cjxj

2 log e
:
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Proof. Fix such x and k, and let l� = l(x; k). If l� = 0, the result is trivial,
so assume that l� > 0. Then, by the minimality of l�,

�0i(k) + i;k(l
� � 1) > �i;

so
i;k(l

� � 1) > �i � �0i(k) > (i+ 1)�2;

so
(i+ 1)�2 < i;k(l

� � 1) � (1� �)l
��1:

It follows that
�2 log(i+ 1) � (l� � 1) log(1� �);

whence

l� � 1�
2 log(i+ 1)

log(1� �)

� 1�
2jxj

log(1� �2)

� 1 +
cjxj

1 log e
:

�

Lemma 7.3. In the Construction 7.1, for all x 2 f0; 1g�, and 0 � k �
k(x)� 1,

�i � �0i(k) � (1� �2)k:

Proof. Fix such x and k with k < k(x) � 1, and let l� = l(x; h). Then
i;k(l

� � 1) > �i � �0i(k), so i;k � � � i;k(l
� � 1) > � � (�i � �0i(k)), whence

�i � �0i(k + 1)

�i � �0i(k)
=

�i � (�0i(k) + i;k � �0i(k) � i;k)

�i � �0i(k)

=
�� �0i(k)� i;k(1� �0i(k))

�i � �0i(k)

< 1� � � (1� �0i(k))

� 1� � � (1� �i)

� 1� �2:

The lemma now follows immediately by induction. �
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Lemma 7.4. In Construction 7.1, for all x 2 f0; 1g�,

k(x) � 1 +
cjxj

2 log e

Proof. Fix x 2 f0; 1g�. By Lemma 7.3 and the minimality of k(x),

�i � (1� �2)k(x)�1 � �0i(k(x)� 1) < �i � (i+ 1)�2;

so
(1� �2)k(x)� 1 > (i+ 1)�2;

so

k(x) < 1�
2 log(i+ 1)

log(1� �2)
� 1 +

cjxj

2 log e
:

�

Lemma 7.5. In Construction 7.1, for all x 2 f0; 1g�,

n(x) � 2cjxj:

Proof. Let x 2 f0; 1g�. Then

n(x) =

k(x)�1X
k=0

l(x; k);

so by Lemmas 7.2, 7.4, and the bound 1 + t � et,

n(x) �

�
1 +

cjxj

2 log e

�2

� e
cjxj
log e = 2cjxj:

�

De�nition. Let (f; g) be a �tt-reduction.

1. (f; g) is positive (briey, a �pos�tt-reduction) if, for all A;B � f0; 1g�,
A � B impliesF(f;g)(A) � F(f;g)(B).
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2. (f; g) is polynomial-time computable (briey, a �P
tt-reduction) if the

functions f and g are computable in polynomial time.

3. (f; g) is polynomial-time computable with linear-bounded queries (briey,

a �P;lin
tt -reduction) if (f; g) is a �P

tt-reduction and there is a constant
c 2 N such that, for all x 2 f0; 1g�, Q(f;g)(x) � f0; 1g�c(1+jxj).

Of course, a �P;lin
pos�tt-reduction is a �tt-reduction with all the above prop-

erties.

The following result presents the properties of the positive bias reduction
that are used in the proof of our main theorem.

Theorem 7.6 (Positive Bias Reduction Theorem). Let ~� and ~� be strongly
positive, P-exact sequences of biases, and let (f; g) be the positive bias re-

duction of ~� to ~�. Then (f; g) is an orderly �P;lin
pos�tt-reduction, and the

probability measure induced by �
~� and (f; g) is a coin-toss probability mea-

sure �
~�0
, where ~� t ~�0.

Proof. Assume the hypothesis. By inspection and Lemma 7.5, the pair
(f; g) is an orderly �P;lin

pos�tt-reduction. (Lemma 7.5 also ensures that f(x) is
well-de�ned.) The reduction is also positive, since only AND's and OR's are

used in the construction of g(x). Thus (f; g) is an orderly �P;lin
pos�tt-reduction.

By remark (c) following Construction 7.1, the probability measure in-

duced by �
~� and (f; g) is the coin-toss probability measure �

~�0
, where

~�0 = (�00; �
0
1; : : :) is de�ned in the construction. Moreover,

1X
i=0

j�i � �0ij �
1X
i=0

(i+ 1)�2 <1;

so ~� t ~�0. �

8 Equivalence for Complexity Classes

Many important complexity classes, including P, NP, co-NP, R, BPP, AM,
P/Poly, PH, PSPACE, etc., are known to be closed under �P

pos�tt-reductions,
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hence certainly under �P;lin
pos�tt-reductions. The following theorem, which is

the main result of this paper, says that the p-measure of such a class is some-
what insensitive to certain changes in the underlying probability measure.
The proof is now easy, given the machinery of the preceding sections.

Theorem 8.1 (Bias Equivalence Theorem). Assume that ~� and ~� are
strongly positive P-sequences of biases, and let C be a class of languages
that is closed under �P;lin

pos�tt-reductions. Then

�~�p(C) = 0() �
~�
p(C) = 0:

Proof. Assume the hypothesis, and assume that �~�p (C) = 0. By symmetry,

it su�ces to show that �
~�
p(C) = 0.

The proof follows the scheme depicted in Figure 3. By Lemma 5.2,
there exist P-exact sequences ~�0 and ~�0 such that ~� t ~�0 and ~� t ~�0. Let
(f; g) be the positive bias reduction of ~�0 to ~�0. Then, by the Positive Bias

Reduction Theorem (Theorem 7.6), (f; g) is an orderly �P;lin
pos�tt-reduction,

and the probability measure induced by �
~� and (f; g) is �~�

00
, where ~�0 t ~�00.

Figure 3: Scheme of proof of Bias Equivalence Theorem

Since ~� t ~�0 t ~�00 and �~�p (C) = 0, the Summable Equivalence Theorem
(Theorem 4.3) tells us that there is a p-~�00-martingale d such that C � S1[d].
By the Martingale Dilation Theorem (Theorem 6.3), the function (f; g)bd
is then a ~�0-martingale. In fact, it easily checked that (f; g)bd is a p-~�0-
martingale.

Now let A 2 C. Then, since C is closed under �P;lin
pos�tt-reductions,

F(f;g)(A) 2 C � S1[d]. It follows by the Martingale Dilation Theorem
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that A 2 S1[(f; g)bd]. Thus C � S1[(f; g)bd]. Since (f; g)bd is a p-~�0-

martingale, this shows that �
~�0

p (C) = 0. Finally, since ~� t ~�0, it follows by

the Summable Equivalence Theorem that �
~�
p(X) = 0.

�

It is clear that the Bias Equivalence Theorem remains true if the resource
bound on the measure is relaxed. That is, the analogs of Theorem 8.1 for p2-
measure, pspace-measure, rec-measure, constructive measure, and classical
measure all immediately follow. We conclude by noting that the analogs of
Theorem 8.1 for measure in E and measure in E2 also immediately follow.

Corollary 8.2. Under the hypothesis of Theorem 8.1,

�~�(CjE) = 0() �
~�(CjE) = 0

and
�~�(CjE2) = 0() �

~�(CjE2) = 0:

Proof. If C is closed under �P;lin
pos�tt-reductions, then so are the classes C \E

and C \ E2. �

9 Conclusion

Our main result, the Bias Equivalence Theorem, says that every strongly
positive, P-computable, coin-toss probability measure � is equivalent to the
uniform probability measure �, in the sense that

�p(C) = 0() �p(C) = 0

for all classes C 2 �, where � is a family that contains P, NP, co-NP, R, BPP,
P/Poly, PH and many other classes of interest. It would be illuminating to
learn more about which probability measures are, and which probability
measures are not, equivalent to � in this sense.

It would also be of interest to know whether the Summable Equivalence
Theorem can be strengthened. Speci�cally, say that two sequences of biases
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~� and ~� are square-summably equivalent, and write ~� t2 ~�, if
P1

i=0(�i �

�i)2 < 1. A classical theorem of Kakutani [9] says that, if ~� and ~� are
strongly positive sequences of biases such that ~� t2 ~�, then for every set
C � C, X has (classical) ~�-measure 0 if and only if X has ~�-measure 0. A
constructive improvement of this theorem by Vovk [28] says that, if ~� and
~� are strongly positive, computable sequences of biases such that ~� t2 ~�,
then for every set X � C, X has constructive ~�-measure 0 if and only if
X has constructive ~�-measure 0. (The Kakutani and Vovk theorems are
more general than this, but for the sake of brevity, we restrict the present
discussion to coin-toss probability measures.) The Summable Equivalence
Theorem is stronger than these results in one sense, but weaker in another.
It is stronger in that it holds for p-measure, but it is weaker in that it
requires the stronger hypothesis that ~� t ~�. We thus ask whether there is
a \square-summable equivalence theorem" for p-measure. That is, if ~� and
~� are strongly positive, p-computable sequences of biases such that ~� t2 ~�,
is it necessarily the case that, for every set X � C, X has p-~�-measure 0
if and only if X has p-~�-measure 0? (Note: Kautz [10] has very recently
answered this question a�rmatively.)
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