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Abstract— Location estimation and tracking for the mobile
devices have attracted a significant amount of attention in recent
years. The network-based location estimation schemes have been
widely adopted based on the radio signals between the mobile
device and the base stations. The location estimators associated
with the Kalman filtering techniques are exploited to both acquire
location estimation and trajectory tracking for the mobile devices.
However, most of the existing schemes become unapplicable due
to the insufficiency of signal sources. In this paper, a Predictive
Location Tracking (PLT) algorithm is proposed to alleviate this
problem. The predictive information obtained from the Kalman
filter is employed to provide the additional signal inputs for
the location estimators. The proposed PLT scheme can offer
persistent accuracy for location tracking of the mobile devices,
especially with inadequate signal sources. Numerical results
demonstrate that the proposed PLT algorithm can achieve better
precision, comparing with other existing schemes, in mobile
location estimation and tracking.

I. INTRODUCTION

Wireless location technologies, which are designated to
estimate the position of a Mobile Station (MS), have drawn
a lot of attention over the past few decades. Different types
of Location-Based Services (LBSs) have been proposed and
studied, including the emergency 911 (E-911) subscriber
safety services [1], the location-based billing, the navigation
system, and applications for the Intelligent Transportation
System (ITS) [2]. Due to the emergent interests in the LBSs,
it is required to provide enhanced precision in the location
estimation of a MS under different environments.

A variety of wireless location techniques have been inves-
tigated [3]. The network-based location estimation schemes
have been widely proposed and employed in the wireless
communication system. These schemes locate the position of a
MS based on the measured radio signals from its neighborhood
Base Stations (BSs). The representative algorithms for the
network-based location estimation techniques are the Time-Of-
Arrival (TOA), the Time Difference-Of-Arrival (TDOA), and
the Angle-Of-Arrival (AOA). The TOA scheme measures the
arrival time of the radio signals coming from different wireless
BSs; while the TDOA scheme measures the time difference
between the radio signals. The AOA technique is conducted
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within the BS by observing the arriving angle of the signals
coming from the MS.

In addition to the estimation of a MS’s position, trajectory
tracking of a moving MS has been studied [4] - [8]. The
technique by combining the Kalman filter with the Weighted
Least Square (WLS) method is exploited in [4]. The Kalman
Tracking (KT) scheme [5] [6] distinguishes the linear part
from the originally nonlinear equations for location estimation.
The linear aspect is exploited within the Kalman filtering
formulation; while the nonlinear term is served as an external
measurement input to the Kalman filter. The technique utilized
in [7] adopted the Kalman filters for both pre-processing and
post-processing in order to both mitigate the NLOS noises
and track the MS’s trajectory. The Cascade Location Tracking
(CLT) scheme as proposed in [8] utilizes the two-step Least
Square (LS) method [9] [10] for initial location estimation of
the MS. The Kalman filtering technique is employed to smooth
out and to trace the position of the MS based on its previously
estimated data.

However, the wireless location tracking problem with in-
sufficient signal sources has not been addressed in previous
studies. In the cellular-based networks, three BSs are required
in order to provide three signal sources for the TOA-based
location estimation. Nevertheless, the scenario with sufficient
signal sources does not always happen in real circumstances,
e.g. under rural environments or city valley with blocking
buildings. It will be beneficial to provide consistent accuracy
for location tracking under various environments. In this paper,
a Predictive Location Tracking (PLT) algorithm is proposed
to improve the problem with insufficient measurement inputs.
The predictive information obtained from the Kalman filter is
adopted as the virtual signal sources, which are incorporated
into the two-step LS method for location estimation and
tracking. Consistent precision for location tracking of a MS is
observed by exploiting the proposed PLT algorithm.

The remainder of this paper is organized as follows. Section
II describes the modeling of the signal sources and the two-
step LS estimator. The proposed Predictive Location Tracking
(PLT) algorithm is explained in Section III. Section IV illus-
trates the performance evaluation of the proposed PLT scheme
in comparison with the KT and the CLT techniques. Section
V draws the conclusions.
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II. PRELIMINARIES

A. Mathematical Modeling

In order to facilitate the design of the proposed PLT algo-
rithm, the signal model for the TOA measurements is utilized.
The set rk contains all the available measured relative distance
at the kth time step, i.e. rk = {r1,k, . . . , ri,k, . . . , rNk,k},
where Nk denotes the number of available BSs at the time step
k. The measured relative distance (ri,k) between the MS and
the ith BS (obtained at the kth time step) can be represented
as

ri,k = c · ti,k = ζi,k + ni,k + ei,k i = 1, 2, ..., Nk (1)

where ti,k denotes the TOA measurement obtained from the
ith BS at the kth time step, and c is the speed of light. ri,k

is contaminated with the TOA measurement noise ni,k and
the Non-line-of-sight (NLOS) error ei,k. The noiseless relative
distance ζi,k between the MS and the ith BS can be obtained
as

ζi,k = [(xk − xi,k)2 + (yk − yi,k)2]
1
2 (2)

where xk = [xk yk] represents the MS’s position and xi,k =
[xi,k yi,k] is the location of the ith BS.

B. The Two-Step LS Estimator

The two-step LS scheme is utilized as the location estimator
for the proposed PLT algorithm. It is noticed that three TOA
measurements are required for the two-step LS method in
order to solve for the location estimation problem. The concept
of the two-step LS method is to acquire an intermediate
location estimate in the first step with the definition of a
new variable βk, which is mathematically related to the MS’s
position, i.e. βk = x2

k + y2
k. At this stage, the variable βk

is assumed to be uncorrelated to the MS’s position. This
assumption effectively transforms the nonlinear equations for
location estimation into a set of linear equations, which can
be directly solved by the LS method.

The second step of the method primarily considers the
relationship that the variable βk is equal to x2

k + y2
k, which

was originally assumed to be uncorrelated in the first step.
An improved location estimation can be obtained after the
adjustment from the second step. The detail algorithm of the
two-step LS method for location estimation can be found in
[10].

III. THE PROPOSED PREDICTIVE LOCATION TRACKING

(PLT) ALGORITHM

In this section, the proposed PLT scheme is described. The
concepts and motivations of the proposed scheme is explained
in Subsection A. Subsection B summarizes the formulation of
the PLT algorithm with two different scenarios.

A. Overview of the PLT Algorithm

The objective of the proposed PLT algorithm is to utilize
the predictive information from the Kalman filter to serve
as the assisted measurement inputs under the environments
with deficient signal sources. Fig. 1 illustrates the system
architectures of the KT [5], the CLT [8] and the proposed PLT
schemes. The TOA signals are acquired as the signal inputs
to each of the system, which results in the estimated state
vector of the MS, i.e. ŝk = [x̂k v̂k âk]T where x̂k = [x̂k ŷk]
represents the MS’s estimated position, v̂k = [v̂x,k v̂y,k] is the
estimated velocity, and âk = [âx,k ây,k] denotes the estimated
acceleration.

Since the equations associated with the network-based loca-
tion estimation are inherently nonlinear, different mechanisms
are considered within the existing algorithms for location
tracking. The KT scheme [5] (as shown in Fig. 1.(a)) explores
the linear aspect of location estimation within the Kalman
filtering formulation. The nonlinear term (i.e. βk = x2

k + y2
k)

is treated as a measurement input to the Kalman filter by
obtaining from an external location estimator, e.g. the two-
step LS method. On the other hand, the CLT scheme [8] (as
in Fig. 1.(b)) adopts the two-step LS method to acquire the
preliminary location estimate of the MS. The Kalman Filter
is utilized to smooth out the estimation error by tracking the
state vector ŝk of the MS.

The architecture of the proposed PLT scheme is illustrated
in Fig. 1.(c). It can be seen that the PLT algorithm becomes the
CLT scheme as Nk ≥ 3. On the other hand, the effectiveness
of the PLT scheme is revealed while 1 ≤ Nk < 3. The
predictive state information obtained from the Kalman filter
is fed back into the two-step LS estimator. The extended set
for the measured relative distance becomes re

k = {rk, rv,k},
with

rv,k =
{ {rv1,k} for Nk = 2

{rv1,k, rv2,k} for Nk = 1 (3)

where rv,k is defined as the set of the virtual measurement
inputs obtained from the prediction mechanism of the Kalman
filter.

In both the KT and the CLT schemes, the state vector ŝk

can only be updated by the internal prediction mechanism of
the Kalman filter while Nk < 3 (as shown in Fig. 1 with
the dashed lines). The location estimator (i.e. the two-step
LS method) is disabled owing to the inadequate number of
the signal sources. The tracking capabilities of both schemes
significantly depend on the correctness of the Kalman filter’s
prediction mechanism. Therefore, the performance for location
tracking is severely degraded due to the changing behavior
of the MS, i.e. with variations of the MS’s acceleration. On
the other hand, the proposed PLT algorithm can still provide
satisfactory tracking performance with deficient measurement
inputs, i.e. with Nk = 1 and 2. Under these circumstances, the
location estimator is still effective with the additional virtual
measurements rvi,k, which are imposed from the output of the
Kalman filter (as shown in Fig. 1.(c)). It is noted that the PLT
scheme performs the same as the CLT method under the case
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Fig. 1. The Architecture Diagrams of (a) the Kalman Tracking (KT) Scheme; (b) the Cascade Location Tracking (CLT) Scheme; and (c) the Proposed
Predictive Location Tracking (PLT) Scheme

of no signal input, i.e. Nk = 0. The computation of the values
within the set rv,k for the two different cases (as in (3)) will
be presented in the next subsection.

B. Formulation of the PLT Algorithm

As shown in Fig. 1.(c), the measurement and state equations
for the Kalman filter can be represented as

zk = Mŝk + mk (4)

ŝk = Fŝk−1 + pk (5)

where ŝk = [x̂k v̂k âk]T . The variables mk and pk denote
the measurement and the process noises associated with the
covariance matrices R and Q within the Kalman filtering
formulation. The measurement vector zk = [x̂ls,k ŷls,k]T

represents the measurement input obtained from the output
of the two-step LS estimator at the kth time step. The matrix
M and the state transition matrix F can be obtained as

M =
[

1 0 0 0 0 0
0 1 0 0 0 0

]
(6)

F =




1 0 ∆t 0 1
2∆t2 0

0 1 0 ∆t 0 1
2∆t2

0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1




(7)

where ∆t denotes the sample time interval. The main concept
of the proposed PLT scheme is to provide additional virtual
measurements (i.e. rv,k as in (3)) to the two-step LS estimator
while the signal sources are insufficient. Two cases (i.e. the
two-BSs case and the single-BS case) are considered as
follows:

1) The Two-BSs Case: As shown in Fig. 2, it is assumed
that only two BSs associated with two TOA measurements
are available at the time step k in consideration. The main
target is to introduce an additional virtual measurement, i.e.
rv,k = {rv1,k}, which can be acquired from the output of the

rv  , k 

r1 , k

r2 , k

BS1 ( x1, k )

Possible MS’s Region

The Estimated MS’s Trajectory

xk|k

BSv,1 ( xk-1|k-1 )

xk-2|k-2

1

BS2 ( x2, k )

Fig. 2. The Schematic Diagram of the Two-BSs Case

Kalman filter. Knowing that there are predicting and correcting
phases within the Kalman filtering formulation, the predictive
state can therefore be utilized to compute the supplementary
virtual measurement rv1,k as

rv1,k = ‖x̂k|k−1 − x̂k−1|k−1‖
= ‖M F ŝk−1|k−1 − x̂k−1|k−1‖ (8)

where x̂k|k−1 denotes the predicted MS’s position at the kth

step; while x̂k−1|k−1 is the corrected MS’s position at the
(k − 1)th time step. The virtual measurement rv1,k is defined
by taking the previous location estimate (x̂k−1|k−1) as the
position of the virtual BS (i.e. BSv,1) with the predicted
MS’s position (x̂k|k−1) as the virtual position of the MS (as
shown in Fig. 2). By adopting rv1,k (in (8)) as the additional
measurement input, the state vector ŝk|k can be acquired after
the three measurement inputs re

k = {r1,k, r2,k, rv1,k} have
been imposed into the two-step LS estimator, along with the
implementation of the correcting phase of the Kalman filter at
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the time step k as

ŝk|k = ŝk|k−1 +

Pk|k−1MT [MPk|k−1MT + R]−1(zk − Mŝk|k−1) (9)

where

Pk|k−1 = FPk−1|k−1FT + Q (10)

Pk−1|k−1 = [ I − Pk−1|k−2MT ·
(MPk−1|k−2MT + R)−1M]Pk−1|k−2 (11)

It is noted that Pk|k−1 and Pk−1|k−1represent the predicted
and the corrected estimation covariances within the Kalman
filter. As can been observed from Fig. 2, rv1,k, associated with
r1,k and r2,k, provides a confined region for the estimation of
the MS’s location at the time step k.

2) The Single-BS Case: In this case, only one BS with
one TOA measurement input is available at the kth time step
(as shown in Fig.3). Two additional virtual measurements are
required for the computation of the two-step LS estimator, ,
i.e. rv,k = {rv1,k, rv2,k}. Similar to the previous case, the first
virtual measurement rv1,k is acquired by utilizing x̂k−1|k−1 as
the position of BSv,1 with the virtual MS’s position as x̂k|k−1

(as in (8)). The second virtual measurement rv2,k is defined
as the average prediction error from the Kalman filtering
formulation from the previous time steps. As illustrated in Fig.
3, the second virtual BS’s position (i.e. BSv,2) is assumed to
locate at the predicted MS’s position x̂k|k−1 with the virtual
measurement rv2,k obtained as

rv2,k =
1

k − 1

k−1∑
i=1

‖x̂i|i − x̂i|i−1‖ (12)

It is noted that rv2,k is obtained as the mean prediction
error until the (k − 1)th time step. In the case while the
Kalman filter provides sufficient accuracy in its prediction
phase, the value of rv2,k may approach zero. Associated with

the single measurement r1,k from BS1 (as in Fig. 3), the two
additional virtual measurements rv1,k (centered at x̂k−1|k−1)
and rv2,k (centered at x̂k|k−1) provide the restricted region
for the location estimation of the MS under insufficient signal
sources.

It is noticed that the variations of the measurement inputs
are the required information for adopting the two-step LS
estimator. It utilizes the signal variation as an indicator to
consider the weighting for a specific signal source, i.e. in
order to perform the weighted least square algorithm. Similar
concept can be exploited to the virtual measurement cases. The
signal variation of rv1,k considers the variance of the predicted
distance ‖x̂k|k−1 − x̂k−1|k−1‖ from the previous k − 1 time
steps; while the variation of rv2,k is denoted as the variance
of the prediction errors.

IV. PERFORMANCE EVALUATION

Simulations are performed to show the effectiveness of
the proposed PLT scheme under different numbers of BSs,
including the scenarios with deficient signal sources. The
noise models and the simulation parameters are illustrated
in Subsection A. The performance comparison between the
proposed PLT algorithm with the other existing location
tracking schemes, i.e. the Kalman Tracking (KT) and the
Cascade Location Tracking (CLT) schemes, are conducted in
Subsection B.

A. The Noise Models and the Simulation Parameters

Different noise models [11] [12] for the the TOA mea-
surements are considered in the simulations. The model for
the measurement noise of the TOA signals is selected as
the Gaussian distribution with zero mean and 60 meters of
standard deviation, i.e. ni,k ∼ N (0, 3600) . On the other hand,
an exponential distribution pei,k

(τ) is assumed for the NLOS
noise model of the TOA measurements as

pni,k
(υ) =

{
1
λi

exp
(
− υ

λi

)
υ > 0

0 otherwise
(13)

where λi = c · τi = c · τmζi
ερ. The parameter τi is the

RMS delay spread between the ith BS to the MS, and τm

is the median value of τi, which is selected as 0.1 in the
simulations. ε is the path loss exponent which is assumed to
be 0.5, and the factor for shadow fading ρ is set to 1 in the
simulations. The parameters for the noise models as listed in
this subsection primarily fulfill the environment while the MS
is located within the rural area. It is noticed that the reason
for selecting the rural area as the simulation scenario is due
to its higher probability to suffer from deficiency of signal
sources. Moreover, the sampling time ∆t is chosen as 1 sec
in the simulations.

B. Simulation Results

The performance comparison between the KT scheme, the
CLT scheme, and the proposed PLT algorithm are conducted
under the rural environment. Figs. 4 illustrates the perfor-
mance comparison of the trajectory tracking using these three
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Fig. 4. Trajectory Tracking of the MS using the KT (Top Plot), the
CLT (Middle Plot), and the PLT (Bottom Plot) Schemes (Solid Lines: True
Trajectories; Dashed Lines: Estimated Trajectories; Red Empty Circles: the
Position of the BSs)

schemes. It is noted that the number of BSs becomes insuffi-
cient (i.e. Nk < 3) between the time interval of t = 72 to 109
sec. The total simulation interval is set as 120 seconds. During
the time interval between t = 72 to 109 sec with inadequate
signal sources, only the proposed PLT scheme can achieve
satisfactory performance in the trajectory tracking. Both the
KT and the CLT schemes diverge from the true trajectory due
to the inadequate number of measurement inputs, even though
the number of BSs becomes sufficient afterwards (i.e. from t =
110 to 120 sec). The effectiveness of the proposed PLT scheme
is observed, especially under insufficient signal sources.

Fig. 5 shows the sorted location estimation errors (i.e.
∆xk = ‖x̂k−xk‖) obtained from the three schemes. Since the
PLT algorithm is essentially the same as the CLT scheme while
the number of BSs is adequate, both schemes perform the same
under 60% of position errors. The performance of the CLT
scheme becomes worse after 70 % of position errors due to the
deficiency of signal sources; while the proposed PLT algorithm
can still provide feasible performance for location tracking.
Moreover, the performance obtained from the KT scheme is
comparably worse than the CLT and the PLT algorithms, i.e.
around 200 m worse under 50 % of position error. The main
reason can be attributed to the difference between the inherent
structures of the KT and the CLT schemes. The KT scheme
is more focused on the compromise between the estimated
states ŝk (i.e. between the position, the velocity, and the
acceleration) with its measurement inputs rk; while the CLT
scheme is targeting on smoothing the location trajectory of the
MS. Therefore, the CLT algorithm can achieve better position
estimation and tracking comparing with the KT scheme.
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V. CONCLUSION

In this paper, a Predictive Location Tracking (PLT) algo-
rithm is proposed. The predictive information obtained from
the Kalman filtering formulation is exploited as the additional
measurement inputs for the location estimator. It is shown in
the simulation results that the proposed PLT scheme can pro-
vide consistent accuracy for location estimation and tracking
even with insufficient signal sources.
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