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Abstract

The Groves-Ledyard mechanism theoretically can solve the \free-rider" problem in public

good provision in certain environments. Two questions are of overriding importance in

implementing the mechanism. The �rst is related to the actual performance of the mechanism

in general. The second is the choice of a \punishment parameter", , which is the only

parameter that is available for those who may want to actually use the mechanism. Thus

the determination of the role of this variable on mechanism performance is fundamental

for any advances along the lines of actual implementation. In studying the Groves-Ledyard

mechanism,we show that the punishment parameter,  plays a crucial role in the performance

of the mechanism. By using  = 1 and 100, we show that under the higher punishment

parameter, the Groves-Ledyard equilibrium is chosen much more frequently; a higher level

of the public good is provided and e�ciency is higher. By examining two behavioral models,

we show that a higher  leads to an increase in the probability of an individual choosing a

best response predicted by the model. The parameter,  alone explains nearly 70% of the

data in both the Cournot and the Carlson-Auster behavioral model. We also found that
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Scott Page, Arthur \Skip" Lupia and an anonymous referee for their comments, and Hsing-Yang Lee for com-

puter programming. Any remaining errors are our own. Email: yanchen@umich.edu, cplott@hss.caltech.edu.
yDepartment of Economics, The University of Michigan, Ann Arbor, MI 48109-1220
zDivision of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125
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convergence to Cournot behavior is faster and more stable under a high  than under a low

.
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1 Introduction

A widely recognized problem for economics and political science has been to explore in-

stitutional designs that might facilitate cooperation in an environment with public goods.

For years a fundamental belief was that the achievement of a Pareto-optimal allocation

of resources via decentralized mechanisms in the presence of public goods is incompatible

with individual incentives. Theoretical and experimental work on the voluntary contribution

mechanism indicates an underprovision of public goods, as a result of free-riding.

Groves and Ledyard (1977) proposed a decentralized mechanism in a general equilibrium

model, in which through a government allocation-taxation scheme the behavioral equilibria

(Nash) are Pareto optimal. That is, given the allocation-taxation scheme, \consumers �nd

it in their self-interest to reveal their true preferences for the public goods" and the public

goods are produced at an optimal level. Therefore the mechanism is incentive compatible,

and it balances the budget both on and o� the equilbrium path.

So far, the Groves-Ledyard mechanism has only been a paper process that exists only

on the pages of a journal, but its importance should not be underestimated. It might be

possible to take the idea of a process discovered by Groves and Ledyard, re�ne it, make it

operational and put it to use as an actual political/economic process that solves naturally

occuring problems. When, and if that occurs, the institutional design problem would have

evolved to its next logical step. That possibility motivates the research reported in this

paper.

The research strategy is to observe the behavior of the Groves-Ledyard process in the

context of the simple situations that can be created in a laboratory and assess its performance

relative to what it was created to do and relative to the theory upon which its creation rests.

Two questions are of overriding importance if we want to implement the mechanism. The

�rst is related to the actual performance of the GL mechanism in general. The second is

the role of a \punishment parameter", , which is the only parameter that is available for

those who may want to actually use the GL mechanism. The GL mechanism is actually a

family of mechanisms, depending on the choice of this punishment parameter1. For practi-

cal implementation of the mechanism, information is needed about the performance of the

system in response to an increase or decrease of this punishment parameter. Theory does

not address this question except to suggest that if this particular type of punishment is \too

1Muench and Walker (1979, 1983) discussed some e�ects of parameter choices.
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high" the process will not respond at all. Such testing of the sensitivity of the di�erent GL

mechanisms under di�erent parameters has not been performed.

In choosing the actual experimental environments, two drawbacks of the mechanismmust

be considered: it does not satisfy voluntary participation, i.e., an individual can be worse o�

as a result of participating in the process; in a general environment multiple equilibria2 can

exist. The way we deal with the �rst problem is to give every subject an initial endowment.

For the second problem, since the focus in this paper is to assess the mechanism relative

to the theory and the role of the punishment parameter, a quasilinear environment is used,

in which exists a unique Nash equilibrium. The equilibrium selection problem in a general

environment is left for future research.

The paper is organized as follows: Section 2 reviews the theoretical features of the GL

mechanism. Section 3 reviews previous experimental works motivated by the GL mecha-

nism, with comparisons of experimental designs. Section 4 contains a description of the

experimental design { the environment, the process and the procedures. Section 5 gives a

descriptive summary of data and some preliminary results, and then compares the predic-

tions of di�erent behavioral models to the data. In this section a logit analysis is used to

identify and discuss the impact of the di�erent parameters on the behaviors of the subjects.

Section 6 concludes the paper.

2 The Groves-Ledyard Mechanism

The GL mechanism allocates each individual's share of the cost of public good provision by

Ci(xij�i; �i) =
X

I
� q +



2
[
I � 1

I
(xi � �i)

2 � �2i ];

where  > 0 is the punishment parameter, I is the number of people in the economy, xi is

individual i's message, indicating his proposed addition to the total amount of public good

provided, and X =
P

i xi is the total amount of public good. De�ne Si =
P

j 6=i xj as the sum

of the proposed increments by all other members of the group except i, and �i = Si=I as the

mean of others' messages, and �2i =
P

h6=i(xh��i)2=(I � 2) as the squared standard error of

the mean of others' messages. q is the per unit cost of the public good.

Some features of the mechanism are important for understanding and implementing the

mechanism. As can be observed from the tax function of the GL mechanism, two parameters,

2See Bergstrom, Simon and Titus (1983).
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 and I, de�ne a family of GL mechanisms. Variations of the punishment parameter, ,

changes the penalty that is imposed on an individual for deviating from the mean of other

players' messages. The other parameter is the size of the economy, I, i.e., the number of

individuals in the economy.

In the experiments reported here the inuence of size on the properties of the equilibria

is not considered, especially as the size of the economy grows towards in�nity. Technology

is not up to the task. So a �xed size of the economy was chosen, and given the �xed size,

the punishment parameter was varied. Accordingly, e�ects of the punishment parameter on

the performance of the mechanism was assessed.

Preferences are induced on units of the abstract public good by an individually speci�ed

value function, Vi(X), which indicates the amount of money an individual will receive if

the group choice of the public good is X and if the individual pays nothing for it. At

each level of public good decided by the group, an individual's net earning in dollars is

NVi = Vi(X)�Ci(xijSi; �i), where Ci(xijSi; �i) is the amount of tax individual i pays if his

proposed addition to the total amount of public good provided is xi, the sum of the proposed

increments by all other members of the group except i is Si, and the squared standard error

of the mean of others' messages is �2i .

Therefore, each individual has a monetary pro�t, and if one assumes that individuals

have a strictly monotone increasing utility of money, then the problem becomes

maxxi
Ui[Vi(X)� Ci(xijSi; �i)]:

Then in equilibrium, individual i would submit a message, xe
i , such that

V
0

i (X) = C
0

i(x
e
i jSi; �i):

This equation simply says that each individual will report a \desired quantity" of the public

good which equates the marginal private bene�t perceived with the marginal private cost

perceived given the decisions of others.

The marginal cost of public good to individual i is

C
0

i(xijSi; �i) =
q

I
+ 

I � 1

I
(xi � �i):

Therefore, changes in  will a�ect an individual's equilibrium message, xi. The e�ects of

punishment parameters on individuals' behaviors will be developed further later.
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The Lindahl equilibrium [Xe, fVi(Xe)g] satis�es

IX

i=1

V
0

i (X
e) = q

for the experimental environment. So, the sum of individual marginal values for the public

good equals the marginal rate of transformation.

Another important feature in the GL mechanism is that it balances the budget both

on and o� the equilibrium path, i.e., it guarantees a balanced budget for every X > 0,

i.e.,
PI

i=1Ci(xijSi; �i) = qX. This is achieved by the last term in the GL rule, the squared

standard error of the mean of others' messages, �2i . Including this term causes additional dif-

�culties in implementation by adding another dimension to the individuals' decision problem.

But, it is crucial for keeping a balanced budget.

3 Previous Implementation

There have been two groups of experiments with mechanisms motivated by the Groves-

Ledyard mechanism. First, Vernon Smith (1979) did two sets of experiments, using a sim-

pli�ed version of the mechanism, which only balanced the budget in equilibrium, i.e., one

needs to know the equilibrium in order to balance the budget. The complete GL mecha-

nism balances budget both on and o� the equilibrium path. In the Smith experiments the

punishment parameter was set to be one.

Secondly, Harstad and Marresse (hereafter shortened as HM) (1981, 1981, 1982) had two

sets of experiments motivated by the GL mechanism. The �rst set of experiments did not

satisfy a balanced budget condition: they used the Smith parameters, but with a di�erent

process { the Seriatim process3. Their second set of experiments was a computerized version

with a balanced budget both on and o� the equilibrium path.

[Table 1 about here]

Table 1 summarizes the main di�erences of the Smith, HM and our experimental de-

signs. The two Smith experiments and Harstad-Mirresse (1) do not satisfy the balanced

budget constraint o� the equilibrium path, so the mechanism they studied was not the ac-

tual GL mechanism. Harstad-Mirresse (2) use the complete version of the mechanism, and

3To be discussed later in this section.
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with di�erent punishment parameters and number of subjects. We argue that changing the

punishment parameters and number of subjects simultaneously, as was done in Harstad-

Mirresse (2), does not allow one to study the exact impact of the two parameters; besides,

the magnitude of changes were so small, that the e�ects would be very di�cult to discern

in a lab environment. Indeed, the e�ect of parameters are not discussed in Harstad and

Marresse (1981). Neither experiment addressed the role of the punishment parameters in

the performance of the mechanism.

Another important di�erence between our implementation and the previous attempts

resides in the processes used. Both the Smith process and the Seriatim process requires

unanimity, which might add unwanted complexity to the static GL mechanism. They have

the common shortcoming of involving much cheap talk and manipulation. Since the subjects

are only paid when agreements are reached, they need not be responsible for each decision

they make. From our pilot experiments using the Smith process4 and from Banks, Plott and

Porter (1987), unanimity was found to decrease the e�ciency of the system. Therefore, be-

cause of the unanimity feature we discard these two processes and use a completely di�erent

process in the experiments reported here.

4 Testbed Environment

The testbed environment reects both technical and theoretical considerations. A major

consideration of any �eld application is that the process of the public goods provision covers

the cost of the public good. Thus we want to study only processes that satisfy the balanced

budget property under both conditions of \equilibrium" and \disequilibrium". In addition

we are interested in the inuence of the magnitude of the punishment parameter. These con-

siderations taken together with the technological problems that they can cause, motivated

an experimental design in which the size of the economy is �xed and the punishment param-

eter is varied. The economic environment, the institutional process and the experimental

procedures are discussed in the sections below.

4Data from the pilot experiments are available from the authors upon request.
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4.1 The Economic Environment

In all experiments a simple constant unit cost, q, is used to produce the public good. Pref-

erences are induced on units of the abstract public good by an individually speci�ed value

function, Vi(X), which indicates the amount of money an individual will receive if the group

choice of the public good is X and if the individual pays nothing for it.

The parameters chosen for the experiments involve �ve individuals, I = 5. The constant

unit cost of the public good is q = 5. The valuation functions are quadratic,

Vi(X) = AiX �BiX
2 + �i;

and the GL cost function, in this speci�c design is

Ci(xijSi; �i) = X +


2
[
4

5
(xi � �i)

2 � �2i ]:

[Table 2.1 about here]

Table 2.1 lists the parameters of individual subject's valuation functions and their equi-

librium values under both punishment parameters. Note that the subjects have quite diverse

tastes for the public good. The marginal valuation functions, V
0

i (X), are shown in Figure

1. Subject 1's marginal valuation for the public good is negative at all levels; i.e., it is a

public bad for him. The other four players' marginal valuations are also quite di�erent from

each other. At the equilibrium, where X = 5, both Subject 4 and 5 have marginal valua-

tions higher than the marginal cost of the public good, while Subject 1 and 2 have marginal

valuations below the marginal cost. In a voluntary contribution situation, we would expect

Subject 4 and 5 to contribute close to the optimal amount of the public good.

[Figure 1 about here]

One question to be posed is whether, or how likely it is that individual subjects follow

their Lindahl equilibria under di�erent punishment parameters. As shown in Table 2.1, when

 = 1, the punishment for deviation from the mean of others is not severe, therefore their

Lindahl equilibrium messages vary from each other. When  = 100, however, the incentive

for converging to the mean of others' messages is so strong that all equilibrium messages

are \squeezed" towards one. The distribution of costs also moves toward uniform. In both

cases, the group optimal quantity of public good is 5.
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4.2 The Institutional Process

Implementation of the mechanism is based on a Periodic Process. That is, on each trial,

each subject i chooses a message, xi, and sends it to the central computer. The computer

calculates the total level of public good, X =
PI

i=1 xi, the sum of others' proposals, the

variances of others' proposals and each subject's net payo�, and sends the information to

the subjects' screens. The subjects are paid each trial for each decision they make. The

process repeats for T periods, which are announced in the instructions.

This process di�ers from those used in other experiments. Here, subjects are paid for

each decision. All messages involve commitment and are communicated under condition of

incentives. Theoretically, relative to other experiments there is less incentive for cheap talk.

Our pilot experiments comparing the Periodic Process with the Smith Process suggest that

less cheap talk and manipulative behaviors existed in the Periodic Process, which is also

more faithful to the original static mechanism.

4.3 Experimental Procedures

Four experiments were conducted using Caltech undergraduates. While most of the subjects

had participated in computerized economic experiments before, none had participated in a

Groves-Ledyard experiment. Each experiment consisted of two sessions. And each session

consisted of 30 periods, with the �rst �ve periods being the practice rounds without payment.

The practice rounds were used to instruct the subjects about the functions of di�erent

keys, how to send in a proposal and how to read and record a result from the screen (see

Computer Instructions in Appendix A). Two experiments started with 30 trials of  = 1

design followed by 30 trials of the  = 100 design; and another two experiments had the

reversed order. Each experiment lasted between 1 and 1.5 hours. Table 2.2 summarizes these

four experiments.

[Table 2.2 about here]

At the beginning of each experiment, each subject had a set of instructions, a set of

payo� tables and record sheet. Because we use the complete version of the GL mechanism,

the payo� tables are necessarily three-dimensional5. The experimenter read the instructions

and taught the subjects how to use the keyboard, how to send messages and how to record

5see Appendix A for an example of the structure of the payo� tables.
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results from the computer. After the Computer Instruction, the subjects were required to

�nish the Review Questions, which were designed to test subjects' understanding of instruc-

tions. Afterwards, the experimenter reviewed the answers to the questions and answered any

questions. After this, the subjects read and signed the Financial Agreement, which required

them to work in the lab in case of negative earning (see Appendix A).

When a period of an experiment began, each subject sent his/her proposed addition of

the public good through the computer. The central computer calculated the total level of

the project(X), the sum of other subjects' proposed additions (Si), the variance of other

subjects' additions (�2i , or oi as in the instructions), and the net value of the project for

each subject (NVi, or Pi as in the instructions). The information was sent back to the

subjects' screens. The subjects then wrote the information in the record sheet. Subjects

were strongly encouraged to refer to their payo� tables before and after each decision. Most

subjects appeared to study their payo� tables before sending messages and after receiving

the feedback. The process was repeated for 25 periods. At the end of an experiment, the

subjects added their total earnings (in francs) for all 25 periods and converted them to dollar

payments. The conversion rate was announced at the beginning of the experiments and was

written on the blackboard for their attention.

5 Results

5.1 Descriptive Summary of Data

The important basic results obtained from the raw data are listed as Result 1 through Result

4. Together these four results provide the �rst facts about the overall performance of the

classic GL mechanism. A more detailed examination of individual behavioral models and

the principles that might underlie individual decisions is reserved for sections 5.2 and 5.3.

Table 3 contains the aggregate results of the experiments. Each session has two sets of

experiments, marked by a and b. Experiment a precedes experiment b. The order of the

experiments is a treatment variable. In two sessions (0219-93 and 0401-93)  = 1 trials are

conducted before the  = 100 trials, and vice versa in the other two experiments. N stands

for the numbers of trials in each session, each session has 25 trials except for 0305-93b which

has 26 trials. The notation, fi, is used to denote the frequency that a subject proposes the

addition i, and f�i is used to denote the equilibrium proposal for the subject(s). Though the

aggregate level of public good can range from -10 to 30, only the values actually chosen in
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the experiments are listed.

[Table 3 about here]

[Table 3 (continued) about here]

Results 1 to 3 are group level results. Results 1 and 2 tell us that the promise provided

by theory, that the GL mechanism can be used to solve the public goods problems in this

type of environment is true in fact. The variable  is important because when it is increased

the e�ciency of the process increases and the aggregate level of the public good is closer to

the optimal. Result 3 further con�rms that  has a role to play in the performance of the

mechanism.

RESULT 1 : The average group e�ciency increases when  increases.

SUPPORT. The last column of Table 3 (continued) shows the e�ciencies of every exper-

iment and the average e�ciencies of the two sets of experiments. The average e�ciency is

91.1% when  = 1, and 97.7% when  = 100. 2

RESULT 2 : The average level of public good provided increases when  increases and the

e�cient level is chosen more frequently under higher .

SUPPORT. The level of public good provided for each experiment and the mean level are

presented in Table 3 (continued). The average level of public good provided is 4.70 when

 = 1, and 4.91 when  = 100. The group e�cient level, X = 5, is chosen 28% of the time

when  = 1 and 47% of the time when  = 100. 2

Although the group e�ciency level (the GL equilibrium) is chosen signi�cantly less fre-

quently when  is low, the overall e�ciency is still above ninety percent. This is because

the actual group payo�,
P

i(V
i(X)�Ci) =

P
i Vi(X)� qX, aggregate out 's incentive e�ect

on the individual's cost share. The function of the punishment parameter is to induce the

group e�cient level of public good to be chosen more frequently. So the e�ciency is slightly

higher when  = 100, but in either case it is above ninety percent on average.

The aggregate data can have a tendency to hide the potential importance of . First,

the cost of adjustment as created by  is a type of zero-sum game. The cost paid by one

individual is a bene�t received by another. Thus the cost of adjustment cannot appear in
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the aggregate data. In addition, because the e�ciency levels of the mechanism are so high,

even under low levels of , there would seem to be little room for the variable to have an

e�ect. The next result signals that signi�cant e�ects of  exist in the data and thus the

result serves as a basis for a more detailed analysis of individual behavior.

RESULT 3 : The increase of  reduces dispersion of outcomes across experiments.

SUPPORT. Table 3 shows that when  = 1, 12 out of 26 nonoptimal levels of public

good are chosen with positive frequencies; while only the 5 alternatives closest to the group

e�cient level are chosen in the  = 100 case. 2

Result 3 indicates that the role of  can be detected at the aggregate level of analysis.

However, even though the aggregate results may be of interest, the details of individual

decisions are more instructive. The nature of Result 4 can best be introduced by a detailed

study of the patterns of individual behavior.

Tables 4.1 { 4.5 present the frequencies of choosing each alternative by each subject6.

The subjects are numbered so that an individual indexed k in one experiment has exactly

the same induced preferences as the individual indexed k in the other experiments. A brief

review of the individual statistics will help one read the tables and understand the peculiar

aspects of the detailed behaviors.

[Table 4.1 about here]

When  = 1, subject 1's equilibrium choice is x�1 = �1. In the four sessions, half of the

subjects who have the incentive structure of subject 1 choose -2 more frequently, and the

other half chooses their equilibrium, -1, more frequently. On average, -1 is chosen slightly

less frequently than -2, though it is still one of the bimodal distributions. When  = 100,

however, the equilibrium choice for subject 1, x�1 = 1, is chosen 71% of the time on average.

And, it is the most frequent choice for every subject; it is chosen more than 56% of the time.

When  = 1, the payo� for x1 = �1, denoted by P�1 is strictly greater than the payo�s of

other choices only at the equilibrium, S1 = 6. For any slight disturbances, P�1 no longer

dominates other choices. For S1 2 [3; 5], P�2 and P�1 round up to exactly the same integer

values. And for S1 � 2, we have P�2 > P�1. Therefore, when the choices vary around

the equilibrium value, the probability of choosing �2 instead of �1 is rather high. When

6The raw data and computer programs are available from the authors by request.
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 = 100, however, the equilibrium choice strongly dominates other choices not only at the

equilibrium, but also in the neighborhood of the equilibrium.

[Table 4.2 about here]

When  = 1, three out of the four subject 2's choose their equilibrium, x�2 = 0 more

frequently than other alternatives. On average, the Nash equilibrium, which is chosen 50%

of the time, is the mode of the distribution. Compared with Subject 1's payo� structure, the

equilibium choice weakly dominates the other payo�s at three values: S2 = 4; 5; 6. When

S2 < 4, P1 > P2; when S2 > 6, P�1 > P0. Therefore, the equilibrium value of 1, is chosen

most frequently, and both �1 and 0 are chosen with substantial frequencies. When  = 100,

the Nash equilibrium, x�2 = 1, is chosen 75% of the time on average. Again, the equilibrium

choice strongly dominates other choices at and around the equilibrium, thus providing strong

incentives for the subjects to play Nash.

[Table 4.3 about here]

For subject 3's, the average frequency of choosing the equilibrium, x�3 = 1 when  = 1,

though highest among the frequencies of the same punishment parameter, is less than half of

the frequency of choosing the equilibrium when  = 100. When  = 1, for S3 < 4, P2 � P1,

and for S3 > 4, P0 � P1, which partly explains why 0 is chosen 31% of the time, and 2 is

chosen 18% of the time.

[Table 4.4 about here]

For Subject 4's, when  = 1, P1 > P2 for S4 > 3; P3 > P2 for S4 < 3. Conjecture, in

session 0304-93b and 0305-93b, most of the time S4 > 3. Again, when we increase  to 100,

the average frequency of attained Nash is almost three times as high as when  = 1.

[Table 4.5 about here]

Subject 5's choice distributions follow a similar pattern as the other subjects.

The next result indicates that the role of  becomes very pronounced at the individual

level of analysis. Result 4 is built from an application of the equilibrium properties implicit in

the behavioral theory of the GL mechanism and asks to what extent the static equilibrium

behavior can be detected in the choice behavior of individuals. The result provides both
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absolute and relative measurements of the accuracy of the equilibrium model when the

model is applied at the individual level of analysis under both conditions of  = 1 and

 = 100.

RESULT 4 : The equilibrium model applied to individual choice behavior increases in ac-

curacy when  increases.

SUPPORT. In Table 4.1 { 4.5, the column, f�i , indicates the frequency of each individual's

choice of their GL equilibria. The mean frequency of equilibrium choice of 38% when  = 1

and 80% when  = 100; it is the mode choice (i.e., most frequent choice) of 10 individuals

out of 20 when  = 1, and 20 out of 20 when  = 100. 2

5.2 Behavioral Models

The above analysis makes clear that individual behavior is important. This section is an

attempt to develop some intuition about the principles of individual behavior that might be

operating in the context of the mechanism. Two standard models (Ledyard 1978) can be

used as benchmarks. These are the Cournot model, which has individuals using information

only one period back and the other is the Carlson-Auster model, which has individuals using

information from all past periods and giving them equal weight.

The underlying rationale for these models is described below. Recall, an individual's

value function for the public good is

Vi(X) = AiX �BiX
2 + �i;

and the GL cost function is

Ci(xijSi; �i) =
X

I
� q +



2
[
I � 1

I
(xi � �i)

2 � �2i ]:

In equilibrium, from V
0

i = C
0

i, we get

xi = aiSi + bi;

where

ai =
(=I)� 2Bi

(I � 1)=I + 2Bi

, bi =
Ai � q=I

(I � 1)=I + 2Bi

:

For our design and environment, the set of parameters are presented in Table 5.
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[Table 5 about here]

The Cournot Model: Individual players follow Cournot behavior, i.e., xt
i = aiS

t�1
i +bi.

To test the accuracy of the Cournot hypothesis, the raw data is classi�ed to measure

the frequency of Cournot reactions. A clear pattern, summarized by the next result, is that

Cournot behavior explains over half of the choices when  = 100, but does not explain a

majority of choices when  = 1. Most of the subjects can be classi�ed as Cournot players

when  = 100. When  = 1, however, only a few subjects seem to play Cournot, such as

subjects No. 1 and 2 in session 0401-93a. Refer to Table 6.

[Table 6 about here]

RESULT 5 : Cournot behavior is predominant when  = 100; it is used less than half of

the times when  = 1.

SUPPORT. Table 6 shows that 40% of the choices on average are Cournot best response

when  = 1, while 80% of the choices can be categorized as Cournot behavior when  = 100.

2

The possibility of convergence to Cournot messages under the two punishment parameters

is also of interest. We de�ne Cvg= g(�)
T�n

, where g(St�1
i ) = aiS

t�1
i + bi, T is the total rounds

and n is the initial number of rounds. The purpose of this de�nition of convergence is to

see if the subjects make Cournot responses more frequently as they play along, and if they

converge in probability to Cournot behavior.

[Figure 2 about here]

Figure 2 shows player 1's rate of convergence to Cournot behavior under  = 1 and

 = 100 in experiment 0219-93a and 0219-93b respectively. The pattern exhibited in the

�gure is typical in most of the experiments, i.e.,

RESULT 6 : When  = 1, convergence to Cournot behavior is rare, slow and unstable;

when  = 100, the convergence is fast and stable for most of the subjects.

SUPPORT. All of the experiments exhibit similar patterns as those shown in Figure 2,

i.e., when  = 100 convergence to Cournot behavior is fast and stable, when  = 1 the

convergence is slow and unstable, and over half of the time, it does not converge at all. 2

15



The Cournot model postulates that subjects base their best responses only on the infor-

mation they receive in the previous period. An alternative model is that subjects base their

best responses on all the information they receive in the previous periods. How much weight

each subject puts on past information might di�er among periods and subjects. Here, we

examine a simple version of such a model, when all previous periods are given equal weight

by all subjects. Carlson-Auster Expectations Model postulates that each subject bases best

responses upon the average of all previous period's information.

Carlson-Auster Expectations Model: Individual subjects follow Cournot response

based on the average of all previous period's information, i.e., xt
i = ai(

1
t�1

Pt�1
r=1 S

r
i ) + bi

[Table 7 about here]

RESULT 7 : The subjects use Carlson-Auster best responses over half of the times under

both punishment parameters. The prediction of the Carlson-Auster model is more accurate

than the Cournot model.

SUPPORT. The frequency with which the choice is the prediction of the Carlson-Auster

model is contained in Table 7. As shown, when  = 1, 52% of the choices on average are

Carlson-Auster best responses; when  = 100, 81% of the choices on average are Carlson-

Auster best responses. In only one of eight experiments is the rate of CA behavior is less than

50%. Compared to the Cournot model, the Carlson-Auster Expectations model explains a

higher percentage of the data under both punishment parameters. 2

The result is that the Carlson-Auster model in which subjects are seen as averaging out

all the past information and then optimizing is more accurate than the Cournot model which

predicts that the subjects only look at the previous period before optimizing.

5.3 Logit Analysis: Incentives and Choice Behavior

From the above classi�cation of raw data, the role of  in individual subjects' decision to

use Cournot best responses or Carlson-Auster best responses is obvious. The purpose now

is to explore the possibility that other factors might contribute to individual's tendency to

use either Cournot or Carlson-Auster best responses. Apart from , could the probability

of individual choices be related to the parameters of their preferences for the public good?

What other factors a�ect the probability of individual choices?
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The principle of \design consistency" (Plott 1993) requires that the reasons for choices be

studied. If a process is expected to have robust performance properties, it should be working

for the right reasons. That is, the process should be working according to the basic theory

and principles that were used to design the process in the �rst place. Therefore, we proceed

by an examination of possible relationships among the induced preferences, the punishment

parameter and individual subjects' probabilities of choosing Cournot responses. Analysis of

the Carlson-Auster model can be done in a similar way.

A widely held belief in the experimental literature is that the predicative capacity of

game theoretic or economic theoretic models improves as the level of incentive increases.

This presumption plays such an active role in the analysis of this section that we give it a

name.

The General Incentive Hypothesis. The error of game theoretic and economic theoretic

models decreases as the level of incentive increases.

Applying the General Incentive Hypothesis to this analysis, let us consider a subject's

probability of choosing his Cournot response, Pi(C), as a decreasing function of his net gain

from deviating from Cournot. We use NV c
i to denote a subject's net value from choosing

Cournot response, NV "i
i to denote his net value from choosing a message "i away from his

Cournot response, xc
i = aiS

t�1
i + bi. His deviation, "i 2 [x�xc

i; x�xc
i ], where x and x denote

the upper and lower bound of the subjects' message space. Therefore, omitting the subscript

i for simplicity, a subject's net value from deviating from Cournot response is

NV " = A(xc+ "+S)�B(xc+ "+S)2+�� [
q

I
(xc+ "+S)+



2
(
I � 1

I
(xc+ "�

S

I � 1
)2��2)];

and his net gain from deviating,

NG" = A"�B"(2xc + "+ 2S)� [
q

I
"+



2

I � 1

I
"(2xc + "�

2S

I � 1
)]

= �(B +
I � 1

2I
)"2:

It follows that an increase in either Bi or  causes a decrease of the net gain from deviation.

Application of the General Incentive Hypothesis leads to the following proposition.

PROPOSITION. An increase in  or Bi will cause the subjects to choose Cournot re-

sponses with a higher probability.

Therefore, in the logit analysis, we consider two independent variables: , the punishment

parameters and Bi, the coe�cient of individuals' value functions for the public good. The
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dependent variable is a discrete choice variable, y, which equals one if a subject makes a

Cournot response, and zero otherwise. Therefore, the model is

P [y = 1] = �(�
0

x):

Coe�cients, t-statistics (in brackets), log likelihood and the percentages correctly predicted

for each model are given in Table 8.

[Table 8 about here]

For the Cournot hypothesis, we consider two logit models, C1 and C2. The simple basic

model C1 has only one independent variable, x = , i.e., a player's decision depends only

upon . In C2, Bi is added as an independent variable to the basic model.

In testing the impact of di�erent parameters on the probability of Carlson-Auster hy-

pothesis, we devise similar logit models, and get models CAi, which are tabulated in the last

two columns of Table 8.

As we see in the model C1, in the basic model for Carlson-Auster hypothesis, CA1, 

alone explains nearly 70% of the data. A consistent pattern in all four models is the positive

and signi�cant impact of  and Bi on the choice of best responses behavior, which con�rms

our observations from the classi�cation of the raw data and theoretical deduction.

RESULT 8 : The single most important factor that a�ects the subjects' probabilities of

choosing best responses is . An increase in  leads to an increase in the probability of an

individual choosing his best response, in both the Cournot and the Carlson-Auster behavioral

models.

SUPPORT. In basic model C1,  alone is able to correctly predict 69.948% of the observa-

tions. In CA1,  alone explains 66% of the data. In all four models, the coe�cients of  are

signi�cant at 99% level, and are positive, which says that an increase in  leads a subject to

choose Cournot responses with higher probability. 2

RESULT 9 : The preference parameter, Bi, has a signi�cant and positive impact on the

probability of an individual choosing his best response. An increase in Bi leads to an increase

in the probability of an individual choosing his best response, in both the Cournot and the

Carlson-Auster behavioral model.

18



SUPPORT. In C2, Bi is signi�cant at the 90% level; in CA2, Bi is signi�cant at 99% level.

In both models, the coe�cients of Bi are positive. In CA2, the percentage of data predicted

rises from 66.425% to 69.534% after Bi is added as an independent variable. 2

The tendency of an individual to use a Cournot-type response is related to the details

of the individual's preferences. The level of Bi, which has a negative impact on an indi-

vidual's marginal value of the public good, also inuences his tendency to give a Cournot

or Cournot-related response. An increase in Bi leads to an increase in the probability of

an individual choosing Cournot. This is consistent with the General Incentive Hypothesis

and the Proposition about the probability of an individual choosing best-responses. Such

relationships have been observed before in voluntary contribution experiments.

OBSERVATION. The inuence of Bi in these data is consistent with the inuence of

public goods valuation on voluntary contributions observed in other experiments.

SUPPORT. The experimental literature suggests that the greater is the marginal value of

a public good, the more is the tendency of an individual to voluntarily contribute to public

goods (e.g. Isaac, McCue and Plott 1985, Isaac and Walker 1988, Palfrey and Prisbrey

1992). That is, if marginal rate of substitution between the public good and the private

good increases then the individual values the public good more relative to the private good,

and is willing to contribute more private good for the production of public good7. Thus

the individual is less likely to follow the Cournot strategy for no provision of public goods.

That is, as the bene�t of the Cournot responses go down, the frequency of its use goes

down. Therefore, in two completely di�erent mechanisms, the parameters of individual's

induced preferences have a consistent impact on an individual's probability of choosing best

responses. Thus all of these observations are consistent with a general pattern of observation

that connect the level and structure of rewards to the accuracy of an economic or game

theoretic model8. 2

The logit analysis is consistent with the observation and Proposition about the impact of

the punishment parameter, , and the preference parameter,Bi on an individual's probability

of choosing the best responses. Regardless of which behavioral model is imposed, an increase

in  supports the performance of the model.

7See Ledyard 1993 for a more rigorous treatment.
8See Fiorina and Plott (1978) for an example in which two public goods are involved.
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6 Conclusions

On paper the Groves-Ledyard mechanism solves the free rider problem in certain economic

environments. The free-rider problem has been the cornerstone of the problem of public

goods provision and the Groves-Ledyard process promises a solution. The research reported

here demonstrates that if the GL process is made operational through an implementation

called a \periodic process", then in a simple quasilinear environment the promise of the

theory can be realized.

The e�ectiveness of the GL solution to the public goods problem is closely related to a

special parameter that we have called the \punishment" parameter. As the level of \pun-

ishment" is elevated from a level  = 1 to a level  = 100, the e�ciency of the operation

of the process increases from 91% to 98% and the average level of provision increases from

4.7 units to 4.9 units, which is to be compared with an optimum of 5 units. Furthermore,

an increase in the level of  substantially decreases the dispersion of the outcomes across

experiments, thereby suggesting that it inuences the reliability of the process.

In any \testbed" experiments of the type reported here, it is useful to perform what has

been called \design consistency checks" (See Plott 1993) to determine if the reasons that a

process is working are given by the basic theory and principles that were used to design the

process in the �rst place. A process might be observed working but it might be working for

the wrong reason.

The consistency check on the mechanism reveals that over half of the individuals are

exhibiting the type of behavior that is assumed by the principles of the GL model. That is,

over half of the individual choices can be viewed as Cournot responses or, more accurately, as

optimal responses based on a belief that other individuals will be choosing on average as they

have chosen in the past (the Carlson-Auster model). The response of individual behavior

to increases in  is to increase the frequency of Cournot-type responses and converge more

rapidly to such responses.

The focus on the punishment parameter creates another interesting question relevant to

the actual implementation of the GL processes. Our results demonstrate that an increase

in punishment increases the instance of Cournot type responses on which the mechanism

depends. However, observing that the mechanism performs better when  = 100 than when

 = 1 does not lead to the conclusion that the higher the punishment parameter is, the

better the mechanism performs. To illustrate the point, we consider what happens when
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 ! 1. For simplicity, we use Cournot behavior as an example. At time t, player i's

Cournot reaction is

xt
i = aiS

t�1
i + bi

=
A� q=I + (=I � 2Bi)S

t�1
i

(I � 1)=I + 2Bi

!
St�1
i

I � 1
; as  !1:

So when  is very large, the subject's best response, if he follows Cournot behavior, is to

choose the mean of other subjects' last period message, to avoid being punished by the large

. Then we can induce a subject's best response at period t, given the initial choices of all

subjects. Let subject i's initial move at time zero be x0i , then X
0 =
P

i x
0
i . It is easy to prove

that

xt
i = [

1

I
+

(�1)t+1

I(I � 1)t
]X0 + (�1)t

x0i
(I � 1)t

!
X0

I
; as t!1:

We can see that, given a large enough  and long enough repetition, all subject's choices

converge towards the mean of the initial choices, which can be anything. So, from our exper-

iments and theoretical deduction, it is clear that as  increases from one on, the performance

of the mechanism improves, but as it goes to in�nity, the performance declines. The optimal

choice of  remains an open question.

Another open question for future research is the performance of the mechanism when

there are multiple equilibria. We studied a quasilinear environment with a unique equilib-

rium. It would be interesting to see which equilibrium will be selected in a more general

environment with multiple equilibria.

The institutional design problem identi�ed in the opening paragraphs of this paper are

beginning to be solved. It is possible to align at least one normative criterion (e�ciency) with

the proper incentives. The paper processes when brought into the context of operational

process work substantially as expected. The magnitude and nature of the incentives are

important but they are important in ways that make intuitive sense. Whether or not the

processes themselves (like the GL process) will ultimately provide the tools needed by those

who wish to design process for implementation is the �eld remains to be seen.
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Appendix A. Experiment Instructions

You are about to participate in a decision process in which one of numerous competing

alternatives will be chosen. This is part of a study intended to provide insight into certain

features of decision processes. If you follow the instructions carefully and make good decisions

you may earn a considerable amount of money. You will be paid in cash at the end of the

experiment.

This decision process will proceed as a series of trials during which a project level will be

determined and �nanced. The \level" can be negative, zero or positive \units", the exact

level of which must be determined. Attached to the instructions you will �nd a series of

tables, which describes the value to you of decisions made during the process, called the

Payo� Tables. You are not to reveal this information to anyone. It is your own private

information.

During each period a level of the project will be determined. For the �rst unit provided

during a period you will receive the amount listed in row 1 of the Redemption Value Sheet.

If a second unit is also provided during the period, you will receive the additional amount

listed in row 2 of the Redemption Value Sheet. If a third unit is provided, you will receive, in

addition to the two previous amounts, the amount listed in row 3, ect. As you can see, your

individual total payment is computed as a sum of the redemption values of speci�c units.

(These totals of redemption values are tabulated for your conveniece on the right hand side

of the Redemption Value Sheet.)

The payo� each period, which is yours to keep, is the di�erences between the total of

redemption values of units of the project provided and your individual expentures on the

project. All values are stated in francs and can be converted into cash at a rate of francs

per dollar at the end of the experiment. Suppose, for example, your Redemption Value Sheet

was as below and two units were provided.

ProjectLevel RedemptionV alue TotalRedemptionV alue

(units) ofSpecificUnits ofAllUnits

(francs) (francs)

1 2500 2500

2 1500 4000

3 1000 5000
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Your redemption value for the two units would be 4000 and your payo�s would be com-

puted by substracting your individual expenditures from this amount. If 3 units were pro-

vided, the redemption value would be determined by the redemption values of the �rst and

second unit plus the redemption value of the third unit, that is,

2500 + 1500 + 1000 = 5000:

Each unit of the project costs francs. Hence, total cost for a project is times

the project size. Your expenditure toward the total project cost for a trial is determined

from your decision and the decisions of all others. Note that the redemption values can be

negative. Your expenditures can also be negative. That is, rather than paying for the project

you are paid.

Your individual decisions will inuence both the �nal level of the project chosen by

the group and your individual expenditures on the project. Recall, your payo�s from the

experiment will be the di�erence between the redemption values (positive or negative) that

are determined by the level of the project chosen and your individual expenditures (positive

or negative). These will be explained in turn.

Project level determination (X) Each period each individual will choose a proposed

addition (x) to the status quo of zero provision. This proposed addition can be any amount

ranging from to . These amounts will be added together to get the total of proposed

additions (X). This total is the project level that will be chosen.

Level of individual expenditures (c) The level of your individual expenditures de-

pends upon your individual proposed addition (x), the proposed additions of other partic-

ipants (S) and the variability among the proposed additions of the other participants (o).

The actual formula is somewhat cumbersome9, so a table that summarizes all of the relevant

information will be used instead.

Payo� Table The payo� table will summarize both the redemption value of the level

of the project chosen and the level of individual expenditures that you will incur depending

upon the choices of additions that you and other participants make. This table is a rather

large table contained in your instructions. The following example will demonstrate how

you read it. The numbers in the example are completely arbitrary and in general have no

9Individual expenditure = (your addition + addition of others) + A(your addition - average addition of

others)2 - B(variability of others). In experiment No.1, c = (x+ S) + :4 � (x� S=4)2 � :5 � o; in experiment

No.2, c = (x+ S) + 40 � (x� S=4)2 � 50 � o.
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relationship to the actual table that you will be using. The purpose is only to help you to

understand how to read the real table.

*S:13**ID:9**
o x -5 -4 -3 -2 -1 0 1 2 3 4 5

0.13 -323 -119 7 50 34 23 9 -115 -323 -581 -957

0.55 -33 -13 -10 11 23 9 -25 -78 -99 -119 -139

3.46 -55 24 48 67 33 -3 -18 -76 -127 -205 -254

9.57 4 77 95 214 341 348 343 218 10 -281 -670

*S:16**ID:9**
o x -5 -4 -3 -2 -1 0 1 2 3 4 5

0.00 23 19 22 30 64 83 49 -11 -23 -81 -95

0.55 -3 -1 0 14 43 55 -15 -48 -66 -97 -166

3.46 -5 14 35 87 29 -65 -74 -98 -274 -306 -764

9.67 77 136 248 360 657 246 119 34 5 -81 -409
The example table consists three relevant numbers. The �rst number is the sum of the

additions chosen by the other participants. This number is located in the upper left corner

of a table. Since it is a sum it is denoted by S. To start, �nd the example table for which

S, the sum of the additions of others, is equal to 13. The top row of the table lists the

possible choices that you might make for your own proposed addition, x. The amounts that

you have as options in this example range from -5 to +5. Of course these might di�er from

the options that might exist on the real table.

The left column of the table contains measures of the variability of the proposed additions

of the other participants, o. This variability measure reects how scattered the additions of

others are. For example if all of the other participants give the exact same number then there

is no scatter at all and the variability is zero. Suppose that everyone gives a di�erent number

but all numbers di�er very little, then the scatter is low as is the measure of variability. As

a shorthand we will use the term variance for this measure of variability of the additions of

other participants.

Suppose that S is 13 and that the variance (of the additions of others) is 3.46. If you chose

a proposed addition equal to -2 then your payo� is 67. That is, your payo� is determined by

the sum of the additions of others, the variance and your own addition. Each entry of the

table is your payo� that corresponds to your choice and the choices of the other participants.

The payo� could have been calculated from the formulas. Since S is 13 and you choose -2

the project level chosen is 11. The redemption value for 11 units would then be determined
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and the individual expenditures would also be computed by formula and substracted. The

table does all of these calculations for you.

Another example might be useful. Suppose S is 16, variance is 9.67 and your proposed

addition is 5. The example table indicates a payo� of -409 that you would get from such a

pattern of decisions.

It is crucial that you go check your payo� tables before and after each decision. As you

can see that your choice, x, decides which column you will end up; the others' choices decide

which table and which row of that table you will end up.

There will be 30 trials for each experiment. The �rst 5 trials of each experiment will be

practice trials. You will not be paid for these practice trials. Starting from the 6th trial, you

will be paid for each decision you make.

Your �le includes a record sheet at the last page of each set of experiment, for you to

record the results of each trial. At the end of each trial, you should record your proposed

addition, x, in the �rst row; the sum of proposals of others, S, in the second row; the

variances of others, o, in the third row; and your net payo�, P , in the fourth row.

Feel free to earn as much cash as you can. Are there any questions?

Computer Instructions At the beginning of each trial, you are free to enter any pro-

posed addition, x, between �2 and 6, and then press the F-10 key to send it to the central

computer. If you want to send a negative number, enter the number �rst and then the

negative sign. If you would like to change your selection, use the Back Space key to delete

the selection, and then enter your new selection. Now go ahead and enter a number. Notice

if you enter a number out of the �2 and 6 range, the computer will tell you that your choice

is out of range and you need to change your selection. Now everybody please use the Back

Space key to erase your choice, and then type in a negative number by typing the number

�rst and then the negative sign. Now please press the F-10 key and then con�rm it by typing

y. Once you con�rm your choice by typing y, you cannot change your choice anymore. After

everyone sends their choices, the computer will calculate the sum of proposals of others, S,

the variances of other members, o, and your corresponding payo� for this trial, P , and send

these numbers to your screen. This process will be repeated on each trial. Now go ahead

and record the result of the �rst trial to the �rst column of your record sheet.
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1 Key Function Summaries

F-10: send your choice to the central computer.

Back Space: erase your choices.

y: con�rm your choices before sending o� to the central computer.

2 Review Questions

1. If each of you propose the following units: x1 = 5, x2 = 4, x3 = 3, x4 = �2, x5 = 1,

(1) The total level of the project, X =

(2) The sum of others' proposal, S =

(3) The variances of these proposed additions for each player is : o1 = 7:00, o2 = 8:92,

o3 = 10:00, o4 = 2:92, o5 = 9:67. From the payo� table, your payo� for this trial, P =

2. Suppose all others have the same proposed addition, you alone raise your addition by

1 unit, then

(1) The total level of the project, X =

(2) The sum of others' proposal, S =

(3) The variances of these proposed additions for each player is : o1 = 7:00, o2 = 8:92,

o3 = 10:00, o4 = 2:92, o5 = 9:67. From the payo� table, your payo� for this trial, P =

3. True or false:

(1) Your share of the total cost depends only on your decisions.

(2) Each person does not neccessarily have the same total value formula.

3 Financial Agreement

Should my earnings from the experiment be negative, I agree to work in the Economic Science

Laboratory at a rate of 7 dollars per hour until the loss is repaid.

Name and Signature

Date
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Balanced Budget Incentive Parameter No. of Subjects Process

Smith No  = 1 5 Smith

Smith No  = 1 8 Smith

Harstad-Mirresse(1) No  = 1 3 Seriatim

Harstad-Mirresse(2) Yes  = 0:67 3 Seriatim

Yes  = 3 4 Seriatim

Chen-Plott(1) Yes  = 1 5 Periodic

Chen-Plott(2) Yes  = 100 5 Periodic

Table 1. Comparison of Three Sets of Experiments

Parameter Ai Bi �i xe
i xe

i

Subject ID ( = 1) ( = 100)

1 -1 0 55 -1 1

2 5 0.5 35 0 1

3 10 0.9 20 1 1

4 20 1.8 0 2 1

5 15 1.2 5 3 1
P

49 4.4 115 5 5

Table 2.1. Parameter and Lindahl Equilibrium Values
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Experiments Period 1 - 30 Period 31 - 60

(Session a) (Session b)

0219-93  = 1  = 100

0304-93  = 100  = 1

0305-93  = 100  = 1

0401-93  = 1  = 100

Table 2.2. Features of Experiments

Incentives Session N f0 f1 f2 f3 f4 f�5 f6 f7 f8

0219-93a 25 .04 .12 .16 .20 .04 :12� .12 .08 .04

0304-93b 25 .04 .04 .04 .16 .08 :36� .12 .04 .08

 = 1 0305-93b 26 .00 .00 .04 .12 .27 :38� .11 .04 .00

0401-93a 25 .00 .00 .00 .12 .32 :24� .24 .04 .04

Average .02 .04 .06 .15 .18 :28� .14 .05 .04

0219-93b 25 .00 .00 .00 .04 .20 :52� .24 .00 .00

0304-93a 25 .00 .00 .04 .12 .24 :44� .04 .12 .00

 = 100 0305-93a 25 .00 .00 .04 .12 .20 :28� .24 .12 .00

0401-93b 25 .00 .00 .00 .00 .16 :64� .16 .04 .00

Average .00 .00 .02 .07 .20 :47� .17 .07 .00

Table 3. Aggregate Frequency of Choices and E�ciency (to be continued)
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Incentives f9 f10 f11 f12 f13 Average Level E�ciency

.04 .00 .04 .00 .00 4.20 .845

.00 .00 .00 .00 .04 4.88 .883

 = 1 .00 .00 .00 .04 .00 4.85 .942

.00 .00 .00 .00 .00 4.88 .975

.01 .00 .01 .01 .01 4.70 .911

.00 .00 .00 .00 .00 4.96 .987

.00 .00 .00 .00 .00 4.68 .967

 = 100 .00 .00 .00 .00 .00 4.92 .963

.00 .00 .00 .00 .00 5.08 .989

.00 .00 .00 .00 .00 4.91 .977

Table 3. Aggregate Frequency of Choices and E�ciency (continued)
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Incentives Session N f�2 f�1 f0 f1 f2 f3 f4 f5 f6

0219-93a 25 .04 :56� .04 .16 .20 .00 .00 .00 .00

0304-93b 25 .96 :00� .00 .00 .00 .00 .00 .00 .04

 = 1 0305-93b 26 .58 :23� .11 .04 .00 .00 .00 .00 .04

0401-93a 25 .12 :76� .12 .00 .00 .00 .00 .00 .00

Average .42 :39� .07 .05 .05 .00 .00 .00 .02

0219-93b 25 .00 .00 .04 :92� .04 .00 .00 .00 .00

0304-93a 25 .00 .04 .20 :56� .20 .00 .00 .00 .00

 = 100 0305-93a 25 .00 .04 .24 :56� .16 .00 .00 .00 .00

0401-93b 25 .00 .00 .12 :80� .08 .00 .00 .00 .00

Average .00 .02 .15 :71� .14 .00 .00 .00 .00

Table 4.1. Subject 1's Frequency of Choices
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Incentives Session N f�2 f�1 f0 f1 f2 f3 f4 f5 f6

0219-93a 25 .08 .32 :48� .12 .00 .00 .00 .00 .00

0304-93b 25 .28 .24 :36� .12 .00 .00 .00 .00 .00

 = 1 0305-93b 26 .00 .08 :31� .61 .00 .00 .00 .00 .00

0401-93a 25 .00 .04 :84� .12 .00 .00 .00 .00 .00

Average .09 .17 :50� .24 .00 .00 .00 .00 .00

0219-93b 25 .00 .00 .12 :80� .08 .00 .00 .00 .00

0304-93a 25 .00 .04 .28 :56� .08 .04 .00 .00 .00

 = 100 0305-93a 25 .00 .00 .20 :68� .12 .00 .00 .00 .00

0401-93b 25 .00 .00 .04 :96� .00 .00 .00 .00 .00

Average .00 .01 .16 :75� .07 .01 .00 .00 .00

Table 4.2. Subject 2's Frequency of Choices
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Incentives Session N f�2 f�1 f0 f1 f2 f3 f4 f5 f6

0219-93a 25 .00 .04 .40 :24� .20 .12 .00 .00 .00

0304-93b 25 .00 .00 .12 :72� .16 .00 .00 .00 .00

 = 1 0305-93b 26 .00 .00 .12 :27� .38 .23 .00 .00 .00

0401-93a 25 .00 .00 .60 :40� .00 .00 .00 .00 .00

Average .00 .01 .31 :41� .18 .09 .00 .00 .00

0219-93b 25 .00 .00 .04 :96� .00 .00 .00 .00 .00

0304-93a 25 .00 .00 .08 :88� .04 .00 .00 .00 .00

 = 100 0305-93a 25 .00 .00 .04 :80� .16 .00 .00 .00 .00

0401-93b 25 .00 .00 .00 1:00� .00 .00 .00 .00 .00

Average .00 .00 .04 :91� .05 .00 .00 .00 .00

Table 4.3. Subject 3's Frequency of Choices
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Incentives Session N f�2 f�1 f0 f1 f2 f3 f4 f5 f6

0219-93a 25 .00 .00 .04 .24 :48� .24 .00 .00 .00

0304-93b 25 .00 .00 .12 .80 :08� .00 .00 .00 .00

 = 1 0305-93b 26 .00 .04 .08 .88 :00� .00 .00 .00 .00

0401-93a 25 .00 .00 .00 .04 :68� .28 .00 .00 .00

Average .00 .01 .06 .49 :31� .13 .00 .00 .00

0219-93b 25 .00 .00 .00 1:00� .00 .00 .00 .00 .00

0304-93a 25 .00 .00 .00 :96� .04 .00 .00 .00 .00

 = 100 0305-93a 25 .00 .00 .24 :68� .04 .00 .04 .00 .00

0401-93b 25 .00 .00 .00 :96� .04 .00 .00 .00 .00

Average .00 .00 .06 :90� .03 .00 .01 .00 .00

Table 4.4. Subject 4's Frequency of Choices
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Incentives Session N f�2 f�1 f0 f1 f2 f3 f4 f5 f6

0219-93a 25 .00 .04 .28 .20 .16 :12� .12 .04 .04

0304-93b 25 .00 .00 .00 .00 .00 :00� .16 .44 .40

 = 1 0305-93b 26 .00 .00 .00 .04 .08 :88� .00 .00 .00

0401-93a 25 .00 .00 .00 .12 .64 :20� .04 .00 .00

Average .00 .01 .07 .09 .22 :30� .08 .12 .11

0219-93b 25 .00 .00 .20 :56� .24 .00 .00 .00 .00

0304-93a 25 .00 .00 .20 :64� .16 .00 .00 .00 .00

 = 100 0305-93a 25 .00 .00 .00 :88� .12 .00 .00 .00 .00

0401-93b 25 .00 .00 .04 :88� .08 .00 .00 .00 .00

Average .00 .00 .11 :74� .15 .00 .00 .00 .00

Table 4.5. Subject 5's Frequency of Choices

Incentive  = 1  = 100

Subject ID 1 2 3 4 5 1 2 3 4 5

ai .25 -.44 -.62 -.77 -.69 .25 .23 .22 .20 .21

bi -2.5 2.22 3.46 4.32 4.38 -.03 .05 .11 .23 .17

Table 5. Cournot Response Coe�cients
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Incentives Session 1 2 3 4 5 Statistics

0219-93a .29 .38 .21 .25 .08 Mean = 0.40100

0304-93b .08 .32 .44 .36 .48 Stdv = 0.20512

 = 1 0305-93b .25 .54 .46 .42 .42 Skewness = 0.81255

0401-93a .75 .96 .50 .33 .50 Kurtosis = 3.86778

0219-93b .88 .83 1.00 1.00 .58 Mean = 0.80000

0304-93a .54 .58 .92 .92 .58 Stdv = 0.16887

 = 100 0305-93a .50 .71 .79 .71 .83 Skewness = -0.41573

0401-93b .79 .96 1.00 .96 .92 Kurtosis = 1.63586

Table 6. Frequency and Statistics of Cournot Behaviors

Incentives Session 1 2 3 4 5 Statistics

0219-93a .25 .50 .17 .45 .17 Mean = 0.52000

0304-93b .04 .29 .67 .67 .50 Stdv = 0.26288

 = 1 0305-93b .24 .44 .48 .76 .92 Skewness =-0.14939

0401-93a .75 .88 .88 .67 .67 Kurtosis = 1.72501

0219-93b .92 .83 1.00 1.00 .58 Mean = 0.81100

0304-93a .54 .58 .88 .96 .63 Stdv = 0.16141

 = 100 0305-93a .58 .71 .79 .71 .88 Skewness = -0.37408

0401-93b .79 .96 1.00 .96 .92 Kurtosis = 1.53620

Table 7. Frequency and Statistics of Carlson-Auster Behaviors
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Independent Variables C1 C2 CA1 CA2

ones -0.424 -0.564 6.452e-002 -0.504

(-4.524) (-4.004) (0.703) (-3.556)

 1.809e-002 1.814e-002 1.388e-002 1.433e-002

(12.187) (12.193) (9.304) (9.411)

Bi 0.159 0.649

(1.347) (5.315)

log likelihood -566.6 -565.69 -568.9 -554.2

% predicted 69.948 69.948 66.425 69.534

Table 8. Logit Models for Cournot and Carlson-Auster Hypothesis
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Figure 1: The Environment
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Figure 2: Rate of Convergence Under Two Punishment Parameters
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