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Abstract— Designing distributed multimedia applications
raises temporal and spatial synchronization issues related
to processing, transport, storage, retrieval and presentation
of data, sound, still images and video. Within this frame-
work, the paper aims to define a general-purpose multime-
dia synchronization mechanism, known as the conditional
delivery mechanism capable of addressing both intra- and
inter-stream synchronization issues. The proposed mecha-
nism, based on the identification of causal relations among
information units of one or several streams, is designed to
ensure that these causal relations, expressed at the user’s
level, are satisfied when delivering the streams. The con-
ditional delivery mechanism is analyzed in depth and both
informal and formal specifications of the mechanism are pro-
vided. The formal specification refers to an extension of the
standard formal description technique LOTOS (RT-LOTOS
for Real-Time LOTOS). Validation results of the conditional
delivery mechanism are finally presented for a distance and
interactive training application.

I. INTRODUCTION

ULTIMEDIA synchronization is the task responsible

for the co-ordination, scheduling and presentation
of multimedia objects in time and space [1]. This defi-
nition poses the problem of synchronization which raises
two main issues with respect to temporal synchronization
[2], [3] (spatial composition of multimedia objects is not
addressed here). These issues are:

¢ how simple temporal dependencies can be guaranteed

when delivering a particular media; this is commonly
called intra-stream synchronization;

¢ how structural temporal dependencies among differ-

ent media can be guaranteed such that temporal links
specified by the users are effectively satisfied when pre-
senting, in a co-ordinate manner, these media at one or
several remote sites; this 1s usually called inter-stream
synchronization.

Numerous papers in the literature have dealt with intra-
stream synchronization (see [4], [5], [6], [7] for details).
However, as pointed out in [8], inter-stream synchroniza-
tion is much less mature than intra-stream synchroniza-
tion. In [9] mechanisms and algorithms have been devised
for synchronizing streams during file storage (the file server
creates a relative time system) and retrieval (the file server
detects and restores synchrony by deleting or duplicating
information units) on a multimedia network. In [10] a dis-
tributed synchronization algorithm capable of scheduling
independent sources for a multimedia teleorchestration has
been proposed.

In this paper, it is shown that the expression of causal
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relations among information units from one or several
streams associated with the definition of implicit intra-
stream temporal requirements at the level of each individ-
ual stream, may allow complex intra- and/or inter-stream
synchronization patterns to be created; these synchroniza-
tion patterns may then be effectively implemented by a new
general-purpose synchronization mechanism, known as the
conditional delwery mechanism. Additionally the paper
shows the advantage of using formal methods, in particu-
lar RT-LOTOS [11], [12], for specifying and validating this
mechanism and assessing its effectiveness for implementing
the synchronization requirements of a distance and inter-
active training application.

The paper is organized as follows: Section II gives
the main intuitive background to the conditional delivery
mechanism as well as several examples of application for
intra- and inter-stream synchronization. Section III details
an application in the area of distance and interactive train-
ing illustrating the use of the conditional delivery mecha-
nism and, more particularly, the merging of temporal and
causal requirements. Section IV describes the implemen-
tation of the conditional delivery mechanism by looking at
the so-called restricter algorithms. Section V presents the
formal background supporting the validation of the formal
specification of the conditional delivery mechanism and in-
troduces some simulation results obtained by applying this
mechanism to the interactive training application. Finally,
some conclusions are drawn and future research work is
outlined in Section VI. For clarity, LOTOS and its tem-
poral extension RT-LOTOS have been briefly described in
appendix.

II. INTUITIVE BACKGROUND TO THE CONDITIONAL
DELIVERY MECHANISM

A. Introduction

By considering the basic synchronization concepts re-
ported in [13], multimedia information can be modeled as
streams made up of a timed sequence of information units,
a bundle being a collection of streams which have been
grouped in the same temporal range. Both streams and
bundles exhibit temporal properties that may be formal-
ized by their temporal signatures i.e. the respective time
stamps of the stream information units.

Conditional dependencies have been proposed [14], [15]
as a way of taking advantage of the knowledge on seman-
tic relationships among different stream/bundle informa-
tion units in order to characterize intra- and inter-stream
synchronization patterns. It is assumed that the condi-
tional delivery mechanism, designed to enforce these syn-
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chronization patterns, can be implemented on top of a
transport service (see Fig. 1) providing a basic connection-
oriented service with a guaranteed bandwidth, a bounded
packet loss and possibly jitter compensation mechanisms
for isochronous streams [5]. Dependency expressions will
be associated with information units whenever they are
submitted to the source synchronization entity; they will
then be encoded within the information units transferred
across the transport service for a subsequent recovery at
the remote peer synchronization entity. There, the depen-
dency expressions will be evaluated by the conditional de-
livery mechanism so as to determine whether the referenced
information units are to be delivered (within the delivered
bundle) to the upper layer user.

B. Ezpressing conditional dependencies

Conditional dependencies are causal relations associated
with a stream’s information unit aiming to express the
delivery constraints of that information unit, relative to
the delivery of other information units belonging to either
the same stream (intra-stream conditional dependencies)
or distinct ones within the same bundle (inter-stream con-
ditional dependencies).

Causal relations may be characterized by Boolean ex-
pressions (termed dependency expressions). For example,
dependency expression Dexpr™, associated with the deliv-
ery of information unit m, may formally be defined as a
logical expression in a disjunctive normal form on a (finite)
number of Boolean variables. The latter known as infor-
mation unit identifiers, characterize the delivery status of
the information units on which the delivery of m depends.
Depending on whether these are prefixed by a not logi-
cal operator (denoted —), they characterize the positive or
negative premises defined within a particular conjunction
of the dependency expression.

As a simple example of intra-stream conditional depen-
dencies, consider the following stream definition: S =
t1nt 1272 n243n3  where t1,12,13, ... are those instants
when information units nl, n2, n3, ... have been submitted.
Note that Dexpr®t = Dexpr™? = true and Dexpr™® = n2,
thus implying, on the one hand, that no conditional de-
livery constraint has been defined for information units nl

and n2, and on the other, that delivery of n3 depends on
that of n2. Thus, if n2 cannot be delivered, then n3 should
not be delivered. Note also, that the instant when n3 may
be delivered equally depends not only on meeting the con-
ditional delivery constraints but on the global timing asso-
ciated with the stream.

Inter-stream conditional dependencies entail a greater
level of complexity, as the delivery of an information unit
a may depend on that of information unit b, whose deliv-
ery may depend itself on that of a. This characterizes the
setting of a synchronization point among different streams
of a bundle, which should normally lead to the simultane-
ous delivery of information units a and 6. However, if for
any reason, one information unit cannot be delivered (for
instance, because its delivery time fails to match the asso-
ciated temporal requirement), then none of the information
units would be delivered.

As a simple example of inter-stream conditional depen-
dencies, consider the following bundle definition comprising
two streams:

B = | t1»! ¢3n2 mZgpn3
t2m1’ ”3154;”2 ’

where t1,¢3,¢5,... and ¢2,t4, ... characterize respectively
the instants when the information units of both streams
have been submitted. Here, the delivery of information
unit n3 depends on the delivery of m2 and vice-versa. This
coupled inter-stream conditional dependency relation be-
tween n3 and m2 characterizes a synchronization point,
which implies that n3 and m2 are to be delivered at the
same time. In other words, they are to be mutually syn-
chronized when delivered, although they may have been
submitted at a different time.

As a further example of inter-stream conditional depen-
dencies, consider the delivery configurations shown in Fig.
2:

+ Configuration {a, b, c}, where Dexpr® = b (i.e., a de-

pends on b), Dexpr® = ¢ and Dexpr® = a, represents
a single synchronization point;

o Configurations {d,e} and {e, f}, where Dexpr? = e,
Dexpre = d A f (ie., e depends on d and f) and
Dexpr! = e, constitute together one single synchro-
nization point obtained by merging synchronization
points {d, e} and {e, f} (see operator A in Dexpre);

o Configurations {g, h,i,j} and {i, k}, where Dexpr? =
h, Dexpr® = i, Dexpr'l = k V j, Dexpri = g
and Dezpr® = i, make up two distinct synchroniza-
tion points that cannot be merged (see operator V in
Dezpr?).

C. Merging dependency and temporal requirements

The effective delivery of a stream’s information units is
dependent upon the conditional delivery constraints being
met as discussed above, as well as additional time con-
straints related to the nature of the considered stream. Let
Am = [td?,  td™ ] be the so-called delivery time inter-

min’ ““max
val associated with some information unit m; this interval
defines the maximum time (6d = td?,, — td”. ) during



Fig. 2. Different synchronization point configurations

which m can be stored within the receiver entity before de-
livery. Basically, dd may be defined in two ways, depending
on the kind of temporal requirement associated with its re-
lated stream:

1. if no jitter compensation mechanism is applied to the
stream, then dd can be defined as a specific QoS pa-
rameter of the conditional delivery mechanism (deliv-
ery_time_interval QoS parameter);

2. otherwise, dd may be derived from the residual jitter
allowed (if any) by the jitter compensation mechanism.

The main difference between the two assumptions lies in

the time when the delivery time interval Am starts. Ac-
cording to assumption 1), Am starts at time ¢r™ when m
becomes available from the transport service, i.e. Am =
[tr™, tr™ 4 dd]. According to assumption 2), and to take
account of the additional temporal requirement, three cases
may occur, viz.:

1. if tr™ < td?., then Am = [td7, ,td7 . 1;
2. if td,, <tr™ < td ., then Am = [tr™ td2 1

3. i tr™ > tdy,
late reception, and must therefore be discarded. As a
consequence there is no delivery time interval associ-

ated with this situation.

then m cannot be delivered due to a

D. Brief summary

The general-purpose synchronization mechanism pro-
posed here follows a hybrid approach, relying on both
causal relations (essentially at the level of inter-stream de-
pendency relations) and timing constraints (at the level
of the intra-stream synchronization of each medium taken
separately). The notion of delivery time interval plays a
central role for merging these different kinds of require-
ments.

This approach is fairly different from previous ap-
proaches reported in the literature, and solely based on
global timing requirements [16]. Tt is the authors’ be-
lief that many inter-stream synchronization requirements,
normally expressed as global temporal requirements, may
be translated into inter-stream dependency relations, the
global timing required for the presentation of the multi-
media document being then ensured by a particular “mas-
ter” stream with which the other streams may synchro-
nize through use of synchronization points [17]. In this
light synchronization points appear as powerful synchro-

nization tools, generalizing the marker concept initially in-
troduced in [3]. Note that this hybrid approach is particu-
larly well-suited for the remote presentation of multimedia
documents with distinct sources, a synchronization issue
being recognized as particularly challenging [10]. Finally,
causal relations can also be applied for implementing intra-
stream synchronization patterns, with a possible direct ap-
plication to a MPEG coding stream, where one wants to
recover from the possible loss of Intra-coded pictures.

III. ILLUSTRATIVE APPLICATION
A. Presentation of the application

In this section, a simple example in the area of distance
and interactive training is described. The application is
assumed to be distributed over three nodes, namely a syn-
chronous server (SS), an asynchronous server (AS) and a
student’s workstation (S) (see Fig. 3). SS provides the stu-
dent with audio information, whereas AS provides him with
text and slide information. The transfer of these multime-
dia information may be characterized by a type II bundle
transfer [13] (from distinct sources - SS and AS -, to a single
destination - S).

Fig. 3. Application nodes

The part of the training application considered here com-
prises the following three phases : an introduction (the
servers send various pieces of information to the student
in order to introduce a particular topic), a question (the
servers send various information to the student so as to
ask him a question), and finally answer assessment (the
servers send various information to the student in order to
comment his answer). Fig. 4 shows the high-level temporal
scenario related to the delivered bundle, including the pre-
sentation duration of each information unit (slide, audio or
text) sent by the servers. Finally, it is assumed that the
student answers the asked question by means of a control
connection between him and SS.

Consider the synchronization requirements that may be
associated with the different phases of the application. In
the introduction, several information units are transferred
from the servers to the student, i.e.: one slide information
unit, four audio information units (each audio information
unit corresponding to some encoded audio segment) and
two text information units. In this phase, there exists a
strong requirement for the delivery of the audio and slide
information units. In others words, the delivery of only one
type of information (audio or slide) is regarded as useless
from an application point of view. Such a strong require-
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ment no longer holds for the text information units, as it
1s assumed that this application phase can proceed, even if
some text information units cannot be presented on time
to the student. The question phase includes the continuous
presentation of the previous slide, as well as that of four
new audio information units and two new text information
units. In this phase, there exists a strong requirement for
delivery of the text information units, as these describe the
various options available to the student for answering the
question asked through use of audio information units. Fi-
nally, the question assessment phase includes the transfer
of one slide information unit, four audio information units
and one additional text information unit. The information
transferred during this phase depends on whether the stu-
dent’s previous answer is right. In this phase, delivery of
audio information is not considered mandatory, since it is
assumed that the student will be sufficiently aware of the
validity of his answer thanks to the other information units
delivered to him (text and/or slide information units).

The three phases of the application are mandatory; con-
sequently, if one phase is not successful (e.g., due to manda-
tory information units not presented at the right time),
then it will abort and the subsequent phase(s) (if any) will
no longer occur.

B. Ezpressing causal requirements

It is worth analyzing the causal relations that may be
expressed for this application, starting from the relation-
ship existing between the first audio information unit (aip)
and the first text information unit (¢ég) of the introduction
phase. As previously stated, if, (due to a possible loss of
information units in the transport service), aip cannot be
delivered, then the application cannot start; ti; may then
be delivered if and only if aig has previously been deliv-
ered. In other words, from the application viewpoint, the
delivery of tig is useless if, for some reason, aip cannot be
delivered. The following dependency expression specifies
the conditional dependency requirement associated with
the delivery of tiy : Dexprt®™ = aig.

Let us now analyze the relationship between the first
audio information unit (aiy) and the slide information unit
(sip) of the introduction phase. Tt has been stated that the
application cannot start if either information unit cannot
be delivered in time. In other words, the delivery of aiy de-

pends on the delivery of st and vice-versa. Expressing such
a coupled dependency relation characterizes the setting of
a synchronization point which should result in a¢q and sig
being delivered simultaneously.

Another interesting feature of causal relations is the pos-
sibility of submitting multiple information units, and then
delivering only one of them (or a subset) by evaluating some
pre-determined dependency expressions. In the proposed
training application, this may be useful during the answer
assessment phase so as to avoid a specific interaction be-
tween the workstation on which the student is logged and
the asynchronous server. Proceeding thus, the student’s
answer is only sent to SS, which assesses the correctness
of the answer by issuing positive or negative audio com-
ments. Slide and text information units corresponding to
both cases (the student’s answer is right or wrong) may
be independently sent by AS, the delivery of these infor-
mation units depending on the corresponding, positive or
negative, audio comment sent by SS. Depending on which
information unit, originating from SS, is received from the
transport service, only the synchronization point associated
with the current situation (the student is right or wrong)
will be enabled, permitting thereby to deliver to the stu-
dent only the relevant information units from both SS and
AS.

Causal relations among information units may be ex-
pressed graphically as follows: an arrow from a to b means
that the delivery of a depends on that of . A circuit in this
graph characterizes the presence of a synchronization point
among the respective information units. This leads to the
dependency graph depicted in Fig. 5, which characterizes
the causal relations identified in the training application.

With respect to the graph, it may be pointed out that
the causal relations between two consecutive audio infor-
mation units from the introduction and question phases,
mean that these information units cannot be lost. On the
other hand, in the answer assessment phase, information
units awi, aws, aws only depend on awp, this dependency
being required for starting the answer assessment phase.
Finally note, that the setting of synchronization points
{ago,tqo} and {aqy,iq;} enforces the simultaneous presen-
tation of the text and audio information units during the
question phase.

The causal relations formalized so far have expressed the
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dependency constraints that have to be fulfilled when de-
livering the bundle information units so as to meet the
application requirements.

C. Ezpressing temporal requirements

Consider the specific temporal requirements that may
be expressed for the training application. To do this, the
audio stream is first analyzed because of its isochronous
nature. The presentation of such a stream motivates the
use of a temporal signature preserving mechanism in order
to compensate for the jitter that may be introduced by the
lower transport layer [5]. The delivery time interval, to be
associated with any information unit of the audio stream,
accounts for some residual jitter which itself depends on
the audio quality expected by the users.

As far as the other media (text and slides) are concerned,
no jitter compensation mechanism is needed. The causal
relations suffice to match the temporal requirements stated
for the application, as soon as the following two conditions
are met:

o the text and slide information units should be received
by the remote synchronization entity before the end of
the delivery time interval associated with the relevant
audio information unit, whenever there exists a syn-
chronization point involving an audio information unit
and a text/slide information unit;

o the value of §d (for delivery of the text/slide informa-
tion units) must be large enough to avoid discarding
the text and slide information units before their pre-
dicted time of delivery.

The first condition allows the synchronization points to
be enabled (provided of course no information unit has
been lost in the transport service). The second condition
defines a minimum value for the upper bound of the deliv-
ery time interval associated with the text and slide infor-
mation units.

IV. RESTRICTER ALGORITHMS
A. Introduction

Restricter algorithms have been devised for implement-
ing the conditional delivery mechanism. The restricter is
an object manipulated by these algorithms expressing the
relevant information for delivering the information units.
Two restricter algorithms, resp. simple restricter algorithm

and general restricter algorithm, have been developed. The
former was initially defined for the implementation of the
intra-stream conditional delivery mechanism [18]. The lat-
ter is a generalization of the previous one accounting for the
coupled dependency expressions among information units
belonging to distinct streams. This generalization, the
inter-stream conditional delivery mechanism [14], [15], is
required for setting synchronization points among distinct
streams of a bundle.

B. The simple restricter algorithm

For clarity, the simple restricter algorithm is briefly intro-
duced to identify what has then to be added in the general
restricter algorithm to cope with coupled conditional de-
pendencies. Basically, this algorithm works as follows: for
every information unit m, received from the transport ser-
vice, a restricter is created and m 1s temporarily stored
in a buffer; a restricter is (initially) defined as a tuple
(m, Am, Dexpr™), where Am is the delivery time inter-
val of m and Dexpr™ is the dependency expression as-
sociated with m; the dependency expression is evaluated
when the restricter i1s created and re-evaluated whenever
another information unit is delivered; if both temporal and
dependency conditions are satisfied, the information unit
1s delivered, otherwise it is not.

By way of example, consider the following two restricters
(m, Am, Dexpr™) and (n, An, Dexpr™), such that Dexpr™
and Dexpr™ are coupled dependency expressions defined
as Dexpr™ = n (m depends on n) and Dexpr” = m (n
depends on m). The simple restricter algorithm states
that Dexpr™ and Dexpr™ are re-evaluated whenever an
information unit is delivered. Thus, using the simple re-
stricter algorithm, neither n nor m would be delivered be-
cause there is no other delivery of information unit which
could induce Dexpr™ = true or Dexpr™ = true. This is-
sue, which is more complex when synchronization points
have to be set among more than two information units, is
addressed by the general restricter algorithm.

C. The general restricter algorithm

When creating a new restricter, the general resricter al-
gorithm looks at the current set of restricters, so as to
determine whether one of the following cases arises:

1. the dependency expression of a restricter depends

on information units whose delivery is already con-



ditioned by other restricters;

2. the dependency expression of a restricter is coupled

with that of other restricters.

The following example illustrates both situations and
shows the type of restricter transformation that can be ap-
plied to enable the delivery of all the information units
involved in a synchronization point. Let information
units {a,b,c}, with their associated dependency expres-
sions defined below, be a synchronization point: Dexpr® =
b Dexpr® = ¢ Dexpr® =a

Assume that the restricters associated with information
units a, b and ¢ have been created in this order, and that
the restricter temporal requirements are met. The cre-
ation of a b restricter illustrates case 1) for the restricter
associated with information unit a. The resulting config-
uration may be dealt with as follows: since a 1s condi-
tioned by information unit b and & by ¢, the transforma-
tion Dexpr® = b = Dexpr® = ¢ may be performed. Now,
when a ¢ restricter 1s created, Dexpr® and Dexpr® be-
come coupled dependency expressions illustrating case 2) :
Dexpr® = ¢ Dexpr® = a. The resulting configuration may
be dealt with as follows: as soon as a c¢ restricter is created,
a and ¢ must immediately be delivered (recall that the re-
stricter temporal requirements were assumed to be met);
thereby enabling the delivery of b because Dexpr® = c.

In practice, this is usually more complex, as the depen-
dency expressions may include several arguments that can
be combined using different logical operators and temporal
requirements have to be taken into account as well. Two
restricter transformations have been defined in the gen-
eral restricter algorithm which have to be applied as many
times as required in order to evaluate a synchronization
point. The first transformation (called transformation A)
deals with case 1) and the second (transformation B) ad-
dresses case 2). The underlying idea consists in modifying
dynamically the dependency and the temporal character-
istics of the restricters in order to avoid delivery conflicts
as those pointed out above, without altering the initial de-
livery constraints expressed by the synchronization point.

D. Merging delivery time intervals in the restricter trans-
formations

Let us now investigate in more details the restricter
transformations from the point of view of the temporal
requirements. To do this, consider restricters (a, Aa,bAc)
and (b, Ab,d), which are assumed to have been created
some time before the beginning of intervals Aa and Ab.
These restricters fulfill the condition associated with trans-
formation A; as a consequence of this transformation, b in
restricter (a, Aa,b A ¢) may be replaced by d.

The difficult point now consists in determining the de-
livery time intervals to be defined within the restricters,
once the transformations are performed (only transforma-
tion A is considered here). Different alternative solutions
will progressively be introduced and carefully analyzed be-
fore characterizing the correct one:

1. Using restricter (a, Aa,d A ¢) is not correct, as illus-

trated by temporal configuration (i) of Fig. 6: a might

Aa Aa
—_ —_
Ab Ab
— —
tdeO\N td? 2 tdN td? \td?
C d alll C d b a
(i) (i)
Aa Aa
—== —==
Ab Ab
td° td? td® td°
C d alll d b ¢ a

(iii) (iv)

Fig. 6. Temporal configurations

be delivered at time td?, before the start of interval Ab
leading therefore to a contradiction with the initial re-
stricter (a, Aa,bAc);
2. Using restricter (a, Aan[td’, ;. co[, dAc) enforces that
the delivery of a is based on its own delivery time in-
terval (Aa) and on a time constraint inherited from b
([td>,;,,,o0[) (note that the update of the delivery time
interval must be performed for each elementary con-
junction of the dependency expression, and not at the
global level of the restricter as done here for simplifica-
tion purpose): as a consequence, in temporal configu-
ration (ii), information unit a, if already received from
the lower service, may be delivered at time td® ;, just
after the delivery of b; this way to proceed is however
incorrect for temporal configuration (iii): information
unit a is delivered at time td? as a consequence of the
delivery of d; this i1s incorrect since b has not been
delivered during Ab;
3. Using restricter (a, AaN[td®,;, , oo, drqAcLe), where
Ld (respectively Lc) represents a maximum latency in-
formation associated with d (respectively ¢) in order
to express that the delivery of d (respectively ¢) must
occur before Ld (respectively Le) for enabling the de-
livery of a. Latency information (for example Le) is as-
sociated with every Boolean variable of a dependency
expression and is initially equal to the maximum deliv-
ery time of the information unit whose delivery is con-
troled by the dependency expression (therefore Le =
td2 ..); for information unit d the situation is slightly
different, since d is the result of transformation A (d
serves as a substitute for b); looking at b restricter, the
latency information associated with d is Ld = td%, .,
which is inherited in the restricter of a (more precisely
Ld is equal to min(td?,,,,td> ). Doing in this way
implies that the delivery of a in configuration (iii) is
not anymore possible; configuration (iv) illustrates a
possible delivery of a.
Let us now consider another example, with the following
two restricters: (a, Aa,bV ¢) and (b, Ab,—d A e). Apply-
ing transformation A to the first restricter generates the
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following restricter:

(a, ~drgNereV crc )
—_— s

Aal Aa?

with Aa! = Aanftd,;, oo, Ae? = Aa and Ld = Le =
min(td?, ., td° ) and Le = td?, ..

Here, the maximal latency information Ld is no longer
sufficient to cope with negative premises. The configura-
tion, depicted in Fig. 7, states that e and d are deliv-
ered before their maximal latencies (both equal to td%,,..).
However, d being delivered before td? ;. , information unit
a cannot be delivered as a result of the delivery of e, al-
though a could be delivered as a result of the delivery of
b in the initial restricter (a, Aa,bV ¢). To address this is-
sue, the maximal latency information L, has been replaced
with a set of preconditions (i.e., {e}) and a latency interval

(AL = Ab); the restricter may then be rewritten as:

(a, po(—~d)ar NepeV ere ) with AL = Ab and PC = {e}
— =

Agl Aa?

where timed negative premise po(—d)ar is satisfied if
one of the following cases arises:

o information unit d has not been delivered;

o information unit d has been delivered after AL;

o information unit d has been delivered at td? € AL and
all information units in PC' have been delivered before
td?.

In conclusion, one can stress that the restricter algo-
rithms refer to timed dependency expressions, which fea-
ture the following characteristics:

o delivery time intervals are associated with each ele-

mentary conjunction of the dependency expression;

o a maximal latency information is associated with each
positive premise;

o a set of preconditions and a latency interval are asso-
ciated with each negative premise.

Here simple examples have been utilized to present in-
formally the details of the transformations performed by
the general restricter algorithm. It is therefore not surpris-
ing that the description of these transformations appears
slightly ambiguous as numerous cases have to be accounted
for. This is primarily why we proposed a complete formal-
ization of the conditional delivery mechanism and formally
assessed its utilization for implementing the synchroniza-
tion requirements of the interactive training application.

This is based on the RT-LOTOS Formal Description Tech-
nique. Basic background information on RT-LOTOS, its
associated tool environment and the validation of the con-
ditional delivery mechanism will now be given in the next
section.

V. FORMALIZATION

Formal description techniques (FDTs for short) are in-
creasingly recognized as particularly important for the suc-
cessful design of large distributed and time-critical systems.
They present several advantages relative to conventional
design methods. In particular, they allow for:

o the expression of unambiguous specifications, under-
standing these specifications relying solely on the
FDT’s formal semantics; frequently, these specifica-
tions are also concise and make 1t possible to capture
the essential features of the system without entering
into specific implementation-oriented details;

o the analysis of the specifications with the purpose of
proving properties of the system under design.

RT-LOTOS is a temporal extension of the standard for-
mal description technique LOTOS [19], which is part of
the family of process algebras [20] (see [21], [22], [23] for
other temporal extensions of LOTOS). The latter have re-
cently received a great deal of attention for two reasons:
they permit formal specifications to be expressed at differ-
ent levels of abstraction, and a general theory of behav-
ioral equivalences has been developed, providing therefore
mathematical tools for formally comparing the behavior of
different specifications. This is a major advantage com-
pared to established formalisms such as Petri nets [24]. A
brief introduction to LOTOS and RT-LOTOS is given in
appendix, and detailed tutorial papers are available in [11],

[12], [25].

A. General architecture of the whole specification

A complete RT-LOTOS specification of the interactive
training application has been developed. Fig. 8 describes
the specification architecture in terms of the RT-LOTOS
processes involved.

The stream submissions by SS and AS are specified
by the Synchronous_Server and Asynchronous_Server pro-
cesses respectively. The Synchronous_Medium and Asyn-
chronous_Medium processes characterize the stream trans-
fer procedures performed by the transport service towards
the student’s multimedia workstation from SS and AS re-
spectively. Medium processes may be parameterized to
provide a reliable or a non reliable service as well as to
select the minimum and maximum transfer delays. The
Jitter_Control process supports a conventional jitter com-
pensation mechanism. The application located in the stu-
dent’s workstation 1s represented by a simple demultiplex
process intended to deliver the information media to the
respective audio, text and slide presentation devices. A
transport connection, modeled through a Control_Medium
process, is assumed to be established between the student’s
workstation and SS to enable the student to interact with
the training application (i.e. to answer the questions).
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Fig. 8. Training application specification architecture
The server processes (i.e. synchronous and asyn- process Receiver_Synchro_Entity [iur,iud] : noexit :=

chronous) handle the submission of their respective
streams. Process Synchronous_Server characterizes
the submission of the audio stream, whereas Asyn-
chronous_Server characterizes that of the text and the slide
information units. The Synchronous_Medium and Asyn-
chronous_Medium processes characterize the communica-
tion media (i.e. the transport service) used for intercon-
necting both servers to the student’s workstation. These
processes may be parameterized by different QoS param-
eters, among them the minimum (Dmin) and the maxi-
mum (Dmaz) transfer delays. For each information unit
received from gate ium, a non-deterministic delay is se-
lected, between Dmin and Dmaz, before offering the in-
formation unit to gate tur. Different processes have been
implemented to characterize different transport services as
a function of the expected quality of service. Process Jit-
ter_Control implements a buffering technique to compen-
sate for the jitter introduced by the transport service. For
each information unit received at gate iur_r, a delivery
time interval is calculated by taking into account: (i) the
time stamp associated with the current information unit
(embedded in TU_receiver), (ii) the residual jitter (R.J) |
(iii) the medium jitter (M J) and finally (iv) the temporal
reference associated with the local reception of the first in-
formation unit (70). Note that information units do not
need to be stored by this process, as buffering is already
achieved by the conditional delivery mechanism.

B. Formal specification of the conditional delivery mecha-
nism

The conditional delivery mechanism is implemented by
means of a specific protocol entity (see Fig. 9), whose be-
havior is formalized by process Receiver_Synchro_Entity.
This process corresponds to an instance of the Re-
cetwwer_Control process, in which the set of the delivered
information units and the set of restricters are initialized
with empty, and the global time with zero.

Recewver_ Control [iur,iud]
(Empty_Restricter_Set, Empty_Delivered_IU_Set,0)
endproc

Application

Yam

iud
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—o_
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i
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Fig. 9. Architecture of process Receiver_Synchro_Entity

Recewer_Control is further refined into two processes,
namely IU_Recewer and [U_Delivery, dealing respectively
with the reception of new information units from the trans-
port service, and the delivery of information units to the
user’s application.

process Receiver_Control [iur,iud]
(R:Restricter_Set_type, D:Delivery_TU_Set_type, GT: Time) :
noexit =
let instantaneous_delivery:bool =
[instantaneous_delivery]—>
i; IU_Delivery [iur,jud] (R,D,GT)
[1 [rot (instantaneous_delivery)]—>
i; IU_Receiver [iuriud] (R,D,GT)
endproc

May_Deliver (R,D,GT) in

Process Recewver_Control expresses a mnon determin-
istic choice which 1s resolved by evaluating predicate
May_Deliver in the current configuration of the protocol
entity which includes the current set of restricters (R), the



current set of previously delivered information units (D)
and the current global time (GT): if true, there exists an
information unit to be delivered (the subsequent behav-
ior then corresponds to process [U_Delivery), and false,
there exists, at the current time, no information to be deliv-
ered (the subsequent behavior then corresponds to process

TU_Receiver).

process [U_Delivery [iur,iud)]
(R:Restricter_Set_type, D:Delivery_TU_Set_type, GT: Time) :
noexit =
let M : IU = IU_to_Deliver (R,D,GT) in
wwd V' M; Receiver_control [iur,iud]
(Release_from_Restricter_Set(R,M),
Update_Delivered_IU_Set(D,M,GT), GT)
endproc

Process [U_Delivery characterizes the delivery of some
information unit M to the upper layer; M to be delivered
is identified by means of function 1U_to_Deliver and further
offered at gate tud which formalizes the interface between
the synchronization layer and the upper user layer. Once
M has been delivered, the process transforms itself recur-
sively into process Receiver_Control, the configuration of
the synchronization entity being updated by means of func-
tions Release_from_Restricter_Set and Update_Deliwered_1U
whose purpose is to:

o release the restricter associated with the delivery of M

o update the set of restricters to take into account the
delivery of M;

o append M to the set of delivered information units.

Process TU_Receiver characterizes the behavior of the
synchronization entity when no further information units
may be delivered; two situations have to be accounted for:

¢ time is progressing until the temporal constraints asso-
ciated with information units previously received and
currently stored in the synchronization entity become
satisfied; this time value is determined by the Deliv-
ery_Wait_time function and time progression is for-
malized by the delay operator;

+ anew information unit (N) is received from the trans-
port service, resulting in the creation of the new re-
stricter associated with N and in the transformation
of the updated set of restricters to check whether some
information units can be delivered at the current time.
Note finally, that as soon as a new information unit
is received from the transport service, the behavior
branch corresponding to the delay alternative just dis-
appears (see the semantics of the choice operator).

Functions Release_from_Restricter_Set

and Add_to_Restricter_Set perform the restricter transfor-

mations which have informally been discussed in the pre-
vious section; they have completely been formalized and

implemented, and the interested reader can refer to [26]

for details.

process [U_Receiver [iur,iud)]
(R:Restricter_Set_type,D:Delivery_TU_Set_type, GT: Time) :
noexit =
(let WT : Time = Delivery-Wait_Time (R,GT) in
delay(WT) i; Receiver_control [iur,jud] (R,D,GT+WT) )

wwr @ LT ? N:IU; Receiver_control [iur,iud)]
(Add_to_Restricter_Set(R,N),D,GT+LT)
endproc

This specification is a good illustration of operator @; us-
ing this operator, the (relative) time at which an informa-
tion unit is received from the transport service is recovered
and may then be added to the current global time.

C. Validation results

An RT-LOTOS tool environment (called RTL for RT-
LOTOS Laboratory) is being developed at LAAS-CNRS
to validate the correctness of a specification. In particular,
it provides a simulation capability. By generating several
execution scenarios of the complete RT-LOTOS specifica-
tion whose global architecture has been depicted in Fig.
8, the high level synchronization requirements of the inter-
active training application and the correctness of the for-
mal specification of the conditional delivery mechanism can
both be assessed with different assumptions made on the
QoS parameters of the underlying transport service (see the
medium process parameters). In case of non-determinism
(behavior and/or time non-determinism), random decisions
are made according to probabilistic laws (the uniform dis-
tribution law is being implemented in the tool). This tool
uses a graphical interface for display of the simulation re-
sults: the user specifies the RT-LOTOS specification gates
he wants to observe in some execution scenario, and ac-
tion occurrences at these gates are featured (possibly with
their associated data parameters) on temporal axes. Fig.
10 gives an example of execution scenario. By examining
these time-lines the execution scenario can be analyzed and
it 1s possible to check whether the conditional dependency
relations and their associated temporal constraints have
been satisfied. Note that the labels associated with the
time-lines correspond to the gates defined in Fig. 8 (e.g.,
the emission of audio segments is represented by action oc-
currences on gate tum_a, whereas their remote reception
from the transport service is represented by action occur-
rences on gate tur_a; the delivery of these audio segments is
represented by action occurrences on gate iud_a, in which
clearly the transport jitter has been compensated for and
the delivery of the audio segments is synchronized with the
delivery of the slide and text information units).

VI. CONCLUSIONS

In this paper multimedia synchronization issues related
to the co-ordination, scheduling and presentation of mul-
timedia objects within a distributed framework have been
presented. Special emphasis has been placed on how to
meet specific dependency and temporal requirements, pro-
viding thus a new approach to intra- and inter-stream syn-
chronization issues.

The so-called conditional delivery mechanism, whose
usefulness has been demonstrated for a simple distributed



a0 al a2 a3 a0 agl aR a3

a0 al a2 a3

’ ium_a
0 30 60 ES) 120 150 180 210 369 399 429 450
si0 ti0 til tq0 tql sfO swOtr0 twO
ium_st
20 40 60 80 100 120 140 160
ailai0 a3a2ag0 ag2 agl aq3 a0 al a2 a3
‘ ‘ iur_a
0 90 105 166 169 186 238 242 294 44 514 527 576
160 tg0 til tgl trO srO swO
‘ iur_st
4249 71 97 123 156 159 176 212
a0 al a2 a3 a0 agl a2 ag3 a0 al a2 a3
‘ iud_a
0 159 189 219 249 279 300 339 369 528 558 583 618
si0;tio til tq0 tql sr0;tr0
iud_st

339 528

Fig. 10. Execution scenario

training application, has been put forward as the main
communication facility. Dependency relations among in-
formation units from a single stream or several streams
of the same bundle have been considered explicitly speci-
fied by the upper layer. These causal relations, as defined
at the encoded media level offer a finer level of granularity
than high level requirements expressed for example by Petri
nets-like models such as OCPNs [24], which address the
whole media. It is the authors’ opinion however that high-
level temporal requirements can be translated into the pro-
posed causal relations by taking into account the specific
encoding scheme for the (continuous) media. Ongoing re-
search addresses this by showing how these dependency re-
lations among information units can be derived from more
abstract and user-oriented pre-negotiated synchronization
scenarios, which could then be mapped onto the proposed
conditional dependency scheme [17]. Finally, it has been
shown that the strength of the proposed synchronization
mechanism, the conditional delivery mechanism, directly
results from the level of granularity at which the causal
relations are expressed.

We are currently focusing on how to use pre-negotiated
synchronization scenarios based on the MHEG stan-
dard [27], which defines spatio-temporal synchronization
schemes by composing ”child” objects within a ”parent
object”. A composite object 1s further defined for encap-
sulating the spatio-temporal links among its components
(i.e. the individual media). Communication functionality
introduced in the paper could be used for implementing the
conditional synchronization scheme of a MHEG document,
when transferring it across a network. Thus a composite
MHEG object could be split into several component objects
which would individually be submitted to the communica-
tion service; synchronization among the component objects
would be ensured by the conditional delivery facility based
on a synchronization scheme derived from the synchroniza-
tion actions of the original composite object.

Finally the importance of formal description techniques
for specifying complex synchronization mechanisms has
been highlighted and the proposed temporal extension of

the LOTOS formal description technique (RT-LOTOS) has
fulfilled its expected goal [28]. The availability of a de-
sign environment based on RT-LOTOS (the RTL tool) has
made 1t possible to achieve initial validation results of the
proposed conditional delivery mechanism. Further work in
this direction is being carried out to upgrade the environ-
ment by including reachability analysis capabilities [29].
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APPENDIX
I. BRrIEF INTRODUCTION TO LOTOS anD RT-LOTOS

In LOTOS a system is seen as a process that may in-
clude several sub-processes. In turn, a sub-process is also
a process, so that a LOTOS specification describes a sys-

tem via a hierarchy of process definitions. A process is an
entity capable of performing internal, unobservable actions
and interacting with other processes, which form its envi-
ronment. Complex interactions among processes are built
up out of elementary synchronization units called events or
(atomic) interactions or simply actions. Events imply pro-
cess synchronization, because the processes interacting on
an event (two or more) participate in its execution at the
same time. Such synchronization may involve an exchange
of data. Events are atomic in that they occur instanta-
neously, without consuming time. An event is thought of
as occurring at an interaction point, or gate, and in the
case of synchronization without data exchange, the event
name and the gate name coincide. The syntax for process
definition in LOTOS is as follows:

process Process_Identifier [Formal_Gate_List] (Parameter_List)
:=  Process_Behavior
endproc

where Parameter_List is a list of variable declarations,
and Process_Behavior is a behavior expression. A behavior
expression is built up by applying an operator to other be-
havior expressions. A behavior expression may also include
wnstantiations of other processes.

The instantiation of a LOTOS process looks like the in-
vocation of a procedure in a programming language. Of
course a process instantiation refers to a process definition
which must exist somewhere in the specification. The fol-
lowing syntax is used for process instantiation:

| Process_Identifier [Actual_Gate_List] (Value_Ezpression_List) |

A partial list of LOTOS behavior expressions is given in
the following table, which includes all LOTOS operators
used in the specification of the conditional delivery mech-
anism.

process Instantiation Plg1,. - ,8m](V1,. .., Vp)
internal action prefix 1; B
observable action prefix g O; ...0,; B

where O;=7x:s or lv
choice B; [] B,
parallel B |[g1,.--,8m]| B2

or B1 ||| B2
hiding hide g1,...,g» In B
variable declaration let x:s=v in B
guard predicate [v]->B

Symbols B, Bi, B; in the table stand for any behavior
expression, P refers to any process identifier, g is a gate
name, ¢ the internal action, x a variable name, ¢ a data
type, and v a value expression.

Many programming languages such as Ada, Esterel and
Occam, feature delay operators to suspend activities. For
example, Ada has a construct, delay(t); P which means
7wait for t units of time and then execute P”. Similarly,
we write delay(t)P to denote a process which idles for ¢
units of time and then behaves as P. This construct is
fairly classical and its use for modeling real-time systems
does not need further emphasis. Construction a@t; P in-
dicates that the relative time at which action a will occur



is stored in variable ¢ (¢ can obviously be replaced by any
other variable name). This time then corresponds to a rel-
ative time starting from the instant when action a to be
offered. In other words, ¢ characterizes the time period
during which action a has remained offered before actu-
ally occurring. Finally, construction i{¢}; P indicates that
the internal action ¢ will occur in the interval [0,?] at an
arbitrary time instant which is not chosen by the environ-
ment but by the process itself. This construction has been
used here to express time non determinism (for details on
time non determinism, other time-related features of RT-
LOTOS and its formal semantics see [12], [25]).
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