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AbstractIn this paper, we develop a new multiscale modeling framework for characterizing positive-valueddata with long-range-dependent correlations (1=f noise). Using the Haar wavelet transformand a special multiplicative structure on the wavelet and scaling coe�cients to ensure positiveresults, the model provides a rapid O(N) cascade algorithm for synthesizing N -point data sets.We study both the second-order and multifractal properties of the model, the latter after atutorial overview of multifractal analysis. We derive a scheme for matching the model to realdata observations and, to demonstrate its e�ectiveness, apply the model to network tra�csynthesis. The exibility and accuracy of the model and �tting procedure result in a close�t to the real data statistics (variance-time plots and moment scaling) and queuing behavior.Although for illustrative purposes we focus on applications in network tra�c modeling, themultifractal wavelet model could be useful in a number of other areas involving positive data,including image processing, �nance, and geophysics.Keywords: Multifractals, long-range dependence, positive 1=f noise, wavelets, net-work tra�c�This work was supported by the National Science Foundation, grant no. MIP{9457438, by the O�ce of NavalResearch, grant no. N00014{95{1{0849, by DARPA/AFOSR, grant no. F49620-97-1-0513, and Texas Instruments.



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 11 Introduction1.1 Fractal signal modelsThe discovery of the fractal, self-similar, or 1=f nature of many phenomena has led to excitingbreakthroughs in a variety of scienti�c disciplines, including physics, chemistry, astronomy, biology,meteorology, hydrology, and soil science [1, 2]. In signal and image processing, fractals have beenapplied in �elds such as computer graphics, texture modeling, image compression, and patternrecognition [3, 4].Fractal models have made a major impact in the area of communications recently, particularlyin the area of computer data networks. As the work of Leland et al. [5] and subsequent studies havedemonstrated, network tra�c loads exhibit fractal properties such as self-similarity, burstiness, andlong-range dependence (LRD). Inadequately modeled by classical Poisson or Markov models, theseproperties strongly inuence network performance [5]. For instance, performance predictions basedon classical tra�c models are often far too optimistic when compared against actual performancewith real data. Fractal tra�c models have provided exciting new insights into network behaviorand promise new algorithms for network data prediction and control.The fractional Brownian motion (fBm) B(t) has been the most broadly applied fractal signalmodel [5{7]. Its power lies in its simplicity: fBm is statistically self-similar1B(at) fd= aHB(t): (1)Thus, while it has rich statistical properties, it remains amenable to a tractable analysis. The fBmis not stationary, but its increments form the stationary fractional Gaussian noise (fGn) process.When the Hurst parameter H > 1=2, fGn exhibits LRD.N samples of fGn can be simulated exactly via direct Cholesky factorization (O(N3) compu-tational complexity) [4] or Levinson's recursion (O(N2) complexity) [8]. These costs can becomeoverbearing, especially in networking applications where often N � 106. For such large problems,approximate synthesis techniques (O(N) complexity) based on wavelets have been developed.The discrete wavelet transform represents a 1-D real signal X(t) in terms of shifted and dilatedversions of a prototype bandpass wavelet function  (t) and shifted versions of a lowpass scalingfunction �(t) [9, 10]. For special choices of the wavelet and scaling functions, the atoms j;k(t) := 2j=2  �2jt� k� ; (2)�j;k(t) := 2j=2 ��2jt� k� ; j; k 2 ZZ (3)form an orthonormal basis, and we have the signal representation [9, 10]X(t) =Xk UJ0;k �J0;k(t) + 1Xj=J0Xk Wj;k  j;k(t); (4)with2 Wj;k := Z X(t) j;k(t) dt; (5)Uj;k := Z X(t)�j;k(t) dt: (6)1The equality is in the sense of �nite-dimensional distributions.2We consider the signal X(t) to be random and so use capital letters for all quantities derived from it.



2 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999For a wavelet  (t) centered at time zero and frequency f0, the wavelet coe�cient Wj;k measuresthe signal content around time 2�jk and frequency 2jf0. The scaling coe�cient Uj;k measures thelocal mean around time 2�jk. In the wavelet transform, j indexes the scale of analysis: J0 indicatesthe coarsest scale or lowest resolution of analysis, and larger j correspond to higher resolutions ofthe analysis.The Haar scaling and wavelet functions (see Figure 1(a)) provide the simplest example of anorthonormal wavelet basis. Because of (3), the supports of the �ne-scale scaling functions nestinside the supports of those at coarser scales; this can be neatly represented by the binary treestructure of Figure 1(b). Row (scale) j of this scaling coe�cient tree contains an approximation toX(t) of resolution 2�j . Row j of the complementary wavelet coe�cient tree (not shown) containsthe details in scale j + 1 of the scaling coe�cient tree that are suppressed in scale j. In fact, theUj+1;k consist simply of scaled sums and di�erences of the Uj;k and Wj;k.
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Uj+2,4k(a) (b)Figure 1: (a) The Haar scaling and wavelet functions �j;k(t) and  j;k(t). (b) Binary tree of scaling coe�-cients from coarse to �ne scales.The wavelet transform closely approximates the Karhunen-Lo�eve transform for fBm and fGn[11{13]. This fact has been leveraged into e�cient approximate fBm and fGn models [14]: we positthat the wavelet coe�cients Wj;k are simply independent, zero-mean Gaussian random variableswith power-law decaying variance var(Wj;k) / 2�j , with  = 2H + 1 for fBm and  = 2H � 1 forfGn.Unfortunately, despite their great simplicity, fractal models such as fBm and fGn have signi�cantlimitations for modeling certain types of natural and man-made processes. First, fBm and fGn areGaussian models, whereas many LRD processes, including network tra�c, turbulence, �nancialdata, and images, are inherently positive and often spiky. Both of these qualities are explicitlynonGaussian. Second, many signals exhibit LRD but display short-term correlations and scalingbehavior inconsistent with the strict self-similarity of (1).1.2 A Multifractal Wavelet Model (MWM)In this paper, we develop a new wavelet-based signal model for positive, stationary, LRD data.While characterizing positive data in the wavelet domain is problematic for general wavelets, forthe Haar wavelet, we have the simple condition: X(t) is positive if and only if jWj;kj � Uj;k for allj; k.In the multifractal wavelet model (MWM), we ensure a positive signal output by modeling the



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 3wavelet coe�cients as Wj;k = Aj;k Uj;k, with the multipliers Aj;k independent random variablessupported on [�1; 1]. For simplicity, we choose � (beta) and simple point mass distributions forthe multipliers.The MWM ows as a multiscale, coarse-to-�ne synthesis down the tree in Figure 1(b): Giventhe approximation to X(t) at resolution 2�j (the Uj;k), we compute the wavelet coe�cients Wj;k =Aj;k Uj;k with random Aj;k. The approximation to X(t) at resolution 2�(j+1) (the Uj+1;k) is thenobtained from scaled sums and di�erences of the Uj;k and Wj;k. This process can be iterated untilany desired resolution/signal-length is reached; the total cost is a meager O(N) operations for anN -point output.Like fGn models, the MWM can closely model the power spectrum, and hence the LRD, of aset of training data if the variances of the multipliers Aj;k are chosen appropriately. Unlike fGnmodels, the MWM can also match positivity and higher-order statistics due to its multiplicativeconstruction.For example, Figure 2 compares real data (Bellcore Ethernet packet interarrival data, August1989) with synthetic MWM and fGn data, at di�erent aggregation levels. Both models matchthe mean, variance, and correlation decay of the real data. Evident from the �gure are the largenumber of (unacceptable) negative values of fGn, caused by the real data having a high standard-deviation-to-mean ratio. The MWM data much more closely matches the characteristics of the realdata. Moreover, a length-218 MWM synthesis required just eight seconds of workstation run time,in contrast to eighteen hours for a Levinson fGn synthesis.1.3 Cascades and multifractalsThe multiplicative construction of the MWM process is reminiscent of the binomial measure, aclassical multifractal process. Multifractals were �rst introduced to model dissipation of energyin turbulence [15, 16] and have proved well-suited to modeling non-homogeneous phenomena [17,18]. More recently, the multifractal nature of network tra�c has been demonstrated convincingly,�rst in [19] and subsequently in [20, 21]. The beauty of the multifractal formalism has motivatedconsiderable research e�ort in mathematics [22{32]; however, few multifractal data models havebeen developed to date.In the most simple terms, multifractals possess a local smoothness Ht that depends on t inan erratic way. Equivalently, multifractals have moments that scale non-linearly. By matchingthe multifractal properties of training data, the MWM can capture and synthesize rare events inaddition to global behavior. Random products are \usually" small but \sometimes" extremelylarge. This results in the burstiness seen in Figure 2(b). Models based on fBm/fGn, on the otherhand, exhibit a non-varying behavior in both Ht and moments | they are \monofractal."With regards to network tra�c, self-similar, additive schemes model tra�c arrivals as a meanrate with superimposed fGn uctuations. This agrees with the conception of tra�c as the super-position of individual components and is accurate on large time scales. Multiplicative models, onthe other hand, represent tra�c arrivals as the product of random multipliers, which mimicks thepartitioning of total tra�c throughput into parts. This point-of-view is appealing when consideringsmall time scales [33].1.4 OrganizationAfter some background on fractals and wavelets in Section 2, we provide the construction and basicproperties of the MWM in Section 3. In Section 4, we develop the modeling framework and providea procedure for �tting the MWM to actual data measurements. Section 5 reviews multiplicative



4 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999(a) Bellcore data (b) MWM data (c) fGn data
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Figure 2: Interarrival times of groups of packets of (a) Bellcore August 1989 pAug data [5], (b) onerealization of the multifractal wavelet model (MWM) synthesis, and (c) one realization of fGn synthesis.The top, middle, and bottom plots correspond to interarrivals of one-hundred packets, ten packets, andone packet, respectively. The ten-packet and one-packet plots correspond to the last tenth of the datafrom the one-hundred-packet and ten-packet plots, respectively, as indicated by the vertical dotted lines.Approximately 30% of the fGn values are negative.
cascades and reveals the relationship between the MWM and the binomial cascade. We give a briefintroduction to multifractal analysis (MFA), relate the MFA to wavelets and LRD, and performan MFA of the MWM in Section 6. To illustrate the e�ectiveness of the MWM, in Section 7,we employ it to generate high-quality synthetic network tra�c data. We con�rm the accuracy ofthe synthesis in terms of both statistical measures and queuing behavior and comment on possiblephysical reasons for the presence of multiplicative processes in network tra�c. We close with adiscussion and conclusions in Section 8. In Appendix A, we give a tutorial review of the MFA. Theproof of the multifractal formalism for the MWM appears in Appendix B.



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 52 Fractals, Scaling, and WaveletsFractals are geometric objects exhibiting an intricate, highly irregular appearance on all resolutions[34]. The fractal dimension dim(E) [35] measures the degree of irregularity or roughness of a set E.Here, we are mainly interested in fractal signals, i.e. signals having a fractal graph. Most knownfractals are self-similar; if we \zoom" (in or out) of the fractal, we obtain a picture similar to theoriginal. In a deterministic setting, this imposes strong restrictions on the fractal, and the easiestway to obtain such an object is to apply a simple geometrical rule iteratively to obtain details up toin�nitely �ne resolution. Consequently, deterministic fractals consist of highly repetitive patterns.Real-world phenomena can rarely be described using such simple models. Nevertheless, \similarityon all scales" sometimes holds in a statistical sense, leading to the notion of random fractals.2.1 Fractional Brownian motion and fractional Gaussian noiseFor processes, the notion of \similarity on all scales" can be made precise in various ways. A verystrict one is that of self-similar with stationary increments: A process Y isH-sssi if it has stationaryincrements and for all a > 0 Y (at) fd= aHY (t) (7)(cf. (1)).The pre-eminent random fractal signal model at present is the fractional Brownian motion (fBm)B(t). This process is uniquely de�ned through two properties: H-sssi and Gaussianity [7,36]. TheHurst parameter lies in the range 0 < H < 1; smaller H corresponds to fBm's with \wilder" orrougher-looking local behavior.Although fBm is useful for theoretical analysis, its increments process (for �nite increment �t)G[n] := B(n�t)�B ((n� 1)�t) ; (8)known as fractional Gaussian noise (fGn), is often more useful in practice. While fBm is nonsta-tionary, fGn is stationary.For fBm, self-similarity (7) is equivalent to its autocorrelation function rB(t; s) := IE [B(t)B(s)]having the form rB(t; s) = �22 �jtj2H + jsj2H � jt� sj2H� (9)or its (generalized) power spectral density behaving as �B(f) / jf j�(2H+1) [12]. It follows from (9)that fGn has an autocorrelation functionrG[� ] = �22 j�tj2H �j� + 1j2H + j� � 1j2H � 2j� j2H� : (10)As with fBm, fGn has a discrete-time power spectrum that behaves as �G(f) / jf j�(2H�1) for fnear 0. Thus fBm and fGn are often called 1=f noise.2.2 Long-range dependenceWhile the rigid correlation structure of fGn is somewhat restrictive for modeling purposes, the taildecay of rG[� ] has proven to be of importance in itself. In particular, it inspires weaker notions of\similarity on all scales" in terms of second-order statistics only.It is easy to see that (10) decays like rG[� ] ' �2H�2. For 1=2 < H < 1, the correlationis strictly positive and decays so slowly that it is non-summable. A process Z with this property(P� rZ [� ] =1) is said to exhibit long range dependence (LRD), since it possesses strong correlations



6 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999at large lags. LRD can be equivalently characterized in terms of the behavior of the aggregatedprocesses Z(m)[n] := 1m kmXi=(k�1)m+1Z[i]: (11)The fGn with 1=2 < H < 1 has proven useful for signal modeling, because it has LRD yetpermits tractable theoretical analysis due to (7). In particular, the H-sssi property (7) togetherwith (8) imply that G[n] fd= m1�HG(m)[n]: (12)Processes for which var(Z[n]) = m2�2Hvar(Z(m)[n]) are termed second-order self-similar processes[2]. For such processes, a log-log plot of the variance of Z(m)[n] as a function of m | the variance-time plot | is strictly linear with a slope of 2 � 2H [5]. The variance-time plot can be used todetect the self-similarity and LRD of a trace and can be applied to nonGaussian, non-zero-meandata as well.32.3 Wavelets and 1=f processesThe inherent scaling property of the wavelet basis is well-suited for analyzing self-similar processes.Wavelets serve as an approximate Karhunen-Lo�eve transform for 1=f processes [11], includingfBm [12] and fGn [13]. These highly correlated, LRD signals become nearly uncorrelated in thewavelet domain. This property has lead to the widespread use of wavelets for the analysis andsynthesis of fractal and LRD signals [14].In particular, the energy of the wavelet coe�cients of a continuous fBm exhibits a power-lawdecay with scale [12]. The variance progression of the wavelet transform of sampled fBm and fGndoes not follow a strict power-law, but rather includes scale-dependent factors [12,13]. Kaplan andKuo [13] have shown that for the Haar wavelet, the variance progression of the wavelet transformof fGn satis�es var(Wj;k) / 2�j(2H�1): (13)Moreover, the wavelet coe�cients of fGn are typically much less correlated than those of theunderlying sampled fBm process. They use these facts to develop a robust wavelet-based estimatorfor the H of an fGn submerged in additive white Gaussian noise. Similar wavelet-based estimatorsforH compare favorably with standard estimation techniques [37] and have been applied to practicalproblems such as network tra�c analysis [14].Wavelets can also be used to synthesize approximate 1=f processes with generalized spectra ofthe form �(f) / jf j� , 0 <  < 2, which includes fBm and fGn.4 Playing o� the Karhunen-Lo�eveproperty of the wavelet transform, Wornell generates zero-mean, independent Gaussian randomvariables Wj;k with power scaling according to [11]var(Wj;k) / 2�j : (14)He then inverts the wavelet transform to obtain the synthesized process. Even though the meanand variance of the synthesized signal are stationary, this approach generally results in a non-stationary Gaussian process with time-varying correlation function (see Section 3.4). However,3Although the Hurst parameter H is sometimes used strictly in the context of fGn, we will view H as a variance-time plot parameter to characterize LRD processes in general.4Processes corresponding to a wider range of 's can also be synthesized, using wavelets with regularity greaterthan two [12].



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 7the time-averaged correlation and spectrum do approximate that of a 1=f process [11]. Thoughonly approximate, this method's O(N) computational cost compares favorably with the O(N2)cost of the Levinson algorithm for exact synthesis [8] and the O(N3) cost of direct Choleskyfactorization [4].2.4 Moving beyond fBmAlthough fBm and fGn are powerful and tractable signal models, their strict self-similarity is toorestrictive to adequately characterize many types of signals [19, 38]. For instance:1. many signals possess signi�cant LRD, but display short-term correlations and scaling behaviorinconsistent with strict self-similarity;2. in many signals, the scaling behavior of moments as the signal is aggregated is a non-trivial(nonlinear) function of the moment order; and3. many signals have increments that are inherently positive and hence nonGaussian.Signals with these properties fall naturally into the class of multifractal processes. Multifractalsignal models are positive measures or distributions possessing self-similarity but non-homogeneousscaling. The goal of this paper is a multifractal extension of traditional fBm and fGn signalmodels suitable for analyzing, characterizing, and synthesizing positive processes with LRD. Aswith fractals, we will �nd the wavelet transform useful for constructing and analyzing our model.3 A Multifractal Wavelet ModelThe primary goal of this paper is to develop a wavelet-domain model for a positive, stationary,LRD signal C(t) and its integral D(t). (The integral will be more convenient for the analysis inSection 5).In practice, we will work with a discrete-time signal C(n)[k] that approximates C(t) at resolution2�n. To reect this in the wavelet transform, we replace the semi-in�nite sum in (4) with a sumover the �nite number of scales 0 � j < n, j; n 2 ZZ+. Here we also set, without loss of generality,the coarsest scale J0 = 0, meaning that the �rst sum in (4) reduces to the single term U0;0 �0;0.This corresponds to a single scaling coe�cient tree approximating C(t) on the interval [0; 1]. Whilewe will emphasize this case in the sequel, in certain cases (as in Section 4.4 below), we will �nd itconvenient to employ a forest of R trees rooted at R scaling coe�cients U0;k, k = 0; 1; : : : ; R � 1.In this case, the process C(t) is assumed to lie in the interval [0; R].Using the Haar wavelet, the discrete process C(n)[k] takes values that correspond to the integralof C(t) in the interval [k2�n; (k + 1)2�n[. Such processes have a natural interpretation as anincrement process:C(n)[k] := D�(k + 1)2�n��D�k2�n� = Z (k+1)2�nk2�n C(t) dt = 2�n=2Un;k (15)for k = 0; : : : ; 2�n � 1. Equation (15) is similar to (8) with �t = 2�n.To be useful in real applications, our model must be simple, produce a fast analysis and synthesis,and closely match the process's positive, nonGaussian marginals and its LRD. We will now showhow this is possible using a simple Haar wavelet construction of the increments process C(n)[k].



8 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 19993.1 Positivity through multiplicationWavelet-domain modeling of positive processes is complicated by the fact that the wavelet coe�cientconstraints required to ensure a positive output are nontrivial. Quite the contrary for the Haarwavelet, however. For the Haar wavelet, the scaling and wavelet transform coe�cients can berecursively computed using Uj;k = 2�1=2(Uj+1;2k + Uj+1;2k+1) and (16)Wj;k = 2�1=2(Uj+1;2k � Uj+1;2k+1): (17)Furthermore, in the Haar transform of positive data, we know that all Uj;k � 0, since each Uj;kequals a scaled local mean. Rearranging (16) and (17) toUj+1;2k = 2�1=2(Uj;k +Wj;k) andUj+1;2k+1 = 2�1=2(Uj;k �Wj;k); (18)we thus �nd a simple constraint to guarantee that the process is positive:jWj;kj � Uj;k: (19)Although we have derived (19) as a necessary condition, it is easy to see that it is also su�cient. Formore general wavelet systems (with longer, overlapping wavelets), the conditions are considerablymore complex.We wish to build a statistical model for the Wj;k's that automatically incorporates (19). Thisleads us to a simple multiplicative signal model. Let Aj;k be a random variable supported on theinterval [�1; 1] and de�ne the wavelet coe�cients byWj;k = Aj;k Uj;k: (20)In Section 3.4.1 we will place some additional constraints on the Aj;k.The multifractal wavelet model (MWM) consists of the Haar wavelet transform and the structureconstraint (20).3.2 Synthesis procedureThe MWM can be interpreted as a simple coarse-to-�ne synthesis running as follows (see Figure 3):1. Set j = 0. Fix or compute the coarsest (root) scaling coe�cient U0;0 (modeling of U0;0 isdiscussed in Section 4.4).2. At scale j, generate the random multipliers Aj;k and calculate each Wj;k via (20) for k =0; : : : ; 2j � 1.3. At scale j, use Uj;k andWj;k in (18) to calculate Uj+1;2k and Uj+1;2k+1, the scaling coe�cientsat scale j + 1 for k = 0; : : : ; 2j � 1.4. Iterate steps 2 and 3, replacing j by j + 1 until the �nest scale j = n is reached.Since we generate the scaling coe�cients simultaneously with the wavelet coe�cients, there isno need to invert the wavelet transform. The �nest-scale scaling coe�cients are in fact the MWM
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√2(a) (b)Figure 3: (a) More detailed tree structure of scaling coe�cients. (b) MWM construction: At scale j, weform the wavelet coe�cient as the product Wj;k = Aj;kUj;k, with Aj;k a random variable distributed in[�1; 1]. Then, at scale j + 1, we form the scaling coe�cients Uj+1;2k and Uj+1;2k+1 as sums and di�erencesof Uj;k and Wj;k (normalized by 1=p2).output process, i.e. C(n)[k] = 2�n=2Un;k, k = 0; : : : ; 2n � 1. The total cost for computing N MWMsignal samples is O(N).Because of the simple structure of the Haar transform, Steps 2 and 3 above can be combined,eliminating the wavelet coe�cients altogether:Uj+1;2k = �1 +Aj;kp2 �Uj;k and Uj+1;2k+1 = �1�Aj;kp2 �Uj;k: (21)3.3 Closed-form coe�cient expressionsBecause of its simplicity, we can easily obtain explicit formulas for the MWM's �ne-scale Haarwavelet and scaling coe�cients in terms of the scaling coe�cients and multipliers at coarser scales.We begin by de�ning an indexing scheme to relate the coarsest-scale scaling coe�cient U0;0 to its\descendants" at �ner scales, the scaling coe�cients Uj;k, j > 0 (see Figure 3(a)). Let kj ; j > 0;be the variable indexing the possible shifts of the descendants of U0;0 at scale j. We can relatethe shift kj of a scaling coe�cient to the shift of one of its two direct descendants (children) kj+1via kj+1 = 2kj + k0j , with k0j = 0 corresponding to the left descendant and k0j = 1 the rightdescendant (see Figure 3(a)). From this we can express kj as a binary expansion in terms of the k0i(i = 0; : : : ; j � 1), kj = j�1Xi=0 k0i 2j�1�i: (22)Moreover, kj = jkj+12 k and k0j = kj+1 � 2 jkj+12 k, with bxc the largest integer less than or equalto x. Note that �xing a sequence k0i speci�es not only kj, but a \line of descendants" of Ui;ki(i = 0; : : : ; j) from U0;0 down to Uj;kj .Using this notation, we can derive closed-form expressions for the MWM wavelet and scalingcoe�cients.



10 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999Proposition 1 De�ne the wavelet coe�cients of the Haar wavelet system through (20), with therandom variables Aj;k supported on [�1; 1]. We then have the general relationsUj;kj = 2�j=2 U0;0 j�1Yi=0 h1 + (�1)k0iAi;kii (23)and Wj;kj = 2�j=2 Aj;kj U0;0 j�1Yi=0 h1 + (�1)k0iAi;kii : (24)3.4 Properties of the MWM3.4.1 Additional constraints on the multipliersThe Haar wavelet coe�cients of a stationary signal will be, using (5), identically distributed withineach scale with IE[Wj;k] = 0. To model these properties in the MWM, we will assume that, withineach scale j, we have the following:1. the multipliers Aj;k; k = 0; 1; : : : ; 2j�1; are identically distributed according to some randomvariable A(j) 2 [�1; 1],2. the A(j) are symmetric about 0, and3. (simplifying assumption) the Aj;k are independent of both the coarsest scaling coe�cient U0;0and the Al;k on �ner scales l > j.53.4.2 Marginal density and stationarityUnder the above assumptions, Proposition 1 leads us to the marginal density and stationarityproperties of C(n)[k]. Setting j = n in (22) and (23), and setting k = kn in (15) yields6C(n)[k] = 2�n U0;0 n�1Yi=0 �1 + (�1)k0iAi;ki� d= 2�n U0;0 n�1Yj=0(1 +A(j)): (25)Thus, C(n)[k] is �rst-order stationary and identically distributed. Note that without the require-ment that A(j) be symmetric, the marginal distribution of C(n)[k] would depend on k and (25)would not hold. Hence, symmetry of the multipliers is key for modeling stationary processes.However, C(n)[k] will not be second-order stationary in general. Due to the dyadic structureof the wavelet transform, wide-sense stationarity of C(n)[k] is unattainable using a wavelet-domainmodel with uncorrelated wavelet coe�cients (except in the trivial case of white noise). In the MWM,for a �xed shift m, IEhC(n)[k +m]C(n)[k]i will vary as a function of k in relation to the size of thesmallest subtree containing both C(n)[k +m] and C(n)[k]. If the Aj;k multipliers are independentand identically distributed (iid), then the smaller the subtree, the stronger the potential correlation.Given our independence assumptions, the moments of C(n)[k] are readily calculable from (25)via IEhC(n)[k]qi = IEhU q0;0i n�1Yj=0 IE"�1 +A(j)2 �q# : (26)5Strictly speaking, for our development we need only assume independence along \lines of descendants." That is,multipliers on di�erent scales can be dependent as long as one is not a descendant of the other.6The symbol \ d=" denotes equality in distribution



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 11As we increase the number of scales in the wavelet transform (n!1), an appropriately scaledversion of C(n)[k] converges to a log-normal random variable as long as IEhlog(A(j))3i is boundedfor j � 0. This follows from the application to log(C(n)[k]) of the Berry-Esseen theorem [39], aCentral Limit Theorem for non-identically distributed random variables.3.4.3 Wavelet-domain dependency structureIf we assume that the Aj;k's are independent both between scales and within scales, then the waveletcoe�cients will be dependent, but uncorrelated. This lack of correlation follows from the fact thatterms of the form IE[Aj;k] factor out of any correlation calculation, with IE[Aj;k] = 0. However, ahigher-order dependency structure remains, which is of course key for preserving signal positivity.While a dependency structure with no correlations between wavelet coe�cients may at �rst seemsomewhat unnatural, such models are not entirely unrealistic. Wavelet coe�cients of random signalscan exhibit minimal second-order correlations (approximately decorrelated via the Karhunen-Lo�evetransform), yet still have strong dependencies in higher-order moments. For instance, many real-world data sets exhibit strong dependencies in the energy of the wavelet coe�cients, correspondingto fourth-order cross-moments [40, 41].3.5 Related workConstructions similar to the MWM were developed earlier in [42,43]. A similar multiplicative modelfor wavelet coe�cients has been developed in [44,45], where it is applied to wavelet-domain Bayesianestimation of the intensity of a Poisson process. There, the Aj;k's are independent multipliers that,within each scale, are identically-distributed as mixtures of � random variables. The primarydi�erence with this work is that we model the data directly, whereas [44, 45] models a wavelet-domain prior density for the intensity function of a Poisson process.In other related work, [46] models the wavelet coe�cients using a context-based hidden Markovmodel. It can be shown that this model corresponds to (20), again with the Aj;k's identically-distributed within each scale, but with each Aj;k distributed according to a mixture density depen-dent on the value of Uj;k. Although this model proves to be quite exible and accurate for charac-terizing positive LRD data, it requires iterative, maximum-likelihood (expectation-maximization)training, has numerous parameters, and is di�cult to characterize analytically.4 Data Modeling using the MWMTo complete our model, we now specify probability density functions (pdfs) for the coarsest scalingcoe�cient U0;0 and for the A(j) multipliers at each scale. We can use the degrees of freedom inthese pdfs in order to control two key signal properties. First, we control the correlations and LRDof the output signal C(n)[k] through the wavelet energy decay. Second, we control the higher-ordermoments and marginal pdf of C(n)[k] through the scaling coe�cient moments.4.1 Controlling the Wavelet Energy DecayTo approximate the correlation behavior of a target signal, we vary the wavelet energy decay acrossscale. We choose the pdfs for the A(j)'s to control the wavelet coe�cients' scaling behavior via (24).The fact that this scaling behavior allows us to model correlations can be explained as follows.Consider the Karhunen-Lo�eve properties of the wavelet transform. Previous work [11,12,47] hasdemonstrated that the wavelet transform approximately decorrelates or whitens a general class of



12 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999LRD signals, including 1=f processes. If the decorrelation were exact, then specifying the correctvariances of the wavelet coe�cients would fully capture the correlation structure of the signal.Since this decorrelation is approximate, we can approximately control the correlation behavior byappropriately setting the second moments (energies) of the wavelet coe�cients at each scale.The simplest way to control energy scaling is to �x the energy at the coarsest scale (j = 0) andthen set the ratios of energy for the other scales with �j := var(Wj�1;k)var(Wj;k) ; 0 � j < n. For a stationary1=f process, we see from (13) that �j = 22H�1 is constant. Using Proposition 1 we can calculatethe �j's of the MWM via�j = IEhW 2j�1;kiIEhW 2j;ki = 2 IEhA2(j�1)i IEhU2j�1;kiIEhA2(j)i IEh(1 +A(j�1))2i IEhU2j�1;ki = 2 IEhA2(j�1)iIEhA2(j)i �1 + IEhA2(j�1)i� : (27)To match a given variance decay, we can recursively solve (27) for IEhA2(j)i in terms of �j andIEhA2(j�1)i for j = 1; 2; : : : ; n� 1. We initialize the calculation at the coarsest scale (j = 0) throughIEhA2(0)i = IEhW 20;0iIEhU20;0i : (28)4.2 Controlling the moments of the scaling coe�cientsIt is easily shown that the moments of the scaling coe�cients scale according toIEhU qj�1;kiIEhU qj;ki = 2q=2 IEh(1 +A(j�1))qi�1 : (29)Through (29) we can control the scaling of the higher-order (and even negative) moments of thescaling coe�cients | and thus of C(n)[k] | through the moments of the A(j)'s.4.3 Distributions for the multipliersWe will investigate two distributions for the multipliers, the symmetric � distribution and a sym-metric point-mass distribution. Both of these distributions are compactly supported, easily shaped,and amenable to closed-form calculations.4.3.1 Symmetric beta distributionA �(p; p) random variable A, symmetrically distributed over (�1; 1), has pdf [48]gA(a) = (1 + a)p�1(1� a)p�1B(p; p) 22p�1 : (30)Here B(�; �) is the beta function, and p > 0 is a shape factor (see Figure 4). For large p, the �(p; p)approximates a Gaussian distribution [48]. The variance is given byvar(A) = IEhA2i = 12p+ 1 : (31)
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Figure 4: Examples of the pliable pdf gA(a) of the �(p; p) random variable A, for di�erent values of p. Forp = 0:2, A resembles a binomial random variable, and for p = 1 it has a uniform density. For p > 1 thedensity resembles a truncated Gaussian density, with the resemblance increasing with p.Combined with (27), (31) tells us how to choose the p's to obtain the desired scaling behavioras parameterized via �j . Denoting by p(j) the beta parameter at scale j, we �nd thatp(j) = �j2 �p(j�1) + 1�� 1=2: (32)When we use �-distributed multipliers, we call the model the � multifractal wavelet model (�MWM).4.3.2 Point-mass distributionThe point mass distribution we consider is non-zero at three pointsPr[A = c] = Pr[A = �c] = r; and Pr[A = 0] = 1� 2r; (33)with 0 � r; c � 1. Although seemingly not as rich as the �, this distribution has two parametersand thus can match an additional higher-order moment of the signal.The point-mass distribution has variance var(A) = 2rc2. The higher order moments of �1+A2 �,which are useful for characterizing the scaling coe�cient moments (see (26)), are given byIE��1 +A2 �q � = 2�qr�(1� c)q + (1 + c)q� + 2�q(1� 2r): (34)4.4 Distribution for the root scaling coe�cientWhat remains is to model the density of U0;0, the root of the tree in Figure 3. In theory, this dis-tribution should be strictly positive. However, if there are enough scales in the wavelet transform,we can appeal to Central Limit Theorem-type arguments (although LRD makes precise analysissomewhat cumbersome) that the root scaling coe�cient is approximately Gaussian, thus charac-terized only through its mean E[U0;0] and variance var(U0;0). Crucial to this assumption is thatthe mean greatly outweighs the variance so that the probability of a negative value is negligible.Although our development has focused on a single wavelet tree with a single scaling coe�cientU0;0, in certain synthesis applications it is useful for the MWM to employ several wavelet treeswith one root scaling coe�cient per tree. For instance, we may wish to synthesize a trace of length2n0 , but have only enough coarse-scale information to form a model over n < n0 scales. In thiscase, we can concatenate 2n0�n length-2n traces, which corresponds to an MWM with 2n0�n iid



14 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999Table 1: Asymptotic values for the shape p and variance IE(A2) of the � multipliers Aj;k as a function ofH . H 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95p 0.077 0.175 0.301 0.470 0.707 1.06 1.66 2.86 6.47IE[A2] 0.866 0.741 0.625 0.516 0.414 0.320 0.231 0.149 0.072coarsest-scale scaling coe�cients U0;k. Of course, an iid assumption for the U0;k is suboptimal inthat it destroys LRD over time lags greater than 2n. This problem, along with a potential solution,is discussed further in Section 4.6.4.5 Modeling positive 1=f noiseWe next investigate how to parameterize the MWM in order to model a stationary positive-valued1=f increments process with Hurst parameter H, or spectrum decay / f�(2H�1). It is easily seenfrom (13) that we should choose �j = 22H�1 independently of scale. This leads to:Proposition 2 Assume that the Aj;k in (20) are iid within each scale j (distributed as A(j)),supported on [�1; 1], symmetric about 0, and such thatIEhA2(j)i = 22�2H IEhA2(j�1)i1 + IEhA2(j�1)i : (35)Then the MWM output process C(n)[k] = 2�n=2Un;k is positive and exhibits power-law behavior ofthe wavelet coe�cient energies (14) with exponent 2H � 1. Moreover,limj!1 IEhA2(j)i = 22�2H � 1; 1=2 < H < 1: (36)The �rst part, i.e. (35), follows from (27). By solving (35) for the �xed-point, we obtain (36). Asimple analysis of (36) shows that for 1=2 < H < 1 the iteration is well-de�ned on all scales, sincethe variance of A(j) must lie in [0; 1] for all j.If we use a � distribution for the multipliers, the �xed point formula for the variance IE[A2]leads to a �xed point for p of the formp = limj!1 p(j) = 22H�1 � 12� 22H�1 ; 1=2 < H < 1: (37)Table 1 provides typical �xed-point values for p and the variance IE[A2] given the desired H. Thereis no such expression for the point-mass distribution, since even though the variance converges, anextra degree of freedom remains available for matching higher-order moments.We conclude that the MWM can approximate a positive-valued 1=f process with Hurst param-eter 1=2 < H < 1 to in�nitely �ne resolution.4.6 Fitting the MWM to data measurementsWe now develop a procedure for �tting the MWM to actual data measurements. The �rst stepin the �tting is a wavelet analysis: we compute the wavelet coe�cients of the measurements (alength-N signal) using a Haar wavelet transform algorithm (�lter bank, etc. [9,10]) The number ofwavelet scales in the transform, n, is chosen as mentioned below.



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 15We require var(Wj;k); j = 0; : : : ; n�1 and IEhU20;0i to �t the MWM via (27) and (28). (Values forthe higher-order scaling coe�cient moments (29) may also be useful if the multiplier densities havemore than one free parameter.) There exist two reasonable approaches for selecting these values.We can either plug in the empirical wavelet variances directly, or we can assume a parametric modelfor the variances and use the measured data to �t the model.If we plug the empirical moments directly into (27) and (28), we must ensure that we have enoughdata to collect reliable statistics. This problem is most pressing for the coarsest-scale wavelet andscaling coe�cients, of which we have the fewest. In practice, we set the number of levels n of theHaar transform such that the number bN2�nc of coarsest-scale wavelet and scaling coe�cients issu�cient for estimating IEhW 20;0i and IEhU20;0i.A parametric model for the moment scaling would allow us to extrapolate the coarse-scale scalingand wavelet coe�cient moments that we have di�culty measuring due to lack of data. It would alsorender the modeling more robust and provide a more concise representation of the data's behavior.Parametric models for �j as a function of scale are currently under investigation.In some cases, it may be impossible to exactly match the moment scaling of the data using theMWM. The scaling of moments of the actual data may be inconsistent with the possible momentsof the Aj;k multipliers. For instance, the positive moments of Aj;k are bounded above by those ofa random variable with point masses of weight 1=2 at �1 and at 1. The moment scaling of certaindata may lead to multiplier moment constraints outside these bounds that cannot be �t exactly.This could occur, for example, if the data exhibited dependencies between the Aj;k and Uj;k.5 Multiplicative CascadesMultiplicative cascades generalize the self-similarity of fBm by o�ering greater exibility and richerscaling properties. Identifying the MWM algorithm with a multiplicative cascade allows us tobene�t from the accumulated theoretical and practical knowledge of the �eld of multifractals, in-cluding a precise understanding of the convergence of the algorithm, properties of the marginaldistributions, advantages over monofractal fGn models, and a range of possible re�nements andextensions [15,16,22{32,49{57]. The theory of cascades comes with a dedicated set of tools for anal-ysis, both theoretical and numerical, that we will outline in the next two sections (see AppendicesA and B for more details).At this point, our discussion will become decidedly more technical, mainly because we wish toextend the MWM to a continuous-time process. Though indispensable for a true understandingof multiplicative processes, readers may, at least at �rst reading, wish to bypass the followingtwo sections for Section 7, where we present an application of the MWM framework to computernetwork tra�c modeling.5.1 The MWM is a binomial cascadeThe MWM extends the simple, classical multifractal | the binomial measure � [22, 53, 54, 57] |in a natural fashion. This measure � is most conveniently constructed iteratively through a so-called cascade structure, whence it is often addressed as a binomial cascade. As we will show, itsdistribution function Db(t) := �([0; t)) coincides with the integral D of the MWM signal C[k].The iterative cascade construction is illustrated in Figure 5. Starting from a uniform distributionon the unit interval of total mass M00 , we \redistribute" this mass by splitting it between the twosubintervals of half size in the ratio M10 to M11 , with M10 +M11 = 1. Proceeding iteratively, weobtain after n steps a distribution that is uniform on intervals Ink := [k2�n; (k+1)2�n) and assigns
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Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 17Comparison with Proposition 1 (applied with j = n) or, more pointedly, with (25) reveals thatthe MWM is a random binomial cascade. Indeed, setting M00 = Db(1) �Db(0) := U0;0 andMnkn = 1 + (�1)k0n�1An�1;kn�12 ; (41)the increments C(n)b [k] of this binomial distribution function Db (c.f. (38)) coincide with the incre-ments C(n)[k] of integral D of the MWM signal (c.f. (25)). Thus, we drop the subscript \b" in thesequel.5.2 Additional properties of the MWMSince the MWM is a binomial cascade, known results on cascades transfer immediately.5.2.1 Ordinary convergence of D(t)In the limit the above iterative construction will converge, meaning that D is well de�ned for allt. This is due essentially to two simple properties of distribution functions such as D: they areincreasing and continuous from the right. Thus, it is enough to de�ne D at all dyadic points, andto take limits from the right at non-dyadic points. At stage n, we de�ne D(k2�n) through (38)with the convention D(0) = 0. At later steps of the construction, these values remain unchangeddue to (39). This completes the argument.Let us note that the increment C(n)[kn] of D between dyadic points tends to zero as n!1 dueto (38) and the fact that the multipliers are less than 1. Consequently, D is continuous.5.2.2 Distributional convergence of C(t)We have constructedD through its dyadic increments C(n)[k] and by passing to the limit of in�nitely�ne resolution (n ! 1). Later, we will be mainly interested in the increments C(n)[k]. Never-theless, de�ning D itself is handy, since it is a continuous-time process and provides a compactrepresentation of the increment processes (15) and (38) at various resolutions n.Moreover, we cannot de�ne a \process" C(t) with D(t) = R t0 C(s) ds in the usual sense. Indeed,the approximations C(k2�n) � 2nC(n)[kn] (plotted in Figure 5) tend either to 0 or 1. (c.f.Appendix A.3). In particular, the derivative D0 of D is zero almost everywhere, as follows from(75) in Appendix A.1. Thus, the essential growth of D happens \at" the points where D0 does notexist. This explains the spiky appearance of the increments C(n)[k] for large n.The proper way to de�ne C(t) is in the distributional sense:Z g(t)C(t) dt := limn!1 2n�1Xk=0 g(k2�n)C(n)[k] = limn!1 2n�1Xk=0 g(k2�n)�(Ink ) = Z g(t) d�(t): (42)As a particular case, the wavelet and scaling coe�cients of C(t) are properly de�ned, and it is aneasy task to check that they are indeed given by (23) and (24).To emphasize the fact that C(t) is not a proper function in the cases of interest here, letus show that the l2-norm of its wavelet coe�cients is in�nite, at least in expectation. Indeed,using Proposition 1 we �nd after a short calculation that IEhPj;k jWj;kj2i =Pnj=0Pk var(Wj;k) =IE[U20;0]Pnj=0 IEhA2(j)iQj�1i=0 IEh(1 +A(i))2i. For this expression to remain �nite as n!1, IEhA2(j)iwould have to decay to 0 (as j !1) due to IEh(1 +A(j))2i � 1. This requirement, however, leads



18 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999to processes with uninteresting �ne scale behavior, and it certainly does not hold in the presenceof LRD (see (36)).The fact that the MWM algorithm does not furnish an L2-signal7 in the limit n!1 providesa further strong argument towards leaving the usual framework of wavelets when performing mul-tiplicative iteration schemes. Given the decay of the wavelet coe�cients (c.f. Section 6.3) we candetermine in which Besov spaces the limiting MWM signal C(t) lives (see Appendix A.2.6).5.2.3 Marginals of C(n)[k]Our next observation concerns the marginals of the discrete approximation C(n)[k] to the MWMsignal C(t). If we assume that the multipliers M appearing in (38) are mutually independentwith �nite third moments, then the logarithms of the increments C(n)[k] of D are approximatelyGaussian due to the Law of Large Numbers (LLN). A cascade process has, thus, approximatelylog-normal marginals C(n)[k]. Note that these marginals have �nite moments of the same order ofthe multipliers appearing in (38).The theory of cascades, which in mathematics are addressed as T -martingales [22,52], providesa wealth of possible generalizations. Softening the conservation condition \M0 +M1 = 1 almostsurely" to \IE[M0+M1] = 1" (consistency in the mean), we can use multipliersM with log-normaldistribution. Then, the marginals of the increment process are exactly log-normal on all scales. Inthis case, convergence is guaranteed by martingale arguments.Also of considerable importance is the possibility to go beyond the binary structure imposed bythe Haar wavelet system and to introduce randomness in the geometry of the construction [24, 25]and | as a particular case | wide sense stationarity in the signal. To describe such systems is,however, beyond the scope of this paper.
6 Multifractal Analysis of the MWMSo far we have noted two attractive properties of cascades: their increment processes are spiky andhave nonGaussian marginals. Surprisingly, these two properties are strongly related, and muche�ort has been expended connecting them rigorously under various assumptions [23{32]. Thescaling of moments, which is captured with the simple and e�cient partition function T (q), acts asthe bridge. This function can be viewed as a concise way of describing various features of cascadesand of processes in general.After introducing the various multifractal spectra f(�) (measures of spikiness) and relating themto T (q), we show that fBm has a degenerate multifractal structure. It is, thus, of limited use formodeling purposes in view of higher-order moments. Next, we relate the multifractal analysis(MFA) to the wavelet transform of a signal and unravel the connection between MFA and LRD.We end this section by computing the multifractal spectrum of the MWM explicitly.A thorough review of the key features of multifractal analysis is given in Appendix A.7Since the Haar transform is orthonormal, the l2 norm of the wavelet coe�cients equals the L2 norm of the outputsignal.



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 196.1 Multifractal spectra6.1.1 SpikinessThe strength of growth, also called the degree of H�older continuity, of an increasing process Y attime t can be characterized by �(t) := limkn2�n!t�nkn ; (43)with �nkn := � 1n log2�nkn [Y ]; (44)�nkn [Y ] := ��Y ((kn + 1)2�n)� Y (kn2�n)�� ; (45)and kn = 0; : : : ; 2n � 1.The smaller the �(t), the faster Y grows at t. Considering only t 2 [0; 1] for simplicity, thefrequency of occurrence of a given strength � at coarse scales can be measured by the coarse(grained) multifractal spectrum:fG(�) := lim"!0 limn!1 1n log2#��nkn 2 (� � "; � + ")	 : (46)In this setting, fG takes values between 0 and 1 and is often shaped like a \ (concave). The smallerfG(�) is, the \fewer" points t act like �(t) ' �. If � denotes the value �(t) assumed by \most"points t, then fG(�) = 1 (c.f. Appendix A.3).6.1.2 NonGaussianity and higher-order momentsLike any Gaussian process, fBm is completely determined by its second-order statistics. Thingsare quite the contrary for cascades such as the MWM. Being especially interested in the scaling ofmoments, we de�ne the partition functionT (q) := limn!1 1�n log2 IE242n�1Xkn=0 ��nkn [Y ]�q35 : (47)Note that T is always concave. For a typical plot of fG and T , see Figure 6.6.1.3 The multifractal formalismThe multifractal spectrum fG(�) and T (q) are closely related, as the following quick and dirtyargument shows. Omitting in the sum of (47) all terms but the ones with �nkn � � and using (46),we obtain 2n�1Xkn=0 ��nkn [Y ]�q � X�n�� �2�n��q ' 2nfG(�)2�nq� = 2�n(q��fG(�)): (48)We conclude that we should \expect" T (q) to be smaller than q�� fG(�), or equivalently fG(�) �q�� T (q). Since this holds for all � and q, we �ndT (q) � fG�(q) := inf� (q�� fG(�)) (49)and fG(�) � T �(�) := infq (q�� T (q)): (50)
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α  →Figure 6: The Legendre transform T 7! T � in the simple case of a concave, di�erentiable function suchas the spectrum of a �MWM ((66) with p = 1:66, H = 0:85). Set � = T 0(q); then T �(�) is such thatthe tangent at (q; T (q)) passes through (0;�T�(�)). In other words, �T �(�) + q� = T (q) (see (51)). Bysymmetry, the tangent at (�; T �(�)) has slope q and passes through (0;�T (q)). There are two special valuesof q. Trivially, T (0) = �1, hence the maximum of T � is 1. In addition, every positive increment process hasT (1) = 0, hence T � touches the bisector.This relation is established rigorously in Appendix A.2.The transform T �(�) appearing in (50) is called the Legendre transform. If T 00(q) < 0, then we�nd by simple calculus thatT �(�) = q�� T (q) and (T �)0(�) = q at � = T 0(q). (51)We may write this equivalently as the dual formula T (q) = q�� T �(�), T 0(q) = � at q = (T �)0(�).This is illustrated in Figure 6. Since T is typically di�erentiable and always concave, (51) issu�cient for our purposes. More details on the Legendre transform are given in Appendix A.2.This relation via the Legendre transform is typical in the theory of Large Deviations [58], whichestablishes relations such as equality in (50) under the weakest possible assumptions. In properterminology, fG is the rate function of a so-called Large Deviation Principle (LDP): it measures howfrequently or how likely the observed �nkn deviates from the \expected value" �. We will elaborateon this, especially the use of a theorem of G�artner-Ellis [59] towards an improvement of (50) inAppendix A (c.f. Theorem 6 and 9).6.2 Numerical estimation of T (q)For the MWM, we have �nk [D] = C(n)[k] = 2�n=2Un;k, and the sum in (47) becomesSn(q) = 2n�1Xkn=0 ��nkn [D]�q = 2n�1Xk=0 j2�n=2Un;kjq: (52)In order to numerically estimate T (q), we will �rst ignore the expectation, which is fair for largen under an ergodicity assumption. (This procedure is also viable in more general circumstances,as we show in Appendix A.2.4.) Then, we seek a relation of the form 2(�n)T (q) ' Sn(q), which weobtain numerically from a linear plot of log2 Sj(q) against j (j = 1; : : : ; n).



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 216.3 Multifractal analysis and waveletsWavelet decompositions contain considerable information on the singularity behavior of a processY . Indeed, adapting the argument of [60, p. 291] and correcting for the L2 wavelet normalizationused in this paper, it is easily shown that jY (s)� Y (t)j = O(js� tj�) implies that2n=2 ����Z Y (s) �n;kn(s) ds���� = O�2�n�(t)� (53)if kn is chosen as usual to satisfy kn2�n � t � (kn + 1)2�n. This holds for any � > 0 andany compactly supported wavelet. Given knowledge on the decay of the maximum of the waveletcoe�cients in the vicinity of t and su�cient wavelet regularity, this relation can be inverted. Fora precise statement, see [60] and [9, Thm. 9.2]. This suggests that replacing the increments in thede�nition (43) of �(t) by the left hand side of (53) would produce an alternative description of thelocal behavior of Y . In nice cases, we expect the resulting scaling exponent to be equal to �(t).This could prove particularly useful for more general classes of processes.Let us rejoin the MWM. By construction, we actually know the wavelet coe�cients of the MWMsignal C, which is the distributional derivative of the increasing process D. Following the aboverecipe we may de�ne, thus, a multifractal scaling exponent based on wavelets for C:e�[C](t) := limn!1 e�nkn [C] as kn2�n ! t. (54)e�nkn [C] = � 1n log2 �2n=2jWn;kn j�;Since D(t) = R t0 C(s) ds, we expect e�[C](t) to be closely related to �(t). Adapting (47) to (54)results in eT [C](q) := limn!1 1�n log2 IE"2n�1Xk=0 2nq=2jWn;kjq# : (55)An analysis using (55) is of particular interest in the context of Besov spaces, as is explained furtherin Appendix A.2.6.All general results on the multifractal formalism hold also with e� and eT , in particular (50) andLemma 5, Theorem 6, Lemma 7, and Corollary 8 of the Appendix A. We should mention that [21]uses this fact in its analysis of cascades.For the Haar wavelet coe�cients of an MWM, we have Wn;k = An;k Un;k. Provided that theAn;k converge in distribution as n!1, they do not contribute to the scaling law eT [C](q). For thesum in (55), we have then that IEh eSn(q)i = 2nq IEhjA(n)jqi IE[Sn(q)] using (52). Hence,eT [C](q) = �q + T (q): (56)Let us assume in addition that there exists " > 0 such that jAn;kj � " for all n; k. Then,(1=n) log2An;kn ! 0 for all t, and using again 2�n=2Un;k = �nk [D] we �nde�[C](t) = � limn!1 1n log2 �2n=2jUn;kn j� = �1 + �(t): (57)This is exactly the relation we expect between the scaling exponents of a process and its (distribu-tional) derivative, unless the process contains more complex oscillatory behavior such as chirps [61].Di�erentiating (56), we �nd eT 0[C](q) = �1 + T 0(q), which is by Legendre transform (51) inagreement with (57). From this it becomes clear that all results on the MFA of the MWM processD(t) translate directly into a scaling analysis of its distributional derivative C(t). In particular, seeCorollary 3, (65) and (66) below, as well as Theorems 9 and 11, and (103).



22 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 19996.4 Multifractal scaling of moments and LRDThe multifractal scaling exponent T (2) of a process Y is closely related to LRD parameter H, sinceboth measure the power-law behavior of second-order statistics.8 More precisely, T (2) captures thescaling behavior of the second sample moments, while H captures the decay of the covariances.For a process Y with zero-mean increments, this relation can be made precise. To this end we usethe fact that H can be measured through a scaling of the sample variance as derived from (12) [2].Therefore, let Z[k] = �nk [Y ] denote the increment process of Y at some given (�nest) resolution 2�n.Following (11), we let then Z(m)[k] be the aggregated increment process, i.e. at aggregation levelm = 2i the processmZ(m)[k] = �n�ik [Y ] is the increment of Y at resolutionm=2n = 2i�n. Accordingto (12) the variance of Z(m) scales as var(Z(m))=var(Z) ' m2H�2 = 2i(2H�2) for an LRD processY . On the other hand, var(Z(m)) = m�2 IEhjmZ(m)j2i = 2�2i IEhj�n�ik [Y ]j2i ' 2�2i 2(i�n)(1+T (2))according to (47). Comparing the scaling terms 2i, we �nd that 2H � 2 = �2 + (1 + T (2)), orH = T (2) + 12 (58)for zero-mean processes. For fBm, this is in agreement with (60) below.Multifractal measures such as the MWM signal C(n)[k] are not second-order stationary. Hence,LRD cannot be de�ned through the decay of the auto-covariances. However, alternative fractalproperties, such as the decay of aggregate variances (11) or wavelet coe�cients (13) | which areequivalent to LRD in the presence of second-order stationarity | can still be de�ned and calculated.As a further di�culty, processes obtained from cascades have positive increments Z[k], sothat the above argument using the variances has to be corrected to read 2�2i 2(i�n)(1+T (2)) 'IEhjZ(m)j2i = var(Z(m)) + IEhZ(m)i2 ' var(Z)2i(2H�2) + IE[Z]2, noting that IEhZ(m)i is indepen-dent of the scale m. Since 2H � 2 < 0 we may, thus, still expect the same relation (58), at least inthe limit of very �ne resolution (small m and i).The variance-time plot method above is known to be an unreliable (but simple) estimator of LRDbehavior [8], while the wavelet method of [37] is more robust. Since we are dealing with incrementprocesses, we need to apply (13): var(Wj;k) ' 2�j(2H�1). Recalling that we can obtain T (2) through(55) and (56), we �nd by stationarity var(Wj;k) = 2�j IE�2j jWj;kj2� ' 2�j 2�j(1+ ~T[C](2)) = 2�jT (2),and the same relation (58) follows again in the limit to �ne resolution j !1.Finally, checking the value T (2) predicted by theory in (66), we again �nd agreement with (58).The same is actually true for much larger classes of cascade multifractals.6.5 The multifractal spectrum of fBmWe now show that fBm does not possess a rich multifractal structure. Stationarity of incrementsand self-similarity yield immediately thatIE242n�1Xkn=0 ��nkn [B]�q35 = 2nIE �jB(2�n)jq� = 2n�nqHIE[jB(1)jq] ; (59)and thus8While we may de�ne an MFA for an arbitrary process as in (43), the interpretation in terms of H�older continuityis valid only for increasing processes with positive increments. Moreover, here we neglect the fact that T (2) is de�nedthrough a limit of arbitrary �ne resolutions while LRD is an asymptotic law for large scales. In other words, weassume that scaling is perfect on all relevant scales.



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 23fBm: T (q) = ( qH � 1 for q > �1�1 for q � �1, (60)T �(�) = ( �1 for � < H1 +H � � for � � H. (61)This means that there are no values �(t) < H to be observed. This is somewhat in agreementwith a result of Adler [62] that states that the degree of H�older continuity9 of fBm is H everywherein [0; 1] with probability one. The formula also indicates that �(t) > H will be observed. This isdue to the fact that the increments of fBm are zero-mean Gaussian on all scales, hence there is aconsiderable probability of �nding small increments, i.e. large �nk . In other words, �nkn convergesvery non-uniformly to �(t) = H.In conclusion, the T (q) of fBm is linear, i.e. a degenerate concave function. This captures themonofractal structure of fBm in simple terms. Real-world signals such as network tra�c, however,exhibit truly multifractal behavior, i.e. they possess a strictly concave T (q) (see Figure 9).6.6 The multifractal spectrum of MWMWe begin by stating a corollary to Theorem 9.Corollary 3 Consider an MWM as given in (25) or (38), with multipliers Aj;k symmetrical andidentically distributed within scale and independent along any line of descendants (c.f. (40)). As-sume furthermore that the A(j) converge in distribution as j !1. Then, we have with probabilityone that fG(�) = T �(�) (62)on the entire interval f� : T �(�) > 0g, i.e. on f� = T 0(q) : qT 0(q) > T (q)g, which correspondsto the q-interval bounded by the two values q and q where the tangent at T (q) passes through theorigin.This result follows as a consequence of the work of [22,24,25,32] together with (100) under theadditional assumption that the A(n) are all identically distributed. With Theorem 11 we show inAppendix B how to generalize the argument of [24] to our case.Let the assumptions of the Corollary be in force for the remainder of this section. Then, themultipliers Mnk generating a binomial cascade equivalent to the MWM (c.f. (41)) are independentalong lines of descendants (40). Also, they are identically distributed within scale due to thesymmetry of A(n): Mnkn d=M (n) := 1 +A(n�1)2 : (63)These two facts allow the following calculation, which is the basic step towards calculating T (q).We denote by P0 the sum over all kn = 0; : : : ; 2n � 1 and use again the notation of (22). Then,IE[Sn(q)] = 0X IE��Mnkn�q� � � � IEh�M00�qi = 0X IEh�M (n)�qi � � � IEh�M00�qi= IEh�M00�qi 2n nYi=1 IEh�M (i)�qi : (64)9Since fBm is a not an increasing process, the notion of H�older regularity Ht we introduced in Appendix A.1 hasto replace �(t). A wavelet-based analysis using e� and eS usually reects Adler's result more closely.



24 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999Let us add now the fact that the A(n) (respectively M (n)) converge in distribution to a randomvariable, say A (respectively M = (1 +A)=2). Then, we �ndMWM: T (q) = �1� log2 IE[M q] = q � 1� log2 IE[(1 +A)q]: (65)As an example, consider the �MWM de�ned in Proposition 2 with symmetrical � multipliersA(n). Since the variance of the multipliers converges by (36), so does the only parameter p(n) and,hence, the whole distribution. The limiting random variable A has the standard symmetrical �distribution, supported on [0; 1]. Its parameter is p = (22H�1 � 1)=(2 � 22H�1) for 1=2 � H < 1 by(37). Using the well-known formula for the moments of a � distribution we �nd for q > �p�MWM: T (q) = �1� log2 �(p+ q)�(2p)�(2p+ q)�(p) ; (66)with T (q) = �1 for q � �p. For the point mass (�)-distribution (33) the obvious formula resultsusing (34): �MWM: T (q) = q � 1� log2 hr�(1� c)q + (1 + c)q�+ (1� 2r)i :Having now two parameters available provides more exibility. This will be used in Section 7.1 tomatch not only the energy decay, i.e. T (2) as is done with the �MWM, but also the �rst negativemoment, i.e. T (�1). Fitting negative moments results in better matching of small values. Thesecorrespond to large � (43), i.e. to negative q and the decreasing part of T � (c.f. Figure 9).More generally, in a mixture model the moments are convex combinations of the moments ofthe mixing distributions. Thus, T is readily available for such cases using (65). The additionalparameters introduced in this way allow for even greater exibility.In conclusion, the partition function T (q) displays a diverse array of statistical properties of asignal in a concise way. The parameters of the MWM, however, should not be looked for amongthe T (q) but rather among the parameters of the underlying distributions of the multipliers.7 Application to Network Tra�cLet us now turn to a problem of considerable current practical interest | computer network tra�cmodeling. Data tra�c models are an invaluable asset to the network analyst. In network analysis,model parameters are used to capture and summarize important characteristics of data tra�c.With simple models, the impact of various parameters on network performance can be studiedthrough analytical means [6, 63{67]. In cases where theoretical analysis is intractable, models areroutinely used to synthesize test data traces for simulation purposes [68]. Here, computationale�ciency of the synthesis becomes as important as the accuracy.We begin with some historical remarks. Although LRD models have long been known to char-acterize a variety of phenomena, only recently has LRD been discovered in data network tra�c [5].This has lead to new insights about tra�c and network performance [5], primarily that high levelsof LRD lead to poor network performance and that classical models like Markov and Poisson pro-cesses are too optimistic in their performance predictions. As a consequence, incorporating LRDin tra�c models for network analysis has lead to more realistic results, and self-similar models likefGn have been suggested for modeling LRD tra�c.Norros [66] surveys the theoretical bounds for the queuing performance of self-similar tra�c.Here, the total tra�c arriving up to time t is modeled byZ(t) = �t+pa�BH(t); (67)



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 25where BH is fBm (with Hurst exponent H and var(BH(1)) = 1), and a and � are constants. In otherwords, the incoming tra�c Z(t+ h)� Z(t) is assumed to arrive with a mean rate � superimposedon a colored Gaussian noise (fGn) process. The parameter a controls the overall variance.The successes of self-similar models such as (67) have lain mainly in their ability to captureLRD while permitting tractable theoretical analysis. However, self-similar models like fBm/fGnhave three severe drawbacks: (1) Gaussian marginals, meaning the process must take negativevalues, (2) computational ine�ciency for exact synthesis, (3) degenerate multifractal properties.While the �rst two clearly limit the use of self-similar models for synthesis, it is the object ofongoing research to establish the importance of the third for queuing performance. The MWMexhibits power spectra, marginals, and multifractal behavior consistent with actual tra�c whileproviding an O(N) synthesis algorithm for N -point output traces.In this section, we synthesize network tra�c data by training the MWM on real data. This data-�tting exercise demonstrates the accuracy of the model not only in statistical terms (multifractalproperties) but also through queuing experiments. Though we are not claiming to present a physicalmodel for network tra�c, the close �t of the multiplicative process underlying the MWM to thereal data provides valuable insight into the mechanisms of bu�ering and multiplexing of networktra�c.Interesting quantities for simulation include packet interarrival times, packets-per-time, andbytes-per-time. Packet interarrival times can be converted directly into packets-per-time by binningthe packet arrivals into time bins of the required size, whereas bytes-per-time includes the additionalinformation of packet size. Here, we train on a set of 1=f -like packet interarrival time data, sinceinterarrival times, being continuous-valued, are most natural for the MWM. In addition, analysisof interarrival times avoids the problem of choosing an appropriate time unit as in packets-per-timeand bytes-per-time. However, we could as well apply the MWM to approximate discrete-valuedpacket-per-time or bytes-per-time. For these cases, we could quantize the MWM's continuous-valued output into discrete-valued data or follow the approach of [45].7.1 Synthesis via matching7.1.1 Real dataWe focus on the August 1989 Bellcore Ethernet trace pAug of 106 interarrival times (Figure 2(a)),as measured by Leland et al. [5]. Although slightly dated, this data set provides a well-knownbenchmark useful for examining the fractality and LRD of network tra�c.First, we analyze the properties of the trace. Recognizing its limitations as an LRD estimator,we use the variance-time plot (Figure 7) to obtain a qualitative characterization of the correlationspresent in the data. From the plot, we �nd the trace exhibits LRD with H � 0:79. Since theplot is somewhat \kinked," the trace most likely does not exhibit a strict second-order scaling.As Figure 2 plainly shows, modeling pAug as an fGn process with H = 0:79 and the same meanand variance leads to nearly 30% of the synthesized data being negative. The culprit is the largestandard deviation to mean ratio of 1.8 of pAug. The oft used but ad hoc procedure of settingall negative points to zero would clearly result in a process with very di�erent statistics to thoserequired. In general, fGn models are of limited utility for positive data with small mean and largevariance.Moving beyond second-order statistics, we measure the multifractal properties of pAug. Asdiscussed in Section 6.2 we estimate T (q) as the slope of a linear �t of the log-log plot of thesample moments Sj(q) at resolution 2�j against the scale j (52). In Figure 8(a) the only noticeabledeviation from linearity is at the very �nest resolution of analysis | a fact that is enhanced in
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Figure 7: Variance-time plot of the Bellcore pAug data \�" and one realization of the �MWM synthesis\�". Here m denotes the level of aggregation and Z(m)(n), the aggregated process de�ned through (11).Figure 8(b), where the increments of the log-log plot are displayed. With 16 octaves (5 decades) ofexcellent scaling, we can be con�dent in concluding that pAug is multifractal.10 The only noticeabledeviation from linearity is at the very �nest resolution of analysis. The linearity of the log-log plotscan be more closely veri�ed in Figure 8(b), which displays the increments of the log-log plot fromFigure 8(a).
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Figure 9: Multifractal spectra (51) of the Bellcore pAug data, �MWM synthesis, and a hybrid MWMemploying beta distributions at coarse scales and point masses at �ne scales. The spectra were obtainedthrough the Legendre transform of the scaling of the moments (see Figures 8 and 10). The close match inthe upper left part, which corresponds to q values (=slopes of tangents to the spectrum) between 0 and 2,indicates that the �MWM matches these low (qth) order moments very well. The divergence of the spectraon the right indicates that the chance of observing large � in the �MWM data is somewhat too high. Thisbehavior is improved signi�cantly by adding point mass multipliers in the �ne scales.�(t) = H everywhere [70].7.1.2 Synthetic dataHaving established the LRD and multifractal characteristics of the pAug trace, we will next modelthese properties using the �MWM. To train the �MWM, we use the approach outlined in Section4.6. We choose the number of wavelet scales n = 16 to synthesize data sets of 216 points. Thisallows us to collect multiple realizations of the wavelet coe�cients and root scaling coe�cient,and thus form reliable mean and variance estimates. For the root scaling coe�cient, we use theGaussian assumption discussed in Section 4.4.With trained �MWM in hand, we synthesize 15 length-216 sub-traces and concatenate them toform a trace of approximately length-106, the size of the real data set. We now apply the samebattery of tests to this trace as we applied to the actual Bellcore pAug data. Figure 2(b) showsthat the synthesized data captures much of the gross structure of the Bellcore data at di�erentaggregation levels, including the one-sided marginal density. In addition, the variance-time plotsof Figure 7 depict an excellent match of the correlation structure.11We next measure the multifractal properties of the synthetic trace. >From the linearity of thelog-log plots in Figure 10(a), we see that the synthetic trace exhibits a multifractal scaling, exceptfor q strongly negative and j large. In converting these plots into the multifractal spectrum ofFigure 9, we see that spectrum of the synthesized data closely matches the pAug spectrum for� near one. The close match in the upper left part, which corresponds to q values (=slopes oftangents to the spectrum) between 0 and 2, indicates that the �MWM matches these low (qth)order moments very well. The divergence of the spectra on the right indicates that the chance ofobserving large � in the �MWM data is somewhat too high. Since large � correspond to fast decay,this means that the �MWM trace has values that are too small. In fact, the minimum value of thewavelet-synthesized trace is on the order of 10�12, whereas the minimum of pAug is on the order11We remind the reader that the variance-time plot must be interpreted with care due to the non-stationarity ofthe wavelet-synthesized data.



28 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999of 10�5. This is due to the fact that, unlike the coarser-scale � multipliers Aj;k, the �ne-scale �multipliers have pdfs with signi�cant mass near �1. Clearly, from (25) we see that this results insmall values for the synthesized process C(n)[k]. This may be indicative of di�erent phenomena inthe �ne scales of the real data as compared to the coarse scales.Using � distributions in the coarse scales and point mass distributions in the �ne scales, we canlargely correct this problem, synthesizing data with a minimum value of 10�6 while preserving theother features of the �MWM (see Figure 9). We choose the point mass parameters (see Section4.3.2) to match both the wavelet energy decay and the scaling of the negative �rst moment of thereal data in (29). We do not claim that the point mass multipliers are realistic | using point massmultipliers at all scales results in syntheses that look somewhat arti�cial. Here, we simply illustratethe fact that we can choose the multiplier distributions to better match higher-order or lower-ordermoments of the data.
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Figure 10: (a) Log-log moment scaling and (b) incremental scaling for the �MWM synthesized data. (SeeFigure 8 for more description.) The synthetic data exhibits a linear multifractal scaling, with the exceptionof strongly negative q's and large j.7.2 Queuing behaviorAs a �nal test of the accuracy of the match of the �MWM to the pAug target data, we now comparetheir queuing behaviors. The queuing behavior of tra�c is important because of its inuence onnetwork management algorithms, such as connection admission control, that strive to supportcertain quality of service (QoS) demands [71, 72].The presence of LRD in tra�c has been shown to signi�cantly a�ect queuing performance [65].For stationary tra�c with only short-range dependence (SRD), classical queuing results for Markovmodels show that the tail of the distribution of the queue-length in a single server queue withdeterministic service satis�es Pr[Q > x] ' e��x; (68)where the positive constant � depends on the service rate at the queue and the statistical prop-erties of the arrivals process. Unlike (68), fBm-based models for LRD tra�c exhibit Weibull taildistributions of the form Pr[Q > x] ' e��x2�2H ; (69)
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where H is the Hurst exponent [6, 63, 73]. Clearly, we see from (68) and (69) that the tail queueprobability of self-similar tra�c decays at a much slower rate than that of SRD tra�c. Withthe LRD of Ethernet tra�c being established beyond doubt, it is important for tra�c models toincorporate LRD, without which the prediction of queuing performance can be overly optimistic.However, as mentioned earlier, fGn's Gaussian marginals makes it unsuitable for the pAug dataset; it is meaningless to perform queuing experiments with the data of Figure 2(c).In the simulations that follow, we consider the performance of an in�nite-length single serverqueue with a single trace as input. We assume a constant service rate of 500 packets/sec. Forsimplicity we assume all packets to be of equal size.The ideal experiment comparing the queuing behavior of real world and synthesized traces wouldbe to compute the average tail queue behavior of several realizations of the real pAug process as wellas several realizations of the �MWM. Unfortunately, typically only one realization of the real traceis available. To circumvent this setback, we partition the real pAug trace into 15 sub-traces each oflength 216 packets and assume that each sub-trace is an independent realization of the underlyingreal process. We compare the queuing performance of these pAug sub-traces against 15 synthetictraces obtained from the �MWM in Figure 11. Note the similarly widely varying performance ofboth the real and synthetic traces. This result indicates that we should expect such variations andshould be cautious drawing conclusions from the average tail queue behavior.We next compare the queuing performance of the entire pAug trace with that of 20 traces ofapproximately the same length (106 points) generated using the �MWM (see Figure 12). Thesimulated traces in Figure 12(a) exhibit a wide variation in tail queue behavior. The results ofthe previous experiment indicate that this is to be expected. We also observe that the average tailqueue behavior of the simulated traces matches that of the real trace surprisingly well (see Figure12(b)). However, as the previous experiment suggests, the real data cannot be expected to alwaysexhibit the same queuing behavior as the average of several simulated traces.In summary, these queuing experiments demonstrate that our �MWM synthesized tra�c tracesnot only match real tra�c in terms of its various statistical properties but also in its queuingbehavior.
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Figure 12: Comparison of the queuing behavior of pAug with 20 full-size synthesized traces. Displayedare the tail probabilities of bu�er occupancy vs. bu�er size. In (a) observe the variability of the queueperformance of the synthesized traces. In (b) observe that the average queue performance of simulatedtraces and that of the real trace match closely.7.3 Physical interpretationWe have argued for the use of the MWM for synthesizing network tra�c in terms of statistical prop-erties (see Sections 7.1 and 7.2). The quality of the matching challenges the current understandingof networking and performance analysis by suggesting that some of the mechanisms shaping thetra�c ow might carry an inherent multiplicative structure. Our motivation for providing a pos-sible explanation for the presence of multiplicative mechanisms is twofold. First, we hope thatmultiplicative models will inspire research in networking and trust that they will lead to a deeperunderstanding of the forces shaping tra�c characteristics. Promising steps in this direction havealready been made in [20, 33, 38]. Second, such an explanation will further support the use of theMWM network tra�c synthesizer.It is generally agreed that today's network tra�c is created by a large number of independentindividual sources. A simple but powerful model assumes that these sources switch between twostates, the \ON" state in which they produce tra�c at constant rate and the \OFF" state inwhich they are silent. Aggregating these tra�c loads yields the total tra�c load observed at, say,a gateway. With this model, heavy-tailed ON periods lead to LRD similar to that observed inactual tra�c. Convincing modeling results have made a strong case for this point-of-view [74, 75].However, ON/OFF models are accurate only in the limit of large time scales (seconds and longer),and they do not account for the actual queuing and multiplexing occurring in the network.A complete description of data network tra�c requires understanding of its dynamic natureover not just large but also small time scales (hundreds of milliseconds and shorter). The ow ofpackets over �ne time scales is shaped mainly by the protocols and end-to-end congestion controlmechanisms (e.g., TCP) that regulate the complex interactions between the di�erent connectionson a network. Indeed, it is not hard to see that bu�ering and multiplexing can create bursts, forinstance, when packets arrive at a server at a moderate rate, rest queued up, and then race o� atthe service rate. Since the tra�c rate is strictly positive, this kind of short-term volatility (spikynonGaussian behavior) cannot come from an additive process.The MWM matches this small-scale behavior of tra�c. Rather than modeling the tra�c rateas an additive superposition of components, we model it as a multiplicative partitioning of the rateof tra�c ow. The coarse scaling coe�cient U0;0 provides the mean tra�c rate (or equivalentlyits inverse, the mean interarrival time) and the multiplications by 1�Aj;k at each scale (c.f. (21))provide perturbations in the arrival rates due to the e�ects of network phenomena at di�erent time



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 31scales, such as speed-ups and delays due to tra�c protocols, interference from competing tra�c,and the like.When trained on real network data, the behavior of the multipliers Aj;k changes with scale,with extremely low variance at coarse scales and high variance at �ne scales. Amazingly, this isconsistent with both the small-scale behavior of actual tra�c and the large-scale properties of theON/OFF model. At �ne scales, as we have already seen in Sections 5.2 and 7.1, multiplicativeschemes with large variances produce bursts like those in real data (recall Figure 2). At coarsescales, the scaling coe�cients (which correspond to the arrival times of large amounts of tra�c)involve only a handful of low-variance multipliers Aj;k. From (25) we can write, for example, atthe third-coarsest scale:U2;k fd= 12 U0;0 �1 +A(0)��1 +A(1)� fd� 12 U0;0 �1 +A(0) +A(1)� (70)Thus, for a �xed U0;0 at the coarsest scale, to a �rst-order approximation, the MWM is additiveat the coarse scales provided the random variables A(i) are small in amplitude. Moreover, the A(i)are approximately Gaussian for these low-variance (high-p) symmetric � multipliers [48]. Hence,coarse-resolution MWM outputs will exhibit an additive, Gaussian-like behavior consistent withthat of the previously justi�ed ON/OFF models and notions of client behavior as a superpositionof sources.Of course, this is not a rigorous physical development of how and why this multiplicative pro-cedure takes place in reality. However, our preliminary results are promising and suggest where tolook for multiplicative cascades: on small time scales, most likely in the TCP ow-control layer.8 ConclusionsThe multiplicative wavelet model (MWM) combines the power of multifractals with the e�ciency ofthe wavelet transform in a exible framework natural for characterizing and synthesizing positiveLRD data. As our numerical experiments have shown, the MWM is particularly suited to theanalysis and synthesis of network tra�c loads. In addition, the MWM could �nd application inareas as diverse as �nancial time-series characterization, geophysics (using 2-d and 3-d waveletsand quadtrees and octtrees), and texture modeling. Several extensions to the model hold promise:1. A parametric characterization of the wavelet-domain energy decay (rather than the currentempirical variance measurements) would yield a more parsimonious and robust model.2. The choice of �-distributed wavelet multipliers Aj;k is not essential. As illustrated by our pre-liminary work with point mass distributions, we can use distributions with more parametersto match both wavelet energy decay and the scaling coe�cient moments.3. To model correlations in the wavelet-domain, we can introduce dependencies between thewavelet multipliers (for example, in their signs).4. Instead of tackling the increments process directly, we could use the MWM as a model for anunderlying Poisson intensity process (analogous to the work of [44]). This could be useful for�tting network tra�c packets- or bytes-per-time, which are discrete-valued LRD processes.5. Insights from the multifractal theory can be leveraged into more general (e.g., stationary andnon-dyadic) multiplicative constructions.Clearly we have not exhausted the possibilities of multiplicative multiscale modeling.



32 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999A Key concepts of Multifractal analysisIn this section we will make rigorous the points left vague in Section 6.A.1 IntroductionThe erratic behavior of a continuous process Y (t) at a given time t can be characterized to a �rstapproximation by comparison with an algebraic function. The degree of local H�older regularity Htis the best (largest) h such that there is a polynomial Pt such that jY (s)� Pt(s)j � Cjs� tjh for ssu�ciently close to t. If Pt is a constant, i.e. Pt(s) = Y (t), as is the case with cascades, thenHt = lim inf"!0 1log2(2") log2 supjs�tj<" jY (s)� Y (t)j: (71)Fortunately, we can replace the supremum by Y (t + ") � Y (t � ") for processes with positiveincrements. Furthermore, using the notation of (22), i.e.t 2 [kn2�n; (kn + 1)2�n); (72)we can then simplify by noting that Y ((kn + 2)2�n) � Y ((kn � 1)2�n) � Y (t + ") � Y (t � ") �Y �(kn�2 + 2)2�n+2�� Y �(kn�2 � 1)2�n+2� provided n is chosen such that 2�n+1 � " < 2�n+2. Insummary,12 Ht = lim infn!1 Hnkn (73)Hnkn := � 1n log2 j(�nkn�1 +�nkn +�nkn+1)[Y ]j:Traditional multifractal analysis (MFA) of multiplicative cascades aims to describe the singular-ity structure of processes through the simpler but more restrictive13 exponent �(t) from (43).As mentioned earlier, for fBm we �nd Ht = H for all t almost surely; this process has adegenerate multifractal structure. For the binomial measure, on the other hand, Ht and �(t) willdepend crucially | and discontinuously | on t. To convince yourself, recall the iterative processof Section 5.1 and descend �rst down in the cascade to a point t by following always the smallerof the two multipliers. Then descend by following always the larger one. The decay rate of theincrement Db (38), i.e. �(t), will di�er drastically in the two cases.For a measure constructed using a cascade, i.e. Y = Db, the range of �(t) will always be apositive interval containing the value 1. Values �(t) smaller than 1 correspond to points where Dbis not di�erentiable. If �(t) > 1, on the other hand, then D0b(t) = 0, i.e. Db behaves at t like thefunction x� at x = 0. A typical range of �(t) for a real-world signal might be [0:6; 2] or [0:8; 1:2].The MFA structure can be given either in geometrical or statistical terms. [35,55]. Here, we willbe mainly interested in the statistical description.12For general processes this does not hold. A multifractal analysis (MFA) with this simpli�ed version will resultin a di�erent description of the singularity behavior of the process that can, nevertheless, provide useful information[32, 70]. If a process has both positive and negative increments, then the continuous-time supremum in the originalversion of Ht (71) cannot be estimated numerically. In this case, the wavelet modulus maxima method providesarguably the most accurate information on local H�older regularity [76]. Adapted to detecting singularities of oscillatingfunctions, on the other hand, wavelets have a disadvantage in the MFA of positive increment processes: they are note�cient for detecting large values of � that correspond to more regular parts in the process. This is why we restrictthe discussion to positive increment processes and the simpli�ed version of Ht.13As we note later, replacing H(t) by �(t) does not change the outcome for cascades.



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 33Before going into details let us note a simple fact about the occurrence of �(t) for the determin-istic binomial Db. In this special case, all multipliers Mnkn (see Section 5.1 and Appendix B.1) aredeterministic, i.e. we assume that there are two �xed numbers m0 and m1 that add to 1 and thatMnkn = mk0n�1 almost surely. Referring to Figure 5 a step in the iterative construction amountsnow to splitting the area of a region in the �xed proportions \the m0-th part on the left, the m1-thpart on the right".Db being deterministic, we consider now t to be random in order to apply a limiting theoremfrom probability theory. Recall that (22) uses the binary digits k0i for t (c.f. (72)). Choosing thesedigits to be 0 or 1 with equal probability amounts to picking the point t randomly with a uniformdistribution. The LLN then implies that for almost all t�nkn = � 1n nXi=1 log2mk0i ! IEt[� log2mk0i ]; (74)hence, �(t) = �12 (log2(m0) + log2(m1)) : (75)Note that this limiting value is strictly larger than 1 unless m0 = m1 = 1=2. Consequently, thedeterministic binomial measure has zero derivative at almost all points t. This brings home a pointmade in Section 5.2: the distribution Db(t) = �([0; t]) = Pr[x � t] associated with the binomialmeasure has no density, for if it had one it would have to equal zero. Again in other words, wecannot write Db(t) as R t0 D0b(s) ds, since the latter is zero for all t.Usually, one is happy with an \almost sure" result such as (74). Here, we would like to ask twoadditional questions: (1) can there be points t with �nkn converging to a number di�erent from (75),and (2) if so, what can we say about such points t? Indeed, we �nd immediately that at t = 0 wehave �(0) = log2m0. Actually, we will �nd the same limit at all dyadic points t, since their dyadicexpansion shows only �nitely many 1's. This certainly justi�es our quest.A.2 The Multifractal SpectraA.2.1 Hausdor� spectrum fHIdeally, we would like to quantify the values and frequencies of limiting �(t). In other words, weare interested in the \sizes" of the setsK� = ft : �(t) = �g: (76)This is the geometrical approach to MFA. For fBm, replacing �(t) by the more appropriate Ht, K�is either the whole line (if � = H) or empty. Consequently, fBm is said to be \monofractal", sinceit has only one fractal scaling exponent. The concatenation of K fbm-s Y i with Hurst exponentHi in the interval [i=K; (i + 1)=K[ would form a process with KHi = [i=K; (i + 1)=K[.For more general processes, the sets K� are highly interwoven and each of them may lie denseon the line. Consequently, the right notion of \size" is that of the fractal Hausdor� dimension,which leads us to de�ning the Hausdor� multifractal spectrum:fH(�) := dim(K�): (77)Unfortunately, Hausdor� dimensions are impossible to calculate numerically in any real-world sit-uation, and we have to rely on the multifractal formalism (coming up next) (100) and (104) toestimate fH under certain assumptions.



34 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999For a de�nition of fractal dimensions, see [29, 32, 35]. Here, we only mention that dim(E) isa positive real number, and the larger it is the \larger" the set E. We explain this notion of\largeness" by comparing a plane and a line. Though a plane and a line have integer dimensions,our methods can be generalized to broken, or fractal dimensions. First, note that a randomlyselected probe line in space will most likely intersect a given plane, but not a given line. Forrandom fractals this generalizes to: a random probe fractal will intersect a second given fractal onlyif their fractal dimensions add up at least to the dimension of the embedding space. Second, aplane has more degrees of freedom than a line, i.e. a square can be segmented into � ��2 pieces ofsize �, an interval only into � ��1. A fractal will ideally partition into �� pieces of size � where is its fractal dimension.A.2.2 Large deviation spectrum fGIn practice, measurement of the \burstiness" of a process has to rely on numerically more accessiblemethods and notions than fH. Enter the statistical description of multifractal structure. To thisend we consider a histogram of the �nkn 's taken at some �nite level n. (Recall (74) for a formula of�nkn for the deterministic binomial measure.) The histogram will show a non-trivial distribution ofvalues that increasingly concentrates around the expected value (75) due to the LLN: values otherthan the expected one must occur less and less often.It is here that Large Deviation Principles (LDP) [58, 59] turn out to be invaluable. As a gen-eralization of the Cherno�-Cramer bound [77, Thm. 9.3], which we present below, LDPs suggestthat probabilities of rare events decay exponentially fast. For a sequence of iid random variablesWn with IE[W ] < a and Pr[W > a] 6= 0, set Vn :=W1 + : : :+Wn. Then, we �nd for all q > 0 thatPr [(1=n)Vn � a] = Prh2qVn � 2nqai � IE[2qVn ]2�nqa = �IE[2qW ]2�qa�n : (78)Here we have used the Tschebischev inequality and in the last step the iid property. It follows that(1=n) log2 Pr [(1=n)Vn � a] � infq>0� 1n log2 IE[2qVn ]� qa� = infq>0 �log2 IE[2qW ]� qa� : (79)Theorems on LDPs generalize such results to arbitrary sequences Vn and show when the bound issharp in the limit n!1 [59]. For our purposes, we setVn := log2�nkn [Y ]; (80)yielding �nkn = Vn=n as desired. In the special case of the random binomial or MWM, Vn canindeed be written as a sum as above with Wn = log2Mnkn (c.f. (38) and (74)).It is important not to confuse the randomness relevant for the LDP with the randomness in Y .Here, we explicitly �x one realization (or path) of Y . Then, we consider the location t, encoded bykn, as the only randomness relevant for the LDP. Since kn can take only 2n di�erent values that weassume to be equally likely, probabilities in t are calculated by simple counting.14 As we have justlearned, we can expect an exponential decay of \rare event probabilities" such as (79). In otherwords there is reason to hope that the limiting \rate function" fG we introduced in (46) and calledcoarse grained multifractal spectrum will exist:fG(�) = lim"!0 limn!1 1n log2Nn(�; ") (81)14To avoid confusion, we will write Prt and IEt to designate randomness with respect to the position t and Pr!and IE! to designate randomness with respect to the process Y .



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 35with Nn(�) := 2nPrth�nkn 2 (�� "; � + ")i (82)= #f�nkn 2 (�� "; �+ ")g: (83)(The factor 2n is added for convenience.) This rate function fG is de�ned (provided the limit exists)for every path of Y and is, hence, random, i.e., a function of !.The counting in (83) relates to the notion of dimension: if fG(�) = 1, then all or at least aconsiderable part of the �nkn 's are approximatively equal to �. More precisely, Nn(�) ' 2n. Such isthe case for fBm, with � = H almost surely (see [32]). Furthermore, if a certain constant fractionof �nkn 's equal �, we have fG(�) = 1 almost surely, as is the case for the concatenation of fBm'sdescribed above (see also [70]).Only if certain values of �nkn are considerably more spurious than others will we observe fG(�) <1. To draw again an analogy, let us assume for a moment that t is a vector in 3-d space. Themaximum of fG in this case will be at the expected �-value with fG = 3. If the points t where �nknis approximately equal to a given � build a surface (spurious in 3-d space), then fG(�) = 2 < 3. Ifthey �ll a curve only, then fG(�) = 1. So, there is hope that fG(�) relates to dim(K�). Indeed itcan be shown that [29, 32] fH(�) � fG(�) (84)for every path.A.2.3 Legendre transformIn Large Deviations, the transform that appears on the right side of (79) plays an important rôle.Let g(a) be any function and de�ne its Legendre transform g� byg�(q) := infa2IR (aq � g(a)) : (85)Let us assume �rst that g is concave at a0, by which we mean that there is a linear functions(a) = aq0+r such that g(a) � s(a) with equality in a0 (c.f. Figure 6). This situation is particularlywell-suited for the Legendre transform and allows us to compute g�(q0). Note that there might beseveral q0 meeting the requirements. We claim that g�(q0) = �r. But this follows from the factthat aq0 � g(a) � aq0 � s(a) = �r for all a with equality at a = a0. Moreover, we actually foundthat g�(q0) = a0q0 � g(a0): (86)There is some general wisdom to this: given q, the Legendre transform �nds the best linearfunction s of slope q that lies above the function g. The intercept of s with the ordinate axis is�g�(q).If we assume now that g is concave and in addition di�erentiable at a0, then there can be onlyone linear function s � g with s(a0) = g(a0). We �nd the value of g� at q0 = g0(a0) to be (c.f.(51)): g�(g0(a0)) = a0 g0(a0)� g(a0): (87)For example, the function g(a) = �ja�1j+2 is concave in all points, but it is not di�erentiable ata = 1. Its Legendre transform is easily computed: for �1 � q � 1 we may choose a0 = 1 and obtaing�(q) = q� 2 by (86). For other q we �nd g�(q) = �1 by applying the de�nition. Remarkably, theLegendre transform of g� gives g back. Indeed, infq(qa� g�(q)) = inf�1�q�1(q(a� 1) + 2) = g(a).More generally, we will establish that g�� := (g�)� equals g, for every concave function g.



36 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999To prove this, let us show �rst that g� is a concave function provided g is. Indeed, g�(q) �aq�g(a) for all q and a by the de�nition of g�. Now let us �x a, say, at a0. Then, s(q) = a0q�g(a0)is a linear function that is larger than g� and we have, in the notation of (86), s(q0) = g�(q0). Weconclude that g� is concave in q0. Moreover, we see that g(a0) � a0q� g�(q) (still by the de�nitionof g�), with equality at q0. But this means nothing more than g��(a0) = g(a0). Finally, it is notdi�cult to see that there is an a0 (which may lie at �1) as in (86) for every q0 with g�(q0) 6= �1.Consequently, g� is concave everywhere.We continue by noting that g� is always a concave function. The reason is simple: there is aconcave function g such that its graph is the concave hull of the graph of g. Since g and g have thesame Legendre transform, i.e. g�, the claim holds. However, g being concave, the above argumentshows that applying the Legendre transform to g� will bring us back to g, which is in generaldi�erent from g. In summary:Lemma 4 The Legendre transform g� of any function g is concave. Moreover, g�� = g.Since concave functions are necessarily continuous and almost everywhere di�erentiable, wemight wonder what the edges of g� correspond to. As the example g(a) = �ja � 1j + 2 aboveshows, points of linearity of g (respectively g if g is not concave), correspond to points of non-di�erentiability of g� and vice versa. While this situation holds quite generally, it is instructive toverify it assuming that g is C2 and strictly concave (g00(a0) < 0) at a0: Using the implicit functiontheorem, we �nd indeed that g� is then di�erentiable at q0 = g0(a0) with (g�)0(q0) = a0.A.2.4 Legendre spectrum fLThe spectrum fG, though numerically accessible, is hard to estimate directly on real-world data, inparticular because of the double limit in (81). Here, the Legendre transform in combination with(79) proves useful. Due to the simple distribution of t as used in the LDP, the moment generatingfunction IEh2qVni reduces to a sample moment. Thus, let us set�(q) := � limn!1 1n log2 Sn(q); (88)where Sn(q) = 2nIEth2qVni, i.e. Sn(q) := 2n�1Xkn=0 ��nkn [Y ]�q : (89)Depending on the context, �(q) is called the partition function or the free energy [15,78,79]. Again,we have added a factor 2n for convenience.A closer look at (48) reveals that it actually shows that �(q) � fG�. As a matter of fact, it isproven in [32, 55] thatLemma 5 For every path of Y �(q) = fG�(�) := inf� (q�� fG(�)): (90)As an immediate consequence, the function �(q) is concave and thus continuous and almost every-where di�erentiable.It is instructive to see how the quick and dirty argument (48) can be strengthened to yield alower bound on �(q). Again, our reasoning can be turned into an actual proof [32]. This time, we



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 37will collect the kn with �nkn approximately equal to some given value, say l", for varying l. Assumingthat the range of �(t) is bounded, we can set m := bsup(�(t))="c. Using (81) and observing thatq may be positive or negative, we obtainSn(q) = mXl=0 Xj�nkn�l"j�"=2 ��nkn [Y ]�q � mXl=0 Xl"��nkn�(l+1)" 2�n(l"q�jq"=2j)� mXl=0 2n(fG(l")+�)2�n(l"q�jq"=2j) = 2n(�+jq"=2j) mXl=0 2�n(q(l")�fG(l"))� (m+ 1) 2n(�+jq"=2j) 2�n inf�(q��fG(�)): (91)This shows that �(q) � fG�(q) � � � jq"=2j, and since � > 0 and " > 0 can be made arbitrarilysmall the argument is complete.15The partition function �(q) is clearly easier to estimate than fG, and it depends in a moreregular manner on the data since it involves averages. Consequently, we introduce the Legendremultifractal spectrum: fL(�) := ��(�) = infq2IR (q�� �(q)) : (92)Recall (87) for the computation of ��. Unfortunately, fL may contain less information than fGsince the Legendre back-transform yields onlyfG(�) � fG��(�) = fL(�); (93)where fG�� is the concave hull of fG. Strictly speaking, we have to establish that the limit fGactually exists before making such a statement. A simple application of the LDP Theorem ofG�artner-Ellis [59] makes this rigorous under somewhat more restrictive assumptions (see the fol-lowing theorem which is proven in [32, 55]). Alternatively, we could replace the limn!1 in thede�nitions of � and fG by the mathematically more technical lim supn!1 as it is done in [32, 55].Theorem 6 Assume that �(q) exists and is di�erentiable for all real q. Then, the double limitfG(�) exists for all �, and, moreover fG(�) = fL(�): (94)For fBm we obtain the degenerate case of a concave partition function: �(q) = qH � 1 as wewill see in an instant (98). It is consistent with fH taking only one value fH(H) = 1. For theconcatenation of fBm's as above we �nd �(q) = mink(qHk � 1), which is again consistent withfH(Hk) = 1 [70]. Truly concave behavior of �(q), on the other hand, is found with real datatra�c. As a consequence, there is an entire range of � values present, not just a few. In [80] wedisplay estimations of �(q) for fBm obtained by numerical simulations. Due to errors, the Legendretransforms cannot perfectly match the predicted spectrum consisting of only the points (H; 1) and(1 +H; 0). The accuracy achieved is nevertheless convincing.A.2.5 Deterministic envelopes of spectraOften, we would like to use an analytical approach in order to gain intuition into or an estimateof what fG can be expected to look like on a typical path of Y . To this end, we consider now t as15The argument is not rigorous, since � and " are entangled, i.e. " appears in j�nkn � l"j � "=2 twice, once as theapproximate location of � and once as the error made in this approximation.



38 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999well as Y to be random simultaneously as we apply the LDP. Fubini leads to the \deterministicpartition function" (c.f. (47))T (q) := �1 + limn!1 1�n log2 IE!;t[2qVn ] (95)= limn!1 1�n log2 IE![Sn(q)]: (96)It is not hard to show thatLemma 7 ( [32]) For any random process we have, with probability one,�(q; !) � T (q) for all q with T (q) <1. (97)This is actually enough to determine �(q) for fBm. Indeed, since � is a concave function with�(0) = �1 = T (0), Lemma 7 implies that with probability onefBm: �(q) = qH � 1 for all q > �1. (98)Proof: Let us consider �rst any q with �nite T (q). Given " > 0 choose N such that IE![Sn(q)] �2�n(T (q)�") for all n � N . Then, since lim supan �Pn>N an for positive an,IE!�lim supn!1 2n(T (q)�2")Sn(q)� � IE!24Xn�N 2n(T (q)�2")Sn(q)35 = Xn�N 2n(T (q)�2")IE![Sn(q)]� 1=(1 � 2�"); (99)by the de�nition of T . This allows us to conclude that almost surely lim supn!1 2n(T (q)�2")Sn(q; !) <1. Hence, �(q) � T (q)� 2". This is trivial if T (q) = �1. It is clear that this estimate holds withprobability one simultaneously for all " = 1=m (m 2 IIN) and some countable, dense set of q valueswith T (q) <1. The fact that �(q) is always continuous completes the argument. �Corollary 8 With probability one, for all �fH(�) � fG(�) � fL(�) � T �(�): (100)Equality holds for cascades at certain values of � as the following version of Theorem 11 states:Theorem 9 (Multifractal formalism for the MWM) Consider the MWM as given in (25)or (38), with multipliers Aj;k identically distributed within scale and independent along lines ofdescendants (c.f. (40)). Assume furthermore that the A(j) (or equivalently the M (j)i , i = 0; 1)converge in distribution as j !1. Then, with probability one we have thatfH(�) = fG(�) = fL(�) = T �(�) (101)for any countable set of �'s with T �(�) > 0. Moreover, since fL and T � are continuous, they mustbe equal on the entire interval f� : T �(�) > 0g.Remark: It can be shown that all spectra remain unchanged if �nkn is replaced by Hnkn [32].



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 39A.2.6 Multifractals and Besov spacesBesov spaces are also useful for analyzing the regularity of functions, especially since an elegantdescription of these regularity spaces in terms of wavelet coe�cients has become available. In [81]it is shown that the norm of the Besov space Bsv(Lu) of a process with wavelet coe�cients Wj;k isequivalent to jU0;0j + 0@Xj  Xk 2jsu2�j ���2jWj;k���u!v=u1A1=v : (102)Roughly speaking, this norm measures the smoothness of order s in Lu, where v is an additionalparameter for making �ner distinctions in smoothness.Multifractal analysis (using wavelet coe�cients) can be viewed as determining in which Besovspaces the analyzed process lies. Using a convenient wavelet, de�ne e�(q) as in �(q) but with eSn(q)(see (55)) replacing Sn(q). Then, we �nd easily that the Bsv(Lu) norm of a path of the process is�nite if su < e�(u) + 1 and in�nite if su > e�(u) + 1.For (102) to hold, s must be smaller than the regularity r of the wavelet, i.e. we need r vanishingmoments as well as r continuous derivatives. Given this, Besov norms do not depend on the choiceof the wavelet basis. Since the multifractal analysis using wavelets determines the Besov spaces thatcontain the signal, we conclude that e� (u) will not depend on the choice of the wavelet, providedthe above regularity conditions are met.For an MWM signal C(t) with identically distributed multipliers, we can say more. It can beshown [32] that the wavelet coe�cients Wn;kn of � for any [0; 1]{supported mother wavelet aredistributed as eAn;kn 2n=2Mnkn � � �M1k1 with eAn;kn independent of M iki and distributed as W0;0. So,it follows that (56) holds also in this setting with T given by (65) (see [51] for a similar result ondeterministic cascades). Choosing a compactly supported wavelet with enough regularity we �nd,using Lemma 7, that an MWM signal C(t) with identically distributed multipliers is in Bsv(Lu) forall s < (T (u)� u+ 1)=u almost surely.A.3 Interpretation of multifractal spectraWe collect here as a summary a few basic properties of multifractal spectra that follow directlyfrom the above de�nitions and theorems. Here, Y is an arbitrary increasing process.�(t) > 1: Y di�erentiable at t with derivative 0. In the case of a cascade, the plot Figure 5 is agraph of the approximative derivative of D, i.e. C(n)[k]=2�n = 2�n(�nk�1) � 2�n(��1) ! 0, atresolution 2�n near t.�(t) < 1: These are points where Y is singular and has \instant growth": The plot Figure 5 willshow height C(n)[k]=2�n = 2�n(��1) !1 at resolution 2�n near t.fH(�) = 1: This means that at almost all points �(t) = �. Recall that � > 1 for increasingprocesses such as the binomial distribution function D.fG(�) = 1: This says that for a signi�cant number of k = 0; : : : ; 2n � 1 we see increments of thesize �nk [Y ] = 2�n�nk ' 2�n�.fG(a) < fG(b): The chance to encounter an interval [k2�n; (k+1)2�n] with �nk ' a is signi�cantlysmaller than �nding �nk ' b. These chances are 2n(fG(a)�1) and 2n(fG(b)�1), respectively. Bothare very small regardless, unless b = �.



40 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999\-shape of fG: If this is the case, then the multifractal formalism holds, i.e. fG = ��. This istrue for the MWM and binomial measures. It may fail, however, e.g. for superpositions ofMWM's with di�erent spectra [55].B Proof of the Multifractal Formalism for MWMHere, we outline the proof of the multifractal formalism (Theorem 9) for the MWM model. Wewill consider a slightly more general setting, i.e. we assume only that there are random variablesM (n)0 andM (n)1 such that M (n)0 +M (n)1 = 1 almost surely, and thatMnkn is identically distributed toM (n)k0n�1 for all n and kn. This corresponds to choosing A(n) identically distributed as M (n)0 �M (n)1 .With this, we leave the original setting where A(n) must be symmetric. We do so in order to �rststudy the deterministic case and acquaint ourselves with the methods. In the deterministic case,the requirement of symmetry would force all A(n) to be zero.A closer look at (64) yields immediately:Lemma 10 Consider an MWM as given in (25) or (38), with multipliers Aj;k identically dis-tributed within scale and independent along lines of descendants (c.f. (40) and (63)), but not nec-essarily symmetric. Then,T (q) = � limn!1 1n nXi=0 log2 IE!h(M (i)0 )q + (M (i)1 )qi (103)provided the limit exists. We set T (q) = �1 if IE!h(M (i)0 )q + (M (i)1 )qi =1 for large i.We aim to establish the following:Theorem 11 Let the assumptions of Lemma 10 be in force. In addition, assume that the multi-pliers M (n) converge in a very weak sense: we require the limit (103) to exist for all q. Then, forany � with T �(�) > 0 dim(K�) = fG(�) = ��(�) = T �(�) (104)almost surely. For any other �, the set K� is empty and fG(�) = �1 almost surely.With (100), we only need to show that T �(�) � dim(K�). We will start by giving the basicargument for a deterministic binomial cascade and show �rst how to generalize this result to acascade with multipliers whose distributions vary with scale, but converge as j ! 1 . Then, wewill outline the method of Falconer [24] that generalizes the basic argument to the random caseand explain how to adapt it to the case of variable multipliers. As will be apparent, we only needconvergence of the multipliers in a mean sense, as in (103). However, our generalization applies toarbitrary \statistically self-similar" measures as introduced in [24], provided we have convergencein distribution.B.1 Deterministic cascadeIn this section, we will assume that the binomial measure � (recall Section 5.1) was constructedvia a deterministic cascade, i.e. there are two positive numbers m0 and m1 with m0 +m1 = 1 andM00 = 1, Mnkn = mk0n�1 for all n almost surely.



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 41Consider a more careful look into the Large Deviation result for this case. The LLN, as we haveseen in (74), tells us that �(t) = � := �(1=2) log2(m0m1) for Lebesgue-almost all t. In other words,K� is a set of positive length. Therefore, dim(K�) = 1: (105)This implies with (100) that the peaks of the histograms (82) will be close to �. To obtaininformation about other dim(K�) and other parts of the histograms, we need to have a way ofchoosing intervals (or points t) where the \unusual" happens, i.e. where �nkn is \far" from � (c.f.(43) and (74)).This we will achieve through a \change of probability", meaning that the points t are chosenrandomly according to a law �q that insures the convergence of �nkn towards some value aq. Thisdistribution �q is de�ned in the same way as � but with probabilitiesm0 := mq02T andm1 := mq12T .Note that m0 +m1 = 1 due to (103), i.e., T (q) = � log2 (mq0 +mq1).The key observation is that �q(Inkn) = mk0n�1 mk0n�2 � � �mk00 is the �q-probability that a �q-random point t lies in the interval Inkn = [kn2�n; (kn + 1)2�n). (Recall that kn2�n =Pn�1i=0 k0i2�1�ifrom (22).) In other words, for any i the �q-probability to observe the dyadic digit k0i = j is mj .Applying now the LLN to �q yields�nkn = � 1n log2 �(Inkn) = � 1n log2 �mk0n�1 mk0n�2 � � �mk00�! IE�q [� log2(mk00)] = � 1Xi=0mi log2mi = T 0(q): (106)In other words, for the points picked randomly with distribution �q, the �nkn converge (almostsurely) to aq := T 0(q). Thus these points all lie inKaq := ft : �(t) := limn �nkn = aqg: (107)To determine the dimension of K� let us note that for the same points t in K� we have� 1n log2 �q(Inkn) = � 1n log2 �mk0n�1 �mk0n�2 � � �mk00� ! qaq � T (q) = T �(aq); (108)using mi := mqi 2T . This result is helpful in two ways. First, it gives an intuitive proof of thetheorem, or at least one for fG(�) = T �(�). Indeed, the following very rough estimation (which canbe made precise along the lines of [29, p. 137]) yields the number of intervals that have �(Inkn) ' aq.These intervals are the ones contributing the bulk probability to �q. Using (108),1 ' X�(I(n)k )'aq �q�I(n)k � ' #nk : ��I(n)k � ' aqo 2�nT �(aq): (109)Thus, the number of such intervals is approximately 2nT �(aq); in other words fG(�) = T �(�).Second, (108) allows us the estimate dim(K�) � T �(�) using [35, Prop. 4.9]. Intuitively, we canthink of �q as generalizing d-dimensional volume, since it scales in the right way: if a subset E ofK� is shrunk by a factor r then its �q-measure multiplies by rT � . If T � was an integer d this wouldbe exactly the de�nition of d-dimensional volume. Now a planar object in space has in�nite 1-dvolume (length), zero 3-d volume, but �nite, positive 2-d volume (area); its dimension is 2, afterall. Generalizing, we say that K� has at least dimension T �(�) since �q(K�) = 1 is positive, i.e.dim(K�) � T �(�). A complete argument is given in [23, 55].



42 see: IEEE Transactions on Information Theory, Vol. 45, NO. 3, April 1999B.2 Deterministic cascade with variable multipliersLet us now generalize � slightly by allowing the almost sure multipliers mi to depend on scale:M (n)i = m(n)i for all n almost surely, where m(n)0 +m(n)1 = 1. Let us assume, however, that the m(n)iconverge, say to mi. Then, using (103)T (q) = limn!1 �1n nXi=1 log2�(m(i)0 )q + (m(i)1 )q� = � log2 ((m0)q + (m1)q) ; (110)and we obtain the same formula as in the previous section.Applying now the Strong LLN to the same auxiliary measures �q as before we �ndPni=1 log2m(i)k0i�1 � IE�q Pni=1 log2m(i)k0i�1n ! 0 (111)for �q almost all points. ButIE�q Pni=1 log2m(i)k0i�1n = Pni=1 �m0 log2m(i)0 +m1 log2m(i)1 �n ! m0 log2m0 +m1 log2m1; (112)whence we obtain �nkn ! aq �q-almost surely, exactly as before. In summary, we have againT �(�) � dim(K�).B.3 Random cascadesLet us turn �nally to the case of random multipliers. For a start, we assume the same distributionon all scales, i.e. all M (n)i (n 2 IIN) are distributed as some Mi, where M0 +M1 = 1 almost surely.Such cascades have been termed \conservative" by Mandelbrot [53] due to the conservation ofmass in every step. Subsequent mathematical studies on cascades considered the case of indepen-dentMi with IE[M0+M1] = 1 [22]. These results have been generalized to conservative cascades [54]and [52], and to more general invariant measures [24{26].Here, we present the argument of Falconer [24]. Essentially, there are two di�culties to dealwith. First, the auxiliary measures �q are now random, and we have to ensure their existence.Second, as the multipliers for each realization will have di�erent values from scale to scale (thoughdrawn randomly with equal distribution), not even the strong LLN helps here and we have to prove�q(K�) = 1 directly.To guarantee the convergence of the construction of �q, we use a martingale argument. LetMnkn := (Mnkn)q2n : (113)Since the Mnkn are distributed as M (n)k0n�1 we have Mnkn d= (M (n)k0n�1)q2n , which we abbreviate byM (n)k0n�1 . Thereby, n(q) is chosen such that IEhM (n)0 +M (n)1 i = 1. We de�ne �nq as�nq (Inkn) :=Mnkn Mn�1kn�1 � � �M1k1 : (114)Now keeping kn �xed, we write Inkn as a union of smaller dyadic intervals Im+1km+1 , where m > n andwhere km+1 runs over 2m+1�nkn; : : : ; 2m+1�n(kn + 1)� 1, we obtainIE!h�m+1q (Inkn)j�mq i = mXi=n Xk0i=0;1 IE!h�m+1q (Im+1km+1)j�mq i



Riedi et al.: Multifractal Wavelet Model with Application to Network Traffic 43= mXi=n Xk0i=0;1 IE!hMm+1km+1 Mmkm � � �M1k1 j�mq i= mXi=n Xk0i=0;1 IE!hMm+1km+1i Mmkm � � �M1k1= m�1Xi=n Xk0i=0;1 IE!hM (m+1)0 +M (m+1)1 i Mmkm � � �M1k1= m�1Xi=n Xk0i=0;1Mmkm � � �M1k1 = �mq (Inkn): (115)This shows that �mq (Inkn), m 2 IIN, forms a martingale and, thus converges. The limit is denoted by�q(Inkn) and de�nes a true measure as we let n and kn vary.In our situation, all n(q) are equal to T (q) since the distributions of the multipliers do notdepend on scale. However, as presented here, it becomes clear that the martingale constructionholds also for variable multipliers. Furthermore, it is indeed easy to see that under the assumptionof Theorem 11, the n converge to T . This knowledge is enough to generalize the proof of [24] toour case.Falconer's proof applies to general random measures that are statistically self-similar [24], i.e.where the multipliers of \mass" as well as \geometry" are random. It is notable that the general-ization indicated above works also in this case, i.e. when the distributions are allowed to dependon scale. However, a slightly stronger assumption has to be imposed: we require that these multi-pliers converge in distribution. In the case of a binomial cascade, the geometry is deterministic byde�nition. This is why the weaker condition (103) is enough here.Finally, for simplicity we have not bothered with the fact that [24] assumes that the multipliersare bounded away from zero. In order to make the proof complete for arbitrary MWM processes,where the multipliers may be arbitrarily small, the more involved approach of [56] needs to betaken. This is, however, certainly beyond the scope of this paper.AcknowledgmentsThe authors give special thanks to Walter Willinger (AT&T) and Edward Knightly (Rice) forenlightening discussions on issues related to Internet tra�c. Rudolf Riedi would like to extend hisgratitude to Fabrice Clerot and CNET 95 8B 069, France for �nancial support that enabled himto make �rst contact with the exciting �eld of networking. Finally, thanks to Ramesh Neelamaniand Justin Romberg (Rice) for their detailed reading of the �nal manuscript.References[1] J. Feder, Fractals. New York, Plenum Press, 1989.[2] D. Cox, \Long-range dependence: A review," Statistics: An Appraisal, pp. 55{74, 1984.[3] A. E. Jacquin, \Fractal image coding: A review," Proc. of IEEE, vol. 81, pp. 1451{1465, Oct. 1993.[4] T. Lundahl, W. Ohley, S. Kay, and R. Si�ert, \Fractional Brownian motion: A maximum likelihoodestimator and its application to image texture," IEEE Trans. on Medical Imaging, vol. 5, pp. 152{161,Sep. 1986.
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