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Abstract

Rate-distortion (R-D) models are functions that describe the relationship between the bitrate and

expected level of distortion in the reconstructed video stream. R-D models enable optimization of the

received video quality in different network conditions. Several R-D models have been proposed for,

the increasingly becoming popular, fine-grained scalable video sequences. However, the models’ relative

performance has not been thoroughly analyzed. Moreover, the time complexity of each model is not

known, nor is the range of bitrates in which the model produces valid results. This lack of quantitative

performance analysis makes it difficult to select the model that best-suits a target streaming system. In

this paper, we classify, analyze, and rigorously evaluate all R-D models proposed for FGS coders in

the literature. We classify R-D models into three categories: analytic, empirical, and semi-analytic. We

describe the characteristics of each category. We analyze the R-D models by following their mathematical

derivations, scrutinizing the assumptions made, and explaining when the assumptions fail and why. In

addition, we implement all R-D models, a total of eight, and evaluate them using a diverse set of video

sequences. In our evaluation, we consider various source characteristics, diverse channel conditions,

different encoding/decoding parameters, different frametypes, and several performance metrics including

accuracy, range of applicability, and time complexity of each model. We also present clear systematic

ways (pseudo codes) for constructing various R-D models from a given video sequence. Based on our
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experimental results, we present a justified list of recommendations on selecting the best R-D models

for video-on-demand, video conferencing, real-time, and peer-to-peer streaming systems.

I. INTRODUCTION

Video streaming on the Internet is increasingly getting very popular. The best-effort service offered

by the Internet, however, poses unique challenges for high-quality video streaming. These challenges

include heterogeneity and bandwidth variability in network channels between streaming servers and

clients. These challenges require streaming systems to support bitrate scalability and error resiliency.

Traditional streaming systems partially cope with these challenges using either multi-layer or multi-

description encoding of streams. These solutions, however, provide limited (coarse-grain) rate scalability:

clients receiving incomplete layers or descriptions cannot use them to enhance display quality. These

solutions also suffer from poor error resiliency, because the loss or corruption of a few bits render the

entire layer useless.

In contrast to traditional multi-layer video coding, fine granularity scalability (FGS) coding has been

proposed to provide finer bitrate scalability and better error resiliency [1], [2]. An FGS encoder compresses

video data into two layers: a base layer which provides basicquality, and a single enhancement layer that

adds incremental quality refinements proportional to the number of bits received. Arbitrary truncation

(at the bit level) of the enhancement layer to achieve a target bitrate is possible, and more importantly,

it does not require complex or resource-intensive operations from the streaming servers or their proxy

caches. This in turn enables streaming servers to scale to larger and more heterogeneous sets of clients.

Given the flexibility of controlling the bitrate provided byFGS encoders and the constraints on and the

variability of the channel bandwidth, researchers seek to optimize the quality of received video streams.

A common method in the literature to achieve such quality-optimized systems is through the use of

rate-distortion (R-D) models. R-D models are functions that describe the relationship between the bitrate

and expected level of distortion in the reconstructed videostream. Knowing the R-D models enables us,

for example, to determine the required bitrate to achieve a target quality, to optimally allocate a given

bandwidth among frames, and to prioritize bits within the same frame. Clearly, the accuracy of the R-D

models directly impacts the performance of streaming systems using them. In addition, the time cost of

constructing various R-D models for a given sequence may prefer, or even dictate, a certain model over

others. For example, in real-time streaming systems, building an R-D model should be fast enough to

cope with the timing constraints of the video stream.
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Due to the increasing importance and adoption of FGS coding systems, several studies have proposed

R-D models for them [3]–[6]. Each of these studies conductedlimited performance evaluation, just enough

to show the merits of the proposed model. The relative performance of different R-D models has not yet

been thoroughly analyzed. Moreover, the time complexity ofeach model is not known, nor is the range

of bitrates in which the model produces valid results. In addition, previous studies do not provide enough

specifications to enable implementing and using the proposed R-D models. Finally, the importance of R-D

models stems from their usefulness for different streamingsystems. Because of the lack of quantitative

performance analysis of different R-D models, it is currently difficult to select the model that best-suits

a target streaming system.

In this paper, we classify, analyze, and rigorously evaluate all R-D models proposed for FGS coders

that we are aware of. We classify R-D models into three categories: analytic, empirical, and semi-analytic.

Analytic models abstract the characteristics of an input video sequence by the probability distribution

of its DCT coefficients. This distribution is then used in mathematical equations that describe the

encoding/decoding processes. To derive the final R-D equation, typically several simplifying assumptions

are made, which sometimes compromise the accuracy of the analytic models. Empirical R-D models

directly measure the actual distortion by decoding the video sequence at many sampling bitrates. We

call the third category semi-analytic models because they are inspired by analytic models, but they do

not use mathematical derivations to develop R-D models. Rather, each semi-analytic model proposes a

parametrized function that is thought to approximate the actual R-D function. The parametrized function

takes the shape of an analytically-derived function, but ina much simpler form. The parameters of the

function are estimated using curve-fitting from a few actualrate-distortion data points.

We analyze the R-D models by following their mathematical derivations, scrutinizing the assumptions

made, and explaining when the assumptions fail and why. In addition, we implement all R-D models,

a total of eight, and evaluate them using a large and diverse set of carefully-chosen video sequences.

In our evaluation, we consider various source characteristics, diverse channel conditions, different en-

coding/decoding parameters, different frame types, and several performance metrics including accuracy,

range of applicability, and time complexity of each model. We also present clear systematic ways (pseudo

codes) for constructing various R-D models from a given video sequence. Finally, our experimental results

enable us to provide guidelines on selecting the most suitable R-D model for a target streaming system.

We present a justified list of recommendations on choosing the best R-D models for video-on-demand,

video conferencing, real-time, and peer-to-peer streaming systems.

The rest of this paper is organized as follows. In Section II,we review previous works on R-D modeling.
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In Section III, we provide a brief background on video codingsystems, reviewing the main concepts

of non-scalable, layered, and fine grained scalable coders.We also describe how distortion is measured,

and provide an overview on how analytic rate-distortion models are derived. Section IV presents and

analyzes various analytic R-D models, and Section V describes empirical and semi-analytic models. Our

evaluation study is presented in Section VI. We conclude thepaper in Section VII, where we also present

a list of recommendations on choosing the best R-D model for atarget streaming system.

II. RELATED WORK

Many R-D models have been proposed for nonscalable and layered coders. The pioneering work by

Hang and Chen [7] analyzes a simple coder that consists of a uniform quantizer followed by an ideal

entropy coder. The authors propose a simple analytic R-D model, and a parameterized R-D model that

considers some characteristics of real coders. Although these model provide useful theoretical insights,

the experimental study in [8] indicates that they are not very accurate. More recent R-D models use

refinements based on observations from actual coders. For instance, theρ-domain model [9], [10] leverages

the high correlation between bitrates and percentage of nonzero-quantized coefficients. Theρ-domain

model calculates distortion directly from raw DCT coefficients without constructing any distortion-

quantization relationship.

To achieve higher accuracy, empirical R-D models have been proposed, e.g., in [11], [12], and [8]. In

[11], a rate-quantization model is proposed asR(∆) = α + (β/∆γ), whereα, β, andγ are estimated

using actual measurements. In [8], a piecewise cubic R-D model is proposed. The R-D model in [12]

utilizes the high correlation of R-D curves among consecutive frames by using the quadratic relationship:

R(D) = aD−1 + bD−2, wherea andb are estimated using empirical samples from previous frames.

All of the above models were proposed for nonscalable and layered coders that are quite different

from the recent FGS coders. Various studies have shown that these models are not directly applicable to

FGS coders. For example, [3] investigates the accuracy of the uniform quantization model of [7] and the

quadratic model of [12] when applied to FGS-encoded sequences. The experiments indicate that these

two models are not applicable to FGS coders. In addition, Zhang et al. [13] experimentally show that

the piecewise cubic model is inaccurate for FGS coders. Furthermore, because theρ-domain model has

no distortion-quantization model, applyingρ-domain model to FGS coders requires bitplane truncations

and direct distortion computations. This process is similar to pure empirical approaches, which has high

computational complexity. Therefore, theρ-domain model may not be applicable to FGS coders.

Recently several studies have proposed R-D models for FGS coders. Most of these models are inspired
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by the R-D models of nonscalable and layered coders described above. For example, the square root model

[3] for FGS coders is a generalization of the R-D model in [7].The linear rate-quantization function

purposed in theρ-domain model [10] is employed in the FGS logarithm model [4]. The piecewise cubic

model [8] is transformed into the FGS piecewise linear model[13].

To the best of our knowledge, the performance and complexityof FGS R-D models have not been

rigorously studied before. Only limited comparisons among some of the models were conducted. In

[3], [4], the authors compared their new R-D models against nonscalable and layered R-D models for

accuracy. They analyzed four sequences that are encoded with fixed coding parameters. More importantly,

the comparison was conducted only at bitplane boundaries. Since FGS-encoded streams can be truncated

at arbitrary bit positions, the accuracy of the R-D models across all bitrates should be considered. In

[5], the presented model was not compared against other models. Instead, different curve fitting schemes

of the proposed model were compared. Similarly, the study in[13] only compared two alternatives:

piecewise linear and piecewise exponential models.

We believe that our comparative study is rigorous because: (i) We compare the FGS R-D models

against each other; (ii) We use a rich set of performance metrics for accuracy, applicable bitrate range,

and time complexity; (iii) We choose wide ranges of samplingbitrates that match common usage patterns

of various streaming applications; and (iv) We use a diverseset of video sequences encoded with various

parameters.

III. B ACKGROUND

In this section, we provide a brief background on video coding systems, reviewing the main concepts

of non-scalable, layered, and fine grained scalable coders.We also describe how distortion is measured,

and provide an overview on how analytic rate-distortion models are derived.

A. Non-scalable and Layered Coding Systems

In video coding, each frame is first divided into non-overlapping blocks. These blocks are then

passed through a transformer for energy concentration and coefficient de-correlation. Energy concentration

reduces the number of coefficients, which leads to a higher compression rate. The coefficient de-correlation

saves resources by allowing processing of coefficients one-by-one, i.e., scalar quantization, without much

coding efficiency penalty. The coefficients are then quantized, such that a continuous set of inputs can be

represented by a finite set of discrete values. The main purpose of quantization is to reduce unnecessary

details. A quantizer is defined with its quantization bins and corresponding reconstruction values. At the
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encoder side, inputs falling within the range of a quantization bin are mapped to the same quantization

index of that bin. The quantization index is a small natural number that is sent through a communication

channel to the decoder. At the decoder side, each quantization index is mapped back to the reconstruction

value that corresponds to that index. A quantizer with fixed bin size is called a uniform quantizer, where

the bin size is called the quantization step. In uniform quantizers, larger quantization steps mean higher

compression rates and more distortion. Most video coding standards employ a quantization parameter to

scale the bin size, which is typically proportional to the quantization step.

Non-scalable coding systems optimize coded streams at a single bitrate. This implies that clients have

to meet a minimum bandwidth requirement to receive and decode the stream. Meanwhile, clients with

higher bandwidths cannot get better quality from the coded bitstream. To address this issue, layered

bitrate scalable coding systems have been proposed. In layered scalable coding systems, data is divided

into a base layer to provide the basic decoded output, and oneor more enhancement layers to provide

quality refinements. Receivers have the flexibility to subscribe and process as many enhancement layers

as they wish to make use of the additional bandwidth they might have.

Layered scalability can be realized by different means [14,Section 11.1]. For instance, we can code the

base layer at a lower frame rate, and incrementally put more uncoded frames into successive enhancement

layers to achieve temporal scalability. Signal-to-Noise (SNR) scalability is another example, where each

enhancement layer uses a finer (smaller) quantization parameter to encode the quantization error of

previous layers. These scalable coders can simultaneouslydeliver video streams at more than one bitrates.

Layered coding systems are usually called coarse-grained scalable coding systems, because an enhance-

ment layer is not decodable unless all bits in it are received. In addition, number of layers is typically

very small because of coding complexities and layering overhead. Therefore, layered scalable coding

systems provide limited flexibility for streaming applications.

B. Fine Granularity Coding Systems

Video streaming over a dynamic and diverse environment likethe Internet requires greater flexibility

than that is provided by layered coding systems. Therefore,fine granularity scalability (FGS) has been

designed to cover a wide range of bitrates at fine (bit level) steps. An FGS coding system encodes the

video into two layers: a base layer and an enhancement layer.The base layer supports a single bitrate

that delivers the basic video quality. The enhancement layer improves upon the quality of the base layer

with a gain that is proportional to the number ofbits received.

An FGS coding system may, in general, adopt any transform coders for its base layer and any FGS
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technique for its enhancement layer. Because of its simplicity and good coding efficiency [1], [2], the

bitplane coding defined in the MPEG-4 standard is the most recognized FGS technique nowadays. The

basic idea of bitplane coding is to represent DCT coefficients as binary digits. Binary digits at the same

significant position form a bitplane. Bitplanes are orderedby their significance, where a more significant

bitplane contains more information per bit. Losing a bit in ahigher significant bitplane results in a larger

distortion than losing a bit in a lower significant bitplane.Each bitplane is separately run-length coded

using the symbol format (RUN, LAST). These symbols are then coded by a variable length coder (VLC)

into a bitstream [15].

To illustrate how bitplane coding works, we present a simpleexample. This example also draws

analogies between bitplane coding and uniform quantization. Both techniques are used to meet resource

constraints by dropping less important details.

In bitplane coding, each coefficient is coded individually,therefore, we concentrate on a single co-

efficient for simplicity. Table I shows that we needZ = 4 bitplanes to code an original coefficient of

value15 (0x0F) in its binary format. Suppose the FGS decoder decodesz ≤ Z bitplanes. For example,

if z = 2, the decoder decodes the first two significant bitplanes, andthe reconstructed level is12 (0x0C)

instead of15. Clearly, the reconstruction level is a function ofz: We get no information ifz = 0; and

we get a perfect reconstruction ifz = Z.

Notice that bitplane coding is essentially a quantizer witha uniform quantization step:∆(z) = 2(Z−z)

(see the last two rows of Table I). This is because the information in the last(Z − z) bitplanes is not

seen by the decoder, as if this information were lost during quantization with a step of2(Z−z). We also

observe that the reconstruction levels are defined by masking out the last(Z − z) bitplanes. Hence, we

can write the reconstruction level of an input coefficientx as:

L(x) =











⌊x/∆⌋ × ∆, x ≥ 0;

⌈x/∆⌉ × ∆, x < 0,
(1)

where∆ is the quantization step.

FGS coding provides three major advantages to streaming applications: (1) better support for hetero-

geneous environments through bit-level scalability; (2) better error resiliency because partially corrupted

bitstreams can be decoded; and (3) better streaming server scalability due to the separation of encoding

and streaming processes.

To avoid propagating corrupted information to other frames, an FGS coder does not use enhancement

layer refinements for motion compensations. While this approach provides extra error resiliency, motion
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TABLE I

BITPLANE CODING EXAMPLE .

Original Reconstructed

DCT Coefficient 0x0F 0x00 0x08 0x0C 0x0E 0x0F

Bp #1 1 0 1 1 1 1

Bp #2 1 0 0 1 1 1

Bp #3 1 0 0 0 1 1

Bp #4 1 0 0 0 0 1

Quantization step, ∆ 2
4

2
3

2
2

2
1

2
0

#decoded bitplanes,z 0 1 2 3 4

estimating using the base layer reconstruction produces higher errors thus negatively impacts the coding

efficiency. Progressive fine granularity scalability (PFGS) has been proposed for better coding efficiency

by utilizing part of the enhancement layer for motion compensation [16].

Researchers have noticed the low coding efficiency in the less significant bitplanes. This can be

explained by the uniformly distributed run-length symbolsfound in them. Several solutions have been

proposed, for example, [17] proposes to divide bits into twogroups: the significant bits and refinement

bits. The former group is coded with run-length and entropy coders, in contrast, the latter group is coded

with only entropy coder. A 0.25 dB Peak Signal-to-Noise ration improvement is reported by skipping

the run-length coding in the group of refinement bits. Based on this idea, Chao et al. proposed a three

group approach [18].

C. Measuring Distortion and Rate-Distortion (R-D) Models

In the literature, distortion is commonly measured in termsof the mean square error (MSE) between

the luminance values of pixels in the original and reconstructed frames. Chrominance components are

usually ignored, because the human visual system is less sensitive to them compared to the luminance

components, and they only occupy about 10% of the bitrate [19]. A related quality measure is the Peak

Signal-to-Noise Ratio (PSNR), which is given by: PSNR= 10 log10
2552

MSE dB. PSNR is used in video

quality comparison.

Distortion is clearly related to the quantization step∆, because reconstruction levels depend on∆

according to (1). In addition, in the previous section we established the similarity between uniform

quantization in traditional coding and bitplane coding. Hence, following [7], we can write the distortion
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(in MSE) as:

D(∆) = 2

N
∑

i=0

∫ (i+1)∆

i∆
f(x)(x − i∆)2dx, (2)

wheref(x) is a symmetric probability density function describing thedistribution of the DCT coefficients.

Intuitively, the above equation can be understood as follows. The integral computes the distortion in a

given quantization bin. Sincei∆ is the reconstruction level for any pointx within the range of the[i∆,

(i + 1)∆] bin, (x− i∆)2 represents the square of the error that occurs if a DCT coefficient takes on the

valuex. The probability that a coefficient takes on the valuex is described byf(x). Hence, multiplying

(x− i∆)2 by f(x) and integrating over the range of a bin yield the distortion (in MSE) in that bin. The

summation aggregates the distortion from all bins. Notice that the summation iterates only over one-half

of the total quantization bins, i.e., overN out of the2N bins. This is because of the symmetry off(x).

We call (2) the basic distortion-quantization (D-Q) function, because: (i) it relates the quantization step

with the expected distortion, and (ii) it is typically the start point for developing analytic rate-distortion

models.

Rate-distortion (R-D) models are functions that predict the expected distortion at a given bitrate. This

is important for streaming applications that strive to optimize rendered quality in environments where

channel conditions vary dynamically. R-D models are derived in three steps. First, a probability density

function f(x) is assumed for the distribution of DCT coefficients. This density function is called the

source model. The assumed density function is then substituted in (2), which yields—after approximation

and manipulation—the D-Q function of the model. The second step in deriving R-D models is to

derive a relationship between the bitrate and the quantization step. This is based on insights from the

encoding/decoding processes. This relationship is calledthe R-Q function. Finally, the D-Q and R-Q

functions are solved together to obtain the R-D model. We present and evaluate several R-D models in

the next three Sections.

IV. A NALYTIC RATE-DISTORTION MODELS

Rate-distortion (R-D) models are functions that describe the relationship between bitrate and expected

level of distortion in a reconstructed video stream. In thissection, we present three analytic R-D models

that are explicitly designed for the FGS enhancement layer.For each analytic model, we present the

adopted source model. Then, we derive the R-D model in three steps: (i) we derive a distortion-

quantization (D-Q) function, which relates the quantization step with the expected distortion; (ii) we derive

a rate-quantization (R-Q) function, which relates the quantization step with the bitrate of the resulting
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bitstream; and (iii) we solve the D-Q and R-Q functions together either analytically or numerically to

obtain the R-D function. Finally, we present our own implementation of each model. In Section VI, we

experimentally evaluate and compare these R-D models.

A. Square Root Model

The square root model assumes that DCT coefficients follow a two-component Laplacian mixture

(LM) distribution [3]. A Laplacian mixture function is a linear combination of several Laplacian density

functions. A two-component Laplacian mixture function is given as:fLM (x) = p1
λ1

2 e−λ1|x|+p2
λ2

2 e−λ2|x|,

wherep1, p2 andλ1, λ2 are parameters that need to be estimated. Like other finite mixture distributions,

the parameters of Laplacian mixture are not easily estimated using log-likelihood functions. Instead,

researchers adopt numerical methods such as the expectation-maximization (EM) method [20, Section

8.4]. EM methods are widely used for: (1) incomplete observations, and (2) finite mixture models. We

have designed and implemented an EM estimator based on the multi-dimensional estimator for Laplacian

mixture distributions proposed in [21]. The details of thisestimator are given in [22].

To derive a D-Q function, the square root model simplifies thebasic D-Q function in (2) using thehigh-

resolution hypothesis. The high-resolution hypothesis states that if bin sizes are adequately small relative

to the variation rate of the density function, the density function—in each bin—can be approximated by

a uniform density [23]. This hypothesis leads to a new D-Q function:

D(∆) = 2
N

∑

m=0

(m+1)∆−1
∑

n=m∆

(n − m∆)2fLM (n). (3)

Unlike (2), the D-Q function in (3) uses a series of sub-bins to approximate the integral, and it assumes

a constant density function in each sub-bin. After substituting the LM source model, we get:

D(∆) =
p1

(e−λ1∆ − 1)

(

e−λ1(∆−1)[(∆ − 1 +
1

λ1
)2 +

1

λ1
2 ] − 2

λ1
2

)

+

p2

(e−λ2∆ − 1)

(

e−λ2(∆−1)[(∆ − 1 +
1

λ2
)2 +

1

λ2
2 ] − 2

λ2
2

)

, (4)

wherep1, p2 andλ1, λ2 are Laplacian mixture parameters.

We make two observations on this D-Q function. First, the high-resolution hypothesis introduces higher

approximation errors when the variation rate of the densityfunction is large. During our experiments

(Section VI), we observed that the DCT density function has high variability in two cases: (i) when

the base layer is encoded at high bitrate, and (ii) when the video sequence has low temporal and spatial

complexity. In both cases, the accuracy of the square root model was worse than other models. The second

observation is that the square root model greatly under-estimates the distortion for small quantization steps.
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For example, setting∆ = 1 in (3), yieldsD(1) = 2
∑N

m=0

∑m
n=m(n − m)2fLM (n) = 0. Consequently,

the produced PSNR approaches infinity as∆ goes to 1. This results in exaggerated (infinity) estimation

of the stream quality, which may mislead streaming applications using this model.

To derive the R-Q function for this model, the bitrate is firstexpressed as a function of number of

decoded bitplanesz. Thenz is replaced by the quantization step∆ according to the relationship derived

in the previous section:∆ = 2Z−z, whereZ is the total number of bitplanes. The square root model

proposes the following quadraticR(z) function:

R(z) = c1z
2 + c2z + c3, (5)

wherec1, c2, c3 are parameters that need to be estimated. To justify this function, Dai et al. empirically

show that second order polynomials are sufficient for typical R(z) functions [3]. Furthermore, they prove

that an actualR(z) function changes convexity up to once, thus a second order polynomial is enough [6].

The proof, however, assumes that DCT coefficients follow a Laplacian, not Laplacian mixture, distribution.

To estimatec1, c2, c3, a set of(R, z) values is needed. This set is easily computed at bitplane boundaries:

At each bitplane boundaryz = 1, 2, . . . , Z, the bitrate is computed as
∑z

i=1 li/T , whereli is the size of

bitplanei andT is the frame period.

Given that∆ = 2Z−z, we get the R-Q function:

R(∆) = c1(Z − log2 ∆)2 + c2(Z − log2 ∆) + c3. (6)

Computing∆ from (6) and substituting (6) in (4), we obtain theD(R) function of the square root

model. The resulting equation is fairly complicated, therefore, not shown here.

We have implemented the square root model as follows. First,we estimate thep1, p2, λ1, λ2 parameters

of the Laplacian mixture density function from the DCT coefficients of the considered frame. We use

an expectation-maximization estimator. Then, we extract the size of each bitplane in the enhancement

layer of the frame. Using these sizes, we construct a setRz of (R, z) elements at bitplane boundaries

as described above. Then, we curve-fit the elements ofRz to (5) and obtainc1, c2, c3. The square root

R-D model is completely specified once we determine the source model parametersp1, p2, λ1, λ2 and the

constantsc1, c2, c3. The pseudocode in Figure IV-A summarizes our implementation of the square root

model.

B. Logarithm Model

The logarithm model employs a Laplacian mixture (LM) sourcemodel [4], same as the square root

model. We use the same parameter estimator used for the square root model.
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SqrtModel

/* Inputs:

* FGS-encoded framef

* Frame periodT (in sec)

*/

/* Output:

* Square root R-D model of the frame, specified byp1, p2, λ1, λ2 andc1, c2, c3.

*/

1. < Z; l1, l2, . . . , lZ >= extractBitplaneInfo(f );

2. C = getDCTcoefficients(f );

3. Use expectation-maximization method to estimatep1, p2, λ1, λ2

of the Laplacian mixture distribution usingC;

4. R = 0; Rz = {(0, 0)};

5. for i = 1 to Z do

6. R = R + li/T ;

7. Rz = Rz ∪ {(R, i)};

8. endfor

9. Curve-fit elements ofRz to R(z) = c1z
2 + c2z + c3 to determinec1, c2, c3;

Fig. 1. Pseudo code for the square root R-D model.

To derive a D-Q function, the set of enhancement layer coefficientsC is partitioned into two subsets:

C0 andC0̄. C0 contains coefficients falling in the interval(−∆,∆), while C0̄ contains all other coeffi-

cients. Note that the bitplane coding quantizes all coefficients inC0 to the quantization index with zero

reconstruction level. Hence,C0 coefficients are called zero-quantized. We defineN = |C| andM = |C0̄|
to be the number of total and zero-quantized coefficients, respectively.

The study in [24] reveals thatC0 coefficients are responsible for the majority of distortionat low and

medium bitrates. Therefore, the logarithm model strives toaccurately compute the distortion caused by

C0, and to roughly approximate the distortion related toC0̄. We defineD0 and D0̄ as the distortion

contributed byC0 andC0̄, respectively. We separately analyze each of them as follows.

Since all coefficients inC0 have zero reconstruction level,D0 is given by:D0(∆) =
∑

ci∈C0

|ci|2. On

the other hand,D0̄ is approximated as:D0̄(∆) = M∆2/12, where∆2/12 is the average distortion of
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a single coefficient if a uniform quantizer is employed underthe high resolution hypothesis. The total

distortionD is computed as the normalized sum ofD0 andD0̄:

D(∆) =
D0 + D0̄

N
=

1

N

∑

ci∈C0

|ci|2 +
M

N

∆2

12
. (7)

Although the total number of coefficientsN is constant, the number of coefficients inC0̄ is a function

of ∆. We defineζ as the percentage of nonzero-quantized coefficients. That is, ζ = M/N , and it is a

function of ∆. Observe thatζ is the probability that DCT coefficients do not fall in the range (−∆,∆).

Thus, a Laplacian mixture density function,ζ is given by:

ζ = M/N =1 −
∫ ∆

−∆
(p1

λ1

2
e−λ1|x| + p2

λ2

2
e−λ2|x|)dx

=1 − (p1e
−λ1∆ + p2e

−λ2∆), (8)

wherep1, p2, λ1, λ2 are parameters of the density function. Substituting (8) in(7), the D-Q function is

obtained.

The logarithm model utilizes a linear R-Q function that was proposed for nonscalable coders in

[25]. The applicability of this linear R-Q function to fine-grained scalable coders was validated through

simulations in [4]. The linear R-Q model states that the bitrate is a linear function of the percentage of

nonzero-quantized coefficient, that is:

R = γζ = γ − γ(p1e
−λ1∆ + p2e

−λ2∆), (9)

whereγ is the slope parameter that needs to be estimated. To estimate γ, a set of(R, ζ) values is needed.

This set is constructed at bitplane boundaries: At each bitplane boundaryz = 1, 2, . . . Z, the bitrate is

computed as
∑z

i=1 li/T , and the percentage of nonzero-quantized coefficients is computed from the DCT

coefficients using a quantization step of2Z−z.

Analytically solving the D-Q function in (7) and the R-Q function in (9) to obtain the R-D model

is very complex, if at all possible. To overcome this complexity, the authors of the logarithm model

proposed the following approximation [4]. They first solve (7) and (9) by assuming a single Laplacian

distribution. Then a linear combination of the solution is used as an approximation for the Laplacian

mixture case. Specifically, solving (7) and (9) using a Laplacian distribution yields:

D(R) =
2

λ2
− 11 log (γ/R) + 24 log (γ/R) + 24

12λ2

R

γ
. (10)
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And a linear combination of (10) results in the approximatedD(R) function for the logarithm model as:

D(R) = a1 − (a2 log2 R + a3 log R + a4)R, where

a1 =
2p1

λ1
2 +

2p2

λ2
2 ,

a2 =
11p1

12λ1
2γ

+
11p2

12λ2
2γ

,

a3 =
(−24 − 22 log γ)p1

12λ1
2γ

+
(−24 − 22 log γ)p2

12λ2
2γ

,

a4 =
p1(24 + 24 log γ + 11 log2 γ)

12λ1
2γ

+
p2(24 + 24 log γ + 11 log2 γ)

12λ2
2γ

. (11)

We have implemented the logarithm model as follows. Similarto the case of the square root model,

we first estimate thep1, p2, λ1, λ2 parameters of the Laplacian mixture density using an expectation-

maximization method. Then, we extract the size of each bitplane in the enhancement layer of the frame.

Using these sizes and the set of coefficientsC, we construct a setRζ of (R, ζ) elements at bitplane

boundaries as described above. Then, we curve-fit the elements ofRζ to (9) and obtainγ. Last, we compute

a1, a2, a3, a4 using (11). The logarithm root R-D model is completely specified once we determine the

constantsa1, a2, a3, a4. The pseudocode in Figure IV-B summarizes our implementation of the logarithm

model.

C. Generalized Gaussian Function Model

The generalized Gaussian function (GGF) model uses 64 distributions—of the same family but with

different parameters—as the source model [5]. Each distribution models the set of coefficients of the

same frequency component, and leads to an R-Q and a D-Q function for that frequency component.

Recall that a frame is divided into 8x8 pixel blocks, and the DCT is applied on each block. This results

in a set of 64 DCT coefficients per block, each belonging to a different frequency. Combining64 R-Q

functions gives a frame-level R-Q function, and aggregating 64 D-Q functions results in a frame-level

D-Q function.

Zero-mean generalized Gaussian functions have been used tomodel DCT coefficients in the literature

[26]. Its density function is defined as:

fGGF (x) =
να(ν)

2σΓ(1/ν)
e−( α(ν)

σ
|x|)ν

, (12)

whereα(ν) =
√

Γ(3/ν)
Γ(1/ν) , andΓ(·) denotes the Gamma function, which is defined asΓ(z) =

∫ ∞
0 e−ttz−1dt.

ν, σ > 0 are the shape and standard deviation parameters of the distribution. This distribution covers a
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LogModel

/* Inputs:

* FGS-encoded framef

* Frame periodT (in sec)

*/

/* Output:

* Logarithm R-D model of the frame, specified bya1, a2, a3, a4.

*/

1. < Z; l1, l2, . . . , lZ >= extractBitplaneInfo(f );

2. C = getDCTcoefficients(f );

3. Use expectation-maximization method to estimatep1, p2, λ1, λ2

of the Laplacian mixture distribution usingC;

4. R = 0; Rζ = {(0, 0)};

5. for i = 1 to Z do

6. R = R + li/T ;

7. Cζ = getQuantizedCoeff(C, 2Z−i);

8. ζ = |Cζ |/|C|;
9. Rζ = Rζ ∪ {(R, ζ)};

10. endfor

11. Curve-fit elements ofRζ to R(ζ) = γζ to determineγ;

12. Use Eq. (11) to computea1, a2, a3, a4;

Fig. 2. Pseudo code for the logarithm R-D model.

wide range of probability distributions, as it degeneratesto a Laplacian distribution whenν = 1, and to

a Gaussian distribution whenν = 2.

The parameters of generalized Gaussian functions are oftenestimated using one of the two methods

[27]: (i) a maximum likelihood method, and (ii) a moment method1. In the first method, a nonlinear

likelihood equation for estimatingν, which was shown to be a maximum likelihood estimator if a unique

root exists [29]. Furthermore, this likelihood equation has a unique root when the sample size approaches

infinity. When we implemented this method, though, the equation did not have a unique root in some

1The same estimator is independently proposed in another work [28].
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cases. This is because of the relatively small sample size ofDCT coefficients. In contrary, the moment

method constantly results in a single estimation. In addition, experimental results show that it only suffers

marginal loss of accuracy [27]. Hence, we adopt the moment estimator for its simplicity and robustness.

The details of this estimator are given in [22].

To derive a D-Q model, the GGF model assumes a zero-mean source distribution (denoted byfZM )

and the high-resolution hypothesis. Sun et al. substitutefZM (x) for f(x) in Eq. (2); after manipulation

and simplification, the D-Q model is given by [5]:

D(∆) = ∆2/3. (13)

This D(∆) is different from the classic uniform quantizer’sD(∆) = ∆2/12 approximation, because of

the different reconstruction levels: A bitplane coder usesthe floor function rather than the bin midpoints

for reconstructions (as discussed in Section III-B).

To derive its R-Q function, the GGF model assumes an ideal variable-length coder (VLC) whose

coding efficiency can arbitrarily approach the source entropy. Therefore, the GGF model employs the

source entropy to estimate the bitrate as:

R(∆) = −
∫ ∞

−∞
fZM (x) log2 fZM (x)dx − log2 ∆, (14)

where theR is in bits per pixel. Notice that, this R-Q model imposes highcomputational complexity if the

integral
∫ ∞
−∞ fZM (x) log2 fZM (x)dx is not analytically solvable. Unfortunately, replacing the generalized

Gaussian function source model forfZM produces a function that requires a numerical integration.

The R-D function is derived by combining the D-Q model in (13)and the R-Q model in (14). We get

Di(Ri) for componenti as:

Di(Ri) = 2−2Ri−2
R

∞

−∞
fGGF (x) log2 fGGF (x)dx/3. (15)

Next, we consider the aggregation of these 64Di(Ri) functions for a frame-levelD(R) model. Note

that a given bitrateR is achieved by truncating a coded stream. This truncation decides anRi for each

componenti (i = 1, 2, . . . , 64). These 64 components, however, are not independently coded. Therefore,

decomposingR into Ri is non-trivial. To address this difficulty, authors of [5] propose an exhaustive

search on the quantization step∆ from 1 to 64. For each∆, a frame-level R-D mapping is computed

by composing 64Di’s (given by (13)) and 64Ri’s (given by (14)). We follow this approach to compute

R-D estimates for∆’s. We then construct a piecewise linear R-D model using these estimations to cover

intermediate∆ for completeness.
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GGFModel

/* Inputs:

* FGS-encoded framef

*/

/* Output:

* GGF R-D model of the frame, specified by a piecewise linear function that

* connects elements ofDR.

*/

1. < C1, C2, . . . , C64 >= getDCTcoefficients(f );

2. for i = 1 to 64 do

3. Use moment estimator to estimateνi, σi of the generalized Gaussian function

usingCi;

4. endfor

5. DR = {};

6. for ∆ = 1 to 64 do

7. R = 0;

8. for i = 1 to 64 do // frequencies

9. R = R+ getComponentBitrate(νi, σi, ∆); // Eq. (14)

10. endfor

11. DR = DR ∪ {(∆2/3, R)};

12. endfor

Fig. 3. Pseudo code for the GGF R-D model.

We have implemented the GGF model as follows. We first estimate the νi, σi parameters of the

generalized Gaussian function for frequency componenti (i = 1, 2, . . . , 64) using a moment estimator.

Then, we compute a setDR of (D,R) elements at integer quantization steps∆ from 1 to 64 as described

above. The GGF R-D model is completely specified once we construct a piecewise linear function using

the elements ofDR. Because of the space limitations, we give the pseudocode ofthe GGF model in [30].

The pseudocode in Figure IV-C summarizes our implementation of the GGF model.
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V. EMPIRICAL AND SEMI-ANALYTIC MODELS

In this section, we present two empirical methods: (i) a pureempirical model for determining accurate

R-D functions which we use for comparisons, and (ii) an efficient piecewise linear model. Then, we present

three semi-analytic models that are inspired by the three analytic models described in the previous section.

Semi-analytic models do not use mathematical derivations to develop R-D models. Rather, each semi-

analytic model proposes a parametrized function that is thought to approximate the actual R-D function.

The parametrized function takes the shape of an analytically-derived function, but in a much simpler

form. The parameters of the function are estimated using curve-fitting from a few actual rate-distortion

data points.

A. Empirical Model

The pure empirical approach is a brute force method to deriveR-D functions. It chooses many sampling

bitrates and decodes the video sequence at each of them. Then, for each sample bitrate, it computes the

distortion as the difference between the original and reconstructed video sequences. Interpolation is used to

extend the discrete R-D mapping into a continuous function.The empirical approach requires tremendous

amount of computational power and storage space. Nevertheless, it produces accurate R-D curves. We

use results produced by the empirical approach as the baseline for comparing various R-D models. In

our implementation of this empirical model, we choose six points in each bitplane, including the bitplane

boundaries. And we compute the distortion at these points.

We note that constructing empirical R-D models for FGS-encoded sequences doesnot requires re-

encoding of the sequence. We only need to truncate the bitstream at appropriate bit positions. This is

in contrast to constructing empirical R-D models for non-scalable or layered-scalable sequences, which

requires re-encoding a video sequence at each sampling bitrate. Re-encoding is time consuming because

coding systems employ many optimization procedures at the encoding time. Therefore, while empirical

R-D models for FGS-encoded sequences are expensive to construct, they are much less expensive, and

more feasible than empirical R-D models for nonscalable or layered-scalable sequences.

B. Piecewise Linear Model

Traditional empirical R-D models often employ exponentialinterpolation between sampling points.

Zhang et al. [13] found that exponential interpolations do not accurately track the actual R-D curves of

FGS-encoded sequences. The experiments in [13] reveal thatwhen sampling bitrates are located in the

same bitplane, using linear interpolation produces smaller deviation than using exponential interpolation.
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However, if the sampling bitrates are from different bitplanes, applying exponential interpolation is more

accurate. To implement the piecewise linear model, we choose sampling points at all bitplane boundaries

and compute the distortion at these points. Then we connect these points with line segments.

C. Semi-analytic Square Root Model

This model is based on the analytic square root model in Section IV-A. However, instead of using the

complicated D-Q function in (4), it uses the followingheuristic function:

PSNR(z) = d1z
2 + d2z + d3, (16)

where PSNR is the quality, not the distortion, andd1, d2, d3 are parameters that need to be estimated.

This function is justified by the fact that the quality (in terms of PSNR) is a monotonically increasing

function of the number of transmitted bitplanes. Furthermore, it has been shown in [6] that this function

does not change its convexity more than once. Hence, a quadratic function is a good approximation for

it.

Combining this simplified D-Q function with theR(z) function in (5) yields what we call the semi-

analytic square root (sSqrt) R-D model:

PSNR(R) = c1R + c2

√
R + c3, (17)

wherec1, c2 need to be estimated from empirical R-D samples, andc3 = 10 log10(255
2/σ2) for a source

with varianceσ2. To implement this model, we determine the bitrate and PSNR values at all bitplane

boundaries. Then, we do curve fitting to obtainc1, c2, c3.

D. Semi-analytic Logarithm Model

This model is based on the analytic logarithm model in Section IV-B. However, instead of using

parameters of the Laplacian mixture density function, thismodel employs curve fitting to compute

a1, a2, a3, a4 in (11). This leads to what we call the semi-analytic logarithm (sLog) R-D model. To

implement this model, we determine the bitrate and distortion values at all bitplane boundaries. Then we

do curve fitting to geta1, a2, a3, a4.

E. Semi-analytic Generalized Gaussian Function Model

This model is based on the analytic GGF model in Section IV-C.However, instead of numerically

computing the integration in (14), this model utilizes aheuristic function [5]:

PSNR(R) = g1R + g2 −
g2 − Db

1 + g3R
, (18)



20

TABLE II

L IST OF TEST V IDEO SEQUENCES.

Class Sequences Resolution # of Frames

Low

Akiyo, Mother, Foreman, Paris, Bridge-close,
352x288 300

Bridge-far, Hall-monitor, Highway, Tempete

Claire, Salesman, Grandma, Carphone 176x144 300

Medium
Bus 352x288 150

Mobile, Container 352x288 300

High

Coastguard 352x288 300

Garden 352x240 115

Tennis 352x240 112

Football 352x240 125

where PSNR is the quality,Db is the base layer only quality, andg1, g2, g3 are parameters that need to

be estimated. This function was proposed after empiricallyobserving the actual R-D data and the R-D

estimations produced by the analytic GGF model. To implement this model, we determine the bitrate

and PSNR values at all bitplane boundaries. Then, we do curvefitting to deriveg1, g2, g3.

VI. EVALUATION OF RATE-DISTORTION MODELS

In this section, we present an extensive experimental studyto evaluate the performance of the R-D

models described in the previous sections. We first describethe video sequences used in the experiments

and why we chose them. Then, we present our experimental setup and the performance metrics considered.

Then, we present the results of comparing analytic models, followed by results of comparing semi-analytic

models.

A. Selection of Test Video Sequences

Choosing a representative set of video sequences is a critical step in evaluating and analyzing the

performance of R-D models. A homogeneous set of sequences may produce biased comparison results,

because some models may perform exceptionally well under certain sequences.

We use two key features to characterize video sequences: spatial complexity and temporal complexity.

To quantify these complexities, we adopt the neighborhood difference metric [31]. This metric captures
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the amount of variations between a block and its neighbor by accumulating the differences among

corresponding transform coefficients in the two blocks. Theneighborhood metric approaches0 when

neighboring blocks are similar, and increases as the similarity between the two blocks decreases. The

spatial complexity is measured by averaging all neighborhood differences in the same frame. Whereas

the temporal complexity is measured by averaging neighborhood differences between adjacent frames

To form a set of test sequences, we considered twenty video sequences from various sources [32],

[33]. Table II lists the considered sequences. We then classify sequences based on their spatial and

temporal complexities. Sequences that have high spatial and temporal complexities are what we call

high-complexity sequences. In contrast, sequences with low spatial and temporal complexities are called

low-complexity sequences. Sequences that have either hightemporal or spatial complexity, but not both,

are called medium-complexity sequences.

Out of these twenty sequences, we chose seven representative sequences with different complexities:

Akiyo, Mother, Foreman, Mobile, Bus, Garden, and Football.We briefly describe these seven sequences.

In Akiyo, a female reporter reads news with very limited headmovements in front of a fixed camera.

There are more movements in Mother, especially the hand and hair movements when compared to Akiyo.

The camera is fixed in Mother without any pan, zoom, or movement. Foreman also features a talking

person, but it was taken with a hand-held camera that introduces camera movements. Mobile contains

saturated colors, thus has higher spatial complexity. Bus was shot with a moving camera following a

running bus in short distance, which results in a high temporal complexity. Garden contains intensive

colors and was filmed on a moving car, while Football involveslots of complicated movements and

details. We believe that these seven test sequences form a diverse enough set to examine the performance

of R-D models.

B. Experimental Setup and Performance Metrics

1) Software used and implemented:We use the MPEG-4 Reference Software Version 2.5 [34] de-

veloped by Microsoft as an experimental package for the MPEG-4 standard. It is implemented in C++

and contains three major executables:encoder, decoder, and fgs server. The encoderis a configurable

MPEG-4 encoder that can compress a raw video file into two bitstreams: base layer and enhancement

layer. Each bitstream is stored in a separate file. Thedecoderis FGS-enabled, that is, it can process an

incomplete enhancement layer and produces a raw video file with proportional quality improvements.

The fgs server is a utility to trim the enhancement layer according to a given target bitrate. It does so

by calculating the number of allowed bits in each frame at thetarget bitrate. These bits, which represent
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1. Choose a sequence from the test sequences (described in Section VI-A);

2. FGS-encode the sequence with base layer ratesRb at 8, 16, 32, 64, and128 Kbps;

3. for each R-D modelmodel ∈ {Sqrt ,Log ,GGF ,Linear , sSqrt , sLog , sGGF } do

4. for each base layer rateRb do

5. for each framef in the sequencedo

6. Construct the setRs of sampling bitrates by choosing equally-spaced

K samples from each bitplane;

7. for each sampling rateRs ∈ Rs do

8. Measure actual distortionDEmp(Rs) by comparing reconstructed and

original frames;

9. Estimate distortion using the R-D modelDmodel (Rs);

10. Compute the distortion deviation as:εf (Rs) = |Demp(Rs) − Dmodel (Rs)|;
11. endfor

12. Compute the average distortion deviation per frame;

13. Maintain the average distortion deviation for each frame type: I, P, B;

14. endfor

15. Compute the average and maximum distortion deviations across all frames;

16. Measure the total running time;

17. Compute the normalized range of applicability;

18. endfor

19. endfor

20. Repeat steps 1—19 for another video sequence;

Fig. 4. Our procedure for rigorously evaluating the performance of various R-D models.

the truncated bitstream, are then saved in a new file. We have instrumented the reference software to

extract various characteristics of an input video sequence. For instance, we collect transform coefficients,

number of bitplanes, and size of each bitplane in the enhancement layer. This information is used to

estimate parameters of the R-D models.

We have implemented all R-D models described in this paper, atotal of eight models. Specifically, we

have implemented the three analytic R-D models: square root(denoted by Sqrt in the plots), logarithm

(Log), and generalized Gaussian (GGF); the pure empirical model (Emp), the piecewise linear (Linear),
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and the three semi-analytic R-D models: semi-analytic square root (sSqrt), semi-analytic logarithm (sLog),

and semi-analytic generalized Gaussian (sGGF). All modelsare implemented in Matlab.

2) Selection of Sampling bitrates:We evaluate the R-D models across a wide range of bitrates, not only

at bitplane boundaries. This is important because streaming applications using FGS-encoded sequences

are allowed to truncate bitstreams at arbitrarybit positions. It is also critical to emphasize on the range

of bitrates that most applications will heavily use. To achieve these two goals, we propose the following

sampling scheme. SupposeZ is the total number of bitplanes,lz is the size of bitplanez (z = 1, 2, . . . , Z),

andT is the frame period. We chooseK equally-spaced bitrates in each bitplane. Specifically, weform

the set of sampling bitratesRs as

Rs = {0} ∪ {Rz,k
s | z = 1, 2, . . . , Z andk = 1, 2, . . . ,K}, (19)

whereRz,k
s =

P

z−1
u=1 lu+(lz/K)(k)

T .

The setRs achieves the above two goals, because it covers the whole bitrate range from base layer only

(Rs = 0) to full quality (Rs = RZ,K
s ). Furthermore, since the most significant bitplanes are typically small

in size, gaps between sampling bitrates will be small. Therefore, the accuracy of the considered R-D model

will be higher in these significant bitplanes. The R-D performance of significant bitplanes is crucial for

two reasons. First, significant bitplanes have high per-bitreduction rates in distortion. This implies more

sampling bitrates are needed to capture the rapid distortion variations. Second, significant bitplanes are

streamed more often owing to the embedded property of FGS-encoded streams. The embedded property

states that a lower-rate bitstream is always a prefix of a higher-rate one.

3) Performance Metrics:We consider the following performance metrics for each R-D model: accu-

racy, range of applicability, and time complexity.

We consider model accuracy at different granularities: forindividual sampling bitrates, for every frame,

and for the whole sequence. We measure accuracy as the difference between the quality (in PSNR)

predicted by the considered R-D model and the actual qualityat a given bitrate. Specifically, for every

sampling bitrateRs ∈ Rs, we compute the absolute distortion deviation (or error) as:

εf (Rs) = |Demp(Rs) − Dmodel (Rs)|, (20)

whereDemp(Rs) is the actual distortion computed by comparing the reconstructed and original frames,

andDmodel (Rs) is the distortion estimated by the R-D model for framef at bitrateRs. For the frame

level, we compute the average distortion deviation over allsampling bitrates. We also compute the average

distortion deviation for different frame types (I, P, and B). For the sequence level, we compute the average

and maximum deviations across all frames.
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Ideally, an R-D model should provide valid—finite and nonnegative—distortion estimations for all

sampling bitratesRs. Unfortunately, some R-D models only support a subset of thewhole bitrate range.

To capture this important aspect, we use the range of applicability metric. The range of applicability of

an R-D model is delimited by the smallest bitrate beyond which that model fails to provide valid results.

To enable cross-sequence comparisons, we normalize the range of applicability by dividing it by the

maximum bitrate of the sequence. The maximum bitrate of the sequence occurs when all bitplanes are

transmitted.

Time complexity is also an important metric especially for streaming applications that use R-D models

in real-time, e.g., video conferencing. We measure the running time to construct R-D models. To mitigate

the effect of clock precisions and interruptions from the operating system, we measure the running time

for all frames in a video sequence and report the average per-frame running time. All experiments are

conducted on a 2.8 GHz Pentium 4 workstation.

4) Evaluation Procedure:We evaluate the R-D models on the set of video sequences described in

Section VI-A. We FGS-encode every video sequence at severaldifferent bitrates for the base layer. The rate

of the base layer directly impacts the number and size of bitplanes in the enhancement layer. Therefore,

we are effectively evaluating the models under different relative sizes of the base and enhancement layers.

This is important because streaming systems work in different network environments, and they typically

adjust the base layer rate based on these conditions. In addition, for every video sequence encoded at a

given base layer rate, we decode the enhancement layer at different rates. This is done by truncating the

bitstream at the appropriate bit positions. Decoding at different rates captures the heterogeneous nature

of clients and the diverse communication channels over which they receive video sequences. Figure VI-A

summarizes the procedure that we follow in evaluating the performance of R-D models.

We believe that our experimental set up and evaluation procedure rigorously evaluate the R-D models,

because they account for various source characteristics, diverse communication channel conditions, and

different encoding/decoding parameters.

C. Results for Analytic Models

We first discuss accuracy of the analytic R-D models, followed by their applicable ranges and time

complexities.

1) Accuracy: We plot the frame-level average distortion deviation in Figure 5. We present results of

a sample sequence in each complexity class (from left to right: low, medium, and high complexity) in

each vertical column of subfigures. Each horizontal row represents a different base layer rateRb. We
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(a) Akiyo Rb = 8 Kbps
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(b) Mobile Rb = 8 Kbps
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(c) GardenRb = 8 Kbps
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(d) Akiyo Rb = 32 Kbps
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(e) Mobile Rb = 32 Kbps
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(f) GardenRb = 32 Kbps
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(g) Akiyo Rb = 64 Kbps
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(h) Mobile Rb = 64 Kbps
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(i) GardenRb = 64 Kbps
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(j) Akiyo Rb = 128 Kbps
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(k) Mobile Rb = 128 Kbps
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(l) GardenRb = 128 Kbps

Fig. 5. The frame-level average distortion deviation of theR-D models of three video sequences of different complexities,

where the base layers are coded with different bitrates.
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make a few observations on this figure. First, the GGF model produces the highest distortion deviation,

at least 4 dB, in all cases. Second, the logarithm model performs better than the square root model in

low complexity sequences. Furthermore, in medium and high complexity sequences, the logarithm model

still outperforms the square root model for base layer bitrate Rb > 32 Kbps. These two models have

comparable accuracy forRb = 32 Kbps; the square root model performance is improved forRb < 32

Kbps.

We also study the accuracy for different frame types. Plots of the average distortion deviation for I-, P-,

and B-frames are given in Figures 6, 7, and 8, respectively. The results show the same relative accuracy.

This indicates the frame type does not affect relative accuracy of these models.

We present the sequence-level average and maximum distortion deviation for different sequences coded

at different base layer ratesRb in Figures 9–12, where the sequences are sorted in ascendingorder of

their complexities. As shown in Figure 11, the logarithm model is the most accurate in terms of the

average distortion deviation with at most 3 dB deviation, while the square root model produces as high

as 6 dB and the GGF model results in as high as 7 dB. Comparing the square root model versus the

logarithm model, we observe that: (i) The square root model results in higher distortion deviations for

lower complexity sequences as shown in Figures 11(b), 11(c), 12(a), and 12(b). (ii) The logarithm model

produces higher distortion deviations for higher complexity sequences that are coded with low base layer

ratesRb as shown in in Figures 11(a) and 12(a).

Then, we study the shape of R-D curves for a few frames. Figure13 illustrates that: (i) The GGF

model suffers high distortion deviations at low bitrates, as the high resolution hypothesis does not hold

when the quantization step is large; and (ii) The logarithm and square root models over estimate the

quality at high bitrates. More importantly, the logarithm model does not produce a non-decreasing R-D

curve in some cases, a sample result is shown in Figure 13(c).This is inaccurate because higher bitrates

should always lead to better quality. We further investigate the root cause of the problem.

The logarithm model utilizes a linear R-Q model which assumes that the percentage of non-zero

quantized coefficientsζ is a linear function of the bitrate. Through extensive experiments, we find that

this linearity is strong in the more significant bitplanes, especially in the first four bitplanes. Since low

complexity sequences only have a few bitplane, the linear relationship is strong for these sequences. In

contrast, for high complexity sequences coded at low base layer rates, this linearity starts to break. We

present the actualζ-R curve and the estimated one in Figure 14. This figure explains the abnormal R-D

curves at high bitrates observed in Figures 13(a)–13(c).

In summary, the GGF model is the least accurate in all cases, while the logarithm model is the most
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(a) Akiyo Rb = 8 Kbps
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(b) Mobile Rb = 8 Kbps
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(c) GardenRb = 8 Kbps
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(d) Akiyo Rb = 32 Kbps
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(e) Mobile Rb = 32 Kbps
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(f) GardenRb = 32 Kbps
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(g) Akiyo Rb = 64 Kbps
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(h) Mobile Rb = 64 Kbps
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(i) GardenRb = 64 Kbps

50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

Frame Number

A
ve

ra
ge

 E
rr

or
 in

 P
S

N
R

 (
dB

)

 

 
Sqrt
Log
GGF

F

(j) Akiyo Rb = 128 Kbps
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(k) Mobile Rb = 128 Kbps
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(l) GardenRb = 128 Kbps

Fig. 6. The frame-level average distortion deviation of theR-D models of three video sequences of different complexities,

where the base layers are coded with different bitrates. Only I-frame are considered.
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(a) Akiyo Rb = 8 Kbps
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(b) Mobile Rb = 8 Kbps
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(c) GardenRb = 8 Kbps
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(d) Akiyo Rb = 32 Kbps
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(e) Mobile Rb = 32 Kbps
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(f) GardenRb = 32 Kbps
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(g) Akiyo Rb = 64 Kbps
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(h) Mobile Rb = 64 Kbps
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(i) GardenRb = 64 Kbps
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(j) Akiyo Rb = 128 Kbps
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(k) Mobile Rb = 128 Kbps
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(l) GardenRb = 128 Kbps

Fig. 7. The frame-level average distortion deviation of theR-D models of three video sequences of different complexities,

where the base layers are coded with different bitrates. Only P-frames are considered.
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(a) Akiyo Rb = 8 Kbps
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(b) Mobile Rb = 8 Kbps
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(c) GardenRb = 8 Kbps
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(d) Akiyo Rb = 32 Kbps
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(e) Mobile Rb = 32 Kbps
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(f) GardenRb = 32 Kbps
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(g) Akiyo Rb = 64 Kbps
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(h) Mobile Rb = 64 Kbps
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(i) GardenRb = 64 Kbps
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(j) Akiyo Rb = 128 Kbps
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(k) Mobile Rb = 128 Kbps
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(l) GardenRb = 128 Kbps

Fig. 8. The frame-level average distortion deviation of theR-D models of three video sequences of different complexities,

where the base layers are coded with different bitrates. Only B-frames are considered.
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(a) Akiyo
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(b) Mother
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(c) Foreman
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(d) Mobile

8 16 32 64 128
0

1

2

3

4

5

6

7

8

9

BL Bitrate (Kbps)

A
ve

ra
ge

 E
rr

or
 in

 P
S

N
R

 (
dB

)

 

 
Sqrt
Log
GGF

F

(e) Bus
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(f) Garden

Fig. 9. The average error of the R-D models across all frames of six video sequences coded at different base layer bitrates.
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(a) Akiyo
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(b) Mother
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(c) Foreman
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(d) Mobile
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(e) Bus
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(f) Garden

Fig. 10. The maximum error of the R-D models across all framesof six video sequences coded at different base layer bitrates.
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(a) Rb = 16 Kbps
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(b) Rb = 64 Kbps
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(c) Rb = 128 Kbps

Fig. 11. The average error of the R-D models across all framesof all video sequences of different complexities.
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(a) Rb = 16 Kbps

0

2

4

6

8

10

12

M
ax

im
um

 E
rr

or
 in

 P
S

N
R

 (
dB

)

akiyo
mother

foreman
mobile bus

garden
football 

 
Sqrt
Log
GGF

F

(b) Rb = 64 Kbps
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(c) Rb = 128 Kbps

Fig. 12. The maximum error of the R-D models across all framesof all video sequences of different complexities.

accurate except for medium or high complexity sequences that are coded at base layer rates less than

32 Kbps. The square root model is not accurate for low complexity sequences coded at high base layer

bitrates, because these coded streams: (i) have source distributions with large variation rates that contradict

the high frequency hypothesis, and (ii) have a few bitplanes, therefore, the estimation inaccuracy in the

least significant bitplanes dominates the overall performance. The performance of the logarithm model

suffers in high complexity sequences coded at low base layerbitrates, because the R-Q relationship of

these code streams deviates from the assumed linear R-Q model.

2) Range of Applicability:We present the range of applicability in Figure 15, which shows that: (i)

The logarithm model supports all bitrates—from 0 to the fullquality; (ii) The square root model is

less applicable in the least significant bitplanes: since low complexity sequences have a few bitplanes,

the square root model is applicable only for about 70% of bitrates in these sequences; however, it is

applicable for almost 95% of bitrates in medium and high complexity sequences; and (iii) The GGF
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(a) Akiyo frame 1,Rb = 8 Kbps
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(b) Mobile frame 171,Rb = 8 Kbps
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(c) Garden frame 100,Rb = 8 Kbps
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(d) Akiyo frame 1,Rb = 32 Kbps
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(e) Mobile frame 171,Rb = 32 Kbps
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(f) Garden frame 100,Rb = 32 Kbps
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(g) Akiyo frame 1,Rb = 64 Kbps
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(h) Mobile frame 171,Rb = 64 Kbps
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(i) Garden frame 100,Rb = 64 Kbps
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(j) Akiyo frame 1, Rb = 128 Kbps
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(k) Mobile frame 171,Rb = 128 Kbps
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(l) Garden frame 100,Rb = 128 Kbps

Fig. 13. R-D curves for four models applied to three video sequences of different complexities, where the base layers are

coded at different bitrates.
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(a) Akiyo sequence, frame 298,Rb = 16 Kbps
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(b) Mobile sequence, frame 171,Rb = 8 Kbps
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(c) Garden sequence, frame 100,Rb = 8 Kbps
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(d) Football sequence, frame 35,Rb = 16 Kbps

Fig. 14. Althoughζ-R shows a strong linearity in low complexity sequences (a);it is imperfect in medium and high complexity

sequences (b), (c), and (d). We observed that theζ-R curve shows strong linearity in the first four bitplanes, but not in other

bitplanes. This inaccuracy results in erroneous R-D estimations.

model’s applicability is no more than 70% in all cases.

3) Time Complexity:We show the average running time for each frame in Figure 16. This figure

illustrates that: (i) The GGF model is the most efficient; and(ii) The square root model is slightly

faster than the logarithm model, because the latter requires a time-intensive estimation of its R-Q model

parameterγ.
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(a) Akiyo Rb = 8 Kbps
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(b) Mobile Rb = 8 Kbps
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(c) GardenRb = 8 Kbps
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(d) Akiyo Rb = 32 Kbps
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(e) Mobile Rb = 32 Kbps
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(f) GardenRb = 32 Kbps
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(g) Akiyo Rb = 64 Kbps
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(h) Mobile Rb = 64 Kbps
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(i) GardenRb = 64 Kbps
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(j) Akiyo Rb = 128 Kbps
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(k) Mobile Rb = 128 Kbps

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

Frame Number

N
or

m
al

iz
ed

 R
an

ge
 o

f A
pp

lic
ab

ili
ty

 

 

Sqrt
Log
GGF

F

(l) GardenRb = 128 Kbps

Fig. 15. The normalized applicable range of the R-D models across all frames of three video sequences with different

complexities, where the base layers are coded with different bitrates.
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(a) Rb = 16 Kbps
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(b) Rb = 64 Kbps
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(c) Rb = 128 Kbps

Fig. 16. The average running time across all frames of all video sequences of different complexities.

D. Results for Empirical and Semi-analytic Models

We present and analyze the results for empirical and semi-analytic models. We consider one empirical

model—the piecewise linear (Linear) model—and three semi-analytic models: the square root (sSqrt), the

logarithm (sLog), and the GGF (sGGFF). We implemented these models using the nonlinear least-squares

fitting subroutine provided by Matlab.

1) Accuracy:Figure 17 shows the frame-level average distortion deviation of these models. We observe

that: (i) the piecewise linear model produces negligible, always less than 0.2 dB, error in all cases; (ii)

the square root model has up to 1 dB deviation and is more accurate than the GGF and the logarithm

model; and (iii) the logarithm model results in the highest estimation error in almost all cases.

We also notice that the semi-analytic models result in more fluctuations of frame-level average error.

This is because the non-linear optimization methods may notlead to a global optimal solution, and

sometimes they do not even terminate. Therefore, the methods are often associated with a maximum

number of iterations. We set the iteration limit to be 1000 times. In contrast, the piecewise linear model

is derived using a simple arithmetic—connecting two pointswith a line. This is not only more robust,

but also much more efficient.

Next, we study the shape of R-D curves in Figure 18. We see abnormal R-D curves caused by

the imperfect curve fitting: for instance, the semi-analytic logarithm model produces a decreasing R-

D segment in Figure 18(h). In addition, Figure 18 illustrates that while other models produce accurate

estimations only at bitplane boundaries; the piecewise linear model results in accurate estimations in the

entire bitplane. This explains the highest accuracy provided by the piecewise linear model.
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(a) Akiyo Rb = 8 Kbps
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(b) Mobile Rb = 8 Kbps
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(c) GardenRb = 8 Kbps
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(d) Akiyo Rb = 32 Kbps
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(e) Mobile Rb = 32 Kbps

20 40 60 80 100
0

1

2

3

4

5

6

7

Frame Number

A
ve

ra
ge

 E
rr

or
 in

 P
S

N
R

 (
dB

)

 

 
Linear
sSqrt
sLog
sGGF

F

(f) GardenRb = 32 Kbps
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(g) Akiyo Rb = 64 Kbps
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(h) Mobile Rb = 64 Kbps
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(i) GardenRb = 64 Kbps
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(j) Akiyo Rb = 128 Kbps
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(k) Mobile Rb = 128 Kbps
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(l) GardenRb = 128 Kbps

Fig. 17. The average distortion deviation of the empirical and semi-analytic R-D models across all frames of three video

sequences of different complexities, where the base layersare coded with different bitrates.
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(a) Akiyo frame 1,Rb = 8 Kbps
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(b) Mobile frame 171,Rb = 8 Kbps
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(c) Garden frame 100,Rb = 8 Kbps
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(d) Akiyo frame 1,Rb = 32 Kbps
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(e) Mobile frame 171,Rb = 32 Kbps
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(f) Garden frame 100,Rb = 32 Kbps
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(g) Akiyo frame 1,Rb = 64 Kbps
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(h) Mobile frame 171,Rb = 64 Kbps
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(i) Garden frame 100,Rb = 64 Kbps
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(j) Akiyo frame 1, Rb = 128 Kbps
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(k) Mobile frame 171,Rb = 128 Kbps
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(l) Garden frame 100,Rb = 128 Kbps

Fig. 18. R-D curves for five empirical and semi-analytic models applied to three video sequences of different complexities,

where the base layers are coded at different bitrates.
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(a) Rb = 16 Kbps
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(b) Rb = 64 Kbps
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(c) Rb = 128 Kbps

Fig. 19. The average running time of the empirical and semi-analytic R-D models across all frames of all video sequences of

different complexities.

2) Time Complexity:Figure 19 implies that while the piecewise linear model has negligible time

complexity, the semi-analytic models require at least tensof milliseconds to terminate. We find that the

logarithm model requires the longest running time, up to 600milliseconds in the worst case, because of

its high non-linearity. The square root is the most efficientsemi-analytic model.

VII. C ONCLUSIONS AND RECOMMENDATIONS FORCHOOSING R-D MODELS

A. Conclusions

We investigated various rate-distortion (R-D) models for fine-grained scalable video sequences. We

classified R-D models into three categories: analytic, empirical, and analytically-inspired empirical (or

semi-analytic). We have analyzed the three analytical R-D models known in the literature: square-root

(Sqrt), logarithm (Log), and generalized Gaussian function (GGF). We also presented three semi-analytic

models based on the above analytic models: sSqrt, sLog, and sGGF. In addition, we discussed how a pure

empirical model can be implemented by measuring the distortion at equally-spaced sampling bitrates.

Finally, we presented the piecewise linear model, which improves upon the pure empirical model by

choosing sampling bitrates at bitplane boundaries and connecting these samples by line segments.

We presented systematic ways (pseudo codes) for constructing the R-D models from a given video

sequence. We implemented all of the above eight R-D models inMatlab, and we evaluated them using a

large and diverse set of carefully-chosen video sequences.In our evaluation process, we considered various

source characteristics, diverse channel conditions, different encoding/decoding parameters, different frame

types, and several performance metrics including accuracy, range of applicability, and time complexity

of each model.
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The findings from our extensive experimental study can be summarized as follows:

1) The GGF model shows large deviations from actual distortions. It also does not produce valid

results at high bitrates. Therefore, we believe it will be oflittle use in practice.

2) If the base layer is encoded at high bitrate (> 32 Kbps), the logarithm model produces the most

accurate distortion estimations.

3) If the base layer is encoded at lower bitrates (< 32 Kbps) and the video sequence has high or

medium complexity, the square root model is more accurate than the logarithm model. However, if

the sequence has low complexity, the logarithm model produces better results with any base layer

rate.

4) The reasons behind 2) and 3) can be explained as follows. Ifthe base layer rate is high or the

sequence has low complexity, fewer bitplanes will exist in the enhancement layer. In this case, the

linear relationship between the bitrate and percentage of nonzero-quantized coefficients is accurate

as indicated by our results. This relationship is employed by the logarithm model, it is why it

produces good results in this case. On the other hand, the square root model produces higher

deviations in the least-significant bitplanes. And since wehave a few total bitplanes, the impact of

these high deviations will dominate, and the performance ofthe square root model will suffer.

For high and medium complexity sequences and when the base layer rate is small, the converse

of the above argument applies. That is, more bitplanes existin the enhancement layer and the

linear relationship used by the logarithm model becomes less accurate, reducing the accuracy of

the logarithm model. At the same time, the effect of the deviations in the least-significant bitplanes

of the square root model decreases as the number of bitplanesincreases, making the square root

model more accurate.

5) Regarding the range of applicability, the logarithm model always produces valid results at all

possible bitrates. This is not the case for the square root model. As we explained in Section IV-A,

the square root model greatly over estimates the quality forsmall quantization steps, approaching

infinity for a quantization step of 1. Small quantization steps correspond to high bitrates. This over

estimation of quality limits the applicability of the square root model to about 70% of the possible

bitrates for low complexity sequences.

6) The time complexity of the square root model is smaller than the logarithm model. The logarithm

model is slow because estimating the slope parameter of the linear relationship between the bitrate

and percentage of nonzero-quantized coefficients is expensive. This is because the estimation
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process requires bitplane truncations and computing the corresponding percentage of the truncated

coefficients.

7) In general, the empirical and semi-analytic R-D models are more accurate than the analytic R-D

models.

8) Te curve-fitting methods employed by the semi-analytic models are time-consuming and may

occasionally result in inaccurate estimations for the model parameters.

9) Finally, the piecewise linear model is simple and fairly accurate, when compared to all other models.

B. Recommendations for Choosing R-D models

Our experimental results enable us to provide guidelines onselecting the most suitable R-D model for

a target streaming system. We summarize our recommendations in the following.

• Streaming stored video sequences and video-on-demand systems. In these systems, the R-D model

can be computed off-line and it is desired to be as accurate aspossible. This is because a video

sequence is usually streamed many times to clients with heterogeneous network connections. This

implies that the cost of building an accurate R-D model will be amortized over many sessions.

Therefore, we recommend using the piecewise linear model, where the model parameters will

computed once and stored in a meta file with every video sequence.

• Streaming in real-time and video conferencing.Timing is critical in this case. In addition, real-time

streaming usually happens for sports events, which have high complexity. Therefore, we recommend

using the square root model because it has low time complexity and it is fairly accurate for medium

and high complexity sequences. The square root model can further be accelerated by adopting

a Laplacian, instead of Laplacian mixture, density function for modeling the DCT coefficients.

Estimating the parameters of Laplacian density functions is straightforward and much simpler than

the expectation-maximization method used with Laplacian mixture density functions. With Laplacian

density, the square root R-D model is at least an order of magnitude faster than with Laplacian

mixture density, while the accuracy of the resulting R-D model does not suffer much.

• Broadcasting news and low-complexity video clips.News clips usually have low complexity. We

recommend using the logarithm model in this case because it more accurate than the square root

model. The cost of constructing a piecewise linear model maynot be justified in this case because

news clips are usually broadcast a few times.

• Streaming in distributed and peer-to-peer environments.In these systems, there are potentially many

servers. It would be very costly if we let every server independently construct the R-D model for the
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same video sequence. Also, video sequences are streamed many times. Therefore, we recommend

that only one server, e.g., the creator or the introducer of the sequence, builds a piecewise linear

model for the sequence and attach it as a meta file with video data.
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