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Abstract

Rate-distortion (R-D) models are functions that descrioe rtelationship between the bitrate and
expected level of distortion in the reconstructed videeatr. R-D models enable optimization of the
received video quality in different network conditions.v8eal R-D models have been proposed for,
the increasingly becoming popular, fine-grained scalalileossequences. However, the models’ relative
performance has not been thoroughly analyzed. Moreovertithe complexity of each model is not
known, nor is the range of bitrates in which the model produadid results. This lack of quantitative
performance analysis makes it difficult to select the molat best-suits a target streaming system. In
this paper, we classify, analyze, and rigorously evalu#it®-4 models proposed for FGS coders in
the literature. We classify R-D models into three categoraalytic, empirical, and semi-analytic. We
describe the characteristics of each category. We anaigzRD models by following their mathematical
derivations, scrutinizing the assumptions made, and axiptawhen the assumptions fail and why. In
addition, we implement all R-D models, a total of eight, andleate them using a diverse set of video
sequences. In our evaluation, we consider various souraeacferistics, diverse channel conditions,
different encoding/decoding parameters, different fraypes, and several performance metrics including
accuracy, range of applicability, and time complexity otleanodel. We also present clear systematic

ways (pseudo codes) for constructing various R-D models faogiven video sequence. Based on our



experimental results, we present a justified list of recomaagions on selecting the best R-D models

for video-on-demand, video conferencing, real-time, aadrfo-peer streaming systems.

. INTRODUCTION

Video streaming on the Internet is increasingly gettingyveopular. The best-effort service offered
by the Internet, however, poses unique challenges for gigltlity video streaming. These challenges
include heterogeneity and bandwidth variability in netwwahannels between streaming servers and
clients. These challenges require streaming systems tposupitrate scalability and error resiliency.
Traditional streaming systems partially cope with thesallehges using either multi-layer or multi-
description encoding of streams. These solutions, howpvevide limited (coarse-grain) rate scalability:
clients receiving incomplete layers or descriptions canrse them to enhance display quality. These
solutions also suffer from poor error resiliency, becaumseloss or corruption of a few bits render the
entire layer useless.

In contrast to traditional multi-layer video coding, fineagularity scalability (FGS) coding has been
proposed to provide finer bitrate scalability and bettesrengsiliency [1], [2]. An FGS encoder compresses
video data into two layers: a base layer which provides bgsadity, and a single enhancement layer that
adds incremental quality refinements proportional to thelmer of bits received. Arbitrary truncation
(at the bit level) of the enhancement layer to achieve a tdijete is possible, and more importantly,
it does not require complex or resource-intensive oparatfioom the streaming servers or their proxy
caches. This in turn enables streaming servers to scalegerland more heterogeneous sets of clients.

Given the flexibility of controlling the bitrate provided B§GS encoders and the constraints on and the
variability of the channel bandwidth, researchers seekptorize the quality of received video streams.
A common method in the literature to achieve such qualitiiroiged systems is through the use of
rate-distortion (R-D) models. R-D models are functiond ttescribe the relationship between the bitrate
and expected level of distortion in the reconstructed visleeam. Knowing the R-D models enables us,
for example, to determine the required bitrate to achievarget quality, to optimally allocate a given
bandwidth among frames, and to prioritize bits within thenedrame. Clearly, the accuracy of the R-D
models directly impacts the performance of streaming systasing them. In addition, the time cost of
constructing various R-D models for a given sequence mafgiprer even dictate, a certain model over
others. For example, in real-time streaming systems, imgjldn R-D model should be fast enough to

cope with the timing constraints of the video stream.



Due to the increasing importance and adoption of FGS codistgms, several studies have proposed
R-D models for them [3]-[6]. Each of these studies conduliteittd performance evaluation, just enough
to show the merits of the proposed model. The relative pevdoice of different R-D models has not yet
been thoroughly analyzed. Moreover, the time complexitgath model is not known, nor is the range
of bitrates in which the model produces valid results. Initait, previous studies do not provide enough
specifications to enable implementing and using the prapBsB models. Finally, the importance of R-D
models stems from their usefulness for different strearmsiygjems. Because of the lack of quantitative
performance analysis of different R-D models, it is curedifficult to select the model that best-suits
a target streaming system.

In this paper, we classify, analyze, and rigorously evaldt R-D models proposed for FGS coders
that we are aware of. We classify R-D models into three categaanalytic, empirical, and semi-analytic.
Analytic models abstract the characteristics of an inpdewi sequence by the probability distribution
of its DCT coefficients. This distribution is then used in hexhatical equations that describe the
encoding/decoding processes. To derive the final R-D emuatiypically several simplifying assumptions
are made, which sometimes compromise the accuracy of thigtianaodels. Empirical R-D models
directly measure the actual distortion by decoding the widequence at many sampling bitrates. We
call the third category semi-analytic models because tmeynspired by analytic models, but they do
not use mathematical derivations to develop R-D modelshé&atach semi-analytic model proposes a
parametrized function that is thought to approximate theadR-D function. The parametrized function
takes the shape of an analytically-derived function, bu& imuch simpler form. The parameters of the
function are estimated using curve-fitting from a few actaaé-distortion data points.

We analyze the R-D models by following their mathematicalvd¢ions, scrutinizing the assumptions
made, and explaining when the assumptions fail and why. titiad, we implement all R-D models,
a total of eight, and evaluate them using a large and divessefscarefully-chosen video sequences.
In our evaluation, we consider various source characiesijstliverse channel conditions, different en-
coding/decoding parameters, different frame types, amdrakperformance metrics including accuracy,
range of applicability, and time complexity of each modeé ®Wso present clear systematic ways (pseudo
codes) for constructing various R-D models from a givenw@idequence. Finally, our experimental results
enable us to provide guidelines on selecting the most daifRkD model for a target streaming system.
We present a justified list of recommendations on choosiegotst R-D models for video-on-demand,
video conferencing, real-time, and peer-to-peer stregraystems.

The rest of this paper is organized as follows. In Sectiowd review previous works on R-D modeling.



In Section Ill, we provide a brief background on video codeygtems, reviewing the main concepts
of non-scalable, layered, and fine grained scalable coWégsalso describe how distortion is measured,
and provide an overview on how analytic rate-distortion giedare derived. Section IV presents and
analyzes various analytic R-D models, and Section V dessr@mpirical and semi-analytic models. Our
evaluation study is presented in Section VI. We concludeptqeer in Section VII, where we also present

a list of recommendations on choosing the best R-D model farget streaming system.

Il. RELATED WORK

Many R-D models have been proposed for nonscalable andeldyeaders. The pioneering work by
Hang and Chen [7] analyzes a simple coder that consists offarmnquantizer followed by an ideal
entropy coder. The authors propose a simple analytic R-Dem@thd a parameterized R-D model that
considers some characteristics of real coders. Althoughettmodel provide useful theoretical insights,
the experimental study in [8] indicates that they are noy\aeccurate. More recent R-D models use
refinements based on observations from actual coders. $tanice, the-domain model [9], [10] leverages
the high correlation between bitrates and percentage oterorguantized coefficients. Thedomain
model calculates distortion directly from raw DCT coeffiti®@ without constructing any distortion-
guantization relationship.

To achieve higher accuracy, empirical R-D models have beepagsed, e.g., in [11], [12], and [8]. In
[11], a rate-quantization model is proposedR&\) = « + (8/A7), wherea, 3, and~ are estimated
using actual measurements. In [8], a piecewise cubic R-Demisdproposed. The R-D model in [12]
utilizes the high correlation of R-D curves among conseeutiames by using the quadratic relationship:
R(D) = aD~! +bD~2, wherea andb are estimated using empirical samples from previous frames

All of the above models were proposed for nonscalable andréaly coders that are quite different
from the recent FGS coders. Various studies have showntieaetmodels are not directly applicable to
FGS coders. For example, [3] investigates the accuracyeotitiiform quantization model of [7] and the
guadratic model of [12] when applied to FGS-encoded se@serithe experiments indicate that these
two models are not applicable to FGS coders. In additionnghet al. [13] experimentally show that
the piecewise cubic model is inaccurate for FGS codershEuriore, because thedomain model has
no distortion-quantization model, applyingdomain model to FGS coders requires bitplane truncations
and direct distortion computations. This process is simdapure empirical approaches, which has high
computational complexity. Therefore, tlredomain model may not be applicable to FGS coders.

Recently several studies have proposed R-D models for F@&soMost of these models are inspired



by the R-D models of nonscalable and layered coders dedaiibave. For example, the square root model
[3] for FGS coders is a generalization of the R-D model in [Ife linear rate-quantization function
purposed in thep-domain model [10] is employed in the FGS logarithm model #je piecewise cubic
model [8] is transformed into the FGS piecewise linear m¢ia].

To the best of our knowledge, the performance and compleityGS R-D models have not been
rigorously studied before. Only limited comparisons among some of tlelais were conducted. In
[3], [4], the authors compared their new R-D models agaimstsoalable and layered R-D models for
accuracy. They analyzed four sequences that are encodefixeitl coding parameters. More importantly,
the comparison was conducted only at bitplane boundariese $GS-encoded streams can be truncated
at arbitrary bit positions, the accuracy of the R-D modelosg all bitrates should be considered. In
[5], the presented model was not compared against otherlmddstead, different curve fitting schemes
of the proposed model were compared. Similarly, the study18] only compared two alternatives:
piecewise linear and piecewise exponential models.

We believe that our comparative study is rigorous becauyaN¢ compare the FGS R-D models
against each other; (i) We use a rich set of performanceicsefior accuracy, applicable bitrate range,
and time complexity; (iii) We choose wide ranges of sampbitgates that match common usage patterns
of various streaming applications; and (iv) We use a diveedeof video sequences encoded with various

parameters.

[11. BACKGROUND

In this section, we provide a brief background on video cgdigistems, reviewing the main concepts
of non-scalable, layered, and fine grained scalable coWégsalso describe how distortion is measured,

and provide an overview on how analytic rate-distortion siedare derived.

A. Non-scalable and Layered Coding Systems

In video coding, each frame is first divided into non-ovepiag blocks. These blocks are then
passed through a transformer for energy concentration@giticdent de-correlation. Energy concentration
reduces the number of coefficients, which leads to a high@peession rate. The coefficient de-correlation
saves resources by allowing processing of coefficientshyrene, i.e., scalar quantization, without much
coding efficiency penalty. The coefficients are then quantizuch that a continuous set of inputs can be
represented by a finite set of discrete values. The main parpbquantization is to reduce unnecessary

details. A quantizer is defined with its quantization bingl @aorresponding reconstruction values. At the



encoder side, inputs falling within the range of a quanitzabin are mapped to the same quantization
index of that bin. The quantization index is a small naturahber that is sent through a communication
channel to the decoder. At the decoder side, each quantizatiex is mapped back to the reconstruction
value that corresponds to that index. A quantizer with fixeddize is called a uniform quantizer, where

the bin size is called the quantization step. In uniform duans, larger quantization steps mean higher
compression rates and more distortion. Most video codiagdsirds employ a quantization parameter to
scale the bin size, which is typically proportional to theagtization step.

Non-scalable coding systems optimize coded streams age diitrate. This implies that clients have
to meet a minimum bandwidth requirement to receive and detloel stream. Meanwhile, clients with
higher bandwidths cannot get better quality from the codiggtrbam. To address this issue, layered
bitrate scalable coding systems have been proposed. Irethgealable coding systems, data is divided
into a base layer to provide the basic decoded output, ancbon®re enhancement layers to provide
quality refinements. Receivers have the flexibility to suibecand process as many enhancement layers
as they wish to make use of the additional bandwidth they ttigle.

Layered scalability can be realized by different means fettion 11.1]. For instance, we can code the
base layer at a lower frame rate, and incrementally put meceded frames into successive enhancement
layers to achieve temporal scalability. Signal-to-NoiS&IR) scalability is another example, where each
enhancement layer uses a finer (smaller) quantization pdeanto encode the quantization error of
previous layers. These scalable coders can simultanedebWer video streams at more than one bitrates.

Layered coding systems are usually called coarse-graoadtde coding systems, because an enhance-
ment layer is not decodable unless all bits in it are receilreéddition, number of layers is typically
very small because of coding complexities and layering lowad. Therefore, layered scalable coding

systems provide limited flexibility for streaming appliicats.

B. Fine Granularity Coding Systems

Video streaming over a dynamic and diverse environmenttlieelnternet requires greater flexibility
than that is provided by layered coding systems. Therefore,granularity scalability (FGS) has been
designed to cover a wide range of bitrates at fine (bit levelps An FGS coding system encodes the
video into two layers: a base layer and an enhancement [afierbase layer supports a single bitrate
that delivers the basic video quality. The enhancement layproves upon the quality of the base layer
with a gain that is proportional to the number luifs received.

An FGS coding system may, in general, adopt any transfornersofbr its base layer and any FGS



technique for its enhancement layer. Because of its siityplémd good coding efficiency [1], [2], the
bitplane coding defined in the MPEG-4 standard is the mosigmized FGS technique nowadays. The
basic idea of bitplane coding is to represent DCT coeffisiexst binary digits. Binary digits at the same
significant position form a bitplane. Bitplanes are orddmgdheir significance, where a more significant
bitplane contains more information per bit. Losing a bit ihigher significant bitplane results in a larger
distortion than losing a bit in a lower significant bitplarigach bitplane is separately run-length coded
using the symbol format (RUN, LAST). These symbols are theaed by a variable length coder (VLC)
into a bitstream [15].

To illustrate how bitplane coding works, we present a simgt@mple. This example also draws
analogies between bitplane coding and uniform quantizaBoth techniques are used to meet resource
constraints by dropping less important details.

In bitplane coding, each coefficient is coded individuathgrefore, we concentrate on a single co-
efficient for simplicity. Table | shows that we neéfl = 4 bitplanes to code an original coefficient of
value 15 (OxOF) in its binary format. Suppose the FGS decoder decedes’ bitplanes. For example,
if z =2, the decoder decodes the first two significant bitplanes tamdeconstructed level iE2 (0x0C)
instead of15. Clearly, the reconstruction level is a function af We get no information ifz = 0; and
we get a perfect reconstruction4f= 7.

Notice that bitplane coding is essentially a quantizer withniform quantization steph (z) = 2(4—2)
(see the last two rows of Table I). This is because the inftonan the last(Z — z) bitplanes is not
seen by the decoder, as if this information were lost duringngjzation with a step at(#—2). We also
observe that the reconstruction levels are defined by mgskin the lastZ — z) bitplanes. Hence, we
can write the reconstruction level of an input coefficienas:

lx/A] x A, x>0
L(x) = 1)
[x/A] x A, =<0,
where A is the quantization step.

FGS coding provides three major advantages to streaminicappns: (1) better support for hetero-
geneous environments through bit-level scalability; (étér error resiliency because partially corrupted
bitstreams can be decoded; and (3) better streaming serakabdity due to the separation of encoding
and streaming processes.

To avoid propagating corrupted information to other frapses FGS coder does not use enhancement

layer refinements for motion compensations. While this eagin provides extra error resiliency, motion



TABLE |

BITPLANE CODING EXAMPLE.

Original Reconstructed
DCT Coefficient O0x0F 0x00 0x08 OxOC OxOE OxOF
Bp #1 1 0 1 1 1 1
Bp #2 1 0 0 1 1 1
Bp #3 1 0 0 0 1 1
Bp #4 1 0 0 0 0 1
Quantization step, A 24 23 22 2! 20
#decoded bitplanesz 0 1 2 3 4

estimating using the base layer reconstruction produagsehierrors thus negatively impacts the coding
efficiency. Progressive fine granularity scalability (PF®&s been proposed for better coding efficiency
by utilizing part of the enhancement layer for motion congagion [16].

Researchers have noticed the low coding efficiency in the $&gnificant bitplanes. This can be
explained by the uniformly distributed run-length symbfiland in them. Several solutions have been
proposed, for example, [17] proposes to divide bits into twoups: the significant bits and refinement
bits. The former group is coded with run-length and entropgecs, in contrast, the latter group is coded
with only entropy coder. A 0.25 dB Peak Signal-to-Noiseaatimprovement is reported by skipping
the run-length coding in the group of refinement bits. Basedhis idea, Chao et al. proposed a three

group approach [18].

C. Measuring Distortion and Rate-Distortion (R-D) Models

In the literature, distortion is commonly measured in tewhshe mean square error (MSE) between
the luminance values of pixels in the original and recomséd frames. Chrominance components are
usually ignored, because the human visual system is lesstiserto them compared to the luminance
components, and they only occupy about 10% of the bitrate P 9elated quality measure is the Peak
Signal-to-Noise Ratio (PSNR), which is given by: PSNR10log;, %; dB. PSNR is used in video
quality comparison.

Distortion is clearly related to the quantization stAp because reconstruction levels dependfon
according to (1). In addition, in the previous section weaklshed the similarity between uniform

guantization in traditional coding and bitplane coding neke, following [7], we can write the distortion



(in MSE) as:

N ai4+1)A
pay=2Y [ 7 f@)e - infs, @)
=0 A

wheref(z) is a symmetric probability density function describing thstribution of the DCT coefficients.
Intuitively, the above equation can be understood as fa@lovihe integral computes the distortion in a
given quantization bin. Sinc&\ is the reconstruction level for any poimtwithin the range of theéiA,

(i +1)A] bin, (z —iA)? represents the square of the error that occurs if a DCT cieffitakes on the
valuez. The probability that a coefficient takes on the vatuis described byf (z). Hence, multiplying

(x —iA)? by f(x) and integrating over the range of a bin yield the distortionMSE) in that bin. The
summation aggregates the distortion from all bins. Notieg the summation iterates only over one-half
of the total quantization bins, i.e., ov&F out of the2N bins. This is because of the symmetry ffr).

We call (2) the basic distortion-quantization (D-Q) fuctj because: (i) it relates the quantization step
with the expected distortion, and (ii) it is typically theadtpoint for developing analytic rate-distortion
models.

Rate-distortion (R-D) models are functions that prediet éxpected distortion at a given bitrate. This
is important for streaming applications that strive to woyitie rendered quality in environments where
channel conditions vary dynamically. R-D models are deriwvethree steps. First, a probability density
function f(x) is assumed for the distribution of DCT coefficients. This signfunction is called the
source model. The assumed density function is then sutestitn (2), which yields—after approximation
and manipulation—the D-Q function of the model. The secotep sn deriving R-D models is to
derive a relationship between the bitrate and the quaitizatep. This is based on insights from the
encoding/decoding processes. This relationship is caliedR-Q function. Finally, the D-Q and R-Q
functions are solved together to obtain the R-D model. Wagneand evaluate several R-D models in

the next three Sections.

IV. ANALYTIC RATE-DISTORTION MODELS

Rate-distortion (R-D) models are functions that descritgerelationship between bitrate and expected
level of distortion in a reconstructed video stream. In g@stion, we present three analytic R-D models
that are explicitly designed for the FGS enhancement ldyer.each analytic model, we present the
adopted source model. Then, we derive the R-D model in thtepss (i) we derive a distortion-
guantization (D-Q) function, which relates the quantizattep with the expected distortion; (ii) we derive

a rate-quantization (R-Q) function, which relates the dization step with the bitrate of the resulting
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bitstream; and (iii) we solve the D-Q and R-Q functions tbgeteither analytically or numerically to
obtain the R-D function. Finally, we present our own implernagion of each model. In Section VI, we

experimentally evaluate and compare these R-D models.

A. Square Root Model

The square root model assumes that DCT coefficients followmwacbomponent Laplacian mixture
(LM) distribution [3]. A Laplacian mixture function is a lear combination of several Laplacian density
functions. A two-component Laplacian mixture function igeg as:fz (z) = p13re 11714 pydze=A2l2l,
wherepq, p2 and A1, Ao are parameters that need to be estimated. Like other finkturaidistributions,
the parameters of Laplacian mixture are not easily estidhateng log-likelihood functions. Instead,
researchers adopt numerical methods such as the expeataiximization (EM) method [20, Section
8.4]. EM methods are widely used for: (1) incomplete obsima, and (2) finite mixture models. We
have designed and implemented an EM estimator based on titiedimensional estimator for Laplacian
mixture distributions proposed in [21]. The details of testimator are given in [22].

To derive a D-Q function, the square root model simplifiestthsic D-Q function in (2) using thieigh-
resolution hypothesisThe high-resolution hypothesis states that if bin sizesaalequately small relative
to the variation rate of the density function, the densityclion—in each bin—can be approximated by

a uniform density [23]. This hypothesis leads to a new D-Qcfiom:
N (m+1)A-1

22 Z (n —mA)? fru(n). 3

n=mA

Unlike (2), the D-Q function in (3) uses a series of sub-bmspproximate the integral, and it assumes

a constant density function in each sub-bin. After subitituthe LM source model, we get:

D) =i (MEA - 1 P Tl ) +

A )\12] A
P2 ey a g Ly Ly 2 4
i (MO -1+ D - ). @

wherepy, po and \;, Ao are Laplacian mixture parameters.

We make two observations on this D-Q function. First, thénbigsolution hypothesis introduces higher
approximation errors when the variation rate of the denityction is large. During our experiments
(Section VI), we observed that the DCT density function hagh hvariability in two cases: (i) when
the base layer is encoded at high bitrate, and (ii) when tleovsequence has low temporal and spatial
complexity. In both cases, the accuracy of the square rodeineas worse than other models. The second

observation is that the square root model greatly undémnatgs the distortion for small quantization steps.
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For example, settind = 1 in (3), yieldsD(1) = 2 Zi\rizo S (n—m)?fru(n) = 0. Consequently,
the produced PSNR approaches infinity/agjoes to 1. This results in exaggerated (infinity) estimation
of the stream quality, which may mislead streaming appboat using this model.

To derive the R-Q function for this model, the bitrate is fiexpressed as a function of number of
decoded bitplanes. Thenz is replaced by the quantization stépaccording to the relationship derived
in the previous sectionA = 24~* where Z is the total number of bitplanes. The square root model

proposes the following quadrati€(z) function:
R(z) = c12” + co2 + 3, (5)

wherecy, co, c3 are parameters that need to be estimated. To justify thigtium Dai et al. empirically
show that second order polynomials are sufficient for tylpite) functions [3]. Furthermore, they prove
that an actuaR(z) function changes convexity up to once, thus a second ordgn@mial is enough [6].
The proof, however, assumes that DCT coefficients followgld@an, not Laplacian mixture, distribution.
To estimater;, ¢, c3, @ set of( R, z) values is needed. This set is easily computed at bitplanedavies:
At each bitplane boundary= 1,2, ..., Z, the bitrate is computed 8s;_, [;/T", wherel; is the size of
bitplane: andT is the frame period.

Given thatA = 27-%, we get the R-Q function:
R(A) = ¢1(Z —logy A)? + ¢2(Z — logy A) + c3. (6)

ComputingA from (6) and substituting (6) in (4), we obtain th2(R) function of the square root
model. The resulting equation is fairly complicated, tliere, not shown here.

We have implemented the square root model as follows. Fiesestimate theq, p2, A1, Ao parameters
of the Laplacian mixture density function from the DCT coaéfnts of the considered frame. We use
an expectation-maximization estimator. Then, we extrhetdize of each bitplane in the enhancement
layer of the frame. Using these sizes, we construct @Rsetf (R, z) elements at bitplane boundaries
as described above. Then, we curve-fit the elemeni®.ofo (5) and obtairn, ¢o, c3. The square root
R-D model is completely specified once we determine the gomnmdel parameteys , p2, A1, A2 and the
constants:y, co, c3. The pseudocode in Figure IV-A summarizes our implemeonatif the square root

model.

B. Logarithm Model

The logarithm model employs a Laplacian mixture (LM) souncedel [4], same as the square root

model. We use the same parameter estimator used for theesgquermodel.
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SqrtModel

* Inputs:

*  FGS-encoded fram¢g

*  Frame periodT (in sec)

*/

[* Output:

*  Square root R-D model of the frame, specified @y p2, A1, A2 andey, co, cs3.
*/

1. < Z;ly,lg,...,lz >= extractBitplanelnfaof);

2. C = getDCTcoefficientx();

w

Use expectation-maximization method to estimates, A1, Ao
of the Laplacian mixture distribution using;
R=0; R, ={(0,0)};
for i=1to Z do
R=R+1;/T,;
R, =R, U{(R,i)};

endfor

© ©® N o g bk

Curve-fit elements oR, to R(z) = c12% + caz + c3 to determinecy, co, c3;

Fig. 1. Pseudo code for the square root R-D model.

To derive a D-Q function, the set of enhancement layer caoeffisC is partitioned into two subsets:
Cp andCj. C contains coefficients falling in the interval-A, A), while Cy contains all other coeffi-
cients. Note that the bitplane coding quantizes all coeffits inC, to the quantization index with zero
reconstruction level. Hencé&,, coefficients are called zero-quantized. We defie- |C| and M = |Cg|
to be the number of total and zero-quantized coefficienspaetively.

The study in [24] reveals tha&f, coefficients are responsible for the majority of distortatriow and
medium bitrates. Therefore, the logarithm model striveadourately compute the distortion caused by
Cp, and to roughly approximate the distortion relatedGg We defineD, and Dj as the distortion
contributed byC, and Cjg, respectively. We separately analyze each of them as fsllow

Since all coefficients irCy have zero reconstruction level) is given by: Dy(A) = Z le;]?. On

c;€Cy
the other handD; is approximated asDg(A) = MA?/12, where A%/12 is the average distortion of
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a single coefficient if a uniform quantizer is employed unther high resolution hypothesis. The total
distortion D is computed as the normalized sum@§ and Dg:
DO —|— D3
D(A) = === = Z jeil” + : (7)
Cle(co
Although the total number of coefficienf$ is constant, the number of coefficients@y is a function

of A. We define( as the percentage of nonzero-quantized coefficients. Bhat+ M /N, and it is a
function of A. Observe that is the probability that DCT coefficients do not fall in the gan(—A, A).

Thus, a Laplacian mixture density functiapjs given by:

A
VD VR
C:M/Nzl—/ (plée Aalel 4 py 22 Azlzl) g

=1 — (pre % + ppe™8), (8)

wherepq, p2, A1, Ao are parameters of the density function. Substituting (8)7i the D-Q function is
obtained.

The logarithm model utilizes a linear R-Q function that waspgmsed for nonscalable coders in
[25]. The applicability of this linear R-Q function to fingajned scalable coders was validated through
simulations in [4]. The linear R-Q model states that thealdtris a linear function of the percentage of

nonzero-quantized coefficient, that is:

R=7C =7 —(pie ™2 + pge 22, 9)

where~ is the slope parameter that needs to be estimated. To estimatset of( R, ¢) values is needed.
This set is constructed at bitplane boundaries: At eacHamigpboundary: = 1,2, ... Z, the bitrate is
computed a3, , /;/T, and the percentage of nonzero-quantized coefficientsnigpuated from the DCT
coefficients using a quantization step 23t=.

Analytically solving the D-Q function in (7) and the R-Q fuian in (9) to obtain the R-D model
is very complex, if at all possible. To overcome this comfilexthe authors of the logarithm model
proposed the following approximation [4]. They first solv® @nd (9) by assuming a single Laplacian
distribution. Then a linear combination of the solution sed as an approximation for the Laplacian
mixture case. Specifically, solving (7) and (9) using a Lajala distribution yields:

2 1llog(y/R) +24log (v/R) +24 R
A2 1272 v

D(R) = (10)
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And a linear combination of (10) results in the approximaf&d?) function for the logarithm model as:

D(R) = a1 — (azlog? R + azlog R + a4) R, where

T
DYRERD Ve
11py 11po
az = 2 2
12)\1 Y 12)\2 Y
(=24 —22logy)p1 | (=24 —22log ¥)p2
as = ,
’ 12X 25 12X
p1(24 + 24logy 4+ 11log?~)  pa(24 + 241log v + 111log? v)
a4 = 2 + 2 . (11)
12)\1 Y 12/\2 Yy

We have implemented the logarithm model as follows. Sintitathe case of the square root model,
we first estimate the,,p2, A1, Ao parameters of the Laplacian mixture density using an espeoct
maximization method. Then, we extract the size of eachdigplin the enhancement layer of the frame.
Using these sizes and the set of coefficiefitswe construct a seR. of (R, () elements at bitplane
boundaries as described above. Then, we curve-fit the etsmER, to (9) and obtainy. Last, we compute
ai,as,as,aq USing (11). The logarithm root R-D model is completely spedionce we determine the
constantsiy, as, as, as. The pseudocode in Figure IV-B summarizes our implementatf the logarithm

model.

C. Generalized Gaussian Function Model

The generalized Gaussian function (GGF) model uses 64lisans—of the same family but with
different parameters—as the source model [5]. Each digidb models the set of coefficients of the
same frequency component, and leads to an R-Q and a D-Q danftti that frequency component.
Recall that a frame is divided into 8x8 pixel blocks, and th@TDis applied on each block. This results
in a set of 64 DCT coefficients per block, each belonging tofeerdint frequency. Combining4 R-Q
functions gives a frame-level R-Q function, and aggrega6d D-Q functions results in a frame-level
D-Q function.

Zero-mean generalized Gaussian functions have been useddel DCT coefficients in the literature
[26]. Its density function is defined as:

fG'GF(.Z') = %e—(¥|x)u7 (12)

wherea(v) = «fﬁﬁ’?iﬁ andl'(-) denotes the Gamma function, which is defined’és) = [ e~ “¢*dt.

v,o > 0 are the shape and standard deviation parameters of théulistn. This distribution covers a



LogModel
* Inputs:
*  FGS-encoded fram¢g
*  Frame periodT (in sec)
*/
[* Output:
*  Logarithm R-D model of the frame, specified lay, as, as, as.
*/
1. < Z;ly,lg,...,lz >= extractBitplanelnfof);
2. C = getDCTcoefficientsf);
3. Use expectation-maximization method to estimates, A1, Ao
of the Laplacian mixture distribution using;
4. R=0;R:={(0,0)};
5. fori=1to Z do
6. R=R+1;/T,;
7.  C. = getQuantizedCoefff, 2 ~%);
8. (=I[C/C
9. R¢=R(U{(R, O}
10. endfor
11. Curve-fit elements dR; to R(¢) = ¢ to determiney;
12. Use Eqg. (11) to compute,, as, as, a4;

Fig. 2. Pseudo code for the logarithm R-D model.

wide range of probability distributions, as it degeneratea Laplacian distribution when = 1, and to

a Gaussian distribution whan= 2.

The parameters of generalized Gaussian functions are efitmated using one of the two methods
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[27]: (i) @ maximum likelihood method, and (ii) a moment math In the first method, a nonlinear

likelihood equation for estimating, which was shown to be a maximum likelihood estimator if aquei
root exists [29]. Furthermore, this likelihood equatiors lraunique root when the sample size approaches

infinity. When we implemented this method, though, the eiquadlid not have a unique root in some

The same estimator is independently proposed in anothek [26F.
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cases. This is because of the relatively small sample siZ2G3f coefficients. In contrary, the moment
method constantly results in a single estimation. In addjtexperimental results show that it only suffers
marginal loss of accuracy [27]. Hence, we adopt the momeithator for its simplicity and robustness.
The details of this estimator are given in [22].

To derive a D-Q model, the GGF model assumes a zero-meanesdistcibution (denoted by /)
and the high-resolution hypothesis. Sun et al. substifyig(x) for f(z) in Eq. (2); after manipulation
and simplification, the D-Q model is given by [5]:

D(A) = A?%/3. (13)

This D(A) is different from the classic uniform quantize3(A) = A?%/12 approximation, because of
the different reconstruction levels: A bitplane coder uesfloor function rather than the bin midpoints
for reconstructions (as discussed in Section IlI-B).

To derive its R-Q function, the GGF model assumes an idedabarlength coder (VLC) whose
coding efficiency can arbitrarily approach the source gytrdherefore, the GGF model employs the

source entropy to estimate the bitrate as:

R(A) = — /_OO fzrm(x)logy fzar(x)dx — logy A, (14)

where theR is in bits per pixel. Notice that, this R-Q model imposes higinputational complexity if the

integral [*°_ fzu(x) logy fzu (x)dx is not analytically solvable. Unfortunately, replacing theneralized

Gaussian function source model g, produces a function that requires a numerical integration.
The R-D function is derived by combining the D-Q model in (BB)d the R-Q model in (14). We get

D,(R;) for component as:

DZ(RZ) _ 2—2R1:—2 =2 fear(x)log, fccp(l‘)dl’/?). (15)

Next, we consider the aggregation of these B4 R;) functions for a frame-leveD(R) model. Note
that a given bitrateR is achieved by truncating a coded stream. This truncati@idde anR; for each
component (i = 1,2,...,64). These 64 components, however, are not independentlydcdderefore,
decomposingR into R; is non-trivial. To address this difficulty, authors of [5]gmose an exhaustive
search on the quantization stépfrom 1 to 64. For each), a frame-level R-D mapping is computed
by composing 64D;’s (given by (13)) and 64R;’s (given by (14)). We follow this approach to compute
R-D estimates for\'s. We then construct a piecewise linear R-D model usingeteestimations to cover

intermediateA for completeness.
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GGFModel

* Inputs:

*  FGS-encoded fram¢g

*/

/* Output:

*  GGF R-D model of the frame, specified by a piecewise lineaction that
*  connects elements dbg.

*/

1. <Cy,Cq,...,Cq4 >= getDCTcoefficients();

2. for i=1to 64 do

3. Use moment estimator to estimateo; of the generalized Gaussian function
using C;;

4. endfor

5 Dg={};

6. for A=1to 64 do

7. R=0;

8. for i =1 to 64 do // frequencies

9. R = R+ getComponentBitratef, o;, A); // Eq. (14)

10. endfor

11. Dr=DrU{(A%/3,R)};

12. endfor

Fig. 3. Pseudo code for the GGF R-D model.

We have implemented the GGF model as follows. We first eséintla¢ v;, o; parameters of the
generalized Gaussian function for frequency compondnt= 1,2,...,64) using a moment estimator.
Then, we compute a s&ti of (D, R) elements at integer quantization stejpgrom 1 to 64 as described
above. The GGF R-D model is completely specified once we ngrish piecewise linear function using
the elements o) ;. Because of the space limitations, we give the pseudocottedtGF model in [30].

The pseudocode in Figure IV-C summarizes our implememaifahe GGF model.
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V. EMPIRICAL AND SEMI-ANALYTIC MODELS

In this section, we present two empirical methods: (i) a mmgirical model for determining accurate
R-D functions which we use for comparisons, and (ii) an effitpiecewise linear model. Then, we present
three semi-analytic models that are inspired by the threéytio models described in the previous section.
Semi-analytic models do not use mathematical derivationdevelop R-D models. Rather, each semi-
analytic model proposes a parametrized function that isghbto approximate the actual R-D function.
The parametrized function takes the shape of an analytidellived function, but in a much simpler
form. The parameters of the function are estimated usingeefitting from a few actual rate-distortion

data points.

A. Empirical Model

The pure empirical approach is a brute force method to d&#zefunctions. It chooses many sampling
bitrates and decodes the video sequence at each of them, foheach sample bitrate, it computes the
distortion as the difference between the original and rettanted video sequences. Interpolation is used to
extend the discrete R-D mapping into a continuous funcfldre empirical approach requires tremendous
amount of computational power and storage space. Nevestheit produces accurate R-D curves. We
use results produced by the empirical approach as the hadeli comparing various R-D models. In
our implementation of this empirical model, we choose siigin each bitplane, including the bitplane
boundaries. And we compute the distortion at these points.

We note that constructing empirical R-D models for FGS-elecbsequences do@®t requires re-
encoding of the sequence. We only need to truncate thedatstrat appropriate bit positions. This is
in contrast to constructing empirical R-D models for noatable or layered-scalable sequences, which
requires re-encoding a video sequence at each samplirgebiRe-encoding is time consuming because
coding systems employ many optimization procedures at tiseding time. Therefore, while empirical
R-D models for FGS-encoded sequences are expensive tawanshey are much less expensive, and

more feasible than empirical R-D models for nonscalableagefed-scalable sequences.

B. Piecewise Linear Model

Traditional empirical R-D models often employ exponentrgkrpolation between sampling points.
Zhang et al. [13] found that exponential interpolations @o accurately track the actual R-D curves of
FGS-encoded sequences. The experiments in [13] revealtiext sampling bitrates are located in the

same bitplane, using linear interpolation produces smdbgiation than using exponential interpolation.
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However, if the sampling bitrates are from different bitpa, applying exponential interpolation is more
accurate. To implement the piecewise linear model, we asampling points at all bitplane boundaries

and compute the distortion at these points. Then we conhesetpoints with line segments.

C. Semi-analytic Square Root Model

This model is based on the analytic square root model in @etW-A. However, instead of using the

complicated D-Q function in (4), it uses the followirgpuristic function:
PSNR(z) = d12* + dyz + d3, (16)

where PSNR is the quality, not the distortion, ahd d-, d3 are parameters that need to be estimated.
This function is justified by the fact that the quality (innes of PSNR) is a monotonically increasing
function of the number of transmitted bitplanes. Furtheiemd@ has been shown in [6] that this function
does not change its convexity more than once. Hence, a gi@afiraction is a good approximation for
it.

Combining this simplified D-Q function with th&(z) function in (5) yields what we call the semi-

analytic square root (sSqrt) R-D model:
PSNR(R) = c1R + coVR + c3, (17)

wherec;, ¢z need to be estimated from empirical R-D samples, @and 10log,,(255%/02) for a source
with varianceo?. To implement this model, we determine the bitrate and PSKRBes at all bitplane

boundaries. Then, we do curve fitting to obtainc,, c3.

D. Semi-analytic Logarithm Model

This model is based on the analytic logarithm model in SectdB. However, instead of using
parameters of the Laplacian mixture density function, tmsdel employs curve fitting to compute
ai,as,as,aq in (11). This leads to what we call the semi-analytic lodamt(sLog) R-D model. To
implement this model, we determine the bitrate and digtortialues at all bitplane boundaries. Then we

do curve fitting to getu, as, as, a4.

E. Semi-analytic Generalized Gaussian Function Model

This model is based on the analytic GGF model in Section I\HGwever, instead of numerically
computing the integration in (14), this model utilizeheuristic function [5]:

g2 — Dy
1+ gsR’

PSNR(R) = g1R + g2 — (18)
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TABLE Il

LiST OF TESTVIDEO SEQUENCES

Class Sequences Resolution # of Frames

Akiyo Mother, Foreman Paris, Bridge-close,
) ) ) 352x288 300
Low Bridge-far, Hall-monitor, Highway, Tempete

Claire, Salesman, Grandma, Carphone 176x144 300
) Bus 352x288 150
Medium
Mobile, Container 352x288 300
Coastguard 352x288 300
High Garden 352x240 115
Tennis 352x240 112
Football 352x240 125

where PSNR is the quality), is the base layer only quality, and, g2, g3 are parameters that need to
be estimated. This function was proposed after empiricaligerving the actual R-D data and the R-D
estimations produced by the analytic GGF model. To implantiieis model, we determine the bitrate

and PSNR values at all bitplane boundaries. Then, we do diitivey to deriveg, g, g3.

VI. EVALUATION OF RATE-DISTORTION MODELS

In this section, we present an extensive experimental stodgvaluate the performance of the R-D
models described in the previous sections. We first desthde@ideo sequences used in the experiments
and why we chose them. Then, we present our experimental aatlithe performance metrics considered.
Then, we present the results of comparing analytic modalsyed by results of comparing semi-analytic

models.

A. Selection of Test Video Sequences

Choosing a representative set of video sequences is aatrifiep in evaluating and analyzing the
performance of R-D models. A homogeneous set of sequencgproduce biased comparison results,
because some models may perform exceptionally well und#gicesequences.

We use two key features to characterize video sequencefalsganplexity and temporal complexity.

To quantify these complexities, we adopt the neighborhatidrdnce metric [31]. This metric captures
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the amount of variations between a block and its neighbor dgumulating the differences among
corresponding transform coefficients in the two blocks. Hegghborhood metric approach@swhen
neighboring blocks are similar, and increases as the gitgilaetween the two blocks decreases. The
spatial complexity is measured by averaging all neighbodhdifferences in the same frame. Whereas
the temporal complexity is measured by averaging neighdmattdifferences between adjacent frames

To form a set of test sequences, we considered twenty vidgoesees from various sources [32],
[33]. Table Il lists the considered sequences. We then i§fasequences based on their spatial and
temporal complexities. Sequences that have high spat@ltemporal complexities are what we call
high-complexity sequences. In contrast, sequences withsfzatial and temporal complexities are called
low-complexity sequences. Sequences that have eithert@ighoral or spatial complexity, but not both,
are called medium-complexity sequences.

Out of these twenty sequences, we chose seven represergatuences with different complexities:
Akiyo, Mother, Foreman, Mobile, Bus, Garden, and Footbak briefly describe these seven sequences.
In Akiyo, a female reporter reads news with very limited heaodvements in front of a fixed camera.
There are more movements in Mother, especially the hand ainagriovements when compared to Akiyo.
The camera is fixed in Mother without any pan, zoom, or movedmeoreman also features a talking
person, but it was taken with a hand-held camera that inteslcamera movements. Mobile contains
saturated colors, thus has higher spatial complexity. Bas shot with a moving camera following a
running bus in short distance, which results in a high tempoomplexity. Garden contains intensive
colors and was filmed on a moving car, while Football involNets of complicated movements and
details. We believe that these seven test sequences formeg@ienough set to examine the performance

of R-D models.

B. Experimental Setup and Performance Metrics

1) Software used and implementedle use the MPEG-4 Reference Software Version 2.5 [34] de-
veloped by Microsoft as an experimental package for the MEESEandard. It is implemented in C++
and contains three major executablescoder decoder andfgsserver The encoderis a configurable
MPEG-4 encoder that can compress a raw video file into twdre@ms: base layer and enhancement
layer. Each bitstream is stored in a separate file. ddeoderis FGS-enabled, that is, it can process an
incomplete enhancement layer and produces a raw video file prvoportional quality improvements.
The fgs.serveris a utility to trim the enhancement layer according to a git@rget bitrate. It does so

by calculating the number of allowed bits in each frame atténget bitrate. These bits, which represent
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1. Choose a sequence from the test sequences (describedtionSél-A);

2. FGS-encode the sequence with base layer ftest 8, 16, 32, 64, and 128 Kbps;

3. for each R-D modetodel € {Sqrt, Log, GGF, Linear, sSqrt, sLog, sGGF'} do

4. for each base layer ratg, do

5. for each framef in the sequencdo

6. Construct the séR, of sampling bitrates by choosing equally-spaced
K samples from each bitplane;

7. for each sampling rat&, € R, do

8. Measure actual distortioP”™?(R,) by comparing reconstructed and

original frames;

9. Estimate distortion using the R-D modBl"#*!(R,);

10. Compute the distortion deviation asi(Rs) = |D“™ (Rs) — D™ (R,)|;

11. endfor

12. Compute the average distortion deviation per frame;

13. Maintain the average distortion deviation for each &aype: |, P, B;

14. endfor

15. Compute the average and maximum distortion deviationssa all frames;

16. Measure the total running time;

17. Compute the normalized range of applicability;

18. endfor

19. endfor

20. Repeat steps 1—19 for another video sequence;

Fig. 4. Our procedure for rigorously evaluating the perfance of various R-D models.

the truncated bitstream, are then saved in a new file. We hestaumented the reference software to
extract various characteristics of an input video sequéraeinstance, we collect transform coefficients,
number of bitplanes, and size of each bitplane in the enmaegtlayer. This information is used to
estimate parameters of the R-D models.

We have implemented all R-D models described in this paptah of eight models. Specifically, we
have implemented the three analytic R-D models: square(dmstoted by Sqrt in the plots), logarithm

(Log), and generalized Gaussian (GGF); the pure empiricaleh(Emp), the piecewise linear (Linear),
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and the three semi-analytic R-D models: semi-analytic 5ot (sSqrt), semi-analytic logarithm (sLog),
and semi-analytic generalized Gaussian (sGGF). All modeismplemented in Matlab.

2) Selection of Sampling bitrate$Ve evaluate the R-D models across a wide range of bitratésnhp
at bitplane boundaries. This is important because strepagplications using FGS-encoded sequences
are allowed to truncate bitstreams at arbitrhitypositions. It is also critical to emphasize on the range
of bitrates that most applications will heavily use. To &elei these two goals, we propose the following
sampling scheme. Suppo&es the total number of bitplanes, is the size of bitplane (z = 1,2,..., 2),
andT is the frame period. We chood€ equally-spaced bitrates in each bitplane. Specificallyfamn

the set of sampling bitrateR; as

R, ={0}U{R**|2=1,2,...,Zandk =1,2,...,K}, (19)

2k _ 25T Lt (L /K) (k)
where R;" = T .

The sefR; achieves the above two goals, because it covers the whodgebiinge from base layer only
(Rs = 0) to full quality (Rs = RSZ’K). Furthermore, since the most significant bitplanes are#@jy small
in size, gaps between sampling bitrates will be small. Tioeeethe accuracy of the considered R-D model
will be higher in these significant bitplanes. The R-D parfance of significant bitplanes is crucial for
two reasons. First, significant bitplanes have high perdatction rates in distortion. This implies more
sampling bitrates are needed to capture the rapid distoviwiations. Second, significant bitplanes are
streamed more often owing to the embedded property of F@Bden streams. The embedded property
states that a lower-rate bitstream is always a prefix of aduighte one.

3) Performance MetricsWe consider the following performance metrics for each R-@dei: accu-
racy, range of applicability, and time complexity.

We consider model accuracy at different granularitiesiridividual sampling bitrates, for every frame,
and for the whole sequence. We measure accuracy as theeddfeetween the quality (in PSNR)
predicted by the considered R-D model and the actual quality given bitrate. Specifically, for every

sampling bitrateR; € R, we compute the absolute distortion deviation (or error) as
ef(Rs) = [D™(Ry) — D"™*(R,)], (20)

where D"?(Ry) is the actual distortion computed by comparing the recaotd and original frames,
and D4 (R,) is the distortion estimated by the R-D model for framhat bitrate R,. For the frame
level, we compute the average distortion deviation ovesathpling bitrates. We also compute the average
distortion deviation for different frame types (I, P, and Bdr the sequence level, we compute the average

and maximum deviations across all frames.
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Ideally, an R-D model should provide valid—finite and nona@ge—distortion estimations for all
sampling bitratesk;. Unfortunately, some R-D models only support a subset ofithele bitrate range.
To capture this important aspect, we use the range of ajydligametric. The range of applicability of
an R-D model is delimited by the smallest bitrate beyond Whitat model fails to provide valid results.
To enable cross-sequence comparisons, we normalize tige @napplicability by dividing it by the
maximum bitrate of the sequence. The maximum bitrate of @gence occurs when all bitplanes are
transmitted.

Time complexity is also an important metric especially flseaming applications that use R-D models
in real-time, e.g., video conferencing. We measure theingntime to construct R-D models. To mitigate
the effect of clock precisions and interruptions from themying system, we measure the running time
for all frames in a video sequence and report the averagégree running time. All experiments are
conducted on a 2.8 GHz Pentium 4 workstation.

4) Evaluation ProcedureWe evaluate the R-D models on the set of video sequencesilzEsdn
Section VI-A. We FGS-encode every video sequence at sadiffiexkent bitrates for the base layer. The rate
of the base layer directly impacts the number and size ofarigs in the enhancement layer. Therefore,
we are effectively evaluating the models under differefetiee sizes of the base and enhancement layers.
This is important because streaming systems work in diffenetwork environments, and they typically
adjust the base layer rate based on these conditions. Iticagdor every video sequence encoded at a
given base layer rate, we decode the enhancement layefexedif rates. This is done by truncating the
bitstream at the appropriate bit positions. Decoding derdiht rates captures the heterogeneous nature
of clients and the diverse communication channels overwthiey receive video sequences. Figure VI-A
summarizes the procedure that we follow in evaluating thfopmance of R-D models.

We believe that our experimental set up and evaluation plreerigorously evaluate the R-D models,
because they account for various source characterisiie@r,sd communication channel conditions, and

different encoding/decoding parameters.

C. Results for Analytic Models

We first discuss accuracy of the analytic R-D models, folldviog their applicable ranges and time
complexities.

1) Accuracy: We plot the frame-level average distortion deviation inufgg5. We present results of
a sample sequence in each complexity class (from left ta:righv, medium, and high complexity) in

each vertical column of subfigures. Each horizontal row esents a different base layer rafg. We
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The frame-level average distortion deviation of B« models of three video sequences of different compkeiti
where the base layers are coded with different bitrates.



26

make a few observations on this figure. First, the GGF modmdymres the highest distortion deviation,
at least 4 dB, in all cases. Second, the logarithm model paddetter than the square root model in
low complexity sequences. Furthermore, in medium and hayhptexity sequences, the logarithm model
still outperforms the square root model for base layer tatfg, > 32 Kbps. These two models have
comparable accuracy faRr, = 32 Kbps; the square root model performance is improvedHpr< 32
Kbps.

We also study the accuracy for different frame types. Plbte@average distortion deviation for I-, P-,
and B-frames are given in Figures 6, 7, and 8, respectivéilg. résults show the same relative accuracy.
This indicates the frame type does not affect relative amyuof these models.

We present the sequence-level average and maximum distaleviation for different sequences coded
at different base layer rate3, in Figures 9-12, where the sequences are sorted in asceodiag of
their complexities. As shown in Figure 11, the logarithm mlod the most accurate in terms of the
average distortion deviation with at most 3 dB deviationjl&vkthe square root model produces as high
as 6 dB and the GGF model results in as high as 7 dB. Comparengdbare root model versus the
logarithm model, we observe that: (i) The square root moesllts in higher distortion deviations for
lower complexity sequences as shown in Figures 11(b), 11&R), and 12(b). (ii) The logarithm model
produces higher distortion deviations for higher compiegequences that are coded with low base layer
rates R, as shown in in Figures 11(a) and 12(a).

Then, we study the shape of R-D curves for a few frames. Fid@rdlustrates that: (i) The GGF
model suffers high distortion deviations at low bitrates,tlae high resolution hypothesis does not hold
when the quantization step is large; and (ii) The logarithmd aquare root models over estimate the
quality at high bitrates. More importantly, the logarithnodel does not produce a non-decreasing R-D
curve in some cases, a sample result is shown in Figure I3{@®.is inaccurate because higher bitrates
should always lead to better quality. We further investigiie root cause of the problem.

The logarithm model utilizes a linear R-Q model which asssirtteat the percentage of non-zero
quantized coefficients is a linear function of the bitrate. Through extensive ekpents, we find that
this linearity is strong in the more significant bitplanespecially in the first four bitplanes. Since low
complexity sequences only have a few bitplane, the lingatiomship is strong for these sequences. In
contrast, for high complexity sequences coded at low bags lates, this linearity starts to break. We
present the actudl-R curve and the estimated one in Figure 14. This figure expléie abnormal R-D
curves at high bitrates observed in Figures 13(a)-13(c).

In summary, the GGF model is the least accurate in all caskeite the logarithm model is the most
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accurate except for medium or high complexity sequencesateacoded at base layer rates less than
32 Kbps. The square root model is not accurate for low conilplesequences coded at high base layer
bitrates, because these coded streams: (i) have soundibutishs with large variation rates that contradict
the high frequency hypothesis, and (ii) have a few bitplatiesrefore, the estimation inaccuracy in the
least significant bitplanes dominates the overall perforwea The performance of the logarithm model
suffers in high complexity sequences coded at low base laigeates, because the R-Q relationship of
these code streams deviates from the assumed linear R-Q.mode

2) Range of Applicability:We present the range of applicability in Figure 15, whichvehidhat: (i)
The logarithm model supports all bitrates—from 0 to the fgliality; (i) The square root model is
less applicable in the least significant bitplanes: sin@e domplexity sequences have a few bitplanes,
the square root model is applicable only for about 70% ofabés in these sequences; however, it is

applicable for almost 95% of bitrates in medium and high clexify sequences; and (i) The GGF
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Fig. 13.

coded at different bitrates.

R-D curves for four models applied to three videouseges of different complexities, where the base layers are
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bitplanes. This inaccuracy results in erroneous R-D egitms

model’'s applicability is no more than 70% in all cases.

3) Time Complexity:We show the average running time for each frame in Figure s Tigure
illustrates that: (i) The GGF model is the most efficient; giid The square root model is slightly
faster than the logarithm model, because the latter regjairegme-intensive estimation of its R-Q model

parametery.
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D. Results for Empirical and Semi-analytic Models

We present and analyze the results for empirical and sealjfdmmodels. We consider one empirical
model—the piecewise linear (Linear) model—and three smmaiytic models: the square root (sSqrt), the
logarithm (sLog), and the GGF (sGgFWe implemented these models using the nonlinear leastreg
fitting subroutine provided by Matlab.

1) Accuracy:Figure 17 shows the frame-level average distortion deviadf these models. We observe
that: (i) the piecewise linear model produces negligibleiags less than 0.2 dB, error in all cases; (ii)
the square root model has up to 1 dB deviation and is more afectiman the GGF and the logarithm
model; and (iii) the logarithm model results in the highestireation error in almost all cases.

We also notice that the semi-analytic models result in maretdgations of frame-level average error.
This is because the non-linear optimization methods maylesd to a global optimal solution, and
sometimes they do not even terminate. Therefore, the methoal often associated with a maximum
number of iterations. We set the iteration limit to be 1000es$. In contrast, the piecewise linear model
is derived using a simple arithmetic—connecting two poinrith a line. This is not only more robust,
but also much more efficient.

Next, we study the shape of R-D curves in Figure 18. We seerataoR-D curves caused by
the imperfect curve fitting: for instance, the semi-analjtigarithm model produces a decreasing R-
D segment in Figure 18(h). In addition, Figure 18 illustsateat while other models produce accurate
estimations only at bitplane boundaries; the piecewissalimodel results in accurate estimations in the

entire bitplane. This explains the highest accuracy pexbidy the piecewise linear model.
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Fig. 19. The average running time of the empirical and semiydic R-D models across all frames of all video sequendes o
different complexities.

2) Time Complexity:Figure 19 implies that while the piecewise linear model hagligible time
complexity, the semi-analytic models require at least whsilliseconds to terminate. We find that the
logarithm model requires the longest running time, up to Bllseconds in the worst case, because of

its high non-linearity. The square root is the most efficieami-analytic model.

VIlI. CONCLUSIONS ANDRECOMMENDATIONS FORCHOOSING R-D MODELS

A. Conclusions

We investigated various rate-distortion (R-D) models forefgrained scalable video sequences. We
classified R-D models into three categories: analytic, eoglj and analytically-inspired empirical (or
semi-analytic). We have analyzed the three analytical Rdglels known in the literature: square-root
(Sqrt), logarithm (Log), and generalized Gaussian fumc(@GF). We also presented three semi-analytic
models based on the above analytic models: sSqrt, sLog,@@é.9dn addition, we discussed how a pure
empirical model can be implemented by measuring the distort equally-spaced sampling bitrates.
Finally, we presented the piecewise linear model, whichrowes upon the pure empirical model by
choosing sampling bitrates at bitplane boundaries andexiimy these samples by line segments.

We presented systematic ways (pseudo codes) for consguitte R-D models from a given video
sequence. We implemented all of the above eight R-D modei4aittab, and we evaluated them using a
large and diverse set of carefully-chosen video sequefrcesr evaluation process, we considered various
source characteristics, diverse channel conditionsr@ifit encoding/decoding parameters, different frame

types, and several performance metrics including accuraoge of applicability, and time complexity

of each model.
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The findings from our extensive experimental study can bensaized as follows:

1) The GGF model shows large deviations from actual distosti It also does not produce valid
results at high bitrates. Therefore, we believe it will bditifie use in practice.

2) If the base layer is encoded at high bitrate 32 Kbps), the logarithm model produces the most
accurate distortion estimations.

3) If the base layer is encoded at lower bitrates 32 Kbps) and the video sequence has high or
medium complexity, the square root model is more accurate the logarithm model. However, if
the sequence has low complexity, the logarithm model preslibetter results with any base layer
rate.

4) The reasons behind 2) and 3) can be explained as followtbelbase layer rate is high or the

sequence has low complexity, fewer bitplanes will existia €nhancement layer. In this case, the
linear relationship between the bitrate and percentag@otero-quantized coefficients is accurate
as indicated by our results. This relationship is employgdhz logarithm model, it is why it
produces good results in this case. On the other hand, theresquot model produces higher
deviations in the least-significant bitplanes. And sincehaee a few total bitplanes, the impact of
these high deviations will dominate, and the performancthefsquare root model will suffer.
For high and medium complexity sequences and when the bgse fate is small, the converse
of the above argument applies. That is, more bitplanes é@xishe enhancement layer and the
linear relationship used by the logarithm model becomes éxurate, reducing the accuracy of
the logarithm model. At the same time, the effect of the dewis in the least-significant bitplanes
of the square root model decreases as the number of bitplaoesises, making the square root
model more accurate.

5) Regarding the range of applicability, the logarithm mlodivays produces valid results at all
possible bitrates. This is not the case for the square rootemés we explained in Section IV-A,
the square root model greatly over estimates the qualitgiieall quantization steps, approaching
infinity for a quantization step of 1. Small quantizationpsteorrespond to high bitrates. This over
estimation of quality limits the applicability of the sqearoot model to about 70% of the possible
bitrates for low complexity sequences.

6) The time complexity of the square root model is smallenttiee logarithm model. The logarithm
model is slow because estimating the slope parameter ofrtbarirelationship between the bitrate

and percentage of nonzero-quantized coefficients is ekmenghis is because the estimation
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process requires bitplane truncations and computing theegmonding percentage of the truncated
coefficients.

7) In general, the empirical and semi-analytic R-D modeés raore accurate than the analytic R-D
models.

8) Te curve-fitting methods employed by the semi-analyticdel® are time-consuming and may
occasionally result in inaccurate estimations for the nhpdeameters.

9) Finally, the piecewise linear model is simple and faitgarate, when compared to all other models.

B. Recommendations for Choosing R-D models

Our experimental results enable us to provide guidelinesabecting the most suitable R-D model for
a target streaming system. We summarize our recommendatiahe following.

» Streaming stored video sequences and video-on-demaredrsydn these systems, the R-D model
can be computed off-line and it is desired to be as accuragossible. This is because a video
sequence is usually streamed many times to clients withrdggeeous network connections. This
implies that the cost of building an accurate R-D model wil &dmortized over many sessions.
Therefore, we recommend using the piecewise linear modeéravthe model parameters will
computed once and stored in a meta file with every video seguen

« Streaming in real-time and video conferencingming is critical in this case. In addition, real-time
streaming usually happens for sports events, which havedogplexity. Therefore, we recommend
using the square root model because it has low time compleri it is fairly accurate for medium
and high complexity sequences. The square root model cdhefube accelerated by adopting
a Laplacian, instead of Laplacian mixture, density funttior modeling the DCT coefficients.
Estimating the parameters of Laplacian density functienstiaightforward and much simpler than
the expectation-maximization method used with Laplaciatiure density functions. With Laplacian
density, the square root R-D model is at least an order of ihadg faster than with Laplacian
mixture density, while the accuracy of the resulting R-D mlodioes not suffer much.

« Broadcasting news and low-complexity video cligdews clips usually have low complexity. We
recommend using the logarithm model in this case becauseri¢ mccurate than the square root
model. The cost of constructing a piecewise linear model n@ybe justified in this case because
news clips are usually broadcast a few times.

« Streaming in distributed and peer-to-peer environmeinsthese systems, there are potentially many

servers. It would be very costly if we let every server indegently construct the R-D model for the
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same video sequence. Also, video sequences are streamgdtiman. Therefore, we recommend
that only one server, e.g., the creator or the introducehefsequence, builds a piecewise linear

model for the sequence and attach it as a meta file with vidén da
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