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Abstract

This paper presents adaptive and non-adaptive fuzzy c-means clustering methods for partitioning symbolic interval data. The pro-
posed methods furnish a fuzzy partition and prototype for each cluster by optimizing an adequacy criterion based on suitable squared
Euclidean distances between vectors of intervals. Moreover, various cluster interpretation tools are introduced. Experiments with real
and synthetic data sets show the usefulness of these fuzzy c-means clustering methods and the merit of the cluster interpretation tools.
� 2006 Published by Elsevier B.V.
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1. Introduction

Clustering methods seeks to organize a set of items into
clusters such that items within a given cluster have a high
degree of similarity, whereas items belonging to different
clusters have a high degree of dissimilarity. These methods
have been widely applied in various areas such as taxon-
omy, image processing, information retrieval, data mining,
etc. Clustering techniques may be divided into hierarchical
and partitioning methods (Jain et al., 1999; Gordon, 1999):
hierarchical methods yield complete hierarchy, i.e., a nested
sequence of partitions of the input data, whereas partition-
ing methods seek to obtain a single partition of the input
data in a fixed number of clusters, usually by optimizing
an objective function.

In clustering analysis, the patterns to be grouped are
usually represented as a vector of quantitative or qualita-
tive measurements where each column represents a vari-
able. Each pattern takes a single value for each variable.
However, this model is too restrictive to represent complex
data. In order to take into account variability and/or
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uncertainty inherent to the data, variables must assume sets
of categories or intervals, possibly even with frequencies or
weights. These kinds of data have been mainly studied in
Symbolic Data Analysis (SDA), a new domain related to
multivariate analysis, pattern recognition and artificial
intelligence. The aim of Symbolic Data Analysis is to pro-
vide suitable methods (clustering, factorial techniques,
decision trees, etc.) for managing aggregated data
described by multi-valued variables, where the cells of the
data table contain sets of categories, intervals, or weight
(probability) distributions (Bock and Diday, 2000; Billard
and Diday, 2003).

SDA provides a number of clustering methods for sym-
bolic data. These methods differ in the type of the consid-
ered symbolic data, in their cluster structures and/or in
the considered clustering criteria. With hierarchical meth-
ods, an agglomerative approach has been introduced that
forms composite symbolic objects using a join operator
whenever mutual pairs of symbolic objects are selected
for agglomeration based on minimum dissimilarity
(Gowda and Diday, 1991) or maximum similarity (Gowda
and Diday, 1992). Ichino and Yaguchi (1994) defined gen-
eralized Minkowski metrics for mixed feature variables and
presents dendrograms obtained from the application of
ns clustering methods for symbolic interval data, Pattern Recog.
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standard linkage methods for data sets containing numeric
and symbolic feature values. Gowda and Ravi (1995a) and
Gowda and Ravi (1995b), respectively, presented divisive
and agglomerative algorithms for symbolic data based on
the combined usage of similarity and dissimilarity mea-
sures. These proximity measures are defined on the basis
of the position, span and content of symbolic data. Cha-
vent (1998) proposed a divisive clustering method that
simultaneously furnishes a hierarchy of the symbolic data
set and a monothetic characterization of each cluster in
the hierarchy. Gowda and Ravi (1999a) presented a hierar-
chical clustering algorithm for symbolic data based on the
gravitational approach, which is inspired on the movement
of particles in space due to their mutual gravitational
attraction. Guru et al. (2004) and Guru and Kiranagi
(2005) introduced agglomerative clustering algorithms
based, respectively, on similarity and dissimilarity func-
tions that are multi-valued and non-symetric.

A number of authors have addressed the problem of
non-hierarchical clustering for symbolic data. Diday and
Brito (1989) used a transfer algorithm to partition a set
of symbolic objects into clusters described by weight distri-
bution vectors. Ralambondrainy (1995) extended the clas-
sical k-means clustering method in order to manage data
characterized by numerical and categorical variables, and
complemented this method with a characterization
algorithm to provide a conceptual interpretation of the
resulting clusters. Gordon (2000) presented an iterative
relocation algorithm to partition a set of symbolic objects
into classes so as to minimize the sum of the description
potentials of the classes. Verde et al. (2001) introduced a
dynamic clustering algorithm for symbolic data consider-
ing context-dependent proximity functions, where the clus-
ter representatives are weight distribution vectors. Bock
(2002) has proposed several clustering algorithms for
symbolic data described by interval variables, based on a
clustering criterion and has thereby generalized similar
approaches in classical data analysis. Chavent and Leche-
vallier (2002) proposed a dynamic clustering algorithm
for interval data where the class representatives are defined
by an optimality criterion based on a modified Hausdorff
distance. Souza and De Carvalho (2004) proposed parti-
tioning clustering methods for interval data based on
city-block distances, also considering adaptive distances.
More recently, De Carvalho et al. (2006) proposed an
algorithm using an adequacy criterion based on adaptive
Hausdorff distances.

Conventional hard clustering methods restrict each
point of the data set to exactly one cluster. Fuzzy clustering
generates a fuzzy partition based on the idea of partial
membership expressed by the degree of membership of
each pattern in a given cluster. Concerning quantitative
data, Dunn (1974) presented one of the first fuzzy cluster-
ing methods based on an adequacy criterion defined by the
Euclidean distance. Bezdek (1981) further generalized this
method. Diday and Govaert (1977) introduced one of the
first approaches to use adaptive distances in partitioning
Please cite this article in press as: de Carvalho, F.d.A.T., Fuzzy c-mea
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quantitative data. Gustafson and Kessel (1979) introduced
the first adaptive fuzzy clustering algorithm, based on a
quadratic distance defined by a fuzzy covariance matrix.
El-Sonbaty and Ismail (1998) presented a fuzzy c-means
algorithm to cluster data on the basis of different types of
symbolic variables. Yang et al. (2004) presented fuzzy clus-
tering algorithms for mixed features of symbolic and fuzzy
data. In these fuzzy clustering algorithms, the membership
degree is associated to the values of the features in the clus-
ters for the cluster centers instead of being associated to the
patterns in each cluster, as is the usual case.

As pointed out above, items to be clustered are usually
represented as a vector of quantitative measurements.
However, due to recent advances in database technologies,
it is now common to record interval data. Therefore, tools
for symbolic interval data analysis are very much required.
This paper introduces adaptive and non-adaptive fuzzy
c-means clustering algorithms for symbolic interval data,
as well as various tools for fuzzy partition and cluster inter-
pretation suitable for these fuzzy clustering algorithms.

Section 2 presents the (adaptive and non-adaptive) fuzzy
c-means clustering algorithms for partitioning symbolic
interval data. Celeux et al. (1989) introduced a family of
indices for interpreting a hard partition of classical quanti-
tative data based on the notion of the sum of squares. In
this paper, we adapt these indices to fuzzy partitions of
symbolic interval data. In Section 3, we propose various
tools for cluster interpretation according to the different
fuzzy clustering models: indices for evaluating the quality
of a partition, the homogeneity and eccentricity of the indi-
vidual clusters and the role played by the different variables
in the cluster formation process. To show the usefulness of
these fuzzy clustering algorithms and the merit of these
cluster interpretation tools, experiments with simulated
data in a framework of a Monte Carlo schema as well as
applications with real symbolic interval data sets are con-
sidered (Section 4). Section 5 gives the concluding remarks.

2. Fuzzy c-means clustering methods for symbolic interval
data

This section introduces two fuzzy c-means clustering
methods for symbolic interval data. The first method is a
suitable extension of the standard fuzzy c-means clustering
algorithm that furnishes a fuzzy partition and a prototype
for each cluster by optimizing an adequacy criterion based
on a suitable squared Euclidean distance between vectors
of intervals. The second method introduces an adaptive
version of the the first method, where the adequacy crite-
rion is based on a suitable adaptive squared Euclidean
distance.

2.1. Fuzzy c-means clustering method for symbolic interval

data

Let X = {1, . . . ,n} be a set of n patterns (each pattern is
indexed by k) described by p symbolic interval variables
ns clustering methods for symbolic interval data, Pattern Recog.
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{y1, . . . ,yp} (each variable is indexed by j). A symbolic inter-

val variable X (Bock and Diday, 2000) is a correspondence
defined from X in R such that for each k 2 X;X ðkÞ ¼
½a; b� 2 I, where I ¼ f½a; b� : a; b 2 R; a 6 bg is the set
of closed intervals defined from R. Each pattern k is repre-
sented as a vector of intervals xk ¼ ðx1

k ; � � � ; x
p
kÞ, where

xj
k ¼ ½a

j
k; b

j
k� 2 I. In this paper, an interval data table

fxj
kgn�p is made up of n rows representing the n patterns

to be clustered, and p columns representing p symbolic
interval variables. Each cell of this table contains an inter-
val xj

k ¼ ½a
j
k; b

j
k� 2 I. Let each prototype gi of cluster Pi be

also represented as a vector of intervals gi ¼ ðg1
i ; � � � ; g

p
i Þ,

where gj
i ¼ ½aj

i ; b
j
i � 2 I.

As in the standard fuzzy c-means algorithm (Bezdek,
1981), the fuzzy c-means clustering method for symbolic
interval data (here labeled IFCM) aims to furnish a fuzzy
partition of a set of patterns in c clusters {P1, . . . ,Pc} and
a corresponding set of prototypes {g1, . . . ,gc} such that a
criterion W1 measuring the fitting between the clusters
and their representatives (prototypes) is locally minimized.
This criterion is based on a non-adaptive squared Euclid-
ean distance between vectors of intervals and is defined
as:

W 1 ¼
Xc

i¼1

Xn

k¼1

ðuikÞm/ðxk; giÞ

¼
Xc

i¼1

Xn

k¼1

ðuikÞm
Xp

j¼1

½ðaj
k � aj

iÞ
2 þ ðbj

k � bj
iÞ

2� ð1Þ

where / is the square of a suitable Euclidean distance mea-
suring the dissimilarity between a pair of vectors of intervals,
xk ¼ ðx1

k ; . . . ; xp
kÞ is a vector of intervals describing the kth

pattern, gi ¼ ðg1
i ; . . . ; gp

i Þ is a vector of intervals describing
the prototype of class Pi, uik is the membership degree of pat-
tern k in cluster Pi and m 2 ]1,+1[ is a parameter that con-
trols the fuzziness of membership for each pattern k.

As in the standard fuzzy c-means algorithm (Bezdek,
1981), this algorithm sets an initial membership degree
for each pattern k in each cluster Pi and alternates a repre-

sentation step and an allocation step until convergence when
the criterion W1 reaches a stationary value representing a
local minimum.

2.1.1. Representation step: definition of the best prototypes

In the representation step, the membership degree uik of
each pattern k in cluster Pi is fixed.

Proposition 2.1. The prototype gi ¼ ðg1
i ; . . . ; gp

i Þ of class Pi

(i = 1, . . . , c), which minimizes the clustering criterion W1,

has the bounds of the interval gj
i ¼ ½a

j
i ; b

j
i � ðj ¼ 1; . . . ; pÞ

updated according to the following expression:
aj
i ¼

Xn

k¼1
ðuikÞmaj

kXn

k¼1
ðuikÞm

and bj
i ¼

Xn

k¼1
ðuikÞmbj

kXn

k¼1
ðuikÞm

;

for j ¼ 1; . . . ; p ð2Þ
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Proof. The proof can be obtained in a similar way as
described in Bezdek (1981) for the case of standard quanti-
tative data. h
2.1.2. Allocation step: definition of the best fuzzy partition

In the allocation step, each prototype gi of class Pi

(i = 1, . . . ,c) is fixed.

Proposition 2.2. The membership degree uik (k = 1, . . . , n) of

each pattern k in each cluster Pi, minimizing the clustering

criterion W1 under uik P 0 and
Pc

i¼1uik ¼ 1, is updated

according to the following expression:

uik ¼
Xc

h¼1

Xp

j¼1
½ðaj

k � aj
iÞ

2 þ ðbj
k � bj

iÞ
2�Xp

j¼1
½ðaj

k � aj
hÞ

2 þ ðbj
k � bj

hÞ
2�

0
@

1
A

1
m�1

2
64

3
75
�1

for i ¼ 1; . . . ; c ð3Þ

Proof. The proof can be obtained in a similar way as
described in Bezdek (1981) for the case of standard quanti-
tative data. h
2.1.3. Algorithm

The IFCM clustering algorithm for symbolic interval
data is executed in the following steps:

(1) Initialization

Fix c, 2 6 c < n; fix m, 1 < m <1; fix T (an iteration
limit); and fix e > 0; Initialize uik (k = 1, . . . ,n and
i = 1, . . . ,c) of pattern k belonging to cluster Pi such
that uik P 0 and

Pc
i¼1uik ¼ 1

(2) t = 1
(3) Representation step:

{the membership degree uik of pattern k belonging to
cluster Pi is fixed}
Compute the prototypes gi of class Pi (i = 1, . . . ,c)
using Eq. (2)

(4) Allocation step:
{the prototypes gi of class Pi (i = 1, . . . ,c) are fixed}
Update the fuzzy membership degree uik of pattern k

belonging to cluster Pi (i = 1, . . . ,c) using Eq. (3)
(5) Stopping criterion

If jW 1
tþ1 � W 1

t j 6 e or t > T

stop
else t = t + 1 and go to step 3

2.2. An adaptive fuzzy c-means clustering method for

symbolic interval data

In this section, we present a fuzzy c-means clustering
method for symbolic interval data based on an adaptive
squared Euclidean distance between vectors of intervals
(here labeled IFCMADC). The main idea is that there is
a different distance associated to each cluster for compar-
ing clusters and their representatives that changes at each
ns clustering methods for symbolic interval data, Pattern Recog.
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iteration, i.e., the distance is not definitively determined
and is different from one class to another. The advantage
of these adaptive distances is that the clustering algorithm
is able to find clusters of different shapes and sizes (Diday
and Govaert, 1977; Gustafson and Kessel, 1979).

This adaptive method looks for a fuzzy partition of a set
of patterns in c clusters {P1, . . . ,Pc}, the corresponding
c prototypes {g1, . . . ,gc} and the square of an adaptive
squared Euclidean distance between vectors of intervals
that is different for each class, such that a criterion W2 mea-
suring the fitting between the clusters and their representa-
tives (prototypes) is locally minimized. This criterion W2 is
based on an adaptive squared Euclidean distance for each
cluster and is defined as

W 2 ¼
Xc

i¼1

Xn

k¼1

ðuikÞmwiðxk; giÞ

¼
Xc

i¼1

Xn

k¼1

ðuikÞm
Xp

j¼1

kj
i ½ða

j
k � aj

iÞ
2 þ ðbj

k � bj
iÞ

2� ð4Þ

where xk, gi, uik and m are defined as before and w is now
the square of an adaptive Euclidean distance defined for
each class and parameterized by the vectors of weights
ki ¼ ðk1

i ; . . . ; kp
i Þði ¼ 1; . . . ; cÞ, which change at each

iteration.
The algorithm starts from an initial membership degree

for each pattern k in each cluster Pi and alternates a repre-
sentation step and an allocation step until the convergence,
when the criterion W2 reaches a stationary value represent-
ing a local minimum. The representation step now has two
stages.

2.2.1. Representation step: definition of the best prototypes

In the first stage, the membership degree uik of each
pattern k in cluster Pi and the vectors of weights ki ¼
ðk1

i ; . . . ; kp
i Þ ði ¼ 1; . . . ; cÞ are fixed.

Proposition 2.3. The prototype gi ¼ ðg1
i ; . . . ; gp

i Þ of class Pi

(i = 1, . . . , c), which minimizes the clustering criterion W2,

has the bounds of the interval gj
i ¼ ½a

j
i ; b

j
i � ðj ¼ 1; . . . ; pÞ

updated according to the following expression:

aj
i ¼

Xn

k¼1
ðuikÞmaj

kXn

k¼1
ðuikÞm

and bj
i ¼

Xn

k¼1
ðuikÞmbj

kXn

k¼1
ðuikÞm

for j ¼ 1; . . . ; p ð5Þ

Proof. The proof can be obtained in a similar way as
described in Bezdek (1981) for the case of standard quanti-
tative data. h
2.2.2. Representation step: definition of the best distances

In the second stage, the membership degree uik of each
pattern k in cluster Pi and the prototypes gi of class Pi

(i = 1, . . . ,c) are fixed.

Proposition 2.4. The vectors of weights ki ¼ ðk1
i ; . . . ;

kp
i Þ ði ¼ 1; . . . ; cÞ, which minimize the clustering criterion
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W2 under kj
i > 0 and

Qp
j¼1k

j
i ¼ 1, are updated according to

the following expression:

kj
i ¼

Yp

h¼1

Xn

k¼1
ðuikÞmððah

k � ah
i Þ

2 þ ðbh
k � bh

i Þ
2Þ

h in o1
p

Xn

k¼1
ðuikÞm½ðaj

k � aj
iÞ

2 þ ðbj
k � bj

iÞ
2�

;

j ¼ 1; . . . ; p ð6Þ

Proof. The proof is given in Appendix A. h
2.2.3. Allocation step: definition of the best fuzzy partition

In the allocation step, the prototypes gi of class Pi

(i = 1, . . . ,c) and the vectors of weights ki ¼ ðk1
i ; . . . ;

kp
i Þ ði ¼ 1; . . . ; cÞ are fixed.

Proposition 2.5. The membership degree uik (k = 1, . . . , n) of

each pattern k in each cluster Pi, minimizing the clustering

criterion W2 under uik P 0 and
Pc

i¼1uik ¼ 1, is updated

according to the following expression:

uik ¼
Xc

h¼1

Xp

j¼1
kj

i ½ða
j
k � aj

iÞ
2 þ ðbj

k � bj
iÞ

2�Xp

j¼1
kj

h½ða
j
k � aj

hÞ
2 þ ðbj

k � bj
hÞ

2�

0
@

1
A

1
m�1

2
64

3
75
�1

ði ¼ 1; . . . ; cÞ ð7Þ

Proof. The proof can be obtained in a similar way as
described in Bezdek (1981) for the case of standard quanti-
tative data. h
2.2.4. Algorithm

The IFCMADC clustering algorithm is executed in the
following steps:

(1) Initialization
Fix c, 2 6 c < n; fix m, 1 < m <1; fix T (an iteration
limit); and fix e > 0; Initialize uik (k = 1, . . . ,n and
i = 1, . . . ,c) of pattern k belonging to cluster Pi such
that uik P 0 and

Pc
i¼1uik ¼ 1

(2) t = 1
(3) Representation step:

(a) Stage 1:
{the membership degree uik of pattern k belong-
ing to cluster Pi is fixed}
Compute the prototypes gi of class Pi

(i = 1, . . . ,c) using Eq. (5)
(b) Stage 2:

{the membership degree uik of pattern k belong-
ing to cluster Pi and the prototypes gi of class
Pi (i = 1, . . . ,c) are fixed}
Compute the vector of weights ki for i = 1, . . . ,c
using Eq. (6)
(4) Allocation step:
{the prototypes gi of class Pi (i = 1, . . . ,c) and the
vector of weights ki for i = 1, . . . ,c are fixed}
Update the fuzzy membership degree uik of pattern k

belonging to cluster Pi (i = 1, . . . ,c) using Eq. (7)
ns clustering methods for symbolic interval data, Pattern Recog.
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(5) Stopping criterion

If jW 2
tþ1 � W 2

t j 6 e or t > T

stop
else t = t + 1 and go to step 3
3. Partition and cluster interpretation

Partition and cluster interpretation is an important step
in clustering analysis. The user wants to evaluate the over-
all data heterogeneity, intra-cluster and between-cluster
heterogeneity, the contribution of each variable to cluster
formation, etc. For the case of usual quantitative data par-
titioned by the hard c-means clustering algorithm, Celeux
et al. (1989) introduced a family of indices for cluster inter-
pretation that are based on the sum of squares (SSQ). In
this section, we adapt these indices to the case of symbolic
interval data partitioned by the fuzzy c-means clustering
algorithms presented in this paper.

We consider the fuzzy partition {P1, . . . ,Pc} of X =
{1, . . . ,n} in c clusters that was obtained from one of the
methods presented in Sections 2.1 and 2.2 and denoted by

gi ¼ fg1
i ; . . . ; gp

i g; gj
i ¼ ½aj

i ; b
j
i �ðj ¼ 1; . . . ; pÞ;

with aj
i ¼

Xn

k¼1
ðuikÞmaj

kXn

k¼1
ðuikÞm

and bj
i ¼

Xn

k¼1
ðuikÞmbj

kXn

k¼1
ðuikÞm

ðj ¼ 1; . . . ; pÞ; the prototype of cluster P i

Moreover, the vector z = (z1, . . . ,zp},zj = [aj,bj]
(j = 1, . . . ,p), with

aj ¼

Xc

i¼1

Xn

k¼1
ðuikÞmaj

kXc

i¼1

Xn

k¼1
ðuikÞm

¼

Xc

i¼1
ð
Xn

k¼1
ðuikÞmaj

iÞXc

i¼1

Xn

k¼1
ðuikÞm

¼

Xc

i¼1
lia

j
iXc

i¼1
li

;

bj ¼

Xc

i¼1

Xn

k¼1
ðuikÞmbj

kXc

i¼1

Xn

k¼1
ðuikÞm

¼

Xc

i¼1

Pn
k¼1ðuikÞmbj

i

� �
Xc

i¼1

Xn

k¼1
ðuikÞm

¼

Xc

i¼1
lib

j
iXc

i¼1
li

and li ¼
Xn

k¼1

ðuikÞm

(j = 1, . . . ,p) is the overall representative vector for all n

interval data points.

3.1. Measures based on the sum of squares

In this section, we define the overall SSQ and SSQ
within and between clusters for symbolic interval data in
the framework of the presented partitioning fuzzy c-means
clustering algorithms, and we show that this overall sum of
squares decomposes into the sum of squares within clusters
plus the sum of squares between clusters. This decomposi-
tion is the basis for defining the interpretation tools in
Section 3.2.

3.1.1. Overall fuzzy sum of squares

According to the distance function used, the overall het-
erogeneity of all n interval data patterns is measured by the
overall fuzzy sum of squares
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T 1¼
Xc

i¼1

Xn

k¼1

ðuikÞm/ðxk ;zÞ¼
Xc

i¼1

Xn

k¼1

ðuikÞm
Xp

j¼1

½ðaj
k�ajÞ2þðbj

k�bjÞ2�

T 2¼
Xc

i¼1

Xn

k¼1

ðuikÞmwiðxk ;zÞ¼
Xc

i¼1

Xn

k¼1

ðuikÞm
Xp

j¼1

kj
i ða

j
k�ajÞ2þðbj

k�bjÞ2
h i

ð8Þ
Tl (l = 1,2) decomposes, on the one hand, into the fuzzy
sum of the cluster-specific SSQs in the clusters Pi given
by T l ¼

Pc
i¼1T l

i ðl ¼ 1; 2Þ with

T 1
i ¼

Xn

k¼1

ðuikÞm/ðxk ; zÞ ¼
Xn

k¼1

ðuikÞm
Xp

j¼1

½ðaj
k � ajÞ2 þ ðbj

k � bjÞ2�

T 2
i ¼

Xn

k¼1

ðuikÞmwiðxk; zÞ ¼
Xn

k¼1

ðuikÞm
Xp

j¼1

kj
i ½ða

j
k � ajÞ2 þ ðbj

k � bjÞ2�

ð9Þ
and, on the other hand, into the fuzzy sum of the variable-
specific overall SSQs for the variables j = 1, . . .p given by
T l ¼

Pp
j¼1T l

j ðl ¼ 1; 2Þ with:

T 1
j ¼

Xc

i¼1

Xn

k¼1

ðuikÞm½ðaj
k � ajÞ2 þ ðbj

k � bjÞ2�

T 2
j ¼

Xc

i¼1

Xn

k¼1

ðuikÞmkj
i ½ða

j
k � ajÞ2 þ ðbj

k � bjÞ2�
ð10Þ

In both cases, T l ¼
Pc

i¼1T l
i ¼

Pc
i¼1

Pp
j¼1T l

ij

� �
ðl ¼ 1; 2Þ

and

T 1
ij ¼

Xn

k¼1

ðuikÞm½ðaj
k � ajÞ2 þ ðbj

k � bjÞ2�

T 2
ij ¼

Xn

k¼1

ðuikÞmkj
i ½ða

j
k � ajÞ2 þ ðbj

k � bjÞ2�
ð11Þ

denote the partial SSQ in the class Pi relating to the jth
variable (j = 1, . . . ,p; i = 1, . . . ,c).

3.1.2. Within-cluster fuzzy sum of squares

Here we consider the heterogeneity within the clusters Pi

and measure it by the within-cluster fuzzy SSQ according
to the distance function used:

W 1
i ¼
Xn

k¼1

ðuikÞm/ðxk ;giÞ¼
Xn

k¼1

ðuikÞm
Xp

j¼1

½ðaj
k�aj

iÞ
2þðbj

k�bj
i Þ

2�

W 2
i ¼
Xn

k¼1

ðuikÞmwiðxk ;giÞ¼
Xn

k¼1

ðuikÞm
Xp

j¼1

kj
i ½ða

j
k�aj

iÞ
2þðbj

k�bj
iÞ

2�

ð12Þ

Summing up all clusters, we obtain the overall within-
cluster fuzzy SSQ W l ¼

Pc
i¼1W l

i ðl ¼ 1; 2Þ, i.e.,

W 1¼
Xc

i¼1

Xn

k¼1

ðuikÞm/ðxk ;giÞ¼
Xc

i¼1

Xn

k¼1

ðuikÞm
Xp

j¼1

½ðaj
k�aj

i Þ
2þðbj

k�bj
i Þ

2�

W 2¼
Xc

i¼1

Xn

k¼1

ðuikÞmwiðxk ;giÞ¼
Xc

i¼1

Xn

k¼1

ðuikÞm
Xp

j¼1

kj
i ½ða

j
k�aj

i Þ
2þðbj

k�bj
i Þ

2�

ð13Þ
On the other hand, Wl (l = 1,2) decomposes into the sum
of the variable-specific overall within-cluster fuzzy SSQs
ns clustering methods for symbolic interval data, Pattern Recog.
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for the variables j = 1, . . . ,p, given by W l ¼
Pp

j¼1W l
j ðl ¼

1; 2Þ, with

W 1
j ¼

Xc

i¼1

Xn

k¼1

ðuikÞm½ðaj
k � aj

iÞ
2 þ ðbj

k � bj
iÞ

2�

W 2
j ¼

Xc

i¼1

Xn

k¼1

ðuikÞmkj
i ½ða

j
k � aj

iÞ
2 þ ðbj

k � bj
iÞ

2�
ð14Þ

In both cases, W l ¼
Pc

i¼1W l
i ¼

Pc
i¼1

Pp
j¼1W l

ij

� �
ðl ¼ 1; 2Þ

and

W 1
ij ¼

Xn

k¼1

ðuikÞm½ðaj
k � aj

iÞ
2 þ ðbj

k � bj
iÞ

2�

W 2
ij ¼

Xn

k¼1

ðuikÞmkj
i ½ða

j
k � aj

iÞ
2 þ ðbj

k � bj
iÞ

2�

denote the within-cluster fuzzy SSQ W l
ij ðl ¼ 1; 2Þ of the

variable j in cluster Pi (j = 1, . . . ,p; i = 1, . . . ,c).

3.1.3. Between-cluster fuzzy sum of squares

The between-cluster fuzzy SSQ given by

B1 ¼
Xc

i¼1

li/ðgi; zÞ ¼
Xc

i¼1

li

Xp

j¼1

½ðaj
i � ajÞ2 þ ðbj

i � bjÞ2�

B2 ¼
Xc

i¼1

liwiðgi; zÞ ¼
Xc

i¼1

li

Xp

j¼1

kj
i ½ða

j
i � ajÞ2 þ ðbj

i � bjÞ2�

ð15Þ
measures the dispersion of the cluster representatives and,
consequently, the distinctness of all clusters. It is decom-
posed either into the sum of all c cluster-specific fuzzy SSQs
Bl ¼

Pc
i¼1Bl

i ðl ¼ 1; 2Þ with

B1
i ¼

Xp

j¼1

B1
ij ¼ li/ðgi; zÞ ¼ li

Xp

j¼1

½ðaj
i � ajÞ2 þ ðbj

i � bjÞ2�

B2
i ¼

Xp

j¼1

B2
ij ¼ liwiðgi; zÞ ¼ li

Xp

j¼1

kj
i ½ða

j
i � ajÞ2 þ ðbj

i � bjÞ2�

ð16Þ
which measures the heterogeneity in the clusters Pi, or into
the sum of the p variable-specific between-cluster fuzzy
SSQs Bl ¼

Pp
j¼1Bl

j ðl ¼ 1; 2Þ as given by

B1
j ¼

Xc

i¼1

B1
ij ¼

Xc

i¼1

li½ðaj
i � ajÞ2 þ ðbj

i � bjÞ2�

B2
j ¼

Xc

i¼1

B3
ij ¼

Xc

i¼1

lik
j
i ½ða

j
i � ajÞ2 þ ðbj

i � bjÞ2�
ð17Þ

In all formulas

B1
ij ¼ li½ðaj

i � ajÞ2 þ ðbj
i � bjÞ2�

B2
ij ¼ lik

j
i ½ða

j
i � ajÞ2 þ ðbj

i � bjÞ2�
ð18Þ

measures the dissimilarity (for the variable j) between the
cluster prototype gi of Pi and the overall prototype z of
all data, with a factor li for considering all cluster
members.
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The following result establishes that the overall fuzzy
sum of squares decomposes into the fuzzy sum of squares
within clusters plus the fuzzy sum of squares between
clusters.

Proposition 3.1. For l = 1,2; i = 1, . . . , c; j = 1, . . . , p, the

following relations hold:
T l ¼ W l þ Bl; T l
i ¼ Bl

i þ W l
i ; T l

j ¼ Bl
j þ W l

j;

T l
ij ¼ Bl

ij þ W l
ij ð19Þ

Proof. The proof is given in Appendix A. h
3.2. Interpretation indices

The indices introduced in this section are a suitable
adaptation of the indices presented in (Celeux et al.,
1989) for the case of the hard c-means clustering algorithm
for quantitative data. All these indices range between 0
and 1.

3.2.1. Fuzzy partition interpretation indices

Interpreting the overall quality of a partition after hav-
ing applied a fuzzy clustering algorithm to the symbolic
interval data is an important problem in clustering
analysis.

3.2.1.1. Overall heterogeneity index. The part of the overall
dispersion without clustering (Tl, l = 1,2) that corresponds
to the dispersion of the partition after clustering (Bl,
l = 1,2), with each cluster represented by its prototype, is
defined as

Rl ¼ Bl

T l ¼
Bl

Bl þ W l ðl ¼ 1; 2Þ ð20Þ

The fuzzy c-means clustering algorithms are designed so
as to maximize Rl (l = 1,2). A greater value of Rl

(l = 1,2) signifies more homogeneous clusters and better
elements of a cluster Pi represented by its representative gi.

3.2.1.2. Overall heterogeneity indices regarding single vari-

ables. The proportion of the overall dispersion without
clustering ðT l

j; l ¼ 1; 2Þ concerning the jth variable that
corresponds to the dispersion of the partition after cluster-
ing concerning the jth variable, with each cluster repre-
sented by its prototype ðBl

j; l ¼ 1; 2Þ, is defined as

CORlðjÞ ¼
Bl

j

T l
j

¼
Bl

j

Bl
j þ W l

j

ðl ¼ 1; 2Þ ð21Þ

By comparing the value of CORl(j) (l = 1,2) with the value
of the general index Rl (l = 1,2), which measures the aver-
age discriminant power of all variables, the discriminant
power of the jth variable may be evaluated as being above
or below the average.

The relative contribution of the jth variable to the
between-cluster fuzzy sum of squares B is given by
ns clustering methods for symbolic interval data, Pattern Recog.
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CTRlðjÞ ¼
Bl

j

Bl ðl ¼ 1; 2Þ ð22Þ

Notice that
Pp

j¼1CTRlðjÞ ¼ 1. A high value of CTRl(j)
(l = 1,2) indicates that the jth variable provides an impor-
tant contribution to the separation of the representatives of
the clusters.

An interesting case arises when CORl(j) (l = 1,2) has a
low value and CTRl(j) (l = 1,2) is large: this means that
the jth variable has a low discriminant power, although it
makes an important contribution to the sum of squares
(Celeux et al., 1989).

3.2.2. Fuzzy cluster interpretation indices
Another important problem in clustering analysis is

evaluating the homogeneity and eccentricity of the individ-
ual clusters of a partition after having applied a fuzzy clus-
tering algorithm to the symbolic interval data.

3.2.2.1. Cluster heterogeneity indices. The proportion of the
overall fuzzy sum of squares explained by cluster Pi is given
by

T lðiÞ ¼ T l
i

T l ðl ¼ 1; 2Þ ð23Þ

The relative contribution of a cluster Pi to the between-
cluster fuzzy sum of squares is measured by the ratio

BlðiÞ ¼ Bl
i

Bl ðl ¼ 1; 2Þ ð24Þ

A high value of Bl(i) (l = 1,2) indicates that cluster Pi is
quite distant from the global center in comparison to the
totality of all clusters.

The relative contribution of cluster Pi to the within-
cluster fuzzy sum of squares is given by

W lðiÞ ¼ W l
i

W l ðl ¼ 1; 2Þ ð25Þ

A relatively high value of Wl(i) indicates that cluster Pi is
relatively heterogeneous in comparison with the other
classes.

Notice that
Pc

i¼1T lðiÞ ¼
Pc

i¼1BlðiÞ ¼
Pc

i¼1J lðiÞ ¼ 1.

3.2.2.2. Cluster heterogeneity regarding single variables. The
heterogeneity of clusters may be different for distinct vari-
ables. This can be evaluated by considering the previously
proposed indices for a single variable j alone. The propor-
tion of the discriminant power of the jth variable with
respect to cluster Pi is given by

CORlðj; iÞ ¼
Bl

ij

T l
j

ðl ¼ 1; 2Þ ð26Þ

Notice that
Pc

i¼1CORlðj; iÞ ¼ CORðjÞ. A high value of
CORl(j, i) (l = 1,2) shows that the jth variable has a rela-
tively homogeneous behaviour within the cluster i.

The relative contribution of the jth variable to the heter-
ogeneity in cluster Pi is given by
Please cite this article in press as: de Carvalho, F.d.A.T., Fuzzy c-mea
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CTRlðj; iÞ ¼
Bl

ij

Bl
i

ðl ¼ 1; 2Þ ð27Þ

Finally, we may consider the relative contribution of the jth
variable and cluster Pi to the between-cluster fuzzy sum of
squares given by

CElðj; iÞ ¼
Bl

ij

Bl ðl ¼ 1; 2Þ ð28Þ

If CEl(j, i) (l = 1,2) is close to 1, the jth variable has a large
contribution to the eccentricity of cluster Pi.

4. Experimental results

To show the usefulness of these fuzzy clustering meth-
ods, two synthetic interval data sets with linearly non-sep-
arable clusters of different shapes and sizes have been
drawn. Real applications are then considered. Our aim is
to achieve a comparison of the dynamic clustering algo-
rithm considering different adaptive distances between
vectors of intervals (adaptive Hausdorff distance, see De
Carvalho et al. (2006), one component adaptive city-block
distance, see Souza and De Carvalho (2004)) and the fuzzy
c-means clustering methods presented in this paper.

An external validity index is used to compare the results
furnished by these clustering algorithms. For synthetic
interval data sets, rectangles are built from three clusters
of points drawn from three bi-variate normal distributions.
Next, the a priori partition of the objects is known. For the
symbolic interval data set describing car models, a a priori
partition into four groups according to a car category is
defined. Finally, for the city temperature symbolic interval
data set describing minimum and maximum temperatures
of 37 cities, a a priori partition into four (Guru et al.,
2004) groups according to the classification given by
human observers is defined.

The idea of external validity is simply to compare the a
priori partition with the partition obtained from the clus-
tering algorithm. In this paper, we use the corrected Rand
(CR) index (Hubert and Arabie, 1985) for comparing two
partitions. The CR index measures the similarity between
a a priori hard partition and a hard partition furnished
by a partitioning hard clustering algorithm or obtained
from the fuzzy partition furnished by the fuzzy clustering
algorithm. CR takes its values on the interval [�1,1], where
the value 1 indicates perfect agreement between partitions,
whereas values near 0 (or negatives) correspond to cluster
agreement found by chance (Milligan, 1996).

4.1. Synthetic symbolic interval data sets

In this paper, we consider the same data point configu-
rations presented in (Souza and De Carvalho, 2004). Two
data sets of 350 points in R2 were constructed. In each data
set, the 350 points are drawn from three bi-variate normal
distributions of independent components. There are three
clusters of unequal sizes and shapes: two clusters with an
ns clustering methods for symbolic interval data, Pattern Recog.
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ellipsoidal shape and size 150 and one cluster with a spher-
ical shape and size 50.

Data set 1 shows well-separated clusters (Fig. 1, left
side). The data points of each cluster in this data set were
drawn according to the following parameters:

(a) Class 1: l1 = 28, l2 = 22, r2
1 ¼ 100 and r2

2 ¼ 9;
(b) Class 2: l1 = 60, l2 = 30, r2

1 ¼ 9 and r2
2 ¼ 144;

(c) Class 3: l1 = 45, l2 = 38, r2
1 ¼ 9 and r2

2 ¼ 9.

Data set 2 shows overlapping clusters (Fig. 1, right side).
The data points of each cluster in this data set were drawn
according to the following parameters:

(a) Class 1: l1 = 45, l2 = 22, r2
1 ¼ 100 and r2

2 ¼ 9;
(b) Class 2: l1 = 60, l2 = 30, r2

1 ¼ 9 and r2
2 ¼ 144;

(c) Class 3: l1 = 52, l2 = 38, r2
1 ¼ 9 and r2

2 ¼ 9.

In order to build interval data sets from data sets 1 and 2,
each point (z1,z2) of these data sets is considered as the
‘seed’ of a rectangle. Each rectangle is therefore a vector
of two intervals defined by: ([z1 � c1/2,z1 + c1/2], [z2 � c2/
2,z2 + c2/2]).

The parameters c1 and c2 are the width and the height of
the rectangle. They are drawn randomly within a given
range of values. Fig. 2 shows two synthetic interval data
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Fig. 1. Seed data sets 1 and 2 showing, respectiv

Fig. 2. Interval data sets 1 and 2, showing, respectively, well
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sets built from data set 1 and data set 2 when c1 and c2

are drawn randomly from [1, 8].
In the framework of a Monte Carlo experiment, 100

replications of the previous process were carried out for
parameters c1 and c2, drawn randomly 100 times from each
of the following intervals: [1, 8], [1, 16], [1, 24], [1, 32], [1, 40].
This process has also been repeated for seeds taken from
data set 1 and data set 2.

Dynamic hard clustering algorithms considering differ-
ent adaptive distances (adaptive Hausdorff distance and
one component adaptive city-block distance) between vec-
tors of intervals and the (adaptive and non-adaptive) fuzzy
clustering methods presented in this paper have been per-
formed on these data sets. The three hard cluster partitions
obtained with these clustering methods were compared
with the 3-class partition known a priori. The comparison
index used is the corrected Rand index CR. For each 100
replications, the average corrected Rand index CR is
calculated.

Table 1 gives the values of the average (and standard-
deviation) of the CR index obtained with dynamic cluster-
ing algorithms considering different adaptive distances
and the (adaptive and non-adaptive) fuzzy clustering
methods presented in this paper for interval data sets 1
and 2 as well as c1 and c2 drawn from [1,8], [1,16],
[1,24], [1,32], [1, 40].
706050403020

50

40

30

20

10

0

Class 1
Class 2
Class 3

z1

2

706050403020

50

40

30

20

10

0

Class 1
Class 2
Class 3

Class 1
Class 2
Class 3

z1

2

ely, well-separated and overlapping classes.

-separated (left side) and overlapping (right side) classes.
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Regarding the data configurations presenting well-
separated classes, in each case the average CR indices
are better with adaptive distances. Moreover, the IFC-
MADC clustering algorithm shows better CR indices than
the dynamic hard clustering algorithms (with adaptive
Hausdorff or city-block distances) regardless of the range
of the predefined intervals in Table 1.

Notice that, for data configurations presenting overlap-
ping classes, the IFCMADC clustering algorithm clearly
outperforms the other methods and, in this case, the
IFCM clustering method presents almost the same perfor-
mance as the dynamic hard clustering methods based on
adaptive (Hausdorff or city-block) distances.
4.2. Symbolic interval data sets

For the purpose of validating the proposed methods
for efficiency, we have conducted several experiments on
the following data sets of type interval: car symbolic inter-
val data set and city temperature symbolic interval data
set.
4.2.1. Car symbolic interval data set

The car symbolic interval data set consists of a set of 33
car models described by 8 interval variables, 2 categorical
multi-valued variables and one nominal variable (De
Carvalho et al., 2006). In this application, the 8 interval
variables – Price, Engine Capacity, Top Speed, Accelera-

tion, Step, Length, Width and Height – were considered
for clustering purposes, the nominal variable Car Cate-
gory was used as a a priori classification.

Dynamic hard clustering algorithms considering dif-
ferent adaptive distances (one component adaptive city-
block distance and adaptive Husdorff distance) between
vectors of intervals as well as the IFCMADC clustering
algorithm were performed on this data set. The 4-cluster
partitions obtained with these clustering methods were
compared with the 4-cluster partition known a priori.
The comparison index used is the corrected Rand index
CR. The a priori classification, indicated by the suffix
attached to the car model denomination, is as follows:

Utilitarian: 1-Alfa 145/U, 5-Audi A3/U, 12-
Punto/U, 13-Fiesta/U, 17-Lancia Y/U, 24-Nissan
Micra/U, 25-Corsa/U, 28-Twingo/U, 29-Rover/U,
31-Skoda Fabia/U.
Berlina: 2-Alfa 156/B, 6-Audi A6/B, 8-BMW serie 3/
B, 14-Focus/B, 21-Mercedes Classe C/B, 26-Vectra/B,
30-Rover 75/B, 32-Skoda Octavia/B.
Sports: 4-Aston Martin/S, 11-Ferrari/S, 15-Honda
NSK/S, 16-Lamborghini /S, 19-Maserati GT/S, 20-
Mercedes SL/S, 27-Porsche/S.
Luxury: 3-Alfa 166/L 7-Audi A8/L 9-BMW serie 5/L
10-BMW serie 7/L 18-Lancia K/L 22-Mercedes Classe
E/L 23-Mercedes Classe S/L 33-Passat/L.
s clustering methods for symbolic interval data, Pattern Recog.
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Each clustering method is run (until the convergence to a
stationary value of the adequacy criterion) 100 times and
the best result according to the corresponding adequacy
criterion is selected. For the IFCMADC clustering algo-
rithm, the parameter m was set to 2. The corrected Rand
index CR is calculated for the best result.

Table 2 shows the clusters (individual labels) given by
the adaptive (one component L1, Hausdorff and IFC-
MADC) methods.

The CR indices obtained from the results displayed in
Table 2 are 0.56, 0.56 and 0.52 for the adaptive one compo-
nent L1, Hausdorff and IFCMADC methods, respectively.
Notice that, for this data set, the dynamic hard clustering
algorithms with adaptive (one component city-block and
Hausdorff) distances slightly outperform the IFCMADC
algorithm. Moreover, the same partition is furnished by
the dynamic hard clustering algorithms (either with the
adaptive Hausdorff distance or with the one component
adaptive city-block distance).

4.2.2. City temperature symbolic interval data set

The city temperature symbolic interval data set (Guru
et al., 2004) gives the minimum and the maximum monthly
temperatures of 37 cities in degrees centigrade. A a priori

classification given by a panel of human observers is as
follows:
Table 2
Clustering results for the car symbolic interval data set

Method Cluster 1 Cluster 2

IFCMADC 4/S 11/S 15/S 1/U 12/U 1
16/S 19/S 27/S 14/B 17/U 2

25/U 28/U
31/U

L1 12/U 13/U 17/U 1/U 2/B 3/L
24/U 25/U 28/U 5/U 8/B 14/
29/U 31/U 18/L 21/B 2

30/B 32/B 3

Hausdorf 1/U 2/B 3/L 12/U 13/U
5/U 8/B 14/B 24/U 25/U
18/L 21/B 26/B 29/U 31/U
30/B 32/B 33/L

Table 3
Hard partition in 4 clusters obtained from the fuzzy c-means clustering algori

Partition IFCM

Cluster 1 Bahrain, Cairo, Hong Kong, Mexico, Nairobi, New Delhi, Sydn

Cluster 2 Amsterdam, Copenhagen, Frankfurt, Geneva, London, Moscow
Munich, New York, Paris, Stockholm, Toronto, Vienna

Cluster 3 Athens, Lisbon, Madrid, Rome, San Francisco, Seoul, Tehran, T
Zurich

Cluster 4 Bombay, Calcutta, Colombo, Dubai, Kula Lampur, Madras, M
Mauritius
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Class 1: Bahraim Bombay Cairo Calcutta Colombo

Dubai Hong Kong Kula Lampur Madras Manila Mexico

Nairobi New Delhi Sydney

Class 2: Amsterdam Athens Copenhagen Frankfurt

Geneva Lisbon London Madrid Moscow Munich New

York Paris Rome San Francisco Seoul Stockholm Tokyo
Toronto Vienna Zurich

Class 3: Mauritius

Class 4: Tehran

Cities belonging to Class 1 are mainly located between 0�
and 40� latitudes and the cities that are classified as Class
2 are mainly located between 40� and 60� latitudes. Some
cities, which are closer to the sea coast and are located
between latitudes 0� and 40�, are classified as members of
Class 2. Mauritius island and Tehran are classified as mem-
bers of singleton Classes 3 and 4, respectively. The clusters
obtained using the approach proposed by Guru et al. (2004)
are in complete accordance with these a priori classes pro-
vided by the panel of human observers.

With this city temperature symbolic interval data set,
each fuzzy c-means clustering method was run until the
convergence to a stationary value of the criterion Wl

(l = 1,2) 60 times and the best result according to the cor-
responding adequacy criterion was selected. The parameter
m was set to 2.
Cluster 3 Cluster 4

3/U 6/B 7/L 9/L 2/B 3/L 5/U
4/U 10/L 20/S 22/L 8/B 18/L 21/B

29/U 23/L 26/B 30/B 32/B
33/L

6/B 7/L 9/L 4/S 11/S 15/S
B 10/L 22/L 23/L 16/S 19/S 20/S
6/B 27/S
3/L

17/U 4/S 11/S 15/S 6/B 7/L 9/L
28/U 16/S 19/S 20/S 10/L 22/L 23/L

27/S

thms

IFCMADC

ey Bahrain, Bombay, Calcutta, Colombo, Dubai, Hong Kong,
Kula Lampur, Madras, Manila, New Delhi

, Amsterdam, Copenhagen, Frankfurt, Geneva, London,
Moscow, Munich, Paris, Stockholm, Toronto, Vienna

okyo, Cairo, Mauritius, Mexico, Nairobi, Sydney

anila, Athens, Lisbon, Madrid, New York, Rome, San Francisco,
Seoul, Tehran, Tokyo, Zurich
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Table 3 shows the hard partitions in 4 clusters obtained
from the fuzzy partitions furnished by the (non-adaptive
and adaptive) fuzzy c-means clustering algorithms.

The CR indices obtained from the results displayed in
Table 3 are 0.46 and 0.50 for the IFCM and IFCMADC
methods, respectively. In the partition furnished by the
IFCM clustering algorithm, Cluster 1 and Cluster 4 are a
splitting of a priori Class 1, whereas Cluster 2 and Cluster
3 are a splitting of a priori Class 2. Notice that the IFCM
clustering algorithm provides a coherent splitting of a pri-

ori Classes 1 and 2. Cluster 4 includes Mauritius island (a
priori Class 3) and Cluster 3 includes Teheran (a priori

Class 4). Cluster 2 is mainly formed by north and central
European cities and half of the cities belonging to Cluster
3 come from southern Europe.

Concerning the partition obtained using the IFCMADC
clustering algorithm, Cluster 1 and Cluster 3 are also a
splitting of a priori Class 1, whereas Cluster 2 and Cluster
4 are a splitting of a priori Class 2. Notice that the IFC-
MADC clustering algorithm also provides a coherent
splitting of a priori Classes 1 and 2. Cluster 3 includes
Mauritius island (a priori Class 3) and Cluster 4 includes
Teheran (a priori Class 4). Again, Cluster 2 is mainly
formed by north and central European cities and Cluster
4 has many cities from southern Europe.

4.3. Fuzzy partition and cluster interpretation: the city

temperature symbolic interval data set

The merit of the interpretation indices presented in this
paper will be highlighted here through the results obtained
with application of the adaptive and non-adaptive fuzzy
c-means clustering methods to the city temperature sym-
bolic interval data set to obtain a fuzzy partition in 4
clusters.
Table 4
Overall heterogeneity index for the fuzzy c-means methods

Method Non-adaptive (l = 1) Adaptive (l = 1)

Rl (l = 1,2) 0.821249 0.808690

Table 5
Overall heterogeneity indices concerning the symbolic interval variables for th

Variables 1 2 3 4 5 6

COR1(j) 85.5 84.0 86.8 87.8 81.2 72
CTR1(j) 13.4 13.5 11.6 8.6 7.0 4

Table 6
Overall heterogeneity indices concerning the symbolic interval variables for th

Variables 1 2 3 4 5 6

COR2(j) 80.2 80.7 83.3 85.9 78.8 78
CTR2(j) 8.0 8.3 9.8 12.0 7.3 7
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4.3.1. Fuzzy partition interpretation

Table 4 shows that the proportion of the overall fuzzy
SSQ explained by the partition for the adaptive and non-
adaptive fuzzy c-means clustering methods. As the values
of the overall heterogeneity index are close to 1, the indi-
viduals belonging to the clusters are well represented by
the corresponding cluster prototypes in both cases.

Comparing the values of COR1(j) with the value of R1

(see Tables 4 and 5) for the partition obtained with the
IFCM clustering method, we may conclude that the
discriminant power of the symbolic interval variables
5 (May), 6 (June), 7 (July), 8 (August) and 9 (September)
are below the average discriminate power of all variables.
All the other variables have a discriminant power above
the average. From Table 5, we can see that variables 1
(January), 2 (February), 3 (March), 11 (November) and 12
(December) provide the greatest contribution to the sep-
aration of the prototypes of the clusters.

Comparing the values of COR2(j) with the values of R2

(see Table 4) for the partitions obtained using the IFC-
MADC clustering method (see Table 6), we may conclude
that the discriminant power of the symbolic interval vari-
ables 3 (March), 4 (April), 10 (October), 11 (November)
and 12 (December) is above the average. Interval variables
1 (January) and 2 (February) have a discriminant power
slightly below the average, whereas all the other interval
variables have a discriminant power clearly below the aver-
age. From Table 6, we can see that variables 4 (April), 10
(October) and 11 (November) provide important contribu-
tions to the separation of the prototypes of the clusters.

4.3.2. Cluster interpretation

From Table 7, we can see that in the partition obtained
with the IFCM clustering method, the Cluster 1 mean vec-
tor is the closest to the global mean vector, while the Clus-
ter 2 mean vector is the farthest away. Moreover, Cluster 2
is the least homogeneous and Cluster 4 is the most homo-
geneous of the four clusters.

The values in Table 8 show that in the partition obtained
from the IFCMADC clustering method, the Cluster 4
mean vector is the closest to the global mean, while the
Cluster 2 mean vector is the farthest away. Moreover, Clus-
e IFCM clustering method (%)

7 8 9 10 11 12

.5 59.7 64.3 64.5 87.5 88.7 85.7

.2 2.8 3.5 4.3 8.1 10.2 12.6

e IFCMADC clustering method (%)

7 8 9 10 11 12

.3 67.7 75.0 69.4 87.3 84.1 81.7

.1 4.1 5.9 4.4 13.6 10.4 8.8

ns clustering methods for symbolic interval data, Pattern Recog.



Table 7
Cluster heterogeneity indices for the IFCM clustering method

Cluster Cardinal T1(i) B1(i) W1(i)

1 7 0.045920 0.005461 0.231807
2 12 0.617941 0.686965 0.300817
3 9 0.150933 0.124323 0.273185
4 9 0.185206 0.183250 0.194190

Table 8
Cluster heterogeneity indices for the IFCMADC clustering method

Cluster Cardinal T2(i) B2(i) W2(i)

1 11 0.385323 0.419173 0.242237
2 11 0.435040 0.470057 0.287018
3 5 0.080593 0.052354 0.199962
4 10 0.099043 0.058415 0.270782
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ter 3 is the most homogeneous and Cluster 2 is the least
homogeneous of the four clusters.

Table 9 shows the cluster heterogeneity indices concern-
ing the variables for the IFCM clustering method.

From this table, variable 2 (February) presents a homo-
geneous behaviour within Cluster 1 and provides the great-
est contribution to the separation of the Cluster 1 mean
vector from the global mean vector.
Table 9
Cluster heterogeneity indices concerning the variables for the IFCM method (

Cluster 1 Cluster 2

COR CTR CE COR CTR C

1 0.46 13.1 0.07 52.6 12.0 8.
2 1.0 30.5 0.17 50.6 11.9 8.
3 0.5 12.4 0.07 53.9 10.5 7.
4 0.72 12.9 0.07 55.6 7.9 5.
5 0.33 05.3 0.03 59.4 7.5 5.
6 0.19 2.0 0.01 57.5 4.8 3.
7 0.17 1.4 0.01 52.9 3.6 2.
8 0.26 2.6 0.01 57.0 4.6 3.
9 0.10 1.2 0.01 56.2 5.4 3.

10 0.26 4.4 0.02 68.5 9.2 6.
11 0.28 6.0 0.03 64.3 10.8 7.
12 0.29 7.9 0.04 54.6 11.7 8.

Table 10
Cluster heterogeneity indices concerning the variables for the IFCMADC clus

Cluster 1 Cluster 2

COR CTR CE COR CTR CE

1 30.0 7.1 3.0 36.7 7.8 3.7
2 41.9 10.2 4.3 21.6 4.7 2.2
3 36.4 10.3 4.3 31.3 7.9 3.7
4 39.4 13.1 5.5 36.3 10.8 5.1
5 37.8 8.4 3.5 34.7 6.9 3.2
6 28.4 6.1 2.6 46.8 9.0 4.2
7 22.8 3.3 1.4 41.3 5.4 2.5
8 12.1 2.3 0.9 59.3 9.9 4.6
9 44.8 6.9 2.9 23.6 3.2 1.5

10 40.8 15.2 6.4 43.3 14.3 6.7
11 35.4 10.5 4.4 37.3 9.8 4.6
12 25.0 6.4 2.7 44.1 10.1 4.7
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All the variables presented a homogeneous behaviour
within Cluster 2, while interval variables 1 (January), 2
(February), 3 (March), 11 (November) and 12 (December)
play the most important role in the heterogeneity of this
cluster, as well as in the separation of Cluster 2 mean vector
from the global mean vector.

Concerning Cluster 3, interval variables 1 (January), 3
(March), 11 (November) and 12 (December) play the most
important role in the heterogeneity of this cluster.

Finally, interval variables 1 (January), 2 (February) and
3 (March) present the most homogeneous behaviour within
Cluster 4 and, together with interval variable 12 (Decem-

ber), play the most important role in the heterogeneity of
this cluster, as well as in the separation of Cluster 4 mean
vector from the global mean vector.

Table 10 shows the cluster heterogeneity indices concern-
ing the variables for the IFCMADC clustering method.

From this table, we can see that all the interval variables
presented a quite homogeneous behaviour within Cluster 1,
except interval variable 8 (August). Interval variables
2 (February), 3 (March), 4 (April), 10 (October) and 11
(November) play the most important role in the heterogene-
ity of this cluster, as well as in the separation of Cluster 1
mean vector from the global mean vector.
%)

Cluster 3 Cluster 4

E COR CTR CE COR CTR CE

2 9.2 11.6 1.4 23.3 19.9 3.6
2 6.8 8.8 1.1 25.5 22.4 4.1
2 11.3 12.1 1.5 21.1 15.4 2.8
4 12.5 9.9 1.2 18.9 10.1 1.8
1 13.7 9.5 1.2 7.8 3.7 0.7
3 11.5 5.3 0.7 3.2 1.0 0.2
4 5.9 2.2 0.3 0.7 0.2 0.03
1 6.6 2.9 0.4 0.4 0.1 0.02
7 5.6 2.9 0.4 2.6 0.9 0.2
3 12.2 9.0 1.1 6.5 3.2 0.6
4 11.7 10.9 1.3 12.4 7.8 1.4
0 12.3 14.6 1.8 18.5 14.9 2.7

tering method (%)

Cluster 3 Cluster 4

COR CTR CE COR CTR CE

6.8 13.0 0.7 6.7 11.3 0.7
13.9 27.3 1.4 3.2 5.6 0.3
7.4 16.8 0.9 8.2 16.6 1.0
3.1 8.2 0.4 7.1 16.9 1.0
0.04 0.07 0.0 6.3 10.0 0.6
1.3 2.3 0.1 1.7 2.6 0.1
2.6 3.0 0.1 0.9 1.0 0.06
3.3 5.0 0.2 0.2 0.3 0.02
0.9 1.1 0.0 0.1 0.2 0.01
0.2 0.8 0.0 2.9 7.9 0.4
5.0 11.9 0.6 6.3 13.4 0.8
4.9 10.2 0.5 7.6 13.9 0.8

ns clustering methods for symbolic interval data, Pattern Recog.



Francisco de A.T. de Carvalho / Pattern Recognition Letters xxx (2006) xxx–xxx 13

ARTICLE IN PRESS
In Cluster 2, interval variables 2 (February) and 9 (Sep-

tember) presented the least homogeneous behaviour, while
interval variables 6 (June), 7 (July), 8 (August), 10 (October)
and 12 (December) presented the most homogeneous
behaviour. Interval variables 4 (April), 10 (October), 11
(November) and 12 (December) play the most important
role in the heterogeneity of the Cluster 2, as well as in
the separation of Cluster 2 mean vector from the global
mean vector.

Moreover, interval variable 2 (February) plays the most
important role in the heterogeneity of Cluster 3. Finally,
interval variables 3 (March), 4 (April), 11 (November) and
12 (December) play the most important role in the hetero-
geneity of the Cluster 4.

5. Concluding remarks

The main contributions of this paper are the introduc-
tion of adaptive and non-adaptive fuzzy c-means clustering
algorithms (IFCM and IFCMADC) for symbolic interval
data and various fuzzy partition and cluster interpretation
tools that are suitable for these fuzzy clustering algorithms.
The IFCM clustering algorithm starts from an initial fuzzy
partition and alternates a representation step, where the
partition is fixed and the algorithm gives the solution for
the best prototype of each class, and an allocation step,
where the prototypes of the classes are fixed and the algo-
rithm provides the solution for the best membership degree
of each pattern in each class, until convergence when the
adequacy criterion reaches a stationary value representing
a local minimum.

The IFCMADC clustering method is based on a suit-
able adaptive squared Euclidean distance for each class.
The main idea of this method is that there is a different dis-
tance associated to each cluster for comparing clusters and
their prototypes. This distance changes at each iteration.
The method starts from an initial partition and alternates
a representation step and an allocation step until conver-
gence, when the adequacy criterion reaches a stationary
value representing a local minimum. The representation
step has now two stages. In the first stage, the membership
degree of each pattern in each class and the distances are
fixed and the algorithm gives the solution for the best pro-
totype of each class. In the second stage, the membership
degree of each pattern in each class and the prototypes of
the classes are fixed and the algorithm provides the solution
for the best distance of each class. Finally, in the allocation
step, the prototypes and the distances are fixed and the
algorithm gives the solution for the best membership
degree of each pattern in each class.

The problem of interpreting and evaluating the obtained
fuzzy partition has been addressed. We were able to define
the overall fuzzy sum of squares and the fuzzy sum of
squares within and between clusters for symbolic interval
data and to show that the overall fuzzy sum of squares
decomposes into a fuzzy sum of squares within a cluster
plus a fuzzy sum of squares between clusters. Based on this
Please cite this article in press as: de Carvalho, F.d.A.T., Fuzzy c-mea
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decomposition, a family of fuzzy partition and cluster
interpretation indices for the adaptive and non-adaptive
fuzzy c-means clustering methods for symbolic interval
data have been introduced. These new indices constitute
a suitable adaptation of the indices introduced for inter-
preting and evaluating partitions furnished by the standard
hard c-means clustering method.

Experiments with real and synthetic symbolic interval
data sets showed the usefulness of this clustering method.
The accuracy of the results furnished by these fuzzy
c-means clustering algorithms is assessed by the CR index.
Concerning the synthetic interval data sets, the CR index is
calculated for these fuzzy c-means clustering algorithms
and compared with the results provided by the dynamic
hard clustering algorithms considering different adaptive
distances (adaptive Hausdorff distance and one component
adaptive city-block distance) in the framework of a Monte
Carlo simulation with 60 replications. Symbolic interval
data configurations showing well-separated and overlap-
ping classes are considered. Concerning the data configura-
tions presenting well-separated classes, in each case the
average CR indices are better with adaptive distances.
Moreover, the IFCMADC clustering algorithm shows
better CR indices than the dynamic hard clustering
algorithms, regardless of the adaptive (Hausdorff or city-
block) distance considered and the range of the predefined
intervals. For data configurations presenting overlapping
classes, the IFCMADC clustering algorithm clearly outper-
forms the other methods and, in this case, the IFCM clus-
tering method presents nearly the same performance as the
dynamic hard clustering methods based on adaptive (Haus-
dorff or city-block) distances. Concerning the car interval
data set, the dynamic hard clustering methods based on
adaptive (Hausdorff or city-block) distances slightly out-
perform the IFCMADC method. Concerning the city tem-
perature symbolic interval data set with 4 a priori classes,
the fuzzy c-means clustering algorithms provided a coher-
ent splitting of a priori Classes 1 and 2. Finally, the appli-
cation of the adaptive and non-adaptive fuzzy c-means
clustering methods to the city temperature symbolic inter-
val data set showed the merit of the fuzzy partition and
cluster interpretation indices proposed in this paper.
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Appendix A. Proof of Proposition 2.4

The vectors of weights ki ¼ ðk1
i ; . . . ; kp

i Þði ¼ 1; . . . ; cÞ,
which minimize the clustering criterion W2 under kj

i > 0
and

Qp
j¼1k

j
i ¼ 1, are updated according to the following

expression:
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kj
i ¼

Yp

h¼1

Xn

k¼1
ðuikÞmððah

k � ah
i Þ

2 þ ðbh
k � bh

i Þ
2Þ

h in o1
p

Xn

k¼1
ðuikÞm½ðaj

k � aj
iÞ

2 þ ðbj
k � bj

iÞ
2�

;

j ¼ 1; . . . ; p

Proof. As the membership degree uik of each pattern k in
cluster Pi, the parameter m and the prototypes gi of class
Pi (i = 1, . . . ,c) are fixed, we can rewrite the criterion W2 as

W 2ðk1; . . . ; kpÞ ¼
Xc

i¼1

W 2
i ðkiÞ with

W 2
i ðkiÞ ¼ W 2

i ðk
1
i ; . . . ; kp

i Þ ¼
Xp

j¼1

kj
i W

2
ij

where W 2
ij ¼

Xn

k¼1

ðuikÞm½ðaj
k � aj

iÞ
2 þ ðbj

k � bj
iÞ

2�:

The criterion W2 being additive, the problem becomes min-
imizing W 2

i ði ¼ 1; . . . ; cÞ. Let gðk1
i ; . . . ; kp

i Þ ¼
Qp

j¼1k
j
i � 1 ¼

k1
i � . . .� kp

i � 1. We want to determine the extremes of
W 2

i ðk
1
i ; . . . ; kp

i Þ with the restriction gðk1
i ; . . . ; kp

i Þ ¼ 0. To
do so, we shall use the method of Lagrange multipliers.
After some algebra, we conclude that an extreme value of
W 2

i is reached when

kj
i ¼

Yp

h¼1
W 2

ih

n o1
p

W 2
ij

¼

Yp

h¼1

Xn

k¼1
ðuikÞm½ðah

k � ah
i Þ

2 þ ðbh
k � bh

i Þ
2�

h in o1
p

Xn

k¼1
ðuikÞm½ðaj

k � aj
iÞ

2 þ ðbj
k � bj

iÞ
2�

ðj ¼ 1; . . . ; pÞ

This extreme value is W 2
i ðk

1
i ; . . . ; kp

i Þ ¼
Pp

j¼1k
j
i W

2
ij ¼

pfW 2
i1 � . . .� W 2

ipg
1
p.

As W 2
i ð1; . . . ; 1Þ ¼

Pp
j¼1W 2

ij ¼ W 2
i1 þ � � � þ W 2

ip, and as it
is well known that the arithmetic mean is greater than
the geometric mean, i.e., 1

p ðW
2
i1 þ � � � þ W 2

ipÞ > fW 2
i1 . . .

W 2
ipg

1
p (the equality holds only if W 2

i1 ¼ . . . ¼ W 2
ip), we

conclude that this extreme is a minimum.

Appendix B. Proof of Proposition 3.1

For l = 1,2, the following relations hold for all j and i:

T l ¼ W l þ Bl; T l
i ¼ Bl

i þ W l
i ; T l

j ¼ Bl
j þ W l

j;

T l
ij ¼ Bl

ij þ W l
ij

Proof. We will start showing that T1 = W1 + B1 holds.
We have,

ðaj
k � ajÞ2 þ ðbj

k � bjÞ2 ¼ ½ðaj
k � aj

iÞ
2 þ ðbj

k � bj
iÞ

2�
þ ½ðaj

i � ajÞ2 þ ðbj
i � bjÞ2�

þ 2½ðaj
k � aj

iÞðaj
i � ajÞ�

þ 2½ðbj
k � bj

iÞðb
j
i � bjÞ�

Then, from Eq. (8),
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j
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We have also,

ðaj
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j
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iðb
j
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Then,
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j
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¼
Xp
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Xc

i¼1
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Xn
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As aj
i

Pn
k¼1ðuikÞm ¼

Pn
k¼1ðuikÞmaj

k and bj
i

Pn
k¼1ðuikÞm ¼Pn

k¼1ðuikÞmbj
k, it follows that

Pc
i¼1

Pn
k¼1ðuikÞm

Pp
j¼1ða

j
k � aj

iÞ
ðaj

i � ajÞ ¼ 0 and
Pc

i¼1

Pn
k¼1ðuikÞm

Pp
j¼1ðb

j
k � bj

iÞðb
j
i � bjÞ ¼

0, and then T1 = W1 + B1.
The other expressions can be easily obtained in a similar

way.

References

Bezdek, J.C., 1981. Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press, New York.

Billard, L., Diday, E., 2003. From the statistics of data to the statistics of
knowledge: Symbolic data analysis. J. Amer. Statist. Assoc. 98 (462),
470–487.

Bock, H.-H., 2002. Clustering algorithms and Kohonen maps for symbolic
data. J. Japanese Soc. Comput. Statist. 15, 1–13.

Bock, H.H., Diday, E., 2000. Analysis of Symbolic Data, Exploratory
Methods for Extracting Statistical Information from Complex Data.
Springer-Verlag, Heidelberg.

Celeux, G., Diday, E., Govaert, G., Lechevallier, Y., Ralambondrainy,
H., 1989. Classification Automatique des Données. Bordas, Paris.

Chavent, M., 1998. A monothetic clustering method. Pattern Recognition
Lett. 19, 989–996.

Chavent, M., Lechevallier, Y., 2002. Dynamical clustering algorithm of
interval data: Optimization of an adequacy criterion based on
Hausdorff distance. In: Sokolowski, A., Bock, H.-H. (Eds.), Classifi-
cation, Clustering and Data Analysis. Springer, Heidelberg, pp. 53–59.
ns clustering methods for symbolic interval data, Pattern Recog.



Francisco de A.T. de Carvalho / Pattern Recognition Letters xxx (2006) xxx–xxx 15

ARTICLE IN PRESS
De Carvalho, F.A.T., Souza, R.M.C.R., Chavent, M., Lechevallier, Y.,
2006. Adaptive Hausdorff distances and dynamic clustering of sym-
bolic data. Pattern Recognition Lett. 27 (3), 167–179.

Diday, E., Govaert, G., 1977. Classification automatique avec distances
adaptatives. R.A.I.R.O. Inform. Comput. Sci. 11 (4), 329–349.

Diday, E., Brito, P., 1989. Symbolic cluster analysis. In: Opitz, O. (Ed.),
Conceptual and Numerical Analysis of Data. Springer-Verlag, Hei-
delberg, pp. 5–84.

Dunn, J.C., 1974. A fuzzy relative to the ISODATA process and its use in
detecting compact, well-separated clusters. J. Cybernet. 3, 32–57.

El-Sonbaty, Y., Ismail, M.A., 1998. Fuzzy clustering for symbolic data.
IEEE Trans. Fuzzy Systems 6, 195–204.

Gordon, A.D., 1999. Classification. Chapman and Hall/CRC, Boca
Raton, FL.

Gordon, A.D., 2000. An iteractive relocation algorithm for classi-
fying symbolic data. In: Gaul, W. et al. (Eds.), Data Analysis:
Scientific Modeling and Practical Application. Springer-Verlag,
Berlin, pp. 7–23.

Gowda, K.C., Diday, E., 1991. Symbolic clustering using a new
dissimilarity measure. Pattern Recognition 24 (6), 567–578.

Gowda, K.C., Diday, E., 1992. Symbolic clustering using a new similarity
measure. IEEE Trans. Systems Man Cybernet. 22, 368–378.

Gowda, K.C., Ravi, T.R., 1995a. Divisive clustering of symbolic objects
using the concepts of both similarity and dissimilarity. Pattern
Recognition 28 (8), 1277–1282.

Gowda, K.C., Ravi, T.R., 1995b. Agglomerative clustering of symbolic
objects using the concepts of both similarity and dissimilarity. Pattern
Recognition Lett. 16, 647–652.

Gowda, K.C., Ravi, T.R., 1999a. Clustering of symbolic objects using
gravitational approach. IEEE Trans. Systems Man Cybernet. 29 (6),
888–894.
Please cite this article in press as: de Carvalho, F.d.A.T., Fuzzy c-mea
Lett. (2006), doi:10.1016/j.patrec.2006.08.014
Guru, D.S., Kiranagi, B.B., 2005. Multivalued type dissimilarity measure
and concept of mutual dissimilarity value for clustering symbolic
patterns. Pattern Recognition 38, 151–256.

Guru, D.S., Kiranagi, B.B., Nagabhushan, P., 2004. Multivalued type
proximity measure and concept of mutual similarity value useful for
clustering symbolic patterns. Pattern Recognition Lett. 25, 1203–1213.

Gustafson, D.E., Kessel, W.C., 1979. Fuzzy clustering with a fuzzy
covariance matrix. In: Proc. IEEE Conf. Decision Contr., San Diego,
CA, 761–766.

Hubert, L., Arabie, P., 1985. Comparing Partitions. Journal of Classifi-
cation 2, 193–218.

Ichino, M., Yaguchi, H., 1994. Generalized Minkowski metrics for mixed
feature type data analysis. IEEE Trans. Systems Man Cybernet. 24 (4),
698–708.

Jain, A.K., Murty, M.N., Flynn, P.J., 1999. Data clustering: A review.
ACM Comput. Surveys 31 (3), 264–323.

Milligan, G.W., 1996. Clustering validation: Results and implications for
applied analysis. In: Arabie, P., Hubert, L.J., De Soete, G. (Eds.),
Clustering and Classification. Word Scientific, Singapore, pp. 341–375.

Ralambondrainy, H., 1995. A conceptual version of the k-means
algorithm. Pattern Recognition Lett. 16, 1147–1157.

Souza, R.M.C.R., De Carvalho, F.A.T., 2004. Clustering of interval data
based on city-block distances. Pattern Recognition Lett. 25 (3), 353–
365.

Verde, R., De Carvalho, F.A.T., Lechevallier, Y., 2001. A dynamical
clustering algorithm for symbolic data. In: Tutorial on Symbolic Data
Analysis held during the 25th Annual Conference of the Gesellschaft
für Klassifikation, University of Munich, March 13, 2001.

Yang, M.-S., Hwang, P.-Y., Chen, D.-H., 2004. Fuzzy clustering
algorithms for mixed feature variables. Fuzzy Sets Systems 141, 301–
317.
ns clustering methods for symbolic interval data, Pattern Recog.


	Fuzzy c-means clustering methods for symbolic interval data
	Introduction
	Fuzzy c-means clustering methods for symbolic interval data
	Fuzzy c-means clustering method for symbolic interval data
	Representation step: definition of the best prototypes
	Allocation step: definition of the best fuzzy partition
	Algorithm

	An adaptive fuzzy c-means clustering method for symbolic interval data
	Representation step: definition of the best prototypes
	Representation step: definition of the best distances
	Allocation step: definition of the best fuzzy partition
	Algorithm


	Partition and cluster interpretation
	Measures based on the sum of squares
	Overall fuzzy sum of squares
	Within-cluster fuzzy sum of squares
	Between-cluster fuzzy sum of squares

	Interpretation indices
	Fuzzy partition interpretation indices
	Overall heterogeneity index
	Overall heterogeneity indices regarding single variables

	Fuzzy cluster interpretation indices
	Cluster heterogeneity indices
	Cluster heterogeneity regarding single variables



	Experimental results
	Synthetic symbolic interval data sets
	Symbolic interval data sets
	Car symbolic interval data set
	City temperature symbolic interval data set

	Fuzzy partition and cluster interpretation: the city temperature symbolic interval data set
	Fuzzy partition interpretation
	Cluster interpretation


	Concluding remarks
	Acknowledgements
	Proof of Proposition 2.4
	Proof of Proposition 3.1
	References


