
A Comparison of Task Pools for Dynamic Load Balancing
of Irregular Algorithms

Matthias Korch Thomas Rauber

Martin-Luther-Universität Halle-Wittenberg
Institut für Informatik

E-mail: {korch, rauber}@informatik.uni-halle.de

Correspondig author:

Matthias Korch

Martin-Luther-Universität Halle-Wittenberg
Fachbereich Mathematik und Informatik

Institut für Informatik
D-06099 Halle (Saale), Germany

E-mail: korch@informatik.uni-halle.de
Phone: ++49 345 5524719
Fax: ++49 345 5527033

Abstract

Since a static data distribution does not give satisfactory results for parallel irregular algorithms, there
is need for a dynamic distribution of data that can be adapted to the current runtime behavior of the
algorithm.Task poolsare data structures which can distribute data dynamically to different processors.

This paper discusses the characteristics oftask-based algorithmsand describes the implementation of
selected types of task pools for shared-memory multiprocessors. Several task pools have been imple-
mented in C with POSIX threads and in Java. Results of these implementations measured on three
different shared-memory systems are shown for a synthetic algorithm and the parallel hierarchical ra-
diosity method.

Key Words: Task Pools, Dynamic Task Scheduling, Irregular Algorithms, Hierarchical Radiosity, Per-
formance Evaluation, Threads

A Comparison of Task Pools for Dynamic Load Balancing
of Irregular Algorithms

Matthias Korch Thomas Rauber

Martin-Luther-Universität Halle-Wittenberg
Institut für Informatik

{korch, rauber}@informatik.uni-halle.de

26th February 2002

Abstract

Since a static data distribution does not give satisfactory
results for parallel irregular algorithms, there is need for a
dynamic distribution of data that can be adapted to the cur-
rent runtime behavior of the algorithm.Task poolsare data
structures which can distribute data dynamically to differ-
ent processors.

This paper discusses the characteristics oftask-based al-
gorithmsand describes the implementation of selected types
of task pools for shared-memory multiprocessors. Several
task pools have been implemented in C with POSIX threads
and in Java. Results of these implementations measured
on three different shared-memory systems are shown for a
synthetic algorithm and the parallel hierarchical radiosity
method.

1. Introduction

Designing parallel algorithms for irregular problems is
difficult, because it is not possible to predict the amount of
work connected to a given part of the input data. Therefore
there is no good strategy available to create an initial data
distribution that minimizes the communication during the
execution of the algorithm. To use all available processors
efficiently, irregular algorithms must either allow data to be
transferred between processors at runtime or assign compu-
tations to a processor only when the processor becomes idle
and makes a request.

One way to design irregular algorithms for shared-
memory multiprocessors is to split the algorithm into sev-
eral types oftaskswhich are used as the minimum unit of
parallelism. Every task is associated with a quantity of data
and the work needed to process these data. Tasks are stored
in a common data structure, which is calledtask pool. Some

tasks for data from the input set are initially stored in the
task pool, and then every processor removes tasks from the
pool and processes them until all task have been executed.
During the execution of a task, new child tasks may be cre-
ated and inserted into the task pool for a later execution.

Task pools offer an easy and reasonable way to design
parallel algorithms for irregular problems. They can be used
as a universal approach to these problems. But since they
hardly take advantage of locality, often methods which ex-
ploit special properties of the problem give better results.
For example, methods performing iterative steps could use
cost estimates extracted from earlier steps to readapt the
data distribution after each interation [30].

Parallel algorithms that use task pools can be described
by an abstract model. Using this model, the runtime behav-
ior of these algorithms can be characterized bytask graphs,
and it is possible to usetask grammarsfor the description
of the algorithm itself. Thus it can be seen that executing
a task-based algorithm leads to the problem of scheduling
a directed acyclic graph (DAG) to multiple processors dy-
namically. This problem isNP-hard [4].

The designer of a task pool can attack this problem by
introducing heuristic methods that try to reduce the latency
of the schedule. Another possibility is to simply ignore this
problem. This increases idle time but allows the task pool
operations to be implemented very efficiently. This paper
follows the second approach by minimizing the number of
instructions of the task pool operations and choosing data
structures which allow to reduce contention on shared data.

Implementations of task pools usually use central or dis-
tributed queues to store tasks. If distributed queues are used,
there should also be some mechanism to transfer tasks be-
tween these queues, so that the work load can be balanced.

If parts of the task pool data structures are shared by sev-
eral processors, synchronization must be used to avoid race
conditions. This paper describes some possible ways to re-

1

duce the number of calls to synchronization operations and
the time processors spend waiting to acquire locks.

Since allocating and freeing objects in main memory is
expensive, one should always try to reduce the number of
such system calls. This can be done by re-using memory
blocks or by allocating larger blocks which hold several ob-
jects. Because task pools use dynamic objects to represent
task instances and typically large numbers of task instances
with short execution times are used to achieve a good distri-
bution of work load, saving system calls strongly improves
the performance.

This paper describes several types of task pools which
have been implemented in C with POSIX threads and in
Java. These implementations have been evaluated on three
different shared-memory systems: a Linux PC, a Sun En-
terprise 420R and two Sun Fire (3800 and 6800). Results
are shown for a synthetic algorithm and theradiosityappli-
cation from the SPLASH-2 application suite [38].

The results for both algorithms show that from the task
pools implementeddynamic task stealingprovides the best
scalability. Synchronization overhead and waiting times of
such task pools can be reduced by using private and pub-
lic queues. Memory managers can significantly improve
the performance. As a consequence of optimizing Java Vir-
tual Machines, the results for the Java implementations are
more disputable than the results for the implementations in
C. While the synthetic algorithm gives repeatable results,
theradiosityapplication is harder to evaluate due to its non-
deterministic character.

The rest of the paper is organized as follows: In Section2
an overview of task based algorithms and their representa-
tion by graphs and grammars is given. Section3 then de-
scribes the types of task pools that were chosen to be imple-
mented, and Section4 handles general implementation is-
sues. After this, Section5 briefly compares the potential of
the two programming languages C and Java that have been
used in our work. The task pools we have implemented are
introduced in Section6, and the machines and algorithms
investigated are described in Section7. Section8 presents
results for the synthetic algorithm and the radiosity appli-
cation. Related work is presented in Section9. Finally,
Section10concludes.

2. Task-based algorithms

To formally describe algorithms that use task pools, a
model namedtask-based algorithmcan be used. In this
model the algorithm provides severaltask types. Every task
type consists of a set of instructions from the programming
language that is used, and it can have several parameters
that specify the data to be processed. When the algorithm
is executed,instancesof these task types (which we will
often calltasksin the following for simplicity) are created

and stored in a common data structure which is calledtask
pool. Task instances take arguments which correspond to
the parameters of the underlying task type.

Task-based algorithms work in two phases. During the
first phase an initial set of tasks is created from the input set
and stored in the task pool. This phase is therefore called
initialization phase. The initialization phase can be done
sequentially by a single processor or in parallel by multiple
processors. Its execution time is usually very short com-
pared to the over-all execution time of the algorithm. For
that reason it may often be appropriate to execute this phase
on a single processor. The operation to insert initial tasks
into the pool is namedinit() .

The second phase is calledworking phase, because it
computes the solution of the algorithm from the initial task
set and usually takes nearly all of the total computation
time. To achieve good performance, it is important that all
available processors take part in this phase and that the idle
time of the processors is minimized. The working phase
is organized as a loop that all processors execute in paral-
lel. In this loop each processor requests a task from the task
pool by executing the operationget() , which the task pool
provides for this purpose. If a task is returned, the proces-
sor will execute it. Otherwise the processor will exit from
the loop. Since this process is common to all task-based
algorithms, the task pool may provide an operation that im-
plements the complete working phase.

When a task is executed, it can create new child tasks by
executing the task pool operationput() . Thus every task
that is executed in a task-based algorithm and that is not an
initial task has exactly one parent task and can have several
child tasks. Initial tasks differ from that in not having a
parent.

2.1. Representation by graphs

These hierarchical dependences can be described by a
task graph. It contains a node for every task, and a directed
edge is drawn between two nodes if the target node is a
child of the source node. The resulting graph is a forest of
trees, the roots of which are the initial tasks. Particularly,
this graph is directed and acyclic.

If there are data dependences between tasks, they can
be visualized by introducingdependence edges. These di-
rected edges connect two nodes if the source node provides
data needed by the target node. The resulting graph is called
dependence graph. In this simple case dependences be-
tween two tasks must not introduce circles into the graph.
Otherwise deadlock will occur.

In practice there might be more complex dependences
between tasks when tasks are waiting for certain conditions
on shared variables at arbitrary times of their execution. In
this case dependence edges must be labeled with the associ-

2

P1 P2 P3 P4

B A

B A

A

A

B

B B
4

3

2

1

T
im

e

0

Processors

2

1

1

5

2

Figure 1. Example for the visualization of a
schedule.

ated conditions, and the order in which these conditions are
generated and checked must be visible. In a very complex
algorithm it will be necessary to include the data flow inside
of the tasks into the graph. Checking such a graph for dead-
locks leads to thehalting problemthat cannot be decided
[34].

Specific runs of a given task-based algorithm may pro-
duce different task graphs even if the same input is used.
Such algorithms are callednondeterministic. In contrast
to this,deterministictask-based algorithms always produce
the same task graph when the same input is used.

Dependences give another way to classify task-based al-
gorithms. First, there are algorithms with no dependences
between tasks at all. One example is the Barnes-Hut method
for n-body simulations [30]. Such algorithms create a
large number of initial tasks that depend only on data that
was provided before the initialization phase, and no child
tasks are created. This class of algorithms is calledD0.
Some other algorithms only use hierarchical dependences
between tasks that are caused by the creation of child tasks.
The according class of algorithms isDH . The hierarchical
radiosity method is an example [13, 30]. All other algo-
rithms may have arbitrary dependences. This class will be
namedD∞. Obviously,D0 is a subset ofDH which itself
is a subset ofD∞.

When a task graph is drawn in the plane, the geometric
representations of nodes and edges can be used to visual-
ize the temporal progress or schedule of the algorithm. The
scheduleassigns a processor, creation time, starting time
and termination time to every task. For visualization, the
coordinates of the plane are used to represent processors
and time. The geometric extent of a node then determines
starting and termination times of the node as well as the pro-
cessor assigned. The creation time of a node is determined
by the source coordinates of the edge that leads from the
parent to that node. Figure1 shows an example.

Repeated runs of a task-based algorithm that use the

same input will usually produce different schedules. The
reason for this is that the order in which tasks are executed
and the assignment of tasks to processors depend on the ex-
ecution times of the tasks. But these execution times are
influenced by the current scheduling decisions of the operat-
ing system. There are also other sources of noise that influ-
ence the execution times of tasks, like caches or concurrent
accesses to limited resources, for instance main memory or
other I/O hardware.

2.2. Task grammars

Grammars can be used to describe not only specific runs
of a task-based algorithm but the algorithm itself. Asimple
task grammarconsists of three sets that contain the avail-
able task types, the task types that can be used to create
initial tasks and the productions that indicate which task in-
stances each task type can create and in which order this
would be done. The productions can be derived from the
sequence of operations that each task type identifies.

More complex grammars may be used to include runtime
aspects. Suchruntime grammarsconsist of a set of available
task types, a subset of task types that can be used to create
initial tasks, a set of possible arguments for tasks, a set of
possible values of shared variables and, finally, a set of pro-
ductions. The productions are more complex than those of
simple task grammars. There may be different productions
for different arguments or values of shared variables, and
the productions may additionally specify running times be-
tween two events.

The grammar

G = [{A,B}, {A}, P, {1, 2}, ∅]

with productions

P = {B → {1},
A(1)→ {1} [A(1)|A(2)] {1} B {2},
A(2)→ {1} B {1}}

is a simple example for a runtime grammar. The corre-
sponding algorithm uses two task typesA andB, but only
tasks of typeA can be created as initial tasks. The integers
1 and 2 may be used as arguments to some tasks, and no
shared variables are used. Tasks of typeB simply termi-
nate after one time step. The behavior of tasks of typeA
depends on their argument. If 1 is passed as the argument,
one task of typeA will be created after one time step. The
argument of this child task is chosen from 1 or 2. After a
second time step, tasks of typeA with the argument 1 al-
ways create one task of typeB and finally terminate after
they have proceeded for two further time steps. For argu-
ment 2, a task of typeA creates a task of typeB after one
time step and terminates after another time step.

3

As we have seen before, in practice it is impossible to
specify the execution time of a task exactly, because noise
is introduced by the operating system, other user processes
and hardware. However, to describe an algorithm, it is of-
ten sufficient to use exact values of any needed time basis.
If the grammar is used for scheduling decisions by the task
pool, then modeling the execution times by probability dis-
tributions [31] or fuzzy sets [7] might do better.

2.3. Usable parallelism and running time of task-
based algorithms

Given a task or dependence graph, it is hard to tell how
many processors should be employed. It can be shown by
constructing an example that algorithms exist which need
as many processors as the graph contains tasks to achieve
optimal running time. Such algorithms need only twice the
execution time of the biggest task. Furthermore, it is possi-
ble to show that for any given dependence graph there is a
schedule that utilizes as many processors as the task graph
has leaves (see [18] for details).

If a task-based algorithm is executed on a single proces-
sor, the running time of the working phase is given by the
sum of the execution times of all tasks. Thereby the exe-
cution time of a task includes the time to request this task
from the task pool. Since all tasks must be executed, the
algorithm cannot run faster, and the processor will never be
idle, because after one task has completed there must either
be at least one runnable task or no task in the task pool. If
there were only tasks in the pool that cannot be executed be-
cause some dependence is not met, deadlock has occurred.
When the task pool is empty, the algorithm has completed.

When there are no dependences between tasks – which is
the case for algorithms fromD0 –, only the initially avail-
able tasks have to be executed. This implies that all tasks
that are stored in the task pool are always runnable. If the
tasks can be ideally balanced, no idle time needs to occur.
Thus, if there arep processors, a task-based algorithm from
D0 can be executed in time

O

(
rseq
p

+ max
v∈V
{r(v)}

)
,

whererseq is the running time of this algorithm on a single
processor,V is the set of all created tasks, andr(v) is the
execution time of taskv.

An optimal schedule for a given dependence graph with
hierarchical or even arbitrary dependences and an unlim-
ited number of processors can be obtained by applying the
ASAP (as soon as possible) method. Here a task will be ex-
ecuted right after it has been created. This is possible, since
the number of processors is unlimited and therefore there
always is a processor available if needed.

Thestaticscheduling of a given task graph to a limited
number of processors isNP-hard. But there are many ef-
ficient approximation algorithms [4]. However, since a task
pool does usually not know the resulting task graph during
the execution of a task-based algorithm, it has to solve ady-
namicscheduling problem. This lack of information causes
that for a limited number of processors the optimal schedule
can only be approximated by heuristics.

In practice the number of processors available is usually
very small compared to the size of the task graph. Actu-
ally, task-based algorithms are designed to create large task
graphs consisting of small tasks in order to achieve a good
balancing of the work load.

3. Types of task pools

This section describes several types of task pools, vari-
ants of which have been implemented in C and Java. While
implementation details are the subject of Sections4, 5 and
6, this section concentrates on the high-level description of
some types of task pools, some of which were chosen to be
implemented.

The objective for the design of our task pool implemen-
tations has been to provide universal data structures that can
be used with any task-based algorithm. This implies that no
knowledge about the algorithm may be presumed.

The main goal of our implementations has been to re-
duce the total execution time of the task pool operations. To
achieve this, we have tried to reduce the number of instruc-
tions that these operations consist of and to avoid expensive
function calls. We also have attempted to reduce the num-
ber of concurrent accesses to shared data structures in order
to reduce the conflict rate and implicated waiting times.

The implementations presented in this paper covercen-
tral, randomized, distributed, and combined central and
distributedtask pools, and also task pools withdynamic task
stealing. Many other implementations may be thought of, a
few of which are outlined in [18].

Since shared-memory multiprocessors were selected as
target systems, the thread model has been employed to im-
plement the task pools. It provides multiple threads of con-
trol that share a common address space. Threads can be
used in C with, for example, the POSIX thread library [5],
which was used in this study. The other programming lan-
guage we have used is Java. Java was designed as a multi-
threaded language [24]. It provides all necessary classes
and mechanisms to develop shared-memory applications.
Additional libraries are not required.

3.1. Central task pools

Central task pools use a single central queue to store
tasks. This queue is accessed by all processors concurrently.

4

When a processor accesses the central queue, it must use
mutual exclusionto protect the queue in order to avoid race
conditions.

Mutual exclusion is available with all POSIX thread li-
braries, which providemutex variablesfor this purpose.
Java programmers can usesynchronized blocks or
methods.

However, waiting times occur if two queue operations
are issued simultaneously. The number of access conflicts
increases with the number of processors.

3.2. Randomized task pools

A way to improve the performance of central task pools
is to introduce additional central queues. Since the queues
are not assigned to processors, all accesses to these queues
must use mutual exclusion.

When a new task is created, it is inserted into a randomly
chosen queue. To remove a task, all queues are queried in
randomly chosen order until a task has been found or all
queues have been visited.

In the case that there are more queues than processors,
there is a chance that even if all processors are perform-
ing an access simultaneously, no two processors choose the
same queue. For example, the number of queues could be
bound to the number of processors by a constant factor≥ 1.
But even in this case the probability that no two proces-
sors choose the same queue decreases when the number of
processors is increased (see [18]). Besides, theget() op-
eration becomes very expensive in this case, because the
number of queues that must be queried in this operation in-
creases.

3.3. Distributed task pools

Distributed task pools avoid access conflicts by not shar-
ing any data between processors. Each processor uses its
own queue to store tasks and performs only accesses to
its local queue. Therefore each processor can only pro-
cess those tasks that were assigned to it in the initialization
phase. This corresponds to a static data distribution.

Without knowledge of the algorithm and the task types
used, the task pool cannot estimate the cost of tasks. Thus
the initial task distribution will be imbalanced in most cases.
But this approach has the advantage of not needing any
synchronization operations, since no shared variables are
used, and it allows to evaluate the performance improve-
ments achieved by a dynamic data distribution.

3.4. Combined central and distributed task pools

To overcome the problems of the implementations men-
tioned above, a combination of these methods can be used.

To do so, each processor is assigned a local queue that it can
use exclusively. In addition, a central queue is used for load
balancing. A processor then adds tasks to the central queue
when the size of its local queue exceeds a specified thresh-
old. Whenever a processor runs out of tasks, it transfers
tasks from the central to its local queue.

In this approach, mutual exclusion is only needed for the
central queue. But the central queue may become a bottle-
neck when the number of processors increases. Therefore
the threshold must be carefully chosen to find a good trade-
off between synchronization and load imbalance.

3.5. Dynamic task stealing

The most promising approach is dynamic task stealing.
It uses local queues for each processor, but allows proces-
sors to access foreign queues. A processor then uses its lo-
cal queue until it gets empty. When this happens, it tries to
stealtasks from another processor by removing tasks from
this processor’s queue.

To avoid race conditions, mutual exclusion must be used
for all queue accesses if there is only one queue per proces-
sor. This increases the number of instructions executed in
every task pool operation, which implicates longer execu-
tion times. But since stealing is only done when the queue
of a processor is empty, there are very few simultaneous ac-
cesses to a particular queue, and the over-all waiting time is
small.

Randomized local pools

The number of simultaneous accesses to a particular
queue can be reduced by introducing additional queues per
processor. These may be accessed similarly to central ran-
domized task pools. When a processor is performing an
operation on any local pool, it selects one of the queues of
the local pool at random. To avoid race conditions in the
stealing process, mutual exclusion must be used with every
access. Waiting times can be reduced further by altering the
queue when acquiring a lock for a certain queue fails.

However, increasing the number of queues per processor
not only reduces waiting times but also increases the over-
head needed to administrate these queues. In this particular
case, selecting a queue at random may be expensive com-
pared to the execution times of the task pool operations of
standard dynamic task stealing.

Private and public queues

If two queues per processor are used, one can reduce
simultaneous accesses to a queue, waiting times, and syn-
chronization overhead by applying different access rights to
both queues.

5

In order to achieve this, one of the queues is used as a
private queue. Only the local processor is allowed to ac-
cess it. Therefore no mutual exclusion is needed for the
private queue and all accesses to it will be very fast. For
the purpose of stealing, each processor is assigned apublic
queue. Following some strategy, the owner transfers tasks
from its private to its public queue. When a processor runs
out of tasks, it can steal some from another processor’s pub-
lic queue. Since there may be simultaneous accesses, there
must be mutual exclusion for the public queue.

If the processors mainly work on their private queues,
synchronization operations rarely have to be executed. Only
when occasionally a public queue is accessed, the overhead
for locking is needed, and only then waiting times may oc-
cur.

Principally, two oppositional strategies for filling the
public queues can be thought of. Agreedyprocessor that
uses the first strategy would try to keep most tasks for it-
self as long as possible. Tasks are transferred to the public
queue only when the public queue is (nearly) empty. Us-
ing the second strategy, agenerousprocessor would hold
nearly all of its tasks in the public queue and only remove a
few tasks from it if the private queue gets empty.

Both strategies are comparable concerning the costs of
the task pool operations. While the greedy processor must
often check if the public queue is empty, the generous
processor very often has to move tasks between its local
queues. Since this task transfer can be implemented by a
few pointer operations, it does not increase the access costs
considerably. On the other hand, the greedy strategy might
lead to additional idle time, since stealing processors may
find some queues empty even though there are many tasks
stored in the according private queues.

Heuristics for stealing

Waiting times can be reduced by decreasing the number
of simultaneous accesses to queues. One way to achieve this
is to keep the number of stealing operations small. There-
fore using a simple heuristics to steal a large amount of
work may be worth the costs.

Such heuristics can be used, for example, when there
are many hierarchical dependences between tasks and the
owner processes its local queues inlast in first out(LIFO)
order. That means that this processor always uses the same
ends of its queues to enqueue and dequeue tasks, respec-
tively. As a result, the corresponding task graph is processed
in depth-first order. If now tasks are stolen from the oppo-
site end of the queue that is not used by the owner, there is a
good chance that the stolen task will create a large subtree.
In the best case this task is one of those that were created in
the initialization phase.

Other approaches may attempt to steal several tasks at
once in order to gather a large amount of work. Then the

number of tasks to be stolen may be determined by a con-
stant number, a constant factor, or even the number of pro-
cessors.

4. General implementation issues

4.1. Ending the working phase

The working phase ends when all tasks have been exe-
cuted. To verify this condition, it is not sufficient to check
if the task pool contains no tasks. It is still possible that
a task that is in execution at the time of the query creates
new child tasks, which themselves can create large subtrees
of tasks. If then a processor had already decided to leave
the working phase, its processing power would be lost for
further computations.

Because of this, there must be some mechanism to de-
cide if an idle processor may leave the working phase or if
it should wait for new tasks to be created. Which mecha-
nism is appropriate depends on the task pool implementa-
tion used.

The most simple case is given if a distributed task pool
is present that does not use dynamic task stealing. Since
all queues are private, newly created tasks can never be ac-
cessed by other processors than their producers. Therefore a
processor may leave the working phase as soon as its private
queue is empty.

Most other implementations must use a different ap-
proach. When there are central queues, the idle processors
must check all these central queues. In case of dynamic
task stealing it is sufficient to visit only a few neighboring
queues. If now all processors agree that there are no more
tasks left, the working phase is completed. Thus a processor
which could not find any task to execute keeps waiting until
either new tasks are created or all other processors reach the
same state.

This mechanism can be put into practice with the help
of conditional waiting, which the POSIX thread libraries
provide by the concept ofcondition variables, and which is
included in Java as thewait() -notify() mechanism.

4.2. Implementation of queues

From the task pools’ point of view, queues are data struc-
tures that store a set of objects. They must provide opera-
tions to insert a given object and to extract an arbitrarily
chosen object.

The order in which the objects are removed is not im-
portant for the functionality of the task pool, but it becomes
more interesting when heuristics shall be used to dynam-
ically optimize the schedule. For nondeterministic algo-
rithms the order in which tasks are executed can also in-
fluence the resulting task graph.

6

Another important effect of the execution order on all
task-based algorithms is the impact on the maximum mem-
ory required. When a task graph is executed, the tasks that
are currently being stored in the task pool define a border
line through the task graph that divides the tasks whose ex-
ecution has already been started or even finished from those
that have not been created yet. Now, if the task graph is pro-
cessed depth-first, the maximum number of tasks to store is
equal to the depth of the task graph. If instead a breadth first
search is used, the breadth of the task graph determines the
space needed.

Since the execution times of the task pool operations will
increase with the complexity of the underlying data struc-
tures, it is important to find simple and efficient queue im-
plementations. Usually single- or double-linked lists, or ar-
rays with one or more index pointers are appropriate. Also
lists of arrays are conceivable.

Compared to lists, arrays have the advantage that mem-
ory for all items of the array is allocated with a single sys-
tem call when the array is created. Furthermore, manipula-
tion of the index pointers can be done with fewer instruc-
tions than are necessary to insert or delete elements of a
list. Another point is locality, which will be discussed in
Section4.5.

On the other hand, arrays only have a limited size. If
a queue is implemented by a single array, the size of the
array must be increased when the number of objects to be
stored exceeds the size of the array. In some cases this im-
plicates that the data of the array must be copied to a second,
larger array. Otherwise, if the array was not enlarged, the
task pool would set limitations to the task-based algorithm
which would not be acceptable in practice.

A good trade-off is found in a list of arrays. Instead of
enlarging the array that has become too small, in this case a
new array is linked to the preceeding one, and new objects
are stored in this new array.

In order to avoid race conditions, often mutual exclusion
is used to protect queues as a whole. In these cases usu-
ally no simultaneous manipulations are allowed. But it is
possible to implement queues that can be accessed simul-
taneously by multiple processors when multiple locks per
queue are used. A simple and efficient LIFO queue that
only needs two locks and allows an enqueue and a dequeue
operation to be executed in parallel is presented in [23].

If lock granularity is reduced further to the level of sin-
gle tasks, queues can be implemented which allow two si-
multaneous dequeue operations. This is of importance for
task pools with dynamic task stealing. But since for these
queues a dequeue operation needs to acquire a total of three
locks, the task pool operations become expensive even if no
waiting times occur.

The problem of concurrent accesses to a shared data
structure is well known. Therefore attempts have been made

to develop data structures that arelock-free(e. g. [35]) or
non-blocking(e. g. [14, 23, 27]). In our investigations
such data structures have not been implemented, because
they rely on machine-dependent primitives like COMPARE

& SWAP.

4.3. Mutual exclusion

Besides conditional waiting, which was used to detect
the end of the working phase, mutual exclusion is the most
important synchronization mechanism for task pools. It
must be used to protect queues or even single tasks when
concurrent operations are performed.

Usually, mutual exclusion is realized bylocks. A proces-
sor that wishes to access a protected object must acquire the
attached lock before it is allowed to read or manipulate the
object. After the processor has finished the manipulation, it
must release the lock. The implementation of the lock must
ensure that no two processors can possess the lock at the
same time.

Since some task pools need to lock objects in every
put() or get() operation, the overhead required for mu-
tual exclusion may significantly influence the total execu-
tion time of the algorithm.

Because locks are commonly used in multi-threaded pro-
grams, all thread libraries or multi-threaded languages pro-
vide mechanisms for locking. The POSIX thread libraries
provide locks as special objects that are calledmutex vari-
ables. Separatelock() and unlock() operations can
be performed on these variables. In the Java programming
language, implicit locks are attached to each class or object.
There are no separate operations for acquiring and releasing
these locks. Insteadsynchronized blocks and methods
are used to implicitly create a correct pair of these opera-
tions.

These locking mechanisms provided by libraries or lan-
guages often are based on complex data structures. This is
necessary in a multiprogrammed environment to save the
processing time of waiting threads for other threads or pro-
cesses, respectively. Synchronization mechanisms for such
environments are discussed in [37].

When a task-based algorithm is the only process run-
ning on a selected target system, other approaches can be
considered. Since using more threads than processors in-
creases scheduling overhead because more context switches
must be performed, often exactly as many threads as there
are processors are used. In this case, the operating system
can assign a separate processor to every thread. But in this
situation, suspending waiting threads does not improve the
performance. Therefore, if there are the same numbers of
threads and processors, threads can wait actively by polling
a shared variable in a loop. Locks on this basis are called
spin locks[21].

7

4.4. Memory management

Since tasks are the minimum unit of parallelism, typical
task-based algorithms create plenty of small tasks that must
be stored in the shared memory. Thus lots of small mem-
ory blocks must be allocated and freed during the working
phase.

If a system call is executed for each such action, optimal
performance can never be reached. This is because system
calls are usually more expensive than calls to user functions.
In addition to that, system calls may create a bottleneck in
the case that the operating system executes system calls se-
quentially or uses central free-lists for all threads or pro-
cesses, respectively.

Therefore task pools should always be accompanied by
a memory manager that reduces the number of system calls.
The task pool then requests memory blocks from this mem-
ory manager and returns used memory blocks back to it for
a later re-use.

The memory manager can use various approaches to re-
duce the number of system calls. The most important of
all is to re-use memory blocks. Another important strategy
is to allocate several objects in advance by a single system
call.

To re-use memory blocks, free blocks are collected in
free-lists. If a processor later requests a block of the same
type, it can be removed from one of the free-lists.

Since free-lists are nothing but queues, the memory man-
ager can be organized similar to the task pools. The free-
lists can be eithercentral, randomized, distributed, com-
bined central and distributed, or usestealing.

The free-lists are usually implemented as linked lists. To
link the memory blocks, special items can be used that store
a pointer to a free memory block and a pointer to the next
item. A solution with much less complexity links the mem-
ory blocks directly by storing a single pointer inside of each
block. In this case the memory manager must ensure that
all memory blocks are large enough to store this pointer.

4.5. Locality

All of the current high-performance machines are
equipped with caches. But the fast access times for cache
data can only be exploited if the application programs are
designed to showlocality.

If a program featuresspatial locality, accesses to adja-
cent memory cells by the same processor will be speeded
up. On a multiprocessing system locality in space may also
have negative effects if multiple processors share data in
their caches (false sharing[11, 32]).

A task pool may either increase or decrease spatial lo-
cality explicitly. If the task queues or free-lists are imple-
mented by arrays, their elements will occupy adjacent mem-

ory cells. When linked lists are used, their elements will
be arbitrarily located in memory. In order to avoid spatial
locality, task blocks may be surrounded with dummy ele-
ments which are never accessed.

Temporal localitywill improve the performance of both
single- and multiprocessing systems as it accelerates re-
peated accesses to identical memory cells by the same pro-
cessor.

The edges of the dependence graph of a task-based algo-
rithm show where tasks re-use data that has been provided
by other tasks. If we assume that tasks perform complex
computations which supersede the arguments given as in-
put, after a task has completed always one of its child tasks
should be executed. Thereby the output of the task is re-
used as the input of the child. This strategy leads to a depth-
first search of the task graph. On the other hand, if the child
tasks do not significantly change their initial cache state, the
output of a task could be re-used several times if more than
one of its child tasks are processed right after its comple-
tion.

But in general a depth first search implemented by a
LIFO queue will usually take better advantage of locality
compared to a FIFO queue realizing a breadth first search.
If tasks are executed in FIFO order, a child inserted into the
queue will not be executed before all tasks have been pro-
cessed that were being stored in the queue when the child
was created. All these tasks potentially overwrite the cache
data that have been moved into the cache by the parent of
the child. Using LIFO order, at least one of the children
created by a task is executed directly after its parent. If a
FIFO queue is used, a child can only be executed immedi-
ately after its parent if at the time of the creation of the child
the queue was empty.

5. Potential of C and Java

C is a programming language that is close to hardware. C
programs may be written very compact, but they tend to be-
come unreadable and error-prone then. Provided that appro-
priate libraries are used, “everything” can be done with C.
The extension C++ also provides very complex but flexible
classes. Multithreaded programming is not part of the lan-
guage but is available with, for example, the POSIX thread
library. C programs are compiled to native code and run
very fast on the dedicated target machine.

In contrast, Java has been designed to be a platform in-
dependent programming language that allows the develop-
ment of interactive applications for the Internet. The syntax
of Java is close to C, but elements that often caused mis-
takes were omitted. Great importance was attached to keep
the language simple and easy to learn. Java is fully class-
based and multithreaded. To be platform independent, Java
programs are compiled to intermediate code, which can be

8

interpreted on any target machine on which aJava Virtual
Machineis available.

Though by now there are very fast virtual machines, they
cannot meet the performance of native C code. But besides,
there are differences in the structure of the programming
languages which give C some advantages over Java.

First of all, in Java all variables either have a basic type,
like int or char , an array type, or areobject references.
These object references can be compared to pointers to class
instances in C++. No compound type, likestruct in
C, exists. Instead instances of classes must be used. This
makes efficient use of memory more complicated.

An example for this are local variables. In C the memory
of a local variable that has a compound type is allocated on
the stack by incrementing the stack pointer when the scope
of the variable is entered. Since in Java class variables are
only object references, memory on the stack is allocated
only for a pointer. The object must be created explicitly by
calling thenew operator, which then allocates the memory
needed.

Apart from that, in Java it is not possible to allocate
memory for several objects at once. While in C it is easy
to allocate an array for a compound type, an array of an ob-
ject type only provides memory for the references and each
object must be allocated separately in Java.

Another important point is the recycling of task in-
stances. If all task types use the same compound type in C,
used task instances can be collected in free-lists and can be
re-used later easily. Yet in Java, different task types would
use incompatible classes. This makes it difficult for a uni-
versal task pool that has no knowledge about task types to
recycle them, because there must be separate free-lists for
each task type in order to be able to efficiently implement
the allocation operations.

Except for memory management, the synchronization
primitives of Java are much less flexible than those of
POSIX threads. At first, mutual exclusion is done in C by
two separate function calls for locking and unlocking that
can be placed at any desired position in the source code.
In Javasynchronized blocks must be used that insert a
pair of similar instructions implicitly into the intermediate
code.

Conditional waiting also sets limitations to the Java pro-
grammer. POSIX threads only requires that the function
call to suspend a waiting thread is executed when the asso-
ciated mutex variable is locked. The call to wake up one
or several threads can be done at any place in the source
code. In contrast to POSIX threads, Java additionally re-
quires the wake-up calls (notify()) to be placed inside
a synchronized block on the object to wait for. This
introduces an unnecessary bottleneck if the thread that gen-
erates the condition does not need synchronization on this
object for its manipulations.

But even though the synchronization primitives of Java
are less flexible than those of C, they allow to develop syn-
chronization classes which can be used just like the C mech-
anisms [24]. But using such classes creates higher over-
head.

6. Implementation

This section gives a brief overview of the task pools and
memory managers we have implemented in C and Java. A
complete list of all memory managers implemented in C is
displayed in Table1. Because of the difficulties outlined in
Section5, no memory managers have been implemented in
Java. The task pools implemented in C and Java, respec-
tively, are contrasted in Tables2 and3.

6.1. Interface of the libraries

The task pools and memory managers implemented in C
comply with the layout displayed in Figure2. Task types are
implemented as C functions, and task instances are repre-
sented by instances of a compound type that stores a pointer
to the function that implements the type of the task instance
and a pointer to a fixed-size memory block that contains the
arguments of the task instance.

The initialization of the task pools is done by the function
tpool_create() . It can be called by multiple threads,
but a single call by one thread is sufficient. The number of
threads,n, and the maximum space needed to store argu-
ments for task instances are taken as arguments. The func-
tion tpool_finalize() destroys the task pool. It takes
no arguments and a single call is sufficient.

To get along with only one function call, the initializa-
tion and the finalization must be executed sequentially. The
disadvantage of this approach is that these sequential phases
can decrease the possible speed-up if their execution time is
long.

During the initialization phase of the task-based al-
gorithm, task instances can be created by the function
tpool_init() . tpool_put() is used by task in-
stances to create new child tasks during the working phase.
Both functions identify the calling thread by an integer ar-
gument, supposing that all threads using the task pool are
numbered from 0 ton− 1. Additionally, they need to know
the task type and the arguments of the task instance, which
are given in form of a pointer to a function and a pointer to
a data structure, respectively.

The working phase is executed by a call to
tpool_run() with the thread number as argument.
This function is identically implemented for all task pools.
It is realized by a loop in which task instances are removed
from the task pool withtpool_get() . If the call
to tpool_get() was successful, the task instance is

9

// interface of the task pools

typedef void (*tpool_function_t)(int , void *);

void tpool_create(int n, int arg_size);
void tpool_finalize();

void tpool_init(int tid, tpool_function_t f,void *arg);
void tpool_put(int tid, tpool_function_t f,void *arg);

void tpool_run(int tid);

// task pool internal data structures and functions

typedef struct
{

tpool_function_t function;
void *argument;
... // pool specific data

} tpool_task_t;

... // pool specific data

int tpool_get(int tid, tpool_function_t *f,void **arg);

// interface of the memory managers

void tpool_init_memory(int task_size,int arg_size);
void tpool_finalize_memory();

void *tpool_alloc_arg(int tid);
void tpool_free_arg(int tid, void *arg);

void *tpool_alloc_task(int tid);
void tpool_free_task(int tid, void *task);

Figure 2. Layout of the C task pools.

classTaskPool
{

public static classTask
{

... // pool specific data
public void run(int tid) {}

}

... // pool specific data

public TaskPool(int n) {}

public void init(int tid, Task T) {}
public void put(int tid, Task T) {}

private Task get(int tid) {}

public void run(int tid) {}
}

Figure 3. Layout of the Java task pools.

executed and the loop is continued. Otherwise the function
returns. Care must only be taken to decouple the working
phase from the initialization phase. This is necessary to
avoid corruption of the data structures iftpool_init()
is allowed to write to unprotected non-local queues.

The memory managers are initialized by the function
tpool_init_memory() with the maximum sizes of the
data structures for task instances and arguments as argu-
ments. The finalization is done by calling the function
tpool_finalize_memory() . Both functions must al-
ways be paired. Successive or even concurrent calls to one
of these functions are not allowed. But it is permitted to use
multiple initialization/finalization pairs if necessary.

Memory for task instances and arguments can be
allocated by the functionstpool_alloc_task()
and tpool_alloc_arg() , respectively. To free
task instances or arguments,tpool_free_task() or
tpool_free_arg() must be called, respectively.

The layout of the Java task pools is shown in Figure3.
They use classes derived from the classTask to represent
task types. These derived classes must overwrite the method
run() in order to implement the desired functionality of
the task type. Task instances are represented by instances
of the classes derived fromTask . Arguments are stored in
fields of the derived classes by an appropriate constructor
that every derived class that takes arguments must imple-
ment.

The task pools are initialized by creating an instance
of the correspondingTaskPool class. In doing so, the
number of threads using the task pool must be given as
an argument to the constructor. No explicit finalization is

10

necessary, because the garbage collector will free all allo-
cated memory automatically when the task pool object is
not longer referenced.

Similar to the C implementations, there are two meth-
ods init() andput() to insert task instances into the
task pool during the initialization and working phase, re-
spectively. The working phase is executed by the method
run() , which removes tasks from the pool with the help
of the methodget() .

6.2. Memory managers implemented in C

Various memory managers have been implemented in
C to investigate the performance improvements that can
be achieved by optimizing the memory operations of task
pools. A complete list of all memory managers that have
been implemented is shown in Table1.

In order to measure the variation in performance caused
by the memory managers compared to the case that no
memory manager is used, a dummy memory manager
calledbs has been implemented, which capsulates the op-
erating system functionsmalloc() and free() by the
memory manager interface.

Besides recycling of freed objects, allocating several ob-
jects at once is another important strategy to improve the
performance. All memory managers that use this strategy
are named “bk ”. The memory managers which only rely
on recycling are named “l ”.

On the basis of the types of free-lists used, the mem-
ory managers implemented can be classified into three types
which all use free-lists to recycle objects and thus try to im-
prove the performance. The first of these types only uses
central free-lists. The names of these memory managers do
not contain any prefixes. The second type only uses dis-
tributed free-list, which is indicated by the prefix “d” in
their names. The last type implemented uses distributed
free-lists and additional central free-lists for balancing. The
memory managers of this type are named with the prefix
“c ”.

Two ways of linking the objects in the free-lists have
been implemented. The first uses special items to link ob-
jects, and the second approach uses the memory space in-
side of freed objects to store a pointer to the next object. The
names of the memory managers which do not use items are
tagged with the suffix “f ”.

The memory managers which allocate several objects at
once either allocate large fixed-size arrays during the initial-
ization (no additional prefix), or allocate blocks for a small
number of objects when required (prefix “g”). The elements
of these arrays or blocks are either directly returned to the
application by successivetpool_alloc_*() function
calls (no additional suffix), or all of the elements are in-
serted into the corresponding free-lists right after the block

or array has been allocated (suffix “o”).
Except forclf , all memory managers that use both cen-

tral and distributed free lists link the objects stored in the
free-lists by additional items. But not all of these memory
managers use a central free-list for the items. Therefore all
memory managers which do use a central free-list for items
have the suffix “b” added to their name.

In the case that central and distributed free-lists are used,
there are two different implementations of the “gbk ” ap-
proach. When the application requests a memory block
from the memory manager and the local free-list for this
type of memory blocks is found empty, the memory man-
ager can either first check the central free-list before it
checks if some element is left from the last call tomal-
loc() , or vice versa. The versions which do not check the
central free-list first, are indicated by the suffix “1” in their
names.

6.3. Task pools implemented in C and Java

We have implemented a number of task pools in C and
in Java. The names of the task pools allow to distinguish
between four basic types of task pools:

(a) central task pools with a single queue (sq*),

(b) distributed task pools with or without dynamic task
stealing (dq*),

(c) combined task pools which use one central and several
distributed queues (sdq*), and

(d) randomized task pools (rq*).

In most cases, there are several implementation variants of
each basic type. These variants are distinguished by num-
bers which are added to the names of the implementations
as a suffix. Tables2 and3 list all the task pools we have
implemented.

Four variants of central task pools,sq1 to sq4 , have
been implemented in C and one in Java (sq1). sq1 and
sq2 both use LIFO queues, and both lock the entire queue
for every access. They differ in the implementation of the
queues assq1 uses a single-linked list whilesq2 uses an
array of a fixed size.sq3 andsq4 are both FIFO queues
with reduced lock granularity. Both allow simultaneous en-
queue and dequeue operations.sq3 locks single tasks, but
sq4 is based on the two-lock queue from [23] and only
needs to lock head and tail of the queue.

The two distributed task pools without dynamic task
stealing implemented in C are nameddq1 and dq3 . In
Java onlydq1 has been implemented. They both use LIFO
queues, butdq1 implements them by single-linked lists
while dq3 uses fixed-sized arrays.

11

Free Lists Items Memory Allocation Block Handling Locking Name

— — elements — — bs
central yes elements — central lists l
central yes blocks for whole lists elements are removed when needed central lists bk
distributed yes elements — — dl
distributed no elements — — dlf
distributed yes blocks for whole lists elements are removed when needed — dbk
distributed yes blocks for whole lists elements are removed after allocation — dbko
distributed yes blocks for some elements elements are removed when needed — dgbk
distributed yes blocks for some elements elements are removed after allocation — dgbko
distributed no blocks for some elements elements are removed after allocation — dgbkof
centrala+
distributed

yes elements — central lists cl

central +
distributed

no elements — central lists clf

central +
distributed

yes elements — central lists clb

centrala+
distributed

yes blocks for some elements
elements are removed when needed if
central free list is empty

central lists cgbk

central +
distributed

yes blocks for some elements
elements are removed when needed if
central free list is empty

central lists cgbkb

centrala+
distributed

yes blocks for some elements elements are removed after allocation central lists cgbko

central +
distributed

yes blocks for some elements elements are removed after allocation central lists cgbkob

centrala+
distributed

yes blocks for some elements
elements are removed when needed;
blocks are allocated when central free
list is empty

central lists cgbk1

central +
distributed

yes blocks for some elements
elements are removed when needed;
blocks are allocated when central free
list is empty

central lists cgbk1b

a no central free lists for items

Table 1. Memory managers implemented in C.

12

Type Details Queues Access Memory Allocation Locking Name

central single-linked list LIFO when needed queue sq1
central array LIFO during initialization queue sq2
central double-linked list FIFO when needed tasks sq3
central single-linked list FIFO when needed head + tail sq4
distributed single-linked lists LIFO when needed — dq1
stealing from working end single-linked lists LIFO when needed all queues dq2
distributed arrays LIFO during initialization — dq3
stealing randomized local pools single-linked lists LIFO when needed all queues dq4
stealing from opposite end double-linked list LIFO when needed all queues dq5
stealing from opposite end double-linked list LIFO when needed tasks dq6
stealing from working end arrays LIFO during initialization all queues dq7

stealing
public and private
queues

single-linked lists,
arrays

LIFO when needed public queues dq8

central +
distributed

single-linked list,
arrays

LIFO when needed central queue sdq1

randomized rand_r, floating point single-linked lists LIFO when needed all queues rq1

randomized
Mersenne Twister,
integer

single-linked lists LIFO when needed all queues rq2

randomized
Mersenne Twister,
floating point

single-linked lists LIFO when needed all queues rq3

Table 2. Task pools implemented in C.

Type Details Queues Access Locking Name

central notify() in everyput() single-linked list LIFO queue sq1
distributed single-linked list LIFO — dq1
stealing from working end;notify() in everyput() single-linked lists LIFO all queues dq2
stealing from opposite end;notify() in everyput() single-linked lists LIFO all queues dq5

stealing
public and private queues;notify() in every
put()

single-linked lists,
arrays

LIFO public queues dq8

stealing
from working end;notify() only if queue is
empty

single-linked lists LIFO all queues dq9

stealing
from working end; busy-wait instead of
wait() andnotify()

single-linked lists LIFO all queues dq10

central +
distributed

notify() in everyput()
single-linked lists,
arrays

LIFO central queue sdq1

randomized
Mersenne Twister, floating point;notify()
in everyput()

single-linked lists LIFO all queues rq3

Table 3. Task pools implemented in Java.

13

Six task pools with dynamic task stealing,dq2 anddq4
to dq8 , have been implemented in C. In Java, five such
task pools,dq2 , dq5 , anddq8 to dq10 , have been imple-
mented.dq2 is used as a reference implementation. It uses
single-linked lists as LIFO queues, and task are stolen from
the working end. All other task pools with dynamic task
stealing differ fromdq2 in usually only one implementa-
tion detail.

• dq4 uses an additional queue for every thread and orga-
nizes its queues as randomized local pools.

• dq5 implements the heuristics introduced in3.5by steal-
ing tasks from the end opposite to the working end.

• dq7 implements its queues by fixed-sized arrays rather
than lists.

• dq8 uses a private and a public queue for each thread.
The private queues are implemented by small, fixed-sized
arrays, and the public queues are single-linked lists of
such arrays.

A slight exception to this rule isdq6 . It uses double-linked
lists and reduces the lock granularity to the level of tasks to
allow two concurrent dequeue operations on the two ends
of a queue. Therefore it is more similar todq5 than todq2
and, for this reason, should be compared withdq5 .

The C implementations all execute wake-up calls every
time a task is inserted into a queue. This can be done be-
cause the wake-up calls topthread_cond_signal()
are quite fast, and thus a processor which missed a wake-up
call because it was busy trying to steal a task from another
processor will only sleep until the next task is inserted. Oth-
erwise unnecessary idle time would be introduced. How-
ever, this approach is not optimal in Java, becauseno-
tify() calls must always be enclosed into asynchro-
nized block, and thus a bottleneck is created whenno-
tify() is executed in everyput() operation. But to
be comparable with the C implementations, the Java im-
plementations execute thenotify() operation in every
put() operation by default. To investigate the impact of
this bottleneck,dq9 and dq10 have been implemented.
dq9 executesnotify() only when a task is inserted into
an empty queue, anddq10 eliminates the problem by using
a flag combined with a busy wait instead of thewait() -
notify() mechanism.

One task pool with one central and several distributed
queues has been implemented in C and in Java (sdq1).
Its implementation is very similar todq8 , since its local
queues are fixed-sized arrays and the central queue is a list
of arrays.

Three very similar randomized task pools,rq1 , rq2 ,
and rq3 , have been implemented in C, but onlyrq3 has
been implemented in Java. All of them use four times as

many central queues as there are processors. They differ
only in the way of random number computation.rq1 uses
the standard library functionrand_r() combined with
floating point arithmetic to select queues. The other two
rely on the Mersenne Twister [22], which was supposed to
run faster than the standard library function.rq2 uses inte-
ger arithmetic, andrq3 uses floating point arithmetic.

7. Target machines and algorithms

To study the task pools that we have implemented, three
different shared-memory multiprocessors have been used.
All of them have been used to investigate the performance
of the task pools for a synthetic algorithm and the hierarchi-
cal radiosity method in C with POSIX threads and in Java.

7.1. Machines

The first of the three shared-memory systems is an Linux
PC with two Pentium III processors at 600 MHz. The pro-
cessors have two first level caches of 16 KB for data and
instructions, respectively, and a 256 KB second level cache
for both data and instructions. They are interconnected by
theAGTL+ Frontside Bus.

The operating system on this machine is Linux. All C
programs have been compiled with the default optimization
level undergcc-2.95.2 . The Java programs have been
executed in a Java 1.3 HotSpot Virtual Machine.

The second multiprocessor is a Sun Enterprise 420R
with four UltraSPARC II processors at 450 MHz. It also has
two separate 16 KB L1 caches for instructions and for data,
respectively, but is equipped with a much larger L2 cache
of 4 MB. The interconnection system between processors
and other system components is theUltra Port Architec-
ture (UPA). Efficient access to main memory is provided by
crossbar switches.

The E420R runs Solaris 8, and the C compiler is part
of the Sun WorkShop 6. The default optimization level
has been used as on the Linux PC. For our experiments on
this machine, an implementation of Java 1.2 has been used,
which included a just-in-time (JIT) compiler.

The largest machines available have been two Sun Fire
with 8 (Sun Fire 3800) and 24 (Sun Fire 6800) Ultra-
SPARC III processors at 750 MHz, which communicate by
the Sun Fireplane Interconnect. Each processor has 32 KB
L1 cache for instructions, 64 KB L1 cache for data and
8 MB L2 cache for both instructions and data.

The operating system of both machines is Solaris 8. As
on the E420R, the C compiler from Sun WorkShop 6 and
Java 1.2 have been used.

14

k P (k)
15 5 149
20 57 290
25 635 593
30 7 049 122
31 11 405 739
32 18 454 894
33 29 860 667
34 48 315 596

Table 4. Total number of tasks created by the
synthetic algorithm P (k) for some values of
k.

7.2. Algorithms

To investigate the different task pool variants in detail, a
synthetic algorithm has been implemented which is deter-
ministic and provides user control of its runtime behavior.
It uses only one task typeA that can be described by the
following productions:

A(i)→

{100f} for i ≤ 0,

{10f} A(i− 2) {50f}
A(i− 1) {100f} for i > 0.

The values in curly braces determine simulated computa-
tion times. The unit of time is the number of iterations of a
loop that is used to simulate computations. The factorf can
be used to adjust the computation time of the tasks. Shared
variables are not used. Though no locality in the computa-
tions can be exploited, this approach has the benefit that no
synchronization operations are necessary to protect shared
variables and thus performance limits that are due to syn-
chronization are only set by the task pools themselves.

When called with argumentk, in the initialization phase
the algorithm sequentially createsk tasks with the argu-
mentsk− 1 to 0. It can be shown by induction that the total
number of tasks processed by the algorithm grows expo-
nentially withk as fast as the sequel of Fibonacci numbers
[18]. The total number of tasks that the synthetic algorithm
creates for selected values ofk is displayed in Table4. All
the results we present for the synthetic algorithm have been
measured withk = 32 andf = 40. With these parameters
the algorithm has to process a total of 18 454 894 tasks.

The synthetic algorithm is well suited to investigate the
scalability of the task pools. It provides a deterministic
task creation scheme that produces a highly unbalanced task
graph. The parameters of the algorithm can be controlled by
the user, which allows to investigate the influence of these
parameters on the performance of the task pools. For in-
stance, it is possible to decrease the computation time of

the tasks to increase the share of time needed to execute the
task pool operations. This allows to uncover bottlenecks
in the task pool operations, which could not be observed if
the computation time of the tasks is orders of magnitudes
higher than that of the task pool operations. Furthermore,
since the absolute difference of the execution times of the
task pool operations can be very small, increasing the num-
ber of tasks executed allows to measure a multiple of this
difference as the difference of the overall execution times
necessary to execute all tasks.

To see how the task pools implemented perform with
a realistic application, theradiosity application from the
SPLASH-2 benchmark suite [38] was chosen to be inves-
tigated. The SPLASH-2 suite was developed to provide a
set of shared-memory applications which facilitate the eval-
uation of different hardware architectures.

Theradiosityapplication is an implementation of the hi-
erarchical radiosity method [13, 30]. This global illumina-
tion algorithm computes radiosity values for a given geo-
metric scene by an adaptive hierarchical subdivision of the
object surfaces. For each of the resulting surface elements, a
radiosity value is computed by taking all interacting surface
elements of other object surfaces into consideration.

As a C implementation of this method, theradiosityap-
plication from the SPLASH-2 suite could be used directly
by applying only minor modifications. To investigate the
task pools written in Java, the application had to be ported.

The radiosityapplication can be considered as a nonde-
terministic algorithm, because different execution orders of
the tasks can be observed to produce a marginally different
number of surface elements and, as a consequence, slightly
different numbers of interactions are processed.

Since the task pools have been designed as universal data
structures that can be used with any task-based algorithm,
they cannot make assumptions about the application which
exceed the model of task-based algorithms. Therefore dif-
ferent task pools can use different execution orders and in-
duce different execution times of theradiosityapplication.
Furthermore, in parallel runs, the order of task execution is
affected by the concurrent behavior of the processors.

A first approach to minimize the effects of nondetermin-
ism is averaging the execution times of multiple runs. An-
other approach is to use statistical information combined
with the execution time to assess a particular run of the
algorithm. For example, the total number of interactions
processed per second or the number of visible interactions
processed per second allow a good comparison. This ap-
proach has the advantage that it measures the performance
of the task pools as the ratio of work per unit time. Thus it is
nearly independent of the execution order used by specific
task pools.

Three input scenes, “test”, “room” and “largeroom”, are
included in the SPLASH-2 application. For our experiments

15

Figure 4. Szene “largeroom”.

Figure 5. Szene “Halle”.

Figure 6. Szene “Raum11w”.

the largest input scene, “largeroom” (Figure4), was chosen
to be investigated. After the sequential creation of the BSP
tree, this scene consists of 532 patches, and 5 to 8 iterations
are performed to compute about 240 000 interactions. This
number may vary by 0.9 %. The number of surface elements
created for this scene is 21 000 and may vary by 1.4 %. The
average number of visible interaction is 89 000 and varies
by maximum 1.2 %.

Since in our first experiments on the smaller machine the
results of the task pools for theradiosityapplication showed
only minor differences, on the larger machines we have also
measured results for two more-detailed scenes, “Halle” and
“Raum11w”. For this purpose, the extensions implemented
in [26] have been used to enable theradiosityapplication to
read the input scene from a file. Scene “Halle” (Figure5)
consists of 1 157 patches, and about 440 000 interactions,
184 000 of which are visible, are processed in usually 4 it-
erations. The scene “Raum11w” (Figure6) is even larger. It
contains 2 979 patches, which lead to about 553 000 visible
interactions from a total of 1 700 000 that are processed in
about 4 iterations. For both scenes, the number of surface
elements and the total number of interactions do not change
if the program execution is repeated. But the number of
visible interactions still varies by maximum 1.2 %.

8. Results

8.1. C versions of the synthetic algorithm

To assess the task pools implemented in C, the execu-
tion times for all memory managers have been measured.
Then, the minimum execution time has been used as basis
for the assessment, arguing that this value is the best exe-
cution time that can be achieved with a specific task pool
variant provided that the most suitable memory manager is
used.

In order to investigate the ability of the task pools to ex-
ploit locality, we have used the PCL library [3] to measure
the misses of both L1 and L2 caches.

Linux PC

The minimum execution times of the C versions of the
synthetic algorithm measured on the Linux PC are shown in
Table5. Table7 shows the corresponding speed-ups. The
cache misses measured are displayed in Table6.

As expected, the two distributed task pools,dq1 and
dq3 , do best if only one thread is used, because all their
queues are private and they therefore do not need to exe-
cute any synchronization operations to protect the queues.
When run in parallel, they usually take more time than all
other task pools, since the initialization phase of the syn-
thetic algorithm was designed to create an unbalanced data
distribution and no transfer of tasks is taking place.

16

Algorithm Test,k = 32, f = 40 Radiosity, “largeroom”
Language C Java C Java
Threads 1 2 1 2 1 2 1 2

sq1 0.96 1.76 0.92 1.41 1.00 1.92 0.99 1.14
sq2 0.96 1.79 – – 1.00 1.91 – –
sq3 0.90 1.63 – – 0.99 1.90 – –
sq4 0.95 1.73 – – 0.99 1.84 – –
dq1 1.00 1.59 0.98 1.54 1.00 1.78 0.99 1.14
dq2 0.95 1.85 0.96 1.67 1.00 1.95 1.00 1.14
dq3 1.00 1.60 – – 1.00 1.76 – –
dq4 0.95 1.82 – – 1.00 1.95 – –
dq5 0.95 1.86 0.89 1.71 1.00 1.95 0.99 1.19
dq6 0.91 1.77 – – 0.99 1.95 – –
dq7 0.95 1.86 – – 1.00 1.94 – –
dq8 1.00 1.96 0.93 1.82 1.00 1.78 1.00 1.18
dq9 – – 0.92 1.75 – – 1.00 1.19
dq10 – – 0.95 1.83 – – 1.00 1.18
sdq1 1.00 1.96 1.00 1.90 1.00 1.95 0.99 1.19
rq1 0.94 1.74 – – 0.99 1.94 – –
rq2 0.93 1.74 – – 0.99 1.93 – –
rq3 0.93 1.73 0.85 1.41 0.99 1.93 0.98 1.14

Table 7. Speed-ups on the Linux PC.

Number of Threads
1 2

1 dq3 314.9 s dq8 160.7 s
2 dq1 +0.2 % sdq1 +0.0 %
3 sdq1 +0.4 % dq7 +5.4 %
4 dq8 +0.4 % dq5 +5.6 %
5 sq2 +4.6 % dq2 +5.7 %
6 sq1 +4.7 % dq4 +8.0 %
7 dq2 +4.9 % sq2 +9.7 %
8 dq7 +5.1 % dq6 +10.9 %
9 dq5 +5.1 % sq1 +11.3 %

10 dq4 +5.5 % rq2 +12.3 %
11 sq4 +5.6 % rq1 +12.4 %
12 rq1 +6.8 % rq3 +12.9 %
13 rq3 +7.0 % sq4 +13.1 %
14 rq2 +7.3 % sq3 +20.1 %
15 dq6 +10.4 % dq3 +22.4 %
16 sq3 +11.2 % dq1 +23.3 %

Table 5. Comparison of the minimum execu-
tion times of the C versions of the synthetic
algorithm on the Linux PC.

Cache L1 L2
Threads 1 2 1 2

sq1 11 148327 3 77750
sq2 8 121847 2 66222
sq3 46843 174486 38712 95179
sq4 23881 207935 19210 107188
dq1 10 45598 3 24150
dq2 14 46648 3 25340
dq3 8 39404 2 20353
dq4 1527 103861 45 52361
dq5 16 45155 3 24189
dq6 19 46240 4 24791
dq7 10 38158 3 19815
dq8 12 27896 3 15176
sdq1 12 32246 3 17927
rq1 2871 146912 90 77257
rq2 3886 164280 97 82909
rq3 3954 173149 92 86549

Table 6. Average number of cache misses (in
thousands) of the C versions of the synthetic
algorithm on the Linux PC.

17

To comparedq1 anddq3 , the array implementation of
the queues indq3 seems to be slightly faster than the list
implementation of the queues indq1 . This can be ex-
plained by the lower complexity and the higher locality of
the array implementation. Since the data of the queues is not
shared, false sharing can only occur if threads are assigned
to different processors during their lifetime.

The best parallel results are achieved by the two task
poolsdq8 andsdq1 . dq8 implements dynamic task steal-
ing with private and public queues, whilesdq1 is a com-
bined central and distributed task pool. They both have in
common that synchronization operations do not have to be
executed in every task pool operation. This reduces syn-
chronization overhead as well as the number of simultane-
ous accesses to queues. Additionally, since tasks are orga-
nized in small blocks of four tasks, they show very good lo-
cality. But this block organization also has the drawback to
coarsen the available parallelism, since now the minimum
unit of parallelism is a block of four tasks.

The central queue ofsdq1 does not impose a bottleneck
since the number of processors is extremely small. Because
of the reduced synchronization overhead,dq8 and sdq1
also obtain the best sequential execution times of all task
pools that allow the balancing of tasks. As a result, the best
speed-up for the C versions of the synthetic algorithm on
the Linux PC of 1.96 has been measured withdq8 and two
threads. Because their results are nearly identical, it is not
possible to comparedq8 andsdq1 on this machine.

Central and randomized task pools obtain about the same
performance. Even thoughsq3 andsq4 allow two simul-
taneous queue operations they cannot outperformsq1 be-
cause of their higher complexity and worse locality (see Ta-
ble 6). As it was the case for the two distributed task pools,
the array implementation of the central queue ofsq2 is
faster than the list implementation ofsq1 . Due to their very
similar implementations, the execution times of the three
randomized task pools show hardly any differences.

In general, best performance is provided by dynamic task
stealing. Since those task pools do not use central data
structures, the task pool operations are not sequenced. Only
synchronization overhead and waiting times in the stealing
process slow them down. Thereforedq8 , which uses pri-
vate and public queues, is the fastest task pool with dynamic
task stealing, because it only needs to synchronize the pub-
lic queues.

To compare the other task-stealing pools, it can be seen
that implementing queues by arrays, like it was done for
dq7 , achieves better performance than the list implemen-
tation of dq2 . The stealing heuristics used fordq5 also
outperforms the standard implementationdq2 .

Randomized local pools have been implemented asdq4 .
They decrease the performance due to the higher complex-
ity of the data structure and reduced locality. Similarly, re-

Number of Threads
1 2

1 dlf 328.9 s dbko 172.1 s
2 dgbkof +0.1 % dbk +0.1 %
3 dl +0.3 % dgbko +1.0 %
4 clf +0.3 % cgbk1 +1.2 %
5 dbko +0.4 % dgbkof +1.5 %
6 cl +0.5 % cgbk1b +1.6 %
7 cgbko +0.5 % cgbk +1.7 %
8 dgbk +0.5 % dlf +2.1 %
9 dgbko +0.5 % cgbkb +2.1 %

10 cgbk +0.6 % dgbk +2.3 %
11 cgbk1 +0.6 % cgbko +2.4 %
12 dbk +0.6 % cl +2.7 %
13 clb +1.2 % cgbkob +2.8 %
14 cgbkob +1.2 % clf +3.2 %
15 cgbk1b +1.3 % dl +3.3 %
16 cgbkb +1.3 % clb +4.6 %
17 bs +8.1 % bs +15.9 %
18 bk +10.2 % bk +27.6 %
19 l +10.3 % l +29.8 %

Table 8. Comparison of the averaged execu-
tion times of the memory managers for the
synthetic algorithm on the Linux PC.

ducing the lock granularity to tasks increases the synchro-
nization overhead so much that the results ofdq6 are the
worst of all task pools with dynamic task stealing.

Using a suitable memory manager has significant impact
on the execution time of a task based algorithm. On the
Linux PC the best memory manager,dgbko , achieves an
average speed-up of about 16 % compared to the memory
manager of the operating system (bs) when the synthetic
algorithm runs with two threads. A comparison of the mem-
ory managers on the Linux PC is shown in Table8.

As expected, on the Linux PC the central free-lists ofl
and bk lead to even worse execution times than those of
bs . The results of the other memory managers, which use
distributed free-lists and sometimes also central free-lists in
addition, are – in individual cases – 10 to 20 % better than
those ofbs .

In general, the results of the memory managers imply
that it is not necessary to implement additional central free-
lists for balancing. One should rather choose a simpler and
faster implementation of distributed free-lists only, because
the central free-lists will introduce a bottleneck if the num-
ber of processors increases, and – even without central free-
lists – memory blocks are transferred between processors
when there is a transfer of tasks. Allocating memory for
multiple tasks at once seems to be a good idea.

On the Linux PC the best memory managers also show

18

0.5

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4

S
pe

ed
-U

p

�

Threads

ideal
sq1
sq2
sq3
sq4
dq1
dq2
dq3
dq4
dq5
dq6
dq7
dq8

sdq1
rq1
rq2
rq3

Figure 7. Speed-ups of the C versions of the
synthetic algorithm on the Sun E420R.

the least cache misses on both L1 and L2 caches. So locality
seems to be the reason that some memory managers that
use items are even faster than the corresponding memory
managers that do not.

Sun Enterprise 420R

On this machine a similar order of the execution times of
the different types of task pools as on the Linux PC can be
observed. Dynamic task stealing and combined central and
distributed task pools provide the best results. Using four
threads, the randomized task pools outperform the central
task pools. The distributed task pools achieve the worst re-
sults.

As on the Linux PC, the distributed task pools,dq1 and
dq3 , achieve the best sequential results, but are very slow
when run in parallel. Their execution times improve when
the number of threads slightly exceeds the number of pro-
cessors. In this case the operating system can utilize an
idle processor by assigning one of the additional threads to
it. If the number of threads is increased even further, the
overhead for thread scheduling will be more expensive than
performing synchronization operations on the distributed
queues. Againdq3 is slightly faster thandq1 . The speed-
ups fordq1 anddq3 measured with four threads are 2.18
and 2.20, respectively.

The best parallel results are achieved bydq8 andsdq1
like it was the case on the Linux PC. But on this machine
our results show minor advantages ofsdq1 , which reaches

Cache L1 L2
Threads 1 4 1 4

sq1 118400 30259 10 7
sq2 98907 24767 5 2
sq3 356917 169633 22397 5626
sq4 163206 40422 11663 3013
dq1 39231 10028 9 3
dq2 119473 28960 5 5
dq3 19920 5198 5 1
dq4 140185 35731 80 25
dq5 116670 28873 11 77
dq6 275189 72251 17 20
dq7 146148 26822 11 1
dq8 23029 6452 13 2
sdq1 23027 6658 11 30
rq1 133225 35147 31 25
rq2 143140 38634 87 88
rq3 152281 40418 94 34

Table 9. Average number of cache misses (in
thousands) of the C versions of the synthetic
algorithm on the Sun E420R.

a speed-up of 3.88 with four threads.dq8 only obtains 3.82.
The number of processors is small enough that the central
queue ofsdq1 does not become a bottleneck.

Dynamic task stealing provides the best scalability on
this machine as well, and the results measured for these task
pools imply the same order as on the Linux PC.

Compared todq2 , the stealing heuristics improves the
performance ofdq5 . But this is not the case fordq6 , be-
cause the costs to reduce the lock granularity are very high.
dq4 with randomized local pools also cannot match the per-
formance ofdq2 . The array implementation ofdq7 speeds
up even better than the heuristics ofdq5 .

All central task pools do not scale very well. If only two
processors are used, the best central task pools can still com-
pete with the worst task pools with dynamic task stealing.
But if the number of processors is increased, the bottleneck
of the central queue limits the performance.

Reducing the lock granularity of the central queue in-
creases its complexity. Therefore the sequential execution
times ofsq3 andsq4 are worse than those of the compa-
rable task poolsq1 . Another reason for the large execution
times of bothsq3 andsq4 is that they process the tasks in
FIFO order, which leads to a high number of cache misses
(see Table9). Yet, if the number of processors is increased,
they do better thansq1 . With four threads, the speed-ups
measured forsq3 andsq4 are 2.67 and 2.72, respectively,
while sq1 only reaches 2.62.

Since the complexity ofsq4 , which is based on the two-
lock queue from [23], is much lower than that ofsq3 which

19

0

100

200

300

400

500
bs

l
bk dl dl

f
db

k
db

ko
dg

bk
dg

bk
o

dg
bk

of cl cl
f

cl
b

cg
bk

cg
bk

b
cg

bk
o

cg
bk

ob
cg

bk
1

cg
bk

1b

T
im

e
in

 s

�

Memory Managers

1 Thread
4 Threads

Figure 8. Runtimes of the C memory man-
agers with dq8 for the synthetic algorithm on
the Sun E420R.

locks single tasks,sq4 runs faster. As for the two dis-
tributed task pools, the array implementation of the central
queue ofsq2 is faster than the list implementation ofsq1 .
It obtains a speed-up of 2.75.

The three randomized task pools,rq1 , rq2 and rq3 ,
have bad sequential execution times. This is due to the high
costs of random number computation and the reduced local-
ity. However, when run on multiple processors, the random-
ized task pools scale better than the central task pools, but
cannot compete with dynamic task stealing. The speed-ups
they achieve range from 3.15 to 3.27.

Since the three randomized task pools differ only in the
way of random number computation, no advantage of one
version over the other can be measured. Only the stan-
dard library functionrand_r() used forrq1 seems to
do slightly better than the Mersenne Twister [22] used for
rq2 andrq3 .

The results of the memory managers (Table10) confirm
the significance of their use. When run with four threads, on
this machine some of our memory mangers are even 90 %
faster than the memory manager that capsulatesmalloc()
andfree() , bs .

Comparing the memory managers on the Sun E420R is
difficult. Investigating a selected task pool, the execution
times for the different memory managers can often be clas-
sified into several groups of similar execution times. The
difference of the execution times of two different groups
is then quite large. For different task pools the number of
groups and the affiliation of the memory managers to the
groups varies.

Figure8 shows the runtimes of the memory managers for
dq8 as an example. It can be seen that there are two groups
of memory managers in the case of one thread. The memory

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
-U

p

�

Threads

ideal
sq1
sq2
sq3
sq4
dq1
dq2
dq3
dq4
dq5
dq6
dq7
dq8

sdq1
rq1
rq2
rq3

Figure 9. Speed-ups of the C versions of the
synthetic algorithm on the Sun Fire.

managers in the first group show execution times of about
440 s, but the memory managers in the second group need
only about 330 s. These large differences in the execution
times of these groups cannot be explained by the different
implementations of the memory managers since for other
task pools different groups can be found. Additionally, con-
sidering only thed* andc* memory managers, the results
for the Linux PC show that the impact of the different mem-
ory manager implementations is only very small compared
to the ratio of3

4 that could be measured in the example of
dq8 on the Sun E420R.

Since the effects also occur in the single-threaded runs,
the concurrent behavior of the threads cannot be the rea-
son. Moreover, in contrast to the Linux PC, no clear corre-
lation between locality and the execution time of a memory
manager can be observed. This implies that the discovered
grouping effect is a result of the complex relationship be-
tween the locality of memory references and implementa-
tion details of both the memory managers and the specific
task pool variants as well as the characteristics of the hard-
ware architecture of the machine.

Sun Fire 3800 and 6800

Due to the larger numbers of processors, smaller differ-
ences in the scalability of the task pools become visible on
these machines. Figure9 shows the results for the C ver-
sions of the synthetic algorithm measured with up to 22
threads. It can be seen that the scalability of the central task

20

Number of Threads
1 2 4 8

1 dgbkof 375.8 s dbk 207.8 s dbk 120.9 s dbk 119.7 s
2 cl +2.9 % dgbkof +0.8 % dgbkof +0.7 % dgbkof +1.3 %
3 dbk +3.4 % dbko +2.7 % dbko +3.1 % dbko +5.1 %
4 clb +3.8 % dgbk +4.1 % dgbk +3.8 % dgbk +5.7 %
5 dbko +4.0 % cl +4.8 % cgbk +4.1 % cgbk1b +5.5 %
6 dgbk +4.1 % clf +4.8 % cgbkb +6.2 % cgbkb +5.7 %
7 clf +4.2 % cgbk1b +5.5 % cgbk1b +6.4 % clf +5.8 %
8 dl +4.3 % cgbkb +5.7 % clf +6.7 % cgbk +7.2 %
9 cgbk1b +5.1 % dl +6.0 % cl +8.2 % cl +9.4 %

10 cgbkb +5.2 % cgbk +6.1 % cgbk1 +8.6 % cgbko +10.2 %
11 cgbko +6.2 % clb +6.5 % dl +9.0 % dl +10.5 %
12 cgbk +6.2 % cgbk1 +6.6 % cgbko +9.4 % cgbk1 +10.9 %
13 cgbk1 +6.2 % cgbko +7.2 % dgbko +9.8 % clb +10.9 %
14 dlf +7.2 % dlf +8.4 % clb +10.2 % dlf +12.0 %
15 bk +12.3 % dgbko +12.1 % dlf +10.9 % cgbkob +12.0 %
16 dgbko +13.0 % cgbkob +14.6 % cgbkob +13.2 % dgbko +12.6 %
17 bs +13.0 % bk +27.1 % bk +91.4 % bk +151.8 %
18 l +13.4 % bs +28.8 % bs +92.9 % l +181.4 %
19 cgbkob +14.0 % l +27.9 % l +94.0 % bs +210.4 %

Table 10. Comparison of the averaged execution times of the memory managers for the synthetic
algorithm on the Sun E420R.

pools is very poor. The maximum speed-up reached with a
central task pool is 4.14. It was measured withsq4 running
with six threads.

The distributed task pools also restrict the achievable
speed-up. They both reach speed-ups of 2.56 when 12
threads are used. Speed-ups for larger numbers of threads
have not been measured, because they were expected to im-
prove only insignificantly. Another task pool that limits the
scalability of the synthetic algorithm isdq6 . It reaches a
speed-up of 5.34 with 8 threads.

All other task pools provide nearly linearly increasing
speed-ups. The best speed-up of 21.29 has been measured
with dq8 . sdq1 reaches a speed-up of 20.87. The maxi-
mum speed-up achieved with the reference implementation
of dynamic task stealing,dq2 , is 19.46.dq7 , which imple-
ments its queues by arrays, can outperform this result. Due
to the heuristics used, in most casesdq5 is slightly faster
thandq2 . Only in the run with 22 threads its results are
worse than those ofdq2 . The randomized task pools and
dq4 reach speed-ups of about 16.8 to 17.6. The best task
pool of this group isrq1 .

8.2. Java versions of the synthetic algorithm

Since no memory managers have been implemented in
Java, only one version of each task pool exists, and the task
pools can be compared directly by their execution times.

Linux PC

Table11compares the results of the Java versions of the
synthetic algorithm on the Linux PC. The speedups mea-
sured are shown in Table7.

In the run with a single thread,sdq1 is the fastest task
pool. The other task pools are between 2.2 % (dq2) and
18.1 % (rq3) slower. If two threads are used,sdq1 obtains
the best speed-up of 1.90. Thendq10 , dq8 anddq9 fol-
low. All of these four task pools execute fewer synchroniza-
tion operations than the other task pools, except fordq1 ,
the slow execution time of which results from the static data
distribution it uses.

The heuristics used indq5 attains better results than the
reference implementation ofdq2 . Because of the expensive
random number computations, the randomized task pool,
rq3 , is even slower than the distributed task pool,dq1 .
The central task pool,sq1 , reaches the worst results. This
is due to the contention for the central queue.

A difference between the mechanisms for conditional
waiting in POSIX threads and Java is that in Java the oper-
ation to wake up sleeping threads must only be called when
the corresponding lock has been acquired. The results for
dq9 anddq10 show that the performance of the task pools
improves if the number of such calls is reduced, because
thus the sequencing of calls toput() can be avoided.

While in C synchronization behavior, the number of ex-

21

Number of Threads
1 2 4

1 sdq1 335.9 s sdq1 176.7 s sdq1 178.4 s
2 dq1 +2.2 % dq10 +4.0 % dq8 +3.4 %
3 dq2 +3.7 % dq8 +4.4 % dq10 +7.1 %
4 dq10 +4.9 % dq9 +8.6 % dq9 +9.1 %
5 dq8 +7.7 % dq5 +10.9 % dq1 +11.3 %
6 dq9 +8.8 % dq2 +13.6 % dq5 +34.9 %
7 sq1 +9.0 % dq1 +23.3 % dq2 +37.1 %
8 dq5 +12.2 % rq3 +34.5 % rq3 +44.8 %
9 rq3 +18.1 % sq1 +34.7 % sq1 +94.4 %

Table 11. Comparison of the execution times of the Java versions of the synthetic algorithm on the
Linux PC.

ecuted operations and locality are the main factors that in-
fluence the execution time of an algorithm, the execution
time of a Java program also depends on the abilities of the
virtual machine to speed up the interpretation of the inter-
mediate code. Certainly different programs are different to
access for optimization techniques. And current virtual ma-
chines reduce the execution time of a program remarkably.
For example, with Java 1.3, the best task pool executed on
the Linux PC with one thread lags only about 7 % behind the
best C implementation. When a version of Java 1.2 without
a just-in-time compiler was used, the Java programs were
about 40 times slower than the C programs.

Sun Enterprise 420R

The execution times of the Java versions of the synthetic
algorithm on the Sun E420R are shown in Table12. The
speed-ups achieved are illustrated in Figure10.

On this machine the results measured with Java are very
similar to the C versions. The only distributed Java task
pool, dq1 , gives the best result for one thread, but suffers
from load imbalance when run with multiple threads and
only attains a speed-up of 2.15.

As in C, sdq1 anddq8 have the best parallel perfor-
mance. With four threads they reach speed-ups of 3.64 and
3.54 respectively.

dq10 anddq9 only reach speed-ups of 3.03 and 2.96,
respectively. Compared todq8 , they have to execute more
synchronization operations, because they have to acquire a
lock every time they access their local queue.

dq5 and dq2 achieve speed-ups of 2.57 and 2.54, re-
spectively. They acquire an additional lock to execute a
wake-up call every time a new task is inserted into the pool.

Because the computation of the random numbers is ex-
pensive, the randomized task pool,rq3 , and the distributed
task pool,dq1 , reach about the same speed-ups of 2.11 and
2.15, respectively.

0

0.5

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4

S
pe

ed
-U

p

�

Threads

ideal
sq1
dq1
dq2
dq5
dq8
dq9

dq10
sdq1

rq3

Figure 10. Speed-ups of the Java versions of
the synthetic algorithm on the Sun E420R.

22

Number of Threads
1 2 4 8

1 dq1 711.5 s dq8 358.4 s sdq1 189.6 s dq8 182.7 s
2 dq8 +0.1 % sdq1 +0.3 % dq8 +0.3 % sdq1 +2.0 %
3 sdq1 +0.4 % dq9 +6.2 % dq9 +8.1 % dq10 +12.3 %
4 sq1 +1.1 % dq10 +8.6 % dq10 +9.0 % dq9 +12.5 %
5 dq10 +1.4 % dq2 +8.7 % dq2 +11.9 % dq1 +68.0 %
6 dq9 +1.9 % sq1 +9.0 % dq5 +14.5 % dq2 +100.2 %
7 dq5 +2.8 % dq5 +11.7 % rq3 +25.2 % dq5 +111.1 %
8 dq2 +4.5 % rq3 +18.2 % dq1 +71.5 % rq3 +121.6 %
9 rq3 +6.4 % dq1 +24.2 % sq1 +303.8 % sq1 +405.2 %

Table 12. Comparison of the execution times of the Java versions of the synthetic algorithm on the
Sun E420R.

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
-U

p

�

Threads

ideal
sq1
dq1
dq2
dq5
dq8
dq9

dq10
sdq1

rq3

Figure 11. Speed-ups of the Java versions of
the synthetic algorithm on the Sun Fire.

Due to the contention for the central queue the central
task pool,sq1 , reaches its maximum speed-up of 1.19 with
two threads. When executed with more threads, the perfor-
mance ofsq1 even decreases.

Sun Fire 3800 and 6800

Figure11 shows the speed-ups for the Java versions of
the synthetic algorithm for up to 22 threads. Here the best
task pool issdq1 . Its speed-up increases up to 19.41 mea-
sured with 22 threads.dq8 obtains the second best speed-
up of 18.87.

dq9 and dq10 have about equal speed-ups. Because

they both do not execute wake-up calls every time a new
task is inserted, their speed-up curves are nearly linear and
reach a maximum speed-up of 16.07 and 16.59 with 22
threads, respectively.

dq2 , dq5 andrq3 all suffer from the bottleneck created
by the wake-up call. So they reach their maximum speed-
up of 2.93 to 3.33 with only four threads. The central task
pool,sq1 , performs even worse. Its maximum speed-up of
1.77 was measured with only two threads. The distributed
task pool,dq1 , reaches its maximum speed-up of 2.57 with
about 16 threads.

8.3. C versions of theradiosityapplication

The C versions of theradiosity application are more
difficult to evaluate than those of the synthetic algorithm
because the execution times of different program runs may
vary due to nondeterministic behavior. We therefore de-
cided to take statistical information about the computations
into account. More precisely, we used the sum of com-
pletely and partially visible interactions divided by the exe-
cution time as the assessment basis. In particular, we use the
average over the interaction rates of all memory managers
to compare the task pools.

Linux PC

The results for theradiosity application show a similar
order of the execution times of the different types of task
pools as the results for the synthetic algorithm (Table7).
But it is hardly possible to compare different task pool ver-
sions of the same type, because the results are very close
to each other. The only remarkable exception isdq8 , the
results of which amount to those of the two distributed task
pools.

23

0.5

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4

S
pe

ed
-U

p

�

Threads

ideal
sq1
sq2
sq3
sq4
dq1
dq2
dq3
dq4
dq5
dq6
dq7
dq8

sdq1
rq1
rq2
rq3

Figure 12. Speed-ups of the C versions of the
radiosity application (scene “largeroom”) on
the Sun E420R.

0.5

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4

S
pe

ed
-U

p

�

Threads

ideal
sq1
sq2
sq3
sq4
dq1
dq2
dq3
dq4
dq5
dq6
dq7
dq8

sdq1
rq1
rq2
rq3

Figure 13. Speed-ups of the C versions of the
radiosity application (scene “Halle”) on the
Sun E420R.

0.5

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4

S
pe

ed
-U

p

�

Threads

ideal
sq1
sq3
sq4
dq1
dq2
dq4
dq5
dq6
dq8

sdq1
rq1
rq2
rq3

Figure 14. Speed-ups of the C versions of the
radiosity application (scene “Raum11w”) on
the Sun E420R.

Sun Enterprise 420R

The results for the C versions of theradiosityapplication
on the Sun E420R are shown in Figure12. The best speed-
up measured here (3.86) is about equal to the best speed-up
of the synthetic algorithm. But for theradiosityapplication
all task pools show good scalability on this machine. The
reason for this behavior is that theradiosityapplication ex-
ecutes a smaller number of tasks which are computationally
more intensive.

The worst speed-ups, which have been measured for the
two distributed task pools, are 3.10 and 3.08, respectively.
sq3 and sq4 respectively reach speed-ups of 3.72 and
3.71. These two task pools execute the tasks in FIFO or-
der. All other task pools reach a speed-up of at least 3.80.
Because of the close results, it is hardly possible to compare
the task pools within this group.

The speed-up curves we have measured for the scenes
“Halle” and “Raum11w” are very similar to those of “large-
room”, so they also do not allow a more detailed compari-
son of the task pools (Figures13and14).

Sun Fire 3800 and 6800

Because of the higher number of processors, on these
machines those memory managers that were known to
strongly limit the performance of the task pools were not
included in the average interaction rate.

24

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
-U

p

�

Threads

ideal
sq1
sq2
sq3
sq4
dq1
dq2
dq3
dq4
dq5
dq6
dq7
dq8

sdq1
rq1
rq2
rq3

SPLASH-2

Figure 15. Speed-ups of the C versions of the
radiosity application (scene “largeroom”) on
the Sun Fire.

0

5

10

15

20

25

0 5 10 15 20 25

S
pe

ed
-U

p

�

Threads

ideal
sq1
sq2
sq3
sq4
dq1
dq2
dq3
dq4
dq5
dq6
dq7
dq8

sdq1
rq1
rq2
rq3

Figure 16. Speed-ups of the C versions of the
radiosity application (scene “Halle”) on the
Sun Fire.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
-U

p

�

Threads

ideal
sq1
sq2
sq3
sq4
dq1
dq2
dq3
dq4
dq5
dq6
dq7
dq8

sdq1
rq1
rq2
rq3

Figure 17. Speed-ups of the C versions of the
radiosity application (scene “Raum11w”) on
the Sun Fire.

All speed-up curves for the scene “largeroom” reach
their maximum with less than 24 processors (Figure15).
The speed-ups of the distributed task pools slowly increase
to 6.1 measured with 20 threads. The central task pools
reach their maximum speed-ups of 7.8 to 8.1 with 12
threads. The best speed-up of 12.40 has been measured with
dq6 and 20 threads.

The other task pools reach their maximum speed-ups of
9.9 to 10.5 with 16 threads. Up to 20 threads the speed-ups
of the SPLASH-2 implementation are slightly better than
the speed-ups of the task pools in this group. The reason
for this is that our task pools have been assessed by the av-
erage interaction rate of several memory managers. If only
the best memory managers had been considered, some task
pools of this group would have shown better results than the
SPLASH-2 implementation. This is particularly surprising
since our implementations are not optimized to exploit the
special properties of theradiosityapplication.

For scene “Halle” (Figure16) againdq6 obtains the best
results. Its speed-up increases up to 16.03 when 24 threads
are used. In contrast to the results mentioned above, the
speed-ups of the distributed task pools,dq1 anddq3 , can
also profit from all 24 processors. They reach speed-ups of
12.41 and 12.47, respectively.

All other task pools reach their maximum speed-ups of
about 9.0 with 16 threads. The only exceptions aresq1 ,
sq2 andsq4 . This is caused by the non-linear speed-ups
of some combinations of task pools and memory managers

25

which influence the average interaction rates displayed. If
only the minimum execution times of all memory managers
were displayed, the results ofsq1 andsq2 would be about
equal to the other task pools of this group.sq4 would even
reach better speed-ups than the distributed task pools.

For our measurements with the scene “Raum11w” only
20 processors could be used (Figure17). The results for this
scene are similar to those for scene “Halle”.dq6 achieves
the best speed-up of 14.34 with 20 threads. The distributed
task pools,dq1 anddq3 , achieve speed-ups of 10.98 and
11.06, respectively.

The other task pools also reach their maximum speed-
ups with 16 threads, but a decrease of the ascents of their
speed-up curves can be observed that implies that they
would hardly profit from additional processors.

8.4. Java versions of theradiosityapplication

Linux PC

The results for the Java versions of theradiosityapplica-
tion on this machine (Table7) divide the task pools into two
groups. The group with the better interaction rates consists
of dq5 , dq9 , sdq1 , dq8 and dq10 . Their results only
vary by 1 %. The results of the other group, which consists
of dq1 , dq2 , sq1 andrq3 , are about 4 % worse than those
of the best task pool,dq5 . The differences of the interaction
rates in this group are even smaller than in the first group.

Except fordq5 anddq1 , the task pools in the first group
execute fewer synchronization operations than the members
of the second group.dq1 is slower because of the static data
distribution it uses. The reason whydq5 does best probably
lies in the stealing heuristics.

Sun Enterprise 420R

To compare the Java versions of theradiosity applica-
tion is even more difficult than to compare the C versions,
because the speed-ups reached only range from 2.39 to 2.57
in Java. This is especially the case since the order of the
task pools varies with the number of threads and does not
correspond with the results of the C versions.

The speed-ups for the Java versions of theradiosityap-
plication are generally lower than those of the C versions.
Furthermore, the ascent of the speed-up curves decreases
with the number of processors (see Figures18, 19and20).

Sun Fire 3800 and 6800

The Java versions of theradiosityapplication could only
be measured for up to 20 processors on the larger of the two
machines. The results are shown in Figures21, 22and23.

Though the speed-up curves differ for different scenes,
the individual task pools bring about very similar results.

0.5

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4

S
pe

ed
-U

p

�

Threads

ideal
sq1
dq1
dq2
dq5
dq8
dq9

dq10
sdq1

rq3

Figure 18. Speed-ups of the Java versions of
the radiosity application (scene “largeroom”)
on the Sun E420R.

0.5

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4

S
pe

ed
-U

p

�

Threads

ideal
sq1
dq1
dq2
dq5
dq8
dq9

dq10
sdq1

rq3

Figure 19. Speed-ups of the Java versions of
the radiosity application (scene “Halle”) on
the Sun E420R.

26

0.5

1

1.5

2

2.5

3

3.5

4

1 1.5 2 2.5 3 3.5 4

S
pe

ed
-U

p

�

Threads

ideal
sq1
dq1
dq2
dq5
dq8
dq9

dq10
sdq1

rq3

Figure 20. Speed-ups of the Java versions of
the radiosity application (scene “Raum11w”)
on the Sun E420R.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
-U

p

�

Threads

ideal
sq1
dq1
dq2
dq5
dq8
dq9

dq10
sdq1

rq3

Figure 21. Speed-ups of the Java versions of
the radiosity application (scene “largeroom”)
on the Sun Fire.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
-U

p

�

Threads

ideal
sq1
dq1
dq2
dq5
dq8
dq9

dq10
sdq1

rq3

Figure 22. Speed-ups of the Java versions of
the radiosity application (scene “Halle”) on
the Sun Fire.

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20

S
pe

ed
-U

p

�

Threads

ideal
sq1
dq1
dq2
dq5
dq8
dq9

dq10
sdq1

rq3

Figure 23. Speed-ups of the Java versions of
the radiosity application (scene “Raum11w”)
on the Sun Fire.

27

For scene “largeroom” the maximum speed-up measured
was 4.74. It was measured withdq9 running with 10
threads.dq5 , dq10 anddq2 achieve the next best results.
Their speed-ups are 4.54, 4.46 and 4.44, respectively. The
speed-ups ofdq8 , sdq1 , rq3 andsq1 range from 4.31 to
3.91.dq1 can only obtain the worst speed-up of 3.46.

For scene “Halle” the task pools reach their maximum
speed-ups with 16 or 20 threads. The best task pool isdq9 ,
which achieves a speed-up of 9.76.dq2 , dq5 , sq1 and
dq10 are next with speed-ups ranging from 8.24 to 7.81.
The speed-ups ofrq3 , sdq1 anddq8 are lying between
7.70 and 7.50.dq1 is the slowest with a speed-up of 7.05.

The maximum speed-ups for scene “Raum11w” were
also reached with 16 or 20 threads. Againdq9 obtains the
best speed-up of 8.53. The speed-ups ofdq5 anddq2 are
7.68 and 7.53, respectively. As for the other scenes, the
slowest task pool isdq1 with a speed-up of 6.60 The other
task pools achieve speed-ups between 7.25 and 7.06

9. Related work

A lot of research has been done in developingstatic
scheduling algorithms for DAGs. An overview can be found
in the book of Brucker [4] or the article of Kwok and Ah-
mad [20]. Static scheduling provides that a complete task
graph with task execution times and communication costs
is given. This graph is used to compute a schedule that can
later be used to execute the tasks of the DAG in an efficient
order.

If task execution times cannot be modeled exactly,
Tongsima, Chandrapornchai et al. have proposed model-
ing the execution times by probabilistic distributions [31]
or fuzzy sets [7].

In special cases, static scheduling can be used to speed
up irregular applications. Gerasoulis, Jiao and Yang [12]
have applied the static scheduling system PYRROS [40] to
the Fast Multipole Method (FMM).

In general,dynamicscheduling is necessary to exploit
parallelism in irregular algorithms optimally. Various ap-
proaches have been proposed towards the efficient parallel
execution of irregular computations: Johnson [17] proposes
a Dynamic Task Graph (DTG) used to store tasks created
at runtime. Cosnard, Jeannot and Yang [8] propose a Sym-
bolic Linear Clustering (SLC) algorithm for Parameterized
Task Graphs (PTGs). A parallel incremental scheduling al-
gorithm is proposed by Wu [39].

Further approaches concentrate on automatic loop
scheduling. Rauchwerger [28] proposes runtime paral-
lelization techniques that use inspector/executor or specu-
lative methods to schedule fully and partially parallel loops
at runtime. Saltz et al. [16] have used the inspector/executor
approach to implement the CHAOS runtime support system

that provides a global address space for distributed arrays
on message-passing machines.

A combined dynamic and static scheduling that simulta-
neously balances processor loads and maintains locality is
the fractiling technique that combines factoring and tiling
[15, 2]. This technique can be applied to parallel loops
whose iterations have variable running times [2] and has
been successfully used to the fast multipole method by Ban-
icescu [1]. Different dynamic scheduling methods for paral-
lel loops including factoring, weighted factoring and adap-
tive weighted factoring have been compared by Carino and
Banicescu [6] for loops with different characteristics.

Another class of scheduling algorithms aims at distribut-
ing runnable tasks equally among the processors. This class
of algorithms is usually referred to asload balancingal-
gorithms. Kumar et al. [19] compare several load balanc-
ing techniques. Tucker [33] has done research in schedul-
ing on multiprogrammed shared-memory multiprocessors.
Durand et al. [10] study load balancing in self-scheduling
schemes on Non-Uniform Memory Access (NUMA) ma-
chines.

Load balancing schemes using task queues are de-
scribed in Dandamundi and Ayach [9], Rudolph et al. [29],
Wen [36] and Podehl et al. [25]. Dandamundi and Ayach [9]
present a processor scheduling scheme based on a hierar-
chical run queue organization. Rudolph et al. [29] pro-
pose a load balancing scheme using a collection of local
workpiles. Wen [36] describes the implementation of a dis-
tributed task queue on the CM5. Podehl et al. [25] have used
a parallel queue implemented by multiprefix operations to
improve the performance of theradiosityapplication on the
SB-PRAM.

10. Conclusions

We have presented results of several task pool imple-
mentations for shared-memory systems. These have been
obtained using a synthetic algorithm and theradiosity ap-
plication from the SPLASH-2 suite.

Task pools provide an easy way to implement irregular
algorithms but have the disadvantage to compromise local-
ity. The implementations presented have been designed to
be usable with any task-based algorithm. In practice, task-
based algorithms may use specialized task pools, that are
optimized according to the needs of the algorithm.

The implementation of a task pool has great impact on its
performance. In order to avoid bottlenecks, no central data
structures should be used that are accessed concurrently.
Therefore, from the task pools implemented in this paper,
dynamic task stealing provides best scalability. The best of
our implementations of dynamic task stealing uses a private
and a public queue for each thread. Thus the number of syn-
chronization operations is reduced as well as the number of

28

conflicts caused by task stealing, and speed-ups of 21.29 in
C and 19.41 in Java could be measured using 22 processors.

The combination of central and distributed queues has
shown good scalability as well. For the C versions of the
synthetic algorithm its performance could nearly match dy-
namic task stealing with private and public queues. But for
the Java versions its scalability was limited to 16 proces-
sors, probably due to the bottleneck created by the central
queue.

As expected, central task pools show poor scalability be-
cause of the bottleneck that the central queue imposes. Dis-
tributed task pools which only provide a static data distribu-
tion are also not able to meet the performance of dynamic
task stealing. Reducing lock granularity often decreases the
performance due to higher overheads.

Most of our implementations execute wake-up calls ev-
ery time a new task is inserted into the pool. Because in
C these calls are executed very fast, this does not introduce
much overhead but reduces the idle time of processors out
of work. In Java thenotify() calls provided for this pur-
pose must only be called inside of a corresponding critical
region. Thus a bottleneck is created that limits the scala-
bility of most of our Java implementations and hinders a
comparison of these implementations for larger numbers of
threads.

But the C versions of the synthetic algorithm allow a
good comparison of the task pools. It can be observed
that queues implemented by arrays do better than the cor-
responding list implementations. Using heuristics to steal
larger tasks can slightly improve the performance of dy-
namic task stealing. Even though the efficiency of random-
ized task pools is lower than that of dynamic task stealing,
randomized task pools can profit from all 24 processor that
have been available.

Our investigations of the cache behavior have shown
that locality is exploited best if distributed queues are used
which are processed in LIFO order. Especially central
queues and randomized behavior increase the cache miss
rates.

Due to the high number of memory operations typically
executed in a task-based algorithm it is very important to
use an appropriate memory manager. Recycling memory
blocks in distributed data structures and anticipatory allo-
cation strategies can remarkably improve the performance.
This way, on the Sun E420R the execution time of the C
versions of the synthetic algorithm could be reduced by
more than 90 %. Like the task pools, memory managers
should not use central data structures that are accessed con-
currently.

The radiosity application is a typical irregular applica-
tion that intensively uses common variables stored in the
shared-memory. Because accesses to these variables must
often be synchronized, additional limitations to scalabil-

ity emerge, and often the maximum speed-up is already
reached with less than 24 processors.

The speed-ups of the task pools measured for theradios-
ity application are often very close to each other. Because
these small differences are influenced by errors of the same
order in the measurement introduced by the operating sys-
tem and other user processes, a definite comparison of the
task pools is not possible for this application.

With the development of Java Virtual Machines, the ex-
ecution times of Java programs get closer to C. But those
compilers make it more difficult to compare Java programs,
because their optimizations speed up different programs dif-
ferently.

In general, the Java implementations reach smaller
speed-ups than the C versions. One reason for this is that
the synchronization mechanisms of Java are not as flexible
as those of POSIX threads. There are no independent oper-
ations for locking and unlocking of objects, and the call to
wake up conditionally waiting threads must be protected by
the corresponding object lock.

Another reason is that the Java programming language
does not allow to use memory blocks as it can be done in
C, and therefore many optimizations used in C programs
can not be applied in Java. Particularly, a memory manager
in Java would probably be more expensive than using the
built-in functions of the language.

Furthermore, the scalability of any Java application is
limited by the ability of the virtual machine used to exe-
cute it. Particularly, in the virtual machine we have used
only a sequential garbage collector was implemented. But
there are other sources of performance loss in the structure
of the Java programming language. For example, efficient
memory management is far more complicated, and the syn-
chronization mechanisms of Java are not as flexible as those
of POSIX threads.

Of course there are many other task pool implementa-
tions that may be thought of. For example, the balancing
of tasks could be done in a separate phase or by a separate
thread. Other implementations can even model the whole
task pool as a graph that is searched by all processors in
parallel [18]. Also many variations and improvements of
our implementations are possible.

The implementations we have presented only show the
general capability of task pools to be used for parallel ir-
regular algorithms. Even though load balancing strategies
that are adapted to the specific application often lead to bet-
ter performance, in our example, theradiosityapplication,
scalability was limited by the application itself. The results
for the synthetic algorithm proved that good task pool im-
plementations are well able to efficiently use all processors
of our machines.

Future investigations may concern alternative algorithms
as well as new types of task pools. Most interesting al-

29

gorithms are real-world applications which are determinis-
tic and provide extensive user control. New types of task
pools should be aiming at a further reduction of the over-
head caused by the thread library and at avoiding the bot-
tlenecks present in most of the task pools presented in this
paper. Further investigations may also consider heuristic
approaches to improve the schedule.

References

[1] I. Banicescu. Load Balancing and Data Locality in the
Parallelization of the Fast Multipole Algorithm Parallelism.
PhD thesis, Polytechnic University, 1996.

[2] I. Banicescu and S. F. Hummel. Balancing processor loads
and exploiting data locality in n-body simulations. InProc.
Supercomputing’95 Conference, 1995.

[3] R. Berrendorf and H. Ziegler. PCL – The performance
counter library: A common interface to access hardware
performance counters on microprocessors. Internal report
FZJ-ZAM-IB-9816, Forschungszentrum Jülich, 10 1998.

[4] P. Brucker. Scheduling Algorithms. Springer, Berlin, 3rd
edition, 2001.

[5] D. R. Butenhof.Programming with POSIX Threads. Addi-
son Wesley, 1997.

[6] R. Carino and I. Banicescu. Dynamic scheduling of par-
allel loops with variable iterate execution times. InProc.
IPDPS-Workshop on Parallel and Distributed Scientific and
Engineering Computing with Applications, 2002.

[7] C. Chantrapornchai, S. Tongsima, and E. H. Sha. Imprecise
task schedule. InProceedings of the International Confer-
ence on Fuzzy Systems, 1997.

[8] M. Cosnard, E. Jeannot, and T. Yang. SLC: Symbolic
scheduling for executing parameterized task graphs on mul-
tiprocesors. InInternational Conference on Parallel Pro-
cessing, 1999.

[9] S. P. Dandamudi and S. Ayachi. Performance of hierarchical
processor scheduling in shared-memory multiprocessor sys-
tems.IEEE Transactions on Computers, 48(11):1202–1213,
1999.

[10] D. Durand, T. Montaut, L. Kervella, and W. Jalby. Load bal-
ancing performance of dynamic scheduling on NUMA mul-
tiprocessors.IEEE Transactions on Parallel and Distributed
Systems, pages 1201–1214, 11 1996.

[11] S. J. Eggers and R. H. Katz. The effects of sharing on the
cache and bus performance of parallel programs. InPro-
ceedings of the Third International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS III), pages 257–270, 4 1989.

[12] A. Gerasoulis, J. Jiao, and T. Yang. Experience with graph
scheduling for mapping irregular scientific computation. In
Proceedings of the First IPPS Workshop on Solving Irregu-
lar Problems on Distributed Memory Machines, 4 1995.

[13] P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hierar-
chical radiosity algorithm. InProceedings of SIGGRAPH,
1991.

[14] M. Herlihy. A methodology for implementing highly con-
current data objects.ACM Transactions on Programming
Languages and Systems, 15(5):745–770, November 1993.

[15] S. Hummel, E. Schonberg, and L. Flynn. Factoring: A
practical and robust method for scheduling parallel loops.
Comm. of the ACM, 35(8):90–101, 1992.

[16] Y.-S. Hwang, B. Moon, S. D. Sharma, R. Ponnusamy,
R. Das, and J. H. Saltz. Runtime and language support for
compiling adaptive irregular programs on distributed mem-
ory machines.Software – Practice and Experience, 1995.

[17] T. Johnson, T. A. Davis, and S. M. Hadfield. A concurrent
dynamic task graph.Parallel Computing, 22(2):327–333,
1996.

[18] M. Korch. Einsatz von Taskpools in Pthreads und Java
zur parallelen Implementierung irregulärer Algorithmen.
Diplomarbeit, Martin-Luther-Universität Halle-Wittenberg,
2001.

[19] V. Kumar, A. Y. Grama, and N. R. Vempaty. Scalable load
balancing techniques for parallel computers.Journal of Par-
allel and Distributed Computing, 22(1):60–79, 1994.

[20] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison
of the task graph scheduling algorithms.Journal of Parallel
and Distributed Computing, 59(3):381–422, 1999.

[21] T. G. Lewis. Foundations of Parallel Programming: A
Machine-Independent Approach. IEEE Computer Society
Press, Washington, 1993.

[22] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-
dimensional equidistributed uniform pseudorandom number
generator.ACM Transactions on Modeling and Computer
Simulations: Special Issue on Uniform Random Number
Generation, 1998.

[23] M. M. Michael and M. L. Scott. Nonblocking algorithms
and preemption-safe locking on multiprogrammed shared
— memory multiprocessors.Journal of Parallel and Dis-
tributed Computing, 51(1):1–26, 1998.

[24] S. Oaks and H. Wong.Java Threads. O’Reilly, 2nd edition,
Jan. 1999.

[25] A. Podehl, T. Rauber, and G. Rünger. Scalability and granu-
larity issues of the hierarchical radiosity method. InPro-
ceedings of the Euro-Par ’96, volume 1, pages 789–798,
Berlin, Germany, 1996. Springer-Verlag.

[26] A. Podehl, T. Rauber, and G. Rünger. A shared-memory
implementation of the hierarchical radiosity method.Theo-
retical Computer Science, 196(1–2):215–240, 1998.

[27] S. Prakash, Y.-H. Lee, and T. Johnson. Non-blocking al-
gorithms for concurrent data structures. Technical Report
91–002, Department of Computer and Information Sciences,
University of Florida, 7 1991.

[28] L. Rauchwerger. Run-time parallelization: It’s time has
come. InInternational Conference on Parallel Computing,
1998.

[29] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple
load balancing scheme for task allocation in parallel ma-
chines. InACM Symposium on Parallel Algorithms and Ar-
chitectures, pages 237–245, 1991.

[30] J. P. Singh, C. Holt, T. Tosuka, A. Gupta, and J. L. Hen-
nessy. Load balancing and data locality in adaptive hier-
archical n-body methods: Barnes-hut, fast multipole, and
radiosity. Journal of Parallel and Distributed Computing,
27(2):118–141, 6 1995.

30

[31] S. Tongsima, C. Chantrapornchai, E. H.-M. Sha, and N. Pas-
sos. Probabilistic rotation: Scheduling graphs with uncertain
execution time. InProceedings of the Internationall Confer-
ence on Parallel Processing, pages 292–297, 1997.

[32] J. Torrellas, M. S. Lam, and J. L. Hennessy. False sharing
and spatial locality in multiprocessor caches.IEEE Trans-
actions on Computers, 43(6):651–663, 1994.

[33] A. Tucker. Efficient Scheduling on Multiprogrammed
Shared-Memory Multiprocessors. PhD thesis, Stanford Uni-
versity, 12 1993.

[34] A. M. Turing, P. N. Furbank, D. Ince, P. T. Saunders, J. L.
Britton, R. Gandy, and C. E. M. Yates.Collected Works of
A. M. Turing. North-Holland, Amsterdam, London, 1992,
2001.

[35] J. D. Valois. Lock-free linked lists using compare-and-
swap. InSymposium on Principles of Distributed Comput-
ing, pages 214–222, 1995.

[36] C. Wen. A distributed task queue for load balancing on the
CM5.

[37] R. W. Wisniewski, L. I. Kontothanassis, and M. L. Scott.
High performance synchronization algorithms for multipro-
grammed multiprocessors. InProc. 5th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Program-
ming, PPoPP’95, pages 199–206, Santa Barbara, California,
1995.

[38] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 programs: Characterization and method-
ological considerations. InProceedings of the 22nd Interna-
tional Symposium on Computer Architecture, pages 24–36,
Santa Margherita Ligure, Italy, 1995.

[39] M.-Y. Wu. Parallel incremental scheduling.Parallel Pro-
cessing Letters, 8 1995.

[40] T. Yang and A. Gerasoulis. PYRROS: Static task scheduling
and code generation for message passing multiprocessors.
In Proceedings of the 6th ACM International Conference on
Supercomputing, pages 428–437, Washington D.C., 7 1992.

31

	1 Introduction
	2 Task-based algorithms
	2.1 Representation by graphs
	2.2 Task grammars
	2.3 Usable parallelism and running time of task-based algorithms

	3 Types of task pools
	3.1 Central task pools
	3.2 Randomized task pools
	3.3 Distributed task pools
	3.4 Combined central and distributed task pools
	3.5 Dynamic task stealing
	Randomized local pools
	Private and public queues
	Heuristics for stealing

	4 General implementation issues
	4.1 Ending the working phase
	4.2 Implementation of queues
	4.3 Mutual exclusion
	4.4 Memory management
	4.5 Locality

	5 Potential of C and Java
	6 Implementation
	6.1 Interface of the libraries
	6.2 Memory managers implemented in C
	6.3 Task pools implemented in C and Java

	7 Target machines and algorithms
	7.1 Machines
	7.2 Algorithms

	8 Results
	8.1 C versions of the synthetic algorithm
	Linux PC
	Sun Enterprise 420R
	Sun Fire 3800 and 6800

	8.2 Java versions of the synthetic algorithm
	Linux PC
	Sun Enterprise 420R
	Sun Fire 3800 and 6800

	8.3 C versions of the radiosity application
	Linux PC
	Sun Enterprise 420R
	Sun Fire 3800 and 6800

	8.4 Java versions of the radiosity application
	Linux PC
	Sun Enterprise 420R
	Sun Fire 3800 and 6800

	9 Related work
	10 Conclusions

