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Abstract

This work addresses the issue of exploiting intra-tile para
lelism by overlapping communication with computation remg
the restriction of atomicity of tiles. The effectivenestilofg is
then critically dependent on the execution order of taskbiwi
a tile. In this paper we present a theoretical framework lohse
on equivalence classes that provides an optimal task ardar-
der assumptions of constant and different permutationsasist
in individual tiles. Our framework is able to handle constant
compile-time unknown dependences by generating optinsél ta
permutations at run-time and results in significantly lovieop
completion times. Our solution is an improvement over [evi
approaches [2, 6] and is optimal for all problem instances &éo
propose efficient algorithms that provide the optimal solut The
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more parallelism.

Hollander [5] extracts parallelism in nested loops by idfgimtg
and labeling independent subsets of iterations using whitao
transformations. However, this work is not suited to DSMstas
involves complex data partitioning and assignment of tiens to
processors. Tiling is more attractive in such situationgrgtdata
and iteration space partitioning can be kept simple andieffic
Many approaches [1, 3, 8, 10] use the assumption of atoragttl
derive the optimal tile size and shape. These approaches/ev
re-distribution of data among processors in order to imprdata
locality thereby addressing the issue of memory to tilerlaies.
On the other hand, we perform loop tiling and attempt to minén
inter-tile latencies by re-ordering individual tasks vifitla tile.

Previous approaches by Chou & Kung [2] and Dion et al [6] to
the problem of finding an optimal task ordering within loolesi

framework has been implemented as an optimization passin th have relied on heuristics that do not yield the optimal sofufor all

SUIF compiler and has been tested on a distributed memotgrays

instances of the problem even in one dimension. Thus, firtti@g

using a message passing model. We show that the performanc@ptimal solution in one dimension is still an open issue. Gdveral

improvement over previous results is substantial.

1. Introduction

Loop tiling is one of the most popular techniques to pantitio

uniform loop nests and map tasks to processors in a multicom-

puter. The notion of loop tiling was introduced by Wolfe [11]
and the issue of legality of tiling was formalized by Irigcand
Triolet [7]. Usually tiles are considered to be atonie., inter-
processor communication is considered to take place ongr af
the end of computation in each tile. Atomic tile considerasi
are justified when the cache size is small since tile size éseh
to fit the underlying data in the cache. However, the assumpti
of atomic tiles leads to loss of potential parallelism whargét-
ing parallel machines such as distributed shared memotgregs
(DSMs) that are capable of overlapping communication watim€
putation. In fact, intra-tile optimizations, given thatngputation
and communication can overlap, open opportunities foratpt
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contribution of this work is the development of a new forntida

of this problem along with a framework based on equivalence
classes to derive optimal permutations. Using this frantkwaee
also develop efficient algorithms that result in an optinwilison

for all problem instances in one dimension. Further, we iai@
account the possibility of having different task permwas in
each tile and give the optimal solution for this case too.

The remainder of the paper is organized as follows. Section 2
presents the problem statement. Section 3 introduces titefisi
and notations used in this paper. Section 4 discusses peevio
work. Section 5 formulates the problem based on equivalence
classes. In section 6 we develop the theoretical framewndk a
show optimality results. Section 7 presents the proposedtant
permutation algorithm. Section 8 discusses the solutioenvh
different task permutations are considered in each tilsetition 9,
we present and discuss the results of our implementatioralligi
section 10 provides concluding remarks.

2. Statement of the problem

Consider a loop ofV iterations that carries a dependence of
distancel. Assume that the loop is tiled with tile size and
mapped on taP processors. TheV tasks are partitioned into



[X7 tiles such that for 0< i < [&7] — 1, the tasks con-
tained in tileT; are {tni,tnit1, . tn(it1)—1} andT(%F1 =
{taxy_1) - ty-a}. Tile T; is executed on processet; for
every"i. The problem is to find an optimal ordering)(of tasks in
a tile, so as to minimize the overall completion tin%e ;) of the
loop respecting the dependences imposed. Since tilingothe |
and mapping the tiles are dictated by different considenati the
number of processors and tiles need not be the same.

We now present some of the definitions and notations used in

the paper.

3. Terms and Definitions

Definition 1 Let us denoter = {to,t1,....,tn—1} as the task
space. Each element ofis a task to be executed.

Definition 2 The iteration space is mapped onto the tile space.

Each tile containg: tasks ; more precisely, a tile is a s&} =
{tnj, tnj+1, tnj+2s oy tnjn—1} N T With 5 € {0, ..., {%] -1}
All the tasks of one tile are to be executed on one procesggr on
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Figure 1. Chou & Kung’s solution for the case n

Tandl = 3,7 = 5 (numbers below tasks represent
times at which they are executed, considering Teale = 1
& Teomm = 0)

4.1. Chou & Kung's Solution

Chou and Kung propose the following ordering of tasks on each
tile (processor),
Foralli € {0,.., N—1},j = [ ] (wehavenj <i < nj+n-—1),
t; is executed by process®y betweentime; = (1—nj) X Teate +
j x T andt; + 7.a1c. The period of ordering is given by,

T= (n—l+1) X Teale + Teomm

Hence, for alk, the processoP; starts working at timeé x T'

Let7.qi. be the time to perform one task with one processor, and let and ends working at timé x T + n x 7.q.. Chou & Kung's
Teomm D€ the time for one communication between two adjacent solution for the case = 7 andl = 3 is presented in Figure 1. As

processors. The g.c.d afand!l is denoted by: Al. P denotes the
number of processorsk denotesn mod! while p denotes| 7 |.
Finally,

z = y[l] <= = mod! = y mod!

Definition 3 T is called the period of ordering such that for each
1, tile T; is executed from tim&" to time:T + n7eaic.

Since, the total loop completion time depends linearly enddue
of T', the problem reduces to minimizirig.

In each tile, the permutation of tasks is moduloLet oo denote
the permutation of tasks in til&.

{0,1,..,n} 8 {0,1,...,n}

Definition 4 A constant task permutation is one in which for all
i € {0,1,....,N — 1}, t; is executed by the processpr= | £ |
between time; = jT + o0(i — nj)7care and the timer; + 7cqic.

Definition 5 A non-constant task permutation is one in which for
alli € {0,1,....,N —1}, t; is executed by the processpe= | * |

between time; = jT + 0 (i — nj)7eaic and the timer; + 7cqic.

Definition 6 For a givenn, and a givenl, and 7.qi. and eomm.
being fixed, the minimum period of orderifig,:,. is the small-
est reachable value @f satisfying the above constraints with an
appropriate permutation within a tile.

4. Previous Work

The problem of determining optimal permutations of tasks
within a tile to reduce inter-tile latencies and thereby imize

loop completion time has been attempted by Chou & Kung [2] and

by Dion et. al. [6].

one can see their approach is non-optimal. Dion improved ove
Chou and Kung's solution by considering a better orderingsis
within each tile so as to decrease the peribjl¢f ordering.

4.2. Dion’s solution

First Dion et al. show the following results,

Lemmal The best local permutation that permits reaching
the minimum periodT,,;» is independent of the values of
Teate @A Teomm. Moreover, ifT'-0 is the minimum period for

Teate = 1@NATeomm = OthenT ealeTeomm — L0 o o 4

Tcomm -

Lemma?2 If n Al # 1, the problem is equivalent to a smaller
problem withn' = -2 and!' = L

nAl"®

Hence, from now on we can chooseand! such thath Al = 1,
Teale Will be equal to 1, and ... Will be 0, so that the discussion
is simplified.

Dion et al’'s permutation leads to a smaller period of ordgrin
than Chou & Kung's solution. In fact, their solution is opthfor
the special case= 2. For example, for the case= 9 andl = 2
Dion et al's solution leads t&' = 7 which is the optimal solution,
while Chou and Kung'’s solution leadsTo= 8. Larger the value
of n, greater will be the difference between the two solutiond an
thus, the loop completion times. The solutions are preseinte
Figure 2.

The following theorem summarizes Dion et al's contribution
for the special cask= 2,

Theorem1 Forn = 2k + 1, £k > Oandl = 2, the optimal
ordering has a period of ordering,
3n—1

TOPt:[ 4 -|
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Figure 2. Comparison of Dion et al's solution and Chou
& Kung's solutionfor n = Qand [ = 2.

Forl > 3, Dionetal. give an algorithm calledgclicalgorithm
that gives a correct permutation or schedule Witk= 2| % | 4 2.
However, this is not an optimal solution. This is one of thgana
limitations of their solution. The other limitation is thtey have
used the simplifying assumption of a constant permutati@very
processor similar to Chou and Kung's work. In later sectimes
show that the solution can be greatly improved if we removg th
restriction.

However, determining the optimal solution for both constan
and non-constant permutations is a non-trivial combiraltprob-
lem. We propose a suitable framework that determines optima
task permutations irO(n). Our framework derives the opti-
mal period of orderingT,.i», for all cases ofi, in terms of
n,k andl, wheren = Ip + k&0 < k < [. The framework
also leads to efficient algorithms that always reach thenwgti
period of ordering Trmin )-

5. Formulation of the Problem using Equiva-
lence Classes

We introduce the following notations and definitions for our
subsequent discussion,

1. The set of tasks of the first tile is given b =

{to, t1,...., tn—1}. Further, we say that = t; iff ¢« = j[{].
Hence, by using a simplified notation, we denote tadky
the integet.

. The operator= is an equivalence relation that defines
equivalence classes with{®, 1,...,n — 1}. This equiva-
lence relation definelscomponents or equivalence classes,
Xo, X1, ..., X;—1. We denote the set of equivalence classes
by Y= {Xo, Xl, ey Xl—l}-

. We say thatX — Y if,

Az,y) € (X,Y) -z =y +n[l]

manner such that,
e Xo={ieQ-i=0[]}
e Xo—0 X150 Xo— - = X1 = Xo

From the following definitions we have,

VX; e Wp<|Xi|<p+1

. The indices for the equivalence classes are chosen in a

Moreover, there aré classes of sizep(+ 1) & (I — k) classes of
sizep.

Definition 7 Forall :in {0,1,---,l — 1}, we define\; = | X;| —
p. In other words, if| X;| = p + 1then); = 1, else|X;| =
pand); = 0.

Definition 8 Forall i > I, A\i = Aimod

Therefore, the\—string can be extended to an infinite string (peri-
odic with periodi).
Example 2 Considern = 7 andl = 3. We have,

Xo=1{0,3,6},d=1
X;={2,5} , A =0
Xo={1,4} , 22=0

The task permutation and therefore the period of ordering de
pends on the relative values &f i.e., the property of the string
AoA1dz- -+ A—1---. We derive the optimal solution in the next
section.

6. Optimal Solution

As shown in last section, the size of an equivalence clss
isp+ A\, withp = [7]. We claim that the optimum period of
ordering depends on the relative values\gf more specifically
Ai and ;1. We, thus, first quantify the property of the string
in theorem 2 and then use it to determine the optimum period of
ordering in theorem 3. Specifically, theorem 2 is analyzes th
property of the stringho, A1, ..., A;—1..... in terms of the tile size
(n) and the dependence distante This relationship is quantified
in terms ofA\ presented below.

Theorem2If I > 3,n Al 1 and A
MiN;e w[MaX; 1< j+i<i+i—1(A; + Aj41)], then

elfl =4& k= 3then

A= ngi)fg()\j +X)=1
e Else
0 ifk=1
Aot = 1 Lk T
2

As seen above, the definition Afis a min-max definition. The
above theorem gives the values/ofor all cases of tile size and
dependence distance.

We now illustrate the result of theorem 2 through some exam-
ples

Example 3 Considem =7, l =3 (k=1)
A — string = 100100100..
AN=0.

Example 4 Considem =7, l =4 (k =3)
A — string = 11101110..
AN=1



Example 5 Considem =7, 1 =5 (k =2 < [3])
A — string = 1010010100..
AN=1

Example & Considem =9, 1 =5 (k=4 > [3])
A — string = 1111011110..
N=2

The A values calculated above for different tile sizes and de-
pendence distances allow us to determine the optimal perfiod
ordering as per theorem 3. In order to prove theorem 2 we need a
few results.

Lemma 3 gives us a working definition fof; .

Lemma3 If X; ={z € Q|3a € IN:(z =
al < (i + 1)n)}, thenVi, X; = X,.

al[n]) A (in <

Proof Refer [9].

The next lemma states the condition that the tile size and the
dependence distance should satisfy in order to have a 6ug-$1
within the A-string.

Lemma 4
Jie{l, -1} XMdip1=11 < 2k>1+1

l
= k> [z]
Proof Refer [9].

In order to prove theorem 2, we have to differentiate between
the cases\ = landA = 2 (the case\ = O is trivial). To
achieve this task we need to discuss whether there exists
{2,---,1— 1} such that\;\;+1 = 11 or not. Indeed, we will see
thatif & > [5] thenXoAs = 11 and that\,_; = 0.

To formalize it, we need to introduce a new concept - the
property of a string to be well balanced.

Let Y = {0, 1} be the alphabet of the-string.

Definition 9 (sub-string) v is said to be a sub-string af, if there
exist two stringsx & 3, such thatu = avp.

Definition 10 (length) The length of a string = wiusus....u, is
the integern denoted byu|.

Definition 11 (weight) Leta € Y. If u = wauz....un € >." is
a string of lengthn, then|u|, = |{i € {1, ...,n},u; = a}|.

Definition 12 (well-balanced) Letu € Y . u is said to be well-
balanced if for any pair of sub-strings af (v,v'),

o] = [o| = |Jols — Jo'l1] <1
Lemma5 The infinite stringh = AoA1)2..... is well-balanced.

Proof Refer [9].

Now we can easily provtheorem 2 O

1. Case = 1:

e ASk = |)\0)\l~-~-)\l—1‘1 =1
& Ao = 1 therefore,
A < maxicppti<i-1(Ap + Ap+1) =0

e Consequently\ = 0.
2. Case K k < [5]:

e Vi, | Aidit1...hiti—1| = k > 2, therefore,
Vi,3p € {4, ...l +1 =2} | Ap =1
HenceA > 1.

e From the proof olemma 4 we have

A< min

= )\p + )\p+1 S 1
1<p,p+1<i-1

e Consequently\ = 1.
3.1>k>[i]:
e We have 2 = 2pl + 2k > (2p+ 1)l + 1. Therefore,

| Xol +|X1] = [{a€IN,0<al < 2n}
= 2p+2

Hence o)1 = 11

e Suppose thathere existg in {2,3, ....,! — 1} such
thatA\; \i+1 = 11. Since # [ — 1 this will lead to
N=2

e Suppose thahere does not existe {2, 3, ....,1 — 1}
such that\; \; 41 = 11.
Then \;_1XoM\1A2 = 0111 A\, = O violatesk >
1)
Hencel > 4. Letl > 4.
Fromlemma 5we have \o)i1.....\;_1 does not con-
tain the substring 00.
So,l is necessarily evefl > 6)

1120170
11101410) ="

AoAL.. A1

But this violatedemma 5 because of the sub-strings
111 & 010.

Finally,! = 4 & k = 3 gives

Aod1 A2 A3 s e A7 = 11101110,

andA\ = maXe<p p+1<4 Ap -+ )\p+1 =1

Theorem 2 proof: First, note thato = 1. We have,
|Xo| = |X¢| = |{a € IN,0< al <n}| =p+1.
AlSO)\lfl =0.
I Xi—1] = HaeN,(I—1)n <al<lin}
= {aeN,l-1n<al<Iin} -1
(p+1) -1

N

We now state the theorem that determines the lower bound on
the period of ordering in case of constant task permutatiotikes.

Theorem 3 For constant task permutations in tiles arid >
2, T>2p+N. o

Proof Refer [9].



7. Constant Permutation Algorithm
7.1.Casenni=1

Using the framework developed in the previous section we are
now able to devise an algorithm that will compute the optimal
ordering of tasks under the assumption that the orderinfpés t
same in every tile. Algorithm 1gives us a correct permutation
of tasks with period of orderind7’) = 2p + A. Recall that
[>3andn Al =1.

Algorithm 1

procedure ComputeOrderingCgn, 1)
Input : n (tile size)
I (dependence distance)
Precondition: I > 3
nAl=1

Output: permutation]0 : n — 1] (task ordering)
{ Initialize variablegp andk }

pi=|7]

k :=mn modl
{ Assign the first taslf to be executed

if ({ =4andk = 3)then

fi=1—k {because & (f +n)[l] }

elsef :=0
{ Execute the firsp tasks ofX; }
t=f

fori:=0top— 1do
permutation[i] ==t
ti=t+1
endfor
{ Equivalence classes are executed in the
opposite order to{—) }
t:= (t +n) modl
whilet # f
repeat
permutation[i] ==t
ti=t+1
ti=1+1
until t > n
t = (t +mn) mod!
endwhile
{ Execute the last task of ; }
permutation[i] == f +p x [
end ComputeOrderingCst

The permutation given by this algorithm clearly obeys tha-co
straints of dependences in the tile. Algorithm 1 has time com
plexity O(n). Please refer to [9] for the proof that the permuta-
tion given by algorithm 1 gives the minimum period of orderin
Tm,’n = 2p + A.

7.2. General Case

We illustrate how our approach finds an optimal task permu-
tation when we have a single constant dependence vdgtand
nAl=d>1

Casen =14 &1 =6
TileO | Tasks 0 1 2 3 4 5 6 7 8 9 10 11 12 I3
Times 0 7 2 9 4 111 8 3 105 126 13
Tilel | Tasks 14 15 16 17 18 19 20 21 22 23 24 25 26|27
Times 4 11 6 138 155 12 7 14 9 16 10 [L7
Tile2 | Tasks 28 29 30 31 32 33 34 35 36 37 38 39 40|41
Times 8 15 10 17 12 19 9 16 11 18 13 20 14|21

Table 1. Optimal ordering with constant permutation in
eachtile (n = 14,1 = 6).

Let us consider a correct ordering withas the period. Con-
sider the sub-set of tasks; ;¢ (0,1 Such thatvi, t; = tiq. Let
us call the tile consisting of the tasks) a derived tile. The length
of the derived tile i’ = %. The derived dependence distance is
I' = é. We assume that the derived permutations in each tile are
constant (constant permutation).

Hence, according to the last pdt> Tyin(n', 1').

Now, let us show thaly,n (n,1) = 2[7—,’] + A(n', 1"

Leto' : {0,---,n' —1} — {0, ---,n' — 1} be the permutation
of tasks that gives the peridd,,;,, .
Then, considevv € {0,---,d—1},Vi € {0,---,n' — 1} o(v +
id) =v+0o'(i)d
Clearly, this permutation permits to reach the period= T,,;,,.
Thus, algorithm 1 generates the optimal permutation far thise
also simply by using:’ and!’ as inputs instead of andi.

The task execution times given by our algorithmsio= 14 and
[ = 6isshown in Table 1. Since Al = 2, tile 0 has two compo-
nentsviz.,{0,2,4,6,8,10,1pand{1,3,5,7,9,11,18 Each of them
form derived tiles with' = 7 andl’ = 3. The first component has
equivalence classes, = {0, 6,12}, X1 = {4,10}, X, = {2, 8}.
First, p tasks of X are executed followed by all the tasks &b
and X in that order. Finally the last task o€, is executed. The
second component is then executed with a similar task argleri

The period of ordering reached by our algorithm is 4 while tha
reached by Dion’s algorithm is 6.

8. Optimal Solution with Non-constant Permu-
tations

We can further optimize the solution if we relax the constrai
of maintaining a constant permutation in every tile. We alsow
that computing the optimal permutation in every tile doesrasult
in any overhead because the optimal permutation in eaclstide
simple shift of the permutation in the previous tile. By rermy
the constraint, we can reach the optimal period of orderihglv
is half smaller than that in the case of constant permutation

Letn Al = d > 1. Recall that from section 4, we have
Xo — X1 — --+ = Xj—-1 = Xo. The algorithm computes task
ordering such that it leads to the following execution ordEne
first processor executes tasks belongingXig then X1, X, and
finally X;_;. The second processor starts workidto|mcaic +
Teomm UNitS Of time after the first one, and executes the tasks
of X1 thenX,, X3--- X;_1 and finally X,. The third processor
starts working| X1|7caic + Teomm Units of time after the second
one, and executes the tasksXf then X3, X4 - - - Xo and finally



X;. Clearly, we can see that all dependences are satisfied. This

leads to the following algorithm.
Algorithm 2

procedure ComputeOrderingNoncstGén, [, )
Input: n (tile size)

I (dependence distance)

1 (tile number)
Output: permutation]0 : n — 1] (task ordering)
{ Initialize variablesl, ng andly }

d :=gcdf, 1)
Ndg .= %
lg == é
{ Initialize variablesm and f }
m = [2di]

1
F 1= (miy) modny

for i :=0tod —1do
{ Assign the first taslf to be executed
z:=0
permutation[z] = fd + iq
{ Execute each equivalence class in the
order of(—)}
j:=(f+1la) modng

while 5 # f do
z=z+1
permutation|z] := jd + iq
ji=(j +1q) modng
endwhile
endfor

end ComputeOrderingNoncstGen

In the above algorithm we have,

e i is the ordinal of the tile being executed.

e i, is the ordinal of the derived tile being executed.

e m is the smallest integer whergii < mlg < nqa(i + 1).

e fis the first task of the derived tikg to be executed.

The time offset); for each tile is the number of time units between
the start of execution of tiltand tilei+ 1. The offseD; as opposed

to the period of ordering need not be the same for every titee T
offsetO; (in computational-time units) corresponds to the size of
the following set,

Xi={me N,in<ml < (i+1)n}
Hence,

_nlitd) - [
l

Consider the example = 5 andl = 3. We have the following

times when tasks are executed.
0O 2 4 1 35 2 4 6 3|5 7 4 6 8-

[] o X ° o X [ o X [ o X [} o Xo--
Table 2 illustrates that the ordering in each tile is a circular shif
of the ordering in the previous tile.

It is easy to show that the period of ordering reachedaby
gorithm 2is optimal. Consider two tile§}; andT};+1. Suppose

O;

-| Teale + Tcomm

1The subscripts of tasks are moduio

Casen=5&1=3
TileO | Order 031 4 2
Offset 2
Tilel | Order 1 420 3
Offset 2
Tile2 | Order 203 1 4
Offset 1

Table 2. Optimal ordering with non-constant permutation
ineachtile (n = 5,1 = 3).

that equivalence clask; starts executing off; att = ¢,. Since
X, — X,41the earliest time at whicl ;1 can start execution on
Tj+1ist = to + | X;|. This is precisely the time offset between
two consecultive tiles obtained througlgorithm 2 Thus, latency
between two tiles using non constant permutations s

9 Results
9.1 Performance Evaluation

The performance evaluation of the proposed methods was car-
ried out using several signal processing applicationsisting of
matrix transformations. We tested our proposed algoritheisg
a sample test routine shown below,

Do i: 0 > N
Task(i)
EndDo

In the above loopTask() exhibits a compile-time unknown de-
pendence distandein the outermost loop. In generalask()

can represent a loop nest or a function call or a group of state
ments. We tiled the above loop using the tiling transfororati
provided by theSUIF compiler. Since the dependence distance
is a compile-time unknown in the above loop, the code must be
generated which computes the task permutation at run time. |
order to enforce synchronization between tiles imposecdbyde-
pendence relation, data is passed between left and rigtegsing
elements (PEs) using message passing library (MPI) calle T
complete framework has been incorporated in$h#F compiler

as an optimization pass.

The code generated by the compiler’'s optimization pass is
sketched in figure 3. In case of constant permutations (fig{a),
permutations are generated at the entry point of the tilg loo
(i tile ). In case of non-constant permutations (figure 3(b)),
permutations are generated at the entry point of the eletoept
(i ). The element loop is executed following the owner computes
rule. Atrun timepermute _tile  will generate an optimal task
permutation in each tile using the appropriate algorithnor(2).
This permutation is saved in the arfagrm which is used to order
the task execution. The final transformed code was targated o
Cray T3E.

We performed experiments by varying the tile siz@ &nd the
dependence distanc8.( The metric used to evaluate the perfor-
mance of our algorithms in comparison to previous algorihvas



permite_tile(n,1); <generates pemutation
using algo 1>
Doi_tile: 0->Nbyn
if i_tile mps onto PE then
Doi:i_tile->mnin(Ni_tiletn-1)
<If needed, receive data fromleft PE>
Task(pernfi]);
<If needed, send data to right PE>

Doi_tile: 0->Nbyn

if i_tile maps onto PE then

permute_tile(n,|,i_tile); <generates
permutation using al go 2>

Doi:itile->nin(Ni_tiletn-1)

<If needed, receive data fromleft PE>

Task(pernfi]);
<If needed, send data to right PE>

EndDo EndDo
endi f endi f
EndDo EndDo

) (b)

Figure 3. (a) Code generating constant permutations (b)
Code generating non-constant permutations.

Loop completion time (T) (sec)
Loop completion time (T) (sec)

Figure 4. Loop completion time v/s dependence distance
on Cray T3E for (a) P = 16, n =32 and N = 4096 and (b) P
=16, n =64 and N = 4096.

the total loop completion time. The tests were carried outgi$6
processing elements with a cyclic distribution of tiles onges-
sors. Figure 4 compares the performance of the final tramsfdr
code using the proposed algorithms (Algorithm 1 and 2 preskn
in sections 7 and 8) in comparison to previous approacheblen t
Cray T3E for small tile sizes. Figure 5 presents resultsiobth
on the Cray T3E for larger tile sizes.

Loop completion times v/s depent
2 with =16, 1024, loop.

Loop completion time (T) (sec)

Loop completion time (T) (sec)

(@) (b)
Figure 5. Loop completion time v/s dependence distance

on Cray T3E for (a) P =16, n =512 and N = 65536 and (b)
P =16, n =1024 and N = 65536.

I Time (micro-sec)
Dion | Algo1 | Algo2
3 | 11937 | 17153 | 19451
5 | 13108 | 18352 | 19546
7 | 13923 | 18422 | 19711
9 | 14966 | 18783 | 19627

Table 3. Permutation generation times

64, P = 4).

(N = 2567 =

to superior task permutations. Thus, it is clear that the'toeed
of generating more complex task permutations does notfyulli
the performance gain achieved by those permutations. Buttse
indicate the followingperformance hierarchyf the algorithms
proposed in this paper. Fged(n,l) # 1,
Algorithm 2 > Algorithm 1 > Dion’s algorithm

Algorithm 2 is also the most natural and efficient algorithfor
all tile sizes the results indicate that Algorithm 2 yielthe tbest
solution which is superior to solutions obtained by all dans
permutation algorithms.

As seen in Figures 4 and 5 the performance obtained by usingg 2 Effect of tile size

the two proposed algorithms is superior to that obtaineddiggu
algorithms proposed by Dion and Chou & Kung. This is true in
the case of small tile sizes as well as large tile sizes.

Figures 4 and 5 show that whend(n, 1) is{, Dion’s algorithm
and the proposed algorithms yield very similar results. sTiki
because in this cagkis 1 causing all three algorithms to generate
identical permutations.

An interesting issue is to study the effect of variation k& size
on performance. In case of the multi-dimensional tilinglpem
ni1 X n2 X - - - X ng, the gain of our method using Algorithm 1 over
Dion’s algorithm will be proportional t(ﬂf;ll ;.

Desprez et al [4] have addressed the issue of finding the aptim

Since task permutations are generated at run-time we need tddrain size that minimizes the execution time by improvirpgtine

investigate the execution efficiency of the proposed allgors in
comparison to previous approaches. Table 3 presents thes tim
taken by the code that generates task permutations usingnolur
Dion’s algorithms indicating the following hierarchy ingtime
complexityof the permutation generation algorithms.
Dion’s algorithm< Algorithm 1 < Algorithm 2

One can see that although Dion’s algorithm is more time effi-
cient, better loop completion times result from algorith& 2 due

communications on parallel computers. The following désion
presents the effect of tile siza) on the total loop completion time
(T:0t) in light of the framework developed in this paper.

Using Algorithm 2, we obtain the following period of ordegin

T~ + 7
~ calc comm

l

The total loop completion time is given by,
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Figure 6. Loop completion time v/s tile size on SGI Power
Challenge for P =16, | = 7 and N = 2097152.

N
Ttot ~ ET + NTealce

NTcalc
= T + NTcalc +

= A+Bn+g
n

NTcomm

Minimizing the above expression we get,

n _ O _ NTcomm
opt — N -

v B Tcalc
Let TT'% = c. Therefore,

Nopt XV cN
Also we have,

—Teale > Tcomm

l
This leads to,
n > lc

In order to compare the above analytical solution with exper
mental results we observed the total loop completion tiffig:J
varying the tile size«) keepingP fixed. Figure 6 presents this
comparison fotN = 2097152 and = 7. Figure 6 shows that the
analytical expression derived for the loop completion totasely
matches the experimental results. The knee of the andlgica
lution curve corresponds to the optimum tile size that \detlde
minimum loop completion time.

10. Conclusions

The effectiveness of loop tiling is critically dependent thie
execution order of tasks within a tile. In this work, we havke a
dressed the problem of finding an optimal ordering of taskhiwi
tiles executed on multicomputers for constant but comiife
unknown dependences. We remove the restriction of atoyroait
tiles and exploit the internal parallelism within each bieoverlap-
ping computation with communication. We have formulategl th

classes and show optimality results for single dimensidited
with single constant dependences. Using the framework we ha
also developed two efficient algorithms that provide thargat
solution in both cases,

1. Same (constant) task ordering in tiles,
2. Different (non-constant) task ordering in tiles.

We have shown that the two proposed algorithms yield superio
results to the previous approaches when tested on distdlmém-
ory systems. We also show that the non-constant permusaition
our approach significantly reduce the loop completion time u
like the constant permutations in previous approacheslligjinmve
have investigated the relationship between tile size aaddbp
completion time and developed a methodology to obtain agtim
tile size given our framework.
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