
Optimal Task Scheduling to Minimize Inter-Tile Latencies �
Fabrice Rastello

LIP, Ecole Normale
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Abstract

This work addresses the issue of exploiting intra-tile paral-
lelism by overlapping communication with computation removing
the restriction of atomicity of tiles. The effectiveness oftiling is
then critically dependent on the execution order of tasks within
a tile. In this paper we present a theoretical framework based
on equivalence classes that provides an optimal task ordering un-
der assumptions of constant and different permutations of tasks
in individual tiles. Our framework is able to handle constant but
compile-time unknown dependences by generating optimal task
permutations at run-time and results in significantly lowerloop
completion times. Our solution is an improvement over previous
approaches [2, 6] and is optimal for all problem instances. We also
propose efficient algorithms that provide the optimal solution. The
framework has been implemented as an optimization pass in the
SUIF compiler and has been tested on a distributed memory system
using a message passing model. We show that the performance
improvement over previous results is substantial.

1. Introduction

Loop tiling is one of the most popular techniques to partition
uniform loop nests and map tasks to processors in a multicom-
puter. The notion of loop tiling was introduced by Wolfe [11]
and the issue of legality of tiling was formalized by Irigoinand
Triolet [7]. Usually tiles are considered to be atomici.e., inter-
processor communication is considered to take place only after
the end of computation in each tile. Atomic tile considerations
are justified when the cache size is small since tile size is chosen
to fit the underlying data in the cache. However, the assumption
of atomic tiles leads to loss of potential parallelism when target-
ing parallel machines such as distributed shared memory systems
(DSMs) that are capable of overlapping communication with com-
putation. In fact, intra-tile optimizations, given that computation
and communication can overlap, open opportunities for exploiting�This work is supported in part by the National Science Foundation
through grant no. CCR-9696129; by the CNRS–ENS Lyon–INRIA project
ReMaP; and by the Eureka ProjectEuroTOPS

more parallelism.
Hollander [5] extracts parallelism in nested loops by identifying

and labeling independent subsets of iterations using unimodular
transformations. However, this work is not suited to DSMs asit
involves complex data partitioning and assignment of iterations to
processors. Tiling is more attractive in such situations where data
and iteration space partitioning can be kept simple and efficient.
Many approaches [1, 3, 8, 10] use the assumption of atomic tiles to
derive the optimal tile size and shape. These approaches involve
re-distribution of data among processors in order to improve data
locality thereby addressing the issue of memory to tile latencies.
On the other hand, we perform loop tiling and attempt to minimize
inter-tile latencies by re-ordering individual tasks within a tile.

Previous approaches by Chou & Kung [2] and Dion et al [6] to
the problem of finding an optimal task ordering within loop tiles
have relied on heuristics that do not yield the optimal solution for all
instances of the problem even in one dimension. Thus, findingthe
optimal solution in one dimension is still an open issue. Thecentral
contribution of this work is the development of a new formulation
of this problem along with a framework based on equivalence
classes to derive optimal permutations. Using this framework we
also develop efficient algorithms that result in an optimal solution
for all problem instances in one dimension. Further, we takeinto
account the possibility of having different task permutations in
each tile and give the optimal solution for this case too.

The remainder of the paper is organized as follows. Section 2
presents the problem statement. Section 3 introduces definitions
and notations used in this paper. Section 4 discusses previous
work. Section 5 formulates the problem based on equivalence
classes. In section 6 we develop the theoretical framework and
show optimality results. Section 7 presents the proposed constant
permutation algorithm. Section 8 discusses the solution when
different task permutations are considered in each tile. Insection 9,
we present and discuss the results of our implementation. Finally,
section 10 provides concluding remarks.

2. Statement of the problem

Consider a loop ofN iterations that carries a dependence of
distancel. Assume that the loop is tiled with tile sizen and
mapped on toP processors. TheN tasks are partitioned into



dNn e tiles such that for 0� i < dNn e � 1, the tasks con-
tained in tileTi are ftni; tni+1; ::::; tn(i+1)�1g andTdNn e�1 =ftn(dNn e�1); ::::; tN�1g. Tile Ti is executed on processorPi for
everyi. The problem is to find an optimal ordering (�) of tasks in
a tile, so as to minimize the overall completion time (Ttot) of the
loop respecting the dependences imposed. Since tiling the loop
and mapping the tiles are dictated by different considerations, the
number of processors and tiles need not be the same.

We now present some of the definitions and notations used in
the paper.

3. Terms and Definitions

Definition 1 Let us denote� = ft0; t1; ::::; tN�1g as the task
space. Each element of� is a task to be executed.

Definition 2 The iteration space is mapped onto the tile space.
Each tile containsn tasks ; more precisely, a tile is a setTj =ftnj ; tnj+1; tnj+2; :::; tnj+n�1g \ � with j 2 f0; ::::; dNn e � 1g.
All the tasks of one tile are to be executed on one processor only.

Let�calc be the time to perform one task with one processor, and let�comm be the time for one communication between two adjacent
processors. The g.c.d ofn andl is denoted byn^ l. P denotes the
number of processors.k denotesn mod l while p denotesbnl c.
Finally, x � y[l]() x mod l = y mod l
Definition 3 T is called the period of ordering such that for eachi, tile Ti is executed from timeiT to timeiT + n�calc.
Since, the total loop completion time depends linearly on the value
of T , the problem reduces to minimizingT .
In each tile, the permutation of tasks is modulon. Let �0 denote
the permutation of tasks in tileT0.f0; 1; :::; ng �0! f0; 1; :::; ng
Definition 4 A constant task permutation is one in which for alli 2 f0; 1; ::::; N � 1g; ti is executed by the processorj = b inc
between time�i = jT + �0(i� nj)�calc and the time�i + �calc.
Definition 5 A non-constant task permutation is one in which for
all i 2 f0; 1; ::::; N �1g; ti is executed by the processorj = b inc
between time�i = jT + �j(i� nj)�calc and the time�i + �calc.
Definition 6 For a givenn, and a givenl, and�calc and�comm
being fixed, the minimum period of orderingTmin is the small-
est reachable value ofT satisfying the above constraints with an
appropriate permutation within a tile.

4. Previous Work

The problem of determining optimal permutations of tasks
within a tile to reduce inter-tile latencies and thereby minimize
loop completion time has been attempted by Chou & Kung [2] and
by Dion et. al. [6].

Case n=7, l=3 & T=5tcalc+tcom

0 2 3 6 7 96 8 10 11 11 1254 13 14 15 161 5 10

P0 P1 P2

Figure 1. Chou & Kung’s solution for the case n =
7 and l = 3; T = 5 (numbers below tasks represent
times at which they are executed, considering �calc = 1
& �comm = 0).

4.1. Chou & Kung’s Solution

Chou and Kung propose the following ordering of tasks on each
tile (processor),
For alli 2 f0; ::; N�1g; j = b inc ( we havenj � i � nj+n�1),ti is executed by processorPj between time�i = (i�nj)��calc+j � T and�i + �calc. The period of ordering is given by,T = (n� l + 1)� �calc + �comm

Hence, for alli, the processorPi starts working at timei� T
and ends working at timei � T + n � �calc. Chou & Kung’s
solution for the casen = 7 andl = 3 is presented in Figure 1. As
one can see their approach is non-optimal. Dion improved over
Chou and Kung’s solution by considering a better ordering oftasks
within each tile so as to decrease the period (T ) of ordering.

4.2. Dion’s solution

First Dion et al. show the following results,

Lemma 1 The best local permutation that permits reaching
the minimum periodTmin is independent of the values of�calc and�comm. Moreover, ifT 1;0min is the minimum period for�calc = 1 and�comm = 0 thenT �calc;�commmin = T 1;0min � �calc +�comm.

Lemma 2 If n ^ l 6= 1, the problem is equivalent to a smaller
problem withn0 = nn^l andl0 = ln^l .
Hence, from now on we can choosen andl such thatn ^ l = 1,�calc will be equal to 1, and�comm will be 0, so that the discussion
is simplified.

Dion et al’s permutation leads to a smaller period of ordering
than Chou & Kung’s solution. In fact, their solution is optimal for
the special casel = 2. For example, for the casen = 9 andl = 2
Dion et al’s solution leads toT = 7 which is the optimal solution,
while Chou and Kung’s solution leads toT = 8. Larger the value
of n, greater will be the difference between the two solutions and
thus, the loop completion times. The solutions are presented in
Figure 2.

The following theorem summarizes Dion et al’s contribution
for the special casel = 2,

Theorem 1 For n = 2k + 1; k > 0 andl = 2, the optimal
ordering has a period of ordering,Topt = d3n� 1
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Topt=7

Case n=9 & l=2

Solution given by M. Dion’s algorithm

5 8 110 1 2 3 4 6 7 8 109

T=8 Chou & Kung’s solution

Figure 2. Comparison of Dion et al’s solution and Chou

& Kung’s solution for n = 9 and l = 2.

Forl � 3, Dion et al. give an algorithm called acyclicalgorithm
that gives a correct permutation or schedule withT = 2bnl c + 2.
However, this is not an optimal solution. This is one of the major
limitations of their solution. The other limitation is thatthey have
used the simplifying assumption of a constant permutation in every
processor similar to Chou and Kung’s work. In later sectionswe
show that the solution can be greatly improved if we remove this
restriction.

However, determining the optimal solution for both constant
and non-constant permutations is a non-trivial combinatorial prob-
lem. We propose a suitable framework that determines optimal
task permutations inO(n). Our framework derives the opti-
mal period of orderingTmin, for all cases ofl, in terms ofn; k andl; wheren = lp + k & 0 � k < l. The framework
also leads to efficient algorithms that always reach the optimal
period of ordering (Tmin).

5. Formulation of the Problem using Equiva-
lence Classes

We introduce the following notations and definitions for our
subsequent discussion,

1. The set of tasks of the first tile is given byΩ =ft0; t1; ::::; tn�1g. Further, we say thatti � tj iff i � j[l].
Hence, by using a simplified notation, we denote taskti by
the integeri.

2. The operator� is an equivalence relation that defines
equivalence classes withinf0; 1; :::; n � 1g. This equiva-
lence relation definesl components or equivalence classes,X0; X1; :::; Xl�1. We denote the set of equivalence classes
by Ψ = fX0; X1; :::; Xl�1g.

3. We say that,X ! Y if,9(x; y) 2 (X;Y ) � x � y + n[l]
4. The indices for the equivalence classes are chosen in a

manner such that,� X0 = fi 2 Ω � i � 0[l]g� X0 ! X1 ! X2 ! � � � ! Xl�1 ! X0

From the following definitions we have,8Xi 2 Ψ; p � jXij � p+ 1

Moreover, there arek classes of size (p+ 1) & (l � k) classes of
sizep.

Definition 7 For all i in f0; 1; � � � ; l�1g, we define�i = jXij �p. In other words, ifjXij = p + 1 then�i = 1; elsejXij =p and�i = 0.

Definition 8 For all i � l; �i = �imodl
Therefore, the��string can be extended to an infinite string (peri-
odic with periodl).
Example 2: Considern = 7 andl = 3. We have,X0 = f0; 3; 6g , �0 = 1X1 = f2; 5g , �1 = 0X2 = f1; 4g , �2 = 0

The task permutation and therefore the period of ordering de-
pends on the relative values of�i i.e., the property of the string�0�1�2 � � � �l�1 � � �. We derive the optimal solution in the next
section.

6. Optimal Solution

As shown in last section, the size of an equivalence classXi
is p + �i, with p = bnl c. We claim that the optimum period of
ordering depends on the relative values of�i, more specifically�i and�i+1. We, thus, first quantify the property of the string
in theorem 2 and then use it to determine the optimum period of
ordering in theorem 3. Specifically, theorem 2 is analyzes the
property of the string�0; �1; :::; �l�1::::: in terms of the tile size
(n) and the dependence distance (l). This relationship is quantified
in terms ofΛ presented below.

Theorem 2 If l � 3 , n ^ l = 1 and Λ =
mini2IN [maxi+1�j;j+1�i+l�1(�j + �j+1)], then� If l = 4 & k = 3 then

Λ = max
2�j;j+1�4

(�j + �j+1) = 1� Else

Λ = max
1�j;j+1�l�1

(�j + �j+1) = ����� 0 if k = 1
1 if 1 < k � d l2e
2 if k > d l2e

As seen above, the definition ofΛ is a min-max definition. The
above theorem gives the values ofΛ for all cases of tile size and
dependence distance.

We now illustrate the result of theorem 2 through some exam-
ples.

Example 3: Considern = 7; l = 3 (k = 1)�� string = 100100100:::
Λ = 0.

Example 4: Considern = 7; l = 4 (k = 3)�� string = 11101110:::
Λ = 1
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Example 5: Considern = 7; l = 5 (k = 2 < d 5
2e)�� string = 1010010100:::

Λ = 1
Example 6: Considern = 9; l = 5 (k = 4 > d 5

2e)�� string = 1111011110:::
Λ = 2

The Λ values calculated above for different tile sizes and de-
pendence distances allow us to determine the optimal periodof
ordering as per theorem 3. In order to prove theorem 2 we need a
few results.

Lemma 3 gives us a working definition forXi.
Lemma 3 If X 0i = fx 2 Ω j 9� 2 IN � (x � �l[n]) ^ (in ��l < (i+ 1)n)g; then8i; X 0i = Xi.
Proof Refer [9].

The next lemma states the condition that the tile size and the
dependence distance should satisfy in order to have a sub-string 11
within the�-string.

Lemma 49i 2 f1; ::::; l� 1g j �i�i+1 = 11 () 2k > l+ 1() k > d l
2
e

Proof Refer [9].
In order to prove theorem 2, we have to differentiate between

the casesΛ = 1 andΛ = 2 (the caseΛ = 0 is trivial). To
achieve this task we need to discuss whether there existsi inf2; � � � ; l � 1g such that�i�i+1 = 11 or not. Indeed, we will see
that if k > d l2e then�0�1 = 11 and that�l�1 = 0.

To formalize it, we need to introduce a new concept - the
property of a string to be well balanced.

Let
P = f0; 1g be the alphabet of the�-string.

Definition 9 (sub-string) v is said to be a sub-string ofu, if there
exist two strings� & �, such thatu = �v�.

Definition 10 (length) The length of a stringu = u1u2u3::::un is
the integern denoted byjuj.
Definition 11 (weight) Let� 2P. If u = u1u2:::::un 2P� is
a string of lengthn, thenjuj� = jfi 2 f1; :::; ng; ui = �gj.
Definition 12 (well-balanced) Letu 2P�. u is said to be well-
balanced if for any pair of sub-strings ofu, (v; v0),jvj = jv0j =) jjvj1 � jv0j1j � 1

Lemma 5 The infinite string� = �0�1�2::::: is well-balanced.

Proof Refer [9].
Now we can easily provetheorem 2,
Theorem 2 proof: First, note that�0 = 1. We have,jX0j = jX 0

0j = jf� 2 IN; 0� �l < ngj = p+ 1.
Also�l�1 = 0.jXl�1j = jf� 2 IN; (l� 1)n � �l < lngj= jf� 2 IN; (l� 1)n � �l � lngj � 1� (p+ 1)� 1

1. Casek = 1:� As k = j�0�1::::�l�1j1 = 1
& �0 = 1 therefore,

Λ � max1�p;p+1�l�1(�p + �p+1) = 0� Consequently,Λ = 0.

2. Case 1< k � d l2e:� 8i; j�i�i+1::::�i+l�1j = k � 2; therefore,8i; 9p 2 fi; ::::; l + i� 2g j �p = 1
Hence,Λ � 1.� From the proof oflemma 4, we have

Λ � min
1�p;p+1�l�1

�p + �p+1 � 1� Consequently,Λ = 1.

3. l > k > d l2e:� We have 2n = 2pl+2k � (2p+1)l+1. Therefore,jX 0
0j+ jX 0

1j = jf� 2 IN; 0� �l < 2ngj= 2p+ 2

Hence,�0�1 = 11� Suppose thatthere existsi in f2; 3; ::::; l � 1g such
that�i�i+1 = 11. Sincei 6= l� 1 this will lead to
Λ = 2� Suppose thatthere does not existi 2 f2; 3; ::::; l�1g
such that�i�i+1 = 11.
Then �l�1�0�1�2 = 0111 (�2 = 0 violatesk >d l2e).
Hence,l � 4. Let l > 4.
From lemma 5we have,�0�1:::::�l�1 does not con-
tain the substring 00.
So,l is necessarily even(l � 6)�0�1::::�l�1 = 111(01) l�4

2 0= 111010(10) l�6
2

But this violateslemma 5, because of the sub-strings
111 & 010.
Finally, l = 4 & k = 3 gives�0�1�2�3�4�5�6�7 = 11101110,
andΛ = max2�p;p+1�4�p + �p+1 = 1

We now state the theorem that determines the lower bound on
the period of ordering in case of constant task permutationsin tiles.

Theorem 3 For constant task permutations in tiles andl >
2; T � 2p+ Λ.

Proof Refer [9].
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7. Constant Permutation Algorithm

7.1. Casen ^ l = 1

Using the framework developed in the previous section we are
now able to devise an algorithm that will compute the optimal
ordering of tasks under the assumption that the ordering is the
same in every tile.Algorithm 1 gives us a correct permutation
of tasks with period of ordering(T ) = 2p + Λ. Recall thatl � 3 andn ^ l = 1.

Algorithm 1

procedureComputeOrderingCst(n; l)
Input : n (tile size)l (dependence distance)
Precondition: l � 3n ^ l = 1
Output : permutation[0 : n� 1] (task ordering)f Initialize variablesp andk gp := bnl ck := n mod lf Assign the first taskf to be executedg

if (l = 4 and k = 3) thenf := l� k f because 0= (f + n)[l] g
elsef := 0f Execute the firstp tasks ofXf gt := f
for i := 0 to p� 1 dopermutation[i] := tt := t+ l
endforf Equivalence classes are executed in the
opposite order to (�!) gt := (t+ n) mod l
while t 6= f

repeatpermutation[i] := tt := t+ li := i+ 1
until t � nt := (t+ n) mod l

endwhilef Execute the last task ofXf gpermutation[i] := f + p� l
endComputeOrderingCst

The permutation given by this algorithm clearly obeys the con-
straints of dependences in the tile. Algorithm 1 has time com-
plexity O(n). Please refer to [9] for the proof that the permuta-
tion given by algorithm 1 gives the minimum period of ordering,Tmin = 2p+ Λ.

7.2. General Case

We illustrate how our approach finds an optimal task permu-
tation when we have a single constant dependence vector (l) andn ^ l = d � 1.

Casen = 14 & l = 6
Tile 0 Tasks 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Times 0 7 2 9 4 11 1 8 3 10 5 12 6 13
Tile 1 Tasks 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Times 4 11 6 13 8 15 5 12 7 14 9 16 10 17
Tile 2 Tasks 28 29 30 31 32 33 34 35 36 37 38 39 40 41

Times 8 15 10 17 12 19 9 16 11 18 13 20 14 21

Table 1. Optimal ordering with constant permutation in

each tile ( n = 14; l = 6).

Let us consider a correct ordering withT as the period. Con-
sider the sub-set of tasks (t0i)i2[0;n�1] such that8i; t0i = tid. Let
us call the tile consisting of the tasks(t0i) a derived tile. The length
of the derived tile isn0 = nd . The derived dependence distance isl0 = ld . We assume that the derived permutations in each tile are
constant (constant permutation).

Hence, according to the last partT � Tmin(n0; l0).
Now, let us show thatTmin(n; l) = 2bn0l0 c+ Λ(n0; l0)
Let�0 : f0; � � � ; n0�1g ! f0; � � � ; n0�1g be the permutation

of tasks that gives the periodT 0min.
Then, consider8v 2 f0; � � � ; d� 1g; 8i 2 f0; � � � ; n0 � 1g �(v+id) = v + �0(i)d
Clearly, this permutation permits to reach the periodT = T 0min.
Thus, algorithm 1 generates the optimal permutation for this case
also simply by usingn0 andl0 as inputs instead ofn andl.

The task execution times given by our algorithm forn = 14 andl = 6 is shown in Table 1. Sincen ^ l = 2, tile 0 has two compo-
nentsviz.,f0,2,4,6,8,10,12g andf1,3,5,7,9,11,13g. Each of them
form derived tiles withn0 = 7 andl0 = 3. The first component has
equivalence classesX0 = f0; 6; 12g; X1 = f4; 10g; X2 = f2; 8g.
First, p tasks ofX0 are executed followed by all the tasks ofX2

andX1 in that order. Finally the last task ofX0 is executed. The
second component is then executed with a similar task ordering.

The period of ordering reached by our algorithm is 4 while that
reached by Dion’s algorithm is 6.

8. Optimal Solution with Non-constant Permu-
tations

We can further optimize the solution if we relax the constraint
of maintaining a constant permutation in every tile. We alsoshow
that computing the optimal permutation in every tile does not result
in any overhead because the optimal permutation in each tileis a
simple shift of the permutation in the previous tile. By removing
the constraint, we can reach the optimal period of ordering which
is half smaller than that in the case of constant permutation.

Let n ^ l = d � 1. Recall that from section 4, we haveX0 ! X1 ! � � � ! Xl�1 ! X0. The algorithm computes task
ordering such that it leads to the following execution order. The
first processor executes tasks belonging toX0 thenX1; X2 and
finally Xl�1. The second processor starts workingjX0j�calc +�comm units of time after the first one, and executes the tasks
of X1 thenX2; X3 � � �Xl�1 and finallyX0. The third processor
starts workingjX1j�calc + �comm units of time after the second
one, and executes the tasks ofX2 thenX3; X4 � � �X0 and finally
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X1. Clearly, we can see that all dependences are satisfied. This
leads to the following algorithm.

Algorithm 2

procedureComputeOrderingNoncstGen(n; l; i)
Input : n (tile size)l (dependence distance)i (tile number)
Output : permutation[0 : n� 1] (task ordering)f Initialize variablesd; nd andld gd := gcd(n; l)nd := ndld := ldf Initialize variablesm andf gm := dndild ef := (mld) modnd

for id := 0 to d� 1 dof Assign the first taskf to be executedgx := 0permutation[x] := fd+ idf Execute each equivalence class in the
order of(�!)gj := (f + ld) modnd

while j 6= f dox := x+ 1permutation[x] := jd+ idj := (j + ld) modnd
endwhile

endfor
endComputeOrderingNoncstGen

In the above algorithm we have,� i is the ordinal of the tile being executed.� id is the ordinal of the derived tile being executed.� m is the smallest integer wherendi � mld < nd(i+ 1).� f is the first task of the derived tileid to be executed.

The time offsetOi for each tile is the number of time units between
the start of execution of tileiand tilei+1. The offsetOi as opposed
to the period of ordering need not be the same for every tile. The
offsetOi (in computational-time units) corresponds to the size of
the following set,Xi = fm 2 N; in � ml < (i+ 1)ng
Hence, Oi = dn(i+ 1)� dnil ell e�calc + �comm

Consider the examplen = 5 andl = 3. We have the following
times when tasks are executed.

0 2 4 1 3 5 2 4 6 3 5 7 4 6 8� � �� � � � � � � � � � � � � � � � � �
Table 21 illustrates that the ordering in each tile is a circular shift
of the ordering in the previous tile.

It is easy to show that the period of ordering reached byal-
gorithm 2 is optimal. Consider two tilesTj andTj+1. Suppose

1The subscripts of tasks are modulon.

Casen = 5 & l = 3
Tile 0 Order 0 3 1 4 2

Offset 2
Tile 1 Order 1 4 2 0 3

Offset 2
Tile 2 Order 2 0 3 1 4

Offset 1

Table 2. Optimal ordering with non-constant permutation

in each tile ( n = 5; l = 3).

that equivalence classXi starts executing onTj at t = t0. SinceXi ! Xi+1 the earliest time at whichXi+1 can start execution onTj+1 is t = t0 + jXij. This is precisely the time offset between
two consecutive tiles obtained throughalgorithm 2. Thus, latency
between two tiles using non constant permutations is� p.

9 Results

9.1 Performance Evaluation

The performance evaluation of the proposed methods was car-
ried out using several signal processing applications consisting of
matrix transformations. We tested our proposed algorithmsusing
a sample test routine shown below,

Do i: 0 -> N
Task(i)

EndDo

In the above loop,Task() exhibits a compile-time unknown de-
pendence distancel in the outermost loop. In general,Task()
can represent a loop nest or a function call or a group of state-
ments. We tiled the above loop using the tiling transformation
provided by theSUIF compiler. Since the dependence distance
is a compile-time unknown in the above loop, the code must be
generated which computes the task permutation at run time. In
order to enforce synchronization between tiles imposed by the de-
pendence relation, data is passed between left and right processing
elements (PEs) using message passing library (MPI) calls. The
complete framework has been incorporated in theSUIF compiler
as an optimization pass.

The code generated by the compiler’s optimization pass is
sketched in figure 3. In case of constant permutations (figure3(a)),
permutations are generated at the entry point of the tile loop
(i tile ). In case of non-constant permutations (figure 3(b)),
permutations are generated at the entry point of the elementloop
(i ). The element loop is executed following the owner computes
rule. At run timepermute tile will generate an optimal task
permutation in each tile using the appropriate algorithm (1or 2).
This permutation is saved in the arrayperm which is used to order
the task execution. The final transformed code was targeted on
Cray T3E.

We performed experiments by varying the tile size (n) and the
dependence distance (l). The metric used to evaluate the perfor-
mance of our algorithms in comparison to previous algorithms was
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                   using algo 1>
Do i_tile: 0 -> N by n
  if i_tile maps onto PE then
    Do i: i_tile -> min(N,i_tile+n-1)
  <If needed, receive data from left PE>
      Task(perm[i]);

permute_tile(n,l); <generates pemutation 

  <If needed, send data to right PE>
EndDo

endif
EndDo

Do i_tile: 0 -> N by n
  if i_tile maps onto PE then
    permute_tile(n,l,i_tile); <generates 
                  permutation using algo 2>
    Do i: i_tile -> min(N,i_tile+n-1)
   <If needed, receive data from left PE>
       Task(perm[i]);
   <If needed, send data to right PE>
    EndDo
  endif
EndDo

(a) (b)

Figure 3. (a) Code generating constant permutations (b)

Code generating non-constant permutations.
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Figure 4. Loop completion time v/s dependence distance

on Cray T3E for (a) P = 16, n = 32 and N = 4096 and (b) P

= 16, n = 64 and N = 4096.

the total loop completion time. The tests were carried out using 16
processing elements with a cyclic distribution of tiles on proces-
sors. Figure 4 compares the performance of the final transformed
code using the proposed algorithms (Algorithm 1 and 2 presented
in sections 7 and 8) in comparison to previous approaches on the
Cray T3E for small tile sizes. Figure 5 presents results obtained
on the Cray T3E for larger tile sizes.

As seen in Figures 4 and 5 the performance obtained by using
the two proposed algorithms is superior to that obtained by using
algorithms proposed by Dion and Chou & Kung. This is true in
the case of small tile sizes as well as large tile sizes.

Figures 4 and 5 show that whengcd(n; l) is l, Dion’s algorithm
and the proposed algorithms yield very similar results. This is
because in this casel0 is 1 causing all three algorithms to generate
identical permutations.

Since task permutations are generated at run-time we need to
investigate the execution efficiency of the proposed algorithms in
comparison to previous approaches. Table 3 presents the times
taken by the code that generates task permutations using ourand
Dion’s algorithms indicating the following hierarchy in the time
complexityof the permutation generation algorithms.
Dion’s algorithm< Algorithm 1< Algorithm 2

One can see that although Dion’s algorithm is more time effi-
cient, better loop completion times result from algorithm 1& 2 due
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Figure 5. Loop completion time v/s dependence distance

on Cray T3E for (a) P = 16, n = 512 and N = 65536 and (b)

P = 16, n = 1024 and N = 65536.

l Time (micro-sec)
Dion Algo 1 Algo 2

3 11937 17153 19451
5 13108 18352 19546
7 13923 18422 19711
9 14966 18783 19627

Table 3. Permutation generation times (N = 256; n =
64; P = 4):

to superior task permutations. Thus, it is clear that the overhead
of generating more complex task permutations does not nullify
the performance gain achieved by those permutations. The results
indicate the followingperformance hierarchyof the algorithms
proposed in this paper. Forgcd(n; l) 6= l,
Algorithm 2> Algorithm 1> Dion’s algorithm

Algorithm 2 is also the most natural and efficient algorithm.For
all tile sizes the results indicate that Algorithm 2 yields the best
solution which is superior to solutions obtained by all constant
permutation algorithms.

9.2 Effect of tile size

An interesting issue is to study the effect of variation of tile size
on performance. In case of the multi-dimensional tiling problemn1�n2�� � ��nd, the gain of our method using Algorithm 1 over
Dion’s algorithm will be proportional to

Qd�1i=1 ni.
Desprez et al [4] have addressed the issue of finding the optimal

grain size that minimizes the execution time by improving pipeline
communications on parallel computers. The following discussion
presents the effect of tile size (n) on the total loop completion time
(Ttot) in light of the framework developed in this paper.

Using Algorithm 2, we obtain the following period of ordering,T � nl �calc + �comm
The total loop completion time is given by,
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Figure 6. Loop completion time v/s tile size on SGI Power

Challenge for P = 16, l = 7 and N = 2097152.Ttot � Nn T + n�calc= N�calcl + n�calc + N�commn= A+Bn+ Cn
Minimizing the above expression we get,nopt =rCB =rN�comm�calc
Let �comm�calc = c. Therefore,nopt � pcN
Also we have, nl �calc > �comm
This leads to, n > lc

In order to compare the above analytical solution with experi-
mental results we observed the total loop completion time (Ttot)
varying the tile size (n) keepingP fixed. Figure 6 presents this
comparison forN = 2097152 andl = 7. Figure 6 shows that the
analytical expression derived for the loop completion timeclosely
matches the experimental results. The knee of the analytical so-
lution curve corresponds to the optimum tile size that yields the
minimum loop completion time.

10. Conclusions

The effectiveness of loop tiling is critically dependent onthe
execution order of tasks within a tile. In this work, we have ad-
dressed the problem of finding an optimal ordering of tasks within
tiles executed on multicomputers for constant but compile-time
unknown dependences. We remove the restriction of atomicity on
tiles and exploit the internal parallelism within each tileby overlap-
ping computation with communication. We have formulated the
problem and developed a new framework based on equivalence

classes and show optimality results for single dimensionaltiles
with single constant dependences. Using the framework we have
also developed two efficient algorithms that provide the optimal
solution in both cases,

1. Same (constant) task ordering in tiles,
2. Different (non-constant) task ordering in tiles.

We have shown that the two proposed algorithms yield superior
results to the previous approaches when tested on distributed mem-
ory systems. We also show that the non-constant permutations in
our approach significantly reduce the loop completion time un-
like the constant permutations in previous approaches. Finally, we
have investigated the relationship between tile size and the loop
completion time and developed a methodology to obtain optimal
tile size given our framework.
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