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Abstract— Sensor networks have become popular in the recent
years due to their wide range of application. A fundamental
building block in distributed wireless sensor networks is Time
Synchronization. Because sensor nodes may be severely resource-
constrained, traditional time-synchronization protocols cannot
be used in sensor networks. Various energy efficient time-
synchronization protocols tailored for such networks have been
proposed in the recent years. However, none of these protocols
have been designed with security in mind. If an adversary were
able to compromise a node, he might prevent a network from
effectively executing certain applications, such as sensing or
tracking an object, or he might even disable the network by
disrupting a fundamental service such as a TDMA-based channel-
sharing scheme. In this paper we give a detailed explanation
of the Flooding Time Synchronization protocol and outline the
possible attacks on this protocol. To motivate our work, we
briefly discuss how different sensor network applications that
are affected by time synchronization attacks. Finally, we propose
some statistical countermeasures, as opposed to cryptographic
countermeasures, to mitigate the effect of time synchronization
attacks.

I. INTRODUCTION

Ad hoc networks are infrastructure-less, possibly multi-hop
wireless networks where every node can act as either a host
or a router, forwarding packets to other nodes in the network.
Some applications of sensor networks are in providing health
care for elderly, surveillance, emergency disaster relief, and
battlefield intelligence gathering.
A sensor network consists of anywhere from a handful to very
many tiny wireless devices with sensors. One very popular
type of nodes are the motes developed primarily at U.C.
Berkeley and Intel. Motes have very constrained resources.
An example of a sensor mote is the mica2dot (figure 1). A
typical configuration may have a 4MHz, 8-bit processor, with
128KB of instruction memory, 4KB of RAM, and 512KB of
external flash memory. The radio runs at 433 MHz and 38.4
Kbps. Given the limited resources of these sensor nodes, it is
a key technical challenge to design secure services, such as
time-synchronization.

A. Time Synchronization in Sensor Networks

Time synchronization protocols provide a mechanism for
synchronizing the local clocks of the nodes in a sensor

Fig. 1. Mica mote family [20]

network. There are several time synchronization protocols
for the internet, such as Network Time Protocol (NTP).
However, given the non-determinism in transmissions in
sensor networks, NTP cannot be directly used in wireless
sensor networks.
Time synchronization implementations have been developed
specifically for sensor networks. Three of the most prominent
are Reference Broadcast Synchronization (RBS) [3] Timing-
sync Protocol for Sensor Networks (TPSN) [6], and Flooding
Time Synchronization Protocol (FTSP) [12]. However, none
of these protocols were designed with security as one the
goals. Security is an important issue in sensor networks given
their diverse and usually very sensitive applications. For
example, it is crucial to protect people’s privacy when sensors
are used for elderly health care monitoring. Sensor networks
are usually unattended after deployment, and their deployment
location is un-trusted. In addition, nodes communicate using a
radio channel, which makes all communications susceptible to
eavesdropping. Therefore, sensor network security can easily
be breached either by passive attack, such as eavesdropping,
or active attacks, such as denial of service attacks, which can
be launched at, for example, the routing or the physical layer.
There are two exceptions to the above non-secure time
synchronization protocols: first is the work by Ganeriwal, et.
al [7], which attempts to detect time synchronization attacks.
The detection is done using a threshold on the maximum
drift and skew of the clock when there are no attacks on
the protocol. The algorithm also makes use of the Message
Authentication Code (MAC) to ensure the integrity of the time
sync. message updates. In the event of an attack the protocol



aborts the time synchronization process. This will lead into
more problems since the adversary can use this feature to
launch a denial of service attack on the sensor network.
The second work is [18] in which the authors employ a
combination of pairwise node authentication along with using
data redundancy to build a resilient time synchronization
protocol. Our work is different from [7] and [18] in the
following two ways: we do not abort time synchronization
when there is an attack, and we do not heavily rely on MAC.
Our main objective is to filter out the bad data, coming from
the compromised nodes, using robust regression methods.
Second, we do not add redundancy to the data set to make
time synchronization more robust. On the contrary, we aim
to use the existing data more intelligently in order to detect
outliers.
To provide more secure wireless communications in
sensor networks, Karlof et. al. proposed and implemented
TinySec [9], which uses symmetric private key encryption
to authenticate and encrypt messages. If an adversary
physically captures a node, however, he will gain access to
the network-wide key and can participate in the authenticated
communication without being recognized as an attacker.
In this work we focus on attacks of this type, where the
adversary compromises a node and injects erroneous time
synchronization information in the network.
The rest of the paper is organized as follows: in section II,
we outline the clock, communication, and adversary model
used throughout the paper. In section III, we review the
Flooding Time Synchronization Protocol (FTSP). In section
IV different security attacks on FTSP are explained in detail.
The effects of security attacks on a time synchronization
protocol are discussed in section V, followed by proposed
countermeasures in section VI.

II. SYSTEM MODEL

In this section, we define the problem of secure time
synchronization and discuss the clock model, communication
model, trust assumptions, threat and attacker models, and
security goals we wish to accomplish.

A. Clock Model

Every sensor node has a notion of time that is based on the
oscillation of a crystal quartz. The sensor clock has a counter
that is incremented at rate f where f is the frequency of the
oscillation. The counter counts time steps, and the length of
these time steps is prefixed. The clock estimates the real time
T (t), where,

T (t) = k

∫ t

t0

ω(τ)dτ + T (t0) (1)

ω(τ) is the frequency of the crystal oscillation and k is a
constant [14]. Ideally this frequency should be 1, i.e. dC/dt =
1. However, in reality the frequency of a clock fluctuates over
time due to changes in temperature, pressure, and voltage. This
will result in a frequency different than 1. This difference is

termed clock drift. There are a number of ways to model the
clock drift. In addition to frequency fluctuation in one clock,
the crystals of different clocks oscillate at different rates. This
difference causes what is called the offset between two clocks
[14].

B. Communication Model

In order to perform time synchronization, the network
relies on transmitting the time synchronization messages. The
messages are sent through wireless channel. We assume that
the wireless links are symmetric, meaning if node A hears
node B, then node B also can communicate with node A.
However, it is worth mentioning that in reality the wireless
links are not always symmetric; in fact, it has been shown
through experiments that the wireless channel is asymmetric.

C. Adversary Model

As stated above, wireless sensor networks use a wireless
channel for communications. This gives an adversary a large
window of opportunity, from passive eavesdropping to more
serious attacks such as message injection. We mentioned that
in sensor networks there are one or more base stations, which
are sinks and aggregation points for the information gathered
by the nodes. Since base stations are often connected to a
larger and less resource-constrained network, we assume a
base station is trustworthy as long as it is available. Beside
the base stations, we do not place any trust requirements
on the sensor nodes because they are vulnerable to physical
capture. While it is possible that the adversary has access
to sensor nodes very identical to the ones deployed or has
more powerful nodes such as laptops, in this paper we only
consider a mote-class adversary. We assume that the nodes
are not tamper resistant.
An outsider attacker has no special access to the sensor
network, such as passive eavesdropping, but an insider
attacker has access to the encryption keys or other code
used by the network. We consider only an insider attacker.
We assume that the adversary has been able to capture and
corrupt a fraction of the total nodes in the network. The
adversary therefore also has access to the secret keys for
authorized communication with other nodes. The goal of the
adversary in our setting is to inject false time synchronization
information in the network, without being detected by the
honest nodes.

III. TIME SYNCHRONIZATION PROTOCOL FOR SENSOR
NETWORKS

As mentioned in section I, sensor network is used for moni-
toring different real world phenomena. Since the existing time
synchronization protocol do not fit the special needs of sensor
network, a number of clock synchronization protocols have
been developed to meet the memory and energy constraint
of these networks. There are three main ways to synchronize
nodes together. In the first approach an intermediate node is
used to synchronize the clocks of two nodes together, such as



Reference Broadcast Synchronization (RBS) [4]. The second
approach assumes that the clock drift and offsets are linear,
and nodes perform pair-wise synchronization to find their
respective drift and offset, such as TPSN [6]. In the third
approach, one node declares itself the leader, and all the other
nodes in the network synchronize their clocks to the leader,
such as Flooding Time Synchronization Protocol (FTSP) [11].
Our work focuses on FTSP in particular since it is a simple
time synchronization protocol, and it has been implemented
on a real testbed of sensors.

A. Flooding Time Synchronization Protocol

In FTSP, a root node broadcasts its local time and any
nodes that receive that time synchronize their clocks to that
time. The broadcasted synchronization messages consist of
three relevant fields: rootID, seqNum, and sendingTime (the
global time of the sender at the transmission time). Upon
receiving a message, a node calculates the offset of its global
time from the global time of the sender embedded in the
message [11]. The receiving node calculates its clock skew
using linear regression on a set of these offsets versus the
time of reception of the messages.
Given the limited computational and memory resources of a
sensor node, it can only keep a small number of reference
points (in the current implementation 8 data points are saved
at each step). Therefore, the linear regression is performed
only on a small subset of the received nodes. Since this
regression requires that set of updates, however, a node
cannot calculate its clock skew until it receives a full of
reference messages. Therefore, there is a non-negligible
initiation period for the network.
FTSP also provides multi-hop time synchronization in the
following manner: Whenever a node receives a message
from the root node, it updates its global time. In addition, it
broadcasts its own global time to its neighbors. All nodes act
in a similar manner, receiving updates and broadcasting their
own global time to their neighbors. To avoid using redundant
messages in the linear regression described above, each node
retains the highest sequence number it has received and the
rootID of the last received message used. A synchronization
message is only used in the regression if the seqNum field
of the message (the sequence number of the flood associated
with that message) is greater than the highest sequence
number received thus far and the rootID of the new message
(the origin of the flood associated with that message) is less
than or equal to the last received rootID. FTSP is more robust
against node failures and topology changes since no topology
is maintained and the algorithm can adapt to the failure of
a root node. If a node does not hear a time synchronization
message for a ROOT TIMEOUT period, it declares itself to
be the new root. To make sure there is only one root in the
network, if a root hears a time synchronization message from
another root with lower ID than itself, it gives up its root status.

Fig. 2. The effect of outliers on regression. The Blue line is the correct
regression line, and the red line is the result of LS regression.

IV. ATTACKS ON THE TIME SYNCHRONIZATION
PROTOCOL

In this section, we discuss different attacks on FTSP ex-
plained above. It is worth mentioning that in general, all the
attacks on any of the existing time synchronization protocols
have one main goal, to somehow convince some nodes that
their neighbors’ clocks are at a different time than they
actually are. Since global time synchronization is build upon
synchronization at the neighborhood level, this will disrupt the
mechanisms by which the protocols above maintain global
time in the network or allow events at distant points in the
network to be given to be give time stamps which reflect the
actual difference between their times of occurrence.

A. Attacks on FTSP

The major innovations of FTSP, in terms of multi-hop
synchronization, over other time synchronization protocols,
is that the root is chosen dynamically and any node may
claim to be the root if it has not heard time updates for a
preset interval. One possible attack on this protocol is for the
compromised node to claim to be the root node with ID 0 and
begin at a higher sequence number than the actual root node
so all the updates originating at the actual root node will be
ignored. This can be easily done since the protocol allows any
node to elect itself root to handle the situation where nodes
have not heard from the root node for a long period. Once a
compromised node becomes the root, it can give false updates
to its neighbors, which will in turn propagate that false time
to their neighbors and so on. Every node that accepts the false
updates will calculate a false offset and skew for its clock.
Another possibility is that the compromised node can forward

false time updates to its neighbors. Given each node finds the
skew of its clock using Least Squares (LS) method on k data
points gathered from its neighbors, even if one data point is
corrupted, it will affect the regression line. This effect can
be seen in figure 2 where we have outliers in the collected
data. When LS is used to find the slope and intersection of
the regression line using k data points, we have:



b =
∑

k(xi − x)(yi − y)∑
k(xi − x)2

(2)

a = y − bx

where x, y are averages. Now if one data point is corrupted,
i.e. the value of one of the xi (and as a result yi) is shifted
by ∆. That will cause the averages to shift by ∆/k. We call
this shift in slope and y-axis intercept ∆b and ∆a. Therefore,
if we have one compromised node introducing corrupted data
in the network, we have a change of ∆b in the clock skew.
The reason ordinary LS method breaks down in the face of
malicious attacks is that the assumptions of independence
and normality of the residual errors, which are fundamental
to the LS procedure, are violated.

V. EFFECTS OF TIME SYNCHRONIZATION ATTACKS ON
SENSOR NETWORK APPLICATIONS

To motivate our discussion of time-synchronization attacks,
we describe here in detail the effects of time synchronization
attacks on a set of sensor network applications and services
that are dependant on time synchronization.
In many application areas, time synchronization allows
engineers to design simpler and more elegant algorithms.
If security is a high priority, however, the simplest
countermeasure against an attack on time synchronization is
to build the algorithm such that it does not rely on a time
synchronization service whenever possible.
That said, for certain classes of applications under certain
conditions, algorithms cannot provide correct results without
an accurate and reliable time synchronization service. Rather
than try to describe those conditions, we have tried to
select a representative set of applications that rely on a
time synchronization service and demonstrate the effects on
them of a time synchronization attack. While we believe
the following algorithms to be representative of the set of
algorithms relying on time synchronization, the set is not
exhaustive.

• Shooter Localization [10]
• TDMA-based Channel Sharing: Flexible Power Schedul-

ing [8],TDMA-based MAC protocol [3]
• Estimation
• Authenticated Broadcast(µTesla) [13]

We explain the third item, estimation, in more detail in the
following section, and refer the interested reader to [15] for
an extensive discussion on the other items.
To illustrate the effects of corrupted time synchronization on
estimating state based on sensor readings from a sensor net-
work, we give a simple example using the Kalman filter. The
Kalman filter estimates the state of a discrete-time controlled
process that governed by a linear stochastic difference equation
[19]:

Fig. 3. The y axis shows the norm of the difference between the results
from the Kalman filter before and after de-synchronization. The x axis is the
time of the corresponding observation.

xk = Axk−1 + Buk−1 + wk−1 x ∈ <n (3)

given the measurement zk ∈ <m, where

zk = Hxk + vk (4)

The random variables w and v represent process and mea-
surement noise and are assumed to be independent random
variables with normal distribution,

p(w) ∼ N(0, Q) p(v) ∼ N(0, R)

The Kalman filter estimates the state at every time step.
We simulated the movement of an object using equation 4,
where the state is position and velocity of the object in two
dimensions. We then used the Kalman filter to estimate the
position and velocity of the object before and after modifying
the time of some of the position observations, as might
occur in an attack on the time synchronization in the sensor
network. The norm of the error is shown in Figure 3. As seen
in the Figure 3, we began the de-synchronization at time 10.

VI. COUNTERMEASURES FOR TIME SYNCHRONIZATION
ATTACKS

In this section, we propose a number of countermeasures
for the mentioned time synchronization attacks. It is worth
noting that the network can employ a network-wide symmetric
private key to encrypt and authenticate messages from the
root node, including time synchronization updates, to prevent
spoofing of the root node and falsification of the time updates.
There exist implementations of such a scheme for sensor
networks, as mentioned above. This approach, however, will
not solve the problem of an insider attack, i.e. if a subset
of nodes were physically compromised. An adversary would
gain access to the network-wide key and could falsify time
synchronization updates.
FTSP provides one mechanism for electing a root node, as



discussed in III. There is no security restriction in FTSP
that would prevent a compromised node from becoming
the leader. In order to fix this problem, we propose using
one of the standard distributed coin-flipping algorithms that
use cryptographic commitments. For instance, each sensor
will pick a random value xi, broadcasts Commit(xi), then
everyone waits for all broadcasts. Finally everyone opens
up their commitment and broadcasts xi. Now one can use
y = Hash(x1, .., xn) as a random number. For instance, one
can compute ymodn and designate that sensor as the leader.
This picks a random leader, and so long as least one sensor is
honest, then the choice of leader will be uniformly distributed
across all sensors.
Once there is a secure procedure in place for electing the
leader node, the next step is to develop a built-in mechanism
for FTSP so that the algorithm can correct for erroneous data
without solely relying on cryptographic solutions.
As discussed above, FTSP relies on updates from a single
neighbor node to calculate the offset and skew of its clock.
One obvious means of increasing the reliability of these
synchronization schemes, then, is to introduce redundancy
into the system. This is our second proposal for multi-hop
time synchronization protocols. In FTSP, it is especially easy
to introduce redundancy. Rather than relying on a single
update from a single node for each wave of updates from
the nearest root node (i.e. for each seqNum), the nodes
should record a subset S of the updates from their neighbors.
This would increase the storage space required for the
linear regression data points by a factor of S. In the current
implementation of FTSP, the regression table holds 8 data
points of 8 bytes each, 4 for the offset and 4 for the arrival
time of that offset. If S were 5, for instance, this scheme
would require accommodating 32 additional data points or
32 ∗ (4 + 4) = 256 bytes. Even on a mote class node, as
described above, this is a reasonable additional memory
requirement. Given this additional data, the nodes could take
the median of the updates for any sequence number instead
of whichever update is received first, which is the current
scheme in FTSP.
The third proposal for improving the security of FTSP is
to make the LS linear regression, used by each node to
calculate the skew of its clock, more robust. We propose
using an algorithm similar to RANSAC [5]. RANSAC relies
on random sampling selection to search for the best model
to fit a set of points that is known to contain outliers. In
effect, RANSAC can be considered to seek the best model
that maximizes the number of inlier data. The following is
the set of steps taken by the RANSAC algorithm to find the
best model parameters:

1) Randomly select a subset of the data points of size m
and build the initial model from these points

2) Determine the set of data points that are within ε of the
model and call this set M . This set defines the inliers
of the original data set.

3) If |M | is greater than a threshold T, we need to re-
estimate the model using all the points in M , and the
algorithm terminates.

4) If |M | is less than T, select a new subset and repeat 2.
5) After N trials the largest M is selected, and the model

is re-estimated using all the data points in M .

In order to determine how many sample points m we need in
each subset, we can use the following formula, where p is the
probability that at least one of the subsets does not contain an
outlier (usually taken to be 0.99), ε is the acceptable proportion
of outliers, and N is the number of subsets:

N =
log(1− p)

log(1− (1− ε)m)
(5)

In our case, the outliers are generated by an adversary (or a
node with an especially erratic clock).
Our last proposal is to use Least Median of Squares (LMS) as
proposed in [16]. LMS is one of the best known and most
widely used robust estimators. The LMS method finds the
residuals, ri = Yi − Ŷi, i ∈ {1, ..., n} and n is the number of
data points. As opposed to the LS method, which minimizes
the

∑n
i=1 ri, LMS solves the following nonlinear minimization

problem:
min medir

2
i (6)

It is well known that LMS is very robust to the outliers [16];
therefore, it is especially appropriate for our purposes where
the data points, i.e. time sync. updates, could be coming from
corrupted nodes and appear as outliers.
Finding the least median squares is a challenging optimization
problem. There is no closed form solution for the optimization
problem in equation 6, since we have to optimize the following
[22]:

min
b0,b1

mediSRi = median{(Y1 − (b0 + b1X1))2,

..., (Yn − (b0 + b1Xn))2}
However, recently a randomized algorithm has been suggested
that solves the LMS problem in time O(nd) and space O(n),
where d is the dimension of the data points [2]. Given d = 1
in our case, the amount of time and space required to solve
6 is feasible. In addition, there are a number of software
packages that can perform this optimization, for example
SAS/IML [22]. Porting these algorithms to a mote-class node
is the subject of our current research.

VII. CONCLUSION AND FUTURE WORK

Sensor networks have become prevalent in recent years,
and the domain of their applications is being expanded as the
technology advances. One of the fundamental tasks in sensor
networks is the problem of time synchronization. Given the
unattended nature of sensor networks, it is possible for an
adversary to physically capture and subvert a subset of the
nodes. By doing so, the adversary gains access to the network



cryptographic keys and can participate in the ongoing com-
munication without being detected. Therefore, as we argued in
this paper, designing a secure time synchronization protocol is
crucial to maintaining the functionality of the sensor networks.
We described FTSP which is one of the major time synchro-
nization protocols for sensor networks. The set of possible
attacks on FTSP protocol was explained next. We outlined the
adverse effects of the time synchronization attacks on some
important sensor network applications, such as estimation. We
then proposed a number of countermeasures to mitigate the
effect of the security attacks. These proposals were mainly
based on robust regression methods, i.e. the LMS method. Our
goal is to provide a built-in, non-cryptographic mechanism by
which the time synchronization protocol can correct for errors
introduced by an adversary, i.e. an insider attacker.
We are currently implementing and testing those countermea-
sures on a sensor network testbed. Based on our results, we
can evaluate the effectiveness of the proposals, including a
comparison of the performance of the RANSAC algorithm to
using LMS regression.
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