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Abstract Increased interest in sustainable agriculture and
bio-based industries requires that we find more energy-
efficient methods for treating cellulose-containing waste-
waters. We examined the effectiveness of simultaneous
electricity production and treatment of a paper recycling
plant wastewater using microbial fuel cells. Treatment
efficiency was limited by wastewater conductivity. When
a 50 mM phosphate buffer solution (PBS, 5.9 mS/cm) was
added to the wastewater, power densities reached 501±
20 mW/m2, with a coulombic efficiency of 16±2%. There
was efficient removal of soluble organic matter, with 73±
1% removed based on soluble chemical oxygen demand
(SCOD) and only slightly greater total removal (76±4%)
based on total COD (TCOD) over a 500-h batch cycle.
Cellulose was nearly completely removed (96±1%) during
treatment. Further increasing the conductivity (100 mM
PBS) increased power to 672±27 mW/m2. In contrast, only
144±7 mW/m2 was produced using an unamended waste-
water (0.8 mS/cm) with TCOD, SCOD, and cellulose
removals of 29±1%, 51±2%, and 16±1% (350-h batch
cycle). These results demonstrate limitations to treatment
efficiencies with actual wastewaters caused by solution
conductivity compared to laboratory experiments under
more optimal conditions.
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Introduction

With the continued increased consumption of paper
products and other natural fiber products, the recycling
and use of recovered paper is growing worldwide. The
average amount of recycling content in paper production
was increased by 22% from 1990 to 1998. In 2005, 78% of
paper and paperboard mills in America used some
recovered paper, and 149 mills used only recovered paper.
By 2012, it is projected that the paper industry will recover
55% of all the paper Americans consume (Lens et al. 2002).
The strength of wastewater in a paper recycling plant
generally increases with the percent of recycled content.
Thus, an increase in the relative proportion of recovered
paper and an increase in the amount of paper produced will
lead to increased energy demands for wastewater treatment
using conventional treatment processes. In addition, this
wastewater contains soluble organics and particulate matter
such as cellulose which are not effectively degraded by
traditional wastewater treatment technologies (Lens et al.
2002). Many paper recycling industries therefore have an
interest in reducing water use, finding more effective
methods to treat their wastewater as well as decreasing
costs for wastewater treatment.

One new promising method for wastewater treatment is
the use of microbial fuel cells (MFCs). Bacteria in an MFC
grow under anoxic conditions, which can benefit cellulose
fermentation and degradation, with the added benefits of
electricity generation rather than power consumption
(Huang et al. 2008; Logan and Regan 2006). Several types
of wastewaters have been successfully treated with simul-
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taneous electricity generation, including municipal, food
processing, brewery, and animal wastewaters which have
been found to be biocatalysts for directly power generation
and waste treatment in MFCs (Feng et al. 2008; Liu et al.
2004; Min et al. 2005; Min and Logan 2004; Oh and Logan
2005).

Cellulose and chitin have been shown to be suitable
substrates for electricity generation in laboratory MFCs
under ideal conditions (Niessen et al. 2005; Ren et al. 2007;
Rezaei et al. 2007; Rismani-Yazdi et al. 2007), but so far,
actual cellulosic wastewaters from pulp or paper-processing
plants have not been previously investigated. Of particular
concern is the efficiency of an MFC to remove cellulose in
the presence of other organic matter in the wastewater and
the potential adverse effect of low conductivity of the
wastewater. While the effect of solution conductivity on
electricity generation is now well known in laboratory
MFCs, it was recently demonstrated that low conductivity
can have a detrimental effect on power production using a
brewery wastewaters (Feng et al. 2008). We therefore
wanted to determine to what extent it might be possible to
treat a paper recycling wastewater (PRW) under more
optimal conditions compared to those for the actual
(unamended) wastewater.

In this study, we examined electricity generation using an
unamended PRW and the same system with solution
conductivity increased with a phosphate buffer solution
(PBS). Power output was also examined as a function of
wastewater strength, with treatment efficiency expressed in
terms of removal of total chemical oxygen demand (TCOD),
soluble chemical oxygen demand (SCOD), and cellulose.

Materials and methods

MFC reactor construction and operation

A single-chamber MFC containing a graphite-fiber brush
anode was used in all tests, constructed as previously
described (Logan et al. 2007). The brush was made of
carbon fibers with an average diameter of 7.2 μm
(PANEX33 160K, ZOLTEK) and was 6.0 cm in outer
diameter and 7.0 cm long (estimated surface area of
5,418 m2/m3 brush volume). Anodes were treated using a
high temperature ammonia gas (Cheng and Logan 2006)
and were connected to the circuit by a titanium wire (Logan
et al. 2007). The cathodes were made from 30 wt% wet-
proofed carbon cloth (type B-1B, E-TEK) using a platinum
catalyst (0.5 mg/cm2 Pt) and four diffusion layers (Liu et al.
2008). The working volume of the MFC was 300 ml. The
reactor was run in fed-batch mode at room temperature
(22–26°C) and was not mixed except liquid sampling time.

Analysis

The voltage (V) across an external resistor in the MFC
circuit was monitored at 20-min intervals using a multi-
meter (Keithley Instruments, OH, USA) connected to a
personal computer. Current (I), power (P=IV), and CE were
calculated as previously described, with the power density
normalized by the projected surface area of the cathode and
volumetric power density normalized by the volume of the
liquid medium (Huang and Angelidaki 2008). Internal
resistance was calculated from the slope in a plot of voltage
and current (Liu et al. 2008).

TCOD and SCOD of wastewater samples were measured
in duplicate (except as noted) using Standard Methods
(APHA 1998). All samples for SCOD, gas chromatography
(GC), and high-performance liquid chromatography
(HPLC) analysis were filtered through a 0.22-μm pore
diameter syringe filter, while TCOD measurements were
conducted without pretreatment. Measurements of cellulose
were made in duplicate using procedures described by Ren
et al. (2007). The concentrations of possible intermediates
(acetate, butyrate, propionate, ethanol, and methanol) were
analyzed (triplicate samples) using a gas chromatograph
(Agilent 6890) and a 30 m×0.32 mm×0.5 μm fused-silica
capillary column. Before GC analysis, 50 μl 50% formic
acid (v/v in water) were added to 1 ml sample. Other
intermediates such as lactate and formate were measured by
HPLC (Water CO.) with pre-acidification using 0.11 ml
H2SO4 (1.0 M) per milliliter of sample before HPLC
analysis. Methane and hydrogen in the headspace were
analyzed using a gas chromatograph (model 310, SRI
Instruments, Torrence, CA, USA) and a molecular sieve
column (Alltech Molesieve 5A, 80/100, 6 ft×1/8 in.×
0.085 μm) with nitrogen as the carrier gas. The detection
limits for TCOD and COD and cellulose were 5 mg/l and
10 μg/l, respectively. For intermediates (acetate, butyrate,
propionate, ethanol, methanol, lactate, and formate), 1 mg/l
was detectable, and for methane and hydrogen, the minimum
detection limit was 0.001%.

Wastewater

PRW was collected from the primary clarifier of the
American Eagle Paper Company, Tyrone, PA and used as
the sole inoculum as well as the fuel. Each time the reactor
solution as replaced, 30 ml of the solution was left in the
reactor to ensure an adequate inoculum of bacteria in
suspension for the next cycle of treatment. In tests with
PBS, chemicals were added directly to the wastewater to
produce a final concentration of 50 mM (NaH2PO4 H2O,
2.452 g/l and Na2HPO4, 4.576 g/l) or higher as noted. In
some cases, the wastewater was first diluted with ultrapure
water (Milli-Q system; Millipore, New Bedford, MA, USA)
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before adding the buffer. Wastewater supernatant was
obtained by allowing a 2 l sample to settle for 48 h and
using the top 1 l in tests. Typical characteristics of the
supernatant (g/l) were: total COD, 0.48±0.01; soluble
COD, 0.32±0.01; ammonia nitrogen, 0.18±0.01; reducing
sugars, 0.28±0.02.

Results

Power generation during start-up

After a lag period of 108 h after first inoculation using
PRW (50 mM PBS), there was an increase in cell voltage
over the next 60 h, reaching an initial peak voltage in the
first cycle of 71 mV. Power was immediately generated at
the start of the second fed-batch cycle. It was observed in
the third cycle that there were two successive peaks in
power output at 330 and 295 mV, lasting 108 and 118 h,
respectively. After the fourth cycle, there were consistent
power cycles exhibiting two stable and repeatable voltages
produced each time of ~400 mV and ~420 mV (data not
shown).

Relationship between initial COD, power generation,
and CE

The power generated by the MFC was monitored for TCOD
concentrations ranging from 181 to 1,464 mg/l (50 mM PBS).
The maximum power densities, CEs, and TCOD removals at
different initial TCODs are shown in Fig. 1. The maximum
power production increased from 156 to 506 mW/m2 (208 to
675 mW/m3) with TCODs of 181 to 1,464 mg/l, demon-
strating that power production was dependent on the initial
TCOD (Fig. 1a,b).

Bimodal power production was observed for higher initial
TCOD concentrations of 723 and 1,464 mg/l (Fig. 1a,b). At
1,464 mg/l, the peaks produced 340–420 mW/m2 and 410–
430 mW/m2 of power for the initial 200 h and during 280–
410 h, respectively. It was suspected that the reason for the
two peaks was due to a change in the dominate source for
current generation from soluble to particulate matter.
Therefore, additional tests were conducted with the waste-
water supernatant, and only one peak in power was
observed, producing 400 mW/m2 over the initial 200 h
(Fig. 1b). This result supported our hypothesis that the
second peak was due to solubilization of the particulate
matter.

The overall CE changed with the initial TCOD (Fig. 1c).
An increase in the TCOD from 181 to 527 mg/l decreased
the CE from 53±3% to 24±2%, but increased TCOD
removal from 9.1±0.9% to 47±3%. A further increase in
initial TCOD concentration to 723 mg/l resulted in slight

reduction in CE to 22±2% and a TCOD removal of 70±4%
(Fig. 1c). This relationship between CE and substrate
concentration may be due to the effect of oxygen transfer
into the solution through the cathode. The higher the
substrate concentration the longer the period of time needed
to fully degrade the substrate. As the time period increased,
more oxygen could diffuse into the system, causing aerobic
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Fig. 1 Relationship between initial PRW concentrations and power
generation (a) and (b), and COD removal and CE (c) in the MFC (Rex,
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removal of the substrate and a decrease in the CE (Min
et al. 2005).

Removal of TCOD, SCOD, and cellulose,
and the production of intermediates

While the amount of substrates that was captured as current
in MFC tests was low, electricity generation enhanced
treatment efficiency beyond just conversion of the organic
matter to current. TCOD removal in an open-circuit control
was 27±2% compared to 76±4% removal in the MFC
(1,464 mg/l initial TCOD; Fig. 2a). This result indicated
that removal of TCOD was substantially enhanced by
electricity generation from organic matters in PRW. The CE
under these conditions was 16±2% (Fig. 1c), and thus the
capture of electrons alone cannot fully explain the increase
in TCOD removal from 27% to 76% by current generation.
Reasons for this enhanced removal need to be further
explored. The final TCOD (358±34 mg/l) after 500 h of
treatment could not be further utilized for power generation

and thus may reflect non-biodegradable organic matter
(Lens et al. 2002).

There was a peak in SCOD concentration (206±14 mg/l)
in the MFC tests at 350 h using the wastewater, but this
peak was absent in tests using only the supernatant
(Fig. 2a). This increase in SCOD occurred around the same
time as the second peak in power production, as previously
noted, at 280 h (Fig. 1a). This SCOD result provides
additional evidence that the second peak in power produc-
tion was due to the hydrolysis and fermentation of the
particulate substrate, which resulted in the release of
intermediates measured as SCOD.

Cellulose concentrations continually decreased over the
time course of the experiment, from 1.18±0.05 to 0.051±
0.02 g/l, achieving 96±1% cellulose removal after 500 h
(Fig. 2a). Cellulose hydrolysis is the slowest step in
cellulose degradation (Schwarz 2001; Drissen et al. 2007).
While the initial peak in power production was likely
sustained by soluble substrates originally present in the
wastewater, lower power was generated when this soluble
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substrate was depleted. As cellulose degradation proceeded
over time, the second peak in power generation was likely a
result of an increased rate of cellulose hydrolysis (due to
exponential bacterial growth), resulting in increased release
of volatile acids and other intermediates over time.

To further examine the reasons for the bimodal peak in
power output, we measured the concentration of volatile
acids and these other intermediates over the course of a fed-
batch cycle. Acetate was the dominant intermediate
followed by propionate (Fig. 2b). Acetate reached a
maximum of 258±6 mg/l at 250 h and then decreased,
showing good agreement in the timing of acetate accumu-
lation and power production (Fig. 1a). Propionate, another
key intermediate in anaerobic degradation of cellulose,
increased to 54±2 mg/l within 100–200 h, reaching a
maximum of 86±1 mg/l at 250 h and then decreasing in
concentration. Others have shown that acetate and propio-
nate are the dominant intermediates during cellulose
degradation by mixed microorganisms (Hu et al. 2004;
Gallert and Winter 2008). Anaerobic oxidation of propio-
nate by acetogenic bacteria is only possible if the hydrogen
and formate concentrations are kept extremely low (de Bok
et al. 2004), e.g., by the action of synthrophic hydrogen or
formate utilizing bacteria such as methanogens or sulfate
reducers. Formate and hydrogen gas were not detected here,
allowing for anaerobic oxidation of propionate by aceto-
genic bacteria. Oxidation products from propionate by
Smithella propionica include acetate and butyrate. The
pathway of this propionate conversion is condensation of
propionate to a six-carbon intermediate, which, after some
rearrangements, is ultimately cleaved into butyrate and
acetate (de Bok et al. 2004; Liu et al. 1999). While acetate
was measured in high concentrations, the butyrate concen-
tration here was only ~10 mg/l. Other intermediates (iso-
butyrate, valerate, ethanol, and lactate) in the liquid were
undetectable (data not shown). CH4 was not detected in the
headspace, indicating that methanogenesis had been effec-
tively inhibited (data not shown).

Effect of solution conductivity on power generation,
removal of TCOD, SCOD and cellulose, and the production
of intermediates

Solution conductivity was an important factor for maxi-
mizing power generation (Fig. 3a). Adding 100 mM PBS
raised the solution conductivity from 0.8 mS/cm to
10.2 mS/cm and increased power density by up to 245%.
This increase reflects the importance of solution conduc-
tivity to reduce the bulk phase internal resistance for power
generation in the system as well as facilitate transport of
ions through the anode biofilm (Torres et al. 2008).

Polarization data were obtained by varying the circuit
external resistance (Fig. 3b). Maximum power densities

increased from 144±7 mW/m2 with unamended wastewater
to 672±27 mW/m2 (100 mM PBS). The internal resistances
calculated from the polarization curves were 993 Ω (no
buffer, R2=0.998), 389 Ω (50 mM, R2=0.996), and 292 Ω
(100 mM, R2=0.990). These results demonstrate that
increased power resulted from a reduced internal resistance.

Solution conductivity also affected TCOD, SCOD, and
cellulose removal of PRW as shown in Fig. 2c. Without
buffer addition, removals of TCOD, SCOD, and cellulose
(350 h) reached 29±1%, 51±2% and 16±1%, respectively.
These values are much less than those with 50 mM PBS
addition (conductivity of 5.9 mS/cm) of 60±2% (TCOD),
17±1% (SCOD), and 85±2% (cellulose) over the same
period of time (Fig. 2a). Part of these differences can be
attributed to the effect of the buffering capacity of the PBS.
The final pH without PBS addition decreased from 7.0 to
5.9±0.2 after 350 h compared to 6.8±0.1 with 50 mM PBS.

It was also observed that when PBS was not added to
the PRW, there was only one acetate peak at a value of
121 mg/l, a concentration much lower than the two peaks
of 213 and 258 mg/l with 50 mM PBS addition (Fig. 2d).
The accumulation of propionate in the PRW without PBS
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addition followed a similar trend to that observed with PBS
addition, although the concentration was at a lower level
(Fig. 2d).

Discussion

The use of MFCs to treat wastewater from a paper recycling
plant is technically feasible, but these results demonstrate
that solution conductivity and buffer capacity are important
factors that can limit the amount of power that can be
extracted from this wastewater. Adding a phosphate buffer
(100 mM PBS, 10.2 mS/cm) showed that it was possible to
achieve 672±27 mM/m2 under optimal conditions. How-
ever, with unamended wastewater, the power output was
only 144±7 mM/m2 due in large part to the low solution
conductivity (0.8 mS/cm). In addition, the pH of the
wastewater decreased to 5.9, which may have affected the
extent of treatability in terms of COD removal. There was
29±1% removal of TCOD of the wastewater without PBS
addition compared to 73±1% removal under more optimal
conditions (100 mM PBS).

While it is clear that PBS addition improved treatment,
we are not advocating that PBS be added to the wastewaters
to achieve increased power production, as this would not be
cost-effective and the addition of phosphate would not be
suitable for wastewater discharged at an industrial site.
However, these results do show that power and treatment
efficiencies can be severely affected by a lack of solution
conductivity and buffer capacity. It has also been recently
shown that solution conductivity was an important factor in
the treatment of brewery wastewater (Feng et al. 2008).
Therefore, it is suggested that in all future MFC reports of
the treatment of wastewaters, data be included on the
conductivity of the wastewaters tested. With such data, we
will be able to better gage the importance of this factor in
treatment efficiency. The solution conductivity has not
previously been an important factor in conventional
wastewater treatment using aerobic processes, except when
salinity is very high and bacterial activity is inhibited.

Under optimal conditions, cellulose removal was very
efficient, with 85±2% cellulose removed (100 mM PBS)
compared to 16±1%with no PBS addition at anMFC running
time of 350 h. Direct and indirect evidences shows the
microbial ability to degrade cellulose is associated with
the cellulosome (membrane-bound enzymatic complex). The
binding of microorganisms to cellulose by hydrophilic peptide
sequences present in the glycocalix proteins and/or in
cellulolytic enzymes is necessary for its degradation (Paggi
et al. 2004; Pegden et al. 1998; Zaldivar et al. 2001).

Cellulose degradation normally involves two separate
steps: cellulose hydrolysis and then fermentation of the
sugar, releasing fermentation end products into the solution

(Schwarz 2001; Drissen et al. 2007). Cellulose conversion
in an MFC therefore requires that bacteria be dispersed in
the solution so that they can bind to the cellulose. These
fermentation end products released into solution can then
be used by the exoelectrogenic bacteria on the anode to
produce current. There are no known microbes capable of
both cellulose hydrolysis and electricity generation (Niessen
et al. 2005; Ren et al. 2007). Thus, two separate steps are
needed for particle breakdown, making cellulose degrada-
tion much more complex in MFCs than the degradation of
just soluble substrates. However, the present study demon-
strates that it is possible to accomplish both of these
processes in the same reactor. Indeed, the removal of
fermentation end products by anodic bacteria may be
helpful in accelerating the rate of cellulose degradation
through the removal of compounds (e.g., butyrate and
ethanol) that can inhibit the growth of fermentative bacteria
(Sakai et al. 2007). Further investigation of the bacterial
community in an MFC degrading PRW and the use of
continuous flow systems need to be explored in future
studies to help understand and improve the performance.
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