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bstract

Alzheimer’s disease (AD) is characterized by the presence of neurofibrillary tangles, senile plaques and loss of synapses. There is accumu-
ating evidence that oxidative stress plays an important role in AD pathophysiology. Previous redox proteomics studies from our laboratory
n AD inferior parietal lobule led to the identification of oxidatively modified proteins that were consistent with biochemical or pathological
lterations in AD. The present study was focused on the identification of specific targets of protein oxidation in AD and control hippocampus
nd cerebellum using a redox proteomics approach. In AD hippocampus, peptidyl prolyl cis–trans isomerase, phosphoglycerate mutase 1,
biquitin carboxyl terminal hydrolase 1, dihydropyrimidinase related protein-2 (DRP-2), carbonic anhydrase II, triose phosphate isomerase,
-enolase, and �-SNAP were identified as significantly oxidized protein with reduced enzyme activities relative to control hippocampus.

n addition, no significant excessively oxidized protein spots were identified in cerebellum compared to control, consistent with the lack of
athology in this brain region in AD. The identification of oxidatively modified proteins in AD hippocampus was verified by immunochemical

eans. The identification of common oxidized proteins in different brain regions of AD brain suggests a potential role for these oxidized

roteins and thereby oxidative stress in the pathogenesis of Alzheimer’s disease.
2005 Elsevier Inc. All rights reserved.
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. Introduction

Alzheimer’s disease (AD) is characterized clinically as a
rogressive dementia and pathologically by the presence of

eurofibrillary tangles (NFT), senile plaques (SP), and loss
f synapses [30]. SP consist of a core of amyloid beta-peptide
A�), surrounded by dystrophic neurites [36]. Hippocampal

∗ Corresponding author. Tel.: +1 859 257 3184; fax: +1 859 257 5876.
E-mail address: dabcns@uky.edu (D.A. Butterfield).
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athology plays a major role in memory and cognitive dys-
unction early in AD [3]. The neurobiological mechanisms
nfluencing the progressive impairments in memory and intel-
ectual performance that are the hallmarks of AD are not well
nderstood. There is accumulating evidence that oxidative
tress plays an important role in this disease pathophysi-

logy, manifested by protein oxidation, lipid peroxidation,
NA oxidation, advanced glycation end products, and ROS

ormation [1,12,13,33,42,48–50,77,78]. ROS can bring about
ifferent kinds of protein oxidation [79].
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Several sources of free radical are important in AD brain,
ncluding A�, redox metal ions, inflammation, microglia
ctivation, etc. [10,26,62,71,72,90]. In AD brain protein oxi-
ation occurs in A�-rich regions, such as inferior parietal
obule, cortex, and hippocampus, but not in cerebellum where
� levels are negligible [33]. The most widely used marker

or oxidative damage to proteins is the presence of protein car-
onyl groups, which can be introduced into proteins by direct
xidation of certain amino acid side chains, peptide backbone
cission, or by Michael addition reactions with products of
ipid peroxidation or glyco-oxidation [12,77]. Elevation in
he total levels of protein carbonyls has been reported in AD
13,18,33,77,78].

Previous studies from our laboratory and others identified
xidized proteins using a redox proteomics approach in this
isorder [9,10,14,15,17,19], consistent with biochemical
nd pathological alterations in AD. In essentially all cases
xamined thus far, oxidative modification of brain proteins is
ssociated with loss of function [1,11,16,33,39], suggesting

possible link between oxidative stress of key proteins
nd mechanisms for neurodegeneration in AD brain. Iden-
ification of modified proteins is crucial for establishing a
elationship between oxidative modification and neuronal
eath in AD brain, and proteomics aids in identifying
otential new therapeutic targets for in this dementing
isease.

In the present study, specific targets of protein oxidation
nd expression were studied in control and AD hippocam-
us and cerebellum, using a redox proteomics approach. The
dentified oxidized proteins play key roles in ATP synthesis,
rotein degradation, axonal growth, pH regulation, and vesic-
lar transport. In contrast, no excessively oxidized proteins
ere revealed in the cerebellum compared to basal oxida-

ion in control cerebellum. Our data support the notion that
xidative stress plays an important role in protein oxidation
n AD brain as evinced by increased protein oxidation in hip-

ocampus compared to cerebellum, and given the regional
istribution of protein oxidation and A� levels [33], the
esults suggest an important role of A� in oxidative stress
nd pathology in AD.
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able 1
haracteristics of AD and control subjects (means ± S.D.)

arameters Groups

Normal

emographic variables
Number of subjects 6
Gender (male/female) 4/2
Age at death (years) 85.8 ± 4.1
Postmortem interval (h) 2.9 ± 0.23
MMSE; number of months prior to death test taken 28 ± 0.8; 6.6
APOE genotype if known (N) 3/3 (3) 3/4 (2
Cause of death Complication
Location at death if known Home (3); ho

bbreviations: AD, Alzheimer’s disease; MMSE, Mini-Mental State Examination
.D., standard deviation; COPD, chronic obstructive pulmonary disease.
ging 27 (2006) 1564–1576 1565

. Materials and methods

.1. Control and AD brains

Frozen hippocampal samples were obtained from six
D patients and six age matched controls for the present

tudy. The Rapid Autopsy Program of the University
f Kentucky Alzheimer’s Disease Research Center (UK
DRC) provided autopsy samples with average postmortem

ntervals (PMIs) of 2.1 h for AD patients and 2.9 h for control
ubjects (Table 1). All AD patients displayed progressive
ntellectual decline and met NINCDS-ADRDA Workgroup
riteria for the clinical diagnosis of probable AD [54].
ematoxylin–eosin and modified-Bielschowsky staining

nd 10-D-5, and �-synuclein immunohistochemistry were
sed on multiple neocortical, hippocampal, entorhinal,
mygdala, brainstem, and cerebellum sections for diagnosis.
ome patients were also diagnosed with AD plus dementia
ith Lewy bodies. Control subjects underwent annual mental

tatus testing and semi-annual physical and neurological
xams, as a part of the UK ADRC normal volunteer longi-
udinal aging study and did not have a history of dementia
r other neurological disorders. All control subjects had
est scores in the normal range (Table 1). Neuropathologic
valuation of control brains revealed only age-associated
ross and histopathologic alterations. Other characteristics
f AD and control patients that were available from medical
ecords are provided in Table 1.

.2. Sample preparation

Brain samples were minced and suspended in 10 mM
EPES buffer (pH 7.4) containing 137 mM NaCl, 4.6 mM
Cl, 1.1 mM KH2PO4, 0.1 mM EDTA, and 0.6 mM MgSO4

s well as proteinase inhibitors: leupeptin (0.5 mg/mL),
epstatin (0.7 �g/mL), type II S soybean trypsin inhibitor

0.5 �g/mL), and PMSF (40 �g/mL). Homogenates were
entrifuged at 14,000 × g for 10 min to remove debris. Pro-
ein concentration in the supernatant was determined by the
CA method (Pierce, Rockford, IL, USA).

AD

6
4/2
84.5 ± 5.2
2.1 ± 0.47

± 1.4 15.7 ± 2.6; 19.7 ± 1.0
) ND
s of surgery, cardiac failure; COPD Complications of AD
spital (2) Home (1); hospital (2)

; APOE, apolipoprotein E; ND, not determined; N, number of individuals;
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.3. Two-dimensional electrophoresis

Samples (150 �g) were incubated at room temperature for
0 min in four volumes of 10 mM 2,4-dinitrophenylhydrazine
DNPH) in either 2 M HCl for protein carbonyl derivati-
ation/oxyblots or 2 M HCl for gel maps and mass spec-
rometry analysis, according to the method of Levine et al.
41]. This was followed by precipitation of proteins by addi-
ion of ice-cold 100% trichloroacetic acid (TCA) to a final
oncentration of 15% and samples were placed on ice for
0 min. Precipitates were centrifuged for 2 min at 14000 × g
t 4 ◦C. The pellet was washed with 500 �L of 1:1 (v/v) ethyl
cetate/ethanol three times. The final pellet was dissolved in
ehydration buffer (8 M urea, 2 M thiourea, 2% CHAPS, 0.2%
v/v) biolytes, 50 mM dithiothreitol (DTT), and bromophe-
ol blue). Samples were sonicated in rehydration buffer on
ce three times for 20 s intervals and were applied to a Ready
trip IPG (pH 3–10) (Bio-Rad, Hercules, CA, USA). The
trip was then actively rehydrated at 50 V for 16 h in a pro-
ean IEF cell (Bio-Rad). Isoelectric focusing was performed
t 20 ◦C as follows: 800 V for 2 h linear gradient, 1200 V for
h slow gradient, 8000 V for 8 h linear gradient, and 8000 V

or 10 h rapid gradient. The strips were stored at −80 ◦C until
econd dimension electrophoresis was performed. Gel strips
ere equilibrated for 10 min prior to second dimension sepa-

ation in 50 mM Tris–HCl (pH 6.8) containing 6 M urea, 1%
w/v) sodium dodecyl sulfate, 30% (v/v) glycerol, and 0.5%
ithiothreitol, and followed by re-equilibration for 10 min in
he same buffer containing 4.5% iodoacetamide in place of
ithiothreitol. Linear gradient precast criterion Tris–HCl gels
8–16%; Bio-Rad) were used to perform second dimension
lectrophoresis. Precision protein standards (Bio-Rad) were
un along with the sample at 200 V for 65 min.

.4. SYPRO ruby staining

The gels from control and AD hippocampus and cerebel-
um were fixed in a solution containing 10% (v/v) methanol,
% (v/v) acetic acid for 20 min, and stained overnight at room
emperature with agitation in 50 mL of SYPRO Ruby gel stain
Bio-Rad). The gels were placed in deionized water overnight
nd scanned.

.5. Immunoprecipitation

To confirm the correct identification of the proteins iden-
ified by mass spectrometry control or AD samples (250 �g)
ere first precleared by incubation with protein A-agarose

Pharmacia) for 1 h at 4 ◦C. Samples were then incubated
vernight with the relevant antibody followed by 1 h of incu-
ation with protein A-agarose, then washed three times with
uffer B (50 mM Tris–HCl (pH 8.0), 150 mM NaCl, and 1%

P40). Proteins were resolved by SDS–PAGE followed by

mmunoblotting on a nitrocellulose membrane (Bio-Rad).
roteins were detected by the alkaline phosphate (Sigma)
83].

t
a
s
r

ging 27 (2006) 1564–1576

.6. Post-derivatization of proteins

Samples were post-derivatized with DNPH on membrane
nd probed with anti-DNPH antibody to identify the oxidized
roteins. The nitrocellulose membranes were equilibrated in
olution A (20% (v/v) methanol:80% (v/v) wash blot buffer)
or 5 min, followed by incubation of membranes in 2N HCl
or 5 min. The proteins on blots were then derivatized in
olution B (0.5 mM DNPH in 2 N HCl) for exactly 5 min as
escribed by Conrad et al. [22]. The membranes were washed
hree times in 2N HCl for 5 min each and then five times with
0% methanol and two times with wash blot each for 5 min.
e also treated a set of control and AD hippocampal samples
ith NaBH4, a reducing agent that coverts carbonyls to alco-
ols, followed by DNPH and antibody treatment, to check
he specificity of protein-DNP hydrazone antibody [1].

.7. Western blotting (oxyblot)

Protein oxidation was indexed by elevated protein
arbonyls [4,8,10]. For immunoblotting analysis, 2,4-
initrophenyl hydrazine derivatized or non-derivatized
amples were separated by electrophoresis as described
n sample preparation followed by transfer to a nitrocellu-
ose membrane (Bio-Rad, Hercules, CA, USA) using the
ransblot-Blot SD semi-dry transfer cell at 45 mA per gel
or 2 h. The membranes were blocked with 3% bovine serum
lbumin (BSA) in phosphate-buffered saline containing
.01% (w/v) sodium azide and 0.2% (v/v) Tween-20
PBST) at 4 ◦C for 1 h. The membranes were incubated with
nti-2,4-dinitrophenylhydrazone (DNP) polyclonal antibody
1:100) or anti-Pin 1 (1:1000) (Stressgen Biotech, USA) or
nti-UCH-L1 antibody (1:1000) (Stressgen Biotech, USA)
n PBST for 2 h at room temperature with gentle rocking.
fter washing the blots three times in PBST for 5 min

ach, the anti-rabbit or anti-goat IgG alkaline phosphatase
econdary antibody (1:3000) in PBST was incubated 1 h at
oom temperature. The membranes were washed in PBST
hree times for 5 min and developed using Sigma-Fast 5-
romo-4-chloro-3-indolyl-phosphate/nitroblue tetrazolium
BCIP/NBT) tablets.

.8. Image analysis

The gels and nitrocellulose membranes were scanned and
aved in TIFF format using a Scan jet 3300C scanner (Hewlett
ackard, Palo Alto, CA, USA). PD Quest software (Bio-Rad)
as used to compare protein expression and protein oxida-

ion between control and AD samples. Protein expression was
easured using SYPRO ruby-stained gels that were scanned

sing a UV transilluminator (λex = 470 nm, λem = 618 nm,
olecular Dynamics, Sunnyvale, CA, USA). Oxyblots, used
o measure carbonyl immunoreactivity, were scanned with
Microtek Scanmaker 4900. Average mode of background

ubtraction was used to normalize intensity value, which
epresents the amount of protein (total protein on gel and
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xidized protein on oxyblot) per spot. After completion of
pot matching, the normalized intensity of each protein spot
rom individual gels (or oxyblots) was compared between
roups using statistical analysis.

.9. Trypsin digestion

Samples were prepared according to the method described
y Thongboonkerd et al. [85]. Based on the data obtained
rom image analysis, the protein spots that showed a sig-
ificant increase in oxidation in AD compared to control
rain samples were excised from the gel with a clean razor
lade and transferred to clean 1.5 mL microcentrifuge tubes.
he gel pieces were washed with 0.1 M ammonium bicar-
onate (NH4HCO3) for 15 min at room temperature under
flow hood, followed by addition of acetonitrile and incu-

ation at room temperature for 15 min. The solvents were
emoved and the gel pieces were allowed to dry. The gel
ieces were incubated with 20 �L of 20 mM DTT in 0.1 M
H4HCO3 and incubated for 45 min at 56 ◦C. The DTT solu-

ion was removed and 20 �L of 55 mM iodoacetamide (IA)
n 0.1 M NH4HCO3 was added and incubated for 30 min
n the dark at room temperature. The liquid was drawn off
nd the gel pieces were incubated with 200 �L of 50 mM
H4HCO3 at room temperature for 15 min. Acetonitrile was

dded to the gel pieces for 15 min at room temperature. The
olvents were removed and the gel pieces were allowed to dry
or 30 min. The gel pieces were rehydrated with 20 ng/�L
odified trypsin (Promega, Madison, WI, USA) in 50 mM
H4HCO3. The gel pieces were chopped into small pieces

nd placed in shaking incubator overnight (∼18 h) at 37 ◦C.

.10. Mass spectrometry

Mass spectra of the sample were determined by a Tof-
pec 2E (Micromass, UK) MALDI-TOF mass spectrometer

n reflectron mode. Tryptic digest (1 �L) was mixed with
�L �-cyano-4-hydroxy-trans-cinnamic acid (10 mg/mL in
.1% TFA:ACN, 1:1, v/v) directly on the target and dried at
oom temperature. The sample spot was then washed with
�L of 1% TFA solution for approximately 60 s. The TFA
roplet was gently blown off the sample spot with compressed
ir. The resulting diffuse sample spot was recrystallized (refo-
used) using 1 �L of a solution of ethanol:acetone:0.1% TFA
6:3:1 ratio). Reported spectra are a summation of 100 laser
hots. External calibration of the mass axis, used for acquisi-
ion and internal calibration using either trypsin autolysis ions
r matrix clusters, was applied post-acquisition for accurate
ass determination.
The MALDI spectra used for protein identification

rom tryptic fragments were searched against the NCBI
rotein databases using the MASCOT search engine

http://www.matrixscience.com). Data base searches were
ased on the assumption that peptides are monoisotopic, oxi-
ized at methionine residues and carbamidomethylated at
ysteine residues. Up to one missed trypsin cleavage was

f
o
h
i
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llowed. Mass tolerance of 150 ppm was the window of error
llowed for matching the peptide mass values. Probability-
ased MOWSE scores were estimated by comparison of
earch results against estimated random match population
nd were reported as −10 log10(p), where p is the prob-
bility that the identification of the protein is not correct.
OWSE scores greater than 59 were considered to be

ignificant (p < 0.05). Protein identification was consistent
ith the expected size and pI range based on position in

he gel.

.11. Assay for enzymes

Brain homogenates (10%) from control (n = 6) and AD
n = 6) hippocampus and cerebellum were prepared in media-
, and used freshly for all the enzyme assays. The enzyme
ctivity for enolase was determined by slight modification
f the method described by Wager et al. [86]. Briefly, brain
omogenate was added to 100 �L of assay mixture (20 mM
a2HPO4, pH 7.4, 400 mM KCl, 0.01 mM EDTA, 2 mM
-phospho-d-glycerate) in a UV-transparent microtiter plate
Corning, MA, USA) and the change of absorption at A240
as monitored in powerwave X plate reader (Bio-Tek Instru-
ent Inc., winooshi, Vermont) for 5 min. Carbonic anhydrase

ctivity was measured as described in [2] with modifica-
ion. For assay of carbonic anhydrase activity, a decrease in
bsorbance at 560 nm was recorded after the addition of 5 �L
f the samples to CO2 saturated Tris buffer (pH 8.3, 0.2 M
ris–HCl, phenol red). UCHL assay was performed accord-

ng to Dang et al. [24] with slight modifications. The assay
as carried out in 96-well black assay plate at room tempera-

ure. Briefly, samples were incubated in assay buffer (20 mM
EPES, 0.5 mM EDTA, pH 7.8, containing 0.1 mg/ml oval-
umin, and 5 mM dithiothreitol) for 2 h followed by the
ddition of the fluorogenic substrate ubiquitin-7-amino-4-
ethylcoumarin (Ub-AMC) (Boston Biochem, Cambridge,
A, USA). The AMC fluorophore was excited at 380 nm and

he rates of release of free AMC were measured at 25 ◦C by
etermining the increase in fluorescence emission at 460 nm
sing a fluorescence plate reader.

.12. Statistics

The data of protein level and protein specific carbonyl
evel were analyzed by Student’s t-test. A value of p < 0.05
as considered statistically significant.

. Results

The demographic data (Table 1) showed that some patients
ad Lewy bodies and the results of this study showed no dif-

erence between AD patients with or without the presence
f Lewy bodies. Oxidized proteins in the AD and control
ippocampus and cerebellum were identified immunochem-
cally using 2D-oxyblot.

http://www.matrixscience.com/
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ig. 1. SYPRO ruby-stained gels from control (a) and AD hippocampus (d)
nd AD hippocampus. (c and f) Control and AD hippocampus blots treated
n AD brain compared to that of control. One hundred micrograms of prote

To identify oxidized proteins, images of the blots and gels
f the samples were compared by the PD Quest software,
nd individual protein spots were normalized to the protein
ontent in the 2D-PAGE (Fig. 1). Using this approach, we
onfirmed that not all of the protein spots with increased
mmunoreactivity are excessively modified proteins in AD
rain [14–16,64]. The oxyblot of AD hippocampus revealed
number of oxidized protein spots compared to that of

ge-matched control hippocampus (Fig. 1d). However, we
dentified seven significantly excessively oxidized proteins
n AD hippocampus (Fig. 1e). In contrast, AD cerebel-
um did not reveal any increase in protein oxidation over
asal level in controls, and no protein spots were found to
e significantly oxidized compared to control cerebellum
Fig. 2d). Further, the hippocampal samples from control
nd AD that were treated with NaBH4 did not show any
ositive immunoreactivity on the blot confirming the speci-
city of the antibody for protein–DNP adducts (Fig. 1c
nd f). The identified oxidized proteins spots were sub-
ected to mass analysis using MALDI mass spectrome-
ry for protein identification after in-gel trypsin digestion.
able 2 shows the proteins that were successfully identi-
ed by mass spectrometry along with the peptides matched,
ercentage coverage, and pI and Mr values. Peptidyl pro-
yl cis–trans isomerase (Pin 1), dihydropyrimidinase-related
rotein-2 (DRP2), carbonic anhydrase II (CA II), phospho-

lycerate mutase 1 (PGM 1), �-enolase, triose phosphate
somerase (TPI), gamma soluble NSF attachment protein
�-SNAP), and ubiquitin carboxy terminal hydrolase L-1
UCHL-1) were identified by quantitative redox proteomics

c
r
m
d

e) Western blots for detection of the level of protein carbonyls from control
aHB4. In hippocampus, total protein oxidation was significantly increased
loaded per gel for detection of protein expression and oxidation.

o be oxidatively modified proteins in AD hippocampus
ompared to control brain. The increase in protein carbony-
ation and protein expression compared to control for the
dentified protein spots are shown in Table 3. Further, val-
dation of the correct identification of these proteins was
erformed by immunoprecipitation of two of the oxidized
roteins, i.e., Pin 1 and UCHL-1. The position of these pro-
ein spots on blots probed with anti-Pin 1 and anti-UCHL-1
ntibodies were found to be same as observed on deriva-
ized blots (Fig. 3). In addition, Pin 1 and UCHL-1 proteins
ere immunoprecipitated from control and AD brain sam-
les and the oxidation status of these proteins were deter-
ined by using post-DNPH derivatization of proteins. As

eported in Fig. 4, Pin 1 protein showed a significant increase
p < 0.05) in protein oxidation, and significant (p < 0.05)
ecrease in protein expression. UCHL-1 protein showed a
ignificant increase (p < 0.05) in protein oxidation as well
s in protein expression, confirming the redox proteomics
esults.

The measurement of enzymatic activity of CA II, UCHL-
, and enolase from AD hippocampus revealed decreased
ctivity compared to control (Fig. 5), while no difference
as observed in the activities of these enzymes in cerebellum

data not shown).
A comparison between the previously reported oxidized

roteins in AD inferior parietal lobule [14,15] and the

urrently identified oxidized proteins in AD hippocampus
evealed �-enolase, UCHL-1, TPI and DRP-2 as the com-
on targets of oxidation in both regions of the brain in this

isorder (Fig. 6).
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Fig. 2. SYPRO ruby-stained gels from control (a) and AD cerebellum (c). (b and d) Western blots for detection of the level of protein carbonyls from control
and AD cerebellum. In cerebellum, total protein oxidation was not significantly increased in AD brain compared to that of control.

Table 2
Summary of the identified oxidatively modified proteins in AD hippocampus

gI Accession number; identity
of oxidatively modified
proteins in AD hippocampus

# Peptides matched
of the identified
protein

Percent coverage of
the matched peptides

pI, Mr (kDa) Mowse score

Q13526; Pin 1 5/22 32 7.82, 18 60
Q16555; DRP2 11/32 42 6.12, 62 75
P00918-00-01-00; CA II 9/19 44 6.89, 29 75
P18669; PGM1 8/29 39 6.75, 28 81
P06733; alpha-enolase 18/36 47 6.99, 47 194
P60174-00-00-00; TPI 10/33 28 6.5, 26 65
P09936-00-01-00; UCHL-1 14/44 72 5.33, 25 165
Q99747; gamma-SNAP 9/28 32 5.33, 35 85

Abbreviations: Pin 1, peptidyl prolyl cis–trans isomerase 1; DRP2, dihydropyrimidinase-like protein 2; CA II, carbonic anhydrase II; PGM1, phosphoglycerate
mutase 1; TPI, triose phosphate isomerase; UCHL-1, ubiquitin carboxyl terminal hydrolase L-1; Gamma-SNAP, gamma synaptosomal protein like soluble
N-ethylmaleimide-sensitive factor (NSF) attachment proteins; pI, isoelectric point; Mr, relative mobility; kDa, kilo dalton.

Table 3
Oxidization and expression of identified proteins in the AD hippocampus

Protein Protein oxidation (percent control ± S.E.M.) p-value Protein expression (percent control ± S.E.M) p-value

Pin 1 136 ± 55 <0.05 40.2 ± 8.2a <0.03
DRP-2 126 ± 45 <0.01 26 ± 4.8a <0.02
PGM1 21230 ± 2668 <0.05 30 ± 5.3a <0.01
CA II 327 ± 85 =0.05 124 ± 5.7b =0.05
ENO1 255 ± 62 <0.05 135 ± 5.4b <0.05
TPI 644 ± 228 <0.05 138 ± 10b <0.05
�-SNAP 315 ± 132 <0.007 255 ± 62c NS
UCHL-1 210 ± 45 <0.05 131 ± 3.8b <0.02

NS, non-significant.
a Decreased protein expression.
b Increased protein expression.
c No change in protein expression.



1570 R. Sultana et al. / Neurobiology of Aging 27 (2006) 1564–1576

Fig. 3. Confirmation of correct identification of Pin 1 and UCHL-1 proteins in hippocampus by Western blot analysis: (A and C) blots stained with ponceau S
stain. (B and D) Blots probed with anti-Pin 1 and anti-UCHL-1 antibodies, respectively. A box is drawn around the protein spots of interest.

Fig. 4. Immunoprecipitation followed by Western blot analysis was performed to confirm the carbonylation of Pin 1 and UCHL-1 proteins in hippocampus. Pin
1 or UCHL-1 proteins were immunoprecipitated using anti-Pin 1 and anti-UCHL-1 antibodies and probed for protein carbonyl levels. (a) and (c) represent gels
s whereas
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howing the immunoprecipitated Pin 1 and UCHL-1 proteins, respectively,
istograms for individual blots or gels are shown below them. (e) Pin 1 prot
CHL-1 protein oxidation. *p < 0.05; N = 6 for both control and AD brain.

. Discussion

In Alzheimer disease, neuronal and synaptic loss occur
n a region-specific manner. An understanding of why some
egions are more sensitive in AD and the identification of
ommon targets of oxidative damage would enhance our
nderstanding of disease pathogenesis and thereby enable
linicians to develop more specific therapeutic strategies. In
he present study, we analyzed the AD hippocampus and
erebellum to identify the specific targets of oxidation. AD
erebellum did not show any significantly oxidized protein

pots compared to the basal level of protein oxidation in nor-
al cerebellum. However, TPI, �-enolase, PGM1, �-SNAP,
RP-2, CA II, Pin 1, and UCHL-1 were found as the specific

argets of protein oxidation in AD hippocampus. UCHL-1,

c
p
c

(b) or (d) represent blots probed with anti-Pin 1 or anti-UCHL-1 antibody.
ression, (f) Pin 1 protein oxidation, (g) UCHL-1 protein expression, and (h)

-enolase, TPI are the common proteins of oxidation in both
D hippocampus and inferior parietal regions of the brain,

he latter a brain region that was previously studied by our
roup (Fig. 6). Oxidative modification of proteins impairs
rotein function, as observed in the present study and reported
reviously, thereby affecting neuronal functions and survival
33,39]. Such functional decline conceivably may be criti-
ally involved in the etiology of AD [9,14,15,17].

.1. Pin 1, UCHL-1
Peptidyl prolyl cis–trans isomerases (PPIases) are highly
onserved proteins from yeast to human [28,43,71,72]. Pin 1
lays an important role as a chaperone protein and also in cell
ycle regulation [71]. Pin 1 also catalyzes the isomerization
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ig. 5. Enzyme activities were measured in the hippocampus of control a
nhydrase, (B) UCHL, (C) enolase, and (D) triose phosphate isomerase. Enz
rain.

f tau, a neuronal cytoskeleton protein, which is hyper-
hosphorylated in AD brain [38]. Recently, it has been
eported that Pin 1 restores the function of tau protein, and
in 1 also shows an inverse relationship to expression of tau
rotein in AD. Pin 1 is co-localized with phosphorylated tau
34,44,68]. Taken together, the result reported in the present
nd previous studies [33,39] suggest that the oxidation of Pin
might lead to the decreased Pin 1 activity. Therefore, the

xidation of Pin 1 could be one of the initial events that trig-
er tangle formation. Redox proteomics analysis of Pin 1 and
eduction in Pin 1 activity in AD hippocampus are thoroughly
iscussed elsewhere [82]. UCHL-1 plays a crucial role for
roteolytic degradation of misfolded or damaged proteins

y the proteasome. UCHL-1 was observed to be oxidatively
odified in the present study and previously in AD inferior

arietal lobule [14]. Oxidative modification of UCHL-1 in

n
a
w

Fig. 6. Schematic representation of the oxidized proteins
samples using the protocols as described in methodology. (A) Carbonic
tivities are represented as percent of control. N = 6 for both control and AD

D, which was confirmed by others [19], may lead to dys-
unction of the ubiquitination/de-ubiquitination machinery,
ausing accumulation of damaged proteins and formation of
rotein aggregates that could lead to synaptic deterioration
nd degeneration in AD hippocampus. Consistent with
his idea, examination of Fig. 5 shows that the activity
f UCHL-1 is markedly depressed in AD hippocampus.
imilarly, the activities of the 26S proteasome, ubiquitin-
ctivating enzyme (E1) and ubiquitin-conjugating enzyme
re reversibly depressed under conditions of oxidative stress
37,73]. Taken together, these different lines of evidence
upport a role for dysfunction of the ubiquitin-proteasome
athway in the pathogenesis of AD. Consistent with this

otion, a recent in vitro study showed that the hydrolase
ctivity of recombinant UCHL-1 was decreased by treatment
ith 4-hydroxynonenal, a lipid peroxidation product that

in AD hippocampus and inferior parietal lobule.
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s elevated in AD brain [39,50] and formed by A�-induced
ipid peroxidation [39,47]. Further, dysfunctional UCHL-1
ontributes to the oxidative environment in brain [16].

NFTs are filamentous deposits consisting of ubiquiti-
ated and hyper-phosphorylated tau protein [81]. Recently,
t was reported that CHIP Hsc70 complex ubiquitinates
hosphorylated tau and promotes the aggregation of tau
rotein [29]. The association of UCHL-1 with NFT and
he inverse correlation between UCHL-1 level and number
f NFT reported recently [17], suggest a possible role of
CHL-1 in preventing NFT formation in control brain by
e-ubiquitination of phosphorylated tau. Both Pin 1, which
ormally catalyzes dephosphorylation of tau protein, and
CHL-1, which conceivably could de-ubiquitinate phospho-

ylated tau, are oxidized and dysfunctional in AD hippocam-
us [82]. Such oxidation-induced enzymatic dysfunction in
in 1 and UCHL-1 is consistent with the observed formation
nd accumulation of tangles in the AD brain.

.2. TPI, PGM1, and enolase

Glucose metabolism is the basis of cerebral energy under
ormal conditions. Hence, the necessity for glucose in brain
unction had been considered solely due to ATP produc-
ion. These lines of evidence suggest that glycolysis plays
n important role in maintaining normal synaptic function.
n the present study, we found TPI, PGM1, and enolase, each
f which participates in the glycolytic pathway, to be signif-
cantly oxidized in AD hippocampus.

Phosphoglycerate mutase (d-phosphoglycerate 2,3-
hosphomutase; EC 5.4.2.1; PGM1) is a glycolytic enzyme
hat catalyzes the interconversion of 3-phosphoglycerate
nd 2-phosphoglycerate. In the present study, we observed
significant increase in oxidation of PGM1 and a decrease

n protein expression that is consistent with the reported
ecreased expression and activity of PGM1 in AD brain
ompared to the age-matched controls [35,55].

Enolases have been characterized as highly conserved
ytoplasmic glycolytic enzymes that catalyze the formation
f phosphoenolpyruvate from 2-phosphoglycerate, the
econd of the two high-energy intermediates that generate
TP in glycolysis [31]. Three isoforms of enolase have been

dentified and named as �-, �-, and �-enolase that exist as
omodimer or heterodimers. In the current study, �-enolase
s identified as an oxidatively modified protein with reduced
ctivity in AD hippocampus with no change in cerebellum
Fig. 5). Meier-Ruge et al., reported a similar significant
ecrease in enolase activity in AD brain compared to
ge-matched control [55]. A proteomics method applied to
D brain showed that the protein level of the �-subunit is

ncreased compared to control brain [70] and is specifically
xidized protein in inferior parietal lobule of AD brain

15,17]. In addition, we found TPI, another glycolytic
nzyme that catalyzes the interconversion of dihydroxyace-
one phosphate and d-glyceraldehyde-3-phosphate in glycol-
sis, was also oxidatively modified [17]. However, no change

a
t
w
b

ging 27 (2006) 1564–1576

s TPI activity was observed in the present or a previous study
35]. A likely explanation for this observation could be the
ddition of carbonyl groups localized away from the catalytic
ite of this enzyme. Further studies are required to clarify
his point.

The present finding that �-enolase, TPI, and PGM1 are
ignificantly more oxidized in AD hippocampus compared
ith control hippocampus suggests a possible relationship
etween glycolytic enzymatic impairment and reduced glu-
ose metabolism in AD [56,59]. Because glucose is the main
ource for ATP production in brain, the alteration in these key
lycolytic enzymes may lead to cellular dysfunction such as
mpaired ion-motive ATPase to maintain potential gradients,
perate pumps, and maintain membrane lipid asymmetry,
tc. Such changes could lead to exposure of phosphatidylser-
ne to the outer membrane leaflet, a signal for apoptosis
57]. Recently, we showed that A� [57] and HNE, which
s produced by A�-mediated lipid peroxidation [39,40,47],
ead to loss of synaptosomal membrane bilayer asymmetry.
lterations in glucose metabolism also can induce loss of
embrane potential leading to the opening of voltage-gated
a2+ channels, and metabolic reduction can also induce
ypothermia leading to abnormal tau hyper-phosphorylation
hrough differential inhibition of kinase and phosphatase
ctivities [63]. Previous studies from our laboratory showed
he oxidization of glycolytic enzymes and creatine kinase
B in inferior parietal of AD subjects [9,11,14,15,17].

.3. Dihydropyrimidinase-related protein-2

Dihydropyrimidinase-related protein-2 (DRP2) is a mem-
er of the dihydropyrimidinase-related protein family. These
roteins are involved in axonal outgrowth and path-finding
hrough the transmission and modulation of extracellular
ignals. These proteins are found abundantly in the ner-
ous system, especially during development, and have also
een found in adult brain, suggesting their role in repair
nd regeneration of adult neurons. Previously it has been
hown that mutation in the unc-33 gene of Caenorhabditis
legans (C. elegans) leads to severely uncoordinated move-
ents, with swelling and premature termination of axonal

ndings [27,32]. In addition, DRP-2 is oxidatively modified
n AD and has been shown to have decreased expression in
D and fetal Down’s syndrome (DS) brain, and A�(1–42)

reated culture [5,15,45]. Such changes may interfere with
ynaptogenesis and neuronal differentiation and migration. It
s thus conceivable that oxidation of DRP-2 could be related
o the neuronal inability to regenerate the neurons that were
amaged and could also interfere with synaptic connections
eading to loss of synaptic plasticity as observed in AD brain.
onsistent with this notion, dendritic length is shortened in
D brain compared to control [21]. In AD brain, DRP-2 is
ssociated with neurofibrillary tangles. Taken together with
he current study, the cytosolic DRP-2 findings are consistent
ith the shortened neuritic and axonal outgrowth of tangle-
earing neurons in AD.
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.4. Carbonic anhydrase II

Carbonic anhydrase II is one of the most widespread of
he CA isozymes, which catalyze the reversible hydration of
O2, a reaction fundamental to many cellular and systemic
rocesses including glycolysis and acid and fluid secretion.
he physiological functions of CA II are involved in cellular
H regulation, CO2 and HCO3

− transport, and maintaining
2O and electrolyte balance [75]. Production of CSF and the

ynthesis of glucose and lipids [29,46] also involve CA II.
A II deficiency results in osteoporosis, renal tubular acido-

is, and cerebral calcification. Patients with CA II deficiency
lso demonstrate cognitive defects varying from disabilities
o severe mental retardation [74,76]. Consistent with previous
tudies of other enzymes and transporters [1,39,83], oxidative
odification of CA II likely explains its diminished activity

hat has been reported in AD brain compared to age-matched
ontrol brain [55] and confirmed in the present study (Fig. 5).
onsequently, oxidized CA II may not be able to balance
oth the extracellular and intracellular pH and may lead to
H imbalance in the cell. Because pH plays such a crucial role
or enzymes and mitochondria to function, oxidative modi-
cation of CA II may be involved in the progression of AD.
oreover, altered pH would promote a tendency of proteins

o aggregate, a phenomenon found readily in AD brain.

.5. γ-SNAP

Studies have shown that synaptic pathology is central to
he pathogenesis of AD [69], and relationships among synap-
ic alterations, amyloid deposits, cytoskeletal abnormalities,
nd cognitive deficits in individuals with AD reportedly exist
51]. Synaptic loss in the hippocampus occurs early in the
evelopment of AD [53] and A� oligomers causes synaptic
ysfunction [87]. In the present study, one of the oxidized
roteins in hippocampus is �-SNAP. This protein is a mem-
er of synaptosomal protein like soluble N-ethylmaleimide-
ensitive factor (NSF) attachment proteins (SNAPs). These
roteins are highly conserved and play an important role in
esicular transport in the constitutive secretory pathway as
ell as in neurotransmitter release and hormone secretion

4,80]. In the mammalian system, there are three individual
soforms of SNAPs: �-, �-, and �-SNAP [88]. Gamma-SNAP
as shown to play a role in vesicular transport and in control
f mitochondrial organization [20]. Gamma-SNAP can acti-
ate the ATPase activity of NSF when it is initially bound to
hydrophobic surface [58,89]. The oxidation of this protein
ay lead to loss of synaptic integrity in AD [25,52,84]. Based

n these results, we propose that oxidation of �-SNAPs may
e involved in the known altered neurotransmitter systems in
D brain and may be related to the observed synaptic pathol-
gy in this disorder. Consistent with previous reports, we did

ot observe any change in the expression of this protein in
ippocampus [83].

In the current study using redox proteomics, we demon-
trated markedly elevated levels of protein carbonyls of spe-
ging 27 (2006) 1564–1576 1573

ific proteins in AD hippocampus with no change in the
D cerebellum compared to age-matched controls. Redox
roteomics has numerous advantages, the chief one being
he ease of detecting post-translationally modified proteins
6–8,23]. Indeed, this technique has been used successfully
n our laboratory to identify oxidatively modified proteins
n models of AD [5–8], Parkinson’s disease [66], amy-
trophic lateral sclerosis [60,67], Huntington’s disease [61],
nd accelerated aging [64,65]. However, there are limitations
o this method as well, including the inability to detect low-
bundance proteins, the difficulty of detecting membrane-
ound proteins, and the unlikelihood of detecting proteins
ith high isoelectric points [9–11].
These current findings are consistent with our previous

eports on oxidative stress in AD hippocampus and the lack
f oxidative stress in AD cerebellum [33], which correlated
ith amyloid �-peptide levels, NFT and reduced glucose
etabolism in AD brain [33,56]. In addition, we reported

xidation of UCHL-1, �-enolase, and TPI in inferior parietal
obule (IPL) [14,15,17], and the current study demonstrates
hese proteins to be oxidized in AD hippocampus as well. The
ppearance of oxidation of common proteins in two different
rain regions (Fig. 6), suggests a potentially important link
etween oxidative stress-related protein modification, amy-
oid �-peptide, NFT, and neurodegeneration in AD brain.
s sequelae of these results, hippocampus-specific oxidized
roteins may be related to memory deficits in AD. Thus, the
resence of oxidatively modified proteins follows the brain
egional distribution of A� in those areas thus far examined.

The present study implies that oxidation of key proteins in
D brain may account, in part, for AD pathology and may be
potential mechanism of neurodegeneration in AD. Studies

re in progress using animal models of AD to delineate further
otential mechanisms of neurodegeneration relevant to this
evastating dementing disorder.
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