
On Computing, Storing and Querying Frequent Patterns∗

Guimei Liu Hongjun Lu Wenwu Lou
The Hong Kong Univ. of Science & Technology

Hong Kong, China

{cslgm, luhj, wwlou}@cs.ust.hk

Jeffrey Xu Yu
The Chinese University of Hong Kong

Hong Kong, China

yu@se.cuhk.edu.hk

ABSTRACT
Extensive efforts have been devoted to developing efficient
algorithms for mining frequent patterns. However, frequent
pattern mining remains a time-consuming process, espe-
cially for very large datasets. It is therefore desirable to
adopt a “mining once and using many times” strategy. Un-
fortunately, there has been little work reported on managing
and organizing a large set of patterns for future use. In this
paper, we propose a disk-based data structure, CFP-tree
(Condensed Frequent Pattern Tree), for organizing frequent
patterns discovered from transactional databases. In addi-
tion to an efficient algorithm for CFP-tree construction, we
also developed algorithms to efficiently support two impor-
tant types of queries, namely queries with minimum support
constraints and queries with item constraints, against the
stored patterns, as these two types of queries are basic build-
ing blocks for complex frequent pattern related mining tasks.
Comprehensive experimental study has been conducted to
demonstrate the effectiveness of CFP-tree and efficiency of
related algorithms.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications -
Data Mining

Keywords
data mining and data warehousing, frequent pattern mining

1. INTRODUCTION
Mining frequent patterns is an important problem in data

mining area. During the past decade, extensive efforts have
been devoted to developing efficient algorithms for mining
frequent patterns [1, 7, 12, 2, 16, 3, 11, 9, 5, 4]. Despite

∗This work was partly supported by the Research Grant
Council of the Hong Kong SAR, China (CUHK4229/01E,
Grants DAG01/02.EG14) and National 973 Fundamental
Research Program of China (G1998030414).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGKDD’03, August24-27, 2003, Washington, DC, USA
Copyright 2003 ACM 1-58113-737-0/03/0008 ...$5.00.

all these efforts, frequent pattern mining remains a time-
consuming process. Therefore it is desirable to be conducted
in a “mining once and using many times” fashion. However,
there is a lack of studies in managing and organizing a large
set of patterns on disk for future use. For this purpose, we
propose a disk-based data structure, called Condensed Fre-
quent Pattern Tree, or CFP-tree for short, to organize fre-
quent patterns on disk, and develop efficient algorithms to
retrieve patterns from it. Another motivation of our work is
that frequent pattern mining requires a predefined minimum
support threshold. In real applications, there are often no
guidelines for choosing the proper minimum support, which
makes frequent pattern mining a repeated process to find
appropriate threshold for a given database and application.
Furthermore, for the same database, different applications
may require different thresholds. It is preferable to materi-
alize the frequent patterns with a sufficiently low minimum
support such that most, if not all, of the user requests can
be answered by querying the materialized pattern set.

Given a minimum support threshold, the complete set of
frequent patterns may be undesirably large, especially when
long patterns exist. Recently, researchers have proposed to
mine only the frequent closed patterns to reduce the out-
put size [8, 15, 10, 14]. A pattern is closed if none of its
proper supersets has the same support as it has. The set of
frequent closed patterns is the most concise representation
of the whole frequent pattern set without information loss,
and it could be significantly smaller than the complete set
of frequent patterns. Inspired by this, only frequent closed
patterns are included in the CFP-tree structure. Further-
more, different patterns in the CFP-tree structure can share
the storage of their prefixes, which makes CFP-tree a very
compact data structure.

A CFP-tree constructed with minimum support thresh-
old min sup can efficiently support two types of important
queries related to frequent pattern mining: (1) query with
minimum support constraint, for example, “find all the pat-
terns with support higher than s%”, where s ≥ min sup;
and (2) query with item constraint, e.g. “find all the fre-
quent patterns containing items in I ′”, where I ′ is the set of
items a user is interested in. These two types of queries are
very common in practice, and are also essential for efficiently
evaluating more complex queries.

The main contributions of our work can be summarized
as follows. (1) We proposed a compact and efficient data
structure, CFP-tree, for storing and querying frequent pat-
terns on disk. (2) We proposed a set of CFP-tree related
algorithms, including a fast tree construction algorithm, ef-

606607

TID Transactions

1 a, b, c, f, m, p
2 a, d, e, f, g
3 a, b, f, m, n
4 a, c, e, f, m, p
5 d, f, n, p
6 a, c, h, m, p
7 a, d, m, s

(a) Database

All Freqeunt Patterns

c:3, d:3, p:4, f:5, m:5, a:6

cp:3, cm:3, ca:3, pf:3, pm:3,
pa:3, fm:3, fa:4, ma:5

cpm:3, cpa:3, cma:3,
pma:3, fma: 3

cpma: 3

min_sup = 40%

(b)

Frequent
Closed Patterns

d: 3, p: 4, f: 5, a: 6

pf: 3, fa: 4, ma: 5

fma: 3

cpma:3

min_sup = 40%

(c)

c:3 d:3 p:4 f:5 m:5 a:6

p:3

a:3

m:3

f:3

m:3 a:4

a:3

a:5

1

2

3

4

5

6

7

8

(d) CFP-tree

Figure 1: A CFP-tree Example

ficient algorithms for finding all frequent patterns w.r.t. a
minimum support threshold and efficient algorithms for find-
ing all frequent patterns containing a given set of items. (3)
Comprehensive experimental study has been conducted to
demonstrate the effectiveness of CFP-tree and efficiency of
related algorithms.

The rest of the paper is organized as follows. Section 2
describes the CFP-tree structure and its properties; query
processing algorithms are presented in Section 3; Section
4 presents the CFP-tree construction algorithm; Section 5
shows experiment results; some related works are introduced
in Section 6; finally, Section 7 concludes the paper.

2. THE CFP-TREE STRUCTURE
In this section, we use an example to illustrate the CFP-

tree structure and describe its properties.

2.1 An Example
Given a transaction database D as shown in Figure 1(a)

and minimum support 40%, the complete set of frequent pat-
terns and the frequent closed patterns are shown in Figure
1(b) and Figure 1(c) respectively. For brevity, an itemset
{i1, i2, · · · , im} with support s is represented as i1i2 · · · im :
s. In this example the set of frequent closed patterns is
substantially smaller than the complete pattern set. In par-
ticular, all the patterns containing c can be represented by
a single frequent closed pattern cpma. Such case is quite
common in real datasets.

The CFP-tree constructed from D with minimum sup-
port 40% is shown in Figure 1(d). The nodes in the tree are
numbered according to their creation time. Each node in a
CFP-tree is represented as a variable-length array, and all
the items in a node are stored in ascending order of their
frequencies. Both types of queries can benefit from this or-
dering method as explained later in next subsection. A path
in the tree starting from an entry in the root node represents
a frequent pattern. All the entries in the same node share
the same prefix. For an entry E in a node, suppose the pat-
tern represented by the path from root to E is p, the entry
E stores four pieces of information: (1) the last item of p,
(2) the support of p, (3) a pointer pointing to the root of the
sub CFP-tree that stores all the patterns having p as prefix,
and (4) a hash bitmap which is not shown in Figure 1(d). In
the rest of this paper, for an entry E in a CFP-tree node, we
will use E.item to denote the item stored in E, E.support

to denote its support, E.child to denote the pointer to the
root of its sub CFP-tree, and E.bitmap to denote its hash
bitmap.

2.2 Properties
The CFP-tree structure is called condensed, not only be-

cause it stores merely frequent closed patterns, but also be-
cause patterns can share the storage of their prefixes in the
tree. It can lead to great space saving because item sharing
is quite common among patterns. The CFP-tree structure
has two important properties, which can be utilized in query
processing.

Apriori Property. For an entry E in a CFP-tree node,
the support of any pattern in the subtree pointed by E can-
not be greater than E.support. We can take advantage of
this property when processing queries with minimum sup-
port constraints. If the support of an entry does not satisfy
the minimum support constraint specified in the query, then
there is no need to access the subtree pointed by the entry.

Left Containment Property. For any entry E, E.item

can only appear in the subtrees pointed by the entries be-
fore E or in E itself. This property can be utilized when
answering queries with item constraint. To find all the pat-
terns containing an item E.item, only the subtrees pointed
by the entries before E and E itself needs to be accessed.

Now we show how the item ascending order can help query
processing. The Left Containment Property implies that the
subtrees pointed by entries at the beginning of a node have
a higher chance to be visited than the subtrees pointed by
entries at the end of a node. An entry with lower minimum
support will very possibly point to a smaller subtree. All
the entries in a node are sorted in ascending order of their
frequencies, so every time only small trees are to be tra-
versed. It results in great saving when processing queries
with item constraints. For queries with minimum support
constraints, the most infrequent item of every pattern is first
checked based on the ascending ordering method, so those
patterns that contain an item dissatisfying the minimum
support constraint can be quickly discarded.

To further avoid unnecessary traversal cost when process-
ing queries with item constraints, we maintain a hash bitmap
at each entry. Given an entry E in a CFP-tree node, for
every item i in the subtree pointed by E, the j-th bit of
E.bitmap is set to 1, where j=i mod N and N is the length
of the bitmap. Thus before performing search on the sub-
tree pointed by E.child, we can first check E.bitmap to see
whether all the items being searched are in the sub CFP-
tree. If the hash bitmap indicates that all the items are in
the sub CFP-tree, we need to continue the search on that
subtree, otherwise the search on that subtree can be termi-
nated. Other hash functions can be used here as well, as
long as the hash function does not introduce false dismissal.

607608

The length of the hash bitmap is a trade-off between the size
of the CFP-tree and the search time. In our experiments,
the length of the bitmap is set to 32.

3. QUERY PROCESSING ON CFP-TREE
In this section, we show how to utilize the two proper-

ties, the ascending frequency order and the hash bitmap to
process queries. We consider two basic types of queries: (1)
query with minimum support constraint, and (2) query with
item constraint. At the end of this section, we briefly discuss
how to process queries with both constraints.

3.1 Query with Minimum Support Constraint
A query with minimum support constraint is to output all

frequent patterns w.r.t. a user specified minimum support
min sup, where min sup has to be no less than the con-
structing support of the CFP-tree. According to the Apri-
ori property of the CFP-tree, for such queries only the sub-
trees pointed by an entry with support no less than min sup

should be searched. At each node items are sorted according
to their frequencies, so a binary search can be performed to
find the first entry whose support is no less than min sup.
Suppose this entry is E, then only the subtrees pointed by
entries after E and by E itself need to be accessed. Al-
gorithm 1 shows the pseudo-code for the search algorithm.
BinarySearch(cnode, min sup) procedure returns the first
entry in cnode whose support is no less than min sup.

Algorithm 1 Search Minsup Algorithm

Input:

p is a frequent pattern
cnode the cfp-tree node pointed by p

min sup is the minimum support threshold
Description:

1: if p 6= ∅ AND (p has more than one children OR
support(p) > the support of p’s only child) then

2: output p and its support;
3: end if

4: E1 = BinarySearch(cnode, min sup);
5: for all entry E ∈ cnode, E = E1 or E after E1 do

6: s = p
⋃
{E.item};

7: if E.child 6= NULL then

8: Search Minsup(s, E.child, min sup);
9: else

10: output pattern s and its support E.support;
11: end if

12: end for

CFP-tree stores some patterns which are prefixes of some
closed patterns, but themselves are not closed, e.g. pat-
tern cp and cpm in Figure 1(d). To output only the closed
patterns, we need to check whether a pattern has a greater
support than its children before output it (line 1-3). Con-
sider an example: find all the frequent patterns w.r.t 50%.
In the CFP-tree shown in Figure 1(d), a binary search is
performed on node 1, and p is found to be the first item
with support no less than 50%. All the entries before p

can be ignored. The node pointed by p (node 5) is visited,
and no item has support greater than 50%. Next the node
pointed by f (node 6) is accessed. Again a binary search
is performed and item a is found to be frequent. Finally,
patterns ma and a are found to be frequent and closed.

3.2 Query with Item Constraint
Based on the Left Containment property, the item of an

entry E appears only in subtrees pointed by the entries be-
fore E or in E itself. A subtree pointed by an entry before E

may not actually contain E.item. The hash bitmap main-
tained at each entry can be utilized to reduce unnecessary
searching cost. Before a subtree pointed by an entry E is
searched, the bitmap of E is first checked (line 6-7). If and
only if it indicates that all the items being searched appear
in that subtree, search on that subtree should be continued.
Algorithm 2 shows the pseudo-code for evaluating queries
with item constraint. In Algorithm 2, if I = ∅, then all the
subtrees under cnode should be accessed.

Algorithm 2 Search Item Algorithm

Input:

p is a frequent pattern
cnode is the sub CFP-tree pointed by p

I is the set of items that must be contained in patterns
Description:

1: if I = ∅ AND (p has more than one children OR
support(p) > the support of p’s only child) then

2: output p and its support;
3: end if

4: E1 = the first entry of cnode that satisfies E1.item ∈ I;
5: for all entry E ∈ cnode, E before E1 or E=E1 do

6: check E.bitmap;
7: if all the items in I − {E.item} are in E.child then

8: s = p
⋃

E.item;
9: if E.child 6= NULL then

10: Search Item(s, E.child, I − {E.item});
11: else if I − {E.item} is empty then

12: output s and its support E.support;
13: end if

14: end if

15: end for

To process query “find all the patterns containing item
p and f” on the CFP-tree shown in Figure 1(d), only the
subtrees pointed by entry c, d and p at node 1 need to be ac-
cessed. We start from entry c, and examine the hash bitmap
of entry c, suppose it indicates that both items appear in the
subtree rooted at node 2 (the hash bitmap may introduce
false alarm, but no false dismissal), then the search on node
2 should be continued. Node 2 contains only one entry p,
we check its bitmap to see whether f exists in the subtree
rooted at node 2. Suppose the corresponding bit of f in
the bitmap is 0, the search at node 2 is stopped. Then we
continue our search on entry d at node 1. It points to an
empty subtree. The next entry of node 1 is p, and its bitmap
indicates that f exists in node 5 since there indeed exists a
f in the subtree. Then node 5 is searched and we find f .
Node 5 points to an empty tree, the search is finished.

3.3 Query with Both Constraints
Another type of query is to have both minimum support

constraint and item constraint. The algorithm for evaluat-
ing such queries can also combine the pruning power of the
Apriori property, the Left Containment property and the
hash bitmap. Let us consider a query “find all the patterns
with minimum support 50% and containing item p and f”
on the database in Figure 1(a). According to the item con-
straint, we only need to check the entries c, d and p at node

608609

1. And according to the minimum support constraint, only
entry p and the entries after p need to be considered. There-
fore, only the subtree pointed by entry p in node 1 needs to
be accessed.

4. CFP-TREE CONSTRUCTION
In this section, we briefly present the algorithm for con-

structing the CFP-tree, which is similar to the AFOPT al-
gorithm [4] except that we adopted several techniques to
remove redundant patterns.

4.1 Construction Algorithm
Given a transactional database D and a minimum support

threshold, the CFP-tree structure can be constructed with
only two database scans by adopting the pattern growth
approach. In the first database scan, all the frequent items
in the database are mined, and they are sorted in ascending
order of their frequencies. Then a CFP-tree node is created,
which contains all the frequent items and their supports.
Let the set of frequent items be F = {i1, i2, · · · , im}. We
perform another database scan, and construct a conditional
database for each ij ∈ F , denoted by Dij

. During the second
scan of the database, infrequent items in each transaction t

are removed and the remaining items are sorted according
to their orders in F . Transaction t is put into Dij

if the
first item of t is ij . The conditional databases contain the
complete information for mining frequent patterns. Once
they are built, the remaining mining will be performed on
them. There is no need to access the original database.

We first perform mining on Di1 to mine all the patterns
containing i1. Mining on individual conditional database
follows the same process as mining on the original database.
After the mining on Di1 is finished, Di1 can be discarded.
Since it also contains other items, the transactions in it will
be inserted into the remaining conditional databases. Given
a transaction t in Di1 , suppose the next item after i1 in t is
ij , then t will be inserted into Dij

. This step is called push-
right. Sorting the items in ascending order of their frequen-
cies ensures that every time, a small conditional database
is pushed right: i1 is the most infrequent item, and Di1

contains fewest transactions, with the increasing of j, the
number of transactions in Dij

increases, but the number
of distinct items in Dij

shrinks and the transaction length
decreases.

The pseudo-code of the construction algorithm is shown
in Algorithm 3. Algorithm 3 is independent of the repre-
sentation of the conditional databases. We choose to use
the prefix-tree structure, in which different transactions can
share their prefixes. We chose this structure not only be-
cause it is compact, but also because it allows quick removal
of redundant patterns, e.g the identification of single child
can be very easy. Further optimizations can be made on
the prefix-tree structure, e.g. using arrays to store single
branches. We do not discuss further details here.

4.2 Removing Redundant Patterns
Algorithm 3 generates all the frequent patterns and stores

them in CFP-tree. In this subsection, we describe how to re-
move redundant patterns during mining process. A pattern
is called redundant if it is not closed. We have the following
two lemmas.

Lemma 1. In Algorithm 3, a pattern p is closed if and
only if two conditions hold: (1) there is no previously mined

Algorithm 3 CFP-Construct Algorithm

Input:

p is a frequent pattern
Dp is the conditional database of p

Ep is the entry of p in CFP-tree
min sup is the minimum support threshold;

Description:

1: Scan Dp count frequent items, let F denotes them;
2: Sort items in F in ascending order of their frequencies;
3: Create a new CFP-tree node cnode, put items in F and

their supports in cnode;
4: Ep.child = cnode;
5: for all item i ∈ F do

6: set (i mod N)-th bit of Ep.bitmap to 1;
7: Dp

⋃
{i} = ∅;

8: end for

9: for all transaction t ∈ Dp do

10: remove infrequent items from t, and sort remaining
items according to their orders in F ;

11: let i be the first item of t, insert t into Dp
⋃
{i}.

12: end for

13: for all item i ∈ F do

14: s = p
⋃
{i};

15: Es = the entry of i in cnode;
16: CFP-Construct(s, Ds, Es, min sup);
17: PushRight(Ds);
18: end for

pattern which is a superset of p and has the same support as
p; (2) all the items in Dp have a lower support than p.

Proof : If all the items in Dp has a lower support than
p, then all the patterns mined from Dp must have a lower
support than p according to the Apriori property. Suppose
the last item of p is i, then all the conditional databases
after Dp cannot contain i according to the construction of
the conditional databases, so any pattern mined from them
cannot be a superset of p. That means only patterns mined
from previous conditional databases can be a superset of p,
if no such pattern exists, then p is closed.

Lemma 2. In Algorithm 3, if a pattern p is not closed
because condition (1) in Lemma 1 does not hold, then none
of the patterns mined from Dp can be closed.

Proof : Pattern p is not closed because condition (1) does
not hold, then there exists a previously mined pattern q,
p ⊂ q and p, q have the same support. For every pattern s

mined from Dp, the pattern t = (s − p)
⋃

q has the same
support as s and s ⊂ t, so s is not closed.

Based on Lemma 1, there are two pruning conditions for
a redundant pattern p: (1) Examine whether there exists a
previously mined pattern q, which is a superset of p and has
the same support as q. This checking can be done before the
mining on a pattern’s conditional database starts. If such
q exists, then there is no need to perform mining on Dp

based on Lemma 2. Thus the identification of a redundant
pattern not only reduces the size of the tree, but also avoids
unnecessary mining cost. (2) Check whether there exists
an item i, which appears in every transaction of Dp. If
such i exists, then there is no need to consider the patterns
that do not contain i when mining Dp. In other words, we
can directly perform mining on Dp

⋃
{i} instead of Dp. The

efforts for mining Dp
⋃
{j}, j 6= i are saved.

609610

Data Sets Size #Trans #Items AvgTL

BMS-POS 19.20M 515,597 1657 6.53
Pumsb 14.75MB 49,046 2113 74.00

T20I10D1000k 89.57MB 987,139 8876 20.23

Table 1: Datasets

To incorporate the above two pruning techniques, the
items that have the same support as p are removed from
F before the new CFP-tree node for F is created (line 3).
For each of such item i, a new CFP-tree node nodei is cre-
ated, which contains only item i itself. Ep or the most re-
cently created CFP-tree node points to nodei. At line 14,
before performing mining on Ds, condition (1) in Lemma 1
is checked. If it does not hold, then the mining on Ds can
be skipped.

4.3 Closed Pattern Checking
When we do condition (1) pruning, p should be compared

with previously mined frequent closed patterns. Since the
CFP-tree constructed during the mining process stores all
the frequent closed patterns mined so far, we can use the
search algorithms proposed in Section 3 to do the close-
ness checking. For a pattern p, we call Search Both(∅, root,
support(p), p) to find some previously mined pattern q such
that p ⊂ q and support(p)=support(q). If such q exists, then
we can safely discard Dp. Previous algorithms for mining
frequent closed patterns require that all the frequent closed
patterns must be in memory to do this checking. Our close-
ness checking technique does not have this requirement since
our search algorithm is very efficient on disk. Moreover, the
CFP-tree structure is a compact representation of the pat-
terns, so it has a higher chance to be held in memory than
the flat representation of the patterns.

5. PERFORMANCE STUDY
We conducted a set of experiments to demonstrate the ef-

ficiency of the CFP-tree structure. All the experiments were
conducted on a 2.24Ghz Pentium IV with 512MB memory
running Microsoft Windows XP. All codes were complied
using Microsoft Visual C++ 6.0.

Table 1 shows the several datasets used for performance
study. BMS-POS [17] is a large and sparse dataset contain-
ing click-stream data. Pumsb is a dense dataset obtained
from UCI machine learning repository. T20I10D1000k is a
large synthetic dataset generated by IBM Quest Synthetic
Data Generation Code. Table 1 lists some statistical infor-
mation about the datasets, including the size of the dataset
on disk, the number of transactions, the number of distinct
items and the average transaction length.

5.1 Query Processing
We built a CFP-tree for the three datasets respectively

with minimum support 0.02%, 0.05% and 50%. The size
of the CFP-tree for three datasets is 80.7MB, 199.5MB and
142.1MB respectively. We issued a set of queries with min-
imum support constraint or item constraint to see the ef-
ficiency of our query processing algorithms. We compared
three algorithms: (1) the query processing algorithms pro-
posed in this paper, denoted by “CFP”, (2) the sequential
scan algorithm, denoted by “SCAN”, and (3) mining from
scratch, denoted by “MINE”. For sequential scan algorithm,
we stored all the closed patterns in a flat file. For every pat-
tern, we kept its length, support and the set of items in it.

0.01

0.1

1

10

100

1000

0.05 0.1 0.15 0.2 0.25

Ti
m

e(
se

c)

Minimum Support (%)

Data set: BMS-POS (0.02%)

MINE
SCAN

CFP

(a) BMS-POS

0.01

0.1

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90

Ti
m

e(
se

c)

Item Frequency (x1000)

Data set: BMS-POS (0.02%)

MINE
SCAN

CFP

(b) BMS-POS

0.01

0.1

1

10

100

1000

55 60 65 70 75 80 85

Ti
m

e(
se

c)

Minimum Support (%)

Data set: pumsb (50%)

MINE
SCAN

CFP

(c) pumsb

0.01

0.1

1

10

100

1000

10000

25 30 35 40 45

Ti
m

e(
se

c)

Item Frequency (x1000)

Data set: pumsb (50%)

MINE
SCAN

CFP

(d) pumsb

0.01

0.1

1

10

100

1000

0.1 0.15 0.2 0.25 0.3

Ti
m

e(
se

c)

Minimum Support (%)

Data set: T20I10D1000k (0.05%)

MINE
SCAN

CFP

(e) T20I10D1000k

0.01

0.1

1

10

100

1000

0 5 10 15 20 25

Ti
m

e(
se

c)

Item Frequency (x1000)

Data set: T20I10D1000k (0.05%)

MINE
SCAN

CFP

(f) T20I10D1000k

Figure 2: Query Processing Time

Then we sequentially scan the file to find all the patterns
that satisfy the minimum support constraint or item con-
straint. The y-axis in all figures is logarithmic. For queries
with item constraint, we used only one item as the con-
straint. The selection of the item is based on its frequency.
The less frequent of an item, the more pruning power of it
in searching the CFP-tree structure and also in the mining
process. The x-axis in Figure 2(b), 2(d) and 2(f) is the fre-
quency of the selected item. For “MINE” algorithm, we set
the minimum support to the building minimum support of
the CFP-tree. Figure 2 shows the time for processing two
types of queries on three datasets. In most cases, search-
ing patterns from pre-computed results needs less time than
mining from scratch. The time for sequential scan does not
vary with the minimum support and the frequency of the
items. The time for retrieving patterns from CFP-tree in-
creases with the minimum support threshold and the fre-
quency of the items, but can hardly exceeds the time for
sequential scan.

5.2 Construction Time and CFP-tree Size
The CFP-tree can be constructed quickly using our pro-

posed algorithm. We compared our construction algorithm
with CLOSET+[14], which is shown to consistently defeat

610611

other frequent closed pattern mining algorithms. The two
algorithms show comparable performance on BMS-POS. Fig-
ure 3 shows the running time on the other two datasets.

10

100

1000

10000

100000

0.05 0.1 0.15 0.2 0.25

Ti
m

e(
se

c)

Minimum Support(%)

Data set: T20I10D1000k

CLOSET+
CFP

(a) T20I10D1000k

0.1

1

10

100

1000

10000

45 50 55 60 65 70 75 80 85 90

Ti
m

e(
se

c)

Minimum Support(%)

Data set: pumsb

CLOSET+
CFP

(b) pumsb

Figure 3: CFP-tree Construction Time

We also compared the size of the CFP-tree structure with
the size of the closed pattern set stored in flat files. The
size of the CFP-tree structure can be much smaller than the
flat representation, especially when dataset is dense. For
example, on pumsb dataset with minimum support 50%, the
size of the CFP-tree is almost one third of the size of flat
representation. Due to the limitation of the space, detailed
experiment results are not shown here.

6. RELATED WORK
During the past decade, extensive efforts have been de-

voted to developing efficient algorithms for mining frequent
patterns. They can be classified into two categories: the
Apriori family algorithms[1, 7, 12, 2] and the pattern-growth
based algorithms[16, 3, 11, 9, 5, 4]. The pattern growth
based algorithms differ mainly in the representation of the
conditional databases. There were also works on mining
only frequent closed patterns [8, 15, 10, 14].

However, there is a lack of studies on how to store and
retrieve frequent patterns. Morzy et al. proposed a group
bitmap index structure for retrieving association rules stored
in a relation database [6]. This technique is similar to our
hash bitmap. Tuzhilin et al. proposed a rule query language
Rule-QL for querying multiple rulebases and a number of
efficient query evaluation techniques for Rule-QL [13]. They
use separated indexes for support/confidence constraint and
item constraint. More specifically, they use B+ trees to
index the support and the confidence of the rules, and use
inverted lists for subset matching. We believe that the CFP-
tree structure can be an alternative for indexing association
rules.

7. DISCUSSION AND CONCLUSIONS
In this paper, we proposed a compact and efficient data

structure, CFP-tree, for storing and querying frequent pat-
terns on disk. With CFP-tree, frequent pattern mining can
be conducted in “mining once and using many times” fash-
ion by querying the stored CFP-tree. Two types of im-
portant queries related to frequent itemset mining can be
answered quickly using our proposed query processing algo-
rithms, namely the query with minimum support constraint
and the query with item constraint. We have also observed
consistent results concerning queries with both constraints.

In fact, the benefit gained by the CFP-tree structure was
more significant because we can exploit the pruning pow-
ers of the two constraints at the same time. This part of
experiment results are not shown in this paper due to the
limitation of space.

In this paper we did not discuss how to update the CFP-
tree structure when underlying database changes. A simple
but costly solution is to reconstruct the tree periodically. A
more efficient approach is to adopt the idea of the incremen-
tal mining algorithms to minimize the scanning cost of the
original database.

8. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining

association rules between sets of items in large
databases. In SIGMOD, 1993.

[2] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur.
Dynamic itemset counting and implication rules for
market basket data. In SIGMOD, 1997.

[3] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. In SIGMOD, 2000.

[4] G. Liu, H. Lu, Y. Xu, and J. X. Yu. Ascending
frequency ordered prefix-tree: Efficient mining of
frequent patterns. In DASFAA, 2003.

[5] J. Liu, Y. Pan, K. Wang, and J. Han. Mining frequent
item sets by opportunistic projection. In SIGKDD,
2002.

[6] T. Morzy and M. Zakrzewicz. Group bitmap index: A
structure for association rules retrieval. In SIGKDD,
1998.

[7] J. S. Park, M. Chen, and P. S. Yu. An effective hash
based algorithm for mining association rules. In
SIGMOD, 1995.

[8] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association
rules. In ICDT, 1999.

[9] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and
D. Yang. H-mine: Hyper-structure mining of frequent
patterns in large databases. In ICDM, 2001.

[10] J. Pei, J. Han, and R. Mao. Closet: An efficient
algorithm for mining frequent closed itemsets. In
DMKD, 2000.

[11] R.C.Agarwal, C.C.Aggarwal, and V.V.V.Prasad. A
tree projection algorithm for finding frequent itemsets.
Journal on Parallel and Distributed Computing,
61(3):350–371, 2001.

[12] A. Savasere, E. Omiecinski, and S. B. Navathe. An
efficient algorithm for mining association rules in large
databases. In VLDB, 1995.

[13] A. Tuzhilin and B. Liu. Querying multiple sets of
discovered rules. In SIGKDD, 2002.

[14] J. Wang, J. Pei, and J. Han. Closet+: Searching for
the best strategies for mining frequent closed itemsets.
In SIGKDD, 2003.

[15] M. J. Zaki and C. Hsiao. Charm: An efficient
algorithm for closed itemset mining. 2002.

[16] M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li.
New algorithms for fast discovery of association rules.
In SIGKDD, 1997.

[17] Z. Zheng, R. Kohavi, and L. Mason. Real world
performance of association rule algorithms. In
SIGKDD, 2001.

611612

	MAIN MENU
	TABLE OF CONTENTS
	AUTHOR INDEX
	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

