Automatic Verification of Mutually Recursive Procedures Introduction

Trustworthy Tools for Trustworthy Programs:
Automatic Verification of Mutually Recursive Procedures

Peter V. Homeier and David F. Martin

Computer Science Department
University of California, Los Angeles
homeier@cs.ucla.edu and dmartin@cs.ucla.edu

Abstract. Verification Condition Genetor (VCG) tools hae been déctive in simplifying the task of pwing
programs corect. Havever, in the past these VCG toolsveain gneal not themselves been nmemically
proven,so any proof using and depending on these VCGs migbtduntained eors. In our vork, we define and
rigorously prove corect a VCG tool within the HOL theoremagwing system, for a standard impéve languge,
notabl containing nutually recursive procedues and epressions with side fdcts. Starting from a stctural
operdional semantics of this pgramming languge, we pove as theorems the axioms and rules ddrarice of a
Hoare-style axiomatic semanticseiifying their soundnessThis axiomatic semantics is then used to define and
prove corect a VCG tool for this langga Finally, this \erified VCG is applied to exampleqgrams to ‘erify
their partial correctness.

1 Introduction

The most common technique used today to produce qualitysseftvwthout erors is testing. Hwever,even
repeded testing cannokliably eliminate all erors, and hence is incompletdo adieve a higher leel of reliability
and tust, programmes may construct proofs of aectness,verifying that the pogram sgisfies a érmal
specificéion. This need be done only oncand eliminates whole classes ofoes. Hawever, these proofs ar
complex,full of details, and dffcult to construct by handnd thus may themselves contairoes, which reduces
trust in the program so proved. Mechanical proofs are more secure, but even more detailed and difficult.

One solution to this difculty is patially automating the construction of the proof by a tool called a
Verification Condition Genetor (VCG). This VCG tool writes the proof of the gmgram,modulo a set ofdrmulas
calledverificaion conditionswhich are left to the mgrammer to pove These erification conditions do not contain
ary references to grgramming languge phasesbut only deal with the lgics of the unddying data types.This
twice simplifies the prgrammers kurden,reducing the volume of proof andvéd of proof, and makes the pcess
more efective However,in the past these VCG toolsveganot in gnerl themselves beengren, meaning that the
trust of a program’s proof rested on the trust of an unproven VCG tool.

In this work we define a VCG within the Higher Order dio (HOL) theorem poving system §], for a
programming languge with nutually recursie pioceduresand pove that the truth of theevificaion conditions it
retums sufice to \erify the asserted pgram submitted to théCG. This theorem stating théCG’s corectness then
suppots the use of the VCG in@ring the corectness of individual pgrams with complete soundness assuiThe
VCG automates och of the work and detail imolved, relieving the pogrammer of all but the essential task of
proving the \erification conditions. This en&les proofs of ppgrams vhich are both déctive and tustwortly to a
degree not previously seen together.

2 Previous Work

There has beenary little work done on poving the corectness of xressions; anxeeption is Soklowski's
paper on a‘term-wise” gpproat to partial carectness I1]. Even he does notda expressions with side fHcts.
Side efects appear commonly freal” programming languges,such as in C, with the oors ++ and gt _c. In
addition,several interesting functions are nuaally designed with a sidefefct; an example is the standard methmd f
calculating random numbers, based on a seed which is updated each time the random number generator is run.

Seveal authors hee treaed recursive proceduresyarying in the fexibility or rigidity of the proof tebniques,
as well as in thexpressie paver of the pocedues themselvesThe passing of pametes has been ael area.
Some proposals have later been found unsound. This highlights the essential subtlety of this area.

In this paoer,we define dverified” verificaion condition gneraor as one Wich has been pren to corectly
producefor any input pogram and specifation,a set of erificaion conditions whose truth implies the consisienc
of the pogram with its specitiaion. Peferably,this \erification of the VCG will be medranicallyy checled for
soundnesshecause of the many details and deep issues that ManyVCG’s hare been written but notevified;
there is then no assurance that tieeification conditions produced areqperly relaed to the dginal program,and

Page 1

Automatic Verification of Mutually Recursive Procedures Previous Work

hence no security that aftergeing the \erification conditions, the coectness of the pgram fllows. Godon’s
work below is an exception in that the security is maintained by the HOL system itself.

Igarashi, London, and Luckham in 1973a@ an axiomatic semantics for a subset of Pascdlidimg
proceduresand described a VCG they had written in MLISBR [The soundness of the axiomatic semantias w
verified by hand mof, but the carectness of the VCG was nagorously proven. The only mebhanizd part of this
work was the VCG itself.

Larry Ragland,also in 1973, erified a \erification condition @neraor written in Nudeus,a languge Raland
invented to bothxpress a VCG and beevifiade [10]. This was aemarkalte piece of wrk, well ahead of its time
The VCG system consisted of 20D peduresneaty all of which were less than one ga long. These gwe rise to
approximatey 4000 \erification conditions. The proof of the gnerdor used an urerified VCG written in Snobol4.
The \erification conditions it gneraed were pioven by handnot metanically This proof substantially ineased
the degree of trustworthiness of Ragland's VCG.

Michael Gordon in 1989 did theigimal work of constructing within HOL a &mewok for proving the
correctness of ppgrams p]. This work did not cover procedues. Gordon introduced new constants in the H@lclo
to represent each pgram constuct, defining them as functions dutly denoting the consict's semantic meaning
This is known as &shallow” embedding of the pgramming languge in the HOL Igic. The work included
defining \erification condition gneratos for both partial and total aactness as tactic§.his gproad yielded tools
which could be used to soundhenfy individual programs. Havever,the VCG tactic he defined was not itself
proven. If it succeededhe resulting subgoalsese soundly elated to the dginal corectness goal by the security of
HOL itself. Fundamental| there vere certain limitations to thexpressive paver and poven conclusions of this
approach, as recognized by Gordon himself:

"P[E/V] (substitution) is a meta notation and consequently the assignment axiom can only be stated as
a meta theorenThis elementary point is mertheless quite subtle. In order toope the assignment

axiom as a theorem within higher ordemilo it would be necessary to V& types in the Igic
corresponding to formulae, variables and terms. One could then prove something like:

F OPEVSpec (Truth(Subst(P, E, V), Assign(V, Value E),
Truth P
It is clear that working out the details of this would be a lot of work.” [5]

In 1991, Stem\gerholm [1] used a similar shallow embedding to define tleahest preconditions of a small
while-loop languge, including unbounded nondeterminism anidcks. The semantics was designed tmid
syntactic notions like substitution. Similar to @on’s work, Agerholm defined aerification condition @neraor for
total corectness speciftions as an HOL tacticThis tactic needed additional orfnaion to handle sequences of
commands and thehile command, to be supplied by the user.

This paper eplores the alterative gpproat described but not vestigded by Gordon. It turns out to yield
gred expressieness and control in stating ana\png as theorems within HOL conceptdich previousy were
only descibale as meta-theorems outside HOL, bewee For ekample,we are ble to piove the assignment axiom
that Gordon cannot:

F Ogxe{gd[x:=¢€]} x:=e{q}

whereq<l[x := €] is a substituted version gf described later.

To adiewe this epressivenesst is necessary to ege a deeperdunddion than that used gviously Instead
of using an extension of the HOL Object Langgias the mrgramming languge, we ceae an entiely new set of
dataypes within the Object Langga to epresent constructs of the ggramming languge and the assoded
assetion languge This is known as ddeep” embedling, as opposed to the shallow embeddingettgped ly
Gordon. This allows a significant dirence in the ay that the semantics of theggramming languge is defined.
Instead of defining a construgs its semantic meaningve define the construct as simply a syntactic constructor of
phrases in the mgramming languge, and then gmaratey define the semantics of each construct in acsiral
operdional semantics13]. This sgardion means that we can now decompose andyamalyntactic psgram
phrases at the HOL Object Langgalevel, and thus reason within HOL about the semantics oflpayntactic
manipulations, such as substitution or verification condition generation, since thayitisthe HOL logic.

This has definite agéntags because syntactic manigidas, when semantically cogct, are simpler and
easier to calcute. They encasulde a level of detailed semantic reasoning that then only needs tookernponce
instead of having to beepeated} proven for eery occurence of that manipulationThis will be a ecuring patern
in this paer, where repeatedf a syntactic manipulation is deéid,and then its semantics is described araygm
correct within HOL.

Our previous paper 7] treaed partial carectness of a standard while-loop langeidncluding the uosual
feature of epressions with side fefcts, but without pocedues. We extend this wrk here to cwer the patial
correctness of systems ofutually recursie pocedues. Many new concepts must be adinced,for example,
programs must betecled for well-formedness befe their eecution or erificetion. This is a test that need be
performed oncefor example at compile timas a staticliedk. In the languge being studiedhis includes kecking

Page 2

Automatic Verification of Mutually Recursive Procedures Higher Order Logic

tha each pocedue is called with the right number of pameters,and that each pcedue detardion gves a
specificdion of its behavior consistent with its actual codeyhad well as a number of conditions on the proper use
of variades and pametes. An interesting datue of this system is that theaursie proof inherent in using
mutually recursive piocedues is esohed once for all ppgrams,leaving only a set of norecursie \erification
conditions for the programmer to prove.

3 Higher Order Logic

Higher Order Lagic (HOL) [6] is a \ersion of pedicde calculus that allowsaviaes to mnge over functions
and pedicaes. Thus denotble values may be functions of any highedar Strong typing ensures the consisienc
and proper meaning of alkpressions. The paver of this Iajic is similar to set thegr and it is sufcient for
expressing most mathematical theories.

HOL is also a mechanical proofyddopment system. It is secure in that only true theorems carobedpr
Raher than attempting to autotiwally prove theoems,HOL acts as a suppire assistant, méanicallyy checking
the validity of each step attempted by the user.

The pimary interface to HOL is the pgmorphic functional pogramming languge ML (“Meta Languge”)
[4]; commands to HOL arexpressions in ML. Within ML is a second langge OL (“Object Languge”),
representing terms and theorems by Mistact daatypesterm andthm. A shallow embeddingepresents prgram
constucts by new OL functions to combine the semantics of the constituents to produce the semantics of the
combindion. Our gproat is to define ahird level of languge, contained within OL as concretecursive
datatypesto represent the constructs of theogramming languge PL being studied and its associated disser
language AL. We begin with the definition of variables.

4 Variables and Variants

A varialle is represented by a new concrete typevar , with one constrctor,VAR :string->num->var
We define two deconstructor functions, Base(\@Rn) = str and Ind&(VAR str n) =n. The number #ribute eases
the creation of variants of a variable, which are made by (possibly) increasing the number.

All possible arialles are consideredgueclaed of type num. Infuture \ersionswe hope to && other déa
types,by introducing a more complex state and a static semantics for the danghiah perbrms type-tiecking.
Some languges distinguish betweengayram variades and Igical variables,which cannot be ltanged by pogram
contol. In this languge, we denote Igical variades by bginning its name with a catr (*) characteras part of its
string. A “well-formed” variable, such as used in normal program code, will not have this prefix.

Thevariant function has typevar->(var)set->var . variant x sretums a\arialde which is a\anantof x,
which is guaranteed not to be in tlexclusion” sets. If x is not in the sed, then it is its own &riant. This is used in
defining proper substitution on quantified expressions.

The definition ofvariantis som&vha deeper than might ginally appear To hare a constictive function br
making variants in particular instances, we wanted

variant X s= (X IN s=> variant (mk_variant x1) s | X) *)
where mk_variant(VAR str n) k = VAR str (n+k). For any finite se$, this definition ofvariant will terminate,but
unfortunately,it is not pimitive recursive on the ses$, and so does not canfn to the equirments of HOk
recursive function definition opetor As a substitute we wanted to define theariant function using
new_specification by specifying its properties, as

1) (variant x § is_variantx, and

2) ~(variant x sIN s), and

3) Oz if (zis_variantx) O ~(z IN s), then Index¢ariant x 3§ < Index(),
wherey is_variant x= (Basey) = BaseX) 0 Index) < Index§)).

But even the bBowe speciftdion did not easily support the proof of the existence #vapthat such aariant
existed for anyx ands, because the set of values fosatisfying the third mperty's antecedent is imfite, and ve
were working stictly with finite sets.The solution was to introduce the functiariant_setwhere variant_set x n
returns the set of the firstvariants ofx, all different from each other, so CARafiant_set x h=n. The definition
of variant_setis

variant_set X0 = EMPTYO

variant_set XSUCn) = (mk_variant x pINSERT {ariant_set X h
Then by the pigeonhole ipciple, we are guaranteed that there must be at leastamede in variant_set x(SUC
(CARD 9)) which is not in the set. This leads to the needed existence theoré/a.then definedgariant with the
following properties:

1) (variant x 3§ IN variant_set XSUC (CARDs)), and

2') ~(variant x sIN s), and

3’) Ozif zIN variant_set XSUC (CARDs)) O~(zIN s),

then Index¢ariant X 9 < Index@).

Page 3

Automatic Verification of Mutually Recursive Procedures Programming and Assertion Languages

From this defiition, we then poved both the aginal set of popeties (1)—(3), and also the consttive function
definition given above (*), as theorems.
Finally, given the definition ofariant, we define a similar operator on lists:
variants[] s=[] O
variants(CONSx x9 s=let x’ = variant x sin
CONSX’ (variants xs(x’ INSERTYS)).
This definition has the property that the resulting list has no duplicates.

5 Programming and Assertion Languages

The syntax of the programming language PL is

exp: e = n|x|+X|ete | -6
bexp: b = eg=e, | e<e | byOb, | byOb, | ~b
cmd: c = skip | abort | x:=e | ¢c;; G |
if bthenc, elsec, | assertawhile bdoc | p(e9
decl: d := procedurep(val X4, ..., %)
globalyy, ..., ¥
pre as; (this will be represented later ag
postay; proc p vs glbs pre posfc
c
end procedure |
dq; d,
prog: 7T = program d;c end program

Table 1. Programming Language Syntax

Most of these constructs are startlan is an unsigned inger; x andy are pogram \ariablesrequired not to
begn with the hamacter “*"; these names aresered as'logical” variades. ++ is the increment ofaor; abort
causes an immediatdrromal temination; thewhile loop requires an imariant assertion to be supplied. In the
procedue call p(es), pis simply a sing, while esis alist of exp expressionsgenoting actual value pametes.

The pocedue detaration specifies the pcedures name, value brmal parameter names, ... , x,, global
varialles used i (or any poceduep calls)yy, ... , ¥, preconditiora;, postconditiora,, and bodyc. All parameter
types arenum Poocedues are mtually recursive,and may call each otheréspectie of their oder. If two
procedures have the same name, the latter prevails.

The notation usedbawe is for ease of reading; each phrase is actuatipdd by a constructor function,ge
PROC:string->(var)list->(var)list->aexp->aexp->cmd->decl for procedue dedaration. In
line with this constructorPROCwe will refer to a typical ppcedue detaraionas proc p vs glbs pre post mstead
of the longer ersion gven @ove We ovedoad the same opapr in different languges, asking the reader to
disambiguate by context.

The syntax of the associated assertion language AL is

vexp: % N|X|vi+vo | vi—Vo | V¥V,

aexp: a true | false | vi=v, | viy<v, | y0a, | s 0a, | ~a

|
y0a |yy=ay| ay=>ay|ag |closea | Ox.a | X a

Table 2. Assertion Language Syntax

Again, most of thesex@ressions are stanahra; => a, | ag is a conditional xpressionyielding the value of
a, or ag depending on the value af. closea forms the uniersal dosure ofa, which is true whera is true for all
possilbe assignments to its freanaldes. Again, the notation is forgadaility; each phrase is actuallyeaed by a
constructor function, e.g., the constructétVAR:var->vexp creates avexp from a variable.

Page 4

Automatic Verification of Mutually Recursive Procedures Operational Semantics

6 Operational Semantics

We define the typestate asvar->num , a mapping fromarialdes to umbes. We also define the type env as
string->((var)list # (var)llst # aexp # aexp # cmd)
representing admily of procedue detarations,indexed by the name of thequedure The elements of the tupleegr
in order, the value parameter list, the globals list, the precondition, the postcondition, and the body.
The operational semantics of the programming language is expressed by the following relations:

e§ns: numeric expressiore:exp evaluated in states; yields numeric valuen:num and states,.

S es $ns s:numeic expressionses (exp)list evalugedinstate s, yield rumeic values ns(num)list and
states,.

bsts: boolean expressio:bexp evaluated in states; yields truth valuet:bool and states,.

cps s,y commandc.cmd evaluated in environmento.env and states; yields states,.

dp; p: declarationd:decl elaborated in environmenjp;:env yields result environmenip,.

s programrtprog executed yields states.

Here is the suictural opestional semantics13] of the pogramming languge PL, dven as rules induately
defining the six eldionsE, ES B, C, D, andP. These eldions (except for ES are defined within HOL usinfiom
Melham’s excellent rule induction package [2,9]. The notdfigK] indicates the functiohupdated so that

(flex])(x) = e, and fory # x, (fle/x])(y) =f(y)

For definingP, we definegoy as the empty eironmentpy = Ap.[, [l, false true, abort[}andsy as the initial
statesy = Ax. 0. We may construct an environmgrftom a declaration asp = mkenvd Po, Where

mkenv(proc p vsglbspre postc) p = p[(vs, glbs, pre, post)¢p]

mkenud,; dy) p mkenv ¢ (mkenv ¢ p)
Number: Variable: Increment:
Exsns,
E(n)sns E(X)sqAs E(++x)s; (n +1)s,[(n+1)/X]
E Addition: Subtraction:
Ee s n;s, Ee s,n,s, Ee s n;s, Ee s,n,s,
E(e +e,)s,(n;+ny) sy E(e,—&)s,(n;—ny)s,
Empty List: Cons List:
ES Eesns, ESessnss
ESnil snil s ES(conse eg s, (consn ng s,
Equality: Less Than:
Ee s;n;s, Ees,n,s, Ee sn;s, Ees,n,s;
B(e, =¢€))s,(n;=ny)s; B(e < e&)s,(n;<n,)s,
B
Conjunction: Disjunction: Negation:
Bb,s t;s, Bb,s,t,s; Bbys tys, Bb,s,t,s, Bbsts,
B (b, Oby)s, (t; Ot,) s, B (b, Ob,)s; (t; Uty))s; B(~b)s;(~1)s,

Table 3. Programming Language Structural Operational Semantics

Page 5

Automatic Verification of Mutually Recursive Procedures

Skip: Conditional:
m BbsTs, Ccps,s;
C (if bthency elsecy) p s;S5
Abort:
| BbsFs, Cc,ps,s;
(no rules) C (if bthency elsecy) p s; S5
Assignment:
Iteration:
E(es;ns,

BbsTs, Ccps,s;

C(x=9pssin/x C(assertawhilebdoc)p s; s,

Operational Semantics

Sequence: C(assertawhilebdoc)ps; s,
Ccipsys, Cc,ps,s, Bbs Fs,
C(cyi¢cy) PSSy C(assertawhilebdoc)ps; s,
Call:
ESessgns

p(p) = s glbs pre post @
Ccpsyns/vys,

C (call p(e9) p s; s,[(map s; glbs) 7 glbs]

Procedure Declaration: Declaration Sequence:

Dd;pyp, Ddypypg

D (proc vs glbs pre post)p D (d;; d,) P, Pg
p[s glbs pre post [@ p]

Program:
Ddpyp;;, Ccpysys;
P (program d; cend program) s;

Table 3. Programming Language Structural Operational Semantics (Continued)

The semantics of the assertion langri&L is gven by ecursie functions defined on the stture of the

construct, in a directly denotational fashion:

V v s numeic expressionv:vexp evaluaed instate s,yields ammeiic valuein num (VS vs ss the same for lists.)

A a s boolean expressiom:aexp evaluated in states, yields a truth value in bool .

Vns=n
V X s=5(X)
V(vy+v)s=Vv;s+Vv,s

(-, * treated analogously)

Atrue s=T
Afalses=F

A@UOa)s=AaslAaYS)
A (closea) s= (Us;. A asy)

A (Ox.a) s=(On. A agn/x])
A (X . a) s= (. A agn/x])

AV =v)s=Vv;s=VV,9 (<treated analogously)

(O, ~, 0, yy=ay, ay=>alay treated analogously)

Table 4. Assertion Language Denotational Semantics

Page 6

Automatic Verification of Mutually Recursive Procedures Substitution

7 Substitution

7.1. Simultaneous substitution

We define proper substitution on assertion lagguaxpressions using the technique simultaneous
substitutions following Stoughton 12]. The usual definition of proper substitution is a fulgcursive function.
Unfortunately, HOL only supports pmitive recursie definitions. To overcome this, we use sintaneous
substitutionswhich are epresented by functions of typesubst = var->aexp . This describes aamily of
substitutionsall of which are considered to take place siraneously This family is in principle infhite, but in
practice all but a finite number of the substitutions are the identity substitutidre virtue of this pproad is tha
the gplication of a simultaneous substitution to an assertion lagegpression may be defined using wnl
primitive recursion,not full recursion,and then the normal single substitution @gen of /x] may be defined as a
special case:

[VIX] = Ay.(y=x => v | AVARYy).

We gply a substitution by the infix opator <I. Thus,a<iss denotes thepplication of the sinultaneous
substitutionssto the &pression a, where a can be eithervexp or aexp. Therefoe a<i[v/X denotes the single
substitution of the »gressionv for the \ariade x whereer x gppeas free ina. Hnally, there is a dual notion of
appling a simultaneous substitution to atstinstead of to anxpression; this is callesemantic substitutigrand is
defined as<iss=Ay.(V (ss Y 9).

Most of the cases of the definition of thpphceation of a substitution to anxpression are simply the
distribution of the substitution across the immediate gplassions. Fon@ample,the gplicaion of a substitution to
a conjunction is

(g Day) <0'ss= (a; < s9 O(a, <Is9

The interesting cases of the definitioregfissare where is a quantified expression, e.g.:

(Ox.a) <Ass= letfree= |_| FV, (ss 3 in
z0O (F\é a)—{x}
let y = variant X freein
Oy. a<d(sq4(AVARYy) /X))

Here FV,, is a function thatetums the set of freeavialdes in a mmeiic assertion xpressionFV; is a function thia
retums the set of freearialles in a boolean assertiorpeessionandvariant x freeis a function that yields a we
variable as a variant af guaranteed not to be in the et

Once we hee defined substitution as a syntactic manifatewe can then jve the bllowing two theoems
about the semantics of substitution:

FOvsssV(v<dsgs=Vv(sdsy

F OasssA(a<is9gs = Aa(s<dsy

This is our statement of the Substitution Lemma gfdpand essentially says that syntactic substitution is
equivalent to semantic substitution.

7.2. Variable substitution

The substitutions discussebdoae replaced ariades by numelic expressions. There is a potentially simpler
version of substitution, hich only replaces arialdes by \ariades. We represent these substitutions by functions of
typevsubst =var->var . The plicaion of these substitutions to assertigpressions is defined similgitha
descibed dowe; most of the cases are the digttion of the substitution across the immediate splEssions.
Notably, the definition of substitution on quantifiedpeessions is diérent in that the boundaviades are not
protected, but in fact are included, in the transformation. Thus, fessvsubst

(Ox.a) <vss= O(vssy. (@<dvsy

The most commonarialde substitutions we will want to use wikkplace one list of ariades by another (of

equal length). The identity substitution is the identity function, 1, var->var . To crede these a&riable
substitutions, we introduce the operatptd distinguish it from the / above:

[O0/vxd=1y

[ys/h, I]1=1y

[(CONSyys9 /, (CONSx x9)] = let vss= [ys/, xg in
vsg(vss ¥/ (@z vssz=VY)] [y/X]

Page 7

Automatic Verification of Mutually Recursive Procedures Translation

where thevsubst vss whichis amaping,is updaed,binding frst (@ z vssz=y)to vss xandthenxtoy. @ hee
is the Hilbert selection opator. The reason for this double bindimgther than simply binding toy, is to peserve
the one-to-one pipety of the mapping; forvery variable,there is gactly one \ariadde that maps to it.This males
each such substitution invertible.

The virtue of these newsubst substitutions is that we mapjaly them not only to assertioxgressions,
but also to pogram codedistributing their efect down into subgressions until plainariades are eachedand then
replacing them by the newaviade found by @plying the substitution function to the oldnable This is impotant
in defining the adatation of procedue speciftdions to situations tvere some of the localariades must beltanged.
The caability to consistently substituteaviades across the body of agmedue and its specitetion will turn out to
be vital in poving the gneal rule of pocedue call. Fom the definitionsigen hee, we may pove the semantics of
such substitutions, as, for example for boolean program expressions (here o is functional composition):

F ObstsysxsB(b<d[ys/,xd) s;ts =Bb(s;0][ys/, xd) t(s, o[ys/, x9)

8 Translation

Expressions hee typically not been é&aed in pevious work on \erification; there are somexeeptions,
notabl Sololowski [11]. Expressions with side fefcts hae been pdicularly excluded Since &pressions did not
hawe side dkcts,they were often considered to be a fanmguagecommon to both the pgramming languge and
the assertion langga Thus one would seepgressions such gsldb, where p was an assertion atdvas a boolean
expression from the programming language.

One of the ky realizdions of this vork was the need to cafully distinguish these two langges,and not
confuse theirgpression sulangua@s. This then equires us tdranslateprogramming languge expressions into the
assetion languge bebre the two may be combined asose In fact, since we allow xpressions to ha side
effects, there are actually two results of translating a programming language exmession

e an assertion langga epression,representing the value @ in the state'before”
evaluationand

¢ asimultaneous substitutiorgpresenting theltang in state frontbefore” evaluating
eto “after” evaluatinge.

For example, the translator for numeric expressions is defined using a helper function:

VEZXL exp -> subst -> (aexp # subst)

VE1(n) ss = n,ss (where comma (,) makes a pair)
VE1(X) ss = SSX%SS

VE1(++x) ss = (ss¥+1,s9((ss¥+1)/X

VEl(e,+&)ss = (VEle - Avy. (VEle, - AV, 8. (V4 + Vs, S9))) SS

VEl(e, —&) ss (VEle; - Avy. (VEle, —» AV, SS. (V1 — V5, S))) SS
where - is a “translator continuation” operator, defined as
(f - Kkss = let(v,ss)=fssin kvss'

Then define
VE e = fst (VElet1) (wherel is the identity substitution
VE_state e= snd(VElel) andfstandsndselect the members of a pair)

We can then mve that these énsldion functions, as syntactic maniptitms, are semantically cosct,
according to the following theorem:
 Oegns. (Eesns) =(n=V(VEds, 0O s,=s,<(VE_stdee))

A similar set of functions are used tanslde boolean xpressions.We define the helper functio&S1 AB1 and

the main translation functiodES, VES_state, ABhdAB_state and prove

their correctnessas - Oesgnss. (ESesgnssg) = (ns=VS(VES eps;, 0O s, =5, <1(VES_state €9
 Obsts. (Bbsts) = (t=A(ABBhs, 0O s,=s,<1(AB_staeb))

These theorems mean thaer evalugion of a pogramming languge epression has its semantics complgtel
captured by the two translation functions for its type. These are essentially small compiler correctness proofs.

As a poduct,we may now define the simultaneous substitution thaesponds to an assignmenttstaent,
(single or multiple,) overriding the expression’s state change with the change of the assignment:

[x:=¢] = (VE_state H(VE @ / X]
[xs:=ed = (VES_state g VES e¥/ x9

Page 8

Automatic Verification of Mutually Recursive Procedures Well-Formedness

9 Well-Formedness

We define the semantics of Floyd/Hoare partial correctness formulae as follows:

aexp: {a} = closea (the universal closure @)
Os.Aas (ais true in all states)

exp: {ple{d} = Opgensgs,. ApslEesns 0AQs

bexp: {pib{dq} = Upgbtss. ApsOBbsts UAQs

cmd: {p}c{af/p =Opqgcss. ApsOCcpss,0AQs
Table 5. Floyd/Hoare Partial Correctness Formulae Semantics

In specifying the behavior of agmedurewe require the pogramer to povide a pecondition,specifying a
necessar condition at time of enyr and a postcondition, specifying thepedures behavior as a resulting condition
at time of exit. The postcondition musefer to the values ofarialdes at both these time§o avoid ambiguity we
introducelogical variables

Logical variades are baed from any mention within pgram code; they may not be assigned to,vene
read in a ppgram &pression. Their only mention may be within assertion langgiapressions. Since they can
newer be assigned to, each mustals hase the same value umangd throughout anyxecution of codeThey may
hawe different values from onexecution to anothebut in any ongthey are fted, and seve well to mark values of
variades from a prior time in thexecution. In a pycedures postcondition, Igical variables denote the value of a
variable at time of entry, and program variables denote the value of the variable at time of exit.

A logical varialde is designated by a special initiddazacterfor which we will use the caret (“haracter.
Normally variades are made of an arlity string (along with a number to assist ira&ing variants). But now &
cane out a space of names fogical variades by esticting program variabdes from bginning with this special
character A state remains a mapping from alriatdes to their curent int@er values; since thedial and pogram
variables have different names, there is no conflict.

This allows an easyegeraion of a Ia@ical variade from a pogram \ariable,by simply pefixing its name
with caret (); we define a function to do this,logical:var->var , and a similar function for lists ofaviables,
logicals:(var)list->(var)list . Inapocedures postcondition, thesedizal varialles are used to desigea
theprior value of a ariable,the value it had at the time theopedue was entered; the @gram \ariale itself is used
unchanged to designate the value of the variable at the time of exit.

Since these lgical varialdes are syntactically the same type asgpam \ariablesthere is a need for a test to
ensue that Igical variades do not appear in pgram text. This test is part of a static test, to be runobefary
execution or erification, called“well-formedness”,which is defined by a functiowF, for each kind of prggram
phrase¢, where ¢ 0 {s,v,e,es,b,c,d}ptesting stings, variables,numeiic expressionslists of rumeic expressions,
boolean gpressions,commands, ddarations,and pograms. It turns out that in addition tdexking for the
exdusion of Iajical variables,it is also needful for the eli-formedness tests to perfn other static lsedks as vell,
sudh as ensuring that agredue call has the right number of arguments for its definition.a¢h ¥ve also need to
chek that an entire afironment of pocedues is corectly and consistently defed This last is the wil-formedness
test for environments, evaluated by the functéi,,

A stringsis well-formed WF s) if the first character is not “":

WF,“=F
WF, (STRINGa § = ~@= LOG_CHAR), where LOG_CHAR = "

A variablev is well-formed WF, v) if its string is well-formed:

WF, (VAR s n =WF;s
A numeric expressioais well-formed WF; €) if every part is well-formed:

WE.(n)=T

WF; (X) =WEF, x

WF, (++X) =WHF, x

WK (e; +&) =Wk e, 0 WK &
WFK, (e; —&) =WFR. e, 0 WR, &,

Table 6. Well-Formedness Predicates

Page 9

Automatic Verification of Mutually Recursive Procedures Well-Formedness

A list of numeric expressioresis well-formed WF.ses if every part is well-formed:

WFs([]) =
WF,s(CONSe e3 =WFR, e O WFR.es

A boolean expressidmis well-formed WH, b) if every part is well-formed:

WH, (e; = &) =WFK. e, 0 WK &,

WH, (e; <e) =WFK, e, 0 WK, &,

WFb (bl O bz) :WFb bl O WFb b2

WH, (b, Ob,) =WHR, by O WR, b,

WH, (~b) =WHR, b

A commandc is well-formed in an eironmentp (WF; ¢ p) if every part is vell-formed, and if

everly call supplies the same number of actualapates as the pmcedue has érmal
parameters:

WF; (skip) p=T

WEF, (abort) p=T

WF. (x:=€) p=WF,x 0 WFK,e

WF (¢y; ¢) p=WF.¢; p O WF. ¢, p

WEF, (if bthenc, elsec,) p=WFR,b 0 WK, ¢, p 0 WF.c, p
WF (assertawhile bdoc) p=Wk,b O WF cp

WF (p(e9) p=WF.ses O LENGTH((FST op)p) LENGTH(e9

A procedure specificationvs, glbs pre, post ¢> is syntactically well-formeéh an environmenp
(WFproc_syntax<Vs glbs pre, post ¢> p) iff

letx =vs & glbs(where “&" appends two lists), and bgj = logicals xin

1) ALL_EL WE,x (every variable irvsandglbsis well-formed, i.e., not logical)

2) DLx (“disjoint list”: vsandglbs have no duplicates within or between them)
3) WF.cp (c is well-formed)

4) GV cpOglbs (all globals referenced by procedures called withane inglbs)

5) cpUx (all free variables of are inx)

6) F\? pred x (all free variables gbre are inx)

7) F\/;’l postD (xO %) (all free variables gbostare inx or in xg)

A dedardion d is well-formed in an evironmentp (WFy d p) if every individual pocedure
declaration is syntactically well-formed:

WFq (proc p vs glbs pre post) @ =WFyoc syntax<Vs 9lbs pre, post ¢ p
WFg (dy; do) p=WFqd; p O WFyd, p

A program rtis well-formed WF,) if both its detardions and its body areeil-formed in the
environment the declarations create:

WEF, (program d; ¢ end program) = let p=mkenv dogin WFydp O WF;cp

A procedue speciftdion <vs glbs pre, post ¢> is well-formed (both syntactically and
semantically) WFyoc <vs glbs pre, post c> p) iff

letx =vs & glbs(where “&” appends two lists), and bgj = logicals xin
1) WFproc_syntax<Vs glbs pre, post c> p (the specification is syntactically well-formed)

2) {xy=xUpre} c{ post /p (cis patially corect with respect to preconditioxy (= x O
pre) and postconditiopostin environmenp)

An environmenp is well-formed WF,,(p)) iff

0p. Whyroc (P P) P
Table 6. Well-Formedness Predicates (Continued)

This definition of the wll-formedness op may appear aiular, in thatp is used in the definition of both
syntactic and semanticel-formedness. Hweever, this circulaiity is resoled in that these tests may baleated

Page 10

Automatic Verification of Mutually Recursive Procedures Axiomatic Semantics

using only the “header” information of each procedurg, ine., without referring to their bodies.
Summarizing,for the most pdr program constructs are ell-formed WK, WF,, WK,y WF,, WF.,, WF,
WE,) if their constituent constructs are well-formed. The basic features checked are that

1) no logical variables are used in program text (outside assertion-language annotations);

2) procedure calls must agree with the environment in number of arguments;

3) procedure declaratiomsmust satisfy syntactic well-formedness;

4) given syntactic wll-formednesservironments must satisfy partial coectness conditionsThese will
be established later via a set of verification conditions.

10 Axiomatic Semantics

We can now epress the axiomatic semantics of thegramming languge, andproveeach rule as a thesm
from the previous structural operational semantics:

Skip: Conditional:

{a} skip{q} /p {pOABB} b{r}
{pO~AB(b} b{r,}

Abort: {r)c,{a)/p
{false} abort {q} /p {ral e {at 7p
{ p} if bthen c, elsec, { g}
Assignment:
(q<x=d} x=e{q} /p Iteration:
Sequence: {aOABbD} b{ p}
{al~AB(b} b{ a}
{p}Cl{r}/p, {r}CZ{q}/p {ptc{al/p
{prcpic{at/p {a} assertawhile bdoc{q} /p

Rule of Adaptation (ifxn FV; q = 0):

WE cp, WE,,p ALL ELWEX DLx
Xy = logicals x XgN FV,q=10
Fv.cpOx, RV predx FV, postd (xO %)
{x,=x 0 pre} c{ pos} /p

{pre ((Ox (postD g)<I[x/%5])} c{d}/p

Rule of Adaptation (general case):

WE cp, WE,, P ALL ELWEX DLx
Xy = logicals x Xy = variants x, (FV, q)
Fv.cpUx, FV prelx FV, postd (xO %)
{x,=x0U pre} c{ pos} /p

{pred (O (post<I[X/ %o] 0 @)<I[X/Xgl)} c{a} /p

Table 7. Programming Language Axiomatic Semantics

Page 11

Automatic Verification of Mutually Recursive Procedures Axiomatic Semantics

Procedure Call (if y n FV, g =0 and vsn FV; q =0):

WE (call p(e9) p, WR,p
p(p) = Lis glbs pre post
X =vs& glbs x, = logicals X XoN FV,q=10, vsn F\ q=10

{ (pre0 ((Ox (postl 9)<I[x/xy]))<[vs:= ed} call p(eg {q} /p

Procedure Call (if vsn FV; g =0):

WF, (callp(es) p, WF,,, P
p(p) = [vs glbs pre post
x = vs& glbs x, = logicals x X, = variants % (FV, q), vsn FVq=0

{ (pre D ((Ox (post<d[xy/x,] U q))<I[x/X,]))<[vs:= eg} callp(eg{q} /p

Procedure Call (general case):
WE (callp(es) p, WE,, P
p(p) = Vs glbs pre post
X =vs& glbs vs = variants vy FyqU glbg, X =vs & glbs
X, = logicals x X = variants(logicals ¥ (FV, q)

{ (pre<t[vs/vs] O ((LX. (post<d[v§ X/ vs] O q)<I[X/X]))<[vs:=ed}
callpeg {q} /p

Table 7. Programming Language Axiomatic Semantics (Continued)

The most interesting of theseopfs, gpait from the pocedue call wles,was that of thevhile-loop wle. It
was necessary to @re a subsidiary lemmarét, by the strong ersion of rule induction for command semantics
provided byTom Melham'’s rule induction p&age This lemma thus usedxsions of itself for‘lower levels” in the
relaion built up by rule induction to pre each instanceand so needed strong induction to present as laleusa
assumption eachypothesied lover-lewvel tuple in the elaion. The subsidiary lemma was necessary because the
while-loop rule as a theorem was not in the right syntactic form for the induction tactic. The lemma we proved is

F Oabcpq {pjcfa} O {al(ABBib{p} O {al~(ABb}b{q} O
Ows; s.. Cws; s, 0
((w = assertawhilebdoc)O (Aasd AqQys))

The Rule oAdaptdion endles one to take a @viousy proven partial carectness stament{xg =x O pre} ¢
{post /p, and deive an adptation of this to a situation hete c is being considered with avgn postconditior.
The basic idea isigen in the fist version presented here; thererl case handles situationdi@re variabes ing
conflict with the Xy varialdes that are in some senYecal” to the oiginal partial corectness statementThis is
actuallyy a simpler ersion of the Rule oAdaptdion than those wviously presented in the litature; the simplicity
arises from our dependence on the definition of proper substitution to digaligaename the boundaviadesx in
the expressionx. (postO @) under the substitutiork/ Xg]. This renaming was perfmed manally in previous
expressions of the Rule of Adaptation.

In a similar fishion,the three ersions of the Ricedue Call Rule ange from the simplest, ich shows the
basic idea best, to the completeBngral,which has no estictions on its pplicability. The gneal case is theute
used in the VCG presentedida These wvere pioven using the Rules didaptdion &ove, combined with the
definition of a well-formed erironment. The enironment conibuted some of the necessary preconditions for using
the Rules oAdaptdion. By inspecting theseiles,the reader will @cogniz a constictive method for @aing an
appropride wealest precondition for a pcedue call, gven the postconditionThese Rules of Bcedue Call were
by far the most dffcult theorems mven in this entirexercise,requiiing very careful mangement of the ariables
involved in each sub@ression and the precise meaning of theous substitutionsWe believe that the subtleties
involved here are sorga as to constitute a compelling argument for mechanicafprhecking Although ones
intuition is useful and necessary, it is almost impossible to intuitively grasp all the issues involved.

Page 12

Automatic Verification of Mutually Recursive Procedures Semantic Stages

Although we did pove analgous theorems as an axiomatic semantics for both dheeit and boolean
expressions in the pgramming languge, it turned out that there was a bettaywo handle them prided though
the use of the émsldion functions. Using theseainsldion functions, we may define functions to compute the
appropriate precondition to an expression, given the postcondition, as follows.

vex ve_preev = v < (VE_state g
P vb_prebv = v <1 (AB_state b
aex ae preea = a<l(VE_statep
P ab_preba = a <1 (AB_state b

Table 8. Expression Precondition Functions

We may now prove the following axiomatic semantics for expressions:

Numeric expression precondition: Boolean expression precondition:

{ae_pree g} e{ g {ab_preb g} b{q}

Table 9. Programming Language Expression Axiomatic Semantics

These precondition functions now allow us &wise the rules of irdrence for conditionals and loops, as
follows.

Conditional:
{ripe {at7p, A{r}c,{at/p

{AB b =>ab_prebr, \ ab_preb r,} if bthency elsec,{q} /p

Iteration:
{aOAB b0 ab_preb p}

{al~(AB b) O ab_preb q}
{p}c{a}/p

{a} assertawhile bdoc{q} /p

Table 10. Programming Language Axiomatic Semantics (revisions)

11 Semantic Stages

We are almostaad to define and jmve corect a VCG function for mgrams. Two corectness mpeties we
wish to show are

vcgc_THM F Ocpago WFRywpo O WF.cp O ALL_EL close(vegcpcop) O {pjc{a}/ p
vegd_THM F Odp (p= mkenvdo) O WFydp O ALL_EL close(vegd dp) O WFy,,p

In order to pove vcgd_THM, we would like to use vcgc_ THMopen bebre. However,a poblem aises.
The vcgd_THM is used to pve the vell-formedness of an gmonment. Gien the syntactic ell-formedness
arising fromWF d p and the semanticeil-formednessdilowing from poving the \erification conditions eturned
by vcgd dp, Wk, o intuitively should bllow. To reason from theerificaion conditions to the actual pi
correctness of each geedue bod, it is necessary to use vcgc_THNIhe poblem is that vegc_THM itselfequires
a well-formed emironment as a preconditioriThus it seems to be necessary to know that thgement is well-
formed before we can prove that it is well-formed, a circular argument.

The solution is to cut the cle by estalishing stagesof well-formedness for the gmonment,indexed by
number,and to show\entuallyy by rumeic induction that all siges hold and thus the etironment is wll-formed.
Ead increase in the index will signify an ability to calbpedues to one more Vel of calling depth.Thus,index 0
will designate an esironment vhich is well-formed as long as no @edue calls are madendex 1 designates an
environment vhich is well-formed under calls of pcedues which do not issue picedue calls, etc. In order to

Page 13

Automatic Verification of Mutually Recursive Procedures Verification Condition Generator

define stges of well-formednessywe need to esttish stages of command partial a@ctness specdations,and of
the command semantic relation itself.

Without gving the full definition of the sgied command semantieleion Cy, it sufiices to say that it has one
nev argumentk, which is the stge rumber,and that eery rule maintains that the gfa of the resulting tuple is
greder than or equal to the gies of all antecedent tuplessceptfor the pocedue call ule, where the stge of the
result tuple (egading the pocedue call) is &actly one geder than that of the antecedent tuplegading the
procedures body). We then definegd} c{ q}/ p.k andWF,,«0 Kk similar to bebre but using the sged \ersions of the
semantic predicates. Using these definitions, we can prove many staged versions of previous theorems, and also

F Ocps s Ceps o =(k Ciecpky)
F Opcao {ptc{al p=(Tk. {p}c{a}/ pk)
F Op. WPy p= (0K WFgnyi p K)

This last theoremiges us the means togee that an erironment is vell-formed We first piove that fokk=0,
the antecedents of vegd_THM imply theviennment is well-formed to stge 0. Then,assuming those antecedents
and that the edironment is well-formed to stge k, we pove that it is vell-formed to stge k+1. By induction, it is
then well-formed for all stages, and by the above theorem, the environment is completely well-formed.

12 \Verification Condition Generator

We now define aerification condition @neraor for this pogramming languge. To begin, we first define a
helper functionvcgl, of type cmd->aexp->env->(aexp # (aexp)list) . This function takes a command a
postconditionand an evironment,and etums a precondition and a list oénfication conditions that must begwred
in order to \erify that command with respect to theepondition postcondition, and eironment. This function does
most of the work of calculating verification conditions.

The other erification condition @nerdor functions,vcgcfor commandsycgdfor dedarations,andvcg for
programs are defined similarly. Each returns a list of the verification conditions needed to verify the construct.

In these defiitions, comma (,) makes a pair of two items, squamEckats ([]) delimit lists, semicolon (;)
within a list spardes elements, and ampersand (&) is an irdision of HOLs APPENDpegtor to join two lists.

vegl(skip) gp = q, [I
vcgl(abort)qp = true, []
vegl(x:=e)qp = q<[x:=¢], [I
vegl(cy;c)qp = let (r,hy) =vcgle, g pin
let (p,hy) =vcgle,r pin
p, (hl & hZ)

vegl(if bthenc, elsecy) gp =
let (ry,hy) =vcglcy g pin
let (rp,hy) =veglc, g pin
(AB b => ab_prebr, | ab_predr,), (hy & hy)
vcgl(assertawhilebdoc)qgp =
let (p,h) =vcglcapin
a, [aldABbDO ab_prebp ;
all~ABb O ab_prebqgl & h
vcgl(call p(eg) gp = let (vs, glbs, pre, post)& p(p) in
let x =vs& glbsin
let vs’ = variants v§(FV, q O glbs) in
let X’ =vs'& glbsin
let xo = logicals xin
let X’ = variants(logicals x) (FV; g) in
((pre<q[vs’/vg) O((Ox'. (postd[vs’, X' g/ VS Xg O Q)
<X IxXgD))<[vs':=ed, [l

Table 11. Verification Condition Generator

vcgl

Page 14

Automatic Verification of Mutually Recursive Procedures Example Programs

vegcpco = let(r,h)=vcglcqpin
[pOr1&h

vcgd(proc p vsglbspre postc) p =
let x =vs& glbsin
let xo = logicals xin
vegd vcge(xg =x O pre) c postp
vegd(dy; dy) p = leth; =vcgd d pin
leth, =vcgd ¢ pin
hy & hy
vcg(program d ; cend program) g =
let p = mkenv dog in
vcg let hy =vcgd dpin
let h, =vcgctrue cq pin
hy & h,

Table 11. Verification Condition Generator (Continued)

vcgce

The corectness of these VCG functions is blshed by poving the bllowing theorems from the axioms and
rules of inference of the axiomatic semantics:

F Ucqgpe Wk UOWFR.cp O
vcgl_THM let (p,h) =vcglcgpin
(ALL_ELcloseh O {p}c{q}p)

F Ocpao WFRpp OWF.cp O

vege_THM ALL_ELclose(vcgcpc o) O {p}c{al/p
F Odp p=mkenv dop 0 WFydp O

vegd_THM ALL_ELclose(vegd dp) 0 WFep0

vcg_THM F Omg WF, m 0 ALL_EL close(vegrrg) O 7€ q}

Table 12. Verification of Verification Condition Generator

ALL_ELP Istis defined in HOL as being true when foes element in the listlst, the pedicde P is true
when applied tx. Accordingly,ALL_EL closeh means that the wersal dosure of each grification condition inh
is true.

These theorems are gwen from the axiomatic semantics by induction on thactire of the constrct
involved vcgd THM relies on the induction by semanticgeta discussed daar, and enbles the proof of
vcg_THM. This werifies theVCG. It shows that th&cg function issound that the carectness of theaerification
conditions it produces dide to esthlish the partial caectness of the annotatecogram. This does not show tha
the vcg function iscomplete that if a pogram is corect, then thevcg function will produce a set ofevification
conditions sufcient to pove the pogram corect from the axiomatic semantic3.[However,this soundnesssult
is quite useful, in that we may dutly apply these theorems in order toope individual ppgrams patially comrect
within HOL, as seen in the next section.

13 Example Programs

Given thevcg function defined in the last section and its associategatoess theem, proofs of pogram
correctness may now be piatly automated with secity. This has been implemented in an HOL tactialled
VCG_TACwhich transfoms a gven piogram corectness goal to be@red into a set of subgoalsigh are the
verificaion conditions etumed by thevcg function. These subgoals are thenoped within the HOL the@m
proving system, using all the power and resources of that theorem prover, directed by the user’s ingenuity.

We have pioven the quotient/remainder algthm, an example of two atually recursive piocedues to decide
even/oddand a pocedual version of McCathy’s “91” function. As an example of the use obgedureswe will
take a pocedue to calculate triangleumbes. Triangle umbes are mmbes in the series 1, 1+2, 1+2+3, which
can be dawn as a triangle of dots, with one more dot in eaghthan in the ow above The pogram to be erified,
with the annotations of the loopveriant and pocedue pre- and postconditions, is ddished as the cuent goal ly
the following. Other than the introduction of fonts, bold-face and italics, here is exactly what is input to HOL.:

Page 15

Automatic Verification of Mutually Recursive Procedures Example Programs

oll program
procedure triangle(val n);

global g;
pre true;
post 2*a="™M* ("n+ 1);

if n=0thena:=0
else
triangle(n — 1);
a:=a+n
fi
end procedure

triangle(4)

end program
{a=10}
1I;;

Thedoublesquaretickets’ [["and']] " enclose ppgramtextvhichis parsedintoanHOL term containing
the syntactic consictors that brm the pogram specifiation. This parser was made using the parseafipbof HOL.
The triangle procedue takes as input, computes thenth triangle number and stores it in the glohal The
specificdion of the pocedue states that at the end of a callgontainsn(n+1)/2, which is a brmula for thenth
triangle umber The actual code of the gredue computes byecursive calls, reminiscent of counting the dots of
the triangle, row by row.

Applying VCG_TAGQo this goal produces the following two verification conditions:

VC1: Onja (2*a=4*(4+1)0 (a=10)

VC2: O*nntaa (™=n)0("a=a) 0
(h=0)0 2*0=M*("n+1)))0
(~h=0)0
Onya. 2*a'=n-1)*(h—-1)+1))0
(2*@+n)="M*("n+1))

Here is a tanscipt of the gplication of VCG_TAQo this ppblem. We hase turned on thedd “print_vcg”, which
causes the tactic to print a trace of its processing of thgraun,in terms of the coectnesselaionships it brms d
intermediate points. These are pretty-printed displays of the program and assertion language phrases constructed.

#e(VCG_TAC);
OK..
For procedure “triangle’,

By the "ASSIGN" rule, we have
[{2*0="™*("n+1}a:=0{2*a="n*("n+1)}]]

By the "ASSIGN" rule, we have
[{2*@+n)="n*"™n+1}a=a+n{2*a="n*("n+1)}]]

By the "CALL" rule, we have
[{rueAIn2.'la.2*a=(n-1)*((n-1) +1)==>
2*(@+n)="n*("n+ 1)} triangle(n - 1)
{2*@+n)="n*(n+1)}]

By the "SEQ" rule, we have
[{rueAIn2.'la.2*a=(n-1)*((n-1) +1)==>
2*(@+n)="n*("n+1)}
triangle(n-1);a:=a+n{2*a="n*("n+ 1)}]]

By the "IF" rule, we have
[{h=0=>2*0="n*("n+1)A
(~(n = O) ==>
trueAIn2.la.2*a=(n-1)*((n-1) +1)==>
2*@+nm="n*("n+1)}
if n=0then a:=0else triangle(n - 1); a:=a+nfi
{2ra="*(n+ 1}

Page 16

Automatic Verification of Mutually Recursive Procedures Example Programs

By precondition strengthening, we have
[{(*n=nA"a=aNltrue) Atrue}
if n=0thena:=0 else triangle(n - 1);a:=a +nfi
{2*a="n*("n+1}]
with additional verification condition
[{(*n=nA"a=altrue) A true ==>
N=0==>2*0="*("n+1)A
(~(n = O) ==>
trueAIn2.la.2*a=(n-1)*(n-1) +1) =>
2*(@+n)="n*("n+ 1}

For the main body,

By the "CALL" rule, we have
[{rueAInl.'la.2*a=4* (4 + 1) ==>a = 10} triangle(4)
{a=1011

By precondition strengthening, we have
[{true} triangle(4) {a = 10}]]

with additional verification condition
[{true==>trueA!Inl.la.2*a=4*(4+1)==>a=10}]]

2 subgoals
"INla.(2*a=4*(4+1))==>(a=10)"

""nnaa. ("n=n)A("a=a)==>
((M=0)=>@2*0="n*("n+1))A
(~(n = O) ==>
(n2a.2*a'=(n-1)*(n-1) +1))=>
@*@+n)="n*("n+1))"

() : void

Run time: 507.3s

Garbage collection time: 46.0s
Intermediate theorems generated: 24269

These -erification conditions are HOL Object Langye conditions. The Object Languge variades involved in
these erificaion conditions are constructed toveanames similar to the iginal program \ariade names; if there is
a non-2ro variant rumber,it is appended to theaviade name.Thus,if one dangd the name of pgram \ariaden
tokin the exampletaaove the \erification conditions would be the same but with the @tialde k in place ofn, k; in
place of ny, etc. The a’ varialles dove were constructed by ALPHA_CONMas part of the process of a@mting
quantified assertion language variables into OL variables INTERPRET _aexp_CONWn step (e) below.
As a second example, we consider McCarthy’s “91” function. We define the fuf&tias follows:

f91 =Ay. y>100 =>y—10 [fo1(fo1(y + 11))
We claim that the behavior &1 is such that

fol =Ay. y>100 =>y—-10 | 91
which is not immediately obvious. Here is an expression of the “91” function as a goal for the VCG:

oll program
procedure p91al y);

global x;
pre true;
post 100 <4 => x="y-10 |x=91;

if 100 <ythenx:=y-10
else
p9l(y + 11);
P91(X)
fi
end procedure

skip
end program
{ true}
1I;;
Here is a transcript of the application of VCG_TAC:
OK..

Page 17

Automatic Verification of Mutually Recursive Procedures

For procedure “p91’,

By the "ASSIGN" rule, we have
[{(100<ry=>y-10="y-10|y-10=91)}x:=y-10
{200 <"y =>x="y-10|x=91)}]]

By the "CALL" rule, we have
[{rueAlyl. Ix1. (100 <x=>x1=x-10|x1=91) ==>
(100 <y =>x1 ="y - 10 | x1 = 91)} p91(X)
{100 <"y =>x="y-10 | x=91)}]|

By the "CALL" rule, we have
[{true A
lyl.
X.(100<y+11=>x=(y+11)-10|x=91) ==>
true Alyl. Ix1. (100 < x=>x1=x-10|x1=91) ==>
(100<My =>x1="y-10|x1=91)}
p9l(y +11)
{true Alyl. Ix1. (100 <x=>x1=x-10|x1=91) ==>
(100<My=>x1="y-10|x1=91)}]]

By the "SEQ" rule, we have
[{true A
lyl.
X.(100<y+11=>x=(y+11)-10|x=91) ==>
true Alyl. Ix1. (100 < x=>x1=x-10|x1=91) ==>
(100 <My =>x1="y-10|x1=91)}
PIL(y +11); p9L(X) {(100 <"y =>x ="y - 10| x=91}}]]

By the "IF" rule, we have
[{(100<y==>(100<"y=>y-10="y-10|y-10=91))A
(~(100 <y) ==>
true A
1. IX. (100<y+11=>x=(y+11)-10|x=91) ==>
true A
lyl. Ix1. (100 <x=>x1=x-10|x1=91) ==>
(100 <My =>x1="y-10|x1=91))}
if 100 <y then x :=y - 10 else p91(y + 11); p91(x) fi
{100 <y =>x="y-10|x=91)}}]|

By precondition strengthening, we have
[[{(*y =y A"™x=x Atrue) A true}
if 100 <y then x :=y - 10 else p91(y + 11); p91(x) fi
{100 <"y =>x="y-10|x=91)}]|
with additional verification condition
[{(»y =y A =xAtrue) A true ==>
(100<y==>(100<"y=>y-10="y-10|y-10=91)) A
(~(100 <y) ==>
true A
1. X.(100<y+11=>x=(y+11)-10|x=91) ==>
true A
lyl. Ix1. (100 <x=>x1=x-10|x1=91) ==>
(100 <My =>x1="y-10|x1L=9))}]]

For the main body, ... elided ... here is the single verification condition produced:

"INy Y AXX.
(y=y)A("x=x) ==>
(100<y==>
(100<™My)=>(y-10="y-10) | (y-10=91))) A
(~(100 <y) ==>
(y1x.((100<y+11)=>
X=(y+11)-10)|

(X'=91)) =>
('y1'x1. ((100 < x) =>
(x1=x-10)|
(x1 = 91)) ==> ((100 <) =>
x1="y-10)|

(1 =9n)))
This VC is proven by taking four caseg< 90, 90<y < 100,y = 100, and/ > 100.

Page 18

Example Programs

Automatic Verification of Mutually Recursive Procedures Future Work

Here is the HOL definition of theVCG_TAQactic:

let VCG_TAC =

(@ MATCH_MP_TAC vcg_THM
() THEN CONV_TAC (DEPTH_CONV WFp_CONV)
(c) THEN CONV_TAC (DEPTH_CONV vcg_CONV)
(d) THEN REWRITE_TAC[APPEND_INFIX:APPEND;ALL_EL;CLOSE]
() THEN CONV_TAC (TOP_DEPTH_CONV INTERPRET aexp_CONV)
() THEN REWRITE_TAC[V_DEF]

THEN CONV_TAC var_BND_CONV

THEN REPEAT CONJ_TAC

THEN (GEN_TAC ORELSE ALL_TAC)
(9 THEN INTERPRET_PROG_VARS_TAC;;

The VCG_TAQactic fist (a) applies the theorem VCG_THMbhe last theorem dfale 12 of the pevious
sectionto the curentgoal using the HOL tactic MATCH_MP_ TAIG reason baavards from the ppgram corectness
staement to the wocaion of thevcg function. By the the@m, the proof of theseerificaion conditions will
establish the proof of the original program correctness statement.

The next step ofVCG_TAUs to“execute”the \arious syntactic manipulation functions mentioned in the
current goal by symbolicallyewriting the goal using the definitions of the functiorkhis applies (b) to th&/Fp
well-formedness staticheck,and (c) to thescg function itself. Because thewriting process is done symbolicgll
instead of actually»@cuting a ppgram,it is relatively slow, but complete soundness is asslrThis “execution”
convets the ivocaion of thevcgfunction on the annotatedggram into the actual set o€rification conditions tha
thevcgfunction returns.

The WFp_CONWsed at (b) is built up from ceersions vhich automécally ched the well-formedness of
declargions (WFd_CON)commands (WFc_CON)/andindividual ariades (WFv_CON)/as peviousy defned.

TheVCG_TAQactic makes use at (c) of a set of@sionsculminatingin -~ vcg_CONVto test the equality
of varialdes (var_EQ_CONV)}, lookup a ariade in a simultaneous substitution (var_BND_CON\}, calculate a
varant of a\arialde (variant_ CONV), apply a substitution to arkpression (subst_ CONV), and reduce a ter
with calls to the vcg function in an efficient order \cg_ CONV), among others.

After performing these corersions,the pogram corectness goal is left as a set“gfound” verification
conditions in the assertion langgga VCG_TAGQhen (d—g) uses the definitions of the semantics of thetiasser
languag to ewrte these erification conditions into equalent statements in the Object Langeieof HOL,
begnning with (d) the definition oflose then proceeding with (e) the definitionsfoénd (f)V. In paticular, (e) all
guantificdion over assertion langge variables,and (g) all eferences to assertion langygavariables within pogram
statesare cowmerted to eferences to simildy-named OL wariales. These erification conditions are then gsented
to the user as the necessary subgoals in the HOL Object lgenthat need to be solved in order to complete the
proof of the program originally presented.

14 Future Work

In the futue, we intend to extend this ask to include seeral more languge features,principally
concurrency In adlition, we also intend to a@r total corectnessbeyond the partial coectness issues dealt with in
this pger. We wish to find a method of gring the total carectness of systems ofutually recursive piocedures,
preventing infinite recursive descent, which is efficient and suitable for processing by a VCG.

Concurreng raises a whole host of new issueangng from the leel of stuctural opegtional semantics
(“big-step” versus“small-step”),to dealing with assertions describing temporal sequences of states instead of single
statesfo issues ofdirness.We believe that a proper ¢éttment of concueng will exhibit qualities of modularity and
compositionality Modularity means that a spediétion for a process should state both (a) the assumptions under
which it should opeate, and (b) the task (or commitment)hish it should meet, igen those assumptions.
Compositionalitymeans that the speciftion of a system of processes should lgifiade in terms of the
specifications of the individual constituent processes.

15 Summary and Conclusions

The fundamental conbution of this vork is the exhibition of a tool to ease the task af/jprg programs with
mutually recursive piocedureswhich is itself poven to be soundThis verificaion condition @neraor tool perbrms
an automtc, syntactic tansformaion of the annotated pgram into a set oferification conditions.The \erification
conditions produced are themselvesvyen within HOL, esthlishing the corectness of the pgram within the same
system wherein the VCG was verified.

Page 19

Automatic Verification of Mutually Recursive Procedures References

The elative complexity of the mrcedue call rule brms a compelling argument for the usefulness offrimae
checled poof. There is not enough room in this paper to describe thiz@tgrsubtleties that arose in thepf. The
history of unsound proposals for gmedue calls indicate a need for atiger tools than intuition to construct $uc
rules and verify their soundness.

This proof of the caectness of the VCG may be considered as an instance of a compistroess pof,
with the VCG tanslading from annotated jpigrams to lists of grification conditions. Each of these has its semantics
defined,and the VCG caectness theorem closes the cametive diaggram,showing that the truth of thesxification
conditions implies the truth of the annotated program.

The pogramming languge and its associated assertion lamgguare epresented by new concretecursive
dataypes. This implies that they are completely independent of other data types aatiomyzeexisting in the HOL
system,without any hidden associations that migHeetf the validity of ppof. This requires substantial ark in
defining their semantics and inguing the axioms and rules of grence of the axiomatic semantics from the
operdional semantics. Hueever, this deply embedded @proad yields gea expressivenessductility, and the
ability to prove as theorems within HOL the cectness of arious syntactic manipulimns, which could only be
staed as meta-theorems bef These theorems enusulde a level of reasoning wich now does not need to be
repeded eery time a pogram is \erified, raising the leel of proof from the semanticel to the syntactic. But the
most important part of thisavk is the dgree of tustwothiness of this syntactie@asoning Verification condition
generatas are not ng, but we are notware of any other proofs of their gecctness to this el of rigor. This
enables program proofs which are both trustworthy and effective to a degree not previously seen together.

References

1. Sten Agerholm, “Mechanizing Pogram Verification in HOL", in Proceedings of the 1991 Intetional
Workshop on the HOTheoem Poving System and i&spplications,Davis, August 1991edited by MArcher,
J. J. Joyce, K. N. Levitt, and P. J. Windley (IEEE Computer Society Press, 1992), pp. 208-222.

2. J Camilleri andT. Melham, “Reasoning with Induggly Defined Relations in the HOTheoem Pover”,
Technical Report No. 265, University of Cambridge Computer Laboratory, August 1992.

3. Stehen A. Cook, “Soundness and Completeness of an Axiom SystemdgmrrVerification”, in SIAM
Journal on Computingvol. 7, No. 1, February 1978, pp. 70-90.

4. G. Cousineau, M. Gaon, G. Huet, R. MilnerL. Paulson,and C.Wadsworth,The ML HandbooKINRIA,
1986).

5. Michael J. C. Gaton, “Mechanizing Pogramming Lajics in Higher Order Lgic”, in Current Trends in
Hardware Verificaion and Automded Theoem Poving ed. P.A. Sutashmanam and Graham Biwistle,
Springer-Verlag, New York, 1989, pp. 387-439.

6. Michael J. C. Gaton,andT. F. Melham]ntroduction to HOL, A theorem qring erwvironment for higher ater
logic, Cambridge University Press, Cambridge, 1993.

7. PeterV. Homeier and David F. M&n, “Trustworthy Tools for Trustwortty Programs:A Verified Verification
Condition Geneator”, in Proceedings of the 1994 Intetional Workshop on the HOTheoem Poving System
and its Applications, Malta, September 19Bdcture Notes in C.S. Vol. 859, Springer-Verlag, pp. 269-284.

8. S Igarashi,R. L. London, and D. C. Lkbam,“Automatic Program Verification I: A Logical Basis and its
Implementation” ACTA Informaticad, 1975, pp. 145-182.

9. Tom Melham, “A Packag for Inductve Relation Definitions in HOL. in Proceedings of the 1991
Internaional Workshop on the HOTheoem Poving System and ispplications,Davis, August 1991 edited
by M. Archer, J. J. Joyce, K. N. Levitt, and P. J. Windley (IEEE Computer Society Press, 1992), pp. 350-357.

10. L. C. Rayland,“A Verified Pogram Verifier”, Technical Rg@ort No. 18, Dg@aitment of Computer Sciences,
University of Texas at Austin, May 1973.

11. Ste&n Soblowski, “Partial CorectnessThe Term-Wse Approach”,Science of Computer &gramming \ol.
4, 1984, pp. 141-157.

12. Allen Stoughton, “Substitution Revisitedheoretical Computer Sciendél. 59, 1988, pp. 317-325.

13. Glynn Winskel, The Formal Semantics of Bgramming Languges, An Intoduction The MIT Pess,
Cambridge, Massachusetts, 1993.

Page 20

