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Abstract.

 

  Verification Condition Generator (VCG) tools have been effective in simplifying the task of proving
programs correct.  However, in the past these VCG tools have in general not themselves been mechanically
proven, so any proof using and depending on these VCGs might have contained errors.  In our work, we define and
rigorously prove correct a VCG tool within the HOL theorem proving system, for a standard imperative language,
notably containing mutually recursive procedures and expressions with side effects.  Starting from a structural
operational semantics of this programming language, we prove as theorems the axioms and rules of inference of a
Hoare-style axiomatic semantics, verifying their soundness.  This axiomatic semantics is then used to define and
prove correct a VCG tool for this language.  Finally, this verified VCG is applied to example programs to verify
their partial correctness.

 

1   Introduction

 

The most common technique used today to produce quality software without errors is testing.  However, even
repeated testing cannot reliably eliminate all errors, and hence is incomplete.  To achieve a higher level of reliability
and trust, programmers may construct proofs of correctness, verifying that the program satisfies a formal
specification.  This need be done only once, and eliminates whole classes of errors.  However, these proofs are
complex, full of details, and difficult to construct by hand, and thus may themselves contain errors, which reduces
trust in the program so proved.  Mechanical proofs are more secure, but even more detailed and difficult.

One solution to this difficulty is partially automating the construction of the proof by a tool called a

 

Verification Condition Generator

 

 (VCG).  This VCG tool writes the proof of the program, modulo a set of formulas
called 

 

verification conditions

 

 which are left to the programmer to prove. These verification conditions do not contain
any references to programming language phrases, but only deal with the logics of the underlying data types.  This
twice simplifies the programmer’s burden, reducing the volume of proof and level of proof, and makes the process
more effective.  However, in the past these VCG tools have not in general themselves been proven, meaning that the
trust of a program’s proof rested on the trust of an unproven VCG tool.

In this work we define a VCG within the Higher Order Logic (HOL) theorem proving system [6],  for a
programming language with mutually recursive procedures, and prove that the truth of the verification conditions it
returns suffice to verify the asserted program submitted to the VCG.  This theorem stating the VCG’s correctness then
supports the use of the VCG in proving the correctness of individual programs with complete soundness assured.  The
VCG automates much of the work and detail involved, relieving the programmer of all but the essential task of
proving the verification conditions.  This enables proofs of programs which are both effective and trustworthy to a
degree not previously seen together.

 

2   Previous Work

 

There has been very little work done on proving the correctness of expressions; an exception is Sokolowski’s
paper on a “term-wise” approach to partial correctness [11].  Even he does not treat expressions with side effects.
Side effects appear commonly in “real” programming languages, such as in C, with the operators ++ and get_ch.  In
addition, several interesting functions are naturally designed with a side effect; an example is the standard method for
calculating random numbers, based on a seed which is updated each time the random number generator is run.

Several authors have treated recursive procedures, varying in the flexibility or rigidity of the proof techniques,
as well as in the expressive power of the procedures themselves.  The passing of parameters has been a key area.
Some proposals have later been found unsound.  This highlights the essential subtlety of this area.

In this paper, we define a “verified” verification condition generator as one which has been proven to correctly
produce, for any input program and specification, a set of verification conditions whose truth implies the consistency
of the program with its specification.  Preferably, this verification of the VCG will be mechanically checked for
soundness, because of the many details and deep issues that arise.  Many VCG’s have been written but not verified;
there is then no assurance that the verification conditions produced are properly related to the original program, and
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hence no security that after proving the verification conditions, the correctness of the program follows.  Gordon’s
work below is an exception in that the security is maintained by the HOL system itself.

Igarashi, London, and Luckham in 1973 gave an axiomatic semantics for a subset of Pascal including
procedures, and described a VCG they had written in MLISP2 [8].  The soundness of the axiomatic semantics was
verified by hand proof, but the correctness of the VCG was not rigorously proven.  The only mechanized part of this
work was the VCG itself.

Larry Ragland, also in 1973, verified a verification condition generator written in Nucleus, a language Ragland
invented to both express a VCG and be verifiable [10].  This was a remarkable piece of work, well ahead of its time.
The VCG system consisted of 203 procedures, nearly all of which were less than one page long.  These gave rise to
approximately 4000 verification conditions.  The proof of the generator used an unverified VCG written in Snobol4.
The verification conditions it generated were proven by hand, not mechanically.  This proof substantially increased
the degree of trustworthiness of Ragland’s VCG.

Michael Gordon in 1989 did the original work of constructing within HOL a framework for proving the
correctness of programs [5].  This work did not cover procedures.  Gordon introduced new constants in the HOL logic
to represent each program construct, defining them as functions directly denoting the construct’s semantic meaning.
This is known as a “shallow” embedding of the programming language in the HOL logic.  The work included
defining verification condition generators for both partial and total correctness as tactics.  This approach yielded tools
which could be used to soundly verify individual programs.  However, the VCG tactic he defined was not itself
proven.  If it succeeded, the resulting subgoals were soundly related to the original correctness goal by the security of
HOL itself.  Fundamentally, there were certain limitations to the expressive power and proven conclusions of this
approach, as recognized by Gordon himself:

"

 

P[E/V]

 

 (substitution) is a meta notation and consequently the assignment axiom can only be stated as
a meta theorem. This elementary point is nevertheless quite subtle.  In order to prove the assignment
axiom as a theorem within higher order logic it would be necessary to have types in the logic
corresponding to formulae, variables and terms.  One could then prove something like:
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∀
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)
It is clear that working out the details of this would be a lot of work.” [5]

In 1991, Sten Agerholm [1] used a similar shallow embedding to define the weakest preconditions of a small

 

while

 

-loop language, including unbounded nondeterminism and blocks.  The semantics was designed to avoid
syntactic notions like substitution.  Similar to Gordon’s work, Agerholm defined a verification condition generator for
total correctness specifications as an HOL tactic.  This tactic needed additional information to handle sequences of
commands and the 

 

while

 

 command, to be supplied by the user.
This paper explores the alternative approach described but not investigated by Gordon.  It turns out to yield

great expressiveness and control in stating and proving as theorems within HOL concepts which previously were
only describable as meta-theorems outside HOL, as above.  For example, we are able to prove the assignment axiom
that Gordon cannot:
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∀
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x
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q
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where 

 

q

 

w

 

[

 

x

 

 := 

 

e

 

] is a substituted version of 

 

q

 

, described later.
To achieve this expressiveness, it is necessary to create a deeper foundation than that used previously.  Instead

of using an extension of the HOL Object Language as the programming language, we create an entirely new set of
datatypes within the Object Language to represent constructs of the programming language and the associated
assertion language.  This is known as a “deep” embedding, as opposed to the shallow embedding developed by
Gordon.  This allows a significant difference in the way that the semantics of the programming language is defined.
Instead of defining a construct 

 

as

 

 its semantic meaning, we define the construct as simply a syntactic constructor of
phrases in the programming language, and then separately define the semantics of each construct in a structural
operational semantics [13].  This separation means that we can now decompose and analyze syntactic program
phrases at the HOL Object Language level, and thus reason within HOL about the semantics of purely syntactic
manipulations, such as substitution or verification condition generation, since they exist 

 

within

 

 the HOL logic.
This has definite advantages because syntactic manipulations, when semantically correct, are simpler and

easier to calculate.  They encapsulate a level of detailed semantic reasoning that then only needs to be proven once,
instead of having to be repeatedly proven for every occurrence of that manipulation.  This will be a recurring pattern
in this paper, where repeatedly a syntactic manipulation is defined, and then its semantics is described and proven
correct within HOL.

Our previous paper [7] treated partial correctness of a standard while-loop language, including the unusual
feature of expressions with side effects, but without procedures.  We extend this work here to cover the partial
correctness of systems of mutually recursive procedures.  Many new concepts must be introduced, for example,
programs must be checked for well-formedness before their execution or verification.  This is a test that need be
performed once, for example at compile time, as a static check.  In the language being studied, this includes checking
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that each procedure is called with the right number of parameters, and that each procedure declaration gives a
specification of its behavior consistent with its actual code body, as well as a number of conditions on the proper use
of variables and parameters.  An interesting feature of this system is that the recursive proof inherent in using
mutually recursive procedures is resolved once for all programs, leaving only a set of non-recursive verification
conditions for the programmer to prove.

 

3   Higher Order Logic

 

Higher Order Logic (HOL) [6] is a version of predicate calculus that allows variables to range over functions
and predicates.  Thus denotable values may be functions of any higher order.  Strong typing ensures the consistency
and proper meaning of all expressions.  The power of this logic is similar to set theory, and it is sufficient for
expressing most mathematical theories.

HOL is also a mechanical proof development system.  It is secure in that only true theorems can be proved.
Rather than attempting to automatically prove theorems, HOL acts as a supportive assistant, mechanically checking
the validity of each step attempted by the user.

The primary interface to HOL is the polymorphic functional programming language ML (“Meta Language”)
[4]; commands to HOL are expressions in ML.  Within ML is a second language OL (“Object Language”),
representing terms and theorems by ML abstract datatypes 

 

term

 

 and 

 

thm

 

.  A shallow embedding represents program
constructs by new OL functions to combine the semantics of the constituents to produce the semantics of the
combination.  Our approach is to define a 

 

third

 

 level of language, contained within OL as concrete recursive
datatypes, to represent the constructs of the programming language PL being studied and its associated assertion
language AL.  We begin with the definition of variables.

 

4   Variables and Variants

 

A variable is represented by a new concrete type 

 

var

 

, with one constructor, VAR

 

:string->num->var

 

.
We define two deconstructor functions, Base(VAR 

 

str n

 

) = 

 

str

 

 and Index(VAR 

 

str n

 

) = 

 

n

 

.  The number attribute eases
the creation of variants of a variable, which are made by (possibly) increasing the number.

All possible variables are considered predeclared of type 

 

num

 

.  In future versions, we hope to treat other data
types, by introducing a more complex state and a static semantics for the language which performs type-checking.
Some languages distinguish between program variables and logical variables, which cannot be changed by program
control.  In this language, we denote logical variables by beginning its name with a carat (^) character, as part of its
string.  A “well-formed” variable, such as used in normal program code, will not have this prefix.

The 

 

variant

 

 function has type 

 

var->(var)set->var

 

.  

 

variant x s

 

 returns a variable which is a variant of 

 

x

 

,
which is guaranteed not to be in the “exclusion” set 

 

s

 

.  If 

 

x

 

 is not in the set 

 

s

 

, then it is its own variant.  This is used in
defining proper substitution on quantified expressions.

The definition of 

 

variant

 

 is somewhat deeper than might originally appear.  To have a constructive function for
making variants in particular instances, we wanted

 

variant x s

 

 = (

 

x

 

 IN 

 

s

 

 =>  

 

variant

 

 (

 

mk_variant x

 

 1) 

 

s

 

  |  

 

x

 

) (*)
where 

 

mk_variant

 

 (VAR 

 

str n

 

) 

 

k

 

 = VAR 

 

str

 

 (

 

n

 

+

 

k

 

).  For any finite set 

 

s

 

, this definition of 

 

variant

 

 will terminate, but
unfortunately, it is not primitive recursive on the set 

 

s

 

, and so does not conform to the requirements of HOL’s
recursive function definition operator.  As a substitute, we wanted to define the 

 

variant

 

 function using

 

new_specification

 

 by specifying its properties, as
1)  (

 

variant x s

 

) 

 

is_variant

 

 

 

x

 

, and
2)  ~(

 

variant x s

 

 IN 

 

s

 

), and
3)  

 

∀

 

z

 

. if (

 

z

 

 

 

is_variant

 

 

 

x

 

) 

 

∧

 

 ~(

 

z

 

 IN 

 

s

 

), then Index(

 

variant x s

 

) 

 

≤

 

 Index(

 

z

 

),
where 

 

y is_variant x

 

 = (Base(

 

y

 

) = Base(

 

x

 

) 

 

∧

 

 Index(

 

x

 

) 

 

≤

 

 Index(

 

y

 

)).
But even the above specification did not easily support the proof of the existence theorem, that such a variant

existed for any 

 

x

 

 and 

 

s

 

,  because the set of values for 

 

z

 

 satisfying the third property’s antecedent is infinite, and we
were working strictly with finite sets.  The solution was to introduce the function 

 

variant_set

 

, where 

 

variant_set x n

 

returns the set of the first 

 

n

 

 variants of 

 

x

 

, all different from each other, so CARD (

 

variant_set x n

 

) = 

 

n

 

.  The definition
of variant_set is

variant_set x 0 = EMPTY ∧
variant_set x (SUC n) = (mk_variant x n) INSERT (variant_set x n).

Then by the pigeonhole principle, we are guaranteed that there must be at least one variable in variant_set x (SUC
(CARD s)) which is not in the set s.  This leads to the needed existence theorem.  We then defined variant with the
following properties:

1’)  (variant x s) IN variant_set x (SUC (CARD s)), and
2’)  ~(variant x s IN s), and
3’)  ∀z.if z IN variant_set x (SUC (CARD s)) ∧ ~(z IN s),

 then Index(variant x s) ≤ Index(z).
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From this definition, we then proved both the original set of properties (1)–(3), and also the constructive function
definition given above (*), as theorems.

Finally, given the definition of variant, we define a similar operator on lists:
variants []  s = [] ∧
variants (CONS x xs) s = let x’ = variant x s in

CONS x’ (variants xs (x’ INSERT s)).
This definition has the property that the resulting list has no duplicates.

5   Programming and Assertion Languages

The syntax of the programming language PL is

Most of these constructs are standard.  n is an unsigned integer; x and y are program variables, required not to
begin with the character “^”; these names are reserved as “logical”  variables.  ++ is the increment operator; abort
causes an immediate abnormal termination; the while loop requires an invariant assertion to be supplied.  In the
procedure call p(es), p is simply a string, while es is a list of exp  expressions, denoting actual value parameters.  

The procedure declaration specifies the procedure’s name p, value formal parameter names x1, … , xn, global
variables used in p (or any procedure p calls) y1, … , yn, precondition a1, postcondition a2, and body c.  All parameter
types are num.  Procedures are mutually recursive, and may call each other irrespective of their order.  If two
procedures have the same name, the latter prevails.

The notation used above is for ease of reading; each phrase is actually formed by a constructor function, e.g.,
PROC:string->(var)list->(var)list->aexp->aexp->cmd->decl  for procedure declaration.  In
line with this constructor PROC, we will refer to a typical procedure declaration as proc  p vs glbs pre post c, instead
of the longer version given above.  We overload the same operator in different languages, asking the reader to
disambiguate by context.

The syntax of the associated assertion language AL is

Again, most of these expressions are standard.  a1 => a2 | a3 is a conditional expression, yielding the value of
a2 or a3 depending on the value of a1.  close a forms the universal closure of a, which is true when a is true for all
possible assignments to its free variables.  Again, the notation is for readability; each phrase is actually created by a
constructor function, e.g., the constructor AVAR:var->vexp  creates a vexp  from a variable.

exp: e ::= n | x | ++x | e1 + e2 | e1 – e2

bexp: b ::= e1 = e2 | e1 < e2 | b1 ∧ b2 | b1 ∨ b2 | ~b

cmd: c ::= skip | abort | x := e | c1; c2 |
if  b then c1 else c2 | assert a while b do c | p(es)

decl: d ::= procedure p(val x1, . . . , xn);
global y1, . . . , yn;
pre a1; (this will be represented later as
post a2; proc p vs glbs pre post c)
c

end procedure |
d1; d2

prog: π ::= program d ; c end program

Table 1.  Programming Language Syntax

vexp: v ::= n | x | v1 + v2 | v1 – v2 | v1 * v2

aexp: a ::= true | false | v1 = v2 | v1 < v2 | a1 ∧ a2 | a1 ∨ a2 | ~a |
a1 ⇒ a2 | a1 = a2 | a1 => a2 | a3 | close a | ∀x. a | ∃x. a

Table 2.  Assertion Language Syntax
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6   Operational Semantics

We define the type state  as var->num , a mapping from variables to numbers.  We also define the type env  as 
string->((var)list # (var)list # aexp # aexp # cmd) ,

representing a family of procedure declarations, indexed by the name of the procedure.  The elements of the tuple are,
in order, the value parameter list, the globals list, the precondition, the postcondition, and the body.

The operational semantics of the programming language is expressed by the following relations:

E e s1 n s2: numeric expression e:exp  evaluated in state s1 yields numeric value n:num  and state s2.
ES es s1 ns s2:numeric expressions es:(exp)list  evaluated in state s1 yield numeric values ns:(num)list  and

state s2.
B b s1 t s2: boolean expression b:bexp  evaluated in state s1 yields truth value t:bool  and state s2.
C c ρ s1 s2: command c:cmd  evaluated in environment ρ:env  and state s1 yields state s2.
D d ρ1 ρ2: declaration d:decl  elaborated in environment ρ1:env  yields result environment ρ2.
P π s: program π:prog  executed yields state s.

Here is the structural operational semantics [13] of the programming language PL, given as rules inductively
defining the six relations E, ES, B, C, D, and P.  These relations (except for ES) are defined within HOL using Tom
Melham’s excellent rule induction package [2,9].  The notation f[e/x] indicates the function f updated so that

(f[e/x])(x) = e, and for y ≠ x, (f[e/x])(y) = f(y)

For defining P, we define ρ0 as the empty environment ρ0 = λp.〈[], [], false, true, abort〉, and s0 as the initial
state s0 = λx. 0.  We may construct an environment ρ from a declaration d as ρ = mkenv d ρ0, where

mkenv (proc p vs glbs pre post c) ρ = ρ[(vs, glbs, pre, post, c) / p]
mkenv (d1; d2) ρ = mkenv d2 (mkenv d1 ρ)

E

Number: Variable: Increment:

Addition: Subtraction:

ES

Empty List: Cons List:

B

Equality: Less Than:

Conjunction: Disjunction: Negation:

Table 3.  Programming Language Structural Operational Semantics  

 
E n( ) s n s
-------------------------  

E x( ) s s x( ) s
-------------------------------

E x s1 n s2

E ++x( ) s1 n 1+( ) s2 n 1+( ) x⁄[ ]
-----------------------------------------------------------------------------------

E e1 s1n1s2 E e2 s2 n2 s3,
E e1 e2+( ) s1 n1 n2+( ) s3

------------------------------------------------------------------------
E e1 s1n1s2 E e2 s2 n2 s3,

E e1 e2–( ) s1 n1 n2–( ) s3
------------------------------------------------------------------------

 
ESnil s nil s
--------------------------------

E e s1n s2 ES es s2 ns s3,
ES conse es( ) s1 consn ns( ) s3
------------------------------------------------------------------------------

E e1 s1n1s2 E e2 s2 n2 s3,
B e1 e2=( ) s1 n1 n2=( ) s3

------------------------------------------------------------------------
E e1 s1n1s2 E e2 s2 n2 s3,
B e1 e2<( ) s1 n1 n2<( ) s3

------------------------------------------------------------------------

B b1 s1 t1 s2 B b2 s2 t2 s3,
B b1 b2∧( ) s1 t1 t2∧( ) s3

-------------------------------------------------------------------
B b1 s1 t1 s2 B b2 s2 t2 s3,
B b1 b2∨( ) s1 t1 t2∨( ) s3

-------------------------------------------------------------------
B b s1t s2

B ~b( ) s1 ~t( ) s2
----------------------------------------
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The semantics of the assertion language AL is given by recursive functions defined on the structure of the
construct, in a directly denotational fashion:

V v s: numeric expression v:vexp  evaluated in state s, yields a numeric value in num.  (VS vs s is the same for lists.)
A a s: boolean expression a:aexp  evaluated in state s, yields a truth value in bool .

C

Skip: Conditional:

Abort:

(no rules)

Assignment:
Iteration:

Sequence:

Call:

D

Procedure Declaration: Declaration Sequence:

P

Program:

V

V n s = n
V x s = s(x)
V (v1 + v2) s = V v1 s + V v2 s

(–, * treated analogously)

A

A true s = T
A false s = F
A (v1 = v2) s = (V v1 s = V v2 s)  (< treated analogously)
A (a1 ∧ a2) s = (A a1 s ∧ A a2 s)

(∨, ~, ⇒, a1=a2, a1=>a2|a3 treated analogously)
A (close a) s = (∀s1. A a s1)
A (∀x. a) s = (∀n. A a s[n/x])
A (∃x. a) s = (∃n. A a s[n/x])

Table 4.  Assertion Language Denotational Semantics

Table 3.  Programming Language Structural Operational Semantics  (Continued)

 
C skip ρ s s
----------------------------- B b s1 T s2 C c1 ρ s2 s3,

C if  b then c1 else c2( ) ρ s1s3
------------------------------------------------------------------------

B b s1 F s2 C c2 ρ s2 s3,
C if  b then c1 else c2( ) ρ s1s3
------------------------------------------------------------------------

E e( ) s1 n s2

C x e:=( ) ρ s1s2 n x⁄[ ]
-------------------------------------------------------- B b s1 T s2 C c ρ s2 s3,

C assert a while b do c( ) ρ s3 s4
C assert a while b do c( ) ρ s1 s4

------------------------------------------------------------------------------------

C c1ρ s1s2 C c2ρ s2s3,
C c1 c2;( ) ρ s1s3

-------------------------------------------------------------------
B b s1 F s2

C assert a while b do c( ) ρ s1 s2
-------------------------------------------------------------------------------

ES es s1 ns s2
ρ p( ) vs glbs pre post c, , , ,〈 〉=

C c ρ s2 ns vs⁄[ ] s3
C call p(es)( ) ρ s1 s2 map s3 glbs( ) glbs⁄[ ]
-----------------------------------------------------------------------------------------------------------

 
D proc vs glbs pre post c( ) ρ       
      ρ vs glbs pre post c, , , ,〈 〉 p⁄[ ]

-------------------------------------------------------------------------------
D d1 ρ1 ρ2 D d2 ρ2 ρ3,

D d1; d2( ) ρ1 ρ3
-------------------------------------------------------------------

D d ρ0 ρ1 C c ρ1 s0 s1,
P program d; cend program( ) s1
-----------------------------------------------------------------------------------
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7   Substitution

7.1.  Simultaneous substitution

We define proper substitution on assertion language expressions using the technique of simultaneous
substitutions, following Stoughton [12].  The usual definition of proper substitution is a fully recursive function.
Unfortunately, HOL only supports primitive recursive definitions.  To overcome this, we use simultaneous
substitutions, which are represented by functions of type subst = var->aexp .  This describes a family of
substitutions, all of which are considered to take place simultaneously.  This family is in principle infinite, but in
practice all but a finite number of the substitutions are the identity substitution ι.  The virtue of this approach is that
the application of a simultaneous substitution to an assertion language expression may be defined using only
primitive recursion, not full recursion, and then the normal single substitution operation of [v/x] may be defined as a
special case:

[v/x] = λy.(y=x => v | AVAR y).
We apply a substitution by the infix operator w.  Thus, awss denotes the application of the simultaneous

substitution ss to the expression a, where a can be either vexp  or aexp .  Therefore aw[v/x] denotes the single
substitution of the expression v for the variable x wherever x appears free in a.  Finally, there is a dual notion of
applying a simultaneous substitution to a state, instead of to an expression; this is called semantic substitution, and is
defined as swss = λy.(V (ss y) s).

Most of the cases of the definition of the application of a substitution to an expression are simply the
distribution of the substitution across the immediate subexpressions.  For example, the application of a substitution to
a conjunction is

(a1 ∧ a2) w ss = (a1 w ss) ∧ (a2 w ss)

The interesting cases of the definition of awss are where a is a quantified expression, e.g.:

(∀x. a) w ss = let free =  in

let y = variant x free in
∀ y.  a w (ss[(AVAR y) / x])

Here FVv is a function that returns the set of free variables in a numeric assertion expression, FVa is a function that
returns the set of free variables in a boolean assertion expression, and variant x free is a function that yields a new
variable as a variant of x, guaranteed not to be in the set free.

Once we have defined substitution as a syntactic manipulation, we can then prove the following two theorems
about the semantics of substitution:

 

+ ∀v s ss. V (v w ss) s = V v (s w ss)

 

+ ∀a s ss. A (a w ss) s = A a (s w ss)

This is our statement of the Substitution Lemma of logic, and essentially says that syntactic substitution is
equivalent to semantic substitution.

7.2.  Variable substitution

The substitutions discussed above replaced variables by numeric expressions.  There is a potentially simpler
version of substitution, which only replaces variables by variables.   We represent these substitutions by functions of
type vsubst  = var->var .  The application of these substitutions to assertion expressions is defined similarly that
described above; most of the cases are the distribution of the substitution across the immediate subexpressions.
Notably, the definition of substitution on quantified expressions is different in that the bound variables are not
protected, but in fact are included, in the transformation.  Thus, for vss:vsubst :

(∀x. a) w vss = ∀ (vss x).  (a w vss)

The most common variable substitutions we will want to use will replace one list of variables by another (of
equal length).  The identity substitution is the identity function, ιv:var->var .  To create these variable
substitutions, we introduce the operator /v, to distinguish it from the / above:

[ [] /v xs] = ιv 

[ys /v [] ] = ιv

[(CONS y ys) /v (CONS x xs)] = let vss = [ys /v xs] in
vss[(vss x) / (@z. vss z = y)] [y / x]

FVv ss z( )
z FVa a( ) x{ }–∈

∪
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where the vsubst  vss, which is a mapping, is updated, binding first (@ z. vss z = y) to vss x, and then x to y.  @ here
is the Hilbert selection operator.  The reason for this double binding, rather than simply binding x to y, is to preserve
the one-to-one property of the mapping; for every variable, there is exactly one variable that maps to it.  This makes
each such substitution invertible.

The virtue of these new vsubst  substitutions is that we may apply them not only to assertion expressions,
but also to program code, distributing their effect down into subexpressions until plain variables are reached, and then
replacing them by the new variable found by applying the substitution function to the old variable.  This is important
in defining the adaptation of procedure specifications to situations where some of the local variables must be changed.
The capability to consistently substitute variables across the body of a procedure and its specification will turn out to
be vital in proving the general rule of procedure call.  From the definitions given here, we may prove the semantics of
such substitutions, as, for example for boolean program expressions (here o is functional composition):

 

+  ∀b s1 t s2 ys xs. B (b w [ys /v xs]) s1 t s2 = B b (s1 o [ys /v xs])  t (s2 o [ys /v xs])

8   Translation

Expressions have typically not been treated in previous work on verification; there are some exceptions,
notably Sokolowski [11].  Expressions with side effects have been particularly excluded.  Since expressions did not
have side effects, they were often considered to be a sublanguage, common to both the programming language and
the assertion language.  Thus one would see expressions such as p ∧ b, where p was an assertion and b was a boolean
expression from the programming language.

One of the key realizations of this work was the need to carefully distinguish these two languages, and not
confuse their expression sublanguages.  This then requires us to translate programming language expressions into the
assertion language before the two may be combined as above.  In fact, since we allow expressions to have side
effects, there are actually two results of translating a programming language expression e:

• an assertion language expression, representing the value of e in the state “before”
evaluation, and

• a simultaneous substitution, representing the change in state from “before” evaluating
e to “after” evaluating e.

For example, the translator for numeric expressions is defined using a helper function:

VE1: exp -> subst -> (aexp # subst) :

VE1 (n) ss = n, ss (where comma (,) makes a pair)
VE1 (x) ss = ss x, ss
VE1 (++x) ss = (ss x) + 1, ss[((ss x) + 1) / x]
VE1 (e1 + e2) ss = (VE1 e1 → λv1. (VE1 e2 → λv2 ss2. (v1 + v2, ss2))) ss
VE1 (e1 – e2) ss = (VE1 e1 → λv1. (VE1 e2 → λv2 ss2. (v1 – v2, ss2))) ss

where → is a “translator continuation” operator, defined as
(f → k) ss = let (v, ss') = f ss in k v ss'

Then define
VE e = fst ( VE1 e ι ) (where ι is the identity substitution
VE_state e= snd( VE1 e ι )   and fst and snd select the members of a pair)

We can then prove that these translation functions, as syntactic manipulations, are semantically correct,
according to the following theorem:

 

+  ∀e s1 n s2.  (E e s1 n s2)  =  ( n = V (VE e) s1 ∧ s2 = s1w(VE_state e) )

A similar set of functions are used to translate boolean expressions.  We define the helper functions VES1, AB1 and
the main translation functions VES, VES_state, AB and AB_state, and prove 
their correctness as   

 

+  ∀es s1 ns s2.  (ES es s1 ns s2)  =  ( ns = VS (VES es) s1 ∧ s2 = s1w(VES_state es) )

 

+  ∀b s1 t s2.  (B b s1 t s2)  =  ( t = A (AB b) s1 ∧ s2 = s1w(AB_state b) )

These theorems mean that every evaluation of a programming language expression has its semantics completely
captured by the two translation functions for its type.  These are essentially small compiler correctness proofs.

As a product, we may now define the simultaneous substitution that corresponds to an assignment statement,
(single or multiple,) overriding the expression’s state change with the change of the assignment:

[x := e] = (VE_state e)[(VE e) / x]
[xs := es] = (VES_state es)[(VES es) / xs]
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9   Well-Formedness

We define the semantics of Floyd/Hoare partial correctness formulae as follows:

In specifying the behavior of a procedure, we require the programer to provide a precondition, specifying a
necessary condition at time of entry, and a postcondition, specifying the procedure’s behavior as a resulting condition
at time of exit.  The postcondition must refer to the values of variables at both these times.  To avoid ambiguity, we
introduce logical variables.

Logical variables are barred from any mention within program code; they may not be assigned to, or even
read in a program expression.  Their only mention may be within assertion language expressions.  Since they can
never be assigned to, each must always have the same value unchanged throughout any execution of code.  They may
have different values from one execution to another, but in any one, they are fixed, and serve well to mark values of
variables from a prior time in the execution.  In a procedure’s postcondition, logical variables denote the value of a
variable at time of entry, and program variables denote the value of the variable at time of exit.

A logical variable is designated by a special initial character, for which we will use the caret (^) character.
Normally variables are made of an arbitrary string (along with a number to assist in creating variants).  But now we
carve out a space of names for logical variables by restricting program variables from beginning with this special
character.  A state remains a mapping from all variables to their current integer values; since the logical and program
variables have different names, there is no conflict.

This allows an easy generation of a logical variable from a program variable, by simply prefixing its name
with caret (^); we define a function to do this, logical:var->var , and a similar function for lists of variables,
logicals:(var)list->(var)list .  In a procedure’s postcondition, these logical variables are used to designate
the prior value of a variable, the value it had at the time the procedure was entered; the program variable itself is used
unchanged to designate the value of the variable at the time of exit.

Since these logical variables are syntactically the same type as program variables, there is a need for a test to
ensure that logical variables do not appear in program text.  This test is part of a static test, to be run before any
execution or verification, called “well-formedness”, which is defined by a function WFϕ for each kind of program
phrase ϕ, where ϕ ∈ {s,v,e,es,b,c,d,p},  testing strings, variables, numeric expressions, lists of numeric expressions,
boolean expressions, commands, declarations, and programs.  It turns out that in addition to checking for the
exclusion of logical variables, it is also needful for the well-formedness tests to perform other static checks as well,
such as ensuring that a procedure call has the right number of arguments for its definition.  In fact, we also need to
check that an entire environment of procedures is correctly and consistently defined.  This last is the well-formedness
test for environments, evaluated by the function WFenv.

aexp: { a} =
=

close a (the universal closure of a)
∀s. A a s (a is true in all states)

exp: { p} e{ q} = ∀p q e n s1 s2.  A p s1 ∧ E e s1 n s2 ⇒ A q s2
bexp: { p} b{ q} = ∀p q b t s1 s2.  A p s1 ∧ B b s1 t s2 ⇒ A q s2

cmd: { p} c{ q}/ ρ = ∀p q c s1 s2.  A p s1 ∧ C c ρ s1 s2 ⇒ A q s2

Table 5.  Floyd/Hoare Partial Correctness Formulae Semantics

A string s is well-formed (WFs s) if the first character is not “^”:

WFs ‘‘ = F
WFs (STRING a s) = ~(a = LOG_CHAR),        where LOG_CHAR = “^”

A variable v is well-formed (WFv v) if its string is well-formed:

WFv (VAR s n) = WFs s

A numeric expression e is well-formed (WFe e) if every part is well-formed:

WFe (n) = T
WFe (x) = WFv x
WFe (++x) = WFv x
WFe (e1 + e2) = WFe e1  ∧  WFe e2
WFe (e1 – e2) = WFe e1  ∧  WFe e2

Table 6.  Well-Formedness Predicates  
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This definition of the well-formedness of ρ may appear circular, in that ρ is used in the definition of both
syntactic and semantic well-formedness.  However, this circularity is resolved in that these tests may be evaluated

A list of numeric expressions es is well-formed (WFes es) if every part is well-formed:

WFes ([]) = T
WFes (CONS e es) = WFe e  ∧  WFes es

A boolean expression b is well-formed (WFb b) if every part is well-formed:

WFb (e1 = e2) = WFe e1  ∧  WFe e2
WFb (e1 < e2) = WFe e1  ∧  WFe e2
WFb (b1 ∧ b2) = WFb b1  ∧  WFb b2
WFb (b1 ∨ b2) = WFb b1  ∧  WFb b2
WFb (~b) = WFb b

A command c is well-formed in an environment ρ (WFc c ρ) if every part is well-formed, and if
every call supplies the same number of actual parameters as the procedure has formal
parameters:

WFc (skip) ρ = T
WFc (abort) ρ = T
WFc (x := e) ρ = WFv x  ∧  WFe e
WFc (c1; c2) ρ = WFc c1 ρ  ∧  WFc c2 ρ
WFc (if  b then c1 else c2) ρ = WFb b  ∧  WFc c1 ρ  ∧  WFc c2 ρ
WFc (assert a while b do c) ρ = WFb b  ∧  WFc c ρ
WFc (p(es)) ρ = WFes es  ∧  LENGTH((FST o ρ)p) = LENGTH(es)

A procedure specification <vs, glbs, pre, post, c> is syntactically well-formed in an environment ρ
(WFproc_syntax <vs, glbs, pre, post, c> ρ) iff

let x = vs & glbs (where “&” appends two lists), and let x0 = logicals x in

1) ALL_EL WFv x (every variable in vs and glbs is well-formed, i.e., not logical)
2) DL x (“disjoint list”: vs and glbs have no duplicates within or between them)
3) WFc c ρ (c is well-formed)
4) (all globals referenced by procedures called within c are in glbs)
5) (all free variables of c are in x)
6) (all free variables of pre are in x)
7) (all free variables of post are in x or in x0)

A declaration d is well-formed in an environment ρ (WFd d ρ) if every individual procedure
declaration is syntactically well-formed:

WFd (proc p vs glbs pre post c) ρ = WFproc_syntax <vs, glbs, pre, post, c> ρ
WFd (d1; d2) ρ = WFd d1 ρ  ∧  WFd d2 ρ
A program π is well-formed (WFp π) if both its declarations and its body are well-formed in the

environment the declarations create:

WFp (program d ; c end program) =   let ρ = mkenv d ρ0 in   WFd d ρ  ∧  WFc c ρ
A procedure specification <vs, glbs, pre, post, c> is well-formed (both syntactically and

semantically) (WFproc <vs, glbs, pre, post, c> ρ) iff

let x = vs & glbs (where “&” appends two lists), and let x0 = logicals x in

1) WFproc_syntax <vs, glbs, pre, post, c> ρ (the specification is syntactically well-formed)

2) (c is partially correct with respect to precondition (x0 = x ∧
pre) and postcondition post in environment ρ)

An environment ρ is well-formed (WFenv(ρ)) iff

∀p. WFproc (ρ p) ρ

Table 6.  Well-Formedness Predicates  (Continued)

GVc c ρ glbs⊆
FVc c ρ x⊆
FVa pre x⊆
FVa post x x0∪( )⊆

x0 x= pre∧{ } c post{ } ρ⁄
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using only the “header” information of each procedure in ρ, i.e., without referring to their bodies.
Summarizing, for the most part, program constructs are well-formed (WFv, WFe, WFes, WFb, WFc, WFd,

WFp) if their constituent constructs are well-formed.  The basic features checked are that

1) no logical variables are used in program text (outside assertion-language annotations);
2) procedure calls must agree with the environment in number of arguments;
3) procedure declarations d must satisfy syntactic well-formedness;
4) given syntactic well-formedness, environments ρ must satisfy partial correctness conditions.  These will

be established later via a set of verification conditions.

10   Axiomatic Semantics

We can now express the axiomatic semantics of the programming language, and prove each rule as a theorem
from the previous structural operational semantics:

Skip: Conditional:

Abort:

Assignment:

Iteration:

Sequence:

Rule of Adaptation (if x0 ∩ FVa q = ∅):

Rule of Adaptation (general case):

Table 7.  Programming Language Axiomatic Semantics  

 
q{ } skip q{ } ρ⁄

-----------------------------------------

 
false{ } abort q{ } ρ⁄

-----------------------------------------------------

p AB b( )∧{ } b r1{ }
p ~AB b( )∧{ } b r2{ }

r1{ } c1 q{ } ρ⁄
r2{ } c2 q{ } ρ⁄

p{ } if  b then c1 else c2 q{ }
---------------------------------------------------------------------

 
q x e:=[ ]w{ } x e:= q{ } ρ⁄

---------------------------------------------------------------------

p{ } c1 r{ } ρ⁄ r{ } c2 q{ } ρ⁄,
p{ } c1 c2; q{ } ρ⁄

-----------------------------------------------------------------------------------

a AB b( )∧{ } b p{ }
a ~AB b( )∧{ } b q{ }

p{ } c a{ } ρ⁄
a{ } assert a while b do c q{ } ρ⁄

----------------------------------------------------------------------------------

WFc c ρ WFenv ρ ALL_EL WFv x DL x, , ,
x0 logicals x= x0 FVa q∩ ∅=,

FVc c ρ x⊆ FVa pre x⊆ FVa post x x0∪( )⊆, ,
x0 x= pre∧{ } c post{ } ρ⁄

pre x∀ . post q⇒( )( ) x x0⁄[ ]w( )∧{ } c q{ } ρ⁄
-----------------------------------------------------------------------------------------------------------------------------------------

WFc c ρ WFenv ρ ALL_EL WFv x DL x, , ,
x0 logicals x=  x'0 variants x0 FVa q( )=,

FVc c ρ x⊆ FVa pre x⊆ FVa post x x0∪( )⊆, ,
x0 x= pre∧{ } c post{ } ρ⁄

pre x∀ . post x'0 x0⁄[ ]w q⇒( )( ) x x'0⁄[ ]w( )∧{ } c q{ } ρ⁄
--------------------------------------------------------------------------------------------------------------------------------------------------
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The most interesting of these proofs, apart from the procedure call rules, was that of the while-loop rule.  It
was necessary to prove a subsidiary lemma first, by the strong version of rule induction for command semantics
provided by Tom Melham’s rule induction package.  This lemma thus used versions of itself for “lower levels” in the
relation built up by rule induction to prove each instance, and so needed strong induction to present as a usable
assumption each hypothesized lower-level tuple in the relation.  The subsidiary lemma was necessary because the
while-loop rule as a theorem was not in the right syntactic form for the induction tactic.  The lemma we proved is

 

+ ∀a b c p q. {p} c{ a} ∧ { a ∧ (AB b)} b{ p} ∧ { a ∧ ~(AB b)} b{ q} ⇒
∀w s1 s4. C w s1 s4 ⇒

((w = assert a while b do c ) ⇒ (A a s1 ⇒ A q s4))

The Rule of Adaptation enables one to take a previously proven partial correctness statement, {x0 = x ∧ pre} c
{ post} /ρ, and derive an adaptation of this to a situation where c is being considered with a given postcondition q.
The basic idea is given in the first version presented here; the general case handles situations where variables in q
conflict with the x0 variables that are in some sense “local”  to the original partial correctness statement.  This is
actually a simpler version of the Rule of Adaptation than those previously presented in the literature; the simplicity
arises from our dependence on the definition of proper substitution to automatically rename the bound variables x in
the expression ∀x. (post ⇒ q) under the substitution [x / x0].  This renaming was performed manually in previous
expressions of the Rule of Adaptation.

In a similar fashion, the three versions of the Procedure Call Rule range from the simplest, which shows the
basic idea best, to the completely general, which has no restrictions on its applicability.  The general case is the rule
used in the VCG presented later.  These were proven using the Rules of Adaptation above, combined with the
definition of a well-formed environment.  The environment contributed some of the necessary preconditions for using
the Rules of Adaptation.  By inspecting these rules, the reader will recognize a constructive method for creating an
appropriate weakest precondition for a procedure call, given the postcondition.  These Rules of Procedure Call were
by far the most difficult theorems proven in this entire exercise, requiring very careful management of the variables
involved in each subexpression and the precise meaning of the various substitutions.  We believe that the subtleties
involved here are so great as to constitute a compelling argument for mechanical proof-checking.  Although one’s
intuition is useful and necessary, it is almost impossible to intuitively grasp all the issues involved.

Procedure Call (if x0 ∩ FVa q = ∅ and vs ∩ FVa q = ∅):

Procedure Call (if vs ∩ FVa q = ∅):

Procedure Call (general case):

Table 7.  Programming Language Axiomatic Semantics  (Continued)

WFc call p(es)( ) ρ WFenv ρ,
ρ p( ) vs glbs pre post c, , , ,〈 〉=

x vs glbs&= x0 logicals x= x0 FVa q∩ ∅= vs FVa q∩ ∅=, , ,

pre x∀ . post q⇒( )( ) x x0⁄[ ]w( )∧( ) vs es:=[ ]w{ } call p(es) q{ } ρ⁄
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

WFc call p(es)( ) ρ WFenv ρ,
ρ p( ) vs glbs pre post c, , , ,〈 〉=

x vs glbs&= x0 logicals x= x'0 variants x0 FVa q( )= vs FVa q∩ ∅=, , ,

pre x∀ . post x'0 x0⁄[ ]w q⇒( )( ) x x'0⁄[ ]w( )∧( ) vs es:=[ ]w{ } call p(es) q{ } ρ⁄
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

WFc call p(es)( ) ρ WFenv ρ,
ρ p( ) vs glbs pre post c, , , ,〈 〉=

x vs glbs&= vs' variants vs FVa q glbs∪( )=  x' vs' glbs&=, ,
x0 logicals x=  x'0 variants logicals x'( ) FVa q( )=,

pre vs' vs⁄[ ]w x'∀ . post vs' x'0, vs x0,⁄[ ]w q⇒( )( ) x' x'0⁄[ ]w( )∧( ) vs' es:=[ ]w{ }
call p(es) q{ } ρ⁄

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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Although we did prove analogous theorems as an axiomatic semantics for both the numeric and boolean
expressions in the programming language, it turned out that there was a better way to handle them provided through
the use of the translation functions.  Using these translation functions, we may define functions to compute the
appropriate precondition to an expression, given the postcondition, as follows.

We may now prove the following axiomatic semantics for expressions:

These precondition functions now allow us to revise the rules of inference for conditionals and loops, as
follows.

11   Semantic Stages

We are almost ready to define and prove correct a VCG function for programs.  Two correctness properties we
wish to show are

vcgc_THM

 

+  ∀c p q ρ.  WFenv ρ  ∧  WFc c ρ  ⇒  ALL_EL close (vcgc p c q ρ)  ⇒  {p}c{q} / ρ

vcgd_THM

 

+  ∀d ρ.  (ρ = mkenv d ρ0)  ∧  WFd d ρ  ∧  ALL_EL close (vcgd d ρ)  ⇒  WFenv ρ

In order to prove vcgd_THM, we would like to use vcgc_THM, proven before.  However, a problem arises.
The vcgd_THM is used to prove the well-formedness of an environment.  Given the syntactic well-formedness
arising from WFd d ρ and the semantic well-formedness following from proving the verification conditions returned
by vcgd d ρ, WFenv ρ intuitively should follow.  To reason from the verification conditions to the actual partial
correctness of each procedure body, it is necessary to use vcgc_THM.  The problem is that vcgc_THM itself requires
a well-formed environment as a precondition!  Thus it seems to be necessary to know that the environment is well-
formed before we can prove that it is well-formed, a circular argument.

The solution is to cut the circle by establishing stages of well-formedness for the environment, indexed by
number, and to show eventually by numeric induction that all stages hold, and thus the environment is well-formed.
Each increase in the index will signify an ability to call procedures to one more level of calling depth.  Thus, index 0
will designate an environment which is well-formed as long as no procedure calls are made, index 1 designates an
environment which is well-formed under calls of procedures which do not issue procedure calls, etc.  In order to

vexp
ve_pre e v = v w (VE_state e)
vb_pre b v = v w (AB_state b)

aexp
ae_pre e a = a w (VE_state e)
ab_pre b a = a w (AB_state b)

Table 8.  Expression Precondition Functions

Numeric expression precondition: Boolean expression precondition:

Table 9.  Programming Language Expression Axiomatic Semantics

Conditional:

Iteration:

Table 10.  Programming Language Axiomatic Semantics (revisions)

 
ae_pree q{ } e q{ }

-------------------------------------------------  
ab_preb q{ } b q{ }

--------------------------------------------------

r1{ } c1 q{ } ρ⁄ r2{ } c2 q{ } ρ⁄,

AB b => ab_preb r1 ab_preb r2{ } if  b then c1 else c2 q{ } ρ⁄
------------------------------------------------------------------------------------------------------------------------------------------------------------------

a AB b∧ ab_preb p⇒{ }
a ~ AB b( )∧ ab_preb q⇒{ }

p{ } c a{ } ρ⁄

a{ } assert a while b do c q{ } ρ⁄
----------------------------------------------------------------------------------
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define stages of well-formedness, we need to establish stages of command partial correctness specifications, and of
the command semantic relation itself.

Without giving the full definition of the staged command semantic relation Ck, it suffices to say that it has one
new argument k, which is the stage number, and that every rule maintains that the stage of the resulting tuple is
greater than or equal to the stages of all antecedent tuples, except for the procedure call rule, where the stage of the
result tuple (regarding the procedure call) is exactly one greater than that of the antecedent tuple (regarding the
procedure’s body).  We then define {p} c{ q}/ ρ,k and WFenvk ρ k similar to before but using the staged versions of the
semantic predicates.  Using these definitions, we can prove many staged versions of previous theorems, and also

 

+  ∀c ρ s1 s2.  C c ρ s1 s2 = (∃k. Ck c ρ k s1 s2)

 

+  ∀p c q ρ.  {p} c{ q}/ ρ = (∀k. {p} c{ q}/ ρ,k)

 

+  ∀ρ.  WFenv ρ = (∀k. WFenvk ρ k)

This last theorem gives us the means to prove that an environment is well-formed.  We first prove that for k=0,
the antecedents of vcgd_THM imply the environment is well-formed to stage 0.  Then, assuming those antecedents
and that the environment is well-formed to stage k, we prove that it is well-formed to stage k+1.  By induction, it is
then well-formed for all stages, and by the above theorem, the environment is completely well-formed.

12   Verification Condition Generator

We now define a verification condition generator for this programming language.  To begin, we first define a
helper function vcg1, of type cmd->aexp->env->(aexp # (aexp)list) .  This function takes a command a
postcondition, and an environment, and returns a precondition and a list of verification conditions that must be proved
in order to verify that command with respect to the precondition, postcondition, and environment.  This function does
most of the work of calculating verification conditions.

The other verification condition generator functions, vcgc for commands, vcgd for declarations, and vcg for
programs are defined similarly.  Each returns a list of the verification conditions needed to verify the construct.

In these definitions, comma (,) makes a pair of two items, square brackets ([]) delimit lists, semicolon (;)
within a list separates elements, and ampersand (&) is an infix version of HOL’s APPEND operator to join two lists.

vcg1

vcg1 (skip) q ρ = q, []
vcg1 (abort) q ρ = true, []
vcg1 (x := e) q ρ = qw[x := e], []
vcg1 (c1 ; c2) q ρ = let (r,h2) = vcg1 c2 q ρ in

let (p,h1) = vcg1 c1 r ρ in
p, (h1 & h2)

vcg1 (if  b then c1 else c2) q ρ =
let (r1,h1) = vcg1 c1 q ρ in
let (r2,h2) = vcg1 c2 q ρ in

(AB b => ab_pre b r1 | ab_pre b r2), (h1 & h2)
vcg1 (assert a while b do c) q ρ =

let (p,h) = vcg1 c a ρ in
a, [ a ∧ AB b ⇒ ab_pre b p ;

a ∧ ~(AB b) ⇒ ab_pre b q] & h
vcg1 (call p(es)) q ρ = let (vs, glbs, pre, post, c) = ρ(p) in

let x = vs & glbs in
let vs’ = variants vs (FVa q ∪ glbs) in
let x’ = vs’ & glbs in
let x0 = logicals x in
let x’0 = variants (logicals x’) (FVa q) in
((prew[vs’ / vs]) ∧ ((∀x’. (postw[vs’, x’0 / vs, x0] ⇒ q))

w[x’ / x’0]))w[vs’ := es], []

Table 11.  Verification Condition Generator  
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The correctness of these VCG functions is established by proving the following theorems from the axioms and
rules of inference of the axiomatic semantics:

ALL_EL P lst is defined in HOL as being true when for every element x in the list lst, the predicate P is true
when applied to x.  Accordingly, ALL_EL close h means that the universal closure of each verification condition in h
is true.

These theorems are proven from the axiomatic semantics by induction on the structure of the construct
involved.  vcgd_THM relies on the induction by semantic stages discussed earlier, and enables the proof of
vcg_THM.  This verifies the VCG.  It shows that the vcg function is sound, that the correctness of the verification
conditions it produces suffice to establish the partial correctness of the annotated program.  This does not show that
the vcg function is complete, that if a program is correct, then the vcg function will produce a set of verification
conditions sufficient to prove the program correct from the axiomatic semantics [3].  However, this soundness result
is quite useful, in that we may directly apply these theorems in order to prove individual programs partially correct
within HOL, as seen in the next section.

13   Example Programs

Given the vcg function defined in the last section and its associated correctness theorem, proofs of program
correctness may now be partially automated with security. This has been implemented in an HOL tactic, called
VCG_TAC, which transforms a given program correctness goal to be proved into a set of subgoals which are the
verification conditions returned by the vcg function.  These subgoals are then proved within the HOL theorem
proving system, using all the power and resources of that theorem prover, directed by the user’s ingenuity.

We have proven the quotient/remainder algorithm, an example of two mutually recursive procedures to decide
even/odd, and a procedural version of McCarthy’s “91”  function.  As an example of the use of procedures, we will
take a procedure to calculate triangle numbers. Triangle numbers are numbers in the series 1, 1+2, 1+2+3, …, which
can be drawn as a triangle of dots, with one more dot in each row than in the row above. The program to be verified,
with the annotations of the loop invariant and procedure pre- and postconditions, is established as the current goal by
the following.  Other than the introduction of fonts, bold-face and italics, here is exactly what is input to HOL:

vcgc
vcgc p c q ρ = let (r,h) = vcg1 c q ρ in

[p ⇒ r] & h

vcgd

vcgd (proc p vs glbs pre post c) ρ =
let x = vs & glbs in
let x0 = logicals x in

vcgc (x0 = x ∧ pre) c post ρ
vcgd (d1; d2) ρ = let h1 = vcgd d1 ρ in

let h2 = vcgd d2 ρ in
h1 & h2

vcg

vcg (program d ; c end program) q =
let ρ = mkenv d ρ0 in
let h1 = vcgd d ρ in
let h2 = vcgc true c q ρ in

h1 & h2

vcg1_THM

 

+ ∀c q ρ. WFenv ρ  ∧  WFc c ρ ⇒
let (p,h) = vcg1 c q ρ in
(ALL_EL close h ⇒ { p} c{ q}/ ρ)

vcgc_THM

 

+ ∀c p q ρ. WFenv ρ  ∧  WFc c ρ ⇒
ALL_EL close (vcgc p c q ρ) ⇒ { p} c{ q}/ ρ

vcgd_THM

 

+ ∀d ρ. ρ = mkenv d ρ0 ∧ WFd d ρ ∧
ALL_EL close (vcgd d ρ) ⇒ WFenv ρ

vcg_THM

 

+ ∀π q. WFp π ∧ ALL_EL close (vcg π q) ⇒ π{ q}

Table 12.  Verification of Verification Condition Generator

Table 11.  Verification Condition Generator  (Continued)
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g [[ program
procedure triangle(val n);

global a;
pre   true;
post  2 * a = ^n * (^n + 1);

if  n = 0 then a := 0
else

triangle(n – 1);
a := a + n

fi
end procedure;

triangle(4)

end program
{ a = 10 }

  ]];;

The double square brackets “ [[ ”  and “ ]] ”  enclose program text which is parsed into an HOL term containing
the syntactic constructors that form the program specification.  This parser was made using the parser library of HOL.
The triangle procedure takes as input n, computes the nth triangle number and stores it in the global a.  The
specification of the procedure states that at the end of a call, a contains n(n+1)/2, which is a formula for the nth
triangle number.  The actual code of the procedure computes by recursive calls, reminiscent of counting the dots of
the triangle, row by row.

Applying VCG_TAC to this goal produces the following two verification conditions:

VC1: ∀n1 a. (2 * a = 4 * (4 + 1)) ⇒ (a = 10)

VC2: ∀^n n ^a a. (^n = n) ∧ (^a = a) ⇒
 ((n = 0) ⇒ (2 * 0 = n̂ * (^n + 1))) ∧
 (~(n = 0) ⇒

(∀n2 a'.  (2 * a' = (n – 1) * ((n – 1) + 1)) ⇒
 (2 * (a' + n) = ^n * (^n + 1))))

Here is a transcript of the application of VCG_TAC to this problem.  We have turned on the flag “print_vcg”, which
causes the tactic to print a trace of its processing of the program, in terms of the correctness relationships it forms at
intermediate points.  These are pretty-printed displays of the program and assertion language phrases constructed.

#e(VCG_TAC);;
OK..
For procedure ̀ triangle ,̀

By the "ASSIGN" rule, we have
   [[ {2 * 0 = ̂ n * (^n + 1)} a := 0 {2 * a = ̂ n * (^n + 1)} ]]

By the "ASSIGN" rule, we have
   [[ {2 * (a + n) = ̂ n * (^n + 1)} a := a + n {2 * a = ̂ n * (^n + 1)} ]]

By the "CALL" rule, we have
   [[ {true /\ !n2. !a. 2 * a = (n - 1) * ((n - 1) + 1) ==>
                        2 * (a + n) = ̂ n * (^n + 1)} triangle(n - 1)
      {2 * (a + n) = ̂ n * (^n + 1)} ]]

By the "SEQ" rule, we have
   [[ {true /\ !n2. !a. 2 * a = (n - 1) * ((n - 1) + 1) ==>
                        2 * (a + n) = ̂ n * (^n + 1)}
       triangle(n - 1); a := a + n {2 * a = ̂ n * (^n + 1)} ]]

By the "IF" rule, we have
   [[ {(n = 0 ==> 2 * 0 = ̂ n * (^n + 1)) /\
       (~(n = 0) ==>
        true /\ !n2. !a. 2 * a = (n - 1) * ((n - 1) + 1) ==>
                         2 * (a + n) = ̂ n * (^n + 1))}
       if n = 0 then a := 0 else triangle(n - 1); a := a + n fi
      {2 * a = ̂ n * (^n + 1)} ]]
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By precondition strengthening, we have
   [[ {(^n = n /\ ̂ a = a /\ true) /\ true}
       if n = 0 then a := 0 else triangle(n - 1); a := a + n fi
      {2 * a = ̂ n * (^n + 1)} ]]
with additional verification condition
   [[ {(^n = n /\ ̂ a = a /\ true) /\ true ==>
       (n = 0 ==> 2 * 0 = ̂ n * (^n + 1)) /\
       (~(n = 0) ==>
        true /\ !n2. !a. 2 * a = (n - 1) * ((n - 1) + 1) ==>
                         2 * (a + n) = ̂ n * (^n + 1))} ]]

For the main body,

By the "CALL" rule, we have
   [[ {true /\ !n1. !a. 2 * a = 4 * (4 + 1) ==> a = 10} triangle(4)
      {a = 10} ]]

By precondition strengthening, we have
   [[ {true} triangle(4) {a = 10} ]]
with additional verification condition
   [[ {true ==> true /\ !n1. !a. 2 * a = 4 * (4 + 1) ==> a = 10} ]]

2 subgoals
"!n1 a. (2 * a = 4 * (4 + 1)) ==> (a = 10)"

"!̂ n n ̂ a a. (^n = n) /\ (^a = a) ==>
                ((n = 0) ==> (2 * 0 = ̂ n * (^n + 1))) /\
                (~(n = 0) ==>
                    (!n2 a'. (2 * a' = (n - 1) * ((n - 1) + 1)) ==>
                                (2 * (a' + n) = ̂ n * (^n + 1))))"

() : void
Run time: 507.3s
Garbage collection time: 46.0s
Intermediate theorems generated: 24269

These verification conditions are HOL Object Language conditions.  The Object Language variables involved in
these verification conditions are constructed to have names similar to the original program variable names; if there is
a non-zero variant number, it is appended to the variable name.  Thus, if one changed the name of program variable n
to k in the example above, the verification conditions would be the same but with the OL variable k in place of n, k1 in
place of n1, etc.  The a’ variables above were constructed by ALPHA_CONV, as part of the process of converting
quantified assertion language variables into OL variables in INTERPRET_aexp_CONV in step (e) below.

As a second example, we consider McCarthy’s “91” function.  We define the function f91 as follows:
f91  =  λy.  y > 100  =>  y – 10  |  f91( f91(y + 11) )

We claim that the behavior of f91 is such that
f91  =  λy.  y > 100  =>  y – 10  |  91

which is not immediately obvious.  Here is an expression of the “91” function as a goal for the VCG:

g [[ program
procedure p91(val y);

global x;
pre   true;
post  100 < ŷ  =>  x = ŷ - 10  |  x = 91;

if  100 < y then x := y - 10
else

p91(y + 11);
p91(x)

fi
end procedure;

skip
end program
{  true }

  ]];;

Here is a transcript of the application of VCG_TAC:
OK..
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For procedure ̀ p91 ,̀

By the "ASSIGN" rule, we have
   [[ {(100 < ̂ y => y - 10 = ̂ y - 10 | y - 10 = 91)} x := y - 10
      {(100 < ̂ y => x = ̂ y - 10 | x = 91)} ]]

By the "CALL" rule, we have
   [[ {true /\ !y1. !x1. (100 < x => x1 = x - 10 | x1 = 91) ==>
                         (100 < ̂ y => x1 = ̂ y - 10 | x1 = 91)} p91(x)
      {(100 < ̂ y => x = ̂ y - 10 | x = 91)} ]]

By the "CALL" rule, we have
   [[ {true /\
       !y1.
          !x. (100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>
              true /\ !y1. !x1. (100 < x => x1 = x - 10 | x1 = 91) ==>
                                (100 < ̂ y => x1 = ̂ y - 10 | x1 = 91)}
       p91(y + 11)
      {true /\ !y1. !x1. (100 < x => x1 = x - 10 | x1 = 91) ==>
                         (100 < ̂ y => x1 = ̂ y - 10 | x1 = 91)} ]]

By the "SEQ" rule, we have
   [[ {true /\
       !y1.
          !x. (100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>
              true /\ !y1. !x1. (100 < x => x1 = x - 10 | x1 = 91) ==>
                                (100 < ̂ y => x1 = ̂ y - 10 | x1 = 91)}
       p91(y + 11); p91(x) {(100 < ̂ y => x = ̂ y - 10 | x = 91)} ]]

By the "IF" rule, we have
   [[ {(100 < y ==> (100 < ̂ y => y - 10 = ̂ y - 10 | y - 10 = 91)) /\
       (~(100 < y) ==>
        true /\
        !y1. !x. (100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>
                 true /\
                 !y1. !x1. (100 < x => x1 = x - 10 | x1 = 91) ==>
                           (100 < ̂ y => x1 = ̂ y - 10 | x1 = 91))}
       if 100 < y then x := y - 10 else p91(y + 11); p91(x) fi
      {(100 < ̂ y => x = ̂ y - 10 | x = 91)} ]]

By precondition strengthening, we have
   [[ {(^y = y /\ ̂ x = x /\ true) /\ true}
       if 100 < y then x := y - 10 else p91(y + 11); p91(x) fi
      {(100 < ̂ y => x = ̂ y - 10 | x = 91)} ]]
with additional verification condition
   [[ {(^y = y /\ ̂ x = x /\ true) /\ true ==>
       (100 < y ==> (100 < ̂ y => y - 10 = ̂ y - 10 | y - 10 = 91)) /\
       (~(100 < y) ==>
        true /\
        !y1. !x. (100 < y + 11 => x = (y + 11) - 10 | x = 91) ==>
                 true /\
                 !y1. !x1. (100 < x => x1 = x - 10 | x1 = 91) ==>
                           (100 < ̂ y => x1 = ̂ y - 10 | x1 = 91))} ]]

For the main body, ... elided ... here is the single verification condition produced:

"!̂ y y ̂ x x.
    (^y = y) /\ (^x = x) ==>
       (100 < y ==>
           ((100 < ̂ y) => (y - 10 = ̂ y - 10) | (y - 10 = 91))) /\
       (~(100 < y) ==>
           (!y1 x'. ((100 < y + 11) =>
                     (x' = (y + 11) - 10) |
                     (x' = 91)) ==>
                       (!y1' x1. ((100 < x') =>
                                  (x1 = x' - 10) |
                                  (x1 = 91)) ==> ((100 < ̂ y) =>
                                                  (x1 = ̂ y - 10) |
                                                  (x1 = 91)))))"

This VC is proven by taking four cases:  y < 90, 90 ≤ y < 100, y = 100, and y > 100.
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Here is the HOL definition of the VCG_TAC tactic:

let VCG_TAC =
(a)     MATCH_MP_TAC vcg_THM
(b)     THEN CONV_TAC (DEPTH_CONV WFp_CONV)
(c)     THEN CONV_TAC (DEPTH_CONV vcg_CONV)
(d)     THEN REWRITE_TAC[APPEND_INFIX;APPEND;ALL_EL;CLOSE]
(e)     THEN CONV_TAC (TOP_DEPTH_CONV INTERPRET_aexp_CONV)
(f)     THEN REWRITE_TAC[V_DEF]

    THEN CONV_TAC var_BND_CONV
    THEN REPEAT CONJ_TAC
    THEN ( GEN_TAC ORELSE ALL_TAC )

(g)     THEN INTERPRET_PROG_VARS_TAC;;

The VCG_TAC tactic first (a) applies the theorem VCG_THM, the last theorem of Table 12 of the previous
section, to the current goal using the HOL tactic MATCH_MP_TAC to reason backwards from the program correctness
statement to the invocation of the vcg function.  By the theorem, the proof of these verification conditions will
establish the proof of the original program correctness statement.

The next step of VCG_TAC is to “execute” the various syntactic manipulation functions mentioned in the
current goal by symbolically rewriting the goal using the definitions of the functions.  This applies (b) to the WFp
well-formedness static check, and (c) to the vcg function itself.  Because the rewriting process is done symbolically,
instead of actually executing a program, it is relatively slow, but complete soundness is assured.  This “execution”
converts the invocation of the vcg function on the annotated program into the actual set of verification conditions that
the vcg function returns.

The WFp_CONV used at (b) is built up from conversions which automatically check the well-formedness of
declarations ( WFd_CONV), commands (WFc_CONV), and individual variables ( WFv_CONV), as previously defined.

The VCG_TAC tactic makes use at (c) of a set of conversions, culminating in vcg_CONV, to test the equality
of variables (var_EQ_CONV), lookup a variable in a simultaneous substitution (var_BND_CONV), calculate a
variant of a variable ( variant_CONV ), apply a substitution to an expression ( subst_CONV ), and reduce a term
with calls to the vcg function in an efficient order (vcg_CONV), among others.

After performing these conversions, the program correctness goal is left as a set of “ground” verification
conditions in the assertion language.  VCG_TAC then (d–g) uses the definitions of the semantics of the assertion
language to rewrite these verification conditions into equivalent statements in the Object Language of HOL,
beginning with (d) the definition of close, then proceeding with (e) the definitions of A and (f) V.  In particular, (e) all
quantification over assertion language variables, and (g) all references to assertion language variables within program
states, are converted to references to similarly-named OL variables.  These verification conditions are then presented
to the user as the necessary subgoals in the HOL Object Language that need to be solved in order to complete the
proof of the program originally presented.

14   Future Work

In the future, we intend to extend this work to include several more language features, principally
concurrency.  In addition, we also intend to cover total correctness, beyond the partial correctness issues dealt with in
this paper.  We wish to find a method of proving the total correctness of systems of mutually recursive procedures,
preventing infinite recursive descent, which is efficient and suitable for processing by a VCG.

Concurrency raises a whole host of new issues, ranging from the level of structural operational semantics
(“big-step” versus “small-step”), to dealing with assertions describing temporal sequences of states instead of single
states, to issues of fairness.  We believe that a proper treatment of concurrency will exhibit qualities of modularity and
compositionality.  Modularity means that a specification for a process should state both (a) the assumptions under
which it should operate, and (b) the task (or commitment) which it should meet, given those assumptions.
Compositionality means that the specification of a system of processes should be verifiable in terms of the
specifications of the individual constituent processes.

15   Summary and Conclusions

The fundamental contribution of this work is the exhibition of a tool to ease the task of proving programs with
mutually recursive procedures, which is itself proven to be sound.  This verification condition generator tool performs
an automatic, syntactic transformation of the annotated program into a set of verification conditions.  The verification
conditions produced are themselves proven within HOL, establishing the correctness of the program within the same
system wherein the VCG was verified.
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The relative complexity of the procedure call rule forms a compelling argument for the usefulness of machine-
checked proof.  There is not enough room in this paper to describe the intricate subtleties that arose in the proof.  The
history of unsound proposals for procedure calls indicate a need for stronger tools than intuition to construct such
rules and verify their soundness.

This proof of the correctness of the VCG may be considered as an instance of a compiler correctness proof,
with the VCG translating from annotated programs to lists of verification conditions.  Each of these has its semantics
defined, and the VCG correctness theorem closes the commutative diagram, showing that the truth of the verification
conditions implies the truth of the annotated program.

The programming language and its associated assertion language are represented by new concrete recursive
datatypes.  This implies that they are completely independent of other data types and operations existing in the HOL
system, without any hidden associations that might affect the validity of proof.  This requires substantial work in
defining their semantics and in proving the axioms and rules of inference of the axiomatic semantics from the
operational semantics.  However, this deeply embedded approach yields great expressiveness, ductility, and the
ability to prove as theorems within HOL the correctness of various syntactic manipulations, which could only be
stated as meta-theorems before.  These theorems encapsulate a level of reasoning which now does not need to be
repeated every time a program is verified, raising the level of proof from the semantic level to the syntactic.  But the
most important part of this work is the degree of trustworthiness of this syntactic reasoning.  Verification condition
generators are not new, but we are not aware of any other proofs of their correctness to this level of rigor.  This
enables program proofs which are both trustworthy and effective to a degree not previously seen together.
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