1

An embedded computer system is part of a total system that is a physical pro-
cess, a plant, characterized by a state that changes over real time. The role of
the computer is to monitor this state through sensors and to change the state
through actuators. The computer is simply a convenient device that can be in-
structed to manipulate a mathematical model of the physical system and state.
Correctness means that the program and the hardware faithfully implement the
control formulas of the mathematical model for the total system, and nothing
else. However, the opportunities offered by the development of computer tech-
nology have resulted in large, complex programs which are hard to relate to the

Provably Correct Systems’

Jifeng He and C. A. R. Hoare!
Martin Franzle and Markus Miiller-Olm?
Ernst-Riidiger Olderog and Michael Schenke®
Michael R. Hansen, Anders P. Ravn and Hans Rischel*

! Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford OX1 3QD, UK
2 Christian- Albrechts-Universitit zu Kiel
Institut fiir Informatik und Praktische Mathematik
Preuflerstrafie 1-9, D-24105 Kiel, Germany
* FB Informatik, Universitat Oldenburg
Postfach 2503, D-26111 Oldenburg, Germany
* Department of Computer Science
Technical University of Denmark, bldg. 344
DK-2800 Lyngby, Denmark

Abstract. The goal of the Provably Correct Systems project (ProCoS)
is to develop a mathematical basis for development of embedded, real-
time, computer systems. This survey paper introduces the specification
languages and verification techniques for four levels of development: Re-
quirements definition and control design; Transformation to a systems
architecture with program designs and their transformation to programs;
Compilation of real-time programs to conventional processors, and Com-
pilation of programs to hardware.

Introduction

objective of systems control.

This work is partially funded by the Commission of the European Communities
(CEC) under the ESPRIT programme in the field of Basic Research Project No.
7071: “ProCoS II: Provably Correct Systems”. The hardware compilation work is
partially funded by the UK Science and Engineering Research Council (SERC) under
the Information Engineering Directorate SAFEMOS project (IED3/1/1036).

Activity Documents Language

Concept Expectations |Natural
(informal)

Requirements Requirements |RL

analysis

System design System specs [SL

Program design Program source |PL

Either:

Hardware synthesis|Circuit diagram|Netlist

Or:

Compilation |Machine code |ML

Fig. 1. Languages in ProCoS.

In the following, we describe a particular approach to mastering the complex-
ities of such systems. The approach is the result of over 5 years of work within
the ProCoS project, and represents a collection of techniques which have been
successfully applied to the different aspects of development of real-time computer
systems.

First of all there is a need for a short and precise specification of the desired
control requirements, independent of the actual hardware and software system.
For that purpose ProCoS has investigated a real-time logic, Duration Calculus
[82, 22, 81, 80], that formalizes dynamic systems properties. This logic also
provides a calculus such that a specification of controlling state machines can be
verified to be a refinement of the requirements [66, 71, 67, 17, 31].

In order to use the logic as a specification language for requirements and
design, we need a module concept and notations for standard concepts of discrete
mathematics. Here we have decided to adapt the Z language [73] and embed the
Duration Calculus [12] such that the type checking facilities and other tools of
Z are available after expansion of the special Duration Calculus symbols. The
resulting requirements language offers an interface to control theory [83], but it
is not intended in any way to replace well known notations and procedures of
control engineering.

A specification of controlling state machines is a step towards an implemented
program. However, it neither defines the communication protocols among the
state machines nor does it define the structure of the sequential programs. Here,
ProCoS has chosen to build on the paradigm of synchronous communication
and transform the state machines to a network of communicating processes [70].
The specification language SL [58, 59, 60] is used to specify such a network in
a constraint oriented style, where protocols are defined through trace assertions
that are regular expressions over communication channels; computations are
specified by communication assertions that define the relation between the pre
and post state of a program component and a communicated value; and ¢iming
assertions that constrain the time between communications. The SL language

also supports transformations [57, 69] to an occam-like programming language
PL with real-time facilities.

These programs are then the basis for compilation to hardware or machine
code, cf. [11].

Each step has to be correct, and unless we have blind faith in the developer,
we expect to see documents for a rational development process, cf. [63]. Using a
fairly standard division of a development into major activities, these documents
can be organized as shown in Figure 1.

Each major activity layer uses its own specially tailored languages and veri-
fication techniques. It shall also link to the next lower layer. The inspiration for
such a layered approach has been the CLIinc. “stack”, see e.g. [8, 21]. A detailed
technical account of work during the first 3 years of ProCoS is given in [5] and
a previous survey of the results up till early 1993 is found in [9].

Overview. The following sections focus on central topics of each of the layers.
In section 2 we use one of the ProCoS case studies to introduce requirements
analysis and specification of a top level design. This design is used in section 3 to
llustrate transformations to a systems architecture with program specifications
and transformations to programs. Section 4 surveys work on developing a com-
piler for the real-time programming language that guarantees timing constraints
for the generated machine code. Section 5 outlines some work on deriving a
hardware description from a program.

In a final section 6, the underlying mathematical structures and the general
approaches of the project are discussed and put into the perspective of a science
of programming.

2 Requirements and Control Design

The first step in formalizing the requirements of a system is to construct a
system model. Our basis is the well-known ¢ime-domain model, where a system is
described by a collection of states which are functions of time (the real numbers).

Example: We illustrate the state concept through our running example: a ver-
sion of a computer controlled gas burner [67].

The gas burner is controlled through a thermostat, and can directly control
a gas valve and monitor the flame. This physical system or plant is illustrated
by the diagram in Figure 2. For the gas burner we use the following discrete
(Boolean valued) states Heatreq, Gas and Flame to model the state of the ther-
mostat, the gas valve and the flame. In illustrations we assume that Boolean
values are represented by 0 (false) and 1 (true). a

States or other quantities might be introduced informally as usually done in
mathematics by phrases like ‘let Gas denote ...and let 0 denote the Boolean
value false’. This works very well for a small set of quantities used in a delimited
context; but in development of a larger system with a modular structure and

o

\
Gas Valve |j

[— Flame sensor
Thermo-
stat

Fig. 2. Physical components — plant — for the gas burner.

going through several stages of refinement it is essential to be able to struc-
ture declarations corresponding to the specifications of systems and subsystems.
Therefore we use a concrete syntax for specifications based on the Z-schema
notation [73].

A state is a function from time to some value domain, but we do not want to
refer to time explicitly. Thus state is used in front of a type of a name which
denotes a state.

Example: The states for the gas burner example can thus be introduced as
follows:

GB
Heatreq : state Bool
Flame, Gas : state Bool

where state Bool is an abbreviation for Ttme — Bool with Time denoting
the set of non-negative reals. The input state Heatreq thus denotes a Boolean
function of time. The controlled states are Flame and Gas. ad

2.1 From Expectations to Requirements

Properties of systems are expressed by constraining the states over time. For
that purpose we use the Duration Calculus [82].

Example: We introduce the logic while formalizing the following expectations
for the gas burner.

Safe: Gas must not leak for more than 4 seconds® in any 30 second period.

Stop: The gas must not burn when heat request has been off for 40 seconds.

Start: The gas must burn when heat request has been on for 40 seconds, pro-
vided the gas ignites and burns satisfactorily.

® We shall use second as a unit of time throughout the example.

Safe. We assume that a leak occurs whenever the state assertion
Leak == Gas A —~Flame

holds.

When we consider some bounded interval [b, e] of time, we can measure the
duration of Leak within the interval by fbe Leak(t)dt, cf. the following timing
diagram:

Flame
0
Gas !
0 —
. leak leak —
Time b e

The symbol [Leak denotes the duration of Leak; for each particular interval
it is a real number. An atomic duration formula is a predicate over intervals
built from durations and real valued constants by a relation on real numbers.
E.g. the 4 second constraint on leaks is the atomic formula [Leak < 4.

The duration of the constant state 1 will be the length of the interval under
consideration, and we abbreviate

f::fl

Thus the fact that an interval is not longer than 30 seconds is specified by
£ < 30. Formulas can now be generated from atomic formulas using the logical
connectives. The safety expectation is thus

£<30= [Leak < 4

1.e. if the given interval is not longer than 30 seconds then the duration of Leak
in that interval is less than 4 seconds.

Start. For this expectation, consider a non-point interval where Heatreq holds;
such an interval is described by

[Heatreq| == ([Heatreq = £) A (£ > 0)

A counterexample for Start is, for a given interval, expressed with the binary
“chop” operator [53]

([Heatreq] A £ = 40) ; [—Flame]

The formula F; ; Fp (which reads F; “chop” F3) holds on the interval [b, €]
Jjust when this interval can be divided into an initial subinterval [b, m] where
F1 holds and a final subinterval [m, ¢] where F, holds. The “chop” operator is
associative and monotone in both arguments. We assign it a priority higher than
implication and lower than conjunction and disjunction.

The “somewhere” modality (<), defined by OF == true ; F ; true, can
express the commitment

Start == — O ([Heatreq] AL = 40) ; [~ Flame])

I.e. there is not an interval that starts with Heatreq for 40 seconds and continues
with [—Flame].

Note that “always” (0O) as usual can be defined in terms of “somewhere”
(and thus “chop”) by OF & - (—F).

Stop. The last expectation is analogous to Start, so it can be given by the com-
mitment

Stop == = O (([—Heatreg] AL = 40) ; [Flame])
O

Standard forms In principle, commitments can be formulated using the full
generality of Duration Calculus, but for the purpose of design some standard
forms are useful [45].

Progress can be defined in terms of an elementary operator, called “leads-to”
which expresses that a system which is in some initial region of its state space,
specified by a formula F for some time ¢ will continue to a goal state, specified
by a state formula [P].

Definition 2.1 (Leads-to)
F -5 [P] == O((FAL=t); £>0=£L=1t; [P]; true)

The following law gives the relation to specification by counterexamples
~(F -5 [P) & O((FAl=t); [-P])

The leads-to operator has the monotonicity properties of an implication,
distributes over conjunction, and is monotone with respect to time for state
assertions, i.e. when t < ¢/

([P1] =% [P2]) = ([P1] - [P2])
Leads-to is also transitive in the following sense
(TP1] =% [P2) A([P2] 2 [Ps]) = ([P1] 22¥ [Py A Ps])

It is easy to check that both the Stop and the Start commitments can be
expressed using leads-to.

Stop == [Heatreq] 29 [Flame]
Start == [Heatreq] 29 [Flame]

Two derived forms will be used later, but are introduced here for convenience.
In the “followed-by” form, the initial region does not have to be stable for a
particular period of time.

Definition 2.2 (Followed-by)
F—[Pl==VreF 5 [P]

An instance is a state transition when a system is known to move from a state
specified by P; to a state given by P; or remain stable

|—P1-| — |—P1 \Y% P2-|
A second form makes transition constraints time bounded.

Definition 2.3 (Time bounded transition)

F 2L [Pl == (FAL<t)— [P

An example is conditional stability or latching where a condition P’ latches the
state P for a given period

[~P]; [P AP =5 [P
Latching is also expressed by the law
(I=P1: [P AP =5 [P]) & O(-P)5 [PAP]; [-P] = £> 1)

Another example is that a state P’ is kept stable at least for some time ¢, when
some other state P is entered. This is expressed by framing

([-P1; [P AP']) =5 [P

As for latching, the time condition can be omitted.
The Safe commitment can be formulated as a time bounded transition

Safe == ([Leak = 4) S [Leak]

Assumptions Commitments are not the final requirements. During the design
phase, the commitments may be weakened by assumptions about the plant.

Example: Being a bit clairvoyant about the gas burner design, we postulate
the assumption

NoFlicker == ([Flame] ; [—Flame]) 95 [Flame]

which means that when the flame disappears, this state will be stable for half a
second. This assumption is needed to detect a flame out situation which might
violate Safe.

For Stop, it is assumed that no gas leads to no flame within a short time

Noflame == [~ Gas] LN [Flame]

and Start has as assumption that Gas ignites and burns, say within 3/4 of a
second

GasOk == [Gas] o8 [Flame]

O

In principle, any commitment can be taken as an assumption. Since assump-

tions are global, they have to be introduced from start. L.e. although they may

be detected at a later stage of refinement, they shall in the final design docu-

ment be introduced from the start. They are introduced as preconditions to the

commitments. I.e. the assumptions and commitments define the requirements.
A commitment C with assumption A thus gives the requirement

A=>C

Given assumptions A, commitment C and a design D, the verification of the
design demonstrates D = (4 = C) or equivalently

AAND = C

An assumption thus replaces part of a design.

Assumptions are not for free. At the end of the design activity it must be
proven that the assumptions in conjunction with the design is feasible. I.e. that
the conjunction A A D is consistent with some assignment of state functions.

While feasibility is a formal property, there is still the question of whether
the assumptions and the whole model is reasonable. This calls for validation,
1.e. careful experiments to check the mathematical model against reality, a topic
outside the scope of the current ProCoS project.

Requirements The total requirements for the gas burner can now be given by
a schema with constraints

__ GBRegq
GB

NoFlicker = Safe
NoFlame = Stop
GasOk = Start

In principle, the constraints of this schema are just a predicate which can be
reached by unfolding the semantic definitions of the Duration Calculus.

2.2 Control design

A control design consists of two main parts:

1. Finite state machines or automatons describing how controllers progress
through a number of phases. These are specified by formulas over phase
control states. The formulas determine the conditions for a phase to be ei-
ther stable or progress to a new phase.

2. A set of phase commitments that are local for each phase. They determine
the behaviour of the system whenever the control is in the given phase.

Some phase commitments are considered elementary, and are interpreted as
specifications of sensors or actuators. They will in general observe or control a
single component of the plant state for a specific phase. With sequential and
iterative decomposition of phases composite commitments can be refined till
they are elementary for a finer set of phases [45].

When 7, 7, . .. denote single phase states, and ¢, ¢1, . . . denote assertions on
either the plant state or the phase states, the elementary forms are:

Sequencing: [7] — [#V&V-.-V7,]|, where n = 0 means that the controller
is stable in phase w, while n > 1 means that there is a nondeterministic choice
of a successor phase.

Progress: [7 A ¢] —= [-7], where the phase 7 is left when ¢ holds for ¢
time units. A progress form may also express active stability of the phase:
mAp] 5 [l.

Selection: [-7]; [7 Ag] S [#V &LV ...V 7], where the sequencing of phase
w is constrained under the condition ¢ for ¢ time units (or forever, if the time
bound is omitted). If n = 0 the formula defines conditional, time bounded
stability of the phase. Note that ¢ is a lower bound, a design may keep the
selection open for a longer time, but not for a shorter.

Synchronization: [m;V...V7,| — [¢], where the combined phase 71 V...V,
will cause ¢ to hold after ¢ time units. Note that ¢ is an upper bound, a
design is allowed to cause ¢ sooner but not later.

Framing: [-7|; [7Ag] B [¢], is dual to phase stability. It is a commitment
that the state ¢ will remain stable for ¢ time units when the phase is entered.

Example: A gas burner control system satisfying the above requirements may
be designed in many ways. The following design consists of a controlling state
machine given informally by the diagram in Figure 3.

The system proceeds cyclically through the following phases:

tdle: Initially and after a completed cycle. The gas is turned off. Heat request
terminates the phase.

purge: The gas remains off for 30 seconds.

tgnite: The gas valve is opened and ignition should occur. After 1 second the
phase is left.

burn: Go to Idle if Flame or Heat request goes off.

This controlling automaton can be derived systematically from the require-
ments [45]. Here, we give only the final result which is specified by a controller
state main ranging over the phases and a parameter § denoting a reaction time

Idle {—Gas

8

Heatreg

Purge {—Gas

#

wait 30

Ignite {Gas

B

wait 1

Burn {Gas

o

- HeatReq V - Flame

Fig. 3. Main controller of Gas burner.

_ GBCon
GB
main : state {Idle, Purge, Ignite, Burn}
J:R

0<d<;

The phases are given by abbreviations idle == (main = Idle) etc.
The sequencing of the phases is given by a schema with simple transitions.
The initial phase is idle.

__GBSeq
GBCon

£> 0= [idle] ; true
[idle] — [idle V purge]
[purge] —> [purge V ignite]
[ignite] — [ignite V burn)
[burn] — [burn V idle]

For each of the phases, a collection of simple phase commitments can be
defined. The idle phase is under Heatreq left within 2 - § seconds, it is stable
under — Heatreq, and Gas is turned off.

__ GBldle
GBCon

[idle A Heatreq] 24, [—idle]

[—idle] ; [idle A —Heatreq] — [idle]

[idle] 2% [~ Gas)

The purge phase is stable for 30 and left after 30 + ¢ seconds. Gas is turned off.

__ GBPurge
GBCon

<30
([-purge] ; [purge]) == [purge]
30+4
[purge [purge]

=
[purge 24 [-Gas]

The ignite phase turns on the gas and is stable for 1 second before it is left for
the burn phase.

__GBIgnate
GBCon
([—ignite] ; [ignite]) LN [ignite

[ignite Lk [—ignite]
[ignite 24 [Gas]

The burn phase is under —~Flame left within the noflicker period (246 < 0.5);
under —Heatreq it is left within 38 — 5 - § seconds; it is stable under Heatreq A
Flame; and finally, Gas is kept on.

__ GBBurn
GBCon

burn A —Flame] 29, [idle]

[
[burn A —Heatreq| 8884 [idle]

[-burn] ; [burn A Heatreq A Flame| — [burn]
([-burn] ; [burn A Gas]) — [Gas]

It can be verified using laws for combination of phases [45] that

GBSeq N GBIdle AN GBPurge N GBIgnite A GBBurn = GBReq

2.3 Refinement towards an architecture

The above design does not consider a particular technology or architecture. How-
ever, for a program implementation with distribution it is necessary to formulate
the design in terms of control states only, as pointed out by Schenke [70]. The
plant states are mapped to control states by simple sensors and actuators (A/D
and D/A converters) of the following shapes.

Example:

_ GBConP
J:R
hr, fl, gas : state Bool

main : state {Idle, Purge, Ignite, Burn}

0<d<g

hr, fl and gas are the phase states of the simple sensors and actuator.

_ GBHeat
GBConP
Heatreq : state Bool

[Heatreq | LN [hr]
[~ Heatreq] LI [—hr]

__ GBFlame
GBConP
Flame : state Bool

[Flame] LN [A]
[~ Flame] — [-fl]

__ GBGas
GBConP
Gas : state Bool

[gas] LN [Gas]
[—gas] LN [-Gas]

The requirement can be refined using transitivity to communicate through
these components. This reduces the allowed reaction times by . The phase
constraints are reduced similarly, and are presented below, rearranged according
to the elementary forms.

Sequencing is unchanged, while the progress constraints become

__ GBProg
GBConP

idle A hr] -2 [—idle]

purge | 8044 [purge]
1 e [—ignite]
burn A —fl] LI [—burn]

burn A —hr] LI [—burn]

Stability constraints are

__ GBStab
GBConP

[idle] ; [tdle A —hr| — [idle]

<30
[-purge] ; [purge]) = [purge]

(
([—ignite] ; [ignite]) =L [ignite]
([—burn] ; [burn A hr A fl] — [burn]

and synchronizations with actuators

__GBSynch
GBCon

[idle V purge LI [—gas]
LN [gas]

[ignite V burn]

O
Despite the systematic refinement techniques used in the design, it would
obviously be nice to have a tool to check constraints, e.g. on the design parameter
J [72].
This refinement forms a link to the architecture given by the SL specification
in section 3.

2.4 Related work

The development of requirements for a model of a dynamic system presented
above is similar in spirit although not in the chosen formalism to work by Leveson
[40, 34] and Parnas [64]. The Duration Calculus builds on Moszkowski’s interval
temporal logic [53, 54, 75]. Time may also be handled explicitly asin TLA [38, 39]
or within a conventional temporal logic [36, 65, 30]. In a proof assistant, model
checking [20, 7] might be very useful. The refinement approach outlined above
is inspired by the hierarchical state machines of Harel [23]. Designs can also be
subjected to reliability analysis [79].

3 Architecture and Programs

The formalisms of duration calculus, even in the rather restricted standard forms,
and programs in an occam-like [32] language PL are on very distant abstract
levels. In particular at some step the description must change from the state
based world of the duration calculus to the event based world of PL. That is
where an intermediate stage comes in, the specification language SL [61] for reac-
tive systems with real-time constraints. This language will be described now. We
outline the transformation of an RL architectural design to an SL specification
and outline a transformational approach for the systematic design of programs
in the programming language PL.

The purpose of a reactive system is to react to stimuli from its environment
so that this is kept in a certain desirable condition. To this end, the system
may communicate with its environment via directed channels. As our running
example we use the gas burner introduced in the previous section.

For reactive systems a variety of specification formalisms have been devel-
oped, among them Temporal Logic [42], iterative programs like action systems
[1] or UNITY programs [16], input/output automata [41], process algebra [48, 2],
and stream processing functions [14]. However, it remains a difficult task to de-
sign correct programs from such specifications.

In our approach we formulate transformation rules for the stepwise design
and implementation of both sequential and concurrent systems.

3.1 Specification language SL

An SL specification begins with the description of an interface declaring the
communication channels ch of the component, for example

INPUT OF type ch

Then the desired behaviour of the system components is described. This descrip-
tion is split into a trace part, a state part and a timing part.

Trace part The trace part specifies the sequencing constraints on the system
channels but ignores the communication values. This is done by means of trace
assertions. Each trace assertion is a regular expression over a communication
alphabet. The trace part thus uses ideas from path expressions [15] and regular
trace logic [84, 57].

The syntactical form of a trace assertion ta is

TRACE ¢ IN re

where the alphabet o is a subset of the interface channels and re is a regular
expression over these channels. Informally, ta describes the order in which the
channels in a can occur in the sequences or traces of communications between
component and environment: at any moment this order must correspond to a
word in the language denoted by the regular expression re, the set of possible
sequences of channel communications. If there are several trace assertions, all of
them must be satisfied simultaneously.

Example: Consider the specification of a simple controller for the gas burner,
cf. figure 3 and the schemas of section 2.3.

A systematic transformation introduces channels corresponding to all phase
changes of the architecture and synchronizations, cf. schema GBConP. This is
the interface for the main controller, one of several parallel components.

INPUT OF Signal yesheat, noheat, noflame
OUTPUT OF Signal idle, purge, ignite, burnm,
gason, gasoff

The sequencing constraints on the phase automaton are recorded in a trace
assertion of the main controller

TRACE alphabet IN pref cycle*

with cycle = gasoff.yesheat.purge.ignite.gason.burn. (noheat+noflame) .idle
The alphabet here is the set of all events appearing in the regular expres-
sion. In regular expressions . and + and * are the usual operators that denote
concatenation, choice and Kleene star. The operator pref denotes prefix closure;
it specifies the stepwise evolution of a system where one communication occurs
after the other.
For the heat and the flame controller we get the trace assertions

TRACE heaton, yesheat, heatoff ,noheat

IN pref (heaton.yesheat.heatoff.(noheat+e))*
TRACE flon, floff, noflame

IN pref (flon.floff.(noflame+c))*

The choices with the empty word reflect the fact that in the main controller
the burn phase can be left either with normal end of a heat request or a flame
failure. In the first case the signal noheat will occur, but the signal noflame has
to be dropped in the flame controller. In case of a flame failure it is the other
way round. a

The trace part defines the control behaviour of a system without considera-
tion of any internal state, communicated values or timing.

State part The state part specifies the communication values that can be ex-
changed over the interface channels. To this end local state variables may be
introduced. Changes of these variables are recorded by a set of communication
assertions in a pre-post style assertional specification. In the communication
assertions the values and channels are linked together.

A variable z is declared as follows:

VAR lype x INIT e

The expression e represents the initial value of x. The local variables constitute
the state space of the specification but need not appear in an implementation of
the specified system nor necessarily mirror the states of an RL specification.

A communication assertion for a channel ch has the form
COM ch WRITE w READ 7 WHEN wh THEN th

and describes the state transition that each communication on ch induces. The
lists w and 7 record the state variables that may be modified or only read dur-
ing the transition. The WHEN predicate wh and the THEN predicate th describe the
precondition and the effect of the state transition. In th, a primed variable =z’
refers to the value of variable z at the moment of termination. The communica-
tion value on the channel ch is specified by @ch. In communication assertions,
empty variable lists and predicates being true can be omitted. A true in the
WHEN predicate shows that the communication is never forbidden by the state
part, a true in the THEN predicate shows that the effect of the communication is
not determined by the state part.

Example: In the gas burner specification above, communications are simple
input and output signals, and we do not need a state part. However, consider a
slightly changed scenario, where the sensors for heat request and flame denote
the presence or absence of heat request or flame respectively by a variable. Their
values are transmitted by the yesheat, noheat, noflame signals and changed by
burn

VAR Boolean flame, heatreq INIT false :

The communication assertions that define the right flame and heatreq phases
are

COM yesheat WRITE heatreq THEN heatreq’ = true

COM noheat WRITE heatreq THEN heatreq’ = false
which sets and resets the heatreq and
COM burn WRITE flame THEN flame’ = true

COM noflame WRITE flame THEN flame’ = false

The variable flame is not set by an external signal, but by burn because of
the assumption that after that signal the flame is burning. In idle the variables
can be tested. There we have only read variables. In this assertion there is even
a WHEN predicate.

COM idle READ heatreq, flame WHEN —heatreqV —flame

O

The example illustrates the flexibility of SL. If a design has a simple regular
control structure, this can be recorded immediately in the trace assertions. If
the design has a more involved control structure, the control can be encoded
in the variables and the communication assertions. This is unavoidable, if the
language of possible channel sequences is not regular. In the extreme, when
no trace assertions are left, the specification is an action system. Although all

information can be encoded in the communication assertions, the trace assertions
are useful for the task of developing implementations in a methodological way.

How to cope with a system which has infinitely many states, is shown in the
specification of a railway crossing in [70].

3.2 Timing part

In the timing part it is specified when channels are ready for communication.
Lower bounds are expressed by

AFTER re WAIT ch r

which means that after communication of a trace belonging to the language
defined by the regular expression re, the system will not communicate on ch
before time r has elapsed.

Upper bounds are expressed by

AFTER re READY ch r

which means that after communication of a trace in re, the system becomes
ready to communicate on ch within time r.

In order to guarantee the timing restrictions we shall assume that for each
channel ch there is a latency lat(ch) with the property that, if both commu-
nication partners are ready for a communication via ch for lat(ch) time units,
the communication takes place. These latency constants will be used in our in-
termediate step, the SL specification. We do not assume maximal progress since
this would prohibit implementation on real hardware.

Example: For the gas burner we get the following time restrictions:

AFTER cycle*.gasoff.yesheat.purge WAIT ignite 30
AFTER cycle*.gasoff.yesheat.purge.ignite WAIT burn 1

for the main controller. The heat controller has the time restriction
AFTER cyclel*.heaton.purge.heatoff WAIT heaton lat(noheat)

with cyclel = heaton.purge.heatoff. (noheat+e).

This requirement is necessary to enable a noheat signal, if such a signal is re-
quired. Otherwise the main controller would not necessarily get this information
if a heaton follows too quickly. Then the main controller could not communicate
on purge, and a system deadlock would only be prevented by a flame failure! So
the heaton must be delayed for this extremely short time and the communication
on noheat will be performed, if it becomes necessary.

The flame controller has the time restriction

AFTER cycle2x.flon.floff WAIT flon lat(noflame)

with cycle2 = flon.floff. (noflame+e).

This requirement is similar to the heat requirement. a
With the timing assertions, the timing constraint part allows tight control of

real-time properties of a component.

3.3 System specifications

Component specifications can be named in SL as illustrated by the following
aggregation of the example for the main controller.

Example:

SPEC GBMaincontrol
INPUT OF Signal yesheat, noheat, noflame
OUTPUT OF Signal idle, purge, ignite, burnm,
gason, gasoff

TRACE alphabet IN pref (gasoff.yesheat.purge.ignite.gason
.burn. (noheat+noflame) .idle)*

AFTER cycle*.gasoff.yesheat.purge WAIT ignite 30
AFTER cycle*.gasoff.yesheat.purge.ignite WAIT burn 1
END

with alphabet and cycle as above.
The specifications GBHeat and GBFlame for the heat and the flame controller
are even simpler and omitted here. a
Component specifications can in SL be combined with other components in
a parallel construct denoted by the operator SYN and channels can be hidden by
a HIDE operator.

Example:

SYSTEM GB
HIDE yesheat, noheat, noflame
SYN
GBMaincontrol
GBHeat
GBFlame
END

This interplay between SYN and HIDE is also called PAR in the programming lan-
guage. O

Altogether SL is a specification language that is close to the programming
level. As such it extends Z specifications [73], UNITY programs [16] or action
systems [1] by explicit communications and regular expressions to control their
occurrence.

3.4 Programming language PL

We consider an occam-like [32] programming language PL where parallelism is
allowed at the outermost level only. Programs are constructed using programmsing
operators like

— PAR for the parallel composition of sequential components,

— SKIP to continue immediately (the neutral element of sequential composi-
tion),

— assignment z := e, input ch?z and output chle, and

— WHILE, SEQ, IF, ALT for loops, sequential, conditional, and alternative compo-
sition.

In inputs and outputs the input destination or output value e are omitted if
the channel value type is Signal.

An upper bound on the computation time of a program segment is specified
by prefixing the segment with

UPPERBOUND r

where r is a non-negative real constant. This applies only for the time needed
for active computations. Times which are spent in a passive state during a delay
are not included.

The wait time of a program segment is specified by an exact delay statement
of the form

DELAY r

where r is a non-negative real constant.

3.5 Compilation of SL to PL

The simple structure of SL can be exploited in the development of PL programs.
The trace part is transformed into a communication skeleton and the state part
completes this skeleton to a program by adding purely sequential parts. Using
this idea a large subset of SL specifications can be transformed fully automati-
cally into PL by the so-called syntaz-directed transformation SDT [69, 61]. The
name “SDT-rule” refers to the idea to guide the development of the control
structure by the syntactic structure of regular expressions. SDT is applicable to
specifications containing only one trace assertion with a regular expression re
which is of the form

> wi'(Zj Ti)t Dk Yk

with words w;, #; ;, yx over the channel alphabet such that certain conditions
on the initial events are fulfilled. Then the program construction proceeds by
induction on this structure:

- every letter is transformed into an input or output,
- every . is transformed into a SEQ construct,

- every + is transformed into an ALT construct,

- every # is transformed into a WHILE true loop,

where we have to take the time restrictions into consideration.

In order to apply the SDT-rule, in general we have to apply a number of
transformations to the SL specification before. For instance the trace assertions
have to be merged into a single assertion. This can be done because the semantics
of trace assertions depends not on their particular form but on the language

defined by them.

Example: Now the main controller of our above SL specification translates to
the PL program

CHANNEL OF Signal gason, gasoff, yesheat, noheat, noflame,
idle, purge, ignite, burn :
WHILE true
SEQ
gasoff_u !
yesheat_u 7
purge_u !
DELAY 30
ignite_u !
gason_u !
DELAY 1
burn_u !
ALT MAXDELAY min(lat (noheat),lat (noflame))
noheat 7
idle_u !
noflame ?
idle_u !

For a communication com the expression comu ? is an abbreviation for

UPPERBOUND lat (com)
com ?

and analogously for com !. The MAXDELAY value (the minimum of the two latency
constants) is a uniform upper bound for all initial actions of the ALT. a

More sophisticated concurrent programs can be developed using transforma-
tions on the full SL language mixed with PL so-called mized terms [58]. These are
constructs that mix the programming and specification notation. The individual
transformations represent refinement steps from specifications via mixed terms
to programs. This is an extension of refinement calculi devised for sequential
programs [51].

3.6 Related work

In general we pursue a transformational approach where a given specification is
transformed stepwise into a program. Our work is in the tradition of Dijkstra’s
approach to refinement, and the work originated by Burstall and Darlington
and pursued further to practical application in projects like CIP (standing for

Computer-aided Intuition-guided Programming) [3] and PROSPECTRA (stand-
ing for PROgram development by SPECification and TRAnsformation) [37] but
our emphasis is on concurrency and communication, as in [1].

In specific cases, several transformation rules can be combined to sirategies,
1.e. recipes how to apply them systematically or even automatically. SDT is one
such strategy. More widely applicable is an expansion strategy [61]. Both SDT
and expansion yield only sequential programs, i.e. without any concurrent com-
position. No fixed strategy is given for designing concurrent implementations.
It is an “intuition-guided” activity where transformation rules are selected and
applied [60]. A strategy by which parallelism can be introduced in the timed
setting at some stage between the standard forms of duration calculus and SL
is given in [70].

The correctness of all transformations and hence of the resulting occam-like
programs is ultimately based on a combined state-trace-readiness model [61] for
reactive systems which has been extended to a timed semantics. However, a user
of the transformations will not be concerned with such semantic details, but will
deal only with the syntactic rules.

4 Programs to Machine Code

Defective development software, in particular compilers, can result in incorrect
machine code, even when a correct high-level program has been developed with
the methods shown in the previous section. Inspection of generated machine
code is a possible solution but is tedious and error-prone. It can be avoided by
constructing reliable compilers.

The traditional approach to increase confidence in a compiler is to validate
it by compiling test suites, and inspecting the results of executing the object
programs. It is questionable whether this can replace target code inspection in
safety-critical software development, as test programs normally exhibit rather
simple behaviour and will not catch most of the timing and synchronization
errors. Hence, development of a reliable compiler for a real-time programming
language should include formal verification of its vital constituents, in particular
of its code generator.

In order to verify a code generator one has to show that it maps source pro-
grams to semantically adequate target programs. The intricacy about this ver-
ification process is that syntactically and semantically different layers must be
related, namely a structured source program and a flat list of machine language
instructions. A correctness proof may thus easily become monolithic, aimed at
a narrow source language with a specific code generator for a given target pro-
cessor. Such a proof would have little interest beyond the particular application,
and might still require a large effort. In ProCoS we have pursued a modular
approach that should adapt to modifications of both the source and the target,
and thus justify the effort. The approach [27] is based on defining the effect
of machine programs in terms of the high-level language and using algebraic
reasoning in verifying code generation. Assuming that code generators adhere

to the structures of the high-level language, the proof becomes modular. In the
case of highly optimizing code generators this might be a limitation, but for the
application area that ProCoS has in mind, this certainly is acceptable.

It is natural to think of instructions of von Neumann machines as denoting
assignments to machine components like accumulators and store. Hence, the
effect of machine instructions can be described by imperative programs. E.g.,
the transputer [33] instruction 1de(1), which loads the accumulator called 4 with
1, and moves A’s contents to accumulator B, as well as B’s contents to accumulator
C, can be represented by the multiple assignment

£(1dc(1)) £ 4,B,C:=1,4,B .

Similarly, the transputer instruction stl(z), writing A’s contents to variable z,
moving B’s value to 4, C’s value to B, and an unspecified value to C, can be
represented by

E(stl(z)) = z,4,B,C:=A,B,C,— ,

where the assignment of — to C abbreviates the nondeterministic choice between
all possible assignments to C. Clearly, the transputer instructions reference mem-
ory locations, not variable identifiers. We shall see in section 4.4 how program
variables are mapped to memory locations.

For the purpose of this survey we idealize from some details of the transputer,
namely the prefixing used to build large operands, the loading of programs to
memory etc. A proper treatment of jump instructions is also omitted here.®

If the semantics of machine instructions is defined with source level pro-
grams as above, the source language’s refinement algebra can be used to de-
rive that certain machine instruction sequences refine, i.e. implement, certain
source programs. E.g. the following calculation shows that the code sequence
(1de(1), st1(z)) has the same effect as the assignment z:=1, if the additional
effect of the machine instructions on the accumulators is taken to be irrelevant.

£({1de(1), stl(=z)))

= {Instruction list}
£(lde(1)) ; E(stl(z))

= {Definitions above}
A,B,C:=1,A,B; z,A4,B,C:=4,B,C,—

= {Combine assignments, Identity assignment}
z,A,B,C:=1,A,B, —

= {Identity assignment}
z,C:=1,—

 Papers describing the code generator verification in more detail can be ob-

tained via anonymous ftp from host ftp.informatik.uni-kiel.de (net address
134.245.15.114) in directory /pub/kiel/procos.

We have used the assignment laws

(z:=€) = (m,y:=e,9) (Identity assignment)
(z:=e; z:=f) = (z:= fle/=]) (Combine assignments)

where f[e/z] denotes substitution of e for z in expression f, and the property
E({t, .. yin)) = E(01); -5 E(n) (Instruction list)

of machine code sequences without jump instructions.

The little calculation above is a proof that (1dc(1),st1(z)) is correct target
code for :=1 when timing is not taken into account. But of course execution
times of the source and target processes must be related in a proof of correct
implementation of a real-time program. Therefore, we will now take a look at the
mechanisms provided by PL, the programming language used in the ProCoS-
project, to control execution times.

4.1 Real-time in programs

A PL program is a parallel composition of sequential programs. As in occam [32]
an environment can observe a PL program only through communications on its
external channels. Internal actions like assignments, particularly their execution
times, can only indirectly be observed by their effect on succeeding communica-
tions. Semantically, the value of a program variable is not an observable of the
entire programs [19, 56]. It is only visible inside sequential programs. Therefore,
for sequential programs convenient abstractions about the timing of actions can
be used since they need not be reflected directly by the corresponding machine
code. Only the timing of communications must be preserved. More specifically
the following abstractions have been built into the semantics of PL.

— The atomic internal actions are immediate, taking no execution time. This
convention applies to assignments and the process SKIP.

— The control structures (sequential composition, conditional and loops) do
not spend time beyond the time spent by their component processes.

— In contrast, communications spends time. Their time consumption is divided
into two different classes: Active tame is the time used by preceding internal
actions preparing for the communication, while watting time is time spent
waiting for its communication partner to also engage into the communica-
tion. The amount of real time consumed by a communication command is
always the sum of the two. The reason for distinguishing the two portions of
real-time is compilability: Only the active time can be checked by a compiler
whereas the waiting time depends on the synchronization structure of the
algorithm.

These assumptions greatly simplify reasoning about sequential processes since
they result in a number of powerful and general laws facilitating algebraic cal-
culation. But they imply a task for a compiler: The execution time of machine

code implementing internal processes and control structures must be shifted to
succeeding communication commands. This technique is described in section 4.3.

Basically, the active time consumption of external processes is unconstrained.
For real-time programming, PL offers an upper-bound construct to constrain the
active time. In this section we use the notation | P | < t instead of the occam-
style notation used in section 3. | P | < ¢ confines the enclosed sequential process
P to spend at most ¢ units of active time.

In order to reason about active time spent by internal activity of the machine
we extend the programming notation by an active delay: A d. It is a process that
neither communicates nor changes the state and terminates after at most d units
of active time.

4.2 Adding timing information to the effect processes

The description of the untimed meaning of an instruction has been given by
describing its effect on the transputer state by a source language-like process.
The additional description of the wnstruction timing can be done by adding
appropriate delays to these effect processes. For simplicity, we ignore in this
survey the dependencies of instruction timing on the length of operands and on
the latencies of different memory devices.

Assuming that ¢ is the duration of one processor cycle we can describe the
effect of a load-constant instruction, which takes one cycle, by

£(lde(n)) = Ac; A,B,C:=n,A,B .
Similarly,

E(stl(z))= Ac; z,A,B,C:=A,B,C,—
£(1d1(z)) = A2c¢; A,B,C:=x,A,B

E(outword) = A25¢;
if B = MinInt + 0 — LinkO!'A

B = MinInt + 3 — Link3!!A
fi;
A7B7C::_7_7_

where channel!! expression abbreviates |channel! expression| < 0, i.e. a com-
munication that spends no active time.

4.3 Meeting hard real-time constraints with compiled code

Since timing is mirrored in the semantics it is clearly reasonable to consider
a machine program m an implementation of source process P iff the (timed)
effect of the generated machine code refines the source process, i.e. iff P C
E(m). Unfortunately, this is much too restrictive. As described in section 4.1
the compiler must distribute the execution time of machine code corresponding

to internal processes. Our argument that (1dc(1),st1l(z)) refines z:=1 in an
untimed world, for example, breaks down when timing is taken into account.
z:= 1, in contrast to the machine code, does not take time to execute. But since
(1dc(1), st1(z)) is reasonable code for z :=1 — indeed, the most reasonable one
can think of — we need a more liberal correctness predicate.

The idea is to shift excess time of code implementing internal activity to a
sequentially successive process that is compiled to a machine program needing
less active time than allowed by the source. This can be accomplished by adding
two parameters L and R to the correctness predicate, where L states the excess
active time of the sequential predecessor that is absorbed and R states the excess
active time that is handed over to the sequential successor for absorption. A third
new parameter F is introduced that can be used to constrain the active time
allowed for the source process. This leads to the following definition.

Definition 4.1 A machine program m implements source process P, absorbing
excess active time L from its sequential predecessor, exporting excess active time
R to its sequential successor, under time bound E iff

|P|<E; ARLC AL; E(m) .
Now, using the laws

(Ad; z:=e) = (z:=e; Ad) (:=-A-commute)
(|z:=e| < d) = (z:=¢) (:=-bound)
(Ady; Ady) (A(d1 + d2)) (A-additivity)

we can show that (1dc(1),stl(z)) implements z:=1, absorbing an arbitrary
amount L of excess active time from its sequential predecessor, provided its
sequential successor is willing to absorb L + 2 ¢ units excess active time. As the
source process cannot spend any active time, its context may place the obligation
to spend the least possible active time, namely 0. This is expressed by

|z, 4,B,C:=1,—,—,—|<0; A(L+2¢)C AL; E({1dc(1),stl(z)))

where, again, the additional effect on the accumulators is considered irrelevant.
The proof is

AL; E({1dc(1),stl(z)))
= {Instruction list}
AL; E(1dc(1)); E(stl(z))
= {:=-A-commute, A-additivity}
AL; A2c¢; A,B,C:=1,A,B; z,A,B,C:=A,B,C,—
= {combine assignments, identity assignment}
AL; A2¢; 2,C:=1,—
= {A-additivity }
A(L+2c¢); z,C:=1,—

= {:=-A-commute}
z,C:=1,—; A(L+2¢)
= {:=-bound}
|z,¢:=1,—|<0; A(L+2¢c)
3 {nondeterminism }
|z,4,B,C:=1,—,—,—|<0; A(L+2¢) .
Note that the excess active time L of the sequential predecessor is simply handed
through to the sequential successor.
A similar calculation shows that (ldc(MinlInt),1d1(z), outword) correctly
implements LinkO!z and absorbs all excess time coming from its sequential

predecessor if the source process is placed into a context that allows to spend
L + 28 ¢ units of active time, i.e.

|Link0!z ; 4,B,C:=—,—, — | < (L+28¢); A0
C AL; E£({1de(Minlnt), 1d1(z), outword)) .
Note that this illustrates that excess execution time can be absorbed by unused
active time of sequentially following communication commands. The inequality
is proved by
AL; E({1de(Minlnt), 1d1(z), outword))
= {Instruction list}
AL; E(ldc(MinInt)) ; £(1d1l(z)); E(outword)
3 {:=-A-commute, A-additivity, combine assignments }
AL; A28c¢; LinkO!z; A,B,C:=—,—, —
= {A-additivity}
A(L+28¢); Link0!'z ; 4,B,C:=—,—, —
3 {!-bound}
|Linko!z | < (L+28¢); A,B,C:=—,—, —
= {Internal actions may be moved across bounds}
|LinkO!z; A4,B,C:=—,—, — | < (L+28¢) ,

using the law
(Ad; elle) O (Jete| < d) . (*-bound)

Clearly, the most interesting question when compiling a real-time programming
language is how the compiler is going to ensure that every deadline stated in
the source program is met at run-time. E.g. consider an upper bound |P | < ¢t
in the source process to be compiled, constraining the active time available to
the enclosed process P and thus demanding a certain execution speed of the
compiled code. Then from the law

(JPI1<#) 3 (P|<t), if) <ty (Bound-refinement)

we get that |P| < ¢ is implemented by machine code m, absorbing excess
time L from its predecessor and exporting excess time R to its successor (i.e.
|P|<t; ARC AL; E(m)), if thereis E <t with |[P|<E; ARC AL;
E(m). Therefore a compiler encountering an upper bound operator in the source
program must only check whether the required time bound is more liberal than
the one asserted upon the code generated for the enclosed process. If it is, then
no further action is necessary, as the real-time requirement expressed by the
bound is met. If it is less liberal, on the other hand, then this indicates that
the source process cannot be adequately compiled for the given target hardware
with the given code generation strategy, and it should be rejected (or perhaps
another code generator should be activated).

4.4 Representing source program state by memory locations

In the previous examples, variables have been addressed by their name. This
has allowed us to use simple refinement formulas when illustrating correctness
of code generation. Clearly, the actual transputer can only access storage lo-
cations instead of named variables. As the environment only interacts with a
program through its external channels whereas variables and internal channels
of the program are completely hidden, the latter components can be arbitrarily
represented.

But it would be too liberal just to forget about variables and internal chan-
nels as we want a compositional code generator verification that can deduce
correctness of code for a sequential composition from correctness of code for
its components. The approach is to ensure that an encoding of the state of the
additional components is always available on the machine.

The well-known standard technique in code generation is to establish a sym-
bol table assigning locations in the machine store to variable names of the source
process. Suppose that z,...,z are the variables of the source process and that
¥ is a symbol table that maps each variable name of the source program to the
workspace, M, location allocated to hold its value, so M[¥ z] is the value of z.
Clearly it is necessary to insist that ¥ is a total injection. We define a symbolic
dump ¥; it assigns to each high level variable the value in the corresponding
location [29], thus retrieving the source process state from the machine state.

~ def
v =Zvaraz,...,z;
z,...,z:=MFz],..., MN¥2];
end A,B,C, M
Here, var z, ..., z introduces the variables z, ...,z of type integer. The corre-

sponding end A, B, C, M forgets, i.e. ends the scope of variables A, B, C and M.

Vice versa, the part of the machine store which is allocated by the symbol
table can be initialized such that it reflects the current values of #,...,z by
reverse dumping with

A4 def
¥-! = var A,B,C,M;

MP«z],... M¥z]:=a,...,2;
endz,...,z

A notable difference between ¥ and ¥~! is that the dump ¥ determines the
complete state of the source process, whereas the reverse dump g1 only deter-
mines part of the machine state. Therefore, they are not inverses, but an easy
calculation shows that the pair (!f/,ﬁ_l) is a simulation [29], i.e. that

¥, U-1 C skIP and SKIPC ¥—l; ¥ .

Now, using the dumps as a means of understanding state representation with
respect to a symbol table ¥, one can define

a source process P 1s implemented by machine program m relative to a
symbol table ¥, iff ¥; P C E(m); ¥,

which closely corresponds to the well-known notion of a commutative diagram
formalizing state representation. Note that by ending the scope of A, B and C at
the end of ¥ we also have formally expressed that the effect on the accumulators
is irrelevant.

The above implementation condition is only half of the story, as it does
not cover absorption of excess time as demonstrated in the previous section.
Combining both state representation via symbolic dumps and move of excess
time, we arrive at the following implementation condition

Definition 4.2 A machine program m implements source process P with respect
to the symbol table ¥, absorbing excess active time L from its sequential predeces-
sor, exporting excess active time R to its sequential successor, under time bound

B, iff
G (P|<E); ARC AL; £(m); ¥ .
For brevity, this property is denoted T(P, m,¥, L, R, E).

As T expresses correctness of machine code fragment m relative to source process
P it is the implicit code generator specification for process compilation used in
the ProCoS II project.

4.5 Towards explicit code generator specifications

The simplest reasonable specification of a code generator, but also the most im-
plicit, is to say that it assigns correct machine code fragments to source objects.
Aiming at a compositional code generator specification that proceeds along the
syntactic structure of source programs, it is furthermore desirable to state addi-
tional implementation properties for program components that imply correctness
of code assigned to full programs when satisfied on all program components. That
is exactly what has been done when defining the implementation property 7 in
the previous section. Hence, 7 qualifies as a reasonable implicit specification of
code generation for processes.

Now, the task of code generator design is to develop a complying explicit code
generator specification from the implicit one. We accomplish this by proving the-
orems about the implicit specification 7 in the calculational style demonstrated

in the introduction to this section and in section 4.3. There we have shown
theorems for special cases of assignment and output. For compound constructs
op(P1,..., Pp) the theorems take the form of an implication that establishes
the correctness of code for the compound construct from correctness of code for
the components Pi,..., P, and syntactic conditions on the surrounding code.
Taking a slightly different view, such a theorem describes how to construct cor-
rect code for a larger process if correct code for all its components is known.
Thus, the collection of these theorems induces a syntactically defined compiling
relation C that is a sub-relation of the correctness relation 7, i.e. an explicit
specification of a correct code generator. If necessary C is further specialized to
a function. This corresponds to code selection. More specifically, the specialized
C is a function depending on the source process P the symbol table ¥ and the
absorption capacity L.

In the framework of the ProCoS-project we develop a prototype compiler
written in the functional language Standard ML [49, 76]. The code generator is
simply given by expressing C in Standard ML syntax.

4.6 Related Work

The idea of specifying a machine by a high level program is old and is present
already in the idea of micro-programming [77]. Alain Martin and others [43, 13,
25] use such descriptions as a starting point for hardware design (see also section
5). One of the contributions of Hoare et al. [27, 29] on which our work is based is
the proposal to use such a description together with a refinement algebra related
to the source language [28, 50] for the reasoning about compilers. From more
classical work about compiler correctness [47, 52, 74, 35] we are distinguished
by aiming at code for an actual processor and not for idealized hardware, a goal
shared with E. Borger et. al. [6], who are also concerned with proving correct
compilation of occam. We try to accurately reflect the restrictions imposed by
the hardware. The additional complexity of aiming at actual hardware requires
modularity to split the verification in relatively small independent steps. Another
difference to classical methods is that we use refinement as the correctness notion
instead of semantic equivalence (this is also borrowed from [29]). This allows a
proper treatment of under-specification in the source language’s semantics (e.g.
of uninitialized variables) and accommodates modularization. We treat real-time
and communication [55, 18]. Like the work at CLInc [4] on the ‘verified stack’
we try to interface to higher and lower levels of abstraction.

5 Programs to Hardware

In this section we outline a technique to compile programs written in PL directly
into hardware via provably correct transformations. A PL program defines what
a hardware circuit should achieve, while a hardware description language, on
the other hand, provides a way to express the components of a hardware circuit
and their interconnections. Hardware description languages are widely used in

many computer-aided systems, allowing libraries of standard checked hardware
modules to be assembled.

Here a simple description language for globally clocked circuits will be given
an observation-oriented semantics based on the states of the wires of a device. Al-
gebraic laws based on this semantics permit circuit descriptions to be expressed
in a hardware normal form. This form is designed to guarantee absence of such
errors as combinational cycles and conflicts. The necessary link with the higher
abstraction level of the programming language is provided by an interpreter
written in the programming language itself.

A hardware normal form is a correct translation of a source program if its in-
terpretation is a refinement of the source program. For the primitive components
of the source language this is proved directly by giving corresponding circuits;
and then a series of theorems shows how a correct circuit for a composite pro-
gram can be constructed from circuits that implements its components. Such
theorems can be interpreted as transformation rules, which can be used directly
or indirectly in the design of an automatic compiler.

The hardware normal form is fairly close to the typical notation of a hard-
ware netlist language describing the interconnection of basic digital components.
These netlists can be implemented in hardware in many ways. Currently, we
use FPGAs (Field Programmable Gate Arrays) which can be dynamically re-
configured by software. This enables us to build hardware implementations of
modest-sized programs entirely by a software process. A significant feature of
such a hardware implementation is that a global clock synchronizes the activity
of subcomponents; i.e., updates on latches can only take place at the end of each
clock cycle.

5.1 Programming language

The programming language used in this section is close to both occam and
PL, as introduced in section 3. Here we only consider variables of type BOOL for
simplicity, but more complicated data types can and have been handled [62]. At
the target hardware level, communication is implemented using a synchronous
handshaking protocol at discrete clock cycle time steps. Verification of the target
hardware assigned to PL programs takes advantage of the source language’s
refinement calculus. The basic algebraic laws for occam programs are given in
[68]. In [24] we have presented some algebraic laws specifically concerned with
real-time properties of programs.

In order to model the behaviour of a clocked circuit we add the generalized
assignment to the PL language.

Let R(v, v') be a predicate relating the final value v’ of the program variable
v to its initial value v. For simplicity we assume that R is feasible,i.e. Vvdv' e R.
The notation

v:eR

is a generalized assignment which assigns v a value such that the post-condition
R holds at its termination.

The following laws illustrate the relation between a generalized assignment
and ordinary ones:

a:':: e y : f) =z, y:€((2 =e)A(y = fla'/z]))

5.2 Synchronous Circuits

A digital circuit has one or more input and output wires. Its behaviour is de-
scribed by a predicate on the values of these wires. There are only two stable
values for a wire: either 0 standing for connection to the ground, or 1 standing
for the presence of electrical potential. A synchronous circuit is equipped with
a global clock which runs slow enough such that all inputs of the circuit be-
come stable before being latched at the end of each clock cycle. The unspecified
duration of each cycle is here taken as the unit of time.

Digital Elements Let W be a Boolean expression, and w be a wire name not
used in the expression W. The notation w.Comb(W) describes a combinational
circuit where the value of the output wire w is defined by the value of W.
This relationship holds only at the end of each clock cycle. Let w; and W,
represent the values at time ¢ of w and W respectively. Since only the states
that devices assume at the ends of clock cycles are of interest, the behaviour of
the combinational circuit w.Comb(W) is described by

w.Comb(W) =Vt e (w, = Wy)

where the range of ¢ is the natural numbers, denoting clock cycles.

Another elementary circuit is the latch z.Latch(B, E) where on each clock
cycle, the output wire & takes the value of the expression E of the previous clock
cycle when the condition B is true; otherwise the value of remains unchanged.
Initially z is 0.

z.Latch(B, E) = (2o = 0AVitex 1 = (E: <1 By > @)

A variation of a latch is the delay element [.Delay(E) = l.Latch(1, E), where
on each clock cycle, the output wire [takes the value of the expression E on the
previous clock cycle.

Input and Output Let D be a Boolean expression and d a wire name not
mentioned in D. The notation d.Out(D) stands for the combinational circuit
d.Comb(D), where the output wire d is used to connect the circuit with its
environment.

Similarly, the notation c.In represents an input wire ¢ whose value is solely
determined by the environment. Since the value of an input wire is arbitrary,
the behaviour of c.In is described by the following nondeterministic assignment:

cIn=Vie(e;=0Ve=1)

Composition Circuit components can be connected by parallel composition to
form larger circuits. Internal wires of such assemblies can be made invisible to
the environment using hiding.

A pair of components (C1, C2) with distinct output wires can be assembled
by connecting like-named wires, making sure that any cycle of connection is cut
by a latch. Since the value observed on the input end of a wire is the same as
that produced on the output end, the combinational behaviour of an assembly
can then be described by the conjunction of their descriptions as follows:

Cl& C2=C1AC2

To explain hiding, let w be a wire used in a circuit C. If the environment
does not use w, we can hide w by existential quantification

Jwe C .

5.3 Hardware Normal Form

Let w be a list of wire names and W a list of Boolean expressions of the same
length as w. We will use the notation w.Comb(W) to represent the network of
combinational circuits

w;.Comb(W1) & .. & wy.Comb(Wy w)

where #w is the length of the list w. Later we will adopt the same convention
for networks of Delay elements and latches.

Let B and E be lists of Boolean expressions with the same length as the list
« of latch names. For notational simplicity, we use the notation £ <1 B > & to
stand for the list of conditionals

{(Br <4 By > @), ..., (Bga < Bya > 242)}

Since we are aiming at a circuit structure where circuit activity is triggered
by the environment through a signal on a start wire named s and termination
of its activity is signalled to the environment through a signal on a finish wire
named f, and where only input and output terminals and latch states are visible
to the environment, we are interested in circuits of the following special form.
Let ¢ be alist of input wire names with s € ¢, and d a list of output wire names
with f € d. Let z be a list of latch names, [a list of Delay names, and w a list
of combinational gate names. The circuit

C(s, f)=3b, ..., Ly, wi, ..., wgy @

[
=

is a network where s € ¢ is an input wire by which the environment triggers
the circuit and f € d is an output wire where the circuit signals the end of its
operation.

Definition 5.1 (Normal Form) The circuit C(s, f) is a hardware normal
form if it satisfies the following conditions:

(NF-1) : The output wire f is not used as input by any component.

(NF-2) : All the latches z;.Latch(B;, E;)

(NF-3) : None of the Boolean expressions L, W, D, B and F is true in the
case when all wires I, w and s have the value 0.

The first condition states that the wire f acts only as a link between the circuit
C with its environment. The second condition is technical, but can easily be
lifted by adding circuitry. It is necessary for non-interference between parallel
components sharing a latch. Condition 3 characterizes a specific kind of ‘one-hot’
synchronous circuit [62] where control signals are used to initiate activities.

Multiplexor When the circuits resulting from software translation are put to-
gether, we need some method of allowing them to share their latches, input wires
and output wires. Let C; (¢ = 1, 2) be a network

w,;.Comb(W;)
C;=3v,e | & [,.Delay(L,;) & z,.Latch(B,, E,)
& ¢; In& d,.Out(D,)

where v, C (w,; Ul;). Assume that C; and C do not share wire names except
latches, input and output devices, and also avoid combinational cycles. The
notation Merge(Cy, C3) represents a network produced by using multiplexors to
merge the latches and outputs in C; and Cs, namely

Merge(Cy, C3) =
w,;.Comb(W,) & w,.Comb(W,)
& 1, Delay(L,) &I, Delay(L,)
dv,, v,e | & z.Latch(B, F)
&

where

z.Latch(B, F) =
{z.Latch(By, Fy) |z € 2, \ z,}
& {z.Latch((B1 V By), (E1V E3)) |z €2, Ny}
& {z.Latch(B, F,) |z € 2z, \ z;}

and ¢ represents the union of ¢; and ¢,, and
{d.Out(D1) | d € d; \ d,}

4.0ut(D) = | & {d.Out(D,V D3) | d € d, N d,}
& {d.Out(D;) |d € d, \ d,}

From the definition it is easy to check that Merge is commutative and associative,
allowing us to treat Merge as a unary operator with a set of networks as its
argument.

One can also prove that when Cy (s, k) and C(h, f) are normal forms without
shared wires except data latches and outputs, then the network

Jh e Merge(Cy, Cs)

is also a normal form.

5.4 Simulator

The normal form C(s, f) described in the previous section starts its operation
after being triggered by an input signal from the wire s € c¢. Initially, all its
Delay elements are reset to 0, and the combinational components enter their
stable states immediately afterward. The initialization phase of C(s, f) can thus
be described by a generalized assignment

Init =

Lw,cdf:e(s'=1)&(l=0)&(u' = W)&(d =D)&(f' = 0)

The activity of the normal form in one clock cycle is described by a delay and a
generalized assignment

Step =
Al I, w

Lweecdf:€

(5' = 0) & (f' = F) &
=D& (w =W)&(z'=E< B >z)&(d =D')

where the delay statement A1 takes one clock cycle. The operation of C can
then be modelled by iterating Step while —f.

The circuit C signals completion on the wire f. In order to do so, condition 3
of the normal form requires that the values of the wires w and [become 0 when
f becomes active. This requirement is represented by an assertion Final

Final = (~w & —l)_

When both [and w are empty lists Final = (true)_ = SKIP.
In summary the behaviour of the normal form C(s, f) can be described by
the following simulator:

<s C,f>=vars, f, L w:
SEQ
Inst
WHILE —f
Step
Final
END s, f, |, w

where the start and finish wires s and f are the only control wire connections to
the outside world.
C(s, f) is a correct implementation of a program P if

P C<s C,f>

In what follows we will only deal with hardware normal forms.

5.5 Hardware compilation

The rest of this section demonstrates how to convert a PL program into a hard-
ware normal form.

Let 5 be a Boolean expression. The assignment (A1); z := b assigns the
value of b to z, and terminates after at most one time unit.

z.Latch(s, s A b)> f>

(A]., T = b) E < s, <& fDelaY(s)

The simplest PL construct is sequential composition, the implementation of
which is given by

Theorem 5.1 If ({s}ullUwl) N ({f}UI2Uw2) = 0, then

SEQ
< s, Cl, h>
<h, Cy f>
C

< s, JheMerge(Cy, Cs), f >

which means that sequential composition of two processes can be implemented
by merging their hardware implementations.

Similar theorems can be given for the conditional statement and iteration.

When discussing communication, we will for simplicity assume that there are
only two input channels ch?, ¢? and one output channel dh!.

The input process ch?z becomes ready to receive a message from the channel
ch by rising ch.inrdy immediately after it starts. It observes the readiness of the
partner residing at the other end of the channel ch via ch.outrdy, and signals
the synchronization on ch by rising the flag ch.synch. Once the communication
takes place, the variable z will be assigned the data received from the channel

ch.
ch?z C < s, Input(s, ch, z, f), f >
where Input(s, ch, @, f) represents the network

[.Delay((s V I) A —ch.outrdy.In)
& f.Delay((s vV I) A ch.outrdy.In)
& ch.inrdy.Out(s v 1)
dle | & ch.synch.Out((s V1) A ch.outrdy.In)
& z.Latch((s V1) A ch.outrdy.In,
(s VI) A ch.outrdy.In A ch.In)
& Idle({c?, dh!})

and

Idle(Chan) = <&07€ Chan C.inrdy.Out(0) & c.synch.Out(0)>

& a1 chan d.outrdy.Out(0)

A corresponding theorem can be given for an output process and for STOP
and the internal actions.

The alternation construct makes a choice on its input guards, and executes
one of those statements whose guard becomes ready. Assume that H;(h;, f;) =
Jv, e f;.Delay(F;) & C; for ¢ = 1,2. If H; and H, do not share output wires

except latches and delay devices, then

ALT? :

bx — < hl, Hq, f1 >

c?y > < hyy Hay fo >
C
< s, 3517 82, la hla h2 L4

ALT(s, b, ¢, 51, $2)

Input(sla ba L, hl)a Cla
Input(sz, <Y, h2)7 027 f >
b.inrdy.Out(s v 1), ’
c.inrdy.Out(s v 1)
& f.Delay(Fy V F3)

& Merge

where

ALT(s, b, ¢, 81, 82) =
[.Delay((s vV 1) A —b.outrdy.In A —c.outrdy.In)
& s.Comb((s V I) A b.outrdy.In)
& s,.Comb((s V1) A c.outrdy.In & —s;)

Similar constructs can be made for time-in (delay) and for time-out. In the
parallel construct, the incoming start pulse activates all statement in parallel. As
PL features only outermost parallelism, a parallel composition never activates a
sequential successor. Hence, there is no need for the target circuit to generate a
finish signal.

5.6 Related Work

This work builds on results published by other researchers [10, 13, 25, 62]. In
particular, there is a strong relationship between our method and that used by
Hoare in software compilation [27]. However, our method handles parallel com-
position and preserves true concurrency in the implementations. Additionally,
a simple FPGA description language is introduced to mimic the behaviour of
a synchronous circuit, which can also be defined in the same semantical model
used for the source language.

In related work, David May at Inmos has shown that a communicating se-
quential process [26] can be implemented as a set of special-purpose computers
(one per process), each with just sufficient resources and microcode [46]. Alain
Martin at CalTech has developed a method of compiling a concurrent program
into a circuit using semantic-preserving program transformations [44]. Ian Page
at Oxford has developed a prototype compiler in the functional language SML

which converts an Occam-like language [32], somewhat more expressive than the
one presented here, to a netlist. After further processing by vendor software the
netlist can be loaded into Xilinx FPGA chips [62, 78]. However, the algebraic
approach presented here offers the significant advantages of providing a prov-
ably correct compiling method, and it is also expected to support a wide range
of design optimization strategies.

6 Mathematical Foundations

The preceding sections have illustrated a top-down approach to the design of
a simple real-time process control system. For complex embedded and safety
critical systems, it is even more important to decompose the project into such
a progression of related phases. These should start with an investigation of the
properties and behaviour of the process evolving within its environment, and an
analysis of requirements for its optimal or satisfactory performance, or at least
for its safety. From these is derived a specification of the electronic or program-
controlled components of the system. The project then may pass through an
appropriate series of design phases, culminating in a program expressed in a
high level language. After translation into the machine code of the chosen com-
puter, it is loaded into memory and executed at high speed by electronic circuitry.
Additional application-specific hardware may be needed to embed the computer
into the system which it controls. Each of these phases relies on theories, con-
cepts, and notations particularly suited to that phase. But the conceptual gaps
between the phases present at least an equal challenge, since reliability of the
delivered system requires that all the gaps be closed. Reliability is achieved not
Just by testing, but by the quality of thought and meticulous care exercised by
analysts, designers, programmers and engineers in all phases of the design.

This has been a description of an ideal that is rarely achieved in any field of
engineering practice. Nevertheless, an ideal forms the best basis for long-term
research into engineering technology. The goal of this research is to discover
and formalize methods which reduce the risks and simplify the routines of the
design task, and give fuller scope for the exercise of human skill and invention
in meeting product requirements at low cost and in good time. The goal of this
survey has been to convey an impression of the methods and intermediate results
of just one such research project.

In principle, the transition between one design phase and the next is marked
by delivery of a document, expressed in some more or less formal notation. Each
phase starts with study and acceptance of the document produced by the previ-
ous phase; and ends with the delivery of another document, usually formulated
at a lower level of abstraction, closer to the details of the eventual implemen-
tation. Each designer seeks high efficiency at low cost; but is constrained by an
absolute obligation that the final document must be totally correct with respect
to the initial document for this design phase. Thus the requirements must be
faithfully reflected in the specification, the specification must be fully achieved
by the design, the design must be correctly implemented by the program, the

program must be accurately translated to machine code, which must be reliably
executed by the hardware. Different words are used in English to describe the
correctness relation at each different level of design. But in principle, it would be
very much simpler, and therefore safer, to use the same correctness relation in
all cases; and that is the principle adopted in the ProCoS project. Correctness
in all phases is identified with simple relationship of logical implication, denoted
by «.

When the system is eventually delivered and put into service, all that really
matters is that the actual hardware and software delivered should meet the
overall requirements of the system. This is guaranteed by a simple mathematical
property of the implementation relation: it is transitive. If P is implemented by
@ and @ is implemented by R then P is implemented by R

IfP<=Qand Q< Rthen P< R

However long the chain of intermediate documents, if each document correctly
implements the previous one, the overall requirements will be correctly imple-
mented by the delivered product.

This is a very simple account of the design process, and the reason why it
can validly be split into any number of phases. The account is highly abstract:
in concrete reality, complications arise from the fact that each of the design
documents is written in a different notation, adapted to a different conceptual
framework at a different level of abstraction. For example, this paper has il-
lustrated the use of set theory (Z) at the highest level of abstract requirements
capture. The requirements are then transformed by the Duration Calculus to the
more implementation-oriented framework of state machines, which in turn are
transformed into the regular expressions and communication assertions of the
specification language. After further merging and adjustment, these are trans-
lated with machine assistance to the notations of an occam-like programming
language. Finally these are compiled to a transputer-like machine language. The
machine itself is defined in the same high-level language, which can also be trans-
lated by the same techniques to hardware notations, implementable directly by
implantation on silicon. How can we be certain that a document serving as an
interface between one of these design phases and the next has been correctly
understood (i.e. with the same meaning) by the specialists who produced it as
a design and the different specialists who accepted it as a specification for the
next phase? The utmost care and competence in each individual phase of design
will be frustrated if bugs are allowed to congregate and breed in the interfaces
between them.

The solution is to interpret every one of the documents in the chain as a direct
or indirect description at an appropriate level of abstraction of the observable
properties and behaviour of some system or class of system or component that
exists (or could be made to exist) in the real world. These descriptions can be
expressed most precisely in the language which science has already shown to
be most effective in describing and reasoning about the real world, namely the
language of mathematics. Such descriptions use identifiers as free variables to

stand for observations or measurements that could in principle be made of the
real world system.

The Z notation used in section 2 gives the most direct examples in the in-
troduction of the free variables Heatreq, Flame, and Gas, and their use in pred-
icates to describe the actual and desired behaviour of the gas burner. The other
notations used in the project can be regarded as more specialized and more ab-
breviated descriptions of the behaviour of the ultimate product. For example the
behaviour of a computer program can be described in terms of the initial and
final values of global variables before and after a typical run of the program; for
reactive systems, this is accompanied by a trace of its intermediate interactions
with its environment; and for time-critical systems, these traces must be timed.

The use of free variables to stand for observations or measurements of timed
trajectories lies at the basis of all reasoning in science and engineering. Consider
for example the simplest mechanical system, involving movement of a physical
point, say a plotter pen or a ship or a projectile. A simple requirement may be
that its motion remain steady during a certain interval after its start. Let a
be its displacement on the z axis at time ¢, and let a be the desired velocity.
Then within some desired interval the difference between the actual and desired
position should, within the relevant period, always be less than some permitted
tolerance

|2 —at — 2 | < 0.4

for all ¢ € (3...5). If we also want steady motion on the y-axis, this is stated
separately

|ye — bt —yo | < 0.4

for all ¢t € (3...5). The additional requirement is just conjoined by “and” to
the original requirement. The use of conjunction to compose complex require-
ments from simple descriptions is a crucial advantage of the direct use of logical
notations at the earliest stage of a design project.

In this example, the requirements formalize the permitted tolerances on the
accuracy of implementation. Of course an implementation is permitted to achieve
even greater accuracy. For example, suppose the behaviour of a particular im-
plementation is described by

(z: — at — 20)2 + (y: — bt — yo)? < 0.1

for all ¢ < 5. This implies both of the requirements displayed above; consequently
the implementation correctly fulfills its specification.

This notion of correctness is perfectly general. Suppose a design document P
and a specification S use consistent naming conventions for variables to describe
observations of the same class of system; and suppose that P logically implies S.
This means that every observation of any system described by P is also described
by S, and therefore satisfies S as a specification. Certainly, no observation of
the system described by P can violate the specification S. That is the basis of
our claim that the relationship of correct implementation is nothing other than

simple logical implication, the fundamental and familiar transitive relation that
governs every single step of all valid scientific and mathematical reasoning. It
should therefore be no surprise that it is also fundamental to all stages and
phases of sound engineering design.

Implication is a relationship between predicates describing observations. In
the example of a mechanical system, the description of the observations is direct,
as it is in the Z specification of the top level of requirements. But most of the
notations used in the later phases of design contain no direct reference to any
kind of observation. In order to use implication as the criterion of correctness,
it is essential to interpret all these intermediate notations as abbreviations for
predicates describing observations at the appropriate level of granularity and
abstraction.

The example we have just described might have been part of the require-
ment on a control system, formulated at the start of a design project. Our next
example describes the actual behaviour of the ultimate components available
for its implementation, right at the final phase of electronic circuit design and
assembly. As in all descriptions of the real world, we choose to model it at a
certain level of abstraction, which is only an approximation of reality. We have
chosen a level which (subject to reasonable constraints) is known to be generally
implementable in a wide range of technologies.

Let the variables z;, y; and w; stand for voltages observable at time ¢ on
three distinct wires connected to an OR-gate (Fig. 4). The voltage takes one
of two values, 0 standing for connection to ground and 1 standing for presence
of electrical potential. The specification of the OR-gate is that the value of the
output wire w is the greater of the values of the input wires # and y. This
relationship cannot be guaranteed at all times, but only at regular intervals, at
the end of each operational cycle of the circuit. For convenience, the unspecified
duration of each cycle is taken to be the unit of time. The behaviour of the
OR-gate is described as an equation

we = &t V Yz

for all ¢ € (0,1,2,...), where the range of t is here and later restricted to the
natural numbers. This means that observations can be made only at discrete
intervals, understood to be on the rise of the relevant clock signal.

Another example of a hardware circuit is the Delay element. On each cycle
of operation, the voltage at its output ¢ is the same as the voltage at its input
p on the previous cycle of operation

Ct41 = Pt

The clock event which advances ¢ is communicated to the Delay element by the
global clock input signal (marked C1 in Fig. 4). Note that, we are unable to
predict the initial value cg, obtained when the hardware is first switched on.
The correctness of any circuit using this component must not depend on the
initial value. The description reflects a certain physical non-determinism, which
cannot be controlled at this level of abstraction. As in the case of engineering

OR gate

P Y 1D
—Dct = — et X,
P lEN
De lay Conditional

Latch

Fig. 4. Circuit elements.

tolerance, the specification must also allow for a range of possible outcomes;
otherwise correctness will not be provable.

A useful variation of the Delay element is the Conditional Latch element (in
engineering terms this is an edge-triggered flip-flop with a clock enable input).
Here, the value of the output is changed only when a clock event occurs and the
input control wire p is high; and then the new value of z is taken from the other
input wire w. Otherwise the value of z remains unchanged. This behaviour is
formally described

2ir1 = (we <1 pe D> x)

where a <1 b > cis read as “a if b else c¢”.

A pair of hardware components is assembled by connecting like-named wires
of each of them, making sure that no two outputs become connected and that
any cycle of connections is cut by a Delay. Electrical conduction ensures that
the value observed at the input ends of each wire will be the same as that
produced at the output end. As a result, the combined behaviour of an assembly
of hardware components is described surprisingly but exactly by a conjunction of
the descriptions of their separate behaviours. Imagine this done for the circuits
of Fig. 4

In principle, the conjunction of the descriptions of all the hardware compo-
nents of the system should imply the conjunction of all the requirements orig-
inally placed upon the system as a whole. In a simple system, this implication
may be proved directly; otherwise it is proved through a series of intermediate
design documents, perhaps including a program expressed in a high level lan-
guage. A program also must be interpreted as an indirect description of its own
behaviour when executed. We therefore need names to describe its observable
features, and for reasons of our own we have chosen to reuse the names of the
hardware wires.

Let p; be an assertion true at just those times ¢ when execution of the
program starts, and let c; be true at just those times ¢' at which it terminates.
Let z; be the value of a program variable x at time ¢, so z; is the final value.
With a slight simplification, the assignment statement

x:=x0Ry
can now be defined as an abbreviation for
pr= ' >te(zp =2 Vy) and cyp

If the program starts at time ¢, then it stops at some later time ¢'; and at
that time the final value of x is the disjunction of the initial values of x and
y. Note that the execution delay (¢’ — t) has been left deliberately unspecified.
This gives design freedom for implementation in a variety of technologies, from
instantaneous execution (achieved by compile time optimization) to the arbitrary
finite delays that may be interposed by an operating system in execution of a
timeshared program.

Now we confess why we have chosen the same names for the software variables
as the hardware wires. It demonstrates immediately that our example hardware
assembly is also a valid implementation of the software assignment: the descrip-
tion of one of them implies the description of the other. The proof is equally
simple: take the software termination time as exactly one hardware cycle after
the start. It is the translation of both hardware and software notations into a
common framework of timed observations that permits a proof of the correctness
of this design step as a simple logical implication, thereby closing the intellectual
and notational gap between the levels of hardware and software.

Our example has been artificially simplified by use of exactly the same ob-
servation names at both levels. In general, it may be necessary to introduce a
coordinate transformation to establish the link between them. The coordinate
transformation is also a predicate, describing the relationship between the ob-
servations or measurements made at one level of abstraction and those made at
the other. Its free variables therefore include those relevant at both levels; one
of the levels can then be abstracted by quantification. A good example is the
transformation (!f/) used in a compiler (4.4) to correlate the observations of ini-
tial and final values of the abstract program variables z, ...,z with the concrete
locations M[¥ z], ..., M[¥ z], where their values may be observed in the store of
the machine.

In principle, proof of correctness of a design step can always be achieved,
as we have shown, by expanding the abbreviation of the relevant notations and
constructing a proof in the predicate calculus. But for a large system this would
be impossibly laborious. What we need is a useful collection of proven equations
and other theorems expressed wholly in the abbreviated notations; it is these
that should be used to calculate, manipulate, and transform the abbreviated
formulae, without any temptation or need to expand them. For example, the
power of matrix algebra lies in the collection of equational laws which express
associative and distributive properties of the operators:

Ax (BxC)
(A+B)xC

=(AxB)xC

=(Ax C)+(BxC)

The mathematician who proves these laws has to expand the abbreviations, into
a confusing clutter of subscripts and sigmas

> Ai(Dos Bix Cut) = 325 (32, Ay Bjie) Cia

But the engineer who uses the laws just does not want to know.

This survey article has given many examples of the informal use of algebraic
reasoning within each design phase and in making the transition between them.
For ultimate reliability, each of these transitions must be justified by explicit
appeal to some valid mathematical law, preferably expressed as an equation, or
possibly an inequation using logical implication. But how can the engineer be
certain of the validity of the laws? That is a question that can be answered,
not by an engineer but by a mathematician, who thereby makes an essential
contribution to the success of the entire development and the reliability of the
developed product.

This contribution starts with the design of a semantics for all the notations
involved. Each formula is identified with a predicate, with free variables describ-
ing all the observations directly or indirectly relevant to its meaning. Now all
that is needed is to prove the validity of all the laws within the rather tedious,
low-level reasoning methods of the predicate calculus. The goal of the mathe-
matician is to prove sufficient laws for all engineering purposes, so that never
again will there be any need to expand the definitions in terms of predicates, or
to use predicate level reasoning in carrying out the design task.

The final goal of research is to close all the gaps between all the conceptual
levels and phases of a real-time engineering project. For ultimate security, it
seems desirable to construct a single reference model of all the kinds of observa-
tions that may be relevant at any phase of the project. Then all the more spe-
cialized theories can be mathematically embedded in the single model, thereby
ensuring identity of interpretation particularly at the interfaces between the
phases and the theories.

The research reported in this survey concentrates on a very particular para-
digm of parallel computing and synchronized communication, with its associated
language and machine code, all based on the occam/transputer tradition. The
case study used to illustrate the research is even more particular. So it is im-
portant to remind ourselves that the goals of any research project, especially a
basic research action, are much more general than that; they are nothing less
than an increase in scientific understanding and engineering skills, which can be
communicated by education and enhanced by further research, with an accu-
mulation of benefits into the indefinite future. These benefits are most highly
concentrated in the formulation of the mathematical foundations within which
a range of related theories can be embedded, and the proof of the mathematical
laws as a secure foundation for engineering technology. It is these that we will
pass on to the industrial beneficiaries of the research, so that they can be applied

to completely different projects, with different languages, machines, and require-
ments. It is only by aiming at such generality that we can justify the support
given to our research, and all the work that we have put into it.

Acknowledgements. Thanks to Lennart Andersson, Kirsten M. Hansen, Zhim-
ing Liu, Paulo Masiero, Jens U. Skakkebak, E. V. Sgrensen and Chaochen Zhou
for collaboration on requirements and design. For collaboration and comments
on compilation Bettina Buth, Karl-Heinz Buth, Burghard von Karger, Yas-
sine Lakhneche and Hans Langmaack. For the hardware part Jonathan Bowen,
Wayne Luk, Ian Page and in particular Zheng Jianping are thanked for com-
ments and collaboration.
A special thanks to Jonathan Bowen for revising the bibliography.

References

1. R. J. R. Back. Refinement calculus, part II: Parallel and reactive programs. In
J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Stepwise Refinement
of Distributed Systems: Models, Formalisms, Correctness, volume 430 of LNCS,
pages 67-93, 1990.

2. J. C. M. Baeten and P. Weijland. Process Algebra. Cambridge University Press,
1980.

3. F. L. Bauer et al. The Munich Project CIP, Volume II: The Transformation Sys-
tem CIP-S, volume 292 of LNCS. Springer-Verlag, 1987.

4. W. R. Bevier, W. A. Hunt, Jr., and W. D. Young. Towards verified execution en-
vironments. Technical Report 5, Computational Logic, Inc., Austin, Texas, USA,
February 1987.

5. D. Bjgrner, H. Langmaack, and C. A. R. Hoare. ProCoS I final deliverable. Pro-
CoS Technical Report [ID/DTH DB 13/1], Department of Computer Science, Tech-
nical University of Denmark, DK-2800 Lyngby, Denmark, January 1993.

6. Egon Borger, Igor Durdanovic, and Dean Rosenzweig. Occam: Specification and
compiler correctness — Part I: The primary model. unpublished note.

7. A. Bouajjani, R. Echahed, and R. Robbana. Verifying invariance properties of
timed systems with duration variables. In these proceedings, 1994.

8. J. P. Bowen, editor. Towards Verified Systems. Real-Time Safety Critical Systems
Series. Elsevier, in press.

9. J. P. Bowen, M. Franzle, E.-R. Olderog, and A. P. Ravn. Developing correct sys-
tems. In Proc. 5th Euromicro Workshop on Real-Time Systems, pages 176-189.
IEEE Computer Society Press, June 1993.

10. J. P. Bowen, He Jifeng, and I. Page. Hardware compilation. In Bowen [8], chap-
ter 10, pages 193-207.

11. J. P. Bowen and V. Stavridou. Safety-critical systems, formal methods and stan-
dards. IEE/BCS Software Engineering Journal, 8(4):189-209, July 1993.

12. S. Brien, M. Engel, He Jifeng, A. P. Ravn, and H. Rischel. Z model for Duration
Calculus. ProCoS Technical Report [OU HJF 12/2], Oxford University Computing
Laboratory, UK, September 1993.

13. G. M. Brown. Towards truly delay-insensitive circuit realizations of process alge-
bras. In G. Jones and M. Sheeran, editors, Designing Correct Circuits, Workshops
in Computing, pages 120-131. Springer-Verlag, 1991.

14

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

M. Broy. Specification and top-down design of distributed systems. J. Comput.
System Sci., 34:236-265, 1987.

R. H. Campbell and A. N. Habermann. The specification of process synchroni-
sation by path expressions. In E. Gelenbe and C. Kaiser, editors, Operating Sys-
tems, International Symposium, Rocquencourt 1974, volume 16 of LNCS. Springer-
Verlag, 1974.

K. M. Chandy and J. Misra. Parallel Program Design: A Foundation. Addison-
Wesley, 1988.

M. Engel et al. A formal approach to computer systems requirements documenta-
tion. In R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors, Hybrid
Systems, volume 736 of LNCS, pages 452-474, 1993.

M. Franzle and M. Miiller-Olm. Towards provably correct code generation for a
hard real-time programming language. In P. A. Fritzson, editor, Compiler Con-
struction 94, 5th International Conference, Edinburgh, UK, volume 786 of LNCS,
pages 294-308, 1994.

M. Franzle and B. von Karger. Proposal for a programming language core for Pro-
CoS II. ProCoS Technical Report [Kiel MF 11/3], Christian- Albrechts-Universitat
Kiel, Germany, August 1993.

C. Ghezzi, D. Mandrioli, and A. Morzenti. TRIO: A logic language for executable
specifications of real-time systems. Journal of Systems and Software, May 1990.
D. 1. Good and W. D. Young. Mathematical methods for digital system devel-
opment. In S. Prehn and W. J. Toetenel, editors, VDM ’91, Formal Software
Development Methods: Volume 2, volume 552 of LNCS, pages 406-430, 1991.

M. R. Hansen and Zhou Chaochen. Semantics and completeness of the Duration
Calculus. In J. W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg,
editors, Real-Time: Theory in Practice, volume 600 of LNCS, pages 209-225, 1992.
D. Harel. Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming, 8:231-274, 1987.

He Jifeng and J. P. Bowen. Time interval semantics and implementation of a
real-time programming language. In Proc. 4th Euromicro Workshop on Real-Time
Systems, pages 110-115. IEEE Computer Society Press, 1992.

He Jifeng, 1. Page, and J. P. Bowen. Towards a provably correct hardware im-
plementation of Occam. In G. J. Milne and L. Pierre, editors, Correct Hardware
Design and Verification Methods, volume 683 of LNCS, pages 214-225. Springer-
Verlag, 1993.

C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International
Series in Computer Science, 1985.

C. A. R. Hoare. Refinement algebra proves correctness of compiling specifications.
In C. C. Morgan and J. C. P. Woodcock, editors, 3rd Refinement Workshop, Work-
shops in Computer Science, pages 33—-48. Springer-Verlag, 1991.

C. A. R. Hoare, [. J. Hayes, He Jifeng, C. C. Morgan, A. W. Roscoe, J. W. Sanders,
I. H. Sgrensen, J. M. Spivey, and B. A. Sufrin. Laws of programming. Communi-
cations of the ACM, 30(8):672-687, 1987.

C. A. R. Hoare, He Jifeng, and A. Sampaio. Normal form approach to compiler
design. Acta Informatica, 30:701-739, 1993.

J. Hooman and J. Widom. A temporal-logic based compositional proof system for
real-time message passing. In PARLE ’89, Parallel Architectures and Languages
Europe: Volume II, volume 366 of LNCS, pages 424-441. Springer, 1989.

R. Inal. Modular specification of real-time systems. In Proc. 6th Euromicro Work-
shop on Real-Time Systems, pages 16-21. IEEE Computer Society Press, 1994.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

INMOS Limited. Occam 2 Reference Manual. Prentice Hall, 1988.

INMOS limited. Transputer Instruction Set: A Compiler Writer’s Guide. Prentice
Hall, first edition, 1988.

M. S. Jaffe, N. G. Leveson, M. P. Heimdahl, and B. E. Melhart. Software require-
ments analysis for real-time process-control systems. IEEE Trans. Software Engi-
neering, 17(3):241-258, March 1991.

J. J. Joyce. Totally verified systems: Linking verified software to verified hard-
ware. In M. Leeser and G. Brown, editors, Hardware Specification, Verification
and Synthesis: Mathematical Aspects, volume 408 of LNCS, pages 277-201, 1990.

R. Koymans. Specifying real-time properties with metric temporal logic. Real-
Time Systems, 2(4):255-299, November 1990.

B. Krieg-Briickner. Algebraic specification and functionals for transformational
program and meta program development. In J. Diaz and F. Orejas, editors, Proc.
TAPSOFT ’89: Volume 2, volume 352 of LNCS, 1989.

L. Lamport. The temporal logic of actions. Technical report, Digital Systems Re-
search Center, 130 Lytton Avenue, Palo Alto, California 94301, USA, 25 December
1991.

L. Lamport. Hybrid systems in TLAT. In R. L. Grossman, A. Nerode, A. P. Ravn,
and H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages 77-102, 1993.
N. Leveson. Software safety in embedded computer systems. Communications of
the ACM, 34(2):34-46, February 1991.

N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed
algorithms. In Proc. 6th PODC, pages 137-151, 1987.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

A.J. Martin. The design of a delay-insensitive microprocessor: An example of
circuit synthesis by program transformation. In M. Leeser and G. Brown, editors,
Hardware Specification, Verification and Synthesis: Mathematical Aspects, volume
408 of LNCS, pages 244-259, 1990.

A.J. Martin. Programming in VLSI: From communicating processes into delay-
insensitive circuits. In C. A. R. Hoare, editor, Developments in Concurrency and
Communication, University of Texas at Austin Year of Programming Series, chap-
ter 1. Addison-Wesley, 1990.

P. C. Masiero, A. P. Ravn, and H. Rischel. Refinement of real-time specifications.
ProCoS Technical Report [ID/DTH PCM 1/1], Department of Computer Science,
Technical University of Denmark, DK-2800 Lyngby, Denmark, July 1993.

D. May. Occam and the Transputer. In C. A. R. Hoare, editor, Developments in
Concurrency and Communication, University of Texas at Austin Year of Program-
ming Series, chapter 2. Addison-Wesley, 1990.

J. McCarthy and J. Painter. Correctness of a compiler for arithmetic expressions.
In J. Schwarz, editor, Proc. Symp. Applied Mathematics, pages 33—-41. American
Mathematical Society, 1967.

R. Milner. Communication and Concurrency. Prentice Hall International Series
in Computer Science, 1989.

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML.
The MIT Press, 1990.

C. C. Morgan. Data refinement by miracles. Information Processing Letters,
26:243-246, 1988.

C. C. Morgan. Programming From Specifications. Prentice Hall International Se-
ries in Computer Science, 1990.

52

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

F. Lockwood Morris. Advice on structuring compilers and proving them correct.
In Proc. ACM Symp. Principles of Programming Languages, Boston, Mass., pages
144-152, 1973.

B. Moszkowski. A temporal logic for multi-level reasoning about hardware. IEEE
Computer, 18(2):10-19, 1985.

B. Moszkowski. Ezecuting Temporal Logic Programs. Cambridge University Press,
1986.

M. Miiller-Olm. On translation of TimedPL and capture of machine instruc-
tion timing. ProCoS Technical Report [Kiel MMO 6/2], Christian-Albrechts-
Universitat Kiel, Germany, August 1993.

Markus Miiller-Olm. A new proposal for TimedPL’s semantics. ProCoS Technical
Report Kiel MMO 10/1, Christian- Albrechts-Universitat Kiel, Germany, May 1994.
E.-R. Olderog. Nets, Terms and Formulas. Cambridge University Press, 1991.
E.-R. Olderog. Towards a design calculus for communicating programs. In J. C. M.
Baeten and J. F. Groote, editors, Proc. CONCUR ’91, volume 527 of LNCS, pages
61-72, 1991.

E.-R. Olderog. Interfaces between languages for communicating systems. In
W. Kuich, editor, Automata, Languages and Programming, volume 623 of LNCS,
1992.

E.-R. Olderog and S. Rossig. A case study in transformational design of concurrent
systems. In M.-C. Gaudel and J.-P. Jouannaud, editors, TAPSOFT ’93: Theory
and Practice of Software Development, volume 668 of LNCS, pages 90-104, 1993.
E.-R. Olderog, S. Rossig, J. Sander, and M. Schenke. ProCoS at Oldenburg: The
interface between specification language and Occam-like programming language.
Technical Report Bericht 3/92, Univ. Oldenburg, Fachbereich Informatik, Ger-
many, 1992.

I. Page and W. Luk. Compiling Occam into field programmable gate arrays. In
FPGAs, Ozford Workshop on Field Programmable Logic and Applications, pages
271-284, 15 Harcourt Way, Abingdon OX14 1NV, UK, 1991. Abingdon EE&CS
Books.

D. L. Parnas and P. C. Clements. A rational design process: How and why to fake
it. IEEE Trans. Software Engineering, 12(2):251-257, February 1986.

D. L. Parnas and J. Madey. Functional documentation for computer systems en-
gineering (version 2). Technical Report CRL 237, TRIO, McMaster University,
Hamilton, Canada, September 1991.

A. Pnueli and E. Harel. Applications of temporal logic to the specification of
real-time systems (extended abstract). In M. Joseph, editor, Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 331 of LNCS, pages 84-98.
Springer, 1988.

A. P. Ravn and H. Rischel. Requirements capture for embedded real-time systems.
In Proc. IMACS-MCTS’91 Symp. on Modelling and Control of Technological Sys-
tems, volume 2, pages 147-152. IMACS, May 1991.

A. P. Ravn, H. Rischel, and K. M. Hansen. Specifying and verifying requirements
of real-time systems. IEEE Trans. Software Engineering, 19(1):41-55, January
1993.

A. W. Roscoe and C. A. R. Hoare. Laws of Occam programming. Theoretical
Computer Science, 60:177-229, 1988.

S. Rossig and M. Schenke. Specification and stepwise development of communicat-
ing systems. In S. Prehn and W. J. Toetenel, editors, VDM ’91, Formal Software
Development Methods: Volume 1, volume 551 of LNCS, pages 149-163, 1991.

70

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

M. Schenke. Specification and transformation of reactive systems with time re-
strictions and concurrency. In these proceedings, 1994.

J. U. Skakkebak, A. P. Ravn, H. Rischel, and Zhou Chaochen. Specification of
embedded, real-time systems. In Proc. 4th Euromicro Workshop on Real-Time
Systems, pages 116-121. IEEE Computer Society Press, 1992.

J. U. Skakkebek and N. Shankar. Towards a Duration Calculus proof assistant in
PVS. In these proceedings, 1994.

J. M. Spivey. The Z Notation: A Reference Manual. Prentice Hall International
Series in Computer Science, 2nd edition, 1992.

J. W. Thatcher, E. G. Wagner, and J. B. Wright. More on advice on structuring
compilers and proving them correct. Theoretical Computer Science, 15:223-245,
1981.

Y. Venema. A modal logic for chopping intervals. J. Logic of Computation,
1(4):453-476, 1991.

A. Wikstréom. Functional Programming using Standard ML. Prentice Hall Inter-
national Series in Computer Science, first edition, 1987.

M. W. Wilkes and J. B. Stringer. Micro-programming and the design of the control
circuits in an electronic digital computer. Proc. Cambridge Phil. Soc., 49:230-238,
1953. also Annals of Hist. Comp. 8, 2 (1986) 121-126.

Xilinx Inc. The programmable gate array data book. Technical report, Xilinx Inc.,
San Jose, California, USA, 1991.

Zhiming Liu, A. P. Ravn, E. V. Sgrensen, and Zhou Chaochen. Towards a calculus
of systems dependability. High Integrity Systems, 1(1):49-75, January 1994.

Zhou Chaochen. Duration Calculi: An overview. In D. Bjgrner, M. Broy, and I. V.
Pottosin, editors, Formal Methods in Programming and their Application, volume
735 of LNCS, pages 256-266, 1993.

Zhou Chaochen, M. R. Hansen, and P. Sestoft. Decidability results for Duration
Calculus. In P. Enjalbert, A. Finkel, and K. W. Wagner, editors, Proc. STACS 93,
volume 665 of LNCS, pages 58-68, 1993.

Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations. Infor-
mation Processing Letters, 40(5), December 1991.

Zhou Chaochen, A. P. Ravn, and M. R. Hansen. An extended Duration Calculus
for hybrid real-time systems. In R. L. Grossman, A. Nerode, A. P. Ravn, and
H. Rischel, editors, Hybrid Systems, volume 736 of LNCS, pages 36-59, 1993.

J. Zwiers. Compositionality, Concurrency, and Partial Correctness: Proof Theories
for Networks of Processes and their Relationship, volume 321 of LNCS. Springer-
Verlag, 1989.

