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Abstract:

In the last decade, substantial progress has been
made on methods for imputation of missing data.
Modern imputation methods have become widely
available for practitioners through software products
such as S-Plus 6.0 (Schimert, Schafer, Hesterberg,
Fraley, and Clarkson 2000), SAS PROC MI (SAS
2001), and SOLAS (2001) . The key idea underlying
most of these methods is to impute missing values
by random draws from the conditional distribution
of the missing data given the observed data. In prac-
tice, many of these methods (e.g. the “norm” mod-
ule of the “missing” library in S-Plus 6, SAS PROC
MI) impose a multivariate normal distribution on
the incompletely observed variables. When these
variables are not normally distributed but rather
categorical (binary or ordinal), practitioners are of-
ten advised to round the imputed value, typically
drawn from a continuous multivariate normal, to the
nearest integer (or category) that is within defined
region. In this paper we provide some practical sug-
gestions for rounding with binomial or ordinal vari-
ables that will enable practitioners to use commonly
available software while providing imputed datasets
that will lead to inferences that are less biased, in
the sense that marginal distributions are more accu-
rate.

1. Introduction

Modern methods and software have been increas-
ingly popular for analyzing incomplete datasets by
multiple imputation inference. The key idea under-
lying these methods is to impute missing values by
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random draws from the conditional distribution of
the missing data given the observed data. For con-
venience, some methods (e.g. the “norm” function
of the “missing” library in S-Plus 6, SAS PROC MI)
impose a fully parametric multivariate normal dis-
tribution on the variables that are incompletely ob-
served.

In problems involving categorical data with bi-
nary or ordinal scale, practitioners are often advised
to employ methods assuming a multivariate normal
distribution as an approximation and to round the
resulting values to nearest observed values (Schafer
1997). This approach often leads to biased infer-
ence. In applications with ordinal variables that
take many values and have nearly symmetrical dis-
tributions, bias due to rounding might be negligible
(Schafer 1997). However, where the distributions of
such are far from symmetry or oddly shaped (e.g.
multimodal), näıve rounding could lead to biased
inferences for marginal distributions and correlation
structure.

In this paper, we illustrate a more principled ap-
proach to using normal approximations in imput-
ing incomplete datasets containing binary or ordi-
nal variables. Our goal is to make use of methods
that are well established in the missing data litera-
ture and widely used in missing data problems. Our
objective for imputation methods with categorical
data is to create MAR data (Little and Rubin 1987)
and reimpute so that the distribution of the imputed
data will be similar to that of original data. Similar-
ity is defined in relevant ways including the marginal
distribution of the categorical variables and joint dis-
tributions with the other variables. Specifically, we
seek to make the marginal distributions resemble the
correct (and known) marginal distribution.

A brief background of previous work, including
previous techniques for imputing binary variables
along with commonly used statistical software pack-
ages for imputation, is provided in Section 2. Section
3 outlines our strategy for imputing binary or ordi-
nal variables. Section 4 summarizes results obtained
from a limited simulation study. Finally, Section 5
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discusses the advantages and limitations of our work.

2. Previous work

Literature on missing data has developed tremen-
dously in the last two decades with the advent of
advanced statistical computation techniques. The
pioneering work by Rubin (1978) and Little and Ru-
bin (1987) initiated the wide spread use of miss-
ing data techniques, especially inference by mul-
tiple imputation Rubin (1978). These techniques
have also been implemented in a variety of gen-
eral purpose statistical software packages (e.g. S-
Plus 6.0 (Schimert, Schafer, Hesterberg, Fraley, and
Clarkson 2000), SAS PROC MI (SAS 2001)) en-
abling many researchers actively use such missing
data techniques.

Some of the studies focused on the imputation
techniques for binary data. Rubin (1987) described
multiple imputation (MI) for an incompletely ob-
served binary variable through logistic regression.
Rubin (1987) and Little (1988) also suggested a
“predictive mean matching method”. Schafer (1997)
suggested a variety of methods including an approx-
imation by normal distribution and rounding to the
nearest integer. He also described pure categorical
data methods, although these lead to practical prob-
lems such as zero-count cells when the number of cat-
egorical variables is high. These methods are imple-
mented in the S-Plus 6.0 library ’missing’ (Schimert,
Schafer, Hesterberg, Fraley, and Clarkson 2000), in-
cluding modules corresponding to continuous nor-
mal, categorical and mixed incomplete data.

Binary variables can be imputed using techniques
for continuous data. Rubin and Schenker (1986)
suggested conducting a fully normal imputation and
then dichotomizing with a cut-off value that is MLE
of the Bernoulli probability. Horton, Lipsitz, and
Parzen (2003) suggested normal imputation of the
binary variable without rounding to obtain an un-
biased estimate of the mean (probability of success)
of the binary variable. These studies only consid-
ered a single incompletely observed variable. More
recently, Bernaards, Belin, and Schafer (2005) eval-
uated the robustness of multivariate normal approx-
imation for imputation of binary data, suggesting
a rule for calculating a “cut-off” value based on a
normal latent variable distribution underlying the
binomial variable.

Several statistical software packages specifically
target missing data problems, either estimating par-
ticular parameters in the presence of missing data
or serving a more general purpose through multi-
ple imputation. SOLAS software supports a predic-

tive mean model, using the closest observed value to
the predicted value and propensity score models for
missing continuous variables and discriminant mod-
els for missing binary and categorical variables. Of-
ten in practice, predictive mean matching is used
for binary and ordinary variables. NORM (Schafer
2000), also available as a module in “library miss-
ing” of S-Plus 6 and SAS PROC MI (with MCMC
option), assumes a multivariate normal distributions
as the underlying imputation model. Users of these
programs are often advised to perform a preliminary
analyses to assess distributional structures of the
data and perform necessary transformations to im-
prove “normality” assumption. For binary or ordi-
nal data, multivariate normal approximation is used
and as a post-imputation procedure, i.e. imputed
values that are out of the range are rounded off to
the nearest observed value.

Our study is driven by the desire to use existing
and well-established software for imputation under
the normal model for imputation of binary or ordinal
data by simple data manipulations.

3. Methods

3.1 Notation

Our notation is a variation that is used commonly
in the missing data literature. Let (Xi, Yi) denote a
vector of characteristics for cases i = 1, . . . , n, where
Yi is a binary variable; the complete data matrix
is (X, Y ). Let Yobs and Ymis denote the observed
and missing portions of Y and assume that Y is
ordered to separate observed and missing values so
that Y = (Yobs , Ymis), and Yobs = (y1, . . . , ynobs

);
Ymis = (ynobs+1, . . . , yn). The ultimate goal in in-
ference by multiple imputation is to replace Ymis

by simulated or “imputed” values of Ymis , drawn
from their underlying joint posterior distribution
P (Ymis | Yobs). We let X denote an n × p data
matrix, fully observed or incomplete.

In the following section we outline our strategy on
how to round imputed values in Y under a multivari-
ate normal imputation performed on y and possibly
on X.

3.2 Methods for binary variables

Our basic strategy is to perform a multivariate nor-
mal imputation performed on ymis (and possibly
on X, if it is incompletely observed), and then to
round. Such imputations assume that each (Xi, Yi)
is sampled from a multivariate normal distribution
with mean µ and covariance Σ. Imputations are ob-
tained by iterative methods that alternate between
two steps: (1) draw a value of µ∗, Σ∗ from their pos-
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terior distribution (typically from a Normal-Wishart
family, given normal-inverse-Wishart prior distribu-
tions), and (2) fill in the missing values (Xmis, Ymis)
under their distribution conditional on observed
data (Xobs, Yobs) and the parameters µ∗, Σ∗ . Re-
peating these steps results in imputed values that
are draws from P (Ymis, Xmis | Yobs , Xobs).

We use simulation to obtain the cutoff value that
will be used in rounding the imputed Ymis in such a
way that observed marginal distribution of y and its
relationship with other variables are preserved. The
imputed variable y∗

i has the following form:

y∗

i =

{

1 y∗∗

i > yc, i ∈ mis

0 otherwise,
(1)

where y∗∗

i , (i ∈ mis) is the imputed value under the
continuous multivariate normal distribution and yc

is the cut-off value. We determine yc by executing
the following steps:

1. Create MAR data by duplication: Let Xdup =
{X, X} and Ydup = (Yobs , Ymis , Yobs(mis), Ymis)
denote the duplicated datasets; Yobs(mis) means
Yobs with observed values turned to missing.

2. Impute {Ymis , Yobs(mis), Ymis} (and possibly
Xmis) under a multivariate normal model.

3. yc is calculated in such a way that the fraction
of imputed 1s in Y ∗

obs(mis) equals the fraction of
1s in the observed data Yobs for the same cases.

4. Proceed with imputing Ymis using yc following
(1).

These steps are depicted in Figure (1) with a sim-
plified example where a binary variable has %70 ra-
tio of “1”s in the observed data. Imputations are
created following (1)–(4), the imputed values are
ordered in the Yobs(mis) (shown as yimp(duplicate))
for notational convenience, and finally the values in
Ymis(imp) that are bigger than yc are imputed as 1’s.

Duplication of the data is a strategy for calibra-
tion of the cutoff for rounding that is guaranteed
to replicate the observed marginal distribution of y.
Therefore, the performance of the procedure should
be evaluated by looking at the higher level relations
(e.g. correlations). Employing a well-established
multivariate normal imputation technique is advan-
tageous from this standpoint as it preserves two-way
relationships.

3.3 Extension to ordinal variables

Now let Y = (Yobs , Ymis) denote the observed and
missing parts of n measurements on an ordinary
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Figure 1: Computation of the cut-off value: yc

variable y, where yi may take values 1, 2, . . .G. Fur-
thermore let pig = P (Yi = g). We now have

y∗

i = g if yc,g−1 < y∗∗

i < ycg, i ∈ mis (2)

where i = 1, 2, . . . , n. (We define yc0 = −∞,
ycG = +∞.) Determining the cut-off points
yc1, yc2, . . . , yc,G−1 proceeds in a fashion similar to
Section 3.2. Evaluation criterion is also similar (via
duplicating and association measures).

4. Simulation Study

Our simulation study was designed to assess the per-
formance of the methods suggested in Section 3. The
scenario of the simulation was the following:

1. The variables are a single continuous variable
X and binary variable Y .

2. Generate data

Xi ∼ N(0, 1),

Yi | Xi = xi ∼ Bernoulli(logit−1(α + βxi))

3. The missingness mechanism is MAR:

r ∼ Bernoulli(logit−1(αr + βrxi))

The parameters αr, βr are chosen to be 0.3 and
−0.3, respectively, so that on average 57% is set
to be missing on Y.

4. Draw 10, 000 bivariate data points for each set
of simulation parameter values.

5. Vary α, β to obtain Y variable with means given
in Table 1.
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Table 1: Simulation conditions (values of α, β)

α β µY

1.4 3.1 0.90

1.4 2.5 0.85

1.1 1.9 0.80

1.1 1.5 0.75

1.1 1.5 0.70

1.2 0.95 0.65

1.0 0.6 0.60

1.4 0.45 0.55

1.4 0.2 0.50

1.4 -0.09 0.45

1.4 -0.35 0.40

1.3 -0.9 0.30

1.4 -1.6 0.20

1.4 -2.1 0.15

0.7 -2.8 0.10

Each incomplete data across the simulations were
imputed using three methods:

• The original multivariate normal imputation,
without rounding;

• “Näıve” rounding using cut-off point 0.5;

• Our method, in which the cutpoint is estimated
to calibrate the marginal mean of Y for the ob-
served cases.

For each method, we compared the means of the
imputed Y values to those of the simulated miss-
ing values (Figure (2)). We also compared the cor-
relations of the imputed Y values with X to the
corresponding correlations for the simulated missing
values (Figure (3)).

Imputed- and missing-data means agree closely
with our method, reflecting the success of our cali-
bration approach. The same is true for normal im-
putation, which is nearly unbiased although the im-
puted values are not representative of the potential
values of the binary variable. The method based
on näıve rounding shows some bias for values of the
mean that are close to 0 or 1. For the cases where
µy was set to be 0.9, 0.85, 0.15 and 0.07 for exam-
ple, naive method had means of 0.95, 0.89, 0.18 and
0.05, respectively, whereas our method estimated the
mean as 0.91, 0.87, 0.16 and 0.07, respectively.

It is more difficult to anticipate the patterns in
the correlations, since our method does not explic-
itly calibrate this aspect of the data. However,
our method performed reasonably well capturing the
true correlations even in the extreme cases. Un-
rounded imputations did just as good, the correla-
tions were on the target with true correlations. Fi-

nally the naive method resulted with correlation es-
timates that were somewhat misleading in some of
the cases.
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Figure 2: Comparison of the means of the Ymis with
estimates from imputed data under three methods.
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Figure 3: Comparison of the correlations of the Ymis

with X with estimates from imputed data under
three methods.

5. Discussion

Our goal in this work was to make use of well-
established methods for imputing missing data un-
der a multivariate normal distribution to obtain us-
able imputation for non-normal data, specifically bi-
nary or ordinal data. We believe this is an impor-
tant motivation and contribution because these algo-
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rithms are widely available and are used commonly
for missing data problems. With minor data manip-
ulations our methods can easily be adopted. The
limited simulation study shows results that support
our proposed methods. It is important to notice that
commonly assumed missing data mechanism (MAR)
is more plausible by including as much information
as we can (by including X in creating imputations).
Finally the evaluation criterion is to create MAR
(duplication) and reimpute then the distribution of
the imputed data will be similar to that of original
data.

More systematic investigation is needed to deter-
mine how well the proposed methods work in pre-
serving data structure (e.g. correlations), through
more extensive simulation studies. We are currently
working on developing more rules for determining
cut points by calibrating on functions such as regres-
sion coefficients that has a potential on preserving
these relationships.

A second limitation is that we only limited our
work to a single non-normal variable along with a
set of multivariate normal variables. Extending this
to multivariate non-normal variables is an important
step as most real data applications involve multi-
variate non-normal data. Another potentially im-
portant contribution would be to consider how to
adopt the current software to handle datasets with
incompletely observed unordered categorical data in
a manner similar to ours.

Finally, we would like to strengthen the theoretical
basis for our methods by developing the relationship
of our approach to a more completely specified mul-
tivariate normal latent variable model for the mixed
continuous and categorical outcomes.
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