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Preface

These are the proceedings of CHES 2002, the Fourth Workshop on Cryptographic
Hardware and Embedded Systems. After the first two CHES Workshops held in
Massachusetts, and the third held in Europe, this is the first Workshop on the
West Coast of the United States. There was a record number of submissions this
year and in response the technical program was extended to 3 days.

As is evident by the papers in these proceedings, there have been again many
excellent submissions. Selecting the papers for this year’s CHES was not an easy
task, and we regret that we could not accept many contributions due to the
limited availability of time. There were 101 submissions this year, of which 39
were selected for presentation. We continue to observe a steady increase over
previous years: 42 submissions at CHES ’99, 51 at CHES 2000, and 66 at CHES
2001. We interpret this as a continuing need for a workshop series that com-
bines theory and practice for integrating strong security features into modern
communications and computer applications. In addition to the submitted contri-
butions, Jean-Jacques Quisquater (UCL, Belgium), Sanjay Sarma (MIT, USA)
and a panel of experts on hardware random number generation gave invited
talks.

As in the previous years, the focus of the Workshop is on all aspects of cryp-
tographic hardware and embedded system security. Of special interest were con-
tributions that describe new methods for efficient hardware implementations and
high-speed software for embedded systems, e.g., smart cards, microprocessors,
DSPs, etc. CHES also continues to be an important forum for new theoretical
and practical findings in the important and growing field of side-channel attacks.

We hope to continue to make the CHES Workshop series a forum for in-
tellectual exchange in creating the secure, reliable, and robust security solutions
of tomorrow. CHES Workshops will continue to deal with hardware and soft-
ware implementations of security functions and systems, including security for
embedded wireless ad hoc networks.

We thank everyone whose involvement made the CHES Workshop such a
successful event. In particular we would like to thank André Weimerskirch (Ruhr-
University, Bochum) for his help again with the website and Gökay Saldamlı and
Colin van Dyke (Oregon State University) for their help on registration and local
organization.

August 2002 Burton S. Kaliski Jr.
Çetin K. Koç
Christof Paar
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Jovan D. Golić, Christophe Tymen

Tamper Resistance

Keeping Secrets in Hardware: The Microsoft XboxTM Case Study . . . . . . . 213
Andrew Huang

RSA Implementation

A DPA Attack against the Modular Reduction within a CRT
Implementation of RSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Bert den Boer, Kerstin Lemke, Guntram Wicke

Further Results and Considerations on Side Channel Attacks on RSA . . . . 244
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Lórencz, Róbert 57
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CHES: Past, Present, and Future

Jean-Jacques Quisquater

UCL Crypto Group
Universite Catholique de Louvain

Louvain-La-Neuve, Belgium
quisquater@dice.ucl.ac.be

CHES is (coming to be) a very interesting conference thanks to the excellent
submitted papers, the new results about embedded systems, the coprocessors,
and the new use of FPGAs.

But my talk will be about the nice locations for the CHES conference:

– First, it was Worcester and I’ll speak about Vernam.
– Next, it was Paris and I’ll speak about the Rose-Sainte-Croix company and,

more importantly, the principle of Kerckhoffs (with a curious story about
Napoleon).

– And now it is Redwood City: here is the whole of the public-key crypto is
near or just there (Diffie, Hellman, Merkle, El Gamal, RSA Data Security,
the RSA conferences at this hotel, ...). And a surprise: a big and secure
embedded system: from Lockheed and it is the SeaShadow; it is time to
think about James Bond, ..., and, finally, smart cards).

– the travel in the time and the space is finished and I’ll propose some ideas
for next location.
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Optical Fault Induction Attacks

Sergei P. Skorobogatov and Ross J. Anderson

University of Cambridge, Computer Laboratory,
15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom

{sps32, rja14}@cl.cam.ac.uk

Abstract. We describe a new class of attacks on secure microcontrollers
and smartcards. Illumination of a target transistor causes it to conduct,
thereby inducing a transient fault. Such attacks are practical; they do
not even require expensive laser equipment. We have carried them out
using a flashgun bought second-hand from a camera store for $30 and
with an $8 laser pointer. As an illustration of the power of this attack,
we developed techniques to set or reset any individual bit of SRAM
in a microcontroller. Unless suitable countermeasures are taken, optical
probing may also be used to induce errors in cryptographic computations
or protocols, and to disrupt the processor’s control flow. It thus provides
a powerful extension of existing glitching and fault analysis techniques.
This vulnerability may pose a big problem for the industry, similar to
those resulting from probing attacks in the mid-1990s and power analysis
attacks in the late 1990s.
We have therefore developed a technology to block these attacks. We use
self-timed dual-rail circuit design techniques whereby a logical 1 or 0 is
not encoded by a high or low voltage on a single line, but by (HL) or
(LH) on a pair of lines. The combination (HH) signals an alarm, which
will typically reset the processor. Circuits can be designed so that single-
transistor failures do not lead to security failure. This technology may
also make power analysis attacks very much harder too.

1 Introduction

Secure microcontrollers and smartcards are designed to protect both the confi-
dentiality and the integrity of sensitive information. It is not sufficient to prevent
an attacker from finding out the value of a stored cryptographic key; she must
also be unable to set part of the key to a known value, or to induce errors in
the computation that enable sensitive information to be deduced. These errors
may be data errors, such as an incorrect digital signature that leaks the value
of the signing key [3], or errors in the code, such as a missed conditional jump
that reduces the number of rounds in a block cipher [1]. Until now, the most
widely known technique for inducing such errors was glitching – the introduction
of voltage transients into the power or clock line of the target chip. Many chips
are now designed to resist glitch attacks.

A review of the tamper-resistance of smartcard and secure microcontroller
chips may be found in [2]. Attacks tend to be either invasive, using chip test-
ing equipment such as probing stations and focused ion beam workstations to
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Optical Fault Induction Attacks 3

extract data from the chip directly, or else non-invasive processes involving the
exploitation of unintentional electromagnetic emissions, protocol design flaws,
and other vulnerabilities that manifest themselves externally. Either type of at-
tack may be passive or active. The standard passive invasive attack involves
using microprobes to monitor a smartcard’s bus while a program is executing;
in an active attack, signals may be also injected, the classic example being the
use of a grounded microprobe needle on the clock line to the instruction latch to
disable jump instructions. A passive non-invasive attack is analyzing the electro-
magnetic field in the neighborhood of the device under test [10], while glitching
is the classic example of an active attack.

Until now, invasive attacks involved a relatively high capital investment for
lab equipment plus a moderate investment of effort for each individual chip
attacked. Non-invasive attacks such as power analysis require only a moderate
capital investment, plus a moderate investment of effort in designing an attack
on a particular type of device; thereafter the cost per device attacked is low.
Non-invasive attacks are thus particularly attractive where they exist.

Unfortunately for the attacker, many chipmakers have now implemented de-
fenses against the most obvious non-invasive attacks. These defenses include
random clock jitter to make power analysis harder, and circuits that react to
glitches by resetting the processor. Meanwhile invasive attacks are becoming
constantly more demanding and expensive, as feature sizes shrink and device
complexity increases, We therefore set out to find new, more powerful, ways of
attacking chips.

We describe our new class of attacks as ‘semi-invasive’. By this, we mean
that, like invasive attacks, they require depackaging the chip to get access to the
chip surface. But the passivation layer of the chip remains intact – semi-invasive
methods do not require electrical contact to the metal surface so there is no
mechanical damage to the silicon.

Semi-invasive attacks are not entirely new. The electromagnetic analysis of
[10] is best performed on a naked chip, and the old EPROM-hacking trick of
exposing the write protect bit of a microcontroller to UV light usually entails
depackaging it. Semi-invasive attacks could in theory be performed using such
tools as UV light, X-rays, lasers, electromagnetic fields and local heating. They
could be used individually or in conjunction with each other. However, this field
has hardly been explored.

We will now show that extremely powerful attacks can be carried out quickly
using very cheap and simple equipment.

2 Background

Once the semiconductor transistor had been invented, it was found to be more
sensitive to ionizing radiation – whether caused by nuclear explosions, radioactive
isotopes, X-rays or cosmic rays – than the thermionic valves (vacuum tubes) used
previously. In the middle sixties, during experiments with pulsed lasers, it was
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found that intensive light causes some similar phenomena. Lasers started to be
used to simulate the effects of ionizing radiation on semiconductors [4].

Since then the technology has been improved dramatically. Expensive inert-
gas-based lasers and solid-state lasers have been replaced with low-cost semicon-
ductor lasers. As a result, the technology has moved from the laboratory all the
way down to consumer electronics.
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Fig. 1. Circuit structure and layout of a six-transistor SRAM cell
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Laser radiation can ionize an IC’s semiconductor regions if its photon energy
exceeds the semiconductor band gap. Laser radiation with 1.06 µm wavelength
(1.17 eV photon energy) used in [5] has a penetration depth of about 700 µm
and provides good spatial ionization uniformity for silicon devices. However, its
focusing is restricted by dispersion to several micrometers, and this is not precise
enough for modern semiconductor devices. However, when moving from infrared
to visible light, photon absorption dramatically increases [7], and it has become
possible to use red and green lasers as the transistors in modern chips became
thinner. Smaller devices also mean that less energy is required to achieve the
same level of ionization.

In the case of CMOS devices, there is a danger of latching up the circuit,
causing a short circuit that can result in permanent damage. So the use of
radiation with CMOS structures must be done with appropriate precautions.

Although there are many publications about using pulsed lasers to simulate
ionizing radiation, we could find no published information about using them to
control or change the behavior of integrated circuits. So we decided to apply an
intense light source to a semiconductor chip, and particularly to CMOS logic, to
see whether it would be possible to change the state of a memory cell and how
easy, or difficult, it might be.

Our first experiments targeted SRAM. The structure of a standard six-
transistor SRAM cell is shown in Fig. 1 [8].

Two pairs of p- and n-channel transistors create a flip-flop, while two other
n-channel transistors are used to read its state and write new values into it. The
layout of the cell is shown on the right of Fig. 1 [9]. The transistors T1 and T3
create the CMOS inverter; together with the other similar pair, they create the
flip-flop which is controlled by the transistors T5 and T6.

If the transistor T3 could be opened for a very short time by an external stim-
ulus, then it could cause the flip-flop to change state. By exposing the transistor
T4, the state of the cell would be changed to the opposite. The main difficulties
we might anticipate are focusing the ionizing radiation down to several µm2 and
choosing the proper intensity.

3 Experimental Method

For our experiments we chose a common microcontroller (Microchip PIC16F84),
which has 68 bytes of SRAM memory on chip (Fig. 2). A standard depackaging
procedure was applied to the chip and the result of this operation is shown as
well in Fig. 2.

The SRAM memory array is located in the centre of the bottom section of
the chip. This area is shown with 80× magnification on Fig. 4.

Because we had a very limited equipment budget, and the laser we had ap-
peared unsuitable, we decided to use a cheap photoflash lamp (a Vivitar 550FD,
bought secondhand from a camera shop for $30). Although the luminosity of a
flashlamp is much less than that of a pulsed laser, with appropriate magnifica-
tion the necessary level of ionization might be achieved. We used duct tape to fix
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Fig. 2. Microcontroller PIC16F84 original and depackaged

the photoflash lamp on the camera port of a Wentworth Labs MP-901 manual
probing station (Fig. 3). Magnification was set to the maximum – 1500×.

The microcontroller was programmed, such that its memory could be up-
loaded and downloaded via a serial interface connection. By filling the whole
memory with constant values, exposing it to the flash light, and downloading
the result, we could observe which cells changed their state. We used the TTL-
level control input of the flash to remote control it from a connected PC and
changing the capacitor recharge time allowed us to control the energy output.
The output power of the lamp was set to the maximum possible in this experi-
ment.

By shielding the light from the flash with an aperture made from aluminum
foil, we succeeded in changing the state of only one single SRAM cell. The final
state of the cell depended on the area exposed to the flash. This confirmed our
intuition that it would be possible to change the contents of SRAM using a low
cost semi-invasive attack.

4 Results

We found we could change any individual bit of an SRAM array. The array,
under maximum magnification, is shown in Fig. 5. Focusing the light spot from
the lamp on the area shown by the white circle caused the cell to change its
state from 1 to 0, with no change if the state was already 0. By focusing the
spot on the area shown by black circle, the cell changed its state from 0 to 1 or
remained in state 1.

It can be seen from Fig. 4 that the SRAM array is divided into eight equal
blocks. By exposing cells in different blocks, we found that each block corre-
sponds to one bit plane of information. The result of this operation is shown in
Fig. 6.

We built a map of the addresses corresponding to the physical location of
each memory cell by exposing each cell in turn to the photoflash light. The result
is presented in Fig. 7, with the left edge corresponding to the bottom side of
the block. It can be seen that the addresses are not sequential, but divided into
three groups.
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Fig. 3. Wentworth Labs MP-901 manual prober with Vivitar 550FD photoflash lamp
mounted on top

This shows how simple semi-invasive attack methods can be used for reverse
engineering a memory address map. The only limitation is that the flash does
not produce even and monochromatic light, so it is very difficult to control the
area where the spot of the light will be applied. This problem can be solved by
replacing the flash with a suitable laser.



8 S.P. Skorobogatov and R.J. Anderson

100 µm

Fig. 4. SRAM memory array with magnification

10 µm

Fig. 5. SRAM memory array with maximum magnification

5 Implications and Further Work

This work shows that optical probing attacks are possible using low-cost equip-
ment. We have repeated the experiments using a laser pointer (Fig. 8), which
we bought on a local market for $8, and a motorized stage. The same results
were achieved, but there were several practical differences. On the one hand that
we could probe the chip surface automatically, and at a rate which we estimate
could be driven as high as 100 flashes per second. On the other hand we had
to be more careful with alignment because of the narrower aperture and lower
power. The pointer was designed as a Class II laser device (< 1 mW), but we
operated it with a supply current that should result in up to 10 mW light out-



Optical Fault Induction Attacks 9

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

Fig. 6. Allocation of data bits in the SRAM memory array

30h 34h 38h 3Ch 40h 44h 48h 4Ch 10h 14h 18h 1Ch 20h 24h 28h 2Ch 0Ch

31h 35h 39h 3Dh 41h 45h 49h 4Dh 11h 15h 19h 1Dh 21h 25h 29h 2Dh 0Dh

32h 36h 3Ah 3Eh 42h 46h 4Ah 4Eh 12h 16h 1Ah 1Eh 22h 26h 2Ah 2Eh 0Eh

33h 37h 3Bh 3Fh 43h 47h 4Bh 4Fh 13h 17h 1Bh 1Fh 23h 27h 2Bh 2Fh 0Fh

Fig. 7. Allocation of addresses in each bit block of SRAM memory array

put. We can focus it to around 1 µm on the chip surface and its wavelength is
around 650 nm.

We used our automated probing equipment to implement attacks on a num-
ber of semiconductor devices. The best designed of the modern secure microcon-
trollers are not vulnerable to attacks using single laser flashes, as their protection
state depends on a number of bits of physical storage. However, a number of de-
signs can be unprotected by changing the state of the flip-flop that latches the
read-protect state. We strongly recommend that designers of ICs should study
their designs carefully to ensure that there are no single-transistor failures that
can subvert the chip’s security policy.

Attack experiments have been conducted on smartcards too. It may be help-
ful at this point to recall some of the earlier literature on fault analysis. In [3],
Boneh, Demillo and Lipton pointed out that the faulty computation of an RSA
digital signature leaks the signing key. For example, when doing an RSA sig-
nature the secret computation S = h(m)d (mod pq) is carried out mod p, then
mod q, and the results are then combined, as this is significantly faster. How-
ever, if the card returns a defective signature Sp which is correct modulo p but
incorrect modulo q, then we will have p = gcd(pq, Se

p − h(m)).
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Fig. 8. Disassembled laser pointer mounted to the microscope camera port

In [1], Anderson and Kuhn pointed out that interference with jump instruc-
tions is an even more powerful and general attack: an attacker who can cause
conditional branches in the smartcard code to be taken wrongly may, for exam-
ple, reduce the number of rounds in a block cipher to one or two, making key
recovery straightforward. The first of these two types of attack has been imple-
mented successfully using our technique, but an NDA prevents us from giving
further information.

Further scientific work in our plan includes a fuller investigation of the po-
tential for attacks by an opponent with a moderately resourced laboratory, by
which we mean a modern probing station with a multiple wavelength laser. We
are commissioning such equipment and plan to use it to explore the potential
for fault induction through the rear of the chip using infrared light. We have
also obtained access to a suitable X-ray source and will investigate whether it
can be used to induce useful faults. The significance of this is that X-rays can
penetrate top-layer metal, as well as most types of protective packaging likely
to be encountered in practice.

6 Countermeasures

The optical probing attack described above is a new and devastating technique
for attacking smartcards and other security processors. We anticipate that, like
the power analysis attacks reported by Kocher in [6], it could have a significant
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commercial effect on the industry, in that it will force a thorough reappraisal of
security claims and the introduction of new defensive technology.

Following Kocher, we decided to delay the announcement of our attack until
proper defenses were available. Existing high-end chip-defense techniques, such
as top-layer metal shielding and bus encryption, may make an attack using these
techniques more complicated, but are not enough. A sophisticated attacker can
defeat metal shielding by using infrared light or X-rays, while bus encryption
can be defeated by attacking registers directly.

The defensive technology that we have developed uses self-timed dual-rail
logic. Conventional digital logic uses a clock to synchronize activities; but the
cost of clocking rises as devices become more complex, and this has led to a surge
of interest in design techniques for self-timed, or asynchronous, circuits – circuits
that do not use clocks. Such circuits need some mechanism whereby functional
components in a circuit can signal that they are ready to receive data, or are
done. One way of doing this is to introduce redundancy into the data path.

In dual-rail logic, a 0 or 1 is signaled not by a low or high voltage on a single
wire, but by a combination of signals on a pair of wires. For example, 0 may be
‘LH’ and 1 may be ‘HL’. When used in self-timed circuits, ‘LL’ signals quiescence.
The principal drawback of this simple arrangement is fragility: bugs tend to cause
the emergence of the unwanted ‘HH’ state, which propagates rapidly throughout
the circuit and locks it.

Our innovation was to turn this fragility to advantage, by making ‘HH’ into
an error signal. This signal can be raised deliberately by tamper sensors, causing
the device to lock [12]. Of more interest here is the fact that matters can be so
arranged that single device failures cause are unlikely to cause the output of
sensitive information [11]. We believe that such robustness will be a requirement
for many high-security devices in future.

The engineering details are non-trivial. For example, an obvious concern is
that almost any undetected malfunction could be exploited by the attack of
Boneh et al. on RSA signatures. Colleagues have therefore developed a modu-
lar multiplication unit using our technology. Similarly, although bus encryption
can remove the need to protect on-chip memory arrays, there remains the risk
of attacks on the program counter and other registers. Other colleagues have
therefore developed registers, and a memory management unit, that use our
technology [11].

7 Conclusion

Standard CMOS circuitry is extremely vulnerable to attack using optical prob-
ing. By exposing a transistor to a laser beam, or even the focused light from a
flash, it can be made to conduct. This gives rise to many effects that can be used
by an attacker. We have described here how the illumination of a certain area of
an SRAM cell can be used to set it to either 0 or 1. Other memory technologies,
such as EPROM, EEPROM and Flash, can also be manipulated in various ways.
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However, this is only the beginning. Given only moderately expensive equip-
ment, an attacker may be able to induce a fault in a CMOS integrated circuit,
in any targeted transistor, and at precisely the clock cycle of her choice. This is
quite devastating. Hardware countermeasures will be necessary.
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Abstract. We present template attacks, the strongest form of side chan-
nel attack possible in an information theoretic sense. These attacks can
break implementations and countermeasures whose security is dependent
on the assumption that an adversary cannot obtain more than one or a
limited number of side channel samples. They require that an adversary
has access to an identical experimental device that he can program to
his choosing. The success of these attacks in such constraining situations
is due manner in which noise within each sample is handled. In contrast
to previous approaches which viewed noise as a hindrance that had to be
reduced or eliminated, our approach focuses on precisely modeling noise,
and using this to fully extract information present in a single sample.
We describe in detail how an implementation of RC4, not amenable to
techniques such as SPA and DPA, can easily be broken using template at-
tacks with a single sample. Other applications include attacks on certain
DES implementations which use DPA–resistant hardware and certain
SSL accelerators which can be attacked by monitoring electromagnetic
emanations from an RSA operation even from distances of fifteen feet.

1 Introduction

In the past few years, side channel attacks [13,12] have shown to be extremely
effective as a practical means for attacking implementations of cryptographic al-
gorithms. Adversaries can obtain sensitive information from side channels such
as timing of operations[13], power consumption [12], electromagnetic emanations
[19,9,20] etc. In constrained devices such as chip–cards, straightforward imple-
mentations of cryptographic algorithms can be broken with minimal work.

Since Paul Kocher’s original paper [12], a number of devastating attacks,
such as Simple Power Analysis (SPA) and Differential Power Analysis (DPA)
have been reported on a wide variety of cryptographic implementations [15,18,
6,11,17,8,3,4,10,16,7,5,21]. In SPA, keying information is easily extracted from a
single sample due to leakage from the execution of key dependent code and/or
the use of instructions which leak substantial information in the side channel over
the noise. When the leakage relative to noise is much less, statistical techniques
such as DPA are applicable. DPA relies on a statistical analysis of a large number
of samples where the same keying material is used to operate on different data.
A large number of samples is used to reduce noise by averaging.

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 13–28, 2003.
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In this paper, we show that these attacks are not optimal as they do not take
advantage of all information available in each side channel sample. Consequently,
some implementations believed to be immune to side channel attacks simply
because the adversary is limited to one or at most a few compromising samples,
can in reality be broken by harnessing all available information.

Consider an implementation of the RC4 stream cipher. While there are recent
reports of cryptanalytic results highlighting minor statistical weakness, there are
no major statistical biases to be easily exploited by side–channel attacks. To our
knowledge, no successful side channel attack on a reasonable RC4 implementa-
tion has been reported1. Initializing the 256-byte internal state of RC4 using
the secret key is simple enough to be implemented in a key independent man-
ner. While implementations of this will certainly leak some information about
the key, the individual steps do not leak enough information. Thus, simple side
channel attacks such as SPA are not possible. After initialization, the rapidly
evolving internal state of the stream cipher, independent of adversarial action
(due to the absence of any external inputs), offers innate defense against statis-
tical attacks such as DPA. One can at most hope to obtain a single sample of
the side channel leakage during the key initialization phase of RC4. Figure 1 is
based on side channel samples from the RC4 key initialization phase: the upper
trace is the difference between two single power samples when the keys are the
same, the lower trace when they are different. Contrary to expectation, the first
case shows larger differences. This ambiguity exists even when one looks at dif-
ferences of averages of upto five invocations (as shown in Figure 3 in Section 3).
Clear and consistent differences emerge only when one considers averages of sev-
eral tens of samples. Therefore, it would appear that such a carefully coded RC4
implementation cannot be attacked using only one available sample.

Consider a smart card which has a fast2 hardware DES engine. These have
become very popular especially because they have been evaluated and shown to
be highly resistant to side channel attacks. In conjunction with protocols limiting
adversaries to only few DES invocations with the card’s secret key, it would
appear that this is immune to side channel attacks. The third case we consider
is where an adversary is able to position sensitive (and bulky) electromagnetic
(EM) eavesdropping equipment in the proximity of a server with a commercial
RSA accelerator inside. In this environment, due to a risk of detection, it is likely
that only a few samples can be obtained.

In all these cases, the adversary has to work with far fewer signals than is
believed is necessary for side channel attacks based on known techniques. The
template attacks introduced in this paper can break all of these implementations.
In fact, as we will see, the template attack extracts all possible information avail-
able in each sample and is hence the strongest form of side channel attack possible
in an information theoretic sense given the few samples that are available.

A key requirement for the template attack is that the adversary has an iden-
tical experimental device which can be programmed. While such an assumption

1 IEEE 802.11 uses RC4 in a mode which makes implementations vulnerable to DPA.
2 Typically, such engines perform the entire DES in a few cycles.
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Fig. 1. Differences of side channel samples: upper figure is for the same key while the
lower is for two different keys

is limiting, it holds in many cases and has been used in other side channel attacks
[8,18] before. The template attack derives its power from using the experimental
device to derive a precise multivariate characterization of the noise. In sharp
contrast, prior approaches focussed on eliminating noise by averaging. We argue
that, especially for cryptographic algorithms implemented in CMOS devices, the
use of such a characterization is an extremely powerful tool to classify even a
single sample. The situation is analogous to the manner in which very weak
signals are extracted in signal communications. Even though the received signal
strength is very weak, it can be extracted by a receiver who has a very good
characterization of the signal and the ambient noise.

We refer to the precise, detailed models of the signal and noise as the template
of the computation. The concept of a template is based on Signal Detection and
Estimation Theory and in particular, the use of information theoretic techniques
such as likelihood ratios for hypothesis testing. Although other techniques such
as DPA, can also be viewed as coarse approximations of likelihood ratios, the
use of multivariate noise statistics is key to extracting the maximum information
from a single sample. Empirically, we have observed that in several situations,
univariate statistics are not sufficient and yield poor results.

The template attack works by a process of iterative classification. At each
step, we unroll one more segment of the sample which uses more bits of the
unknown key. Correspondingly, larger templates are used to prune the space of
possible hypotheses for the values of key bits, while controlling error probability.
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While minor differences in the keys can possibly confuse a classifier, this attack
is effective on cryptographic algorithms because the natural diffusion properties
of cryptographic algorithms actually aid in eliminating precisely such mistakes.

The paper is organized as follow: Section 2 introduces the theory behind tem-
plate attacks. Section 3 describes the application of template attacks to extract
keys from an implementation of RC4 using a single sample. Section 4 describes
two other cases where template attacks are feasible. In Section 5, we describe
the implications of template attacks and discuss potential countermeasures.

2 Theory

In this section, using Signal Detection and Estimation Theory we derive the
template attack and describe some heuristics to make the attacks practical.
Essentially, we have a device performing one of K possible operation sequences,
{O1, . . . , OK}: for example, these could be to execute the same code for different
values of key bits. An adversary who can sample the side channel during this
operation wishes to identify which of the operations is being executed or to
significantly reduce the set of possible hypotheses for the operation.

In signal processing, it is customary to model the observed sample as a com-
bination of an intrinsic signal generated by the operation and noise which is
either intrinsically generated or ambient. Whereas the signal component is the
same for repeated invocations of the operation, the noise is best modeled as a
random sample drawn from a noise probability distribution that depends on the
operating and other ambient conditions. It is well known[22] that the optimal ap-
proach for the adversary, who is trying to find the right hypothesis given a single
sample S, is to use the maximum likelihood approach: The best guess is to pick
the operation such that, the probability of the observed noise in S is maximized.
Computing this probability requires the adversary to model both the intrinsic
signal and the noise probability distribution for each operation accurately.

Template attacks meld this basic principle with details of the cryptographic
operation being attacked. The adversary uses an experimental device, identical
to the device under test, to identify a small section of the sample S depend-
ing only on a few unknown key bits. With experimentation, he builds templates
corresponding to each possible value of the unknown key bits. The template con-
sist of the mean signal and noise probability distributions. He then uses these
templates to classify that portion of S and limit the choices for the key bits to
a small set. This is then repeated with a longer prefix of S involving more key
bits. We will retain only a small number of possibilities for the portion of the key
considered thus far. Thus template attacks essentially use an extend-and-prune
strategy directed by the single sample S to be attacked: we use increasingly
longer prefixes of S and the corresponding templates to prune the space of pos-
sible key prefixes. The success critically depends on how effectively the pruning
strategy reduces the combinatorial explosion in the extension process.

Template attacks are particularly effective on implementations of crypto-
graphic algorithms on CMOS devices due to their contamination and diffusion
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properties. Contamination refers to key dependent leakages which can observed
over multiple cycles in a section of computation. In CMOS devices, direct ma-
nipulation of the key bits makes them part of the device state and these state
leakages can persist for several cycles. Additionally, other variables affected by
the key, such as key dependent table indices and values, cause further contam-
ination at other cycles. The extent of contamination controls the success of the
pruning of the fresh key bits introduced in the expansion phase. It is to be
expected that if two keys are almost the same, that even with the effects of
contamination, pruning at this stage, may not be able to eliminate one of them.
Diffusion is the well-known cryptographic property wherein small differences in
key bits are increasingly magnified in subsequent portions of the computation.
Even if certain candidates for key bits were not eliminated due to contamination
effects, diffusion will ensure that closely spaced keys will be pruned rapidly.

The implementation of an algorithm on a particular device inherently places
theoretical bounds on the success of the template attack. The best any adversary
can do to approach this theoretical bound is to have extremely good and accurate
characterizations of the noise. While one get elaborately sophisticated with such
characterizations, in practice approximations such as a multivariate Gaussian
model for the noise distributions yields very good results.

2.1 The Multivariate Gaussian Model Approach

The steps in developing a Gaussian model are as follows:

1. Collect a large number L (typically one thousand) of samples on the exper-
imental device for each of the K operations, {O1, . . . , OK}.

2. Compute the average signal M1, . . . , MK for each of the operations.
3. Compute pairwise differences between the average signals M1, . . . , MK to

identify and select only points P1, . . . , PN , at which large differences show
up. The Gaussian model applies to these N points. This optional step signif-
icantly reduces the processing overhead with only a small loss of accuracy.

4. For each operation Oi, the N–dimensional noise vector for sample T is Ni(T )
= (T [P1] − Mi[P1], . . . , T [PN ] − Mi[PN ]). Compute, the noise covariance
matrix between all pairs of components of the noise vectors for operation Oi

using the noise vectors Nis for all the L samples. The entries of the covariance
matrix ΣNi are defined as:

ΣNi [u, v] = cov(Ni(Pu), Ni(Pv))

Using this we compute the templates (Mi, ΣNi
) for each of the K operations. The

signal for operation Oi is Mi and the noise probability distribution is given by the
N–dimensional multivariate Gaussian distribution pNi(·) where the probability
of observing a noise vector n is:

pNi(n) =
1

√
(2π)N |ΣNi

| exp(−1
2
nT Σ−1

Ni
n), n∈RN (1)

where |ΣNi | denotes the determinant of ΣNi and Σ−1
Ni

is its inverse.
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In this model, the optimal technique to classify a sample S, is as follows: for
each hypothesized operation Oi, compute the probability of observing S if indeed
it originated from Oi. This probability is given by first computing the noise n in
S using the mean signal Mi in the template and then computing the probability
of observing n using the expression for the noise probability distribution and
the computed ΣNi

from the template. If the noise was actually Gaussian, then
the approach of selecting the Oi with the highest probability is optimal.The
probability of making errors in such a classification is also computable. If we
use this approach to distinguish two operations O1 and O2 with the same noise
characterization ΣN , the error probability is given by:

Fact 1 [22]For equally likely binary hypotheses, the error probability of error
of maximum likelihood test is

Pε =
1
2

erfc
( ∆

2
√

2

)
(2)

where ∆2 = (M1 −M2)T Σ−1
N (M1 −M2) and erfc(x) = 1− erf(x).

To implement the pruning process of the template attack, we deal with mul-
tiple hypotheses and bound the probability of classification errors by judiciously
selecting a small subset of possible operations as most likely candidates.

2.2 The Pruning Process

In the extend-and-prune paradigm of the template attack, each extension results
in several hypotheses about the operation being performed. For the attack to be
tractable, the pruning process has to reduce the set of possible hypotheses to a
very small number while ensuring with high probability that the correct hypoth-
esis is not discarded. To achieve this we ensure that the cumulative probability of
the hypothesis not retained is within the desired error bound. While this can be
done exactly given the precise noise characterizations, several heuristic methods
are easier to implement and give good results.

One approach that works well is to scale the probabilities so that the noise
probabilities under all of the hypotheses add up to one. We then discard those
hypotheses with the lowest scaled probabilities till the cumulative probability of
error due to the discarded hypotheses reaches the desired error bound.

Another heuristic that is easy to implement is to fix a constant factor c and
only retain those hypotheses in the pruned set whose noise vector probabili-
ties are within this constant fraction c of the highest noise probability: that is,
if Pmax is the maximum noise probability, we keep all hypotheses whose noise
probability is at least Pmax

c . We refer to this pruning process as the ball approach.
The intuition for this heuristic is that if the noise characterization is approxi-
mately the same for all hypotheses then the logarithm of the noise probability
for a hypothesis is a measure of the distance between the received signal and
that hypothesis. The misclassification error is an inverse exponential function of
the distance between hypotheses. The heuristic is to create a ball centered at
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the received sample whose radius is dmin + log(c), where dmin is the shortest
distance between the sample and the nearest hypothesis. We then retain only
those hypotheses that fall into this ball. Under the assumption of approximately
similar noise characterizations, the worst case probability of error can be shown
to be bounded by O( ∞√

c ) [22]. In practice, the error is much better. In subsequent
sections, we will illustrate how this theory can be applied to a number of case
studies including an RC4 implementation.

3 Case Study: RC4

We describe a template attack on an implementation of RC4. RC4 is a stream
cipher operating on a 256-byte state table. The state table is used to generate a
pseudo-random stream of bytes that is then XOR’ed with the plaintext to give
the ciphertext. It is a popular choice in a number of products and standards.
RC4 uses a variable key length (from 1 to 256 key bytes) to update the 256-byte
state table (initially fixed) using the pseudo code below:

index1 = index2 = 0;
for (counter = 0; counter < 256; counter++) {
index2 = (key[index1] + state[counter] + index2) % 256;
swap_byte(&state[counter], &state[index2]);
index1 = (index1 + 1) % key_data_len;

}

A portion of the corresponding side channel sample, in this case the power
consumption, is shown in Figure 2. The repeated structure observed is exactly
five successive iterations of the loop. As described in Figure 1, two keys cannot
be distinguished on the basis of a single sample. In fact, this remains true if one
were to consider the averages of five samples as illustrated in Figure 3. However,
significant and widespread differences become apparent when examining averages
of several dozen samples (see Figure 4).

A well-designed system using RC4 is unlikely to permit an attacker to re-
peatedly obtain samples of identical state initialization computations3. Thus the
real challenge is to break this implementation using a single sample. The figures
clearly show that traditional attacks like SPA will not work and DPA is clearly
not an option since we can not obtain more than a single sample.

RC4 is, however, an ideal candidate for template attacks. It is evident from
inspecting the code snippet above, that the key byte used in each iteration
causes substantial contamination. The loading of the key byte, the computation
of index2 and the use of index2 in swapping the bytes of the state table all con-
taminate the side channel at different cycles. The extent of this contamination
is easily visible as significant and widespread once averages of a large number
of samples are taken. Further, the use of index2 and the state in subsequent
3 Note that in devices implementing the 802.11 standard the key initialization is done

repeatedly with a fixed secret key and a variable part.
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Fig. 2. Power sample during first 5 iterations of RC4 state initialization loop.
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Fig. 3. Differences of averages of 5 side channel samples: upper figure is for the same
key while the lower is for two different keys
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Fig. 4. Differences of averages of 50 side channel samples: upper figure is for the same
key while the lower is for two different keys

iterations, and the fact, that RC4 is a well-designed stream cipher, quickly prop-
agates small key differences to cause diffusion. Thus, one expects that templates
corresponding to different choices of key bytes are very different and can be used
to efficiently and effectively classify a single sample.

3.1 Template Attack on RC4

Inspecting the averaged RC4 side channel samples using several different keys,
we identified 42 points in the side channel sample for each iteration of the loop for
classification purposes. Our first attempt used statistical measures that treated
these 42 points independently, i.e, we only looked at means and standard devi-
ations of the samples at each of the points. Although encouraging, the results
have high classification errors (as much as 35%) for pairs of keys with few bit
differences. Some empirical classification results of samples with five different
keys using this approach are shown in Fig 5. When key bits are very different,
even this simplistic approach gives us 100% success rate. However, in general,
this approach is unsuitable for an extend-and-prune attack due to high errors. In
the worst case, a large number of keys close to the actual key would be retained.
Empirically, we have observed that this could be of the order of a few tens of
keys. This is because even if keys have the same Hamming weight, the state
table addressing part distinguishes keys with different higher order bits. We use
the approach described in Section 2 to launch an attack based on multivariate
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Key Byte 1111 1110 1110 1110 1101 1110 1011 1110 0001 0000
1111 1110 0.86 0.04 0.07 0.03 0.00
1110 1110 0.06 0.65 0.10 0.20 0.00
1101 1110 0.08 0.16 0.68 0.09 0.00
1011 1110 0.10 0.11 0.08 0.71 0.00
0001 0000 0.00 0.00 0.00 0.00 1.00

Fig. 5. Classification Probability of 5 competing hypotheses using univariate statistics.
Entry (i,j) is probability of classifying samples with key i as one with key j.

statistics with the Gaussian noise. For our experiment, we used 10 choices for
the first key byte, as shown in Fig. 6. They are carefully chosen to be very
close and yielded poor results with the univariate statistics. For each key byte,
we computed the mean of 2000 samples of the side channel. We used the same
42 points of interest as in the univariate experiment. The templates consisted
of the means and the noise covariance at these points. To obtain statistics on
how well this approach would work, we used the templates to classify tens of
thousands drawn using one of the 10 choices as the first key byte. Figs. 6 and
7 summarize the results of the classification experiments for this set of 10 key
choices. Since the values were carefully chosen to reflect the worst case, these
results can be extrapolated to the case of 256 different values of the key byte.
Fig. 8 is an extrapolation of our results for the case of 256 different templates by
making pessimistic assumptions about the number of “close” keys. In practice
the actual results should be much better.

Our first classification heuristic was to retain only the most likely hypoth-
esis i.e. with highest likelihood probability. Even with such a drastic pruning
approach, average classification success probability was 99.3% with these 10 hy-
potheses and worst–case probability was 98.1%. Detailed results are described
in column 1 of the Fig. 6. We can get reasonable results even if we use this
extensive pruning strategy in each iteration of the extend-and-prune approach.
Extrapolating, as shown in Fig. 8 we expect average error probability of the
closest hypothesis approach to be about 5−6% when we consider all 256 possible
values, since we pessimistically expect around 50− 60 keys to be “close” to any
key. Bounding the error probability over many iterations by the sum of error is
in each iteration we note that when the number of key bytes is small this can be
used to extract all key bytes. For example, we can do better than 50% for about
8 bytes of key material.

With a little more effort, much better results can be obtained by using the
ball approach to pruning as shown in columns 2, 3 and 4 of Fig. 6 showing
success probability of retaining the correct hypothesis for balls with different
values of ball size. Average success probability has improved and is better than
99.8% and the worst–case probability is 99.5%, for this set of samples. As shown
in Fig. 7 the average number of hypotheses that we retain is still close to 1 for
balls of size e6 and e12. Again, using an estimate of about 50− 60 close keys, we
can extrapolate these results as done in Fig. 8. For example, choosing the ball
size e6, with good probability, at the end of one iteration we expect to retain at
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Key Byte Ball Size c = 1 Ball Size c = e6 Ball Size c = e12 Ball Size c = e24

1111 1110 98.62 99.46 99.88 99.94
1110 1110 98.34 99.82 99.88 99.88
1101 1110 99.16 100.00 100.00 100.00
1011 1110 98.14 99.52 99.82 100.00
0111 1110 99.58 99.76 99.89 99.94
1111 1101 99.70 99.94 99.94 99.94
1111 1011 99.64 99.82 99.82 99.89
1111 0111 100.00 100.00 100.00 100.00
1110 1101 99.76 99.82 99.88 99.88
1110 1011 99.94 100.00 100.00 100.00

Average 99.29 99.81 99.91 99.95

Fig. 6. Percentage of samples for which the correct hypothesis is retained under dif-
ferent ball sizes with 10 competing hypotheses

most 2 hypotheses, yet we are guaranteed to retain the correct hypothesis with
probability at least 98.67%. Using this approach independently in each iteration,
we can correctly classify keys of size n bytes with expected probability around
(100 − 1.33n)% and the number of remaining hypotheses would grow no more
than (1.5)k, which is substantially than the 28k (the entropy of the key). The
next subsection describes experiments where we use larger templates comprising
multiple iterations to get better pruning.

Ball Size c = 1 Ball Size c = e6 Ball Size c = e12 Ball Size c = e24

1 1.041 1.158 1.842

Fig. 7. Expected number of hypotheses retained under different ball sizes for 10 com-
peting hypothesis.

Ball Size c = 1 Ball Size c = e6 Ball Size c = e12 Ball Size c = e24

Success Prob. 95.02 98.67 99.37 99.65
Retained Hypotheses 1 1.29 2.11 6.89

Fig. 8. Extrapolated results for 256 competing hypotheses.

Iteration. Instead of using the above attack independently on subsequent por-
tions of the sample which use the next key byte, it is advantageous to consider
the basic attack on the whole prefix of the sample including previous iterations.
In our RC4 implementation, we now use 84 points of interest in the sample
spread over two loop iterations to prune possible candidates for the first two key
bytes. After pruning hypotheses for the first byte (as described earlier), we ex-
tend extend each remaining hypothesis by all 256 possible values for the second
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key byte. 84–point templates are created for this set of possibilities. Using these
larger templates, we classify the sample and retain only those hypotheses for the
first two bytes which remain in the ball around the sample.

Key Byte Ball Size c = 1 Ball Size c = e6 Ball Size c = e12 Ball Size c = e24

1101 1110 1111 1110 99.16 99.58 99.70 99.94
1101 1110 1110 1110 98.10 99.53 99.88 99.94
1101 1110 1101 1110 99.46 99.88 99.94 100.00
1101 1110 1011 1110 98.80 99.64 99.89 100.00
1101 1110 0111 1110 99.33 99.70 99.88 99.94
1101 1110 1111 1101 99.88 99.94 99.94 99.94
1101 1110 1111 1011 99.03 99.58 99.70 100.00
1101 1110 1111 0111 99.94 100.00 100.00 100.00
1101 1110 1110 1101 99.82 99.82 99.88 99.88
1101 1110 1110 1011 99.94 100.00 100.00 100.00
1011 1110 1111 1110 96.81 99.05 99.65 100.00
1011 1110 1110 1110 99.76 99.88 99.88 99.94
1011 1110 1101 1110 98.57 99.82 100.00 100.00
1011 1110 1011 1110 97.87 99.76 100.00 100.00
1011 1110 0111 1110 98.25 99.28 99.52 99.82

Average 98.98 99.70 99.86 99.96

Fig. 9. Percentage of samples for which the correct hypothesis is retained for 2 itera-
tions and 15 competing hypotheses

Ball Size c = 1 Ball Size c = e6 Ball Size c = e12 Ball Size c = e24

1 1.04 1.141 1.524

Fig. 10. Expected number of hypotheses retained under different ball sizes for 15 com-
peting hypotheses.

To verify that this is better than using just 42 points of the second iteration,
we performed the following experiment: We considered 15 possible combinations
of the first and second key bytes. There were two possibilities for the first key
byte which roughly simulates what we expect after the template attack on the
first iteration. The classification results for different ball sizes are given in Figs.
9 and 10. To compare these results to the earlier case, we must scale the results
from the tables for 10 hypotheses. Since there are 14 wrong hypothesis instead
of 9 before comparison each figure from the earlier tables must be scaled by a
factor of 14/9. This is indeed the case for the error probability of not retaining
the correct hypothesis for ball sizes of 1,e6 and e12. The error probability is better
for ball size of e24 when we use longer templates. More importantly, note that
the average number of hypotheses retained is substantially better uniformly for
each and every ball size. Thus, we retain fewer number of candidates by using a
longer template. Empirically, we have observed that with a longer template, with
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extremely high probability, all of the hypotheses remaining have the correct first
key byte. After 2 iterations, we could only find 1 sample amongst 16000 where
a hypothesis with the wrong first key byte was retained.

4 Other Case Studies

We briefly describe two other examples where template attacks can be used. The
first example is a smart card with fast DES hardware. Use of such hardware is
currently very popular, since they highly resistant to power attacks. The only
exposure for such engines is the loading of the key bytes from EEPROM which
usually leaks the hamming weight. However, implementors also have to worry
about Differential Fault Attacks [2,1], and a card that we looked at addressed this
problem using a checksum on key bytes, verified before the key was loaded in the
DES engine. The checksum was calculated accessing key bytes in circular order
starting from a random offset. This can be easily fixed using signal processing.
Fig. 11 shows an averaged signal depicting the checksum computation loop in
more detailfollowed by the enabling of the DES engine (the region with large
current consumption). In the checksum calculation, the key bytes are loaded
from EEPROM, placed in RAM and are then used as operands in the checksum
computation, thus creating a large contamination. For example, Figure 12 shows
that even key bytes with the same hamming weight can be distinguished by
taking averages of a few samples. Such types of signals are prime candidates for
a template attack.
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Fig. 11. Average signal showing details of checksum calculation for 8 key bytes.



26 S. Chari, J.R. Rao, and P. Rohatgi

0 1000 2000 3000 4000 5000 6000 7000
−100

−50

0

50

0 1000 2000 3000 4000 5000 6000 7000
−60

−40

−20

0

20

40

60

Fig. 12. Differences in average signals: lower figure is for same key and upper figure is
for different keys but with same hamming weight.

The second example is a EM signal we collected from a distance of 15 feet
away from an SSL accelerator inside a closed server. We programmed the SSL
accelerator to do a 2048 bit exponentiation with a single-nibble exponent. The
fact that the exponent leaks from this computation follows from Figure13 which
shows the signal differences between exponentiation with two different nibble ex-
ponents B and D after taking averages of few signals and some signal processing.
Thus template attacks are very feasible for this case as well. In this example,
other attacks such as MESD [18] can be possible as well, if one can collect a
large number of EM samples.

5 Implications and Countermeasures

In principle, the template attack described is the strongest side channel attack
possible from an information theoretic sense. The information present in each
portion of the side channel signal is fully used for classification. This makes it a
very powerful tool for attacking a wide range of cryptographic implementations.
However, the effort required, in terms of creating a large number templates in an
adaptive manner, make the task daunting. It also presumes the availability of an
identical test device which can be programmed to the adversary’s whim. Since
the attack requires only a single invocation of the test device, all countermeasures
to side channel attacks that rely on limiting the number of samples that an
adversary can take with a fixed key may be vulnerable depending on the extent



Template Attacks 27

5.8 6 6.2 6.4 6.6 6.8

x 10
4

−1500

−1000

−500

0

500

Fig. 13. Average processed EM signals for two diffrent private exponents.

of contamination. Such countermeasures include high level protocols to limit key
usage and non-linear key update techniques of [12].

The requirement of having an identical experimental device is also the weak-
ness of the template approach. Randomization in the computation such as ad-
dress/data scrambling, blinding/masking of data and key bits and ensuring that
the adversary cannot control the choice of randomness in his own experimental
device is one way this attack can be mitigated. This countermeasure may not
be feasible for highly programmable devices such as SSL accelarators. The over-
riding principle in building in securing implementations against templates is to
minimize contamination caused by use of sensitive information in the clear.
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Abstract. We present results of a systematic investigation of leakage of
compromising information via electromagnetic (EM) emanations from
CMOS devices. These emanations are shown to consist of a multiplicity
of signals, each leaking somewhat different information about the under-
lying computation. We show that not only can EM emanations be used
to attack cryptographic devices where the power side–channel is unavail-
able, they can even be used to break power analysis countermeasures.

1 Introduction

Side–channel cryptanalysis has been used successfully to attack many crypto-
graphic implementations [7,8]. Most published literature on side–channels deals
with attacks based on timing or power. With the recent declassification of por-
tions of the TEMPEST documents [5], and other recent results [9,6], an aware-
ness of the potential of the EM side–channel is developing. However, some ba-
sic questions remain unanswered. For instance, what are the causes and types
of EM emanations? How does information leaked via EM emanations compare
with leakages from other side–channels? What new devices and implementations
are vulnerable to EM side–channel attacks? Can the EM side–channel overcome
countermeasures designed to provide protection against other side–channel at-
tacks? With questions such as these in mind, we conducted a systematic in-
vestigation of EM side–channel leakage from CMOS devices. In this paper, we
address each of these basic questions.

In Section 2, we discuss the causes and types of various EM signals and de-
scribe the equipment required to capture and extract these signals. In addition to
the direct emanations, EM signals consist of several compromising signals which
are unintentional and are found in unexpected places. For instance, researchers
have thus far missed the faint, but far more compromising amplitude modulated
EM signals present even in the power line.

Section 3 presents experimental results illustrating various types of emana-
tions and Section 4 provides a qualitative comparison of information leakages
from EM and power. These results are very instructive. One crucial observation
is that even a single EM sensor can easily pick up multiple compromising sig-
nals of different types, strengths and information content. Moreover, significant
amount of compromising information is to be found in very low energy signals.

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 29–45, 2003.
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It is therefore critical that signals be separated early in the acquisition process
to avoid loss of these low energy signals due to precision limits of signal captur-
ing equipment. A very effective way to achieve such a separation is to exploit
unintentionally modulated carriers at higher frequencies where there is less in-
terference and noise rather than focusing on direct emanations in the baseband
where the large amount of interference and noise may require techniques such
as chip decapsulation and use of carefully positioned micro–antenna [9,6].

Using EM, we launched attacks such as simple and differential electromag-
netic attacks (SEMA and DEMA [9]) on straight–forward implementations of
DES, RSA and COMP128 on smart cards, cryptographic tokens and SSL accel-
erators. While the EM side–channel remains the most viable avenue for attacking
cryptographic devices where the power side–channel is unavailable, an important
question is whether the EM side–channel provides any other advantage when the
power side–channel is available. In Section 5, we answer this in the affirmative.
We outline an approach that breaks some fielded systems with power analysis
countermeasures. The approach is based on the observation that most devices
have classes of “bad instructions” whose leakage in some EM side–channel far
exceeds the corresponding leakage in the power side–channel and works against
two major classes of power analysis countermeasures [8,2,4]. We illustrate this
approach by attacking a test implementation1 of the secret–sharing counter-
measures of [2,4]. This approach works in many cases even when the code is
unknown.

Despite their effectiveness, our low–cost attacks provide only a glimpse of
what is possible: combining leakages from multiple EM signals could yield sub-
stantially better attacks. Furthermore, developing countermeasures requires a
methodology to assess the net information leakage from all the EM signals re-
alistically available to an adversary. Our work on these aspects of the EM side–
channel(s) is described in more detail in [1].

2 EM Emanations and Acquisition

This section describes the origin and types of various compromising EM signals
that we have observed2 and the equipment and techniques to extract them.

2.1 Origin of EM Emanations

EM emanations arise as a consequence of current flows within the control, I/O,
data processing or other parts of a device. These flows and resulting emanations
may be intentional or unintentional. Each current carrying component of the
device not only produces its own emanations based on its physical and electrical
characteristics but also affects the emanations from other components due to
coupling and circuit geometry.
1 To avoid disclosing weaknesses of commercially deployed systems.
2 While there is an obvious overlap with the declassified TEMPEST documents (NAC-

SIM 5000) [5], we only describe what we have verified in our investigations.
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An attacker is typically interested in emanations resulting from data pro-
cessing operations. In CMOS devices, ideally, current only flows when there is a
change in the logic state of a device and this logic state change is controlled by a
“square–wave” shaped clock. These currents result in compromising emanations,
sometimes, in unintended ways. Such emanations carry information about the
currents flowing and hence the events occurring during each clock cycle. Since
each active component of the device produces and induces various types of ema-
nations, these emanations provide multiple views of events unfolding within the
device at each clock cycle. This is in sharp contrast to the power side–channel
where only a single aggregated view of net current inflow is available thus, ex-
plaining why the EM side–channel(s) are much more powerful.

2.2 Types of EM Emanations

There are two broad categories of EM emanations:

1. Direct Emanations: These result from intentional current flows. Many of
these consist of short bursts of current with sharp rising edges resulting in em-
anations observable over a wide frequency band. Often, components at higher
frequencies are more useful to the attacker due to noise and interference preva-
lent in the lower bands. In complex circuits, isolating direct emanations may
require use of tiny field probes positioned very close to the signal source and/or
special filters to minimize interference: getting good results may require decap-
sulating the chip packaging [6,9].

2. Unintentional Emanations: Increased miniaturization and complexity of
modern CMOS devices results in electrical and electromagnetic coupling between
components in close proximity. Small couplings, typically ignored by circuit de-
signers, provide a rich source of compromising emanations. These emanations
manifest themselves as modulations of carrier signals generated, present or “in-
troduced” within the device. One strong source of carrier signals is the ubiquitous
harmonic–rich “square–wave” clock signal3. Other sources include communica-
tion related signals. Ways in which modulation occurs include:

a. Amplitude Modulation: Non–linear coupling between a carrier signal and
a data signal results in the generation and emanation of an Amplitude Modu-
lated (AM) signal. The data signal can be extracted via AM demodulation using
a receiver tuned to the carrier frequency.

b. Angle Modulation: Coupling of circuits also results in Angle Modulated
Signals (FM or Phase modulation). For instance, while signal generation circuits
should ideally be decoupled from data processing circuits, this is rarely achieved
in practice. For example, if these circuits draw upon a limited energy source
the generated signal will often be angle modulated by the data signal. The data
signal is recoverable by angle demodulation of the generated signal.
3 Theoretically a symmetric, square clock signal consists of the fundamental frequency

and all the odd harmonics with progressively diminishing strengths. In practice, the
clock signal is always imperfect.
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Exploiting unintentional emanations can be much more effective that trying
to work with direct emanations. Some modulated carriers have substantially
better propagation than direct emanations. This enables attacks to be carried out
without resorting to invasive techniques and even attacks that can be performed
at a distance. None of the attacks described in this paper require any invasive
techniques or fine grained positioning of probes. Secondly, careful field probe
positioning cannot separate two sources of direct emanations in close proximity,
while such sources may be easily separable due to their differing interaction with
the carriers present in the vicinity.

2.3 Propagation and Capture of EM Signals

EM signals propagate via radiation and conduction, often by a complex combi-
nation of both. Thus two classes of sensors are required to capture the signals
that emerge. The most effective method for capturing radiated signals is to place
near field probes as close as possible to the device or at least in the near field,
i.e., no more that a wavelength away. Some of these emanations can also be
captured at much larger distances using standard antennas. In our experiments,
the most effective near field probes are those made of a small plate of a highly
conducting metal like silver or copper attached to a coaxial cable. In the far field,
we used biconical and log–periodic wide–band antennas as well as hand–crafted
narrow–band, high gain Yagi antennas. Conductive emanations consist of faint
currents found on all conductive surfaces or lines attached to the device possi-
bly riding on top of stronger, intentional currents within the same conductors.
Capturing these emanations requires current probes. The quality of the received
signal improves if the equipment is shielded from interfering EM emanations in
the band of interest, though the shielding does not have to be elaborate.

The emanations received by the sensor have to be further processed to ex-
tract compromising information. For direct emanations, filters may suffice. For
unintentional emanations, which manifest themselves as modulations of carrier
signals, a receiver/demodulator is required. For experimental work, a wide band-
width, wideband tunable receiver such as the R–1550 Receiver from Dynamic
Sciences and the 8617 Receiver from Watkins–Johnson is convenient. A cheaper
alternative is to use wide–band radio receivers such as the ICOM 7000/8500
which have intermediate frequency outputs and to then perform the demodu-
lating functionality in software. An even cheaper approach is to construct the
receiver using commonly available low noise electronic components. At some
stage, the signal has to be digitized using digital scope/sampling card as done
for power analysis attacks. Equipment such as spectrum analyzers are also use-
ful for quickly identifying carriers and potentially useful emanations. A useful
rule–of–thumb is to expect strong carriers at odd harmonics of the clock.

3 Experimental Results

We describe experiments that illustrate the various types and nature of EM
emanations.
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Experiment 1: Direct Near–Field Emanations: We programmed a recently de-
ployed smart card, called smartcard A (to protect vendor identity4), to enter a
13 cycle infinite loop using the externally supplied 3.68MHz clock. A near–field
probe (a small metal plate attached to a co–axial cable) was placed near the chip
at the back of smart card. After wide–band amplification, 500K sample points
(representing approx 284 iterations of the loop) were captured using an 8–bit,
500MHz digital scope. In the time domain, the baseband direct emanations sig-
nal (band centered at 0MHz), looked like a differentiated form of the external
clock and provided no visual indication of a loop execution. In the frequency
domain, the signal received by the probe consists of the signal of interest, i.e.,
a periodic signal corresponding to a loop iteration at 283KHz (3.68MHz/13),
other signals from the chip and its vicinity such as the clock (periodic with
freq 3.68MHz) and aperiodic noise. Capturing the received signal with a limited
resolution scope further introduces quantization noise. Figure 1 plots the magni-
tude5 of the FFT of the captured baseband signal against the frequency in KHz
over the 0–200 MHz band. The large spikes below 100 MHz are the high energy
harmonics of the clock signal and tiny spikes sprinkled between them are other
types of direct and unintentional emanations which are of interest. Very little
signal is noticeable above 125 MHz because these signals have lower strengths
and have been overwhelmed by quantization noise. In the linear scale used in
Figure 1, the loop execution is not apparent. On a log (base 10) scale, zooming
into the region from 0 to 20MHz, as shown in Figure 2, the signal of interest
at 283KHz and its harmonics can be seen interspersed between the clock signal
and its harmonics. Note that the use of a large time window, i.e., 284 iterations
of the loop, helps in detecting this periodic signal since aperiodic noise from the
chipcard, environment and quantization gets reduced due to averaging. Since the
direct emanations are at least an order of magnitude smaller than interfering sig-
nals, exploiting them in the presence of quantization noise, is quite challenging
and has been addressed by [6,9]. Our approach focuses on the much easier task
of exploiting unintentional emanations.
Experiment 2: Unintentional Near–Field AM Emanations: We use the same
setup as in Experiment 1, but with the output of the probe connected to an
AM receiver, tuned to the 41’st clock harmonic at 150.88 MHz with a band of
50MHz. The demodulated output was sampled with a 12–bit 100MHz scope6

and 100K sample points representing approximately 284 loop iterations were
collected. Figure 3 plots the magnitude of the FFT of this signal against the fre-
quency in KHz. Notice that even in this linear scale plot, the signal of interest,
i.e., the 283KHz signal corresponding to the loop and its harmonics, is clearly

4 Smartcard A is 6805–based, uses 0.6 micron triple metal technology with an optional
variable internal clock as one defense against DPA.

5 In all figures, signal magnitudes should be treated as relative quantities: we don’t
track the absolute values as the signals typically undergo analog processing before
being captured by an 8/12–bit scope. The scope sensitivity is set so that the 8/12–bit
dynamic range is fully utilized.

6 The lower bandwidth allows the use of a lower sampling rate with higher precision.
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Fig. 1. FFT of baseband signal from Experiment 1 with Smartcard A
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Fig. 2. Log of FFT in the region 0–20MHz from Experiment 1 with Smartcard A
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Fig. 3. FFT of demodulated signal (150.88 MHz carrier, 50Mz band) in Experiment 2
with Smartcard A
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Fig. 4. Two FFTs showing loop frequency differences (LSB 0 and 1) for smartcard A

visible among the clock harmonics. The loop structure is also clearly visible in
the time domain. Notice that these greatly improved results were obtained us-
ing the same sensor setting as in Experiment 1, and with the same number of
loop iterations. Note that we are also operating in a part of the spectrum which
showed hardly any signal according to Figure 1; since the signals in this band
were overwhelmed by the quantization noise in that experiment.
Experiment 3: Unintentional Near/Far–Field Angle Modulated Emanations:
Next we enabled the variable internal clock DPA protection mechanism in Smart-
card A and kept everything else the same. One of the instructions in the 13–cycle
loop was to load a user supplied byte B from RAM to accumulator. We exper-
imented with different values of the byte B and made the following surprising
observation: the average frequency of the 13–byte loop was dependent on the
least significant bit (LSB) of B but not on other bits. This is shown in Figure 4,
where the magnitude of FFT of the EM output for two different cases is plotted
against the frequency in KHz. The first case (shown by a broken line) shows the
loop frequency with the LSB(B) = 1 and in the second case (shown by a solid
line) the loop frequency when the LSB(B) = 0. In the first case, the loop runs
slower. This is due to coupling between the LSB and the circuitry generating
the internal clock. Although the clock frequency itself varies frequently, when
there is a 1 bit on the LSB line, the intrinsic variation is biased towards slowing
down the clock for a couple of subsequent cycles. We speculate that this is due to
the clock circuitry drawing energy from the same source as some other circuitry
affected by the LSB. Thus, angle demodulation, e.g., FM demodulation, turns
out to be a good avenue for attacking smartcard A using LSB based hypothesis.
This effectively transforms a countermeasure into a liability! Another advantage
of such an attack is that it can be performed at a distance in the far field since
the clock signal is quite strong.
Experiment 4: Unintentional Far–Field AM Emanations: We examined emana-
tions from an Intel–based server containing a commercial, PCI bus based SSL
accelerator S7. We programmed the server to repeatedly invoke S to perform

7 S is rated to perform 200, 1024-bit CRT based RSA private key ops/s.
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a 2048 bit exponentiation with a single–nibble exponent. Several AM modu-
lated carriers (at multiples of the 33MHz PCI clock) containing compromising
information propagated to distances upto forty feet. Figure 5 plots a signal (am-
plitude vs. time in ms) captured by a log–periodic antenna 15 feet away using
the 299MHz carrier and 1MHz bandwidth. Three invocations of S are clearly
visible as bands where the amplitude goes below -1000. At this resolution, the
macro structures of the exponentiation are already visible. At higher resolutions,
there is enough information to enable the new class of template attacks [3].
Experiment 5: Conductive Emanations: Conductive emanations appear at un-
expected places and are easy to overlook. In fact, if researchers experimenting
with power analysis attacks re–analyze the raw signals from their current probes,
they will discover that apart from the relatively low frequency, high amplitude
power consumption signal, there are faint higher frequency AM modulated car-
riers representing conductive EM emanations from the device, since the power
line is also a conductor. Figure 6 plots one such EM signal (amplitude vs time in
10ns units) extracted from the power line by AM demodulating one such carrier
while a smart card (which we call smartcard B8) executes 3 rounds of DES.
These rounds are clearly visible in the signal.

4 Information Leakage across EM Spectrum

In this section, we provide experimental evidence to reinforce a central theme of
this paper, i.e., the output of even a single wide–band EM sensor logically con-
sists of multiple EM signals each carrying qualitatively different compromising
information and in some cases, EM leakages can be substantially superior to the
power consumption signal.

While the presence of certain types of EM signals (e.g., angle modulated car-
riers, intermodulated carriers etc) are device dependent, our experiments show
that invariably, AM carriers at clock harmonics are a rich and easily acces-
sible source of compromising signals. For smart cards, since the fundamental

8 Smartcard B is a 6805–based, 0.7micron, double metal technology card with inbuilt
noise generators.
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Fig. 6. EM Signal on Power Line for 3 rounds of DES on smartcard B

frequency is low, the intermediate harmonics are usually the best. Lower har-
monics suffer from excessive noise and interference and higher harmonics tend
to have extremely low signal strength9.

We now examine the leakage of information from four types of signals ob-
tained from smartcard B when it performed DES in software. No power analysis
countermeasures, except for the internal noise generators, were enabled on the
card. The smart card ran on the 3.68MHz external clock. Three of these sig-
nals were obtained by AM demodulating the output of a near field probe placed
as in Experiment 1, at three different carrier frequencies (50MHz bands around
188MHz, 224.5MHz and 262MHz). The fourth signal was the power consumption
signal. All signals were collected by a 12–bit, 100MHz digital scope.

It is well known that plotting the results of a differential side channel attack
launched against a bit value used in a computation is a good way to assess the
leakage of the bit [8]. This is because the plot is essentially the difference between
the average of all signals in which the bit is 1 and the average of all signals in
which the bit is 0, plotted against time. At points in the computation where this
bit is not involved or where the bit is involved but information about it does not
leak in the side–channel, the value of the difference is small and not noticeable.
At points where the bit is used in the computation and this information leaks
in the signal, this difference is likely to be large or noticeable.

Figures 7, 8, 9, and 10 show the results of a differential side–channel attack
on an S–box output bit in the first cycle of the DES implementation, using the
four different signals. Figures 7, 8 and 9, are for the EM signals and Figure 10
is for the power signal. All figures are aligned in time. In all figures, the X–
axis shows elapsed time in 10ns units and the Y–axis shows the difference in
the averages of signals with bit=0 and bit=1 for 2000 invocations of DES with
random inputs. Even at this resolution, it is clear that the leakage results are
qualitatively different from each other. There are some gross similarities between
the EM leakages in Figures 7 and 8 and between the EM leakage in Figure 9

9 This is because clock edges are not very sharp in practice.
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Fig. 10. DPA attack on DES on smartcard B
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and the power leakage in Figure 10. These leakages can be compared by plotting
them together. Figures 11, 12, 13 show some of the regions in such a plot. Each
leakage is plotted in a different line–style, with the power leakage being a solid
line and the 3 EM leakages plotted in different broken–line styles (188MHz with
a dotted line, 224.5MHz with a dashed line and 262MHz with alternate dot and
dashes). It is clear from these figures that even though the signals fall into two
gross classes at the macro level, there are significant differences even between
signals within a class at a cycle level (see Figure 11). Moreover, there are leakages
which appear in EM signals (and sometimes excessively so), which do not appear
in the power signal (see Figure 12). Such leakages are due to what we will later
term as a “bad” instruction. There are also leakages which are large in power,
but low in some (but not all) EM signals (see Figure 13).

5 The Power of the EM Side–Channel(s)

Using low–cost EM equipment, which can collect only one signal at time, we
have experimented with a wide variety of cryptographic equipment and comput-
ing peripherals. We could easily launch attacks such as simple and differential
electromagnetic attacks (SEMA and DEMA [9]) on straight–forward implemen-
tations of DES, RSA and COMP128 on smart cards, cryptographic tokens and
SSL accelerators. While these attacks are interesting, this does not justify why
EM side–channel(s) should be used in preference to others. In some cases, e.g.,
attacking an SSL accelerator from a distance, the only strong side–channel avail-
able is EM. We now show that the EM side–channel is extremely useful even in
cases where the power side–channel is available, i.e., the EM side channel can
be used to break power analysis resistant implementations.

In [8], a suggested countermeasure to power analysis is to use only those
instructions whose power leakage is not excessive and to refresh sensitive infor-
mation, such as a key, after each invocation in a non–linear fashion. This forces
the adversary to extract a substantial portion of the key from a single invoca-
tion since incomplete key information does not help in subsequent invocations.
Another class of countermeasures is based on splitting all sensitive information
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into shares [2,4]. The basic idea is that uncertainty in the information about
each share is exponentially magnified in proportion to the number of shares.

5.1 Bad Instructions Defeat Power Analysis Countermeasures

The key to breaking both classes of countermeasures is to identify instructions,
that we term bad instructions, which leak much more information in some EM
signals as compared to the power signal. If bad instructions are used in power–
analysis resistant implementations, the leakage assumptions made the implemen-
tation become invalid.

For all chip cards that we examined, there were several bad instructions.
In our investigations, we did not find any instruction that leaked in the power
side–channel but did not leak in some EM side–channel. This can happen if all
critical parts of a chipcard are well–shielded but the power signal is not. We feel
that this is unlikely since a designer who shields EM emanations so well is also
likely to protect against power signal leakages.

For example, the bit test instruction is very useful for implementing algo-
rithms, such as DES, which involve bit level permutations. For example, it can
be used for key expansion and P–permutation. The value of the tested bit is
known to have low power leakage characteristics on many smart cards. This
is because the power signal is dominated by the larger currents needed to drive
bus lines as opposed to the smaller currents within a CPU performing a bit–test.
Thus, it is likely to be present in some power analysis resistant implementations.

However, this bit test instruction turned out to be a bad instruction for
smartcard B. When the internal noise generators had been turned off, we ob-
served that it leaked information about the tested bit from even a single signal
sample in the EM side–channel but not in the power side–channel. This is illus-
trated in Figures 14 and 15 where the amplitudes of two EM signals are plotted
against time (in 10ns units). In both figures, the data was collected by a 12–bit,
100MHz scope after demodulating at the 262MHz carrier. Figure 14 shows two
EM signals in which the bits tested are both 0: this is seen as a low value in both
the signals at the point 18915. Figure 15 shows two EM signals in which one of
the bits tested is 0 and the other is 1: this is seen as a low value in one of the
signals and a high value in the other at point 18780. These points correspond to
the cycle where the value of the bit is tested.

Even with noise generators enabled, it was possible to classify the bit value
correctly with high probability by using only a few samples (20–30). We experi-
mentally verified that no such differences were to be found at the corresponding
cycle for the power signals. Even after statistical tests involving thousands of
power samples, there are no differences at this cycle although they show up at
other cycles (such as the point where the byte containing the bit is loaded).

If the bit test instruction was used for implementing permutations in a power
analysis resistant implementation of DES, with noise generators off, a SEMA at-
tack would be sufficient to extract the DES key regardless of which class of
countermeasures [8,2,4] was used. However, if noise was enabled, then the coun-
termeasure of [8] may still remain immune. However, as we now show, higher
order statistical attacks would still defeat the countermeasures of [2,4].
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Fig. 14. Two EM Signals where tested bits are 0 (seen as low values at 18915)

Higher Order EM Attacks on Secret–Sharing. The secret–sharing based
DPA countermeasure chooses a value for the number of shares based on leakage
characteristics and the desired level of resistance against higher order power
analysis attacks [2,4], in terms of the number of samples required to break the
implementation. If a leakage is superior in an EM signal, then the number of
samples for the corresponding higher order EM attack can be substantially lower.
The task of an adversary attempting this higher order attack may be complicated
by the fact that the code could be unknown. We now outline a general technique
to perform higher order EM attacks exploiting bad instructions which can work
even when the code is unknown.

Attacks on Unknown Code. Assume a chipcard containing an unknown k–
way secret–sharing based DPA protected code for a known algorithm. Further
assume that “bad” instructions have already been identified and some of these
instructions are used to manipulate shares. These, of course, are necessary con-
ditions for EM attacks to be more effective than power attacks. Let us also
assume that it is possible to use signal processing to remove execution sequence
and variable clock randomization that has been added as countermeasures to
complicate alignment of signals and that each signal can be realigned into a
canonical execution sequence10.

The value of k is usually small. For simplicity, assume that k is 2: the attack
generalizes for slightly larger k. Fix a reasonable limit L on the number of EM
samples that can be collected. We now show that if k is small and if with knowl-
edge of the code we could have broken the protected code using L samples, then
this attack can break the unknown protected code with O(L) samples.

In case of a two–way split, a first step is to identify the two locations where the
shares of an algorithmic quantity are being manipulated using bad instructions.
If code–execution randomization can be effectively neutralized, then this can be
done for many algorithms. Knowing the algorithm, one can provide two different
inputs such that the value of the variable is different for these inputs while most
10 We have found this to be quite feasible, especially since canonicalization with a

reasonable probability of correctness suffices.
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Fig. 15. Two EM Signals where tested bits are 0 and 1 (low and high values at 18780)

of the other variables are the same within the window of interest. For example,
in DES if algorithmic quantity is an S–box output, one could choose two inputs
which differ only on 1 bit so that only that S–box output is affected.

Take L EM samples for each of these two different inputs. If the exact loca-
tions where the two shares were manipulated was known, then there is second
order statistic, S, that can be applied to the signal at these two locations to
distinguish between the two different inputs, thus enabling hypothesis testing.

Without location information, one can only assume that the two locations
are an integral number, D, of clock cycles apart. So the strategy is to compute
the statistic S for each point on the signal with respect to a corresponding point
D cycles away. This is done for both sets of inputs for all reasonable values of D.
If the shares are not manipulated at distance D, then the values of the statistic
S at all points will be similar for the two inputs. However, for the right value of
D, there will be a significant difference in S exactly at the point where the first
share is manipulated and thus the exact location of each share is revealed.

An optimization is to choose the two inputs so that multiple algorithmic
variables are different. Then the above exercise will yield candidate locations for
the shares for all these variables. Once these locations are identified, second (or
higher) order attacks can be applied as if the code were known.

To validate this approach, we implemented a two–way XOR–based secret
sharing scheme for bits on smartcard B with noise generators on. The sample
code split the input bits into pairs of shares and tested the values of the bits of
the shares using the bit test instruction. We confirmed that DPA and DEMA on
input bits did not work. In the implementation, the shares of one of the input
bits were tested 40 cycles apart. Section 5.1 shows that when a bit is 1, the signal
at the bit test instruction is high and when the bit is 0, the signal is low. For
a 2–way bit split using an XOR–scheme, the shares of a 0 bit will be (0, 0) or
(1, 1) with equal probability and the shares of a 1 bit would be (0, 1) or (1, 0)
with equal probability. This suggests that a good statistic S is the correlation
coefficient between the corresponding signal points where the shares of bits are
being tested. S will be positive when the bit is 0 and negative when the bit is 1.
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Fig. 16. Difference in correlation statistics for D = 40, L = 500

We experimented with L = 500, for two different inputs, which differed in
exactly three bits. Figure 16 shows the difference in the statistic S when the
distance D is 40, plotted against elapsed time in 10ns units. The three significant
negative peaks were confirmed to be at exactly the points where the first shares
of the three bits (that differ) were being manipulated. In fact this attack even
worked when L = 200. No peaks were seen when D differed from 40. The same
experiment when repeated for D = 40 for five thousand power signals did not
work showing that higher order DPA does not work with five thousand signals.

6 Conclusion and Further Work

This paper, together with other recent work [9,6,1], lays the foundations for a
theory of EM leakages during computation in CMOS devices. While a significant
amount of information had been publicly available on EM leakages, that work
mostly dealt with leakages from displays and other peripherals[10].

Our paper highlights a key aspect of the nature of EM leakage, i.e., the
presence of multiple, unintentional, information–bearing signals within this side–
channel. In addition, this paper also demonstrates why EM side–channel(s) are
so useful: multiple signals with differing leakage characteristics enable a variety of
attacks, including attacks against implementations secure against power analysis.

Despite their effectiveness, the single–channel attacks described in this paper
provide only a glimpse of what is possible. Combining leakages from multiple
EM channels using techniques from Signal Detection and Estimation Theory
yield substantially stronger attacks. The existence of such multi-channel attacks
highlights a pressing need for models and techniques to assess the net infor-
mation leakage from all the EM signals realistically available to an adversary.
Preliminary results on these aspects of the EM side–channel(s) is described in
more detail in [1].
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7 Countermeasures

Due to the presence of several unexpected EM leakages, a comprehensive EM vul-
nerability assessment has to be an integral part of any effort to develop counter-
measures against EM attacks on specific implementations. Such countermeasures
fall into two broad categories: signal strength reduction and signal information
reduction. Techniques for signal strength reduction include circuit redesign to
reduce egregious unintentional emanations and the use of shielding and physi-
cally secured zones to reduce the strength of compromising signals available to
an adversary relative to ambient thermal noise. Techniques for signal informa-
tion reduction rely on the use of randomization and/or frequent key refreshing
within the computation [7,8,2,4] so as to substantially reduce the effectiveness
of statistical attacks using the available signals.
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Abstract. We define the Non Reduced Montgomery Multiplication of
order s, of A and B, modulo N (odd integer) by NRMMs(A, B, N) =(
AB + N

(−ABN−1 (mod 2s)
))

2−s. Given an upper bound on A and
B, with respect to N , we show how to choose the variable s in a way
that guarantees that NRMMs(A, B, N) < 2N .
A few applications are demonstrated, showing the advantage of using
NRMMs with an appropriately chosen s, over the classical Montgomery
Multiplication.

1 Introduction

Various public key cryptosystems are based on computing modular arithmetic
functions (e.g., modular exponentiation and modular multiplication). Thus,
methods for fast computation of such operations, particularly in hardware, are
of great importance for practical cryptography. One of the most successful meth-
ods known today, whose advantage is mostly appreciated in hardware realiza-
tion, is the Montgomery multiplication [2]. As such, it is a standard approach
in hardware implementations of, for example, RSA, digital signature schemes,
Diffie-Hellman key exchange, and elliptic curve cryptography (over GF (p)).

Despite its advantage, the Montgomery multiplication method suffers from
a drawback: the need to reduce the final result to [0, N). This complicates the
related implementation and also creates a security problem.

In this paper, we show how to overcome this drawback by using the Non
Reduced Montgomery Multiplication of order s, where s is appropriately chosen
according to the application at hand. The described method is a generalization
of modifications to the Montgomery algorithm (e.g., [4], [1]).

2 Preliminaries and Definitions

Definition 1 (Non Reduced Montgomery Multiplication of order s
(NRMMs)).
Let A, B and s be positive integers, and let N be an odd positive integer. The Non
Reduced Montgomery Multiplication of order s, of A, B, modulo N is defined by

NRMMs = NRMMs(A, B, N) =
AB + N

(−ABN−1 (mod 2s)
)

2s
(1)

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 46–56, 2003.
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Remarks: By looking at the quantity AB + N
(−ABN−1 (mod 2s)

)
modulo

2s, it is clear that NRMMs(A, B, N) is an integer. Also, considering AB +
N
(−ABN−1 (mod 2s)

)
modulo N , we can conclude that NRMMs(A, B, N)

(mod N) = AB2−s (mod N). On the other hand, even when A, B < N , the
value of NRMMs(A, B, N) is not necessarily reduced modulo N (i.e., it is
not necessarily in the range [0, N)). An example for input A, B < N where
NRMMs(A, B, N) is nonreduced is NRMM5(17, 18, 19) = 25 > 19.

Algorithm 1 below describes the bit-level computation of NRMMs(A, B, N),
for s such that s ≥ 1 + [log2 A]. For this description, we denote the binary
representation of a number Q by a string Q = [Qm−1...Q1Q0] of m bits, where
m = 1 + [log2 Q], and where Q0 is the least significant bit of Q.

Algorithm 1: (Non Reduced Montgomery Multiplication of order s)
Input: A, B, N (N is odd), s (s ≥ 1 + [log2 A])
Output: NRMMs(A, B, N)

S = 0
For i from 0 to s− 1 do

1.1 S = S + AiB
1.2 S = S + S0N
1.3 S = S/2

End For
Return S

Note that although by definition, NRMMs is symmetric in A and B, this
is not the case its bit-level implementation, in particular when A and B have a
different number of bits in their binary representation.

It is not difficult to see that the output of Algorithm 1 is NRMMs(A, B, N),
as we now explain. Steps 1.1, 1.3 compute (bit by bit) the quantity AB2−s,
where step 1.2 is a “parity correction”: the odd number N is conditionally added
to S whenever it is odd and cannot be straightforwardly divided by 2 (in the
subsequent step 1.3). Since s ≥ 1 + [log2 A], all the bits of A are scanned. Thus,
Algorithm 1 actually computes (AB + KN)/2s for some K. The number K is
constructed (bit by bit, in step 1.2) in a way that 2s|(AB + KN). Since K has
altogether s bits, K < 2s. The only value of K < 2s satisfying AB + KN ≡ 0
(mod 2s) is K = −ABN−1 (mod 2s).

Relation to the classical Montgomery multiplication. The classical Mont-
gomery multiplication of A and B modulo N , under the condition A, B < N ,
is defined as MMUL(A, B, N) = AB2−n (mod N), where n = 1 + [log2 N ].
Thus, MMUL(A, B, N) can be viewed as the special case of NRMMs(A, B, N)
where s = 1+[log2 N ] = n, but with a reduced result, that is: MMUL(A, B, N) =
NRMMn(A, B, N) (mod N).

Observing Algorithm 1 for A, B < N , it can be shown that S < 2N after
step 1.3. The proof is by induction. Starting with S < 2N before step 1.1 (the
algorithm is initialized with S = 0), S can increase in steps 1.1-1.3 up to (S +
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B+N)/2 < (2N +N +N)/2 = 2N . Since S < 2N in any step of Algorithm 1, we
can deduce a bit level algorithm for computing MMUL(A, B, N) (which reduces
to the classical algorithm for computing the Montgomery Multiplication): it is
the same as Algorithm 1 with the particular choice s = n, followed by a single
reduction step (if S > N then S = S − N) after the end of the For-loop.
Algorithm 2 describes this procedure.

Algorithm 2: (Classical Montgomery Multiplication)
Input: A, B, N (A, B < N , n = 1 + [log2 N ], N is odd)
Output: MMUL(A, B, N)

S = 0
For i from 0 to n− 1 do

2.1 S = S + AiB
2.2 S = S + S0N
2.3 S = S/2

End For
2.4 if S > N then S = S −N
Return S

Note that unlike Algorithm 1, Algorithm 2 is symmetric in A and B.
The main advantage in using the Montgomery multiplication lies in the hard-

ware implementation of Algorithm 2: it requires only additions and divisions by
2. More important is the special property of step 2.2: only the least significant
bit of the cumulative result (S) must be known in order to determine whether
or not N should be added, and to carry on to the next step. In fact, this is the
key feature that makes Montgomery multiplication superior to standard modu-
lar multiplication algorithms, and therefore what made it a de-facto standard in
cryptographic hardware.

The Montgomery multiplication is especially efficient when a sequence of
MMUL operations is used in a row. For example, consider the task of computing
modular exponent AE (mod N) (A < N) which can be carried out as follows.
The constant H = 22n (mod N) (where n = 1 + [log2 N ]) is pre-computed.
The input A is transformed to what is called the Montgomery domain (or Mont-
gomery base): A′ = A2n (mod N) = MMUL(A, H, N). Then, the square and
multiply (or any other) exponentiation algorithm is applied to A′ with the follow-
ing adaptation that accounts for being in the Montgomery domain: Montgomery
multiplications are used instead of regular modular multiplications. The end re-
sult is transformed back to the real domain by Montgomery multiplication by 1
(since for any X, we have MMUL(X ′, 1, N) = X (mod N)). These steps are
summarized in Algorithm 3.

Algorithm 3: (Modular exponentiation via Montgomery Multiplication)
Input: A, E, N (N is odd, A < N), n = 1 + [log2 N ], m = 1 + [log2 E], H = 22n

(mod N)
Output: AE (mod N)

Initialization: A′ = MMUL(A, H, N) = A2n (mod N); Tm−1 = A′

S = 0
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For i from m− 2 to 0 do
3.1 Ti = MMUL(Ti+1, Ti+1, N)
3.2 if Ei = 1 then Ti = MMUL(Ti, A

′, N)
End For
3.3 T0 = MMUL(T0, 1, N)
Return T0

The advantage of Algorithm 3 is that expensive modular multiplications in
the real domain are replaced by the analogous cheap (hardware wise) Mont-
gomery multiplications in the Montgomery domain. The overhead of the trans-
formation from and to the real domain is insubstantial: the cost is only two
additional Montgomery multiplications (by H at the beginning and by 1 at the
end).

It is important to note that the reduction step 2.4 is crucial. Without reduc-
tion, the output of one MMUL operation is not necessarily a legal input to the
subsequent MMUL.

Unfortunately, the need for reduction in each MMUL operation substan-
tially complicates hardware realization of Algorithm 2. Dedicated circuitry is
required for detecting the cases where the result is greater than N , and for per-
forming the appropriate subtraction. Furthermore, this conditional subtraction
exposes the implementation to side channel attacks. Consequently, although the
Montgomery multiplication enables efficient hardware implementation of mod-
ular arithmetic operations, a method that does not require repeated reductions
can be a significant improvement. We show here that the use of NRMMs, to-
gether with a proper choice of the parameter s, is a proper solution.

3 The Appropriate Choice of s in the NRMM s

Algorithm

The following Lemma shows that the output of Algorithm 1 can be made smaller
than 2N for input A and B of any size, provided that the parameter s is prop-
erly chosen. It also determines the required size of the accumulator S, when
Algorithm 1 is used.

Lemma 1.
Let N be a given positive odd number, and n = 1 + [log2 N ]. Let A, and B be
nonnegative integers such that A ≤ 2kN and B ≤ 2kN , for some k ≥ 0. Let s
be a positive integer such that s ≥ n + 2k. Then,
a) NRMMs(A, B, N) < 2N .
b) s = n + 2k is the smallest integer that guarantees that NRMMs(A, B, N) <
2N .
c) NRMMs(A, 1, N) ≤ N with equality only if A is a multiple of N .
d) When applying Algorithm 1, the accumulator S is bounded by 2(1 + 2k)N .
Thus, the accumulator should be capable of storing n + k + 2 bits.
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Proof.
(a) Take s ≥ n + 2k. By definition, N < 2n. Using this bound, we have

NRMMs(A, B, N) =
AB + N

(−ABN−1 (mod 2s)
)

2s
≤

22kN2 + N(2s − 1)
2n+2k

= N

(
N

2n
+

2s − 1
2s

)
< 2N (2)

(b) To show that no smaller s can be chosen, consider N = 2n−1, A = B = 2kN
and s = n+2k−1. In this case −22kN (mod 2s) = (22k−2n+2k) (mod 2s) =
22k. Therefore,

NRMMs(2kN, 2kN, N) =
22kN2 + N

(−22kN (mod 2s)
)

2s
=

22kN2 + N22k

2s
=

22kN(N + 1)
2s

= 2N (3)

(c) We have

NRMMs(A, 1, N) ≤ 2kN + N(2s − 1)
2s

=

N +
N

2n
· 1
2k

(1− 1
2k

) < N + 1 (4)

It follows that NRMMs(A, 1, N) can be at most N .
Since N is odd and NRMMs(A, 1, N) ≡ A2−s (mod N) equality to N can
occur only if N divides A.

(d) Suppose that S < (1 + 2k)N before step 1.1 (note that S is initialized to
0). Then, after step 1.1 we have S < (1 + 2k)N + B ≤ (1 + 2k)N + 2kN . After
step 1.2 we have S < ((1 + 2k)N + 2kN) + N = 2(1 + 2k)N , and after step 1.3,
we have again S < (1 + 2k)N . Therefore, the maximal possible value for S is
2(1 + 2k)N , which can be stored in n + k + 2 bits.

Before demonstrating applications of Lemma 1, with different values of k ≥ 1
and appropriate s, we start with the value k = 0. This choice actually deals with
the case A, B < N (we ignore equality to N) and s = n, i.e., it reduces to the
parameters range of the classical Montgomery multiplication. Here, Lemma 1
gives another explanation to the fact that in the computation of MMUL(A, B)
(Algorithm 2), a single reduction step (2.4) is sufficient to reduce S to the range
[0, N).

Modular Exponentiation via the NRMMs Method

Taking k = 1 in Lemma 1, shows that modular exponentiation can be carried
out by choosing s = n+2. We start with Algorithm 4 to describe the procedure.

Algorithm 4: (Modular Exponentiation via the NRMMs method)
Input: A, E, N (A < N , N is odd), n = 1 + [log2 N ], m = 1 + [log2 E], s =
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n + 2 = 3 + [log2 N ], H = 22s (mod N)
Output: AE (mod N)
Initialization: A′ = NRMMs(A, H, N); Tm−1 = A′

S = 0
For i from m− 2 to 0 do
4.1 Ti = NRMMs(Ti+1, Ti+1, N)
4.2 if Ei = 1 then Ti = NRMMs(Ti, A

′, N)
End For

4.3 T0 = NRMMs(T0, 1, N)
Return T0

The correctness of Algorithm 4 follows from Lemma 1 (using k = 1). We show
that all inputs to NRMMs are legal, that is less than 2N . Since A < N < 2N ,
it is a legal input to NRMMs (that is, to the initialization step of Algorithm 4),
and the resulting A′ satisfies A′ < 2N . Consequently, A′ is also a legal input to
NRMMs (step 4.2). For the same reason, Tm−1 < 2N , implying that Ti < 2N
for all i, and thus Ti is a legal input as well. Finally, after the transformation
back to the real domain (step 4.3) T0 < N . We remark that technically, we
have only T0 ≤ N , but in practice, the inequality is strict. The reason is that
we typically choose N to be either a prime or the product of two primes. Since
A < N to begin with T0 cannot be a multiple of N in any step of Algorithm 4,
and thus, we end up with T0 < N .

Example. The following example demonstrates the use of the Algorithm 4,
shows that nonreduced intermediate results indeed appear in the calculations,
and shows that the bound on the maximal bit-length of S is tight.

We compute here AE (mod N) with A = 212, E = 240 (= [11110000]2),
N = 249, namely 212240 (mod 249) = 241.
Here, m = 1 + [log2 E] = 8 and n = 1 + [log2 N ] = 8. We use s = n + 2 = 10.
H = 22s (mod N) = 220 (mod 249) = 37. Pre-computation gives A′ =
NRMMs(A, H, N) = 209 (= T7 in Algorithm 4). The steps of the square and
multiply algorithm are given in Table 1. Column 1 shows the index i (in Algo-
rithm 4) running from i = m−2 = 6 down to i = 0. Column 2 shows the relevant
bit (Ei) of the exponent. Columns 3, and 4 show the inputs to steps 4.1, 4.2,
and column 5 holds the result after the square and (conditional) multiply are
performed. This value is fed into the subsequent step.

The final exponentiation result is obtained (step 4.3) by back transform-
ing T0 to the real domain, i.e., by computing T0 = NRMMs(T0, 1, N) =
NRMMs(25, 1, 249) = 241.

Note that some results of the intermediate NRMMs steps are not reduced:
step 4.2 in iterations i = 6, 5, and 4, and step 4.1 in iteration i = 3. However,
these nonreduced results (output of NRMMs) never exceed 2N (= 498 in our
case), and are therefore legal input to a subsequent NRMMs operation.

Table 2 shows the details of the calculation of NRMMs in iteration i = 3 of
Table 1, namely the calculation of NRMM10(319, 319, 249).
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Table 1. Computing 212240 (mod 249). Details are given in the text

i Ei Ti+1 Ti+1 Ti

6 1 209 235 269
5 1 269 121 254
4 1 254 241 296
3 0 296 319 319
2 0 319 175 175
1 0 175 160 160
0 0 160 25 25

Table 2. Computing NRMM10(319, 319, 249). Details are given in the text

i Ai S = S + AiB S0 S = S + S0N S = S/2
0 1 319 1 568 284
1 1 603 1 852 426
2 1 745 1 994 497
3 1 816 0 816 408
4 1 727 1 976 488
5 1 807 1 1056 528
6 0 528 0 528 264
7 0 264 0 264 132
8 1 451 1 700 350
9 0 350 0 350 175

Here, A = B = 319 = [100111111]2. The result, 175, is reduced in this case. As
Lemma 1 predicts indeed, S < 6N = 1494 in all steps. However, note that in
step i = 5, S = S + S0N = 1056 > 210. This shows that the bound given in
Lemma 1 (d) is sharp: for k = 1, the accumulator must hold n + 3 bits (= 11 in
this example), and this number of bits cannot be decreased.

We point out that attempting to use s < n+2 in the exponentiation process
may fail. With the input under consideration, using s = n + 1 = 9 gives the
correct result, but if we choose s = n = 8, we get 296428706871896110475206.
Modulo N , this number is, of course, 241, and this overflow illustrates exactly
the danger of choosing an inappropriate s.

For the sake of completeness, we give an example where the choice s = n + 1
is not sufficient to assure that the output is bounded by 2N . Consider N = 255,
A = 505, B = 507, n = 1 + [log2 255] = 8, s = n + 1 = 9. Computation shows
that NRMMs(A, B, N) = 645 > 2N(= 510).

4 Choosing s for a Chain of Operations in ZN

We have already showed that exponentiation requires the choice of s = n+2. The
reason for the sufficiency of this relatively small value is that the “square and
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multiply” exponentiation algorithm involves only multiplications (and squaring),
and no other operations in ZN . When other operations are involved, a higher
value of s may be necessary. The following proposition shows that there always
exists a suitable value of s, with which the operations can be performed in the
Montgomery domain, using NRMMs instead of modular multiplication.

Proposition 1.
Let N be a given positive odd number, and n = 1 + [log2 N ]. Let {Aj , j =
1, 2, . . . , r} be a set of r inputs (positive integers), such that for all j, Aj ≤ 2dN
for some d ≥ 0.
Suppose that a sequence of operations in ZN (modular addition, modular sub-
traction, modular multiplication) is to be performed, where the inputs to each
operation are either taken from {Aj}, or are the results of a previous operation
in the sequence.

Then, there exists a value of s with which the computation can be performed
in the following way:
1. Convert the inputs to the Montgomery domain, i.e., set
A′

j = NRMMs(Aj , H, N), j = 1, 2, . . . , r, where H = 22s (mod N).
2. Replace each modular multiplication in the sequence by an NRMMs opera-
tion. Replace each modular addition by regular addition. Replace each modular
subtraction, X − Y , by 2lN + X − Y for l such that 2lN + X − Y ≥ 0.
3. Perform the modified sequence of operations, using the converted inputs.
4. Convert the desired result, R, to the real domain by NRMMs(R, 1, N).

Proof. We start with some s ≥ n+2d, baring in mind that the final value of s is
yet to be determined. Suppose that all the inputs are already converted to the
Montgomery domain by the operation A′

j = NRMMs(Aj , H, N). Note that the
choice s ≥ n + 2d guarantees that A′

j ≤ 2N .
We now replace each modular addition and modular subtraction operation by

plain addition (ADD) and plain subtraction (SUB). At this point we note that
negative results may appear as a result of subtraction. Thus, to avoid dealing
with negative integers, we modify all the SUB operations in the following way:
instead of SUB(X, Y ) = X − Y where the inputs are bounded by X, Y ≤ 2lN
for some l, we use SUBlN(X, Y ) = 2lN +X −Y = SUB(ADD(2lN, X), Y ). In
this case, 0 ≤ SUBlN(X, Y ) ≤ 2l+1N . Of course, the result remains unchanged
modulo N .

To assess the upper bound of the intermediate addition results, note that if
X, Y ≤ 2lN then ADD(X, Y ) = X + Y ≤ 2l+1N .

We now show how to determine an appropriate value of s. Consider the
modified sequence of operations, with the additional operation NRMM(·, 1, N)
appended to the end of the sequence (used for transforming the result back to the
real domain). Suppose that the i-th operation is NRMMs(Xi, Yi, N) where the
input satisfies Xi, Yi ≤ 2kiN for some ki. In general, ki ≥ d because the input
can involve intermediate results obtained by previous additions/subtractions.
Any choice of s ≥ n + 2ki is appropriate at this point: by Lemma 1, this assures
that the input to the NRMMs is legal, and also assures that the output is
bounded by 2N .
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It now follows that we can set s = n + 2(maxi ki), where the maximum is
taken over all occurrences of NRMMs in the sequence. This value is appropriate
throughout the sequence of operations. In particular, it assures that the returned
result is either reduced or equals N . We finally comment that the bound on s,
computed here, is not necessarily tight, and that there may be other ways to
work out a chain of operations.

The following example shows how Proposition 1 can be used for point dou-
bling on an elliptic curve over GF (p).

Example: point doubling on an elliptic curve over GF (p). Consider the
elliptic curve y2 = x3 + ax + b over GF (p), where p is an odd prime. Suppose
that the curve is represented in projective coordinates. If the point to double is
(x1, y1, z1), and we denote 2(x1, y1, z1) = (x2, y2, z2) we have

λ1 = 3x2
1 + az4

1 , z2 = 2y1z1, λ2 = 4x1y
2
1 ,

x2 = λ2
1 − 2λ2, λ3 = 8y4

1 , y2 = λ1(λ2 − x2)− λ3.

This computation can be implemented in several ways. One method is the fol-
lowing sequence of 18 steps consisting of 5 ADD, 3 SUBlp (with l = 1, 2 or 3),
and 10 NRMMs operations.

In cryptographic applications, point doubling is part of a scalar multiplication
process which involves repeated instances of point addition and point doubling.
In this context, conversion to the Montgomery domain is performed only at the
beginning, and conversion back to the real domain is performed only at the end
of the computations. For brevity, we suppose here that the input x1, y1, z1 and
a are already given in the Montgomery domain, and in the first time doubling
is performed, they are bounded by 2p. The result we return is also given in
the same Montgomery domain (we do not transform back to the real domain).
The output of the doubling procedure satisfies x2 < 8p, y2 < 4p and z2 < 2p.
As explained below, this assures that this result can be reused as input for a
subsequent doubling (or addition) procedure. The sequence of operations (in the
Montgomery domain) is the following:

Compute the Montgomery base analog of λ1 = az4
1 + 3x2

1
1. R0 = NRMMs(z1, z1, p)
2. R0 = NRMMs(R0, R0, p)
3. R0 = NRMMs(a, R0, p)
4. T1 = NRMMs(x1, x1, p)
5. T2 = ADD(T1, T1)
6. T1 = ADD(T2, T1)
7. T1 = ADD(R0, T1)
Compute the Montgomery base analog of z2 = 2y1z1
8. T2 = ADD(y1, y1)
9. z2 = NRMMs(T2, z1, p)
Compute the Montgomery base analog of λ2 = 4x1y

2
1
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10. R0 = NRMMs(T2, T2, p)
11. T2 = NRMMs(x1, R0, p)
Compute the Montgomery base analog of x2 = λ2

1 − 2λ2
12. T3 = NRMMs(T1, T1, p)
13. T4 = ADD(T2, T2)
14. x2 = SUB2p(T3, T4, p)
Compute the Montgomery base analog of λ3 = 8y4

1
15. T3 = NRMMs+1(R0, R0, p)
Compute the Montgomery base analog of y2 = λ1(λ2 − x2)− λ3
16. T2 = SUB3p(T2, x2, p)
17. T1 = NRMMs(T2, T1, p)
18. y2 = SUB1p(T1, T3, p)

To determine the required value of s, we look at consecutive ADD/SUBlp
operations, and set s to be high enough to assure that with the relevant input,
the output of NRMMs is bounded by 2p.

After step 5 we have T2 < 4p, after step 6 T1 < 6p, and after step 7 T1 < 8p.
In step 8 we have T2 < 4p, and thus for the NRMMs in step 9 we have k1 = 2.
The output z2 is bounded by 2p. Steps 10 and 11 require k2 = 1. Step 12
requires k3 = 3. In step 13 we have T4 < 4p, and this is why SUB2p is used
in step 14. Note that x2 = SUB2p(T3, T4, p) < 6p < 8p. In step 15 we square
(4y2

1)2 = 16y2
1 and divide by 2 (to get 8y2

1) by using NRMMs+1. In step 15 we
have T2 < 2p (from step 11) and x2 < 8p, and this is why we use SUB3p in step
16. Therefore, for the NRMMs operation in step 17 we use k4 = 4. Finally, in
step 18 we compute the output y2 which is bounded by 4p.

Consequently, the value s = n + 2 max ki = n + 8, where n = 1 + [log2 p], is
an appropriate choice.

In the above procedure we assure that x2 < 8p, y2 < 4p and z2 < 2p. With
our choice of s, these values are proper inputs for a subsequent point doubling
(i.e., can the roles of x1, y1, z1). This can be verified by noting that x1, z1 are
used in NRMMs operation (steps 1, 4, 11), and y1 is used in step 8, in an ADD
operation. This operation yields T2, which is then a legal input to the NRMMs

operation in step 9. Although we do not give here the details we point out that
x2 < 8p, y2 < 4p and z2 < 2p are legal inputs to the procedure implementing
point addition as well.

5 Discussion

Proper choice of the parameter s enables using the NRMMs in a variety of
applications and contexts, while keeping modular reduction not required in any
stage. Consequently, using NRMMs in hardware implementations can save on
time and/or hardware requirements. Another important feature of NRMMs

(i.e., of Algorithm 1) is in being homogeneous: its execution does not depend on
the input (in contrast with Algorithm 2). Thus, timing attacks as well as other
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attacks to which the classical Montgomery multiplication is susceptible [3] do
not affect systems using the NRMMs.

We further comment that there may be different ways to implement a given
sequence of operations in Zn, and the flexibility in choosing s may help in opti-
mizing the computations in various contexts.

Finally, we mention that Lemma 1 can be generalized to the situation where
A ≤ 2α1N , B ≤ 2α2N α1, α2 ≥ 0, and the result of NRMMs is to be smaller
than 2α3N for some α3 ≥ 1. In such cases, we need to choose s = n + α1 + α2 +
1−α3. Proof and applications where different values of α1, α2, α3 are useful, will
be discussed in subsequent publication.

Acknowledgments. I thank Or Zuk for helpful discussions, suggestions, and
help in preparing the paper.
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Abstract. The Montgomery inverse is used in cryptography for the
computation of modular inverse of b modulo a, where a is a prime.
We analyse existing algorithms from the point of view of their hard-
ware implementation. We propose a new, hardware-optimal algorithm
for the calculation of the classical modular inverse. The left-shift binary
algorithm is shown to naturally calculate the classical modular inverse
in fewer operations than the algorithm derived from the Montgomery
inverse.

1 Introduction

The basic arithmetic operations in modular arithmetic where the modulo is
prime are a natural and inseparable part of cryptographic algorithms [6], [8], as
well as nowadays often used elliptic curve cryptography [9], [10]. Modular inverse
is especially important in computations of point operations on elliptic curves de-
fined over a finite field GF (p) [9], in acceleration of the exponentiation operation
using the so-called addition-subtraction chain [11], [4], in Diffie-Hellman key ex-
change method [7], and in decipherment operations in RSA algorithm [6]. The
modular inverse of an integer a ∈ [1, p−1] modulo p, where p is prime, is defined
as an integer r ∈ [1, p− 1] such that a.r ≡ 1 (mod p), often written as

r = a−1 mod p. (1)

This classical definition of the modular inverse and an algorithm for its calcu-
lation in a binary form is specified in [4]. Kaliski has extended the definition of
the modular inverse to include the so-called Montgomery inverse [2]. The Mont-
gomery inverse is based on the Montgomery multiplication algorithm [1]. The
Montgomery inverse of an integer a ∈ [1, p− 1] is b such that

b = a−12n mod p, (2)

where p is prime and n = �log2 p�. In this paper, we present a left-shift binary
algorithm for the computation of the classical modular inverse which is more
efficient than the algorithm derived from the Montgomery modular inverse al-
gorithm [2], [3] and the ordinary inverse algorithm [4].
Our incentive for the search of effective computation of modular inverse was,

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 57–70, 2003.
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besides the above facts, to use it in a modular system for solving systems of
linear equations [16], [17]. In the whole paper, we assume that least significant
bit (LSB) is the rightmost position.

2 The Classical Modular Inverse in Previous Works

The two commonly used approaches for the computation of ordinary modular
inverse are a binary algorithm derived from the Montgomery modular inverse [2],
[3] and a binary algorithm for ordinary inverse [4]. Both of these approaches are
based on the same algorithmic principle, which is the binary right-shift greatest
common divisor algorithm (gcd) [4] that calculates the value for two integers
using halving and subtraction. Both of the mentioned algorithms are suitable
for implementation in hardware, since the halving operation is equal to a binary
right shift.

2.1 The Right-Shift Algorithm for the Classical Modular Inverse

The ordinary modular inverse algorithm described in [4], attributed to M.Penk
(see exercise 4.5.2.39 in [4]), calculates the modular inverse r = a−1 mod p us-
ing the extended Euclidean algorithm. We have modified the Penk’s algorithm
with the aim to enable its easy hardware implementation. The modified Penk’s
algorithm, called Algorithm I, is given below:

Algorithm I

Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1] and k, where r = a−1 mod p

and n ≤ k ≤ 2n
1. u := p, v := a, r := 0, s := 1
2. k := 0
3. while (v > 0)
4. if (u is even) then
5. if (r is even) then
6. u := u/2, r := r/2, k := k + 1
7. else
8. u := u/2, r := (r + p)/2, k := k + 1
9. else if (v is even) then
10. if (s is even) then
11. v := v/2, s := s/2, k := k + 1
12. else
13. v := v/2, s := (s + p)/2, k := k + 1
14. else x := (u− v)
15. if (x > 0) then
16. u := x, r := r − s
17. if (r < 0) then
18. r := r + p
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19. else
20. v := −x, s := s− r
21. if (s < 0) then
22. s := s + p
23. if (r > p) then
24. r := r − p
25. if (r < 0) then
26. r := r + p
27. return r and k.

Algorithm I continuously halves (shifts to the right) both values, even and odd;
if the value is odd, the modulus p which is odd (p is prime) is added to it
beforehand. These operations are performed in steps 8 and 13. Any negative
values of r and s that result from the subtraction are converted to positive ones
in the same residue class in steps 18 and 22 by adding p so that r, s ∈ [1, p− 1].
The algorithm outputs two integers, r and k, where k is the number of halvings
during the calculation of gcd(p, a) and it satisfies n ≤ k ≤ 2n.

2.2 The Montgomery Algorithm for the Classical Modular Inverse

In contrast to Algorithm I, Montgomery algorithms for computing modular in-
verse (in integer or Montgomery domains) split the computation to two phases.
In the first phase the so-called Almost Montgomery Inverse a−12k mod p [3] is
calculated in k iterations, where k follows from input values. In case of integer
domain, k is taken to be the number of deferred halvings in the second phase [3].
Hence, the modular inverse according to Equation (1) is computed by k hlavings
modulo p. This algorithm, called Algorithm II, is given below:

Algorithm II

Phase I
Input: a ∈ [1, p− 1] and p
Output: y ∈ [1, p− 1] and k, where y = a−12k (mod p)

and n ≤ k ≤ 2n
1. u := p, v := a, r := 0, s := 1
2. k := 0
3. while (v > 0)
4. if (u is even) then
5. u := u/2, s := 2s, k := k + 1
6. else (if v even) then
7. v := v/2, r := 2r, k := k + 1
8. else
9. x := (u− v)
10. if (x > 0) then
11. u := x/2, r := r + s, s := 2s, k := k + 1
12. else
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13. v := −x/2, s := r + s, r := 2r, k := k + 1
14. if (r > p) then
15. r := r − p
16. return y := p− r and k.

Phase II
Input: y ∈ [1, p− 1], p and k from Phase I
Output: r ∈ [1, p− 1], where r = a−1 (mod p), and 2k from Phase I
17. for (i = 1 to k) do
18. if (r is even) then
19. r := r/2
20. else
21. r := (r + p)/2
22. return r and 2k.

In case of Montgomery domain, the number of deferred halvings in the second
phase is k − n, where k is guaranteed to n ≤ k ≤ 2n [2]. It is interesting to
compare Algorithms I and II. The operation of the correction of an odd number
before halving performed in steps 8 and 13 of Algorithm I is done in step 21
of Phase II of Algorithm II. Conversion of negative values of r and s is not
necessary here, since no subtraction of r or s is performed during calculation. It
is clear that the number of iterations in Algorithm II is 2k, k iterations in Phase
I and k iterations in Phase II.

3 New Left-Shift Algorithm for the Classical Modular
Inverse

The new approach to the calculation of modular inverse, which is the subject
of this paper, avoids the drawbacks of the above algorithms. In Algorithm I,
these are especially: high number of tests such as ’u > v’, ’s < 0’, ’r < 0’, which
essentially represent a subtraction and also an addition ’r + p’, ’s + p’ if s and r
are negative so that r, s ∈ [1, p− 1]. In case of the modular inverse calculation
using the Montgomery modular inverse, it is necessary to perform the deferred
halving in k iterations in Phase II of Algorithm II, including corrections of r if
it is odd (step 21 of the algorithm). An algorithm that avoids the mentioned
problems is presented below:

Algorithm III

Input: a ∈ [1, p− 1] and p
Output: r ∈ [1, p− 1], where r = a−1 (mod p), c u, c v

and 0 < c v + c u ≤ 2n
1. u := p, v := a, r := 0, s := 1
2. c u = 0, c v = 0
3. while(u �= ±2c u & v �= ±2c v)
4. if (un,un−1= 0) or (un, un−1 = 1 & OR(un−2, . . . , u0) = 1) then
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5. if (c u ≥ c v) then
6. u := 2u, r := 2r, c u := c u + 1
7. else
8. u := 2u, s := s/2, c u := c u + 1
9. else if (vn, vn−1 = 0) or (vn, vn−1 = 1 & OR(vn−2, . . . , v0) = 1) then
10. if (c v ≥ c u) then
11. v := 2v, s := 2s, c v := c v + 1
12. else
13. v := 2v, r := r/2, c v := c v + 1
14. else
15. if (vn = un) then
16. oper = ”− ”
17. else
18. oper = ” + ”
19. if (c u ≤ c v) then
20. u := u oper v, r := r oper s
21. else
22. v := v oper u, s := s oper r
23. if (v = ±2c v) then
24. r := s, un := vn

25. if (un = 1) then
26. if (r < 0) then
27. r := −r
28. else
29. r := p− r
30. if (r < 0) then
31. r := r + p
32. return r, c u, and c v.

Algorithm III was designed to be easily implemented in hardware (Section 5).
Registers Ru, Rv, Rs are m = n + 1 bit wide registers and contain individual
values of the variables u, v, s. The value of variable r is in m+1 bit wide register
Rr. Counters Cu and Cv are auxiliary e = �log2 n� bit wide counters containing
values c u and c v. The presented left-shifting binary algorithm computes the
modular inverse of a according to Equation (1) ) using the extended Euclidean
algorithm and shifting the values u and v to the left, that is multiplying them by
two. The multiplication is performed as long as the original value multiplied by 2i

is preserved, where i is the number of left shifts. Negative values are represented
in the two’s complement code. The shift is performed as long as the bits un,
un−1 or vn, vn−1 are zeros for positive values or ones for negative values, while
at least one of the bits un−2, un−3, . . .u0 or vn−2, vn−3, . . . v0 is not zero -
binary ’OR’ (steps 4 and 9). With each shift, counters Cu and Cv (values c u
and c v) that track the number of shifts in Ru, Rv are incremented (steps 6, 8,
11, and 13). Registers Rr and Rs (values r and s) are also shifted to the right
(steps 8 and 13) or left (steps 6 and 11) according to conditions in steps 5 and
10. In step 15, addition or subtraction, given variable oper, is selected according
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to sign bits un and vn for the subsequent reduction of u, v and r, s in steps 20
and 22. Results of these operations are stored either in Ru and Rr (values u and
r), if the number of shifts in Ru is less or equal to the number of shifts in Rv, or
in registers Rv and Rs (values v and s) otherwise. The loop ends whenever ’1’
or ’-1’ shifted by the appropriate number of bits to the left appears in register
Ru or Rv. Branch conditions used in steps 4, 9, and 15 are easily implemented
in hardware. Similarly, the test in steps 5, 10, and 19 can be implemented by an
e bit comparator of values c u and c v with two auxiliary single-bit flips-flops
u/v̄ and wu (see Section 5). Table 1 shows an example of the calculation of the

Table 1. Example of the calculation

l operations values of registers tests

0 u(0) = (13)10 = (01010.)2 u(0) �= ±20

v(0) = (10)10 = (01010.)2 v(0) �= ±20

r(0) = (0)10 = (00000.)2
s(0) = (1)10 = (00001.)2

1 u(1) = u(0) − v(0) u(1) = (3)10 = (00011.)2 u(1) �= ±20

v(1) = (10)10 = (01010.)2 v(1) �= ±20

r(1) = r(0) − s(0) r(1) = (−1)10 = (11111.)2
s(1) = (1)10 = (00001.)2

2 u(2) = 4u(1) u(2) = (12)10 = (011.00)2 u(2) �= ±22

v(2) = (10)10 = (01010.)2 v(2) �= ±20

r(2) = 4r(1) r(2) = (−4)10 = (111.00)2
s(2) = (1)10 = (00001.)2

3 u(3) = (12)10 = (011.00)2 u(3) �= ±22

v(3) = v(2) − u(2) v(3) = (−2)10 = (11110.)2 v(3) �= ±20

r(3) = (−4)10 = (111.00)2
s(3) = s(2) − r(2) s(3) = (5)10 = (00101.)2

4 u(4) = (12)10 = (011.00)2 u(4) �= ±22

v(4) = 4v(3) v(4) = (−8)10 = (110.00)2 v(4) �= ±22

r(4) = r(3)/4 r(4) = (−1)10 = (11111.)2
s(4) = (5)10 = (00101.)2

5 u(5) = u(4) + v(4) u(5) = (4)10 = (001.00)2 u(5) = 22

r(5) = r(4) + s(4) r(5) = (4)10 = (00100.)2

modular inverse for p = 13 and a = 10. Therefore, n = 4 and m = 5. The
computed result is r = a−1 mod 13 = 4.
Description of Table 1: l is the iteration number, column operations lists the
performed arithmetic operations of iteration l and column tests lists conditions
evaluated in iteration l . The notation u(l) means the actual value u of register
Ru in the l-th iteration, etc. The dot in binary representation of values in column
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values of registers specifies the reference shift position that is equal to the current
position of initial LSB. It represents the value of accumulated left-shift for u and
v and left/right shift for r and s.

4 Results and Discussion

A simulation and a quantitative analysis of the number of additions or subtrac-
tions (’+/−’), shifts and tests was performed for all the algorithms presented.
Simulation of modular inverse computation according to Equation (1) was per-
formed for all integers a ∈ [2, p−1] and all 1899 prime moduli p < 214 (n ≤ 14) .
A total of 14,580,841 inverses were computed by each method. Simulation results
are presented in Table 2. The number of all tests, additions and subtractions are
listed in column ”+/− & tests”. The tests include all ”greater than” and ”less
than” comparisons except ’v > 0’ in the main loop, which is essentially a ’v �= 0’
test that does not require a subtraction. The ”+/−” column lists additions and
subtractions without tests. The column ”total shift” indicates the number of
all shift operations during the computation. The last column lists the number
of shifts minus the number of ’+/−’ operations, assuming the shift is performed
together with storing the result of the ’+/−’ operation. The columns give mini-
mum and maximum numbers of operations (min; max) and their average (av.)
values.

Table 2. Results for primes less than 214

Algorithm +/− & tests +/− total shift shift− (+/−)
min;max av. min;max av. min;max av. min;max av.

Algorithm III - - 2 - 21 9.9 2 - 26 23.3 1 - 24 13.4
Algorithm II Ph. I 3 - 28 15.7 1 - 15 10.6 3 - 27 19.1 0 - 23 8.5
Algorithm II Ph. II 2 - 25 10.5 2 - 25 10.5 3 - 27 19.1 0 - 24 8.6
Algorithm II 5 - 45 26.2 4 - 40 21.1 6 - 54 38.2 0 - 43 17.1
Algorithm I 9 - 80 40.4 6 - 53 27.1 2 - 26 18.1 0 0

Shift operations are faster in hardware than additions, subtractions, and com-
parison operations performed with the Ru, Rv, Rr, Rs registers. The comparison
operations are about as slow as additions/subtractions, since they cannot be per-
formed in parallel; they depend on data from previous operations. In Algorithm
I, they are the conditions in steps 15, 17, and 21. If a suitable code is used to
represent negative numbers, this condition can be realized as a simple sign test,
avoiding the complicated testing in steps 17 and 21. The Algorithms I and Al-
gorithm II suffer from a large number of additions and subtractions that correct
odd numbers before halving in steps 8 and 13 of Algorithm I and step 21 in
Algorithm II, and convert negative numbers in steps 18 and 22 of Algorithm I.
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Moreover, Algorithm II needs twice the number of shifts compared to Algorithm
I, required by the Phase II.

The previous analysis shows that Algorithm III removes drawbacks of Algo-
rithm I and Algorithm II. Let us assume full hardware support for each algorithm
and simultaneous execution of operations specified on the same line of the pseu-
docodes. Let us further assume that no test is needed in step 10 of Algorithm II.
Then, we can use the values in columns ”+/−” and ”total shift” to compare the
number of operations. Algorithm III needs half the number of ’+/−’ operations
compared to Algorithm II, and 2.7 times less the number of ’+/−’ operations
compared to Algorithm I.

Fig. 1. Average number of execution cycles T of the three algorithms as a function of
the ratio ρ

The simulation results from Table 2 for prime moduli less than 214 (n = 14)
are plotted in Figure 1. It shows the average number of cycles T needed to
compute the modular inverse using Algorithms I - III as a function of the ratio
ρ, where ρ is defined as the ratio of the critical path length in cycles of the shift
and the critical path length in cycles of the adder/subtracter. All (Algorithm
I) or a part of (Algorithms II and III) shift operations are included in ’+/−’
operations. Shift operations that are not performed as a part of ’+/−’ operations
are performed individually (they are listed in the last column of Table 2).

With an increasing word length, the time complexity of shift operations re-
mains constant. However, the complexity of additions/subtractions increases ap-
proximately �log2 m� - times, m is the number of bits of a word. For long words,
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often used in cryptographic algorithms, the modular inverse computation for in-
dividually algorithms is strongly dependent on addition/subtraction operations.
That in such cases Algorithm III is twice faster than Algorithm II and 2.7-times
faster than Algorithm I.

Table 3. Results of Algorithm III for three cryptographic primes

Primes n +/− total shift inverses
min;max av. min;max av.

2192 − 264 − 1 192 64 - 182 132.9 343 - 382 380 3,929,880
2224 − 296 + 1 224 81 - 213 154.8 408 - 446 441 4,782,054
2521 − 1 521 18 - 472 387.5 999 - 1040 1029 4,311,179

The statistical analysis of Algorithm III (see the previous page) for large
integers of cryptographic was performed. The results of the analysis are presented
in Table 3. The first column contains values of primes, the second column gives
the word length and the last column gives number of inverses. Other columns
have the same meaning as columns in Table 2. The average number of ’+/−’
operations grows with n approximately linearly. The multiplicative coefficient is
≈ 0.7 for all three primes. The average number of shifts is nearly equal to 2n.
Similar results hold for primes p < 214.

5 HW Implementation

Algorithm III is optimized in terms of reducing the number of additions and
subtractions, which are critical in integer arithmetic due to carry propagation
in long computer words. Other optimization criteria included making the evalu-
ation of tests during the calculation as simple as possible and minimizing data
dependencies to enable calculation in parallel calculations. Figure 2 shows the
circuit implementing the computation of classical modular inverse . Only data
paths for computing the classical modular inverse according to Algorithm III are
shown. The system consists of three basic parts. The first two parts form the
well-known ”butterfly” [14], [15], typical for algorithms based on the extended
Euclidean algorithm; the third part consists of the controller and support cir-
cuitry. ”Master” half of the ”butterfly” calculates the gcd(m, a) and consists of
two m bit registers Ru, Rv, m bit adder/subtracter ADD1, multiplexer MUX1,
and left-shift logic SHFT1. ”Slave” half of the butterfly consists of (m + 1) bit
register Rr and m bit register Rs, m bit adder/subtracter ADD2, multiplexers
MUX2, MUX3, MUX4, and right/left-shift logic SHFT1. The controller unit
controls the operation of the entire system. The controller part also includes an
m bit mask register Rm with test logic provided test in step 3, two e bit counters
Cu, Cv with the comparator d and single-bit flip-flops u/v̄ and wu.
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Fig. 2. The circuit implementation of Algorithm III

6 Conclusion

A new algorithm (Algorithm III) for classical modular inverse was presented
and its HW implementation has been proposed. A mathematical proof (see the
Appendix) that the proposed algorithm really computes classical modular inverse
was performed. A statistical analysis of the new algorithm for large cryptographic
integers was carried out. Computation of the modular inverse using the new
algorithm is always faster and in the case of long words at least twice faster than
other algorithms currently in use. The principles of the presented algorithm will
also be used in a modular system for solving systems of linear equations without
rounding errors [17].
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5. Ç. K. Koç: High-Radix and Bit Recoding Techniques For Modular Exponentiation.
Int’l J. Computer Mathematics 40 (1991) 139–156

6. J.-J. Quisquarter and C. Couvreur: Fast Decipherment Algorithm for RSA Public-
key Cryptosystem. Electronics Letters 18 No. 21 (1982) 905–907

7. W. Diffie and M. E. Hellman: New Directions in Cryptography. IEEE Transactions
on Information Theory 22 (1976) 644–654.

8. Nat’l Inst. of Standards and Technology (NIST). FIPS Publication 186: Digital
Signature Standard (1994)

9. N. Koblitz: Elliptic Curve Cryptosystem. Mathematics of Computation 48 No. 177
(1987) 203–209

10. A. J. Menezes: Elliptic curve Public Key Cryptosystem. Kluwer Academic Pub-
lishers, Boston, MA (1993)
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7 Appendix: The Mathematical Proof of Proposed
Algorithm

Algorithm III has similar properties as the Euclidean Algorithm and algorithms
derived from it, introduced in [4], [12], [13], where methods for their verification
are also presented. By using similar proof techniques we have carried out a proof
that Algorithm III computes correctly the classical modular inverse.

For computing multiplicative inverse of an integer a in the finite field GF(p),
where p is a prime, the following lemma is important.

Lemma 1. If gcd(p, a) = 1 and if

1 = px + ab,

then
a−1 mod p = b mod p.
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The proof of the lemma is in [12]. By finding a pair of integers x and b that satisfy
equations in Lemma 1, we prove that Algorithm III computes classical inverse
in GF(p). Individual iterations of Algorithm III can be described by following
system 3 of recurrent equations and guarding conditions for quotients,

r1 = p− aq1 0 < r1 < aq1 q1 = 2(〈p〉−〈a〉) q1 > 1
r2 = |r1| − aq2 0 < r2 < aq2 q2 = 2(〈r1〉−〈a〉) q2 > 1

...
rj = |rj−1| − aqj 0 < |rj | < a qj = 2(〈rj−1〉−〈a〉) qj > 1
rj+1 = a− |rj |qj+1 0 < |rj+1| < |rj |qj+1 qj+1 = 2(〈a〉−〈rj〉) qj+1 > 1
rj+2 = |rj+1| − |rj |qj+2 0 < |rj+2| < |rj |qj+2 qj+2 = 2(〈rj+1〉−〈rj〉) qj+2 > 1

...
rk = |rk−1| − |rj |qk 0 < |rk| < |rj | qk = 2(〈rk−1〉−〈rj〉) qk > 1
rk+1 = |rj |−|rk|qk+1 0 < |rk+1| < |rk|qk+1 qk+1 = 2(〈rj〉−〈rk〉) qk+1 > 1
rk+2 = |rk+1| − |rk|qk+2 0 < |rk+2| < |rk|qk+2 qk+2 = 2(〈rk+1〉−〈rk〉) qk+2 > 1

...
rl = |rl−1| − |rk|ql 0 < |rl| < |rk| ql = 2(〈rl−1〉−〈rk〉) ql > 1

...

...
rm = . . .
rm+1 = . . .

...
rn = |rn−1| − |rm| 0 < |rn| < |rn−1| qn = 2(〈rn−1〉−〈rm〉) qn = 1
rn+1 = |rn−1| − |rn|qn+1 0 < |rn+1| < |rn|qn+1 qn+1 = 2(〈rn−1〉−〈rn〉) qn+1 > 1
rn+2 = |rn+1| − |rn|qn+2 0 < |rn+2| < |rn|qn+2 qn+2 = 2(〈rn+1〉−〈rn〉) qn+2 > 1

...
ro = |ro−1| − |rn|qo |ro| = 1 qo = 2(〈ro−1〉−〈rn〉) qo > 1
0 = |rn| − |ro|qo+1,

(3)
where r1, r2, . . . , ro+1 are remainders, q1, q2, . . . , qo+1 are quotients, 〈ri〉 is the
number of bits needed for binary representation |ri|. If the recursive definition of
ri is unrolled up to p and a, each ri can be expressed by a Diophantine equation
ri = pfi + aqi, where fi = fi(q1, q2, . . . , qi), and gi = gi(q1, q2, . . . , qi).

The last non-zero remainder equal ro fulfils the following theorem:

Theorem 1. gcd(p, a) = 1 iff |ro| = 1.
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Proof.

gcd(p, a) = gcd(r1, a) = gcd(r2, a) = . . . = gcd(rj−1, a)
= gcd(a, |rj |) = gcd(|rj+1|, |rj |) = . . . = gcd(|rk−1|, |rj |)
= gcd(|rj |, |rk|) = gcd(|rk+1|, |rk|) = . . . = gcd(|rl−1|, |rk|)
= gcd(|rk|, |rl|) = . . .
...
= . . . = gcd(|rn−1|, |rm|) = gcd(|rn|, |rm|) = gcd(|rn−1|, |rn|)
= gcd(|rn−1|, |rn|) = gcd(|rn+1|, |rn|) = . . . = gcd(|ro−1|, |rn|)
= gcd(|rn|, |ro|) = gcd(|ro|, 0)
= |ro| = 1.

�

The previous statement assumed the following trivial properties of gcd:

gcd(0, d) = |d| for d �= 0,
gcd(c, d) = gcd(d, c),
gcd(c, d) = gcd(|c|, |d|),
gcd(c, d) = gcd(c + ed, d),

where c, d, and e are integers. The description of the properties are introduced
in [12], [13].

The fact that the guarding conditions for quotients qi guarantee correct values
of remainders ri follows from the Lemma 2:

Lemma 2. Let c and d be positive integers with binary representations c =
2i + ci−12i−1 + . . . + c0 and d = 2j + dj−12j−1 + . . . + d0. Assume i ≥ j. Let
q = 2(i−j) and e = c− qd. Then:

|e| < qd and |e| < c.

Proof. Follows easily from identity

i∑

k=1

1
2k

= 1− 1
2i

,

which is proven for example in [13]. �

The computation specified in Equations (3) can be expressed in the form of
Table 4, which gives the expressions for integer values fi and gi.

Since ro = pfo + ago, it follows that:

if (ro = 1) then
x = fo, b = go, and a−1 mod p = go mod p,

if (ro = −1) then
x = −fo, b = −go, and a−1 mod p = (−go) mod p.
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Table 4. The computation of fo, go, and ro

i ri fi gi

1 r1 1 −q1

2 r2 ±1 ±q1 − q2

3 r3 ±1 ±q1 ± q2 − q3

...
...

...
...

j rj ±1 ±q1 ± q2 ± . . .− qj

j + 1 rj ±qj+1 1± qj+1(±q1 ± q2 ± . . .− qj)
...

...
...

...
k rk fk gk

...
...

...
...

o ro fo go

o + 1 0 fo+1 go+1.

�

It is the last step of the proof that Algorithm computes classical modular
inverse. Finally, we take note of the principal features of the proposed Algorithm
III from the point of view of the presented proof. The algorithm employs two’s
complement code for additions or subtractions. Therefore, the test whether an
addition or subtraction is to be performed becomes a simple sign test. If the
signs of both operands are equal, we subtract one from the other and in the
opposite case we add both operands. Equations in (3) respect this rule when
using absolute values of operands. According to Lemma 2, successive values ri

of remainders decrease in such a way that p > a > |r1| > |r2| > . . . |ro|.
The selection of operands which will be rewritten with a new value of the

computed remainder is based on a simple test. The write is performed into
the operand which needs more bits for its binary representation. This fact is
respected in (3) by the value qi. If qi = 1, the write is into one of operands without
respect on their absolute values. This case is demonstrated for remainder rn. The
conditions given by inequalities of Lemma 2 for rn are fulfilled, too. Hence it
holds p > a > |r1| > |r2| > . . . > |rn−1| > |rn| > |rn+1| > . . . > |ro|.
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Abstract. We present a novel technique which allows a virtual
increase of the bitlength of a crypto-coprocessor in an efficient and
elegant way. The proposed algorithms assume that the coprocessor
is equipped with a special modular multiplication instruction. This
instruction, called MultModDiv(A, B, N) computes A ∗ B mod N and
�(A ∗B)/N�. In addition to the doubling algorithm, we also present two
conceivable economic implementations of the MultModDiv instruction:
one hardware and one software realization. The hardware realization of
the MultModDiv instruction has the same performance as the modular
multiplication presented in the paper. The software realization requires
two calls of the modular multiplication instruction. Our most efficient
algorithm needs only six calls to an n-bit MultModDiv instruction to
compute a modular 2n-bit multiplication. Obviously, special variants of
our algorithm, e.g., squaring, require fewer calls.

Keywords: Arithmetical coprocessor, Hardware architecture, Modular
multiplication, Hardware/Software codesign.

1 Introduction

Fast modular multiplication algorithms have been extensively studied [Ba,DQ,
HP1,HP2,Knu,Mo,Om,Pai,Q,Sed,WQ,Wa]. This is due to the fact that large
integer arithmetic is essential for public-key cryptography. Recently, we have
seen some progress of integer factorization [C+] which demands for higher RSA
bit lengths. On the other hand, for low cost and low power devices (e.g., in
Smartcards, PDAs, Cellular Phones, etc.) one has to use hardware which does
not provide sufficient bitlengths.

Unfortunately, these two requirements lead to a burden of the system issuer,
e.g., the card industry. The source of this burden is the fact that, say 2048-bit
RSA, cannot be handled efficiently on a 1024 bit device. Only with some work-
around this problem becomes a manageable task. Namely, as it is now commonly
known, one can use the Chinese Remainder Theorem for the RSA signature, see

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 71–81, 2003.
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[CQ]. To keep the RSA verification also relatively simple, most often the fourth
Fermat number is used as public exponent. Only recently it was shown how
to efficiently reduce such modular 2048-bit multiplications to 1024-bit modular
multiplications, see [HP1,HP2,Pai]. Pailler [Pai] initiated this doubling research
topic and formulated the following research problem:

Problem. Find an nk-bit modular multiplication algorithm using a minimal
number of n-bit modular operations.

His algorithm needs nine modular multiplications for the case k = 2, see
[Pai]. In this paper we will provide an answer to his question by presenting a
novel doubling algorithm. Our most general and most efficient algorithm needs
only six n-bit modular operations to compute a 2n-bit modular multiplication.
The idea for our family of algorithms is based on the fact that the coprocessor is
equipped with a special modular multiplication instruction. This instruction is
called MultModDiv and defined within the next section. An optimal realization is
clearly achieved using an enhanced hardware modular multiplication instruction.
Nevertheless, an efficient software realization of this instruction is possible. The
software realization requires two calls to the modular multiplication instruction.
Both realizations of this MultModDiv instruction will be presented.

The present paper is organized as follows: The next section gives the neces-
sary definitions of MultModDiv. Section 3 explains our basic doubling algorithm,
an enhanced version and also our special purpose variants. In section 4 we in-
troduce the simple software emulation of the MultModDiv instruction. Finally,
in section 5 we show how to realize the MultModDiv instruction in hardware.

2 Preliminaries

2.1 The Instructions MultMod and MultModInitn

The following definition is the usual modular multiplication.

Definition 1. For numbers A, B and N , N > 0, the MultMod instruction is
defined as

R = MultMod(A, B, N)

with
R := (A ∗B) mod N.

The following extension of the modular multiplication is already a feature of
today’s existing crypto coprocessors.

Definition 2. For a fixed integer n and numbers A, B, C and N , N > 0, the
MultModInitn instruction is defined as

R = MultModInitn(A, B, C, N)

with
R := (A ∗B + C ∗ 2n) mod N.
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2.2 The Instructions MultModDiv and MultModDivInitn

The following definition is a natural extension of the usual modular multiplica-
tion.

Definition 3. For a fixed integer n and numbers A, B and N , N > 0, the
MultModDiv is defined as

(Q, R) = MultModDiv(A, B, N)

with

Q :=
⌊

A ∗B

N

⌋
and R := (A ∗B)−Q ∗N.

Definition 4. For a fixed integer n and numbers A, B, C and N , N > 0, the
MultModDivInitn instruction is defined as

(Q, R) = MultModDivInitn(A, B, C, N)

with

Q :=
⌊

A ∗B + C ∗ 2n

N

⌋
and R := (A ∗B + C ∗ 2n)−Q ∗N.

3 The Doubling Algorithm

3.1 Modular Multiplication without Initialization

We will start with the easiest of our algorithms, which needs 7 MultModDiv
instructions on an n-bit processor.

Theorem 1. There exists an algorithm to compute A ∗ B mod N using seven
MultModDiv instructions of length n, provided that 22n−1 ≤ N < 22n and 0 ≤
A, B < N .

Proof. We will first present the algorithm.
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Basic Doubling Algorithm:
input: N = Nt2n + Nb with 0 ≤ Nb < 2n,

A = At2n + Ab with 0 ≤ Ab < 2n,
B = Bt2n + Bb with 0 ≤ Bb < 2n

(Q(1), R(1)) := MultModDiv(Bt, 2n, Nt)
(Q(2), R(2)) := MultModDiv(Q(1), Nb, 2n)
(Q(3), R(3)) := MultModDiv(At, R

(1) −Q(2) + Bb, Nt)
(Q(4), R(4)) := MultModDiv(Ab, Bt, Nt)
(Q(5), R(5)) := MultModDiv(Q(3) + Q(4), Nb, 2n)
(Q(6), R(6)) := MultModDiv(At, R

(2), 2n)
(Q(7), R(7)) := MultModDiv(Ab, Bb, 2n)

Q := (R(3) + R(4) −Q(5) −Q(6) + Q(7))
R := (R(7) −R(6) −R(5))
make final reduction on (Q ∗ 2n + R)

output: Q ∗ 2n + R

We will prove that (R(3)+R(4)−Q(5)−Q(6)+Q(7))∗2n+(R(7)−R(6)−R(5)) is
indeed congruent to A∗B modulo N . This can easily be seen from the following,
where we use Z = 2n as abbreviation.

(AtZ + Ab) ∗ (BtZ + Bb)
= AtBtZZ + AtBbZ + AbBtZ + AbBb

= At(Q(1)Nt + R(1))Z + AtBbZ + AbBtZ + AbBb

≡ AtR
(1)Z −AtQ

(1)Nb + AtBbZ + AbBtZ + AbBb

= AtR
(1)Z −At(Q(2)Z + R(2)) + AtBbZ + AbBtZ + AbBb

= At(R(1) −Q(2) + Bb)Z −AtR
(2) + AbBtZ + AbBb

= (Q(3)Nt + R(3))Z −AtR
(2) + AbBtZ + AbBb

= (Q(3)Nt + R(3))Z −AtR
(2) + (Q(4)Nt + R(4))Z + AbBb

≡ (R(3) + R(4))Z − (Q(3) + Q(4))Nb −AtR
(2) + AbBb

= (R(3) + R(4))Z − (Q(5)Z + R(5))−AtR
(2) + AbBb

= (R(3) + R(4))Z − (Q(5)Z + R(5))− (Q(6)Z + R(6)) + AbBb

= (R(3) + R(4))Z − (Q(5)Z + R(5))− (Q(6)Z + R(6)) + (Q(7)Z + R(7))
= (R(3) + R(4) −Q(5) −Q(6) + Q(7))Z + (R(7) −R(6) −R(5)) mod N

The two congruences above are based on the fact that NtZ ≡ −Nb mod N .
Apart from the fact that this result still has to be reduced modulo N , this
completes the proof. ��
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Practical Implementation Issues

1. Observe that in steps three and five negative numbers may occur. This
can be resolved by the fact that for positive numbers A, B and N the
equation (Q, R) = MultModDiv(A, B, N) implies (−Q − 1, N − R) =
MultModDiv(A,−B, N), if R �= 0.

2. It is possible that the intermediary output (Q, R) is not reduced, i.e., 0 ≤
R < 2n and 0 ≤ Q < Nt is not fulfilled. In this case one has to do a final
reduction: first, do (Q, R) ← (Q ± Nt, R ± Nb) until Q is reduced modulo
Nt. Then, do (Q, R)← (Q± 1, R∓ 2n) until R is reduced modulo 2n.

3. Using two parallel n-bit processors one only needs the time of four
MultModDiv instructions.

4. If the given module N has an odd bitlength, then one has to compute with
2 ∗N .

3.2 Modular Multiplication with Initialization

By using a MultModDivInitn instruction we can reduce the number of steps to
six.

Theorem 2. There exists an algorithm to compute A ∗ B mod N using five
MultModDiv and one MultModDivInitn instruction of length n, provided that
22n−1 ≤ N < 22n and 0 ≤ A, B < N .

Proof. We first present the algorithm.

Enhanced Basic Doubling Algorithm:
input: N = Nt2n + Nb with 0 ≤ Nb < 2n,

A = At2n + Ab with 0 ≤ Ab < 2n,
B = Bt2n + Bb with 0 ≤ Bb < 2n

(Q(1), R(1)) := MultModDiv(At, Bt, Nt)
(Q(2), R(2)) := MultModDivInitn(Nb,−Q(1), R(1), Nt)
(Q(3), R(3)) := MultModDiv(At, Bb, Nt)
(Q(4), R(4)) := MultModDiv(Ab, Bt, Nt)
(Q(5), R(5)) := MultModDiv(Ab, Bb, 2n)
(Q(6), R(6)) := MultModDiv(Q(2) + Q(3) + Q(3), Nb, 2n)

Q := (R(2) + R(3) + R(4) + Q(5) −Q(6))
R := (R(5) −R(6))
make final reduction on (Q ∗ 2n + R)

output: Q ∗ 2n + R

We will prove that (R(2) + R(3) + R(4) + Q(5) − Q(6)) ∗ 2n + (R(5) − R(6))
is indeed congruent to A ∗ B modulo N . This can be seen from the following,
where we use Z = 2n as abbreviation.
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(AtZ + Ab) ∗ (BtZ + Bb)
= AtBtZZ + AtBbZ + AbBtZ + AbBb

= (Q(1)Nt + R(1))ZZ + AtBbZ + AbBtZ + AbBb

≡ (R(1)Z −Q(1)Nb)Z + AtBbZ + AbBtZ + AbBb

= (Q(2)Nt + R(2))Z + AtBbZ + AbBtZ + AbBb

≡ (R(2)Z −Q(2)Nb) + AtBbZ + AbBtZ + AbBb

= (R(2)Z −Q(2)Nb) + (Q(3)Nt + R(3))Z + AbBtZ + AbBb

= (R(2)Z −Q(2)Nb) + (Q(3)Nt + R(3))Z + (Q(4)Nt + R(4))Z + AbBb

= (R(2)Z −Q(2)Nb) + (Q(3)Nt + R(3))Z + (Q(4)Nt + R(4))Z + (Q(5)Z + R(5))
≡ (R(2) + R(3) + R(4) + Q(5))Z − (Q(2) + Q(3) + Q(4))Nb + R(5)

= (R(2) + R(3) + R(4) + Q(5))Z − (Q(6)Z + R(6)) + R(5)

= (R(2) + R(3) + R(4) + Q(5) −Q(6))Z + (R(5) −R(6)) mod N

The three congruences above are based on the fact that NtZ ≡ −Nb mod N .
Apart from the fact that this result still has to be reduced modulo N , this
completes the proof. ��

Practical Implementation Issues

1. Observe that in steps two and six negative numbers may occur. This can be
resolved as shown above.

2. It is possible that the intermediary output (Q, R) is not reduced. This can
be resolved as shown above.

3. Using two parallel n-bit processors one only needs the time of three
MultModDiv instructions.

4. Again, if the given module N has an odd bitlength, then one has to compute
with 2 ∗N .

3.3 Optimized Special Purpose Variants

Now the basic strategy of our algorithms should be clear. Therefore, we will
present the results for special purpose variants.

Squaring

Theorem 3. There exists an algorithm to compute A2 mod N using six
MultModDiv instructions of length n, provided that 22n−1 ≤ N < 22n and
0 ≤ A < N .

If we consider the algorithm of section 3.2 for the case A = B, we see that
steps three and four are identical. Therefore, we get the following result:

Theorem 4. There exists an algorithm to compute A2 mod N using four
MultModDiv and one MultModDivInitn instruction of length n, provided that
22n−1 ≤ N < 22n and 0 ≤ A < N .
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Precomputation
If the factor B is known in advance (e.g., square and multiply for exponentiation),
then the first and second computation of the algorithm of section 3.1 can be
carried out in advance. Therefore, the multiplication can be done in five steps.

Theorem 5. There exists an algorithm to compute A ∗ B mod N using five
MultModDiv instructions of length n, provided that 22n−1 ≤ N < 22n and 0 ≤
A, B < N , where B is known in advance.

Using a completely different idea, one needs only six MultModDiv steps. This
time, one uses a special representation of A and B. Namely, A = At ∗Nt + Ab

and B = Bt ∗Nt + Bb, where Nt := 	√N�.
Theorem 6. There exists an algorithm to compute A ∗ B mod N using six
MultModDiv instructions of length n, provided that 22n−1 ≤ N < 22n and
0 ≤ A, B < N , where N is known in advance..

4 Software Realization of the MultModDiv and
MultModDivInitn Instructions

This section presents a software emulation of the MultModDiv and
MultModDivInitn instructions.

Theorem 7. There exists an algorithm to compute MultModDiv(A, B, N) using
two MultMod instructions, provided that 0 ≤ A, B < N .

Proof. We present the simple algorithm.

Simulation of MultModDiv:
input: A, B, N with 0 ≤ A, B < N

R := MultMod(A, B, N)
N ′ := N + 1
R′ := MultMod(A, B, N ′)
Q := R−R′

if (Q < 0) then
Q := Q + N ′

fi

output: (Q, R)

We will prove that the former algorithm correctly computes the MultModDiv
instruction. For given inputs A, B and N there exists some Q and R with

A ∗B = Q ∗N + R and R = (A ∗B) mod N,

where 0 ≤ R < N and 0 ≤ Q < N − 1. Equivalently, we also have

A ∗B = Q ∗ (N + 1) + (R−Q).
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For (R−Q) ≥ 0 this means (R−Q) = (A∗B) mod (N +1) and for (R−Q) < 0
this means (R−Q) + (N + 1) = (A ∗B) mod (N + 1). Thus, for Q we have

Q = ((A ∗B) mod N)− ((A ∗B) mod (N + 1))

or, if this value is less than zero

Q = ((A ∗B) mod N)− ((A ∗B) mod (N + 1)) + (N + 1).

This completes the proof. ��

In a similar way the MultModDivInitn instruction is emulated by the
MultModInitn instruction.

Theorem 8. There exists an algorithm to compute MultModDivInitn

(A, B, C, N) using two MultModInitn instructions, provided that 2n−1 ≤ N < 2n

and 0 ≤ A, B, C < N .

Proof. We present the algorithm.

Simulation of MultModDivInitn:
input: A, B, C, N with 0 ≤ A, B, C < N

R := MultModInitn+2(2A, 2B, C, 4N)
N ′ := 4N + 1
R′ := MultModInitn+2(2A, 2B, C, N ′)
Q := R−R′

if (Q < 0) then
Q := Q + N ′

fi

output: (Q, R/4)

The proof is a derivation of the former one, leaving the modifications to the
reader. However, we note that bounding the size of the quotient Q is the crucial
point. ��

Both algorithms can be extended to algorithms also working for non-reduced
A, B and C. This is necessary for our doubling algorithms.

5 Hardware Realization of the MultModDiv and
MultModDivInitn Instructions

We will now sketch how an algorithm for the MultMod instruction can be ex-
tended into an algorithm for the MultModDiv instruction. We first consider the
textbook MultMod implementation.
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Textbook MultMod implementation:
input: A, B, N with 0 ≤ A, B < N , and A = (An−1, . . . , A0)
i := n; Z := 0
repeat

i := i− 1
case Ai is

0: Z := 2 ∗ Z
1: Z := 2 ∗ Z + B

end case
if (Z ≥ N) then

Z := Z −N
if (Z ≥ N) then

Z := Z −N
fi

fi
until (i = 0)
output: Z

The extension is rather trivial. During the modular multiplication we sim-
ply have to “count” the number of subtracted N ’s. Observe that during a
modular multiplication this implicit information is always known to the algo-
rithm/hardware.

MultModDiv implementation:
input: A, B, N with 0 ≤ A, B < N and A = (An−1, . . . , A0)
i := n; Z := 0
repeat

i := i− 1
case Ai is

0: Z := 2 ∗ Z
1: Z := 2 ∗ Z + B

end case
Qi := 0; Q′

i := 0
if (Z ≥ N) then

Z := Z −N
Qi := 1; Q′

i := 0
if (Z ≥ N) then

Z := Z −N
Qi := 1; Q′

i := 1
fi

fi
until (i = 0)
Q := Q + Q′

output: (Q, Z)
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In the paper’s full version we will actually show how the former algorithm
can be simply integrated into the modular multiplication algorithm due to H.
Sedlak [Sed].

The MultModDivInitn and MultModInitn are derived from the former ones
essentially by exchanging the step Z := 0 with Z := C.

6 Conclusion

In this paper we have introduced new efficient algorithms to compute 2n-bit
modular multiplications using only n-bit modular multiplications. Using the
MultModDiv and MultModDivInitn instructions we were able to improve the
results presented by Pailler [Pai]. The question of what is the minimal number
of multiplications is still open, as we currently have no proof of the optimality
of our algorithm.

Acknowledgments. We would like to thank Holger Sedlak for several valuable
discussions on this topic.
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Abstract. Recent applications of lattice attacks against elliptic curve
cryptosystems have shown that the protection of ephemeral keys in the
ECDSA is of greatest importance. This paper shows how to enhance
simple power-analysis attacks on elliptic-curve point-multiplication al-
gorithms by using Markov models. We demonstrate the attack on an
addition-subtraction algorithm (fixing the sequence of elliptic-curve op-
erations) which is similar to the one described by Morain et al. in [MO90]
and apply the method to the general addition-subtraction method de-
scribed in ANSI X9.62 [ANS99].

1 Introduction

Elliptic curve cryptosystems (ECC) have been introduced in 1985 by Miller
and Koblitz and are widely accepted. Since there are no sub-exponential algo-
rithms known for the elliptic-curve discrete-logarithm problem (ECDLP), the
keys can be much smaller in elliptic curve cryptography than in other public-
key cryptosystems. Consequently, elliptic-curve cryptography offers significant
advantages in many practical aspects. Due to their practical advantages, elliptic
curve cryptosystems can be expected to be incorporated in many future cryp-
tographic applications and protocols. The most effective cryptanalytic attacks
on implementations of elliptic curve cryptosystems nowadays are the power at-
tacks [KJJ99]1. They use the power consumption of a device performing an
elliptic-curve scalar point-multiplication as a side-channel. Both power-analysis
variants, the simple power analysis (SPA) and the differential power analysis
(DPA), are effective against unprotected implementations of an elliptic-curve
scalar point-multiplication. Due to the importance of elliptic curve cryptosys-
tems, many articles related to power analysis and elliptic curve cryptography
have recently been published. We want to mention one article especially. This
article [RS01] (which is based on [HGS01]) describes how to compute the se-
cret key of the ECDSA, if a few bits of the ephemeral key for several ECDSA
� The work in this paper was partially done while the author visited COSIC, KU

Leuven, Belgium, 2002.
1 EM attacks appear to become increasingly powerful as well, see for example [QS01]

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 82–97, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.2     Für schnelle Web-Anzeige optimieren: Ja     Piktogramme einbetten: Ja     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 600 600 ] dpi     Papierformat: [ 595.276 824.882 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 600 dpi     Downsampling für Bilder über: 900 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren     Methode: StandardArbeitsbereiche:     Graustufen ICC-Profil:  ¡M     RGB ICC-Profil: sRGB IEC61966-2.1     CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Nein     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: NeinANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ( ¡M)     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 600 600 ]>> setpagedevice



Enhancing Simple Power-Analysis Attacks on Elliptic Curve Cryptosystems 83

signatures are known. Consequently the protection of ephemeral keys is a very
important aspect that cannot be neglected. Therefore the implementation of an
elliptic-curve scalar point-multiplication algorithm should be resistant against
simple power-analysis attacks even if it is used only for signatures.

The main contribution of this paper is the development of a new and more
powerful simple power-analysis attack which is even applicable to elliptic-curve
scalar point-multiplication algorithms that do not fix the sequence of elliptic-
curve operations. This attack shows that certain attempts to counteract simple
power-analysis attacks by only obscuring2 the ephemeral key, fail.

This paper is organized as follows. Section 2 is dedicated to related work.
In section 3, the relationship between Markov models and point-multiplication
algorithms is established, and the general idea for the enhanced simple power-
analysis attack is presented. Finally, in section 4, we apply this method to a
addition-subtraction algorithm and to the scalar point-multiplication algorithm
defined in ANSI X9.62 ([ANS99] and IEEE P1363a [IEE99]). We also reason
about the applicability of this method to the randomized algorithms as presented
in [OA01].

2 Related Work

Finding efficient countermeasures to protect implementations of elliptic-curve
scalar point-multiplication against power attacks has proven to be a difficult
and challenging task. This is due to the fact that different constraints have to be
taken into account for an actual implementation. For example, legal issues such
as avoiding patents or implementation constraints. Implementations of elliptic
curve cryptosystems usually make use of so called EC-accelerator modules that
are very often connected via a slow bus to the rest of the IC. Depending on
the specific hardware architecture that is used, an algorithm may or may not
lead to an efficient (fast, small, or flexible, etc . . . ) implementation. Another
constraint for countermeasures, is due to the fact that NIST3 published a set of
recommended curves [NIS99] which can be used as ‘named curves’ in certificates
and protocols. These curves have one common property. They all have a cofactor
of 2. Because of this specific choice of the cofactor, none of these curves has
a Montgomery form. Therefore, countermeasures using the Montgomery form
cannot be applied to them. On the other hand, these curves have been given
OIDs and the set of elliptic-curve parameters can be replaced by these OIDs
in certificates. This is certainly a big advantage since certificate sizes can be
significantly reduced. Consequently, countermeasures should be applicable to all
recommended curves.

2 Obscuring means in this context, that there is a more complex relationship between
the bits of the ephemeral key and the performed elliptic-curve operations. We will
discuss this in more detail in section 3.1

3 There exists a second set of ‘named curves’ which has been selected by the SECG
[Cer00].
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2.1 Previous Results

The basic principles of how to apply power analysis attacks on elliptic curve
cryptosystems have been discussed in [Cor99]. To counteract both simple power-
analysis attacks and (first order) differential power-analysis attacks there are
basically two things that have to be done. Firstly, one has to randomize the
expressions (i.e. the coordinates) of calculated points. This can be done by using
randomized projective coordinates (DPA countermeasure). Secondly, one has to
conceal the ephemeral key. It would be optimal if there would be no statistical
relationship between the sequence of elliptic-curve operations and the bits of the
ephemeral key (SPA countermeasure). Countermeasures applicable to arbitrary
curves fixing the sequence of elliptic-curve operations have been presented by
Coron [Cor99], Möller [Möl01] and Izu et al. [IT02]. Countermeasures applicable
to arbitrary curves not fixing the sequence of elliptic-curve operations have been
presented by Oswald et al. [OA01] and Brier et al. [BJ02]. Countermeasures
applicable to special curves fixing the sequence of elliptic-curve operations have
been presented by Hasan [Has00] and by Okeya et al. [OS00]. Countermeasures
applicable to special curves not fixing the sequence of elliptic-curve operations
have been presented by Liardet et al. [LS01] and Joye et al. [JQ01].

In none of the papers it was ever tried to extend the obvious simple power-
analysis attack to more general point-multiplication algorithms, i.e. algorithms
that also use elliptic-curve point-subtraction or do not fix the sequence of elliptic-
curve operations.

3 An Attack Based on a Markov Model for the
Elliptic-Curve Scalar Point-Multiplication Algorithm

In a simple power-analysis attack, the adversary is assumed to be able to mon-
itor the power consumption of one scalar point-multiplication, Q = kP , where
Q and P are points on an elliptic curve E, and k ∈ Z is a scalar. The at-
tacker’s goal is to learn the key using the information obtained from carefully
observing the power trace of a complete scalar point-multiplication. Such a scalar
point-multiplication consists of a sequence of point-addition, point-subtraction
and point-doubling operations. Each elliptic-curve operation itself consists of
a sequence of elementary field-operations. The sequence of elementary field-
operations in an elliptic-curve point-addition operation differs from the sequence
of elementary field-operations in elliptic-curve point-doubling operation. Every
elementary field-operation has its unique power-consumption trace. Hence, the
sequence of elementary field-operations that form the point-addition operation
has a different power-consumption pattern than the sequence of elementary field-
operations that form the point-doubling operation. Because point addition and
point subtraction only differ slightly, they can be implemented in such a way that
they are indistinguishable for an attacker. This is why we will not distinguish
between these two operations in the subsequent sections.
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3.1 Elliptic-Curve Scalar Point-Multiplication Algorithms

The simplest way of performing a scalar point-multiplication is the binary algo-
rithm (see table 1 for the bottom-up version).

Table 1. Bottom-up version of the binary algorithm

binalg(P,M,k)
Q = M
if k0 = 1 then P = M else P = 0
for i = 1 to n− 1

Q = Q ∗Q
if (ki == 1) then

P = P ∗Q
return P

For validity and explanation see [Knu98]. In table 1 the operator ∗ denotes
the general elliptic-curve point-addition operation. The expression P ∗Q denotes
the point-addition operation (short A) which adds two distinct points P and Q
on the elliptic curve, while P ∗ P denotes the point-doubling operation (short
D) which adds P to itself.

What makes this algorithm so vulnerable to SPA is the strong relation be-
tween the multiplier bits (i.e. the ki) and the performed operation (i.e. the point
addition) in the conditional branch (see table 1). If and only if the i-th bit of
k is set, a point-addition operation is performed. Another way of saying this
is that the conditional probability that ki is non-zero equals 1 under the as-
sumption that an elliptic-curve point-addition operation has been observed. An
attacker can simply look for two different patterns in the power trace of the scalar
point-multiplication algorithm. One pattern corresponds to the point-addition
operation and the other pattern corresponds to the point-doubling operation.
Since only the point-addition operation can be induced from a non-zero bit,
the attacker learns where the non-zero bits in the binary representation of k are.
With this information the attacker has to test at most two values (this is because
the attacker does not know which of the two observed patterns corresponds to
the point addition-operation and which corresponds to the point-doubling oper-
ations) to determine the ephemeral key.

The usage of more sophisticated versions of the binary algorithm, like the
window-method, signed representations like the non-adjacent form (short NAF),
etc. . . . (see [Gor98] for an excellent survey), can obscure the private multiplier
to a certain extent. The main goal of these sophisticated algorithms is to speed
up the scalar point-multiplication. This is usually accomplished by recoding4

4 Well known methods referring to the same basic principle are for example Booth
recoding, or Canonical recoding or NAF.
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the multiplier k. The recoded form k′ leads to fewer operations that have to be
performed in the scalar point-multiplication. The arithmetic of elliptic curves
makes it possible to use signed representations, i.e. use digits −1, 0, 1, because
point subtraction is almost the same operation as point addition. The assump-
tion we made in the beginning of this section, namely that we cannot distinguish
between point addition and point subtraction, introduces an additional difficulty
in the task of the attacker. Observing a point-addition operation gives the at-
tacker less information, since a point addition corresponds to both −1 and 1 in
the digit-expansion of k. Having more difficult relations between certain occur-
rences of operations in the power trace and specific bits (or maybe combination
of bits) is what is meant by “obscuring” in this context. In general it can be
said that whenever we don’t have an “if and only if” relationship between bits
and operations, we are not able to mount a simple power-attack in the way we
described it for the standard binary algorithm. However, we show in this paper
how an ordinary simple power-analysis attack can be enhanced in order to mount
an efficient simple power-analysis attack on certain types of these algorithms.

3.2 The Attacker’s Task

The attacker has the ability to observe a sequence of elliptic curve operations,
thus, the attacker’s aim is to calculate and exploit the probabilities of certain
sequences of bits given an observed sequence of elliptic curve operations.

Using the information of such conditional probabilities, the key-space that
has to be searched to find the correct ephemeral key, can be significantly reduced.
This is because certain combinations of patterns in the power trace and certain
combination of digits are less likely than the others (or even not possible at all).
The attacker’s task can be stated in a more formal way.

Let X be a random variable that denotes a sequence of elliptic-curve op-
erations and |X| the length of X (i.e. the number of elliptic-curve operations
in this sequence). For example, X=“DDD” (i.e. the realization of the random
variable X consists of three consecutive elliptic-curve point-double operations)
thus |X| = 3, or X=“DAD” (i.e. the realization of the random variable X con-
sists of an elliptic-curve point-double operation, an elliptic-curve point-addition
operation and an elliptic-curve point-double operation) thus |X| = 3.

Let Y be a random variable that denotes a sequence of digits in the digit
representation of k and |Y | the length of Y (i.e. the number of digits). For
example Y = “000” (i.e. the realization of the random variable Y consists of
three consecutive zeros) thus |Y | = 3, or Y = “01” (i.e. the realization of the
random variable Y consists of a zero and an one digit) thus |Y | = 2.

Then the attackers goal is to calculate and exploit the conditional probability

P (Y = y|X = x) =
P (Y = y ∩X = x)

P (X = x)
(1)

for many different realizations x of X and y and Y . Equation 1 is the mathe-
matical definition for the conditional probability.
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It is an important observation that the calculation of the right hand side of
(1) requires the knowledge of the probability to be in a specific state of the point-
multiplication algorithm (the terminology used here will be explained in the next
section). This is because in order to calculate the probabilities P (X = x), one
has to calculate the sum of the probabilities of all possible sequences of digits
that lead to the pattern x. Since such a sequence can basically start from any
state of the algorithm, the probabilities are dependent on the probability of the
starting-state. These probabilities can be calculated by using Markov models
which we are going to introduce in the following section.

3.3 Markov Models

The general assumption for the rest of this paper is that the multiplier bits
ki, are independently drawn and identically distributed. We can see a point-
multiplication algorithm as a Markov process (see for example [GS92]). A Markov
process in general can be used to analyze random, but dependent events. In a
Markov process, the next state (or event) is only dependent on the present
state but is independent of the way in which the present state arose from the
states before. This is often referred to as “memoryless” process. The transitions
between the states are determined by a random variable and occur with certain
probabilities, that are either known or have to be estimated. A common way to
work with Markov processes is to visualize them in so called transition graphs.
For example, figure 1 shows the transition graph for the binary algorithm as
presented in table 1.

0

0

0

Q=2Q

1

1

Q=2Q

P=P+Q
Q=2Q

Q=2Q
P=P+Q

1

Fig. 1. Transition-graph of the Binary Algorithm

According to the description given for table 1, P and Q denote elliptic-curve
points. Circles represent states (0 and 1 in this case) and the arrows between
the circles represent transition between the states. Output paths are marked by
an additional bar. In the binary algorithm, transitions are triggered by the bits
ki. Consequently, in figure 1 the values next to the arrows, correspond to the
possible values of ki (i.e. 0 and 1). The expressions Q = 2Q (point double) and
P = P + Q (point addition) indicate what operation is triggered by the value of
ki.
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This graph or Markov process, respectively, has two important properties.
The first property is that the graph is irreducible in the sense that all states
can be reached from all other states with a finite number of steps. The second
important property is that the graph is aperiodic, in the sense that all states are
aperiodic. A state is aperiodic, if the period (that is the greatest common divisor
of the set of times a chain has a positive probability of returning to the same
state) is equal to 1. These two properties are conditions for the main theorem of
Markov theory. This theorem states basically that for Markov processes having
the properties of being aperiodic and irreducible a steady state always exists5.
The row-vector π = (π1, . . . , πn) representing the steady state has the following
two properties:

n∑

i=1

πi = 1, (2)

πT = π. (3)

The variable T in the second equation is a matrix (subsequently referred to as
transition matrix ) containing the transition probabilities. (3) is the formal way
of saying that the distribution has become steady. (2) makes clear that we are
actually dealing with a probability distribution for the states (since all the in-
dividual probabilities sum up to 1). The entries of the row-vector π are simply
the probabilities of the states the algorithm can be in. What is important for
the attack presented in this paper is that π depends solely on the transition
matrix T and can be obtained by calculating the eigenvectors (with the associ-
ated eigenvalues) of the transition matrix (this follows directly from (3)). The
transition matrix itself can be obtained in a straightforward way. The transi-
tion probabilities associated with the transition variables can be written in the
transition matrix

T =
(

P (si+1 = 0|si = 0) P (si+1 = 0|si = 1)
P (si+1 = 1|si = 0) P (si+1 = 1|si = 1)

)
=
(

0.5 0.5
0.5 0.5

)
.

T contains the probabilities to get from one state to another state. The
random variable si denotes the state the algorithm is in. For example, the matrix
entry in the first row and the second column is the probability to get from state
1 to state 0. Calculating π = (1/2, 1/2) leads to the probabilities for being in
state 0 and state 1, respectively.

Additionally, we can deduce the number of elliptic-curve operations that
need to be executed. We know that every transition requires the calculation of
a point-doubling operation, but only a transition leading from state 0 to state
1 or a transition leading from state 1 to state 1 requires the computation of a
point-addition operation. Putting this all together and assuming that n denotes
5 There are several more expressions for the term “steady state”. Amongst others, the

most common terms seem to be “stationary distribution” and “invariant distribu-
tion”.
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the bit-length of k, we get n point-doubling operations and n/2 point-addition
operations. So, 3n/2 elliptic-curve operations have to be performed.

In this section, we have established a relationship between elliptic-curve scalar
point-multiplication algorithms and Markov processes. The most important ob-
servation was that the main theorem for an important class of Markov processes,
namely the irreducible and aperiodic Markov processes, also gives a solution to
the problem of calculating the conditional probability defined in (1). Further-
more we have shown how to calculate the number of elliptic-curve operations
that need to be performed in a point-multiplication algorithm, with the aid of
Markov models.

4 Results

In order to demonstrate that the observations presented in the previous sec-
tion lead to an effective attack, we apply the technique on well known point-
multiplication algorithms. The first algorithm we attack was introduced in the
article of Morain et al. [MO90] and belongs to the class of addition-subtraction
algorithms. We attack the modified version as given in [OA01]. The second al-
gorithm we discuss is the addition-subtraction method or NAF-method which is
used in important standards such as the ANSI X9.62 and the Annex A of IEEE
1363.

4.1 Analysis of a Double-Add and Subtract Algorithm

We demonstrate how this method can be used to construct a known-ciphertext
attack on the example of a modification ([OA01]) of the first algorithm given by
Morain et al. [MO90].

11

0

0

1

0 1

P=P+Q

P=P−Q

P=P+Q
Q=2Q

Q=2Q Q=2Q

0

11

Q=2Q

Q=2Q

P=P+Q
Q=2Q

P

Fig. 2. Transition-graph of Double-Add and Subtract as proposed in [OA01]
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The idea of this point-multiplication algorithm is basically to replace a block
of at least two consecutive 1’s in the binary representation of the multiplier k, by
a block of 0’s and a −1 : 1a �→ 1 0a−1−1. The original proposal is modified in such
a way that for every transition a point-doubling operation or a point-doubling
and a point-addition operation has to be performed. Mounting a standard simple
power-attack is not possible since there is no “if and only if” relation between the
bits and the elliptic curve operations. For both, zero and non-zero bits, elliptic-
curve point-addition and elliptic-curve point-doubling operations can occur.

The transition graph of the finite state machine in figure 2 (the notation used
here is the same as used before in figure 1) visualizes this algorithm. From this
graph one can easily deduce the transition matrix

T =




0.5 0.5 0.5
0.5 0 0
0 0.5 0.5





and therefrom the steady-state vector which is (1/2, 1/4, 1/4). With this infor-
mation the conditional probabilities for many realizations of X and Y can be
calculated. With a modest computational effort, one can do this up to |Y | = 16.
The results we obtained show how poor the secret key is obscured. We found
out that for a chosen X and for fixed and small |Y |, only three bit-patterns
are possible, or there is no bit-pattern at all. We derived this result from our
computer program, which checked all conditional probabilities up to |Y | = 12.
For example, table 2 shows some of the results for small values of |Y |.

Table 2. Non-zero conditional probabilities. In this table we use an abbreviated no-
tation, i.e. we write p(000|DDD) instead of p(Y = 000|X = DDD). We use the LSB
first representation.

p(000|DDD) = 1/2 p(01|DAD) = 1/2 p(11|ADAD) = 1/2
p(100|DDD) = 1/4 p(10|DAD) = 1/4 p(10|ADAD) = 1/4
p(111|DDD) = 1/4 p(11|DAD) = 1/4 p(01|ADAD) = 1/4

p(001|DDAD) = 1/2 p(000|ADDD) = 1/4 p(110|ADADAD) = 1/2
p(101|DDAD) = 1/4 p(100|ADDD) = 1/2 p(101|ADADAD) = 1/4
p(110|DDAD) = 1/4 p(111|ADDD) = 1/4 p(011|ADADAD) = 1/4

The probabilities in table 2 can be derived with the help of the transition
matrix T and the Markov model for the point-multiplication algorithm. We
illustrate how to derive them on a simple example.

Example 1. Assume we want to calculate the probability that two consecutive
elliptic-curve point-doubling operations occur (under the assumption that we
only look at two transitions, i.e. |Y | = 2) when performing the scalar point-
multiplication algorithm depicted in figure 2. Table 3 lists all possible transi-
tions between two states of algorithm 2 in the leftmost column. The column in
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the middle lists the to the sequence of transitions corresponding elliptic-curve
operations. The rightmost column indicates the occurrence of two consecutive
point-doubling operations.

Table 3. The calculation of the probability p(X = DD) and p(Y = 00|X = DD)
can be done with this table. The leftmost part of the table shows the transitions,
the column in the middle shows the corresponding elliptic-curve operations and the
rightmost column indicates the occurrences of X = DD.

0→ 0→ 1 DAD
0→ 0→ 0 DD ⇐
0→ 1→ 0 ADD ⇐
0→ 1→ 11 ADAD
1→ 0→ 0 DD ⇐
1→ 0→ 1 DAD

1→ 11→ 11 ADD ⇐
1→ 11→ 0 ADAD

11→ 11→ 11 DD ⇐
11→ 11→ 0 DAD
11→ 0→ 0 ADD ⇐
11→ 0→ 1 ADAD

For each row of table 3 the corresponding probability can be calculated. This
can be done by using the steady state vector and the probabilities which we
already derived for the transition matrix. For example, the first row defines a
sequence of transitions that starts in state 0, then stays in state zero and ends
up in state 1. We know that the probability to be in state 0 is 1/2 and the
probability to go from state 0 to state 0 or state 1 is 1/2. Thus, the probability
that row one occurs is ( 1

2 )3. To calculate p(X = DD) one has to calculate the
sum of the probabilities of the six rows which are marked with an arrow. To
calculate the conditional probability p(Y = 00|X = DD) one has to calculate
the numerator of equation 1. This numerator can be calculated by summing up
the probabilities of those three rows of the six marked rows that assume two
consecutive zero bits (these are row two, row five and row eleven).

The Attack. The concrete attack works as follows.

1. Precomputation phase: Find the Markov model, i.e. the transition matrix
and the steady state vector, for the given point-multiplication algorithm.
Calculate the conditional probabilities for all combinations of X and Y up
to a suitable |Y |.

2. Data collection phase: Deduce from the power trace of an elliptic-curve scalar
point-multiplication operation the sequence of point additions and point
doublings. This stage is in fact the same as in an ordinary simple power-
analysis attack.
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3. Data analysis phase: Split this sequence into a number of sub-sequences,
whereby each sub-sequence must be chosen in a way that it can be produced
by a well defined sequence of digits. The number of digits in the sequence
have to sum up to the total number of digits of k to ensure a valid partitioning
in sub-sequences. Remark: After this step one knows for each sub-sequence
the number of digits that produced this subsequence. Of course in general,
there are several valid possibilities for a such a partitioning, but it is only
important to choose and fix one.

4. Key testing phase: Check all combinations of bit-patterns that have a non-
zero probability to occur, with the known pair of plain- and ciphertext. This
will lead finally to the secret key. Remark: One should check the combinations
of bit-patterns with the highest probabilities first.

We now illustrate the attack on a toy example.

Example 2. In this example, we use the scalar point-multiplication algorithm de-
picted in figure 2 which we discussed on beforehand. The scalar k which serves
as ephemeral key in this example is 560623. The first row shows the sequence
of observed point-doubling and point-addition operations. In the second row the
same sequence is split into sub-sequences that contain patterns for which we al-
ready calculated the conditional probabilities (see table 2). In the third, fourth
and fifth rows the possible bit-patterns are listed according to their conditional
probabilities. From all possible bit-pattern combinations the attacker can deter-
mine the correct one with the aid of the known plaintext-ciphertext pair.

Table 4. Example : k = 11110111101100010001, LSB first representation

ADADDDADADADDDADADADADDDADDDDAD
ADAD DDAD ADAD DDAD ADAD ADDD ADDD DAD

11 001 11 001 11 100 100 01
10 101 10 101 10 000 000 10
01 110 01 110 01 111 111 11

Effectiveness. We denote the ephemeral secret key with k, it’s bit-length by
n and the length of the sub-sequences by l. Then, in the worst case where we
only take the non-zero conditional probabilities into account but not their actual
values, we have to test 33n/2l keys on average (this is because 3n/2 elliptic-curve
operations are calculated on average in this point-multiplication algorithm). If
we take into account, that one of the three non-zero conditional probabilities is
always 1/2, we deduce that we only have to test 23n/2l keys on average. In the
case of n = 163 and l = 16 (the size of n is chosen according to the smallest
recommend curve by NIST) we can deduce that we only have to test 215.28 keys
on average.
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4.2 Application to the NAF-Method

This algorithm calculates the NAF of the multiplier k. The NAF of k has the
property that no two consecutive digits in the expansion of k are non-zero. As a
consequence, the average number of non-zero digits is reduced and fewer elliptic-
curve operations have to be performed.

Table 5. The NAF algorithm

NAF-mult(P,M,k)
Q = P
Set h = 3k. Let hl denote the most significant bit of h.
for i = l − 1 down to 1

Q = Q ∗Q
if (hi == 1) and (ki = 0) then Q = Q + P .
if (hi == 0) and (ki = 1) then Q = Q− P .

return Q

Table 5 gives a brief description of the NAF algorithm. The finite-state ma-
chine describing this algorithm is depicted in figure 3.

0

Q=2Q

1 −1

P=P−Q

Q=2Q

Q=2Q

Q=2Q

P=P+Q
01

10

00,11

Q=2Q

Fig. 3. Transition graph of the NAF algorithm. The label “00”,“01”, “10” and “11”
correspond to the values of hi and ki in table 5.

Like in the previous section, we can derive the transition matrix from this
transition graph quite easily. The NAF property (i.e. that there are no consec-
utive non-zero digits allowed) is clearly visible in both the transition graph and
the transition matrix. The steady-state vector for the transition matrix
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T =




0.50 1 1
0.25 0 0
0.25 0 0





is (4/6, 1/6, 1/6).
We derived once again a well known result about the distribution of zero

and non-zero digits in the NAF-representation, which is, that about 2/3 of all
NAF-digits are zeros. We also know immediately from figure 3 that we have
an almost perfect and known statistical relationship between the NAF-digits
and the elliptic-curve operations. If and only if a non-zero NAF-digit occurs,
an elliptic-curve point-addition or an elliptic-curve point-subtraction, has to be
performed.

This means, that we not need to calculate conditional probabilities to mount
an attack. An attack can be mounted in the very straightforward way by just
searching the power trace for occurrences of point-addition patterns. Each such
pattern can be produced by either a point-addition or a point-subtraction oper-
ation. Since we know that about 1/3 of the NAF-digits are non-zero on average,
we know that we would have to test about 2n/3 keys on average (n denotes the
number of digits of the ephemeral key k).

4.3 A General Comment on the Key Testing Phase

The speed with which we can test all the possible ephemeral keys is also certainly
an important issue for the whole attack. The scalar point-multiplications which
we have to perform in the key testing phase can be done much faster than scalar
point-multiplications with random points. This is because the point which is
multiplied with a scalar is fixed, and due to elliptic curve protocols, almost
never changed. This means that one can use window-methods combined with
the NAF-method, for example, to speedup the key testing phase. We already
know that because of the NAF property, not all of the bit-patterns (and digit-
patterns resp.) are possible. In fact, when using a window-method for the point-
multiplication in the key testing phase, one can use rather large windows, since
not all, but only a very few points have to be precomputed. For example, for
a window with length ten only 144 points need to be calculated. An analysis
of window NAF-methods can be found for example in [BHLM01]. This means
that in an EC-accelerator module which is designed especially for the key testing
phase, one could possibly use such methods.

We now give some rough estimates for testing the number of possible keys if
the NAF-method was used on a 163-bit curve. Our analysis in section 4.2 showed
that we would have to test about 254,3 possible ephemeral keys to determine the
correct ephemeral key. Based on the performance data given in [OP00] it turns
out that a single device needs appr. 217 years to test all 254,3 possible ephemeral
keys. Modifying the architecture of [OP00] in such a way that it heavily makes use
of precomputed points and thus achieves a further speed-up should be possible.
Considering all this, we are concerned about the long-term security margin of
the NAF-method in the case of a 163−bit curve.
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4.4 A Note on the Application to Randomized Algorithms

In [OA01] the usage of randomized addition-subtraction chains was proposed
as a countermeasure against simple and differential power-analysis attacks. We
analyzed these randomized algorithms as well. It is clear that the attack as it
is described in this paper can directly be applied on the randomized algorithms
as well. One can derive the transition matrix for the randomized algorithms in
exactly the the same way as we demonstrated it in this paper. The steady state
can then be derived from the transition matrix and therefrom the conditional
probabilities can be calculated. Due to the limitations of the number of pages for
this paper we cannot present a full analysis, but in our investigations it turned
out that the Markov method on the randomized algorithms is not better than on
the NAF-method. Thus, we consider the randomized algorithms as more secure
than the NAF-method with respect to the attack presented in this paper.

5 Conclusion

We presented an enhanced simple power-analysis attack on elliptic-curve point-
multiplication algorithms. The method basically uses the information about the
conditional probabilities of observed sequences of elliptic-curve operations, and
bit-patterns that form the secret key. The method can be considered as an en-
hancement because it works even in cases where the standard simple-power at-
tack fails. The approach is a general method in the sense that it can be used to
attack arbitrary elliptic-curve point-multiplication algorithms that do not even
necessarily fix the sequence of instructions. We demonstrated that it can be
effectively applied on the example of a modification of a point-multiplication
algorithm originally proposed by Morain and Olivos where the standard simple
power-analysis attack fails. We also analyzed the security of the NAF-method
which is often used in standards. We pointed out that this method applies to
randomized algorithms as well. Based on the analysis we conjecture that meth-
ods that only use three digits for encoding the ephemeral key are susceptible to
this attack. To summarize the results, the method is new and more efficient than
the standard simple power-analysis attack and poses a serious threat against cer-
tain algorithms that only try to obscure the ephemeral key. Our analysis also
indicates that the long-term security margin of the NAF-method in the case of
a 163-bit curve is not too large.
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Abstract. Many software implementations of public key cryptosystems
have been concerned with efficiency. The advent of side channel attacks,
such as timing and power analysis attacks, force us to reconsider the
strategy of implementation of group arithmetic. This paper presents a
study of software counter measures against side channel attacks for el-
liptic curve cryptosystems.
We introduce two new counter measures. The first is a new implemen-
tation technique, namely, homogeneous group operations, which has the
property that addition and doubling on elliptic curves cannot be dis-
tinguished from side channel analysis. Being inexpensive time-wise, this
technique is an alternative to a well-known Montgomery ladder. The sec-
ond is a non-deterministic method of point exponentiation with precom-
putations. Although requiring rather large ROM, it provides an effective
resistance against high-order power analysis attacks for the price of index
re-computations and ROM accesses.
An experimental implementation of NIST-recommended elliptic curves
over binary fields with a balanced suite of counter measures built-in in
group arithmetic is presented, and the penalty paid is analyzed. The
results of the implementation in C on an AMD Duron 600 MHz running
Linux are included in the paper.

1 Introduction

With the advance of side channel attacks both hard- and software implementa-
tions of cryptosystems have to take into account various protection techniques.
It has been claimed that all “naive” implementations can succumb to attacks
by power analysis. In this paper we do not detail the principles and techniques
of different side channel attacks; it had been done elsewhere [17,18,22,10,23].
Instead, we survey and systematize different software counter measures against
such attacks, including a couple of new techniques, and suggest a balanced ap-
proach to their implementation in the context of elliptic curve cryptosystems
(ECC) in binary fields. Giving a due to other excellent papers on practical re-
alizations of ECC [29,31,19], we claim that the contribution of our paper is an
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attempt to extend the work in [11] to an implementation in which a balanced
suite of counter measures against side channel attacks have been built-in on a
group operation level.

An implementation of an elliptic curve cryptosystem involves many choices;
not only domain parameters (e.g., underlying finite fields, field representations,
particular elliptic curves) and group arithmetic, but also field arithmetic, which,
in its turn, includes many different methods and algorithms. It is not surprising
therefore that although numerous papers on various aspects of ECC implemen-
tations had been written, there are only a handful of those that constitute an
extensive and careful study that includes all factors involved in the efficient
software implementation, notably [11] and [4]. These papers present C imple-
mentations on the Pentium 400 MHz workstation of the NIST-recommended
elliptic curves over binary and prime fields, respectively.

All published so far complete implementations of ECC have been concerned
with efficiency. The advent of side channel attacks force us to reconsider the de-
velopment cycle. As had been demonstrated in a break-through work by Kocher
et al. [17,18], for real life implementations an attacker can be able to perform
measurements on the device. If the different operations present different charac-
teristics detectable from the outside (like power consumption profile or duration),
the sequence of operations can be discovered by the attacker.

In the most widely used cryptographic systems, an exponentiation with a
secret exponent is required at some stage. “Exponentiation” in this context is
the repeated application of a group operation to the same element. Efficient
exponentiation algorithms involve a sequence of squarings, multiplications and
possibly divisions (respectively doublings, additions and possibly subtractions in
additive notation). Finding out the sequence of operations gives information on
the exponent and in some cases uniquely determines it. A detailed systematic
description of power analysis attacks on modular exponentiation algorithms can
be found in the work of Messerges et al. [22].

Coron [7] generalized DPA attacks to elliptic curve cryptosystems and had
shown how to extend DPA to any scalar multiplication algorithm.

Since then, a plethora of papers suggesting various counter measures both,
in a general setting and for particular classes of elliptic curves, has been pub-
lished. We set upon identifying a set of sufficiently general protection techniques
that can be employed in a real life scenario. In what follows we survey algorith-
mic counter measures suggested in the literature, and introduce some original
methods. After which an outline of the ECC software implementation in binary
fields with a balanced choice of counter measures against side channel attacks
is discussed. A description of the experiment with a C implementation on a PC
with AMD Duron 600 MHZ running Linux, concludes the paper.

2 Preliminaries and Notation

Since we are interested in elliptic curves, the notation is additive. Thus the basic
operations are doubling, addition and subtraction. We focus on elliptic curves
over finite fields of characteristic 2, which have an affine equation of the form
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y2 + xy = x3 + ax2 + b

for two elements a and b in the base field. A point on the curve is either identified
by a couple of affine coordinates (Px, Py) or is the special point P∞. If P and Q
are points on the curve, then an addition ⊕ is defined so that P ⊕ Q is also a
point on the curve and P∞ is the neutral element. Thus one can also define a
subtraction P �Q. In what follows, notation from [2] is used.

Let P1 = (x1, y1) and P2 = (x2, y2) be points on the curve. Assume P1, P2 �=
P∞ and P1 �= −P2. The sum P3 = (x3, y3) = P1 ⊕ P2 is computed as follows.

x3 = λ2 + λ + x1 + x2 + a, y3 = (x1 + x3)λ + x3 + y1,

where λ = (y1 + y2)/(x1 + x2) if P1 �= P2, and λ = (y1)/(x1) + x1 if P1 = P2.
Each point has also a projective expression of the form (PX , PY , PZ). If the

point is P∞ then its projective coordinates are (1, 1, 0). Else they are related to
the affine coordinates via the transformation rules

(Px, Py) �→ (Px, Py, 1)

(PX , PY , PZ) �→ (PX/P 2
Z , PY /P 3

Z).

A curve then is specified by the equation Y 2 + XY Z = X3 + aX2Z2 + bZ6.
Doubling formulas (X3, Y3, Z3) = 2(X1, Y1, Z1) for the projective equation is:

Z3 = X2
1Z2

1 , X3 = X4
1 + bZ4

1 , Y3 = bZ4
1Z3 + X3(aZ3 + Y 2

1 + bZ4
1 ).

Addition (X3, Y3, Z3) = (X1, Y1, Z1) + (X2, Y2, 1) in mixed coordinates is:

A = Y2Z
2
1 , B = X2Z1 + X1, C = Z1B, D = B2(C + aZ2

1 ), Z3 = C2, E = AC,

X3 = A2 + D + E, F = X3 + X2Z3, G = X3 + Y2Z3, Y3 = EF + Z3G.

ECC is based on the general problem of exponentiation in Abelian groups. Var-
ious algorithms for exponentiation in the context of cryptography are presented
in [21,2]. The survey [8] describes fast methods, including those specialized for
elliptic curves. Due to a short bit-length of the exponent, and that it is often
generated on-the-fly, sophisticated techniques do not show their advantage. How-
ever, certain idiosyncrasies of elliptic curves (e.g., subtraction and addition are
almost identical), prompt us to consider together with a classical binary method
signed and non-adjacent form (NAF) representation of the exponent [21].

Some algorithms described in this paper work with different exponentiation
procedures. In order to be able to interchange them, we rely on a routine that
transforms an integer into a sequence indicating the order of operations to per-
form. Possible contents of the resulting sequence elements are D (double), A
(add), S (subtract), suitably encoded.

3 Taxonomy of Software Counter Measures

Three main techniques developed by Kocher et al., are timing attacks [17], and
simple (SPA) and differential power analysis (DPA) attacks [18]. Among them,
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the DPA is the most sophisticated; nevertheless, there are references in the lit-
erature when a DPA-protected implementation could be SPA-vulnerable [9].
Moreover, for ECC it seems more difficult to prevent SPA than DPA, as there
are good solutions for the latter[7,15,22].

Side channel attacks work because there is a correlation between the physical
measurements taken during computations (e.g., power consumption, computing
time, EMF radiation, etc.) and the internal state of the processing device, which
is itself related to the secret key. While some authors insist on so-called provable
resistance [6,9] to specific classes of attacks, we share an attitude of [5] and
state that, unlike in classical cryptology, in a case of side-channel attacks the
definition of an adversarial model is not absolute. Thus, rather than having a
proof of security, one can have only a strong evidence that the countermeasure
resists an attack. Note that the security is assessed at the implementation level.

Three general algorithmic techniques to defy side channel attacks are:

1. Indistinguishability, which basically means that the only strategy for an ad-
versary is to guess at random. It can be partially achieved by eliminating
disparity between group operations involved in exponentiation.

2. Random splitting of every bit of the original computation into k shares where
each share is equiprobably distributed. Computation then will be carried se-
curely by performing computation only on shares, without reconstructing the
original bit [6,9]. In practice, an implementation of this technique for ECC
amounts to blinding an exponent or/and a base point with some random
mask generated for every run.

3. Randomization of the execution sequence which, in order to be successful,
must be carried out extensively [6] and, ideally, supported by hardware [27].

In what follows we systematically describe a wide range of counter measures
proposed so far for ECC in a general setting.

3.1 Indistinguishability

The first requirement to an effective protection against timing and SPA attacks
is to ensure that an instruction performed during an execution of a cryptographic
algorithm should not be directly dependent on the data being processed.

Double-and-Add Always. Introduced in [7], this counter measure eliminates
branch instructions, conditioned by secret data.

Algorithm 1 (Double-and-add) ==> Algorithm 2 (Double-and-add always)
Input: P, d=(d_m-1,...,d_0) Input: P, d=(d_m-1,...,d_0)
Q <- P Q[0] <- P
for i from m-1 down to 0 do for i from m-2 down to 0 do
Q <- 2Q Q[0] <- 2Q[0]
if d_i=1 then Q <-- Q + P Q[1] <- Q[0] + P

output Q Q[0] <- Q[d_i]
output Q[0]
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This method increases by 33% the amount of field operations by necessitating
“dummy” computations. As has been shown in [28], it makes it susceptible to a
new type of attacks, where an attacker induces any temporary random fault into
the ALU during the execution of Q[1]← Q[0]+P at iteration i. Then, according
to whether the final result is incorrect or not, the attacker may deduce if the di

bit of the exponent is 0 or 1!

The Universal Addition on Elliptic Curves. This method was suggested
in [20] for projective coordinates for a subclass of elliptic curves in finite fields
of characteristic greater than 3. The approach involves a representation of an
elliptic curve as the intersection of two quadric surfaces in P 3. A non-standard
definition of point addition has the advantage that the set of equations holds
when two points are equal, thus, naturally eliminating the difference between
point addition and doubling. The price to pay is that every point addition re-
quires 16 field multiplications and 3 squarings. Even after various optimizations
(that involve the Jacobi representation and a windowing method, and require
additional memory), a total increase in computation costs is 70% in comparison
with a standard projective coordinate method.

Independently, a similar approach was developed for Hessian curves in [14],
where due to the high symmetry of the Hessian parameterization, the same
algorithm can be used for point addition and point doubling. An implementation
of point addition requires 12 field multiplications, providing 33% improvement
over Jacobian curves.

Unfortunately, both Jacobian and Hessian parameterizations are not fully
general. Brier and Joye later extended the technique in [3] to general Weier-
strass elliptic curves and come up with the unified formulae, which requires 7
multiplications, 1 inversion and 3 squarings for affine coordinates and 18 multi-
plications for projective. This is very expensive in comparison with the method
proposed in this paper while providing the same protection.

A Montgomery Ladder. The advantages of Montgomery scalar multiplica-
tion [24] in the context of elliptic curves were re-discovered several times [19,25,
13,16]. The Montgomery ladder is based on the binary method and the observa-
tion that the x-coordinate of the sum of two points whose difference is known, can
be computed in terms of only x-coordinates of the involved points. Incidentally,
it is also the most promising candidate for a“side channel indistinguishable” ex-
ponentiation. The Montgomery ladder protected with a “no-branches” technique
is given below.

Algorithm 3 (Montgomery method) => Algorithm 4 (Modified Montgomery)
Input: P, d=(d_m-1,...,d_0) Input: P, d=(d_m-1,...,d_0)
Output: dP Output: dP
P[1] <- P P[1] <- P
P[0] <- 2P P[0] <- 2P
for i from m-2 down to 0 do for i from m-2 down to 0 do
if d_i=1 then b <- (1-d_i)
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P[1] <- P[1]+P[0] P[b] <- P[0]+P[1]
P[0] <- 2P[0] P[d_i] <- 2P[d_i]

else
P[0] <- P[1]+P[0] return P[1]
P[1] <- 2P[1]

return P[1]

The advantage of this method is perfectly symmetric, memory-efficient com-
putations. The disadvantage is increase in computation costs since both, point
addition and point doubling, are computed in each iteration.

An optimization of the Montgomery method based on a new formulae for
computing x-coordinate for addition of two points, was suggested in [19]. In affine
case, a new formulae requires 2 field inversions, 2 multiplications, 2 squarings
and 4 additions per iteration; for projective coordinates, it involves only 6 field
multiplications, 6 squarings, and 3 additions per iteration. This is comparable
cost-wise with our homogeneous group operation method described later, but
has an advantage of using less memory, since y-coordinate is not used.

Universal Exponentiation Algorithm. Introduced in [5], this is an elegant
attempt to design a provably SPA-resistant exponentiation method. Using a
representation of the exponent with addition chains, the authors “transfer” the
security of the exponentiation method actually implemented in the exponent
itself (i.e., in a secret data). The requirement here is that an exponent must be
represented as an addition chain in a secure environment. The algorithm works
with virtually all exponentiation methods. It reads triplets of values (γ(i) : α(i) :
β(i)) meaning that the content of register R[α(i)] must be multiplied by (added
to) the content of register R[β(i)] and the result must be written into register
R[γ(i)]. The exponent d then is represented by the register sequence Γ (d) =
{(γ(i) : α(i), β(i))}0≤i≤m−1. In order to break the algorithm, an adversary must
be able to differentiate among the triplets and to recover all their values. The
advantage of this method is that it introduces only a small amount of extra
computations; the disadvantage is large memory usage.

3.2 Splitting Variables

In practice, the general encoding proposed in [6,9] amounts to blinding an ex-
ponent and a base point with some random mask to prevent DPA attacks.

Blinding an Exponent. Randomization of the exponent is inexpensive and
useful technique. It comes in few flavors.

An additive mask is usually used in the ECC context [7]. It consists in adding
a multiple of the element order to the exponent. If N is the group order, then
(kN)P = 0 for any integer k and for any element P in the group. To compute
dP , where d is the secret exponent and P is a base point, one first blinds d
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with kN , where k is a (small) random number generated for every run, and N
is the group order. Hence, Q = (d + kN)P = dP + (kN)P = dP . As d usually
is the size of the group order, choosing a t-bit integer k increases the size of the
exponent by about t bits.

An exponent splitting [5] is a variant of this technique, where d is represented
as a sum of a random k and d−k, and exponentiation is carried out in two steps:
R → kP ; Q → (d − k)R. The values of both, k and d − k are required to
recover the value of d, which makes it less attractive than the method above.

A multiplicative mask is a multiplicative analogue of this idea. Let N be
the group order. If k is a unit in the multiplicative group (Z/ZN,×) and k−1

its inverse, then d = k(k−1d)( mod N) for any exponent d. This means that
calling d′ := k−1d( mod N), for any group element P one has the following
equivalent exponentiations:

(1) P
d�→ dP (3) P

d′
�→ d′P k�→ k(d′P )

(2) P
k�→ kP

d′
�→ d′(kP ) (4) P

kd′
�→ (kd′)P

Sequence (1) is a straightforward exponentiation; sequence (4) is a sub-case of the
additive blinding technique. Sequences (2) and (3) are performed in two phases.
We focus on (2). The overhead is given by the exponentiation with exponent k,
since both d and d′ are on average the size of N . To keep overhead low, one can
choose k to yield a fast exponentiation, for instance by choosing it randomly
among the elements of (Z/ZN)∗ of at most t bits, with a small t. As in the
additive blinding, one can trade-off the degree of randomization (and thus the
security) for speed.

If sequence (2) is used, the element fed to the second phase is not controlled
by an attacker. The first phase, on the other hand, doesn’t leak any information
whatsoever on the secret exponent, depending uniquely on the input element
and the random integer k. Thus one gets at the same time additional bonuses of
a change in the sequence of point operations and of randomization of the input
point. Cost-wise, the method is comparable with the additive mask, although
precomputations are somewhat slower.

Blinding a Base Point. Blinding a base point is necessary if we assume that
an attacker knows how points are represented in memory during computations
[7]. An accepted technique to mask the input by applying some bijective function
for which it is easy to compute the final correction.

Adding to the input a “perturbation point” [7] involves storing a couple
of “random” points (R,−dR) and updating it at each run by doubling both
elements. Exponentiation of an input P with an exponent d is performed in three
steps: (1)P ′ ← P + R, (2)Q′ ← dP ′ = dP + dR, (3)Q← Q′ + (−dR) = dP.



Implementation of Elliptic Curve Cryptography 105

As the argument P + R of the exponentiation phase does not depend exclu-
sively on the input, it is not possible to choose points with particular properties.
However, if d changes at each run, computing −dR for final correction doubles
group operations, and must be protected as well.

Randomizing projective coordinates of a point [7] is achieved almost
for free. Projective coordinates of a point is not unique because (X, Y, Z) =
(kX, kY, kZ) for every k �= 0 in the finite field. Hence, before each new execution
of dP , the projective coordinates of P can be randomized with a random k.
It makes it impossible for an attacker to predict any specific bit of the binary
representation of P , thus rending a DPA attack infeasible.

3.3 Randomization of the Execution Sequence

Non-deterministic execution of the sequence of instructions, although does not
provide perfect protection against statistical techniques, increases the number
of measurements.

Randomized Addition/Subtraction chain. [26] exploits the fact that dP
can be computed with different execution sequences; for instance, for 9P : P →
2P → 4P → 8P → 9P or P → 2P → 4P → 5P → 10P → 9P. Randomization
can be achieved by inserting a random decision that can rearrange a sequence
of additions, subtractions and doubling in a signed binary algorithm. The idea
is to randomly substitute a long chain of 1’s (which correspond to “double-and-
add”) in the signed binary representation of the exponent by a block of zeros
(“double”) followed by −1 (subtract). Similar substitution is applied to isolated
0’s inside a block of 1’s. The algorithm needs some 9% more additions. The
authors claim that it makes DPA attacks really difficult.

4 Homogeneous Group Operations

In the choice of doubling and addition algorithms for elliptic curves, it is often
advisable to work in projective coordinates, which allows us to avoid costly in-
versions in the field. For elliptic curves over fields of characteristic 2, complexities
for doubling performed on projective coordinates and addition and subtraction
on mixed affine-projective coordinates with projective result, are: Here Mult
stands for multiplication, Squar for squaring, and Add for addition.

The problem we address here is the relevant computational difference be-
tween addition/subtraction and doubling, which in implementation reflects in
differences detectable by an attacker. Observing that the complexity for point
doubling is about half of the complexity for addition/subtraction, one can think
of splitting the complex subroutines into two parts, each one approximately
equivalent to a point doubling. This is actually possible, as we show below.

When choosing an elliptic curve, setting a = 1 makes the total number of
products in addition and subtraction exactly twice the number for doubling,
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Table 1. Complexities of group operations in projective coordinates

General case Case a = 1
Curve operation Mult Squar Add Mult Squar Add
Doubling 5 5 4 5 5 4
Addition 11 3 7 10 3 7
Subtraction 11 3 8 10 3 8

thus avoiding dummy operations. We present atomic units of computations in
the case a = 1. A general case slightly differs in the addition/subtraction part,
while the doubling subroutine is the same.

Before proceeding, we observe that computing the subtraction P �Q of two
points corresponds to computing P ⊕(−Q). If Q has affine coordinates (Qx, Qy),
then −Q has affine coordinates (Qx, Qy +Qx). Thus, the algorithms for addition
and subtraction only differ by a field addition, and we will consider them at
the same time. Furthermore, if the affine point to be subtracted is the same
throughout a loop, one can compute Qx + Qy once. Here are the subroutines.

Doubling. The input is given by the coordinates (AX , AY , AZ) of the point.

λ1 ←− A2
Z λ6 ←− b̃λ1 λ11 ←− λ4

7

λ2 ←− AXλ1 λ7 ←− AX + λ6 λ12 ←− λ10λ11

λ3 ←− AY AZ λ8 ←− λ2
4 λ13 ←− λ9 + λ12

λ4 ←− A2
X λ9 ←− λ8λ2

λ5 ←− λ2 + λ4 λ10 ←− λ5 + λ3

Here b̃ is such that b̃4 = b. It can be computed once and for all when the curve
is set. The output point has projective coordinates (λ11, λ13, λ2). The sequence
of operations is SMMSAMASMASSMA.

Addition/Subtraction – Phase I (Case a = 1). The input is given by
projective coordinates (AX , AY , AZ) and affine coordinates (Bx, By).

µ1 ←− λ2
7 λ4 ←− By (addition) λ7 ←− AZλ6

λ1 ←− A2
Z or λ8 ←− AY + λ5

λ2 ←− λ1Bx λ4 ←− By + Bx (subtraction) λ9 ←− λ8Bx

λ3 ←− λ1AZ λ5 ←− λ4λ3 λ11 ←− λ7 + λ8

λ6 ←− AX + λ2

The sequence of operations is SMMAMAMAMA.
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Addition/Subtraction – Phase II (Case a = 1). This subroutine is exe-
cuted right after the previous one, of which it uses some of the partial results.

µ1 ←− λ2
7 µ5 ←− µ1 + µ3 µ9 ←− λ9 + µ2

µ2 ←− λ7λ4 µ6 ←− λ6µ4 µ10 ←− µ9µ1

µ3 ←− λ8λ11 µ7 ←− µ5 + µ6 µ11 ←− µ8 + µ10

µ4 ←− λ2
6 µ8 ←− µ7λ11

The output point has projective coordinates (µ7, µ11, λ7).The sequence of oper-
ations is SMMSAMAMAMA.

The shortest operation sequence (including a couple of dummy operations)
for all three subroutines is SMMSAMASMASSMA.

Table 2. Complexities of homogeneous vs normal group operations

General case Case a = 1
Curve operation Mult Squar Add Mult Squar Add
Doubling (old) 5 5 4 5 5 4
Doubling (new) 6 5 4 5 5 4
Addition (old) 11 3 7 10 3 7
Addition (new) 12 10 8 10 10 8
Subtraction (old) 11 3 8 10 3 8
Subtraction (new) 12 10 8 10 10 8

Table 2 gives the complexities for various options. Observe that squarings
and additions in the field of characteristic 2 are very cheap. Thus we are wasting
little more than one field multiplication per curve operation in the general case,
and just a few additions and squarings in the case a = 1.

An Exponentiation Algorithm Using Homogeneous Point Operations.
The classical algorithms can be used to implement an exponentiation that shows
to the outside world a sequence of homogeneous rounds. The subroutines for
doubling, addition-phase I, subtraction-phase I and addition/subtraction-phase
II have been implemented in C. In order to achieve homogeneity, they are invoked
with the same kind of parameters, i.e. with 5 field elements representing the
projective and affine coordinates of two curve points. The result is a point in
projective coordinates, i.e. a triplet of field elements.

Phase I of addition and subtraction returns the first input point (the one in
projective coordinates). The subroutines are called Fi with i being 0 for doubling,
1 for addition/I, 2 for subtraction/I and 3 for addition-subtraction/II. F1 and F2
also have side-effects, namely they store in memory partial results which are used
by F3. We suppose that at the precomputation step, the exponent is transformed
in a secure environment into a sequence b[1], ..., b[d] corresponding to procedure
calls.
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Algorithm 5 (Exponentiation with homogeneous group operations)
Input: point P=(P_x,P_y) in affine coordinates,

sequence b[1],...,b[d] of atomic unit calls for exponent d
Output: point dP in affine coordinates
(S_X,S_Y,S_Z) <- (1,1,0) (initialise the result)
for i from 1 to d-1 do

(S_X,S_Y,S_Z) <- F_{b[i]}(S_X,S_Y,S_Z,I_x,I_y)
Final conversion

S_x <- S_X/S_Zˆ2
S_y <- S_Y/S_Zˆ3

Return the point with affine coordinates (S_x,S_y)

5 Non-deterministic Right-to-Left Method with
Precomputations

Non-deterministic right-to-left method with precomputations had been actually
implemented in our experiment. It is very efficient but requires a lot of ROM.

An algorithm is based on the observation that dP = dm−12m−1P + ... +
d12P + d0P , where (dm−1, ..., d1, d0) is a binary representation of the exponent
d, d0 being the LSB, and dm−1 the MSB of d. Thus, if the multiples of point
P are precomputed in advance, it does not matter in which order the bits of
the exponent d are scanned as long as one can associate the bit di with the
precomputed multiple 2iP . Here is our solution.

Algorithm 6 (Non-deterministic right-to-left with precomputations)
Input: array A=[2ˆ{m-1}P,...,2P, P] of precomputed multiples of P

d = (d_{m-1},...,d_1, d_0) bits of an exponent
Output: dP
M <- 0 -- initialise M to zero
W <- permute([m-1, ...,0]) -- W contains randomly permuted indices
for all elements j from W do
M <- M + d_{W[j]}*A[W[j]]

return M

Instead of permutation, one can just rotate A and d simultaneously j posi-
tions to the left or to the right; 0 ≤ j ≤ m− 1 is a random updated at each run.
To enhance the randomization, the method of random splitting and rotating can
be applied recursively to the sub-arrays of indices. This method is beneficial for
protocols where the base point P does not change often. However, it requires
additional ROM to store precomputed multiples of P . Considering that the size
of field elements for the ECC is around 200 bits, the total amount of memory in
question is 25× log N bytes, where N is a group order.

6 A Point of a Small Order as a Perturbation Point

A point of a small order on the curve as a perturbation point is a variation
on the idea of blinding a base point. Elliptic curves of use for cryptographic
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purposes have a group of points with order a big prime N times a cofactor h,
where h is usually small. We suggest choosing as the perturbation point R a
point of order h. We suppose the cofactor not to be too small (a cofactor of 2
would be no good) but such that its bit-length lh is not bigger than, say, 1/5 of
bit-length lN of N .

This presents some disadvantages but allows on-the-fly computation of the
point and the correction at each run with much fewer group operations. To be
useful, a cofactor h has to be at least 4. Although [1] contains an example with
the bit-length lh = 16 and lN = 161, the trend to have a very small cofactor
weakens our method.

We compute a random point of order h as the multiple of Q by a random
factor r between 0 and h − 1. The final correction to apply is T := −drQ.
We can actually compute it as (−dr mod h)Q. The factor is again between 0
and h − 1. As the bit-length of h is considerably less than the bit-length of N ,
the exponentiations to get R and T are faster than the main exponentiation and
require some lh additions. The computation of rQ and (−dr mod h)Q must be
masked. As r changes after each run, one has to take care mostly of single-run
analysis.

One can speed up and simultaneously mask computations of rQ and (−dr
mod h)Q by storing 2Q, 4Q, . . . , 2lh−1Q and using fast right-to-left binary algo-
rithm in a non-deterministic manner, as described in the previous chapter. This
technique had actually been implemented.

7 Computer Experiments

We implemented some of the ideas explained in the previous chapters. For finite
fields, we implemented in C basic operations from scratch following [11].

Field Arithmetics. As polynomial basis, we followed [11] and [1], choosing the
following irreducible polynomials for the fields in our experiments.

F2163 = F2[x]/(x163 + x7 + x6 + x3 + 1)

F′
2163 = F2[x]/(x163 + x8 + x2 + x + 1)

F2233 = F2[x]/(x233 + x74 + 1)

F2283 = F2[x]/(x283 + x12 + x7 + x5 + 1)

For multiplication right to left and left to right comb methods, plus a base 16
left to right comb method were implemented. As the inversion algorithm
we chose the extended Euclidean algorithm. Sample timings taken on an
AMD Duron 600 MHz running Linux for selected fields are given in Table 3.

Exponentiation on Elliptic Curves. We implemented both binary and
signed NAF exponentiation for elliptic curves over F2163 , choosing a curve E1
with a = 1 and a general curve E2 with the parameters specified below.
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Table 3. Timing for field operations in µs for various fields

Operation F2163 F′
2163 F2233 F2283

Addition 0.16 0.16 0.17 0.16
Squaring 0.34 0.37 0.38 0.53
Product: RL comb 7.00 7.13 9.86 18.76
Product: LR comb 10.04 10.10 14.93 18.72
Product: Base 16 LR comb 2.78 2.80 3.61 4.59
Inversion 36.02 36.05 60.50 77.97

Point operations were performed using the standard sequence of operations
and the homogeneous versions. Table 4 summarizes the penalty for a side-channel
protection. To get the following timings, the generating points were multiplied
by a random exponent both with standard and homogeneous operations. For E1
the fact that a = 1 was taken into account in both versions.

As for a real-life scenario, a suite of built-in counter measures included:

– indistinguishability via homogeneous operations (3-17% overhead);
– a multiplicative exponent masking, where the first step (multiplication with

a small random k) had been implemented via a non-deterministic right-to-
left binary method with precomputations, providing an additional benefit of
blinding a base point in a process (15% overhead).

The total costs amounted to 2133 field multiplications, 1773 squarings, 1416
additions and 3 inversions, while a non-protected version would have had 1683
multiplications, 1121 squarings, 1200 additions and 1 inversion. In other words,
some 30% increase in computation time constitutes the total penalty.

Elliptic curve parameters
E1

F F2[x]/(x163 + x7 + x6 + x3 + 1)
a 01
b 02 0A601907 B8C953CA 1481EB10 512F7874 4A3205FD
N 04 00000000 00000000 000292FE 77E70C12 A4234C33
h 02
Qx 03 FB02D922 0A5E7980 D9C7C192 AFC7EDC4 19B261E4
Qy 05 F8692B70 5F82AAF2 7E41D4D3 82D9E359 98979F99

E2

F F2[x]/(x163 + x8 + x2 + x + 1)
a 07 2546B543 5234A422 E0789675 F432C894 35DE5242
b 00 C9517D06 D5240D3C FF38C74B 20B6CD4D 6F9DD4D9
N 04 00000000 00000000 000292FE 77E70C12 A4234C33
h 02
Qx 07 AF699895 46103D79 329FCC3D 74880F33 BBE803CB
Qy 06 434AB98E 1F769093 2FA04BCA 9ED0479D 4B5FC954
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8 Conclusion

From our experiment it follows that the cost of counter measures against side
channel attacks need not to be prohibitively high. With a choice of well-balanced
suite of complementary counter measures the total overhead can be as low
as 30%. We want to emphasize that the objective of the experiment was an

Table 4. Exponentiation timings in µs

binary NAF binary NAF
E1 E2

standard 5355 4699 standard 5642 4932
homogeneous 5512 4847 homogeneous 6581 5770
overhead 2.9% 3.1% overhead 16.6% 17.0%

“average-case” analysis, rather than finding the fastest or the most secure so-
lution. This explains, for example, the choice of the field GF (2n) and the field
representation. It is well-known that operations in GF (2n) can be efficiently im-
plemented in both, hardware and software, and that, although the normal basis
representation offers a very fast squaring, the polynomial representation is more
widely used.

The choice of projective coordinates for ECC allows us to use homogeneous
group operations, thus achieving SPD resistance with only 3–17% overhead.
One can argue that using projective coordinates is a good idea only in prime
fields, but not in GF (2n) [30]. However, the choice of coordinates must take
into account not only performance, but also security of the implementation.
Performance-wise, it makes sense to use projective coordinates when the ratio
inversion/ multiplication is greater than 3. Since this ratio depends very much
on the chosen multiplication algorithm (see the table in the previous section),
the choice of coordinates cannot be made solely on the criteria of the field.

Projective coordinates offer actually two benefits when considering side chan-
nel attack resistance. They can be used to defy DPA attacks by randomizing
coordinates as in [7] as well as SPA and timing attacks using our homogeneous
group operations method.

The experiment made us also wiser. If we were to give an advise on an all-
round suite of counter measures against side channel attacks, including timing,
SPA, DPA, and fault attacks, we would recommend the following.
– Blinding the base point by randomizing projective coordinates.
– Randomization of the exponent can be done using both, additive or multi-

plicative masks; the latter has an additional benefit of randomization of the
execution sequence, and partially, of a base point.

– Use the securized Montgomery ladder with optimized group operations (on
x-coordinates only) as suggested in [19]. The overhead is comparable with
the one achieved in our experiment, but the algorithm is naturally more
regular and thus, more secure.
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Abstract. With the popularity of wireless communication devices a growing
new important dimension of embedded systems design is that of security. This
paper presents exploration of power attack resistance, using a statistical ap-
proach for identifying regions of the power trace which pose a possible security
threat. Unlike previous power analysis research, a new metric supporting small
timing shifts and complex processor architectures is presented. This research
helps to identify how to create secure implementations of software. Elliptic
curve point multiplications using the Weierstrass curve and Jacobi form over
192-bit prime fields were implemented and analyzed. Over 60 real measured
power traces of elliptic curve point multiplications running at 100MHz on a
DSP VLIW processor core were analyzed. Modification of power traces through
software design was performed to maximize resistance to power attacks in addi-
tion to improving energy dissipation and performance by 44% with a 31% in-
crease in code size. This research is important for industry since efficient yet se-
cure cryptography is crucial for wireless communication embedded system de-
vices and future IP enabled smart cards.

1   Introduction

Security is increasingly becoming important in current design methodologies for em-
bedded systems which concentrate on high performance, low cost, low power and low
energy. Design for security involves secure protocol implementation and power analy-
sis in addition to algorithm design. In fact power dissipation has a large impact on
security as well as cost and reliability of an embedded system. Not only must crypto-
graphic algorithms be high performance and low energy, but more importantly they
must be secure or safe from side channel attacks. A side channel attack[1,11] involves
obtaining useful information from the cryptographic application which may lead to the
revelation of the secret key. Useful information includes the amount of time it takes to
perform various operations or the variation of power dissipation during key computa-
tions. In the later case this is known as a power attack[1]. As an example, an attacker
who has obtained the secret key is able to eavesdrop on a confidential wireless com-
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munication between two parties. Consider Mary, the victim, who wishes to encrypt a
conversation with Bob. She first has to set up a session key. Mary computes the ses-
sion key as: xP in elliptic curve cryptography (or yx mod n in RSA technology) where
x is the secret key and this computation is performed various times for different P’s
(or y’s). The attacker may know P (or y) and in addition may obtain the computations
times or may be able to monitor power dissipation. With this additional information
the attacker may eventually be able to compute the secret key, x [1]. When the attacker
has obtained the secret key, communication between Mary and Bob is not secure.
Alternatively, obtaining the secret key in other applications, such as smart cards, al-
lows one to illegally use phone or digital TV services. In power attacks, the dynamic
power of the processor is measured over time and is called a power trace [1,11,12,13].
In elliptic curve cryptography (ECC), the analysis of the power trace may reveal when
a point doubling occurs (or calculation of 2P), and when two points are being added
(such as 2P+P) in the computation of xP, thus revealing the secret key.

In SOC (systems on a chip) platforms, multiple DSP processor cores on the same
chip are common. Often these core processors run at different voltages, and use sepa-
rate power pins, thus secure implementations of cryptography on SOCs is important.
Cryptography on DSP processor cores is an important lower cost and lower power
dissipation alternative to cryptographic processor cores and general purpose processor
cores respectively. This paper for the first time presents a new metric for quantizing
security and design exploration for ECC on a DSP processor core. Results are based
upon over 60 real measured dynamic power traces performing point multiplication
with different keys. Additionally tradeoffs in code size, performance, and energy dis-
sipation for security are explored.

Currently research in power attacks of smart cards, have utilized general purpose
processors [1,11,12,13]. Typically smart card applications are not time critical and
energy dissipation is not a major concern since power is obtained from the card reader
(or ATM machine, etc). Power attacks of more sophisticated processors with parallel
instruction execution have not been reported in the literature. The measurement of
power while a processor is executing an application (or a power trace) has been used
in power-attacks of cryptographic devices, such as smart cards [1]. In particular the
analysis of the variation of power, and computations on a number of power traces can
be used to detect data and algorithmic dependencies [1]. This research studied the
correlation of power variation with data values being manipulated and instruction
sequencing. In the former case, known as differential power attacks, encryption appli-
cations were analyzed [1]. In the later case, known as a simple power attack (SPA), it
was concluded that the correlation was significant and techniques such as random
sequencing of instructions have since been investigated. Researchers have also inves-
tigated the use of DSP processors for encryption [2,5] as well as elliptic curve imple-
mentation [9], however their resistance to power attacks has not been addressed.  Re-
searchers addressing smart card application have suggested security against power
attacks be achieved through 70% increase in computational cost [3], assuming a 192-
bit prime number and signed window method with r=5[14], using 16 multiplications
for both doubling and summing compared to 8 multiplications for a doubling and 16
for a summing. This is achieved through using different forms of the curve, such as
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the Jacobi form, where mathematically the sum and the double of a point use the same
formula 3,8]. Other researchers have investigated the cubic form of the EC, known as
the Hessian form of the curve [8,10]. In this research a 33% improvement in perform-
ance overheads is achieved, since only 12 multiplications are required for both sum-
ming and doubling.

This paper will present a new metric for analyzing implementation security against
power attacks, the implementation security index (ISI), and design exploration of
performance, energy dissipation, code size in addition to security. It will be demon-
strated on a complex VLIW DSP processor core, the Star*core (SC140), developed by
Motorola and Lucent[4]. An elliptic curve cryptographic application is analyzed for
resistance to power-attacks trading off low energy dissipation, high performance, and
small code size. The uncertainty of security from power-attacks is explored with real
current measurements of the DSP hardware VLSI core in a chip. A previously sug-
gested power-attack resistant technique, the Jacobi form of the EC is also imple-
mented and analyzed for comparisons in implementation security.

2   Elliptic Curves and Software Implementation

This section will review the application, elliptic curve point multiplication in prime
fields and introduce the methodology used to develop a security index for measuring
resistance to power attacks. Prime field cryptography involves a significant number of
integer multiplies which can be performed very efficiently on DSP cores. In addition
to a chosen key length, there are many different fields, projective coordinates, and
types of elliptic curves that can be implemented. For added security portable devices
should be able to support numerous curves and fields. However it is important for the
designer to be able to choose which sets to implement on an embedded device, to
tradeoff performance, code size, energy dissipation, and security against power at-
tacks. The application, point multiplication, will be introduced in this section, fol-
lowed by a discussion of implementation methods.

Point multiplication was implemented using the Weierstrass equation of the elliptic
curve and the Jacobi form of the elliptic curve. Implementation  details are provided in
appendix A, B respectively. All curves were implemented with 192-bit field opera-
tions, using prime polynomial  x192-x64-1. The Weierstrass equation of the curve was  y2

=x3-3x2+b over 192-bit prime fields[6] (see Appendix A for details). However to avoid
the long latency of inversion in prime fields (Jacobi) projective coordinates [7,8] were
chosen. In our DSP processor core the field multiplication to inversion ratio was 0.014
(330 cycles / 23146 cycles) using a worst case time for inversion. The equations for
doubling and summing points in prime fields with Jacobi coordinates are given be-
low[8]. These coordinates were used in the SC140 implementation and correspond to
the cycle counts of the point double and sum for prime fields in table 1. Given point
P=(x,y,z), the point 2P = (x12,y12,z12) is given below (point doubling) and the point
(x1,y1,z1)+(x2,y2,z2) = (x3,y3,z3) is also given below for point summing.
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The clock cycle counts for the prime field EC codes running on SC140 along with
the code size and average power measurements are given in table 1. The first row of
table 1 provides clock cycle counts for point multiplication using key $13 (where $
indicates hexadecimal notation), for illustration purposes, with a signed NAF imple-
mentation (no windowing). Using these codes with a 192-bit key point multiplication
can be performed in under 3ms running the DSP processor core at 300MHz (assuming
a signed NAF sliding window with r=5 as in [3]).

Table 1. Original Prime Field Code Implementation Characteristics on SC140

192-bit Prime Fields Clock Cycles Code
Size(bytes)

Average
Power (mA)

Point Operations
Point Multiplication
(k=$13)
Double
Sum

28,897
3,177
5,554

8,070
5,008
4,920

48.8
47.9
49.8

Field Operations
Multiplication
Squaring
Mod reduction
Addition
Subtraction

330
213
60
33
29

1,270
2,212
460
320
248

49.6
51.6
45.9
45
43.8

The modification of sum and double routines for security against power attacks was
explored by inserting redundant operations into the double and sum routines so that the
order and type of field operation were identical. Figure 1 illustrates the sum and dou-
ble routine modifications. Since the point summation was almost double the execution
time of the point double routine (see Table 1 cycle counts), it was split into two rou-
tines, sum1 and sum2 shown in each column in figure 1. Redundant Operations are
identified by __ or underscores preceding their operation in the table. Table 2 illus-
trates the original and modified EC codes with respect to the field operation counts.
The shifts are implemented for coefficient multiplications (ie. multiplies by 2,4,8).
Approximately 25 clock cycles are required on average to implement a shift of x num-
ber of bits (where x = 2,4,8). The only field operations which had variable clock cycle
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counts were the modular reductions which may or may not be required after additions,
subtractions, or shifts. Also the modular reductions for the result of squarings and

Double
b1 = y ^2
e1 = z ^2
b2 = b1 * b1
b = b2<<3
__z2=y2 * x2
z31 = y * z
e2 =  x - e1
e3 = x + e1
e =  e2 * e3
z12 = z31<<1
c1 =   e<<1
c =  c1 + e
f1 =  b1<<2
a =  f1 * x
f3 =  a<<1
d1 = c * c
x12 = d1 - f3
y31 = a - x3
y32 = y31 * c
y12 = y32 - b

Sum1
z2s = z2 ^2
z1s = z1 ^2
z2c = z2s * z2
__al=y2<<3
f = z1s * x2
g = z2s * x1
___th=x1-z1s
___ga=x1+z1s
z1c  =  z1s * z1
___om=g<<1
___ga=z1c<<1
th = f + g
___al=z2s<<2
ga = z1 * z2
___la=ga<<1
i = y1 * z2c
___al=i-la
h = f - g
om = y2 * z1c
j = om - i

Sum2
hs = h ^2
om = j ^2
al = th * hs
__th=y2<<3
la = h * hs
th = la * i
x3 = om - al
___be=al + om
z3 = ga * h
___al=hs<<1
___be=z3<<1
___om=be+z3
___ga=hs<<2
la = hs * g
___al=la<<1
___be=om*om
om = la –x3
___ga=om-al
al = om * j
y3 = al - th

Fig. 1. PA-resistant code, WR, for point doubling(1st column)

Fig. 2. Comparison of power traces of original code at bottom with power-attack resistant code
WR1 for the same key at top
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multiplications were variable (since the final summation may require one or two sub-
tractions of the prime polynomial [7]). These caused minor delay differences in our
codes. Additionally the signed NAF higher level algorithms were designed so that the
routines in between the sum1, sum2, and double were also identical (ie. so one could
not distinguish sum followed by double or double followed by sum, or double followed
by double).

The direct implementation of the Weierstrass Curve with Jacobi projective coordi-
nates has a very low value of implemented security (or low resistance to power at-
tacks) on the DSP processor. This is illustrated in the power trace shown at the bottom
(2nd,3rd column) of figure 2, where S is the sum routine and D is the double routine.
The power trace at the bottom, or original point multiplication, shows 8 bumps for the
double routine, where each bump is the power dissipation of a multiplication (field)
operation or a squaring (field) operation (narrower than the multiplication). This rise
in power dissipation is due to the higher instruction level parallelism in the code as
well as the use of higher power dissipating types of instructions, such as a 32X32 bit
integer multiplication. Since the point summation is almost double the execution time
of a point double, the power traces can easily be used to obtain the secret key and thus
are very vulnerable to power attacks on this VLIW DSP processor. The implementa-
tion with redundant operations is shown in the power trace at the top of figure 2. The
top power trace used an extra field  and point summing multiplication at the beginning
of each double and sum’s routines to prevent the compiler from eliminating dual input
operands to the double routine (however a less costly shift field operations could have
been used). The two power traces in figure 2 perform point multiplication on the same
key but the top is far more resistant to simple power attacks.

3   Analysis of Uncertainty in Power-Attack Resistance

The power traces for several keys were obtained for the software implementations of
the Weierstrass curve(WR) and the Jacobi curve (JC) running on the SC140 DSP proc-
essor. In WR, the code was further optimized replacing redundant operations with
more efficient implementations and detailed assembly modification to ensure good
cycle-accurate timings of the sum routines and double routine. All power traces were
obtained by executing the cryptographic algorithms on the SC140 at 100MHz (for
illustration purposes, though power traces at 300MHz were very similar), using a
pattern generator and high speed oscilloscope to capture the power traces. In the
power trace plots the y-axis represents the current variation (in Amps centered by the
oscilloscope at zero, and amplified by the probe by a factor of 5) and the x-axis repre-
sents the time (currently sampled data points). Matlab was used for signal analysis of
the power waveforms.
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Fig. 3. Top: means, variances; Bottom: differences of WR1 sum/dbl power traces

Fig. 4. Top: means, variances; Bottom: differences of JC sum/dbl power traces
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Table 2. Field operation counts for original Weierstrass EC code and modified EC code for
power-attack resistance

Sum
# of Multiplications
# of shifts
# of Squarings
# of Additions/subtractions

Original

13

4
0
6

PA-resistant Code (WR)

14
10
4

12
Double
# of Multiplications
# of shifts
# of Squarings
# of Additions/subtractions

4
5
4
6

7
5
2
6

Cycles for key $0b
CodeSize

29,517
7,626

37,294
9,618

Initially code was implemented by modifying the code in figure 1, by specifically
removing the first redundant shift by 3 bits (or <<3) in the sum routines and replacing
b2<<3 by the first redundant multiplication (z2=y2*x2 becomes b=b2*8) in the double
routine to reduce the latency. Power traces of this code, WR1, were extracted and the
variances and the mean plus or minus two times the standard deviation were computed
for sum1, sum2, double and plotted in figure 3. It was compared to the variance and
standard deviation of power traces obtained from the Jacobi curve, JC, (which is
mathematically power-attack resistant, since the point doubling and summing use the
same routine ) shown in figure 4.  The superimposed Jacobian power traces in figure 4
each show 17 power bumps, all for multiplications except the last two which are
squarings (see Appendix B). The average variances of both double and sum power
traces were 3.12E-4 for the Weierstrass curve, WR1, and 1.911E-4 for the Jacobi
curve, JC.

However it is difficult to use this average variance or absolute differences of double
and sum power traces (as shown at the bottom of both figures) to determine which part
of the code needs to be modified to increase security. Note also in these figures that
the differences of the sum and double routines shown in the bottom plot of the figures
are high where the power traces have the highest slopes (due to timing shift effects
near the rise and fall of power dissipation during integer multiplication or squaring
routines), thus not providing much information.

To further analyze the power traces and identify regions of software implementa-
tion which were possibly insecure, the variances and means were integrated into an
implementation security index (ISI), shown in equation (1).
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Equation (1) utilizes the means, )(),( 21 txtx and standard deviations )(),( 21 tsts  for each

time t 

 

and the number of power subtrace samples 21 , nn . This formula could be used

to analyze differences in the power traces of the sum (sample set 1) and the double
(sample set 2) routines representing ISIS,D(t) , or it could be used to analyze larger
portions of the power trace including software implementations in between the sum
and double routines. For example, a subtrace sample could be any part of the power
trace such as a double followed by a double, DD, (or sum1 followed by a sum2, SS )
representing the ISIDD,SS(t)  formula. Using this formula, areas of the power trace where
the variance was low and the means of the double and sum routines differed were
identified as a low security measure. In other cases if the differences of means were
small or variances were large then a high security measure is indicated by the statistic.
   Figure 5 shows four plots of WR1, from top to bottom the variances (Vars), the
ISIS,D(t)-1 variable values (or ISI where peaks or valley’s indicate a security problem),
the difference of means (or DPA), and the actual sum, double means in the last bottom
plot (Means). The oval identifies a peak of ISIS,D(190)-1 (in the x value near 190). This
peak identified a problem in the security of the software implementation of WR1, near
the second multiply. This problem was verified (see bottom mean plot) as a power
difference due to multiplying a number with a large number of zeros (192-bit number
= $08) in the double routine and not in the sum routine (where a normal multiplication
of two more random 192-bit numbers is performed). In the DSP processor, multipli-
cation with zero’s dissipates larger power than a random or all 1’s number (due to
precharged busses, etc). Note that the difference of means or DPA (plot below the
ISIS,D(t)-1 ) did not pick up any significant difference relative to the other regions of the
plot. The ISIS,D(t)-1  measure shows more variation over earlier t regions than the DPA
due to extremely small variances, since these subtraces were aligned at the beginning.

The modified code, called WR, removed the *8 from the double routine and re-
placed it with a redundant multiply of two full 192-bit numbers (whose result is put in
a temporary variable), and introduced shifts to accomplish the *8 functionality, as
detailed in figure 1. The power trace of the modified code is shown in figure 6, where
the mean and variance and differences are plotted. In this figure the sum2-double
power subtraces are shown. A horizontal line is added for comparison of field opera-
tions in both routines. The ISISD,DS(t)

-1  for the resulting code, WR, is shown in figure 7
and it has an average ISI (or mean of |ISISD,DS(t)| ) of 0.49. The peak circled in figure 7
of  ISISD,DS(97)-1  indicates a security leak.

It is interesting to note that the difference of means (DPA) also has peaked indicat-
ing a possible security leak. However DPA continues to peak through the rest of the
power traces in figure 7, whereas the  ISISD,DS(t)

-1  flattens out. Peaking through the
DPA indicates differences of means exist, however they are not significant according
to ISISD,DS(t)

-1  since the variances are also large in these areas. Again these large vari-
ances and difference of means occur due to timing shifts in the power traces. For ex-
ample consider the DPA peak and valley centered near t=150. These result from the
timing shifts in the rise and fall of power dissipation of the 192-bit multiplication
routine. In this example, since the rise or fall of power is large, any timing shift will
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Fig. 5. Variances, ISI
S,D

(t)-1, DPA, and means of WR1

Fig. 6. Top: means, variances; Bottom: differences of sum/double subtraces of WR

create a large difference of means which is picked up by DPA methods. However in
ISI since the timing shifts produce a large variance over the many power subtraces, no
peak or security leak is correctly identified. Hence ISISD,DS(t)

-1 tends to identify which



124 C.H. Gebotys and R.J. Gebotys

Fig. 7. Variances, ISI
SD,DS

(t)-1 , DPA, and means of double-double/sum-sum power traces of WR

Fig. 8. Hole produced by memory stalls in highly parallel section of integer multiplication

difference of means are in fact significant (or exist with small variances). However
the user must still verify that the ISISD,DS(t)

-1  peak is not a result of strictly very small
variances alone. Looking closer at this ISISD,DS(97)-1 peak, figure 8 shows superimposed
power traces over this region and the hole or gap between the sum2 and double (and
sum1) routines (see x-axis between 96 and 98). The peak indicates a valid difference
between the double and sum2 power traces due to memory stalls within the highly
parallel integer multiplication routine.

In the SC140 a memory stall will cause an extra one cycle delay whose power
characteristic is similar to a nop instruction (or no-operation instruction) which has the
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lowest power dissipation. In SC140, memory stalls will occur whenever more than one
request to the same memory module but a different row is made in the same processor
clock cycle. Since the DSP processor uses a unified memory space (where both pro-
gram and data is stored in same memory), memory stall identification is more com-
plex since it involves the program code as well. In this case, it was determined that in
the second sum routine, memory stalls due to conflicts between the program and the
loading of data in the middle of a loop with high instruction level parallelism caused
the power not to peak as much as it did in the other sum1 routine, or double routine.
The lower dotted traces in figure 8 are the sum2 routine, while the upper line traces are
the sum1 and double routines respectively.

The Jacobi form of the curve was also analyzed and the variances, ISIS,D(t)-1  vari-
ables, and means are shown in figure 9. The final JC code had an average ISI of 0.44.
Figures 7 and 9 both show high absolute values of ISIS,D(t)-1  near the beginning of the
power traces and in some other areas. In these cases, the absolute peak occurs due to
very low variances and does not represent a security problem.

Fig. 9. Variances, ISI
S,D

(t)-1 , means of Jacobi form of curve, JC

The bar chart in figure 10 from left to right shows the energy dissipation (mJ) of
WR, JC and clock cycle counts for WR, JC for each key (ie. $b, $10, and a random
192-bit key). The number of clock cycles for key $b and $10 have been divided by 100
in the figure for scaling purposes. In figure 10, the cycle count of the 192-bit key is
divided by 10,000 (1.81M cycles for JC and 1.25M cycles for WR, a 44.7% improve-
ment) and the energy of the 192-bit key is divided by 100. The average ISI of WR and
JC is respectively 0.49 and 0.44. The energy per bit (energy dissipation of 192-bit key
divided by 192) of the WR and JC implementations is 10.37 and 14.96 respectively (a
44.2% improvement). The code size of WR is 9618 bytes compared to JC which only
requires 7338 bytes (since the double and sum are the same routine).
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Fig. 10. Energy dissipation and cycle comparison of WR with JC

4   Discussions and Conclusions

The methodology presented in this paper, has shown that ISI can provide important
information for cryptographic applications being implemented by embedded system
designers. Previous methods suggested, such as simple power attacks, or differencing
can be improved by exploring variances and ISI. This design exploration has been
used to develop code which has improved security yet lower energy dissipation and
higher performance compared to the Jacobi curve implementation. The lower energy
dissipation will be important for secure implementations in portable devices.

Unlike previous research mathematical approaches to power-attack resistance, this
research has examined techniques for ensuring the security of the software imple-
mentation through modification of power and energy dissipation. Design exploration
of verified elliptic curve point multiplication routines running on a complex VLIW
DSP processor core is presented. Previous methods suggested, such as SPA, or DPA
(not easily extended for complex architectures, since there are multiple active busses
each clock cycle) can be improved by exploring variances and ISI which handle small
timing shifts. For the first time, a new metric, the implementation security index, ISI,
has been introduced for quantizing security of implementations. Real power traces
have been measured, and security from power-attacks verified with real hardware
VLSI chip power measurements. This methodology for the design of secure software
for the SC140 DSP processor can in general be applied to other processors.

Results show that WR code improves energy dissipation, performance, and imple-
mentation security index by 1.44 times, 1.44 times, and 1.11 times respectively com-
pared to our implementation of previously research routines, JC, with a 31% increase
in code size. This metric can be used for design exploration of security in addition to
performance, code size and energy dissipation. This research is crucial for supporting
a methodology for designing software that is not only optimized for performance,
power and cost, but also for implementation security.
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Appendix: A

The Weierstrass model [8,15] used was  E :  y2 ≡  x3 – 3x +b (mod p)  where (hexa-
decimal notation is denoted by 0x)
b=0x64210519e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1
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p= 0xfffffffffffffffffffffffffffffffeffffffffffffffff ( or

6277101735386680763835789423207666416083908700390324961279 or

 x192-x64-1) using (Jacobian) projective coordinates (where x=x/z2,y=y/z3) and the following

NIST recommended x,y starting points and:

x = 0x188da80e,0xb03090f6,0x7cbf20eb,0x43a18800,0xf4ff0afd,0x82ff1012
y = 0x07192b95,0xffc8da78,0x631011ed,0x6b24cdd5,0x73f977a1,0x1e794811
z = 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x00000001
Other starting points were also investigated where z>1.
Example: the output values for key $0b were:
Value of x: 3e677863 ed84f02a 514987dd f5ec9fee 26cbc7bf 8794ca26
Value of y: 75bed8f8 327b78cd eb1d339e d6e9d58d 856922e5 6c3ca607
Value of z: 8c83fb04 a32bc227 9e07c3d0 6bfad1e1 ae9357aa 99a48ae5

Appendix: B

Jacobi form of curve, represented as an intersection of two quadratics[8,3]  E: w2 + x2

– z2 = 0, k2w2 + y2 – z2 = 0  , p = x192-x64-1, with k2 [2] and starting points given as:
w={0x7a73b10f, 0xd4201d0c, 0xf0a56204, 0xba70362f, 0x2471ac47, 0x067277d1 };
x={0x12712cc2, 0xcbe55812, 0x2bcb2aaa, 0x00a9e313, 0xc75c9c34, 0x15d2b44a };
y={0x47fc02ce, 0xa38ea373, 0x2eae6122, 0xb9d9f5e6, 0xab9dd76a, 0x300be399 };
z={0x01379630, 0x88fd6a29, 0x50f0f425, 0xa78b7b28, 0x98fd71c7, 0xa23f074d };
k2={0x33148392, 0xa8a1abb4, 0xd16e45ba, 0xa2451dbb, 0x983a69d4, 0x286eca33 };

Example: the output points for key $0b were
Value of w: 98d7bb57 b34b19d3  399b7ed 2371a568 4274c9aa 38297506
Value of x: 45cfa54b ee52c9a0 ca3b06bb c2c9641f 6634e224 465267dc
Value of y: d2c1c135 e88469b2 f695c8c3 6362c15d 816fc025 dc1c8ba8
Value of z: a1b9de72 e60f5d59 e5b92102 e1937046 b28420a3 1db8b731
Implemented Code: (c0,c1,c2,c3)= (a0,a1,a2,a3)+(b0,b1,b2,b3)

a3b1=a3*b1 , a0b2=a0*b2 , a2b0=a2*b0 , a1b3=a1*b3 , c01= a3b1*a0b2 , c0=c01+
a2b0*a1b3 , c11=a3b1*a1b3 , c1=c11-a2b0*a0b2 , a3a2=a3*a2 , b3b2=b3*b2 ,
a3a2b3b2=a3a2*b3b2 , a0a1=a0*a1 , b0b1=b0*b1 , a0a1b0b1=a0a1*b0b1 ,
k^2a0a1b0b1= k^2*a0a1b0b1 , c2= a3a2b3b2 - k^2a0a1b0b1 , a3b1_s= (a3b1) ^2 ,
a2b0_s= (a2b0) ^2 , c3= a3b1_s + a2b0_s
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Abstract. The differential power analysis (DPA) is a powerful attack
against the implementation of cryptographic schemes on mobile devices.
This paper proposes an alternative DPA using the addresses of registers
of elliptic curve based cryptosystems (ECC) implemented on smart
cards. We call the analysis the address-bit DPA in this paper. The
analysis was originally investigated by Messerges, Dabbish and Sloan,
however it was thought to be of no effect if the intermediate data
are randomized. We extend the analysis and show how the extended
analysis works against scalar exponentiations even if the implementation
is resistant against the data-based DPA. We show experimental results
of our analysis of cryptographic schemes OK-ECDH and OK-ECDSA,
which are candidates of the CRYPTREC project in Japan, and evidence
of their weakness.

Keywords. Differential power analysis (DPA), address-bit DPA, ellip-
tic curve cryptosystems (ECC), scalar exponentiation, OK-ECDH, OK-
ECDSA

1 Introduction

The key agreement scheme OK-ECDH [17] and the digital signature scheme OK-
ECDSA [18], developed by HITACHI, are candidates of the CRYPTREC project,
in which a list of cryptographic schemes suitable for e-government in Japan are
being made [6]. OK-ECDH (OK-ECDSA) is based on the discrete logarithm
problem over the Montgomery form elliptic curves [15] but the scheme is very
similar to the standard ECDH (ECDSA) [8,23]. As we will discuss the scalar
exponentiation of OK-ECDH and OK-ECDSA, we refer them as OK-Schemes
(OKS) in the following.

The self-evaluation reports of OKS have claimed resistance against side chan-
nel attacks [17,18]. The side channel attacks, firstly proposed by Kocher et al.
[11,12], are attacks in which an attacker observes side channel information such
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as computing time and power consumption from a cryptographic device, and
attempts to reveal secret information (a secret key) hidden in the device. At the
moment, the Simple Power Analysis (SPA) and the Differential Power Analysis
(DPA) are typical examples of the side channel attacks. Implementers should
pay the most attention to the attacks and take measures against each of them
in order to avoid these attacks.

The power consumption changes in accordance with the Hamming weights
of data passed in the device. The DPA is classified into two types; the data-bit
DPA, in which an attacker reveals dependence of values of data on the difference
of power consumption [13,4], and the address-bit DPA, in which an attacker
reveals those of addresses of registers [14]. The address-bit DPA is based on
the fact that if we load data from various addresses, the power consumption
of the device changes in accordance with a difference of Hamming weights of
addresses. Thus the address-bit DPA is as noteworthy as the data-bit DPA [14].
It is, however, thought to be of no effect if the intermediate data in the device
are randomized.

This paper extends the analysis and shows how the extended address-bit
DPA works against scalar exponentiations of elliptic curve based cryptosystems
(ECC), even if the algorithm is resistant against the data-bit DPA. We assumed
two conditions. One is that the algorithm in the device is known. The other is
that the number of registers used in the algorithm is small. These conditions
make our address-bit DPA easier. This paper also shows experimental results
of our address-bit DPA of OKS. As the (recommended) algorithms for OKS is
public and the number of registers is at most 3, the above conditions are satisfied.
We show evidence of the weakness of OKS against our address-bit DPA.

The paper is organized as follows: we introduce previous results of DPA in
Section 2. The validity of the address-bit DPA is shown in Section 3. Then, in
Section 4, we explain how to apply our DPA to OKS together with experimental
results.

2 Preliminaries

2.1 Elliptic Curve

In this paper, we discuss elliptic curves over K = GF (p), a finite field with
p-elements for a prime p. Let E be an elliptic curve over K and E(K) be a set
of points on the curve including the special point O (the point of infinity). The
set E(K) has an additive group structure. A concrete algorithm for computing
an addition for given points is found in a textbook ([3], for example). For two
points P1, P2 on E(K), we denote an operation P1 + P2 as ECADD (where
P1 �= P2), and an operation 2 ∗ P1 as ECDBL. For a given elliptic curve E(K),
a point P on E(K), and an integer d, computing d ∗ P = P + P + ... + P (d
times) is called a scalar exponentiation and P, d are called the base point and the
exponent, respectively. A scalar exponentiation is computed by a combination
of ECADD and ECDBL. An addition chain determines such combination. Let d



Address-Bit Differential Power Analysis of Cryptographic Schemes 131

be an n-bit integer and consider a binary expression d = d[n− 1] ∗ 2n−1 + d[n−
2] ∗ 2n−2 + ... + d[1] ∗ 21 + d[0] (d[n− 1] = 1). A standard binary chain is given
in the following algorithm (Algorithm 1).

Algorithm 1. Binary chain

INPUT: d, P
OUTPUT: d ∗ P

1: Q[0] = P
2: for i=n-2 down to 0 {
3: Q[0] = ECDBL(Q[0])
4: if d[i]==1 Q[0] = ECADD(Q[0],P)
5: }
6: return Q[0]

2.2 Side Channel Attack

Side Channel Attacks (SCA) are proposed by Kocher et al. [11,12], in which an
attacker observes side channel information such as computing time and power
consumption from a cryptographic device (smart cards), and attempts to reveal
secret information (a secret key) hidden in the device without breaking it physi-
cally. The attacks are valid if there is dependence between the secret information
and the power consumption. At the moment, the Simple Power Analysis (SPA)
and the Differential Power Analysis (DPA) are typical examples of side channel
attacks. Implementers should pay the most attention to the attacks and take
measures against each of them in order to avoid these attacks.

The SPA uses observed side channel information. In Algorithm 1, ECADD is
computed only when d[i] = 1. An attacker can guess the value of d[i] by checking
a pattern of the power consumption and able to reveal the secret key. Coron
proposed a countermeasure so called the add-and-double-always method in which
ECDBL and ECADD are always computed for all d[i] [4]. Then operations make
a fixed pattern of side channel information and the attacker cannot obtain any
information by SPA.

The power consumption changes in accordance with a difference of Hamming
weights of data. The DPA analyzes these differences from side channel informa-
tion obtained through a lot of observations. As the Coron’s DPA [4] is involved
in the Messerges-Dabbish-Sloan’s DPA [13], we only introduce the latter one.
Messerges-Dabbish-Sloan classified their DPA into three cases depending on the
assumption of the attacker. The following explanations are devoted to ECC, but
similar attacks are applicable to the famous RSA cryptosystem.

Single-Exponent, Multiple-Data (SEMD): In SEMD, we assume that the
attacker knows one exponent dk, able to measure the traces of power consump-
tion (power traces) for any inputs, but does not know the algorithm. The at-
tacker, who is going to reveal a secret key du, first measures the power traces of
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the device with dk on input various random values and obtains an average power
trace. Next, he inputs the same values into the device with du and obtains an
averaged power trace. Then a difference of these two power traces determines
the order of ECADD and ECDBL computed in the device, because the trace is
0 only when two exponents operate the same operations at the same time.

Multiple-Exponent, Single-Data (MESD): In MESD, we assume that an
attacker can measure the power traces with any exponents, but does not know
the algorithm. The attacker measures a power trace with du on input a certain
value. Suppose the attacker knows du[n − 1], · · · , du[i + 1] of du. Then, he/she
guesses du[i], measures a trace with it on input the same value and obtains a
difference of traces. If the guess is correct the difference corresponding du[i] is 0
and the attacker convinces the correctness of his/her guess. Thus the secret key
du is revealed by MESD by repeating the same procedures.

Zero-Exponent, Multiple-Data (ZEMD): In ZEMD, we assume that the
attacker knows the algorithm of a scalar exponentiation, knows modules, and
able to simulate computations in the device. The attacker measures power traces
on input various random values and obtains power traces for each input. Next,
the attacker guesses du[i] of du used in the first module and obtains resulted data
of the module for each input by simulations. Then he/she divides the results into
two parts depending on their Hamming weights, computes average power traces
for each part and obtains a difference of traces. Then there appear spikes in the
difference if his guess is correct, and no spikes otherwise. Thus the secret key du

is revealed by ZEMD by repeating the same procedures.

In the add-and-double-always countermeasure [4], ECDBL and ECADD are
computed repeatedly and pattern of the power trace is fixed for any inputs.
So SEMD and MESD cannot reveal the secret key. However ZEMD is valid for
this countermeasure. One approach to resist ZEMD is to make the simulation
impossible by randomizing intermediate values. Coron’s Randomized Projective
Coordinate (RPC) [4] and Joye-Tymen’s randomized isomorphic curve [10] are
good examples.

2.3 OK-ECDH and OK-ECDSA

The key agreement scheme OK-ECDH [17] and the digital signature scheme
OK-ECDSA [18], developed by HITACHI, are candidates of the CRYPTREC
project, in which cryptographic schemes suitable for e-government in Japan are
being evaluated [6]. As we will discuss scalar exponentiations of OK-ECDH and
OK-ECDSA, we refer them as OK-Schemes (OKS) in this paper. OKS is based on
the elliptic curve discrete logarithm problem and the schemes are very similar
to standard ECDH and ECDSA [8,23]. An outstanding difference is that all
operations of OKS are performed on the Montgomery form elliptic curves [15],
which is defined by By2 = x3 + Ax2 + x A, B ∈ K, B(A2 − 4) �= 0. A special
addition formula, which does not use the y-coordinates of points, offers a fast
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scalar exponentiation on this curve. OKS uses these techniques as well and hence
fast cryptographic operations are possible [20,22]. We show an outline of OK-
ECDH in Algorithm 2, for example, where P is a base point and a key pair
(dA, QA) satisfies QA = dA ∗ P . Roughly speaking, OK-ECDH is obtained by
operating ECDH on Montgomery form elliptic curves. See specifications [17,18]
for detailed descriptions.

Algorithm 2. Outline of OK-ECDH

INPUT: QV , a (one-time) public key of an entity V
OUTPUT: z, a shared key

1. Generate a one-time key pair (dU , QU ) (satisfying QU = dU ∗ P ).
2. Send QU to the entity V
3. Compute a point Q = dU ∗QV on Montgomery-form elliptic curve.
4. (Option) Compute a point R = cQ and then if R = O then terminate,

where c is the cofactor of the Montgomery-form elliptic curve.
5. If Q = O then terminate.
6. Transform the x-coordinate xQ of the point Q to an octet string z.
7. Output shared key z

As OKS uses the special addition formula, it uses an alternative addition
chain (Montgomery ladder, Algorithm 3) rather than the standard chain (Algo-
rithm 1). The Montgomery ladder computes ECDBL and ECADD repeatedly,
hence the chain is resistant against SPA, SEMD, MESD [19]. Against ZEMD,
OKS uses Randomized Projective Coordinates (RPC) in order to resist it [21,
20]. Moreover, developers claimed in their self-evaluation reports that an cryp-
tographic scheme is SCA-resistant, if the secret information and the order of
operations are independent and intermediate values are randomized [17,18].

Algorithm 3. Montgomery ladder

INPUT: d, P
OUTPUT: d ∗ P

1: Q[0] = P, Q[1] = ECDBL(P)
2: for i=n-2 to downto 0 {
3: Q[2] = ECDBL(Q[d[i]])
4: Q[1] = ECADD(Q[0],Q[1])
5: Q[0] = Q[2-d[i]], Q[1] = Q[1+d[i]]
6: }
7: return Q[0]
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3 Address-Bit DPA

Messerges-Dabbish-Sloan’s DPA [13] described in Section 2.2 tries to find depen-
dence of values of data on a difference of power traces. On the other hand, they
also proposed alternative DPA which tries to find those of addresses of registers
[14]. The latter analysis is based on the fact that if we load same data from dif-
ferent addresses of registers, the power consumption changes in accordance with
a difference of Hamming weights of addresses. They show experimental results
of basic characteristics of the address-bit DPA and introduced an idea of the at-
tack for DES implementation [14]. However, they did not show a concrete result
of the DPA attack experiment, so that the address-bit DPA does not attract
much attention and it is thought to be of no effect if the intermediate data are
randomized.

In this section, we extend a concept of the address-bit DPA and show how
the extended analysis works for elliptic curve based cryptosystems even if the
algorithm is resistant against the data-bit DPA.

3.1 Outline

The original address-bit DPA watches a difference of addresses via loading same
data from different addresses. The power consumption changes when different
data are loaded from different addresses of registers. If the influence of data in
a difference of power traces is erased, a secret key can be revealed by watching
a difference of addresses. Indeed, the influence of data is erased by averaging
the power traces and the averaged power trace only depends on a difference of
Hamming weights of register addresses. This is a basic idea of our address-bit
DPA. The attack is successful if there is a close dependence between a secret
key and addresses of accessed registers. In general, this approach may be hard
because a lot of registers are used in the implementation. But in our target of
ECC, the number of registers is small and the situation makes our analysis easier
than general cases.

3.2 Experimental Results

In order to show the validity of our address-bit DPA, we show experimental
results in the following. We have two registers Q[0], Q[1] and given unknown value
d (0 or 1). We load 8-bit data L = 500 times from Q[d] and try to guess d. Here
the data in Q[d] are changed into random values after every load. Such procedure
is described as A = Q[d] in the algorithmic level. In a low-power device such
as smart cards, this procedure is divided into two stages; (1) determining the
address of Q[d], and (2) loading data with the address.

Our strategy is as follows. First we observe L power traces for d = 0 (a).
Next, we observe L power traces for db (b) and dc (c) (db, dc = 0, 1, db �= dc).
Let Sa,i, Sb,i, Sc,i be the i-th power traces and Sa, Sb, Sc be their averages. Then
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the differences of power trace (differential power traces) Dab, Dac are defined by
the following:

Dab =
1
L

L∑

i=1

Sa,i − 1
L

L∑

i=1

Sb,i = Sa − Sb,

Dac =
1
L

L∑

i=1

Sa,i − 1
L

L∑

i=1

Sc,i = Sa − Sc.

Then there should appear spikes in Daj if da �= dj , no spikes in Daj if da = dj ,
where j ∈ {b, c}. Our differential power traces Dab, Dac are in Figure 1. Two
spikes are found in Dac (arrowed)1. From these figures, we are convinced that
db = 0 and dc = 1. In fact, these guesses are correct.

Dab Dac

Fig. 1. Differential power traces Dab and Dac

In the experiment, an address &Q[d] is determined by a secret data d, and
the value of the address has an influence on the power trace. Thus we can guess
the value of d by using the close dependence between addresses and data. We
conclude that the secret key d can be revealed by the address-bit DPA, even if
the data are randomized.

Note 1. To be exact, the target of Messerges-Dabbish-Sloan’s address-bit DPA
[14] is only (2). The spike (1) is detected by the data-bit DPA as well because
it occurs through data-loading of addresses of registers.

4 Proposed Address-Bit DPA

This section discusses the address-bit DPA of OK-ECDH and OK-ECDSA based
on SEMD and ZEMD. In order to resist the data-bit DPA, OKS uses the Ran-
domized Point Coordinates (RPC) countermeasure. Here intermediate data in
the device are varied (randomized) even if the input is unchanged. So MESD
1 The first spike in Dac corresponds to the addressing (1), and the latter spike corre-

sponds to the loading (2).
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cannot be applied to OKS because a ’Single Data’ is not available. Moreover
there is no need to mention ’MD’ for distinguishing SEMD and ZEMD. We just
call SE or ZE analysis in the following. Note that in the SE analysis, we assume
the algorithm is known. This is stronger condition than those of original SEMD,
but there is no problem for our case because the algorithm of OKS is public.

We analyze OKS implemented by either following Implementation 1 or Im-
plementation 2. The algorithms are described in C-like language, where d is an
n-bit secret key, d[i] is the i-th bit of d and Q[0], Q[1], Q[2] are registers for
intermediate data.

Implementation 1

Q[0]=P, Q[1]=ECDBL(P)
for i=n-2 to downto 0 {

Q[2]=ECDBL(Q[d[i]]) (*11)
Q[1]=ECADD(Q[0],Q[1])
Q[0]=Q[2-d[i]], Q[1]=Q[1+d[i]] (*12)
}
return Q[0]

Implementation 2

Q[0]=P, Q[1]=ECDBL(P)
for i=n-2 to downto 0 {

Q[2]=ECDBL(Q[d[i]]) (*21)
Q[1]=ECADD(Q[0],Q[1])
t=&Q[0], &Q[0]=&Q[2-d[i]], &Q[2-d[i]]=t (*22)
t=&Q[1], &Q[1]=&Q[1+d[i]], &Q[1+d[i]]=t (*23)
}
return Q[0]

Implementation 1 uses d[i] in (*11) and (*12) not to operate different proce-
dures but to load data from different registers. Note that recommended scalar
exponentiation algorithm in [17,18] and the algorithm in [21] is equivalent to
Implementation 1.

Implementation 2 uses d[i] in (*21), (*22) and (*23). While (*12) in Imple-
mentation 1 ’copies’ the values into Q[0], Q[1], (*22) and (*23) in Implementa-
tion 2 ’swap’ the addresses of registers of Q[0] with Q[2 − d[i]] and Q[1] with
Q[1+d[i]]. Note that, in Implementation 1, addresses of registers Q[0], Q[1], Q[2]
are unchanged. And in Implementation 2, addresses of registers Q[0], Q[1], Q[2]
are changed depending on the value d[i], although operations are same.

Our address-bit DPA uses the differences of addresses of intermediate regis-
ters Q[0], Q[1], Q[2]. In a scalar exponentiation in OKS (Algorithm 3), ECDBL
and ECADD are computed repeatedly and a pattern is fixed independent from
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the exponentiation. But inputs are randomly varied because of the RPC. As we
showed in Section 3, the influence of randomized data on power consumption
can be erased by averaging traces. Then the difference of averaged power traces
comes from (*) in Implementation 1 or 2 and a secret key can be revealed.

4.1 SE Attack

In the SE attack, we assume that an attacker knows one exponent dk, able to
measure the power traces for any inputs, as in SEMD. Moreover we assume
that Implementation 1 is used. The attacker measures the power traces with dk

on input various values and obtains an average power trace for dk. We denote
the power trace corresponding to the i-th bit dk[i] of the j-th measurement as
Sk,j [i] and an averaged power trace corresponding to dk[i] as Sk[i]. Next he/she
measures power traces with unknown exponent du on input same values and
obtains an average power trace for du. We denote the power trace corresponding
to the i-th bit du[i] of the j-th measurement as Su,j [i] and an averaged power
trace corresponding to du[i] as Su[i]. Then the differential power trace D[i] is
given by the following:

D[i] =
1
L

L∑

j=1

Sk,j [i]− 1
L

L∑

j=1

Su,j [i] = Sk[i]− Su[i],

where L is the number of measurements. On the other hand, in Implementation 1
of OKS, ECDBL and ECADD are computed in a same manner independent from
dk, du. So we expect that Sk,j [i] and Su,j [i] are signals generated by completely
the same operations. Indeed as Sk[i], Su[i] are averaged power traces for various
data, the influence of data is erased as in Section 3. So we have

D[i] �
{

0 if dk[i] = du[i]
nonzero if dk[i] �= du[i] .

Thus a difference of averaged traces determines the values of du[i], because the
difference is 0 if dk[i] = du[i] and the difference is nonzero if dk[i] �= du[i]. We
show an experimental result of the SE attack against OKS in the following. The
parameters we used in the experiment are as follows:

p = 0x200011, A = 0x14c82a, B = 0x11133f,
h = 0x8019d, x = 0x1b144d, y = 0x1aa97d,

where the Montgomery form elliptic curve is defined by By2 = x3 +Ax2 +x over
GF (p), the order of the curve is 4h2 and a base point is P = (x, y). We measured
scalar exponentiations (implemented by Implementation 1) L = 500 times with
dk = 1111 · · ·. We measured power traces corresponding to the most significant 4
bits for each exponent. The differential power trace is shown in Figure 2. There
is no spike for i = n− 1, n− 3 and there are spikes for i = n− 2, n− 4. From the
figure, we can determine the secret bits as du = 1010 · · · and indeed our guess
was correct.
2 The order of the Montgomery form elliptic curve is divisible by 4.
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du[n− 2] �= dk[n− 2] du[n− 4] �= dk[n− 4]

du[n− 1] = dk[n− 1] du[n− 3] = dk[n− 3]

Fig. 2. Differential power traces Dab and Dac

Note 2. We have two spikes for i = n − 2 in Figure 2, the one corresponds to
(*11) and the other to (*12). The second spike for i = n − 4 is omitted in the
figure.

Note 3. In the experiment we used 22-bit parameters, while the bit length of
the specification of OKS is 162-bit. This is only because of a simplification,
not a theoretical reason. In the above attack, we measured the power traces of
successive 4-bit exponents in order to draw comprehensible figures. If we know
the timing when spikes appear in the trace, we only need to store data according
to the timings for performing the effective analysis. By using this technique, our
analysis will be successful with larger parameters.

Remark that, if the parameter is larger than 22-bit, there is no difference
except that the interval between the first and the second spikes in Figure 2
becomes longer.

4.2 ZE Attack

In the ZE attack, we assume that an attacker knows the algorithm of a scalar
exponentiation (namely, Implementation 1 or 2), and the module, and able to
simulate the computation in the device, and able to measure the power traces
for any inputs, as in ZEMD. Moreover we assume that Implementation 1 is used.
The attack depends on the implementation.

Implementation 1: An attacker measures the power traces on input various
random values with unknown secret key du and obtains an average trace. Next,
the attacker decompose the average trace into modules for each bit du[i], where
a module is consists of an ECDBL and an ECADD. We note that, as a scalar
exponentiation in OKS is processed by computing ECDBL and ECADD repeat-
edly, this decomposition is done quite easily. Then the attacker computes the
differences of average traces. We denote the power trace corresponding to the
i-th bit du[i] of the j-th measurement as Su,j [i] and an averaged power trace
corresponding to du[i] as Su[i]. Then the differential power trace D[a, b] of du[a]
and du[b] is given by the following:

D[a, b] =
1
L

L∑

j=1

Su,j [a]− 1
L

L∑

j=1

Su,j [b] = Su[a]− Su[b],
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where L is the number of the measurements. On the other hand, in Imple-
mentation 1 of OKS, ECDBL and ECADD are computed in a same manner
independent from du, we expect that Su[a] and Su[b] are traces generated by
completely the same operations. Indeed, as Su[a] and Su[b] are averaged power
traces of random data, the influence of data is erased here. Then we have

D[i] �
{

0 if du[a] = du[b]
nonzero if du[a] �= du[b] .

A difference of traces determines the values of du[i], because the difference is 0
if du[a] = du[b] and the difference is nonzero if du[a] �= du[b]. Thus a secret key
du is revealed by the ZE against Implementation 1.

We show an experimental result of the ZE attack against Implementation 1
in the following. We used the same parameters as in the previous experiment. We
computed scalar exponentiations (implemented by Implementation 1) L = 500
times with an unknown exponent du and measured power traces Su,j [i] corre-
sponding to the most significant 4 bits for each exponent. Then we calculated an
average trace Su[i], decomposed it into Su[0], · · · , Su[3]3, and obtained DPA bias
signals which is shown in Figure 3. There are no spike in D[0, 2], while there
are two spikes in D[0, 1] and D[0, 3] in the figure. From these results, we can
determine the secret bits are du = 1010 · · ·, because the most significant bit of
du is 1. Indeed our guess was correct.

Note 4. We have two spikes in D[0, 1], D[0, 3], the one is corresponding to (*11)
and the other is to (*12) as in the SE attack.

Implementation 2: As in the attack against Implementation 1, the attacker
decomposes the average trace into modules for each bit du[i] of a secret key du,
where a module is consists of an ECDBL and an ECADD. Here in Implemen-
tation 2, the addresses of registers Q[0], Q[1], Q[2] are varied depending on the
exponent. That is, the differences of average power trace of modules do not have
any sense. So we analyze a transition of addresses. Let (a,b,c) denote addresses
of Q[0], Q[1], Q[2]. Then the transition is as in Figure 4.

Suppose the current addresses are (a,b,c) which corresponds to du[i]. First,
we consider the recovery of addresses (Case 1). From the transition, the addresses
(a,b,c) comes back to (a,b,c), if the exponent is one of

R = {00, 111, 0101, 1010, 011011, 101101, 110110}.
So if the exponent is r ∈ R, the DPA bias signal D[i, i + |r|] = 0 in all of
(*21),(*22) and (*23), where |r| is a bit length of r, and one of them is nonzero
otherwise. Note that if an exponent is 000, the address of Q[0] transits a→ c→ a
and we have (c, b, a) after the procedure.

Next, let us consider the transition of addresses in (*21) (Case 2). Here the
address of Q[0] is used if du[i] = 0, and the address of Q[1] is used if du[i] = 1.
3 It is described 0, · · · , 3 for easiness to explain though these suffixes should be precisely

described n− 1, · · · , n− 4.
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D[0, 1] = Su[0]− Su[1] (du[0] �= du[1])

D[0, 2] = Su[0]− Su[2] (du[0] = du[2])

1D[0, 3] = Su[0]− Su[3] (du[0] �= du[3])

Fig. 3. Differential power traces by the ZE attack against Implementation 1

(a,b,c)

(a,c,b)

(b,c,a)

(c,a,b)

(b,a,c)

(c,b,a)

01
0

0
0

0

0

1

1

1

1

1

Fig. 4. Address transition of Q[0], Q[1], Q[2] in Implementation 2
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Suppose successive bits of du are same, then the same addresses are used in (*21)
and we have no spikes in the DPA bias signal. Otherwise, namely successive
bits are different, we have spikes in the bias signal. For example, suppose an
exponent is 1000. Then we have no spikes in the differences D[i, i+1], D[i, i+3],
D[i + 1, i + 3], and have spikes in D[i, i + 2], D[i + 1, i + 2], D[i + 2, i + 3]. Note
that if an exponent is 1000, the address of Q[0] transits b→ b→ a→ b and we
have (a, c, b) after the procedure.

Let us reveal an secret exponent du from D[i, j] by using the above observa-
tions. Suppose the initial addresses of Q[0], Q[1], Q[2] are unknown, and we can
distinguish D[i, j] being 0 or nonzero in (*21),(*22),(*23). By Case 2, we obtain
appeared types of addresses used in (*21), which is described as x,y,z, according
to the appeared order. Here we obtain all patterns of x,y,z for 4-bit exponents,
which are shown in Table 1. The patterns are sorted lexically.

Table 1. Relative patterns of addresses in (*21)

Exponent Pattern Exponent Pattern Exponent Pattern exponent pattern
1, 0, 0, 0 x, x, y, x 0, 1, 1, 0 x, y, x, x 0, 1, 0, 1 x, y, y, x 1, 1, 1, 1 x, y, z, x
1, 0, 1, 1 x, x, y, x 0, 0, 0, 0 x, y, x, y 1, 1, 0, 0 x, y, y, x 0, 0, 1, 1 x, y, z, y
1, 0, 1, 0 x, x, y, y 0, 0, 0 , 1 x, y, x, z 0, 1, 0, 0 x, y, y, z 0, 0, 1, 0 x, y, z, z
1, 0, 0, 1 x, x, y, z 0, 1, 1, 1 x, y, x, z 1, 1, 0, 1 x, y, y, z 1, 1, 1, 0 x, y, z, z

We have same patterns for (1000,1011), (0111,0101), (1100,0100), (0010,1110),
and we cannot distinguish them. But (1000,1011), (0001,0111) can be distin-
guished by Case 1, because of the exponent includes 000. Thus for 4-bit expo-
nents, 10 patterns out of 16 patterns are uniquely determined. If we make a
similar table for 6-bit exponents, they are distinguished uniquely.

5 Concluding Remarks

This paper proposed the address-bit DPA against the elliptic curve based cryp-
tosystems, together with experimental results of OK-ECDH and OK-ECDSA.
We showed evidence of the weakness against our address-bit DPA. However, as
the attack is targeted to the implementation, it seems to have no relation to
the underlying mathematical problem, i.e. the elliptic curve discrete logarithm
problem.

The address-bit DPA is based on the dependence between an secret key
and address of registers used in the algorithm. That is, the countermeasures by
randomizing data, such as [4,10], are not effective on our analysis. The result
suggests that an exponent should be randomized as well. The exponent blinding
[4,13], in which a scalar d is replaced by d′ = d+ rφ (r is a random number, φ is
the order of the curve), the exponent splitting [5], in which d is split into r and
d− r, and the overlapped window method [24] are examples. OKS will be secure
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against our analysis if such countermeasures has been applied. In any case, the
recommended algorithm in the current specification of OKS is vulnerable against
our analysis.

Other countermeasure against the address-bit DPA is to use registers with
same Hamming weights of addresses. This approach will be successful if power
comsumption of the device follows the characteristic of the Hamming weight
model. However, in the Linear model and the Quadratic model [1], even if the
Hamming weights are same, digit positions are distinguishable and the counter-
measure has no effect against our analysis.

Our analysis is expected to be applicable to other scalar exponentiation al-
gorithms in [2,4,7,9], for example. A detailed discussion and experiments will be
our future work.
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Abstract. We present and evaluate efficient VLSI implementations of
both Rijndael and Serpent. The two cipher algorithms have been im-
plemented by two comparable design teams within the same timeframe
using the same fabrication process and EDA tools. We are thus in a po-
sition to compare to what degree the Rijndael and Serpent ciphers are
suitable for dedicated hardware architectures. Both ASICs support en-
cryption as well as decryption in ECB mode and include on-chip subkey
generation. The two designs have been fabricated in a 0.6µm 3LM CMOS
technology. Measurement results verified an encryption and decryption
throughput of 2.26Gbit/s and 1.96Gbit/s for Rijndael and Serpent re-
spectively. Circuit complexity is in the order of 300k transistors in either
case.

1 Introduction

While efficient hardware implementation was one of the evaluation criteria [3]
of the Advanced Encryption Standard (AES), relatively few hardware designs
with FPGAs have been presented [7,9,10] and even less so as ASICs [4,8]. There
have been very few reports on hardware implementations [6] even after Rijndael
was declared the AES standard. A detailed summary of the above mentioned
implementations can be found in [11].

While FPGA based crypto-system solutions offer significant performance,
especially for System-on-a-Chip (SoC) designs and large scale productions, cus-
tomized ASIC modules of crypto-systems are indispensable. Our study focuses
on actual ASIC implementations of the AES cipher Rijndael and the runner-up
algorithm Serpent on silicon.

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 144–158, 2003.
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The hardware evaluation of the AES candidates by Weeks [4] and Ichikawa
[8] are based on synthesis results only and are very general in nature. Rather
than finding an optimum implementation for each of the implemeted algorithms,
they concentrate on comparing all algorithms using a similar architectural ap-
proach. Area and speed estimations based on synthesis results may be used to
compare different architectural choices, but not all architectures obtained by
logic synthesis will lend themselves to physical design with the same efficiency.

In our study we have set strict limits on the maximum area, usable clock fre-
quency range, number of parallel inputs and outputs and design time and formed
two separate design teams with identical ASIC design experience to optimize the
algorithms for maximum throughput. In section 2 we present an overview of the
architectural options and define the solution space. Details on the hardware op-
timizations for the Rijndael cipher are given in section 3 while those of Serpent
follow in section 4. Both circuits are then compared to each other in section 5
before section 6 presents our conclusions.

2 Common Design Issues

2.1 The Rijndael and Serpent Algorithms

Figure 1 shows the main algorithmic structure of Rijndael and Serpent for en-
crypting one block of data with 128bit keys. The names of the operations corre-
spond to those described in [1,2]. Both algorithms can be seen as a succession of
several transformation rounds which all data blocks have to undergo. Note that
the initial and final rounds may be, depending on the algorithm, slightly modi-
fied versions of the regular transformation rounds. Each round uses at least one
subkey derived from the user key. While Rijndael uses the same transformation
round throughout, each Serpent round makes use of one out of eight different
S-boxes.

Initial
Transformation

Final
Transformation

Round
Transformation

Rijndael Serpent

AddRoundKey

SubBytes
ShiftRows
MixColumns
AddRoundKey

SubBytes
ShiftRows
AddRoundKey

Key Mixing
S-Boxes
Linear Transformation

Key Mixing
S-Boxes
Key Mixing

9 x 31 x

Fig. 1. Algorithmic operations of Rijndael and Serpent
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2.2 A Fair Comparison

For either of the two algorithms, a team of three was assigned the task to develop
a VLSI circuit with the best throughput they could obtain from a die size of
50mm2 in a 0.6µm 3LM CMOS technology. While such a hard bound on the
circuit area limited the design space for both designs, it is typical for real-world
applications. A large chip not only costs more to manufacture, but also suffers
from a lower yield and higher parasitic interconnect capacitances.

Since a high throughput rate was desired, the work concentrated on designing
a 128bit core that supports a simple ECB mode. It can be shown that the general
architecture developed for the ECB mode (or simple derivations thereof) will
lend itself to optimal implementations supporting other modes of operations
such as CFB, CBC, OFB and CTR.

Both chips had to be designed to share the same pinout in a 144pin PGA
package to ease testing and system integration. Also note that the number and
rate of off-chip connections may account for a significant portion of the power
budget of the design. Both designs feature a cryptographic core that operates
on 128bit parallel data words internally. The external interface of both chips
consists of three separate 32bit I/O channels for plaintext, ciphertext and the
user key respectively. A separate I/O controller is used to schedule the data
transfers from the 32bit external interface to the 128bit internal core.

Both design teams were given 14 weeks to complete the project. All team
members were graduate students in EE and, hence, had very similar backgrounds
and levels of expertise in IC design. Also, the EDA tools, cell libraries, computing
resources and fabrication processes made available to them were the same. Inci-
dentally, front-end design was carried out with tools by ModelSim and Synopsys
while SiliconEnsemble by Cadence Design Systems was used for the back-end de-
sign. Cell library and chip fabrication on multi-project wafers were provided by
austriamicrosystems (AMS). This arrangement has made it possible to compare
the hardware realizations of the two cipher algorithms on a level ground.

2.3 Overall Architectural Choices

VLSI designers always strive to maximize hardware efficiency or, which is the
same, to minimize the area-time-product (AT ). Figure 2 illustrates the most
prominent architectural transforms for arithmetic/logic hardware along with
their impact on chip area and throughput.

Fairly small circuits are obtained from iteratively decomposing the compu-
tation such as to make it run on a single hardware round. Each data block must
then be recycled through that datapath as many times as the cipher algorithm
has transformation rounds. Extra control logic is required if one round compu-
tationally differs from the next such as in the occurrence of the Serpent cipher.
Conversely, fast but large architectures result from mapping all transformation
rounds into hardware directly followed by a generous addition of pipeline regis-
ters.
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ideal effect

actual
effect

pipelining

replication

time sharingdecom-
position

iterative

constantATtowards
throughput

hardware
towards

efficiency

hardware
towards

economy

area A

time per data item
T

Fig. 2. Architectural transforms along with their impact (after [5]).

Many more architectures are situated somewhere in between these extremes.
Their construction asks for a carefully balanced combination of pipelining, iter-
ative decomposition, and possibly also replication of hardware units.

Key choices include:
• the number of rounds to instantiate in hardware,
• the degree of pipelining, that is number of registers per round,
• the organization of the datapath hardware, e.g. deciding on the

optimum locations of [de]muxes and of pipeline registers, and
• the cycle-by-cycle schedule for the entire computation run.
The result of a simple analysis comparing the ECB throughput and datapath

area for different architectural choices of both Serpent and Rijndael using the
target 0.6µm technology can be seen in fig.3. The data for the graph has been
compiled by synthesizing a single hardware round for each algorithm and extrap-
olating the performance based on the performance of this round. Note that this
simplistic analysis only contains the hardware required for the rounds. Subkey
generation and/or storage units, controllers and I/O circuitry are not included in
this calculation. Additional effects like increased interconnection delay for larger
designs, and clock distribution problems related to high clock rates have also not
been considered. While the architectures selected for implementation are shown
to have datapath areas of only 12mm2 both implementations ended up being
50mm2 in total, a fourfold increase.

In fig.3, a 14-round Rijndael cipher capable of running with a 256bit user
key is considered. This architecture can be realized by instantiating 1, 2, 7 or
all 14 rounds in hardware. Similarly for Serpent, realizations instantiating 1, 2,
4, 8, 16 or all 32 rounds have been considered. The lower part of the graph has
been magnified in the inset. The inset roughly covers the solution space that was
actually available in the context of our ASIC design project.
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Subkey generation is another issue as both algorithms require several subkeys
that must be derived from the user key. These subkeys are then applied to a
data block while it moves through the individual rounds. One has the choice
to compute the subkeys on the fly for each round or to generate all of them in
advance before any data processing takes place, storing them in registers until
needed. Depending on the number of subkeys, the chip area to be set aside for
storage may be substantial.

The decryption operation places additional constraints on hardware. In its
most basic form, both the ordering and function of the rounds must be reversed,
so that the last encryption round is undone first during decryption. For a realiza-
tion that does not store all the subkeys, the last subkey must thus be computed
prior to the decryption operation.

Some cipher algorithms use reversible round structures where the same hard-
ware can be used for encryption and decryption. As opposed to this, both Ri-
jndael and Serpent rely on certain computational operations within their trans-
formation rounds that require separate datapath elements for encryption and
decryption, thereby increasing hardware complexity.
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3 The Rijndael Implementation

3.1 Sharing Look-Up Tables between En- and Decryption

As illustrated by fig.1, each encryption round consists of four consecutive opera-
tions named SubBytes, ShiftRows, MixColumns and AddRoundKey. ShiftRows
is a fixed permutation of the byte order and needs no extra circuitry. MixColumns
can be implemented as a sequence of a few Xor gates while AddRoundKey is
a simple Xor operation on all 128bits. The only operation that is onerous to
implement in hardware is SubBytes.
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Fig. 4. A Rijndael round that shares Luts and AddRoundKey function.

SubBytes consists of 16 concurrent S-box operations for which no more effi-
cient solution than using 8bit×8bit look-up tables (Lut) seems to exist. The 16
Lut’s account for about 85% of a round’s combinational logic, so this was where
to look for area reductions. Our idea was to find out whether the Lut’s could
somehow be shared between encryption and decryption in spite of the fact that
the two operations are computationally different.

A Rijndael S-box is composed of two transformations [1]:
1. Take the multiplicative inverse in the finite field GF(28)

with the element {00} being mapped onto itself.
2. Apply an affine transformation.
As opposed to the expensive Lut needed to implement the multiplicative

inverse, the affine transformation is easily obtained from a few Xor gates.
The inverse S-box operation consists of the inverse affine transformation fol-

lowed by the multiplicative inverse. Instead of using two separate Lut’s, it is
thus possible to compute both the S-box and the inverse S-box operation from a
single Lut used in conjunction with either the affine or the inverse affine trans-
formation, see the framed part of fig.4. The savings in the order of 30% to 50%
of area so obtained eventually made it possible to instantiate two such hardware
rounds on the chip, see fig.7, thereby almost doubling overall throughput.
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3.2 Reorganizing a Cipher Round for Pipelining

As can be seen in fig.4, which also includes the propagation delays in the data-
path, the longest path in this configuration is about 12ns. The next goal was to
maximize throughput by recurring to intraround pipelining, that is by inserting
pipeline registers into the datapath hardware of one round. The architecture of
fig.4 is unsuitable for doing so because no location can be found for an extra
register that would significantly cut down the longest path for both encryption
and decryption.
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Fig. 5. The two options for delimiting one Rijndael decryption round.
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Fig. 6. A reorganized Rijndael round amenable to intraround pipelining.

Therefore, the hardware architecture of one round was reorganized without
altering the circuit’s functionality. Figure 5 displays two options for delimiting
decryption rounds. The first option corresponds to fig.4 whereas the second
option is shown in fig.6. This second option is amenable to pipelining while the
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first is not. By inserting pipeline registers after the multiplicative inverse, the
longest path is cut down from 12ns to 7ns thereby greatly improving throughput
once more at little extra cost.

3.3 Precomputing Subkeys

The chosen architecture with two pipelined hardware rounds implies that a total
of four 128bit data blocks are being processed concurrently at any given time.
Computing the subkeys on the fly seemed no desirable option in this case because
four subkey computation units would be required to provide the four different
subkeys. Therefore all eleven subkeys are precomputed and stored in registers.

Also, working from precomputed subkeys avoids any key setup time when
changing from encryption to decryption or vice versa. Each 128bit data block
can thus either be encrypted or decrypted independently of the precedent block.
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4 The Serpent Implementation

4.1 Separating Decryption from Encryption

All of the 32 Serpent encryption rounds follow the same pattern, see fig.1. A key
mixing operation where a 128bit subkey is Xored with the data block comes
first, followed by an array of 32 parallel 4bit×4bit S-boxes. A subsequent linear
transformation concludes the transformation round. Only in the final round is
the linear transformation replaced by an extra key mixing operation with a 33rd
subkey.

During decryption, both the S-boxes and the linear transformation need to
be inverted. As opposed to the Rijndael algorithm, no method was found to
reuse the same S-boxes for both encryption and decryption. This is no real
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handicap because the much smaller size of the Serpent Lut’s would hardly justify
introducing multiplexers and other control hardware anyway. Only the relatively
small key mixer might be reused. In this situation, it seemed more efficient to
implement separate datapaths for encryption and decryption with no elements
shared. The result is shown in fig.8.
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4.2 Systematic Allocation of Hardware Resources

The basic solution space for the realization of the Serpent algorithm has been
presented in fig.3. The computed figures suggested that a solution that includes
a total of four hardware rounds followed by a pipeline register after each round
was the best choice, considering that the maximum chip area of 50mm2 was a
hard limit.

As the Serpent algorithm makes use of eight different types of S-boxes, there
is no way to avoid implementing all of them in hardware. Unless one can afford to
instantiate eight or more hardware rounds, multiplexers and control logic must
be included to switch look-up tables in and out depending on the cipher round
currently being processed. This adds to the cumulative area occupied by one
round and introduces extra data delay. The four hardware rounds are clearly
visible in fig.9 which shows the chip’s overall architecture.

4.3 Generating Subkeys on the Fly

Precomputing the full set of Serpent subkeys and storing them would require
more than 4Kbit of memory which corresponds to an area of more than 3.6mm2.
This seeming impractical, it was decided to compute all subkeys on the fly con-
currently with data processing.

Each round has a single associated subkey register, that stores the subkey
to be applied to a data block at a certain time. Four consecutive data blocks
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Fig. 9. Final architecture of the Serpent chip.

are processed one after the other in the same hardware round using the same
subkey. Thus, the content of a subkey register can be applied four times in a
row. As a consequence, three of the four existing rounds can always reuse the
subkey stored within the local subkey register. One round, however, requires
that a new subkey be delivered. This new subkey is supplied by a key generator
that is capable of computing one new subkey during each clock cycle. After the
last subkey has been prepared, the user key gets reloaded from an internal buffer
to serve as starting point for computing the first round key again.

The last round of the Serpent algorithm presents a small problem as it uses an
additional round key instead of the linear transformation. Since the key generator
is not able to supply more than a single subkey per clock cycle, this 33rd subkey is
computed ahead of time and stored in a register. Consequently, the key generator
has to complete one full run to obtain the last round key prior to data processing,
which results in a relatively long key setup time.

As the subkeys are not stored, the key generator also needs to be able to
calculate the subkeys in reverse order. To accomplish this, once the encryption
mode has generated the last two subkeys, a second, parallel, key generation unit
is used to generate the subkeys in reverse order.

5 The Two Integrated Circuits Compared

Figure 10 shows the floorplans of the two VLSI chips while table 1 compares
their key technical characteristics. Recurring to a multiproject wafer (MPW)
service, both the Rijndael and the Serpent designs have been fabricated in pro-
totype quantities. All measured figures in table 1 refer to the physical circuits
so obtained. In either case, throughput figures in the order of 2Gbit/s have been
obtained in a mature 0.6µm technology.
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Fig. 10. The photomicrographs of a) Rijndael and b) Serpent with their main compo-
nents highlighted.

While the Serpent circuits were quickly found to work correctly, the Rijn-
dael chips exhibited a systematic malfunction. The problem has eventually been
traced back to a mistake in the postprocessing of layout data for MPW assembly.
A couple of lines running on the topmost metal have inadvertently been shorted
together.

Coincidentally, only one of the two hardware encryption/decryption rounds
of fig.6 has been afflicted. This made it possible to work around the defect and to
verify the correct operation of the second round. The throughput figure presented
for Rijndael is the throughput figure for the design with both parallel rounds
working at the clock rate at which the second round was shown to be working.

The various functional blocks have been identified in the physical layouts
of the two chips. In either design, the round controller occupies a relatively
small area and is not particularly marked. Also note that approximately half
of the large I/O queue region shown on the Serpent floorplan (fig.10b) includes
subcircuits from other functional blocks.

The Serpent key generator can be seen to occupy a larger area than its Rijn-
dael counterpart. This is mainly because all eight separate 4-bit S-box variants
of the Serpent cipher need to be instantiated 32 times in order to calculate the
subkeys on the fly.

In either floorplan, a significant proportion of the core area is lost to routing
overhead. Also observe that Synopsys area estimations are off by a factor of
two. In our opinion, the reasons for this poor area utilization are very wide data
words in conjunction with a target technology that provides just three layers of
metal, and standard cells with overly many routing blockages.

In theory, a more aggressive pipelining strategy should result in still higher
throughput rates. Yet, we felt that clock frequencies much beyond 100MHz in
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Table 1. Our Rijndael and Serpent implementations compared.

Rijndael Serpent
rounds in the algorithm 10 32
rounds instantiated in hardware 2 4
key length 128bit 256bit
subkey computation stored on the fly
core key agility [clock cycles (ns)]

new encryption key 3 (34) 21 (171)
new decryption key 23 (260) 21 (171)
switch between encryption and decryption 0 (0) 21 (171)

number of flip-flops 2’607 3’274
number of transistors 300k 300k
technology 0.6µm 3LM 0.6µm 3LM
process name AMS CUA AMS CUA
area per hardware round 6.3mm2 3.1mm2

area for subkey generation 4.5mm2 3.8mm2

estimated chip area (after synthesis) 22.5mm2 21.6mm2

actual chip area (after physical layout) 49.0mm2 49.0mm2

data throughput in ECB mode (encr or decr) 2.26Gbit/s 1.96Gbit/s
@ clock frequency 88.5MHz 122.9MHz
latency [clock cycles (ns)] 28 (316) 56 (455)

our target technology would give rise to significant difficulties with off-chip data
transfer and with clock distribution.

Both designs have been balanced for encryption and decryption and indeed
achieve similar throughput rates for either operation. The Rijndael implementa-
tion sports remarkably short key setup times and, most notably, does not require
any additional setup time when switching between encryption and decryption
with the same user key. The Serpent circuit’s key setup time, on the other hand,
suffers from the necessity to calculate the last subkey in advance.

The core circuits have been designed to run with 128bit data but practical
considerations have limited input and output width to 32bit. Nevertheless, no
performance is lost thanks to careful scheduling of I/O operations.

The original AES specification calls for three key lengths of 128, 192 and
256bit respectively. To simplify design, only 128bit implementations have been
considered in this study. The Serpent design is capable of using key lengths of
up to 256bit without any modification, whereas the Rijndael circuit would need
to be adapted to accommodate multiple key lengths.

The throughput figures presented refer to the ECB mode of operation. Of
the various feedback modes proposed for AES use [12], only the CTR mode will
achieve similar data throughput. For CFB, OFB and CBC modes of operation
without interleaving the highest throughput per area can be obtained if and only
if an iterative architecture with only a single hardware round is implemented
without any pipelining. This solution is on the bottom left corner of the solution
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space presented in fig.3 and is expected to have resulted in a throughput in the
order of 500Mbit/s for both algorithms.

6 Conclusions

To begin with, note that the two ciphers have many traits in common, both lend
themselves fairly well for hardware implementation. Most importantly, there
are no feedback loops whatsoever in ECB and CTR mode that would present
unsurmountable bottlenecks when in search of maximum throughput. A number
of tricks are instrumental in turning a purely algorithmic prescription into a
highly efficient architecture, but this is common practice in VLSI design.

We have made valuable contributions towards designing optimum hardware
for Rijndael by relocating the boundary between two consecutive rounds and
by restating table look-up operations. Both designs benefit from the evaluation
of distinct subkey generation schemes and from the systematic exploration of
architectural trade-offs.

Table 2 compares the two cipher algorithms from the perspective of a VLSI
architect. The fact that the same S-box Lut can be reused for encryption and
decryption throughout all rounds probably is the most important advantage of
Rijndael. Conversely, the fact that the number of rounds and subkey generation
are dependent on the width of the user key are less desirable features.

Table 2. The two ciphers compared from a VLSI architect’s point of view.

Rijndael Serpent
+Small number of rounds (10...14). −Large number of rounds (32).
+Small number of subkeys (11...15). −Large number of subkeys (33).
−No. of rounds depends on key length. +Fixed number of rounds.
+No complex mathematical operations. +No complex mathematical operations.
+All rounds are identical

(same S-box type throughout).
−Eight different S-box types.

−Large S-box (8bit×8bit). +Small S-boxes (4bit×4bit).
−Cipher is not involutory. −Cipher is not involutory.
+Look-up tables can be made to share

between en- and decryption.
−All S-boxes and their inverses

must be implemented in hardware.
◦ Not all hardware components can be

shared between en- and decryption.
−Almost no hardware components can be

shared between en- and decryption.
−Key generation varies with key width. +Wider key entails no extra complexity.

−No efficient way to compute the 33rd sub-
key from the user key directly.

To our knowledge this is the only published study where the actual ASIC
implementations of two AES candidates have been compared. In this respect
this study differs from previous comparisons [4,8] and realizations [6], as it also
takes into account real-life problems of ASIC integration such as placement and
routing, interconnection parasitics, clock distribution and I/O limitations.
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In [4] two extreme cases are considered: for an iterative architecture Rijndael
was shown to have three times the throughput of Serpent with an estimated
area 1.5 times larger. For a fully pipelined architecture, with almost identical
area requirements the throughput of Serpent was thirty percent higher than
Rijndael. In another study that concentrated on finding the critical path for
feedback modes [8] Rijndael was found to be more than twice as fast as Serpent
with an estimated area approximately twenty percent larger.

A direct comparison of our Rijndael implementation to the one presented
in [6] is difficult as that implementation uses a much more advanced 0.18µm
technology, estimated to be almost 10 times smaller and faster than the 0.6µm
technology used in this study. Also the implementation in [6] does not support
decryption and the stated throughput of 1.82Gbit/s is for 256bit data blocks. In
this respect our implementation with a measured 2.26Gbit/s throughput using
128bit data blocks compares fairly well.

Considering that the two algorithms are rather different in nature, their re-
spective performances in hardware come remarkably close. From our experience
with designing circuits for a fixed key length of 128bit and for throughputs in the
order of a few Gbit/s, we consider Rijndael to be more favorable than Serpent,
although only slightly.
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Abstract. Rijndael is the winner algorithm of the AES contest; there-
fore it should become the most used symmetric-key cryptographic algo-
rithm. One important application of this new standard is cryptography
on smart cards. In this paper we present an optimisation of the Rijndael
algorithm to speed up execution on 32-bits processors with memory con-
straints, such as those used in smart cards. First a theoretical analysis of
the Rijndael algorithm and of the proposed optimisation is discussed, and
then simulation results of the optimised algorithm on different proces-
sors are presented and compared with other reference implementations,
as known from the technical literature.

1 Introduction

Rijndael, a block cipher algorithm designed by Vincent Rijmen and Joan Dae-
men [1], has been selected by NIST as the winner of the Advanced Encryption
Standard competition [2]. Although the initial specification of the algorithm in-
cludes 128-bits, 192-bits and 256-bits as possible lengths for both the plaintext
blocks and for the key material, the standard will consider only 128-bit as legal
block length. In this paper we shall deal only with 128-bits blocks.

According to [3], the basic information unit for processing in the Rijndael
algorithm is a byte, i.e. a sequence of eight bits treated as a single entity. The
bit sequences corresponding to the input, the output and the cipher key are
processed as arrays of bytes; these arrays are formed by dividing the sequences
into groups of eight contiguous bits. Internally, the operations of the algorithm
are performed on a two-dimensional array of bytes called ”State”. The State
array consists of four rows of bytes, each row containing 4 bytes. The Rijndael
cipher algorithm operates in rounds, a round being a fixed set of transformations
to be applied to the State array. The number of these rounds is chosen depending
on the key length and ranges from 10 to 14.
� Part of this work is under patenting process.
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The Rijndael cipher algorithm is suited for an efficient implementation on
a wide range of processors. The basic operations involved in the algorithm are
very simple and the structure of the algorithm is straightforward. The Rijndael
algorithm can be used as encryption standard in embedded systems. One impor-
tant application field of the Rijndael algorithm is cryptography on smart cards.
Currently DES is used in such systems, but industry is moving to replace it with
the new AES algorithm.

The present paper considers optimised software implementations of the AES
algorithm for several platforms, with particular regard to smart cards. Memory
requirements are a fundamental issue when coding the Rijndael algorithm for
smart cards. In fact, the algorithm can be considerably sped-up by precomputing
part of the internal operations and storing the results in look-up tables. In our
case this means that we want to achieve the best possible performance with a
little amount of look-up tables, since in a smart card environment memory and
silicon space are limited resources. We also have to consider that the smart card
market is looking to 32-bits microprocessors as the new leading technology [5],
although a large amount of manufactured cards still features 8-bits and 16-bits
processors.

In this paper we shall describe a technique to enhance the time performances
of the AES algorithm when running on 32-bits processors with strict silicon
space constraints. This optimisation consists in a deep restructuring of the al-
gorithm, which makes possible to organise the inner operations (i.e. the rounds
and the byte-operations involved in each round) in a different way with respect
to the standard formulation [12] of the algorithm. This restructuring can be
nicely described in theoretical terms as a matrix transformation. The so-called
State matrix of AES is transposed and the inner operations of each round are
reorganised accordingly. Some inner operations are commuted with respect to
other ones, and are then grouped in such a way as to fit well in processors having
32-bits words. This optimisation allows a better exploitation of the resources of
the processor, and thus achieves also better time performances with respect to
the standard formulation [12] of the algorithm.

The optimised version of the algorithm was coded in C for evaluation on
various platforms, covering a wide range of possible applications. Namely, ARM
(a typical processor for embedded systems), ST 22 (one of the most advanced
32-bits processors for smart cards) and also Intel Pentium (typical for general
purpose systems) are considered. Simulations have been carried out for both
Gladman’s standard AES implementation in C code and our optimised AES
implementation, on all the previously mentioned platforms. Some other imple-
mentations of AES, known from the literature, are also considered. The time
performances obtained by simulation are summarized in tables, compared and
discussed. In several of the examined cases, such results are highly favourable to
our proposed optimised version of the AES algorithm.

This paper is organized as follows. Section 2 will provide a synthetic outline
of the Rijndael algorithm. Section 3 will describe and analyse theoretically our
new, optimised approach to the algorithm. In Section 4 we shall discuss our
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implementation in C code and we shall show simulation results and comparisons
with other implementations on various platforms. Section 5 concludes the paper.

2 Description of the Rijndael Algorithm

This section provides a brief recall of the AES algorithm (Rijndael, [1][2][3]),
useful for understanding the subsequent optimisations, which will be described
in section 3.

The core data structure of AES is the State matrix: it is a 4 * 4 bytes matrix.
As we have already said in the introduction, the Rijndael encryption algorithm
operates in rounds; a round is a fixed set of transformations that are applied to
the State matrix. The number of these rounds is chosen depending on the length
of the key; it is necessary to perform 10, 12 or 14 rounds in the cases of 128, 192
or 256-bits keys, respectively. For each round of the AES algorithm a round key
is derived from the original key; this process is called Key Scheduling.

The transformations that are applied in each round are four. According to
[6], they correspond to the round key addition step, the non-linear step, the
dispersion step and the diffusion step. They are described as follows.

AddRoundKey. In this transformation, a round key is added to the
State matrix by a simple bitwise XOR operation, that is, a sum in the field
GF (28). Each round key is obtained from the key schedule.

SubBytes. This transformation is a non-linear byte substitution operat-
ing independently on each byte of the State matrix, using a substitution table
(called S-BOX). This S-BOX, which is invertible, is constructed by composing
two transformations in GF (28), an inversion and an affine function.

ShiftRows. In this transformation, the bytes in the last three rows of
the State matrix are cyclically shifted over different numbers of bytes (offsets).
The first row, row 0, is not rotated. Row 1 is rotated to the left by 1 byte
position; row 2 is rotated to the left by 2 byte positions; row 3 is rotated to the
left by 3 byte positions.

MixColumns. This transformation operates on the State matrix in a
column-by-column mode, treating each column as a four-term polynomial
over GF (28). These polynomials are multiplied modulo (x4 + 1) with a fixed
polynomial a(x), given by the expression:

a(x) = 03 ∗ x3 + 01 ∗ x2 + 01 ∗ x + 02

This polynomial is coprime to (x4 + 1), and therefore the transformation is
invertible. This transformation can be written under the form of a matrix multi-
plication. Pose s′

c(x) = a(x)⊗ sc(x), for 0 ≤ c ≤ 3 , that is for all the 4 columns
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in the State matrix. As a result of this multiplication, the 4 bytes in a column c
are replaced by the following ones (for c = 0, 1, 2 and 3):

s′
0,c = 02 ∗ s0,c ⊕ 03 ∗ s1,c ⊕ s2,c ⊕ s3,c

s′
1,c = s0,c ⊕ 02 ∗ s1,c ⊕ 03 ∗ s2,c ⊕ s3,c

s′
2,c = s0,c ⊕ s1,c ⊕ 02 ∗ s2,c ⊕ 03 ∗ s3,c

s′
3,c = 03 ∗ s0,c ⊕ s1,c ⊕ s2,c ⊕ 02 ∗ s3,c

where the * operator stands for a multiplication in GF (28), with:

m(x) = x8 + x4 + x3 + x + 1

as irreducible generator polynomial. Performing a complete round means simply
applying these 4 transformations to the State matrix, in the following order:

round = {SubBytes, ShiftRows, MixColumns, AddRoundKey}

Performing the final round means simply applying to the State matrix the
following transformations, in the order:

finalround = {SubBytes, ShiftRows, AddRoundKey}

The Rijndael encryption algorithm consists in an initial application of the Ad-
dRoundKey operation, followed by (number of rounds - 1) rounds and concluded
with a final round. The Rijndael decryption algorithm operates by applying the
inverse of all the transformations described above in reverse order, to return to
the plaintext; for specific details, see [1].

3 A New Technique for Computing the Rijndael
Algorithm

This section illustrates our optimised version of the Rijndael AES algorithm.
Both the encryption and the decryption algorithms have been optimised. For
reasons of brevity, attention is focused on encryption, giving only the necessary
hints for understanding the way to optimise decryption as well. The task is
divided in two parts: optimisation of the algorithm working on the State matrix,
and modification of the key scheduling. In both cases, the base line consists in
the transposition of the State matrix, and the consequent rearranging of the
various transformations. In fact, as a consequence of the transposition of the
State matrix, also the key scheduling is rearranged in a suited way. In section 3.1
the algorithm optimisation is explained, while in section 3.2 the key scheduling
is considered.
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3.1 The Transposed State Matrix Primitives

It is possible to enhance the throughput of the implementation of AES by
changing the way in which data are represented by the software. In particular,
the internal transformations of a round could be implemented by using look-up
tables. In our study, we have chosen to reserve a little amount of space for
look-up tables: the choice is to tabularise only the S-BOX and the inverse S-BOX
transformations. All the remaining operations are computed. In particular,
this means that we must carry out several GF multiplications only by means
of software techniques. All the primitives considered in our study behave in a
peculiar way, operating on a transposed version of the State matrix. Of course,
all the steps of the algorithm must be modified in order to preserve global
functionality while operating on the transposed State matrix. In particular:

The SubBytes transformation is not modified, since it operates on sin-
gle bytes, independently of their position in the State matrix.

The ShiftRows transformation does not shift the rows of the State ma-
trix any longer; instead, it operates now in the same way on the columns.

The MixColumns transformation is deeply revised. Denote with xi, for
0 ≤ i ≤ 3, the 32-bits words (or columns) of the transposed State matrix before
applying the MixColumns transformation, and denote with yi, for 0 ≤ i ≤ 3,
the 32-bits words (or columns) of the transposed State matrix after applying
the MixColumns transformation. The revised version of MixColumns is then
represented by the following set of equations:

y0 = 02 ∗ x0 ⊕ 03 ∗ x1 ⊕ x2 ⊕ x3

y1 = x0 ⊕ 02 ∗ x1 ⊕ 03 ∗ x2 ⊕ x3

y2 = x0 ⊕ x1 ⊕ 02 ∗ x2 ⊕ 03 ∗ x3

y3 = 03 ∗ x0 ⊕ x1 ⊕ x2 ⊕ 02 ∗ x3

The variables yi and xi contain the 4 bytes at position i of the columns of the
State matrix in the normal, non-transposed, version of the transformation. These
variables are 32 bits long. Note that here the symbol * does not denote an ordi-
nary GF multiplication over factors (polynomials) of 32 bits. Instead, here the
operator * denotes a set of 4 ordinary multiplications in the field GF (28), per-
formed in parallel on the 4 bytes of each 32-bits word. The generator polynomial
used for representing the field GF (28) is the standard one of AES.
A simple way to calculate all the above operations, composing the MixColumns
transformation, is to use the yi variable as an accumulator, and to use the xi

variable for storing the product of the initial values of xi and of the 4 partial
products: xi, 2 * xi, 4 * xi and 8 * xi. In the case of encryption the products to
be used in the calculation are only two: 20 and 21. Therefore the MixColumns
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transformation is computed in only 3 steps: a sum step, a doubling step and a
final sum step. Table 1 shows the three steps.

Table 1. The three steps necessary to compute MixColumns.

First Second Third
y0 = x1 ⊕ x2 ⊕ x3 x0 = 02 ∗ x0 y0⊕ = x0 ⊕ x1

y1 = x0 ⊕ x2 ⊕ x3 x1 = 02 ∗ x1 y1⊕ = x1 ⊕ x2

y2 = x0 ⊕ x1 ⊕ x3 x2 = 02 ∗ x2 y2⊕ = x2 ⊕ x3

y3 = x0 ⊕ x1 ⊕ x2 x3 = 02 ∗ x3 y3⊕ = x0 ⊕ x3

In the case of decryption this double-and-add method is used in a more
substantial way, and the steps necessary to compute the InvMixColumns trans-
formation are 7: 4 sum steps and 3 doubling steps. In the case of InvMixColumns
the double-and-add method can be improved by considering the particular
values of the constant coefficients. Note that there are only two coefficients
containing a bit 1 in the third position, namely the coefficients 0e and 0d. These
coefficients are used in combination with the operands x0 and x2 contained
both in the first row and in the third row, and are used in combination with the
operands x1 and x3 contained both in the second row and in the fourth row.
To save a doubling operation we can add these two operand pairs and store the
result in x0 and x1, respectively. Instead of calculating the subexpression 04 *
x0 ⊕ 04 ∗ x2, we can calculate the subexpression 04*(x0 ⊕ x2) , since we do not
need to store separately either addend. Moreover, note that every coefficient
contains a bit 1 in the fourth position. The last calculation deals with this
bit. Hence we can add the previously computed values x0 and x1, which are
04*(x0 ⊕ x2) and 04*(x1 ⊕ x3) , respectively, and then double them, so that the
subexpression 08*(x0 ⊕ x1 ⊕ x2 ⊕ x3) is obtained, which must be accumulated
to every operand yi.

The AddRoundKey transformation remains quite unchanged, since it
consists in a simple bitwise XOR between the State matrix and the round keys.
Of course, we have to ensure that round keys are transposed before being used,
which is shown in the next section.

3.2 The Transposed State Matrix Key Scheduling

As we stated before, we need to transpose the round keys before using them.
A trivial solution would be simply to apply the key scheduling and then to
transpose every created round key. In this way we would introduce a huge com-
putation overhead. One alternative, which is the implemented one, is to redesign
the key scheduling directly in the ”transposed manner”.
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For 128-bits keys the key scheduling operates intrinsically on blocks of 4 32-
bits words; we can calculate one new round key from the previous one. We denote
the ith word of the actual round key with K[i], where 0 ≤ i ≤ 3, and the ith

word of the next round key with K ′[i]. K ′[0] is computed by an XOR between
K[0], a constant rcon and K[3], the latter being pre rotated and transformed
using the S-BOX. The other three words K ′[1], K ′[2] and K ′[3] are calculated
as K ′[i] = K[i]⊕K ′[i− 1].

We must now rewrite this set of transformations to cope with transposed
keys. We indicate with KT the transposed round key we are working on, and
with K ′

T the new transposed key. Clearly we have:

KT[0] =






k0
k4
k8
k12




KT[1] =






k1
k5
k8
k13




KT[2] =






k2
k6
k9
k14




KT[3] =






k3
k7
k10
k15






The transposed key schedule is made up of the following transformations:

K ′
T [0] = KT [0]⊕ (pad(Sbox(k13)) << 24)⊕ rcon

K ′
T [1] = KT [1]⊕ (pad(Sbox(k14)) << 24)

K ′
T [2] = KT [2]⊕ (pad(Sbox(k15)) << 24)

K ′
T [3] = KT [3]⊕ (pad(Sbox(k12)) << 24)

K ′
T [0] ⊕ = (KT [0] >> 8)⊕ (KT [0] >> 16)⊕ (KT [0] >> 24)

K ′
T [1] ⊕ = (KT [1] >> 8)⊕ (KT [1] >> 16)⊕ (KT [1] >> 24)

K ′
T [2] ⊕ = (KT [2] >> 8)⊕ (KT [2] >> 16)⊕ (KT [2] >> 24)

K ′
T [3] ⊕ = (KT [3] >> 8)⊕ (KT [3] >> 16)⊕ (KT [3] >> 24)

The symbol >> j (<< j) indicates a right (left) shift of j bit positions, with
the insertion of j bits of value 0 in the most (least) significant positions, while
pad means zero-padding of the 24 most significant bits of the word since Sbox
returns an 8 bits value. We can note that the computation overhead with respect
to the normal, non-transposed key scheduling is just few shift operations.

The key schedule for the other key sizes, i.e. 192 and 256-bits, is similar; note
however that in the 192-bits case the calculations to be performed are slightly
more complex. In fact, in this case it is necessary to operate on blocks of 6 32-
bits words, while the round keys to be generated in the transposed form occupy
4 words of 32-bits. To reduce the overhead our solution consists in using a full
array of 8 words of 32-bits for the calculations, as in the 256-bit key case. The
new round key (similarly to the old one) occupies the first 4 words and the top
half of the last 4 words. Then the words are suitably shifted and stored. The key
schedule for 256-bits keys is very similar to that for 128-bits keys and therefore
it will not be discussed here.
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4 Implementation and Time Performance Figures

We have a C/C++ implementation of our proposal of the AES optimised algo-
rithm. A simulation campaign has been carried out, in order to evaluate time
performances. We report the results of the AES optimised algorithm only in the
case of a key size of 128 bits, but we have tested the proposed algorithm also with
192 and 256-bits key size. The results are quite the same as those obtained with
128-bits key size, only scaled by a constant factor due to the larger number of
rounds required by these versions of the AES algorithm. The time performance
gain of each round, with respect to the standard AES algorithm, remains the
same in all the cases.

We have chosen to make a direct comparison with an equivalent version of
AES by Dr. Brian Gladman [8], since Gladman has been involved in the definition
of the AES standard and his version is well referenced. For the comparison
with embedded processors (ARM7, ARM9 and ST22) few refinements have been
added to Gladman original implementation in C language [8].

Our code has been compiled and evaluated on some 32-bits architectures, in-
cluding the ARM7TDMI and ARM9TDMI processors [7], the ST22 smart card
processor by ST Microelectronics [5], and also on a general purpose Intel Pen-
tiumIII platform. These three platforms represent rather different architectures
used in various systems and environments: embedded system, smart cards and
PC, respectively.

The ARM7TDMI processor is a widely used 32-bits RISC CPU. It contains
sixteen 32 bits registers. No cache is available and the internal structure consists
of a pipeline of 3 stages [7]. The ARM9 processor differs from ARM7 in the
internal structure. It is designed accordingly to the Harvard architecture model
with two different busses for data and instructions, respectively, and the core is
pipelined in 5 different stages. There exist different implementations of ARM9,
depending on the amount of cache memory. In our simulation the standard core
ARM9TDMI has been used, without cache memory, but the time latency for the
accesses to the memory is only of one clock cycle, while the code and the data
are stored in two different memories.

The ST 22 processor is a 32-bits RISC processor particularly designed for
smart cards. It is a dedicated processor and is not used for applications different
from smart cards. The internal details are not completely known; however the
processor contains some 32 bits registers and does not have cache memory [5].

PentiumIII is a typical processor for PC systems. It is a 32-bits processor with
a large amount of available memory, organized in three levels, with 32 kbytes
of cache memory at the first level (divided in two blocks of 16 kbytes for data
and instructions, respectively), with at least 256 kbytes of cache memory at the
second level, and with some megabytes of RAM as central memory [4].

In the Rijndael algorithm the encryption and decryption operations must be
executed using the round keys. For each round a different round key is used. The
process of deriving the round keys from the original key is called Key Schedul-
ing. The round key can be computed either in advance (key unrolling) or the
so-called ”on-the-fly” approach can be used. In the on-the-fly approach the var-
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ious round keys are computed exactly when they are needed, and soon after
they are discarded. In a software implementation of the Rijndael algorithm the
”on-the-fly” approach is not useful in terms of speed since the key schedule must
be performed for each data block to encrypt. Some particular systems, i.e. smart
cards, do not allow using memory to store the unrolled key, both for reasons
of security and of memory shortage. In those cases the on-the-fly approach is
mandatory. We have implemented our optimisation of AES in two versions: the
former one using key unrolling and the latter one using the on-the-fly approach.
In order to implement decryption following the on-the-fly approach, it is advis-
able to store the last round key, from which the previous round keys can be
reconstructed. This requires 16 bytes of memory. The alternative would be to
generate all the round keys before starting decryption, and then to use them in
reverse order; but this approach consumes more memory.

Since Gladman public C code for AES does not permit to use the on-the-
fly approach, we have extended Gladman code implementing also the on-the-fly
approach. In [12] it is possible to find some time performances of on-the-fly
encryption algorithm on the ARM processor for smart cards applications (the
so-called cAESar implementation, written in assembler language). The core pro-
cessor specified in the paper illustrating the cAESar implementation is not clearly
described but should be very similar to ARM7TDMI. As above mentioned, we
assume to tabularise in a look-up table only the S-BOX transformation; all the
other round transformations are computed as soon as they are needed, and the
result is not stored for future use. The amount of used look-up tables is thus
of 512 bytes for the S-BOX and the Inv-S-BOX, plus 10 bytes for the round
constants rcon.

We have used the ARM simulator (ARMulator), the ST 22 development
tools (courtesy by STM) and Microsoft Visual Studio 6.0. Table 2 shows the
time performances of our proposal of AES and of Gladman’s in the hypothesis
of adopting key unrolling. Table 3 shows the time performances of our proposal
of AES, Gladman’s and cAESar (only on ARM) in the hypothesis of adopting
the on-the-fly approach. In Table 2 Key Scheduling is listed separately from
Encryption and Decryption, since it is computed completely in advance. The
total time can be obtained by adding the key scheduling time to either the
encryption or the decryption time. In Table 3 the key scheduling time is already
included both in the encryption and the decryption time (since key scheduling
is in this case interleaved with encryption or decryption).

As explained before, the application of the Rijndael algorithm consists of
3 parts, namely key scheduling, encryption and decryption. Our proposal pro-
vided us with a speed gain in the MixColumns (during encryption) and InvMix-
Columns (during decryption) transformations, requiring only few changes to the
key scheduling. In general these two operations work as follows. A single Mix-
Columns is a composition of sums and doublings in the field GF (28), plus some
rotations of the elements of the column. A sum in GF (28) is a bitwise XOR of
bytes and a doubling is a composition of a masking, a shift and a conditional
bitwise XOR of bytes. Since a column is composed by 4 elements of the field
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GF (28), some operations can be applied in parallel to the entire column, as the
whole column can be accommodated in a single register of the CPU. The InvMix-
Columns works in a similar way. Gladman implementation of MixColumns and
InvMixColumns are applied to each one of the 4 columns of the State matrix.

Examining the Gladman implementation of MixColums, which uses the stan-
dard representation of the State matrix, it is possible to count the number of
required operations. On a 32 bits platform a single MixColums requires 4 bit-
wise XORs plus one doubling of the four GF (28) elements and 3 rotations. The
MixColumns must be applied to the 4 columns giving a total of 16 XORs, 4
doublings and 12 rotations. Moreover, the original Gladman implementation re-
quires an additional intermediate variable, which could be eliminated; therefore
we shall not consider it.

Our optimisation of AES allows reducing the number of elementary opera-
tions. Using the transposed State matrix the rotations can be completely avoided
(see sub-section 3.1) both in MixColumns and in InvMixColumns, thus yielding
a speed gain. Moreover, in the InvMixColums the transposed State matrix al-
lows to achieve a much higher speed gain. In fact, the transposed InvMixColums
requires only 7 doublings and 27 sums, while in the standard (Gladman) imple-
mentation it is necessary to compute 12 doublings, 32 sums, 12 rotations and
4 intermediate variables are required. This means that using in decryption a
transposed State matrix it is possible to obtain a reduction of 5 doublings, 5
sums and 12 rotations, and to eliminate completely the intermediate variables.
This yields a further speed gain.

As a general comment, our proposal implementation of AES works much
better than Gladman’s in decryption for all platforms, both using key unrolling
and key on-the-fly. In encryption the performances are instead more or less
comparable. Table 2 and Table 3 need some more explanations, in order to relate
the differences of time performances with the features of the adopted processor.
Here they follow.

Table 2. Clock cycles required for AES on different platforms (using key unrolling).

CPU Implementation Key Schedule Encryption Decryption
ARM7TDMI Our Proposal 634 1675 2074

Gladman 449 1641 2763
ARM9TDMI Our Proposal 499 1384 1764

Gladman 333 1374 2439
ST22 Our Proposal 0.22 0.51 0.60

Gladman 0.13 0.61 1
Pentium III Our Proposal 370 1119 1395

Gladman 396 1404 2152
Gladman with tables 202 (encrypt.) 362 381

306 (decrypt.)
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Table 3. Clock cycles required for AES on different platforms (using key on-the-fly).

CPU Implementation Encryption Decryption
ARM7TDMI Our Proposal 2074 2378

Gladman 1950 3221
ARM cAESar 2889 N.A.

cAESar with tables 1467 N.A.
ARM9TDMI Our Proposal 1755 1976

Gladman 1623 2796
ST22 Our Proposal 0.72 0.82

Gladman 0.75 1.13

ARM. The report and the discussion of the time performances start by con-
sidering the ARM processor. On this system our optimised version of AES is
slightly slower then Gladman’s as for encryption. This can be theoretically justi-
fied as follows: our encryption algorithm should be advantageous with respect to
Gladman’s, because it saves some rotation steps. But if the processor has some
dedicated machine instruction able to combine bitwise XOR and rotation (like
ARM7TDMI), then the advantage of having fewer rotations tends to disappear.
However, when the algorithm is written in C, our implementation frequently
executes additions (XOR) involving 3 operands of 32 bits each one. This fact
can lead to a non-optimal use of the pipeline of the processor, and hence to
degrade the performances of our optimised version of AES with respect to Glad-
man’s. However, in decryption our proposal is considerably more efficient than
Gladman’s. The core of the ARM9 system is similar to the one of ARM7, but
is more powerful, thus giving better results in comparison to ARM7. However,
the performance ratios between our optimised version and Gladman’s version
for ARM9 remain approximately the same as those for ARM7.

ST 22, by ST Microelectronics, is an advanced smart card CPU. This pro-
cessor is a 32-bits RISC CPU, having some 32 bits registers but without cache
memory. Simulations have been carried out by using the ST 22 C compiler (cour-
tesy by ST Microelectronics). It must be noted that ST 22 is not able to combine
addition and shift (or rotate) in a single machine instruction. This means that
ST 22 lacks instructions fitting particularly to the Gladman AES implementa-
tion. This fact impacts negatively on encryption when performing the simulation
of the Gladman version of AES, while encryption in our optimised version does
not suffer any penalty. On the other side, Gladman key scheduling is not af-
fected by this feature of the processor, as it does not use shifts and rotations,
while our version of key scheduling is affected negatively. The time performances
are still comparable as for key scheduling and encryption, while they are much
in favour to our optimised version as for decryption. For reasons of privacy, the
performance figures are normalised to 1, instead of reporting the absolute values.

PentiumIII. As a last comparison we report the time performances on the
PentiumIII processor. Note that in such a system an implementation with a
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complete replacement of the calculations with look-up tables is faster then our
implementation. Therefore we report 3 versions: ”Gladman with tables” (all
transformations are tabularised in look-up tables), Gladman and our proposal,
both of which use look-up tables only for the S-BOX and Inv-S-BOX transfor-
mations. We remember that the Gladman implementation using tables for all
the transformations requires a very large amount of memory, of about 20 kbytes.
This usage of memory is not affordable in systems as smart cards.

It is possible to see that our optimised version of AES works well in most
cases, with few exceptions. In general the largest performance gains are obtained
for decryption. However, even in those cases where our AES version behaves
worse than Gladman’s, the difference is limited and is by far less relevant than
the considerable performance gain obtained in the case of decryption. Moreover,
our proposal includes some initial and final code for transposing the State matrix
(that is, the data block). The initial transposition code requires about 20 cycles
for all platforms, and similarly the final transposition code. The transposition
code is required for making our AES optimisation equivalent to the standard one.
However, should the data block to encrypt be supplied directly in transposed
form, the transposition code could be stripped off.

5 Conclusions

An optimised version of the AES standard has been presented, coded in C and
evaluated by simulation on various platforms: ARM for embedded systems, ST 22
for smart card applications and also Intel Pentium for general purpose systems.
We have rewritten the basic transformations of the Rijndael cipher algorithm,
using a transposed version of the so-called State matrix. We have shown that
this relevant structural modification leads to a considerable improvement of time
performances in decryption. As for encryption, the time performances of our
version of AES and Gladman’s are instead more or less the same. These results
hold when a limited part of the AES computation is carried out using look-up
tables. Namely we have supposed that only the S-BOX operation is tabularised
and stored in a look-up memory.

In the other cases, that is when a considerable part of the algorithm is ex-
ecuted by using look-up tables, our proposal of AES and Gladman’s become
approximately equivalent. It must be noted, anyway, that using a large amount
of memory for the look-up tables is too expensive for small systems, like for
instance smart cards, and is considered unsafe, as monitoring the accesses to the
look-up tables may in some cases allow to infer the key. Therefore, at least for
these applications the choice of not resorting to look-up tables should be con-
sidered reasonable. Next research directions include for instance the hardware
evaluation, in terms of silicon area and time latency, of our optimisation of AES,
with respect to the standard implementation, and possibly the design of a suited
instruction set targeted to a fast computation of AES.
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Abstract. Reducing the power consumption of AES circuits is a critical
problem when the circuits are used in low power embedded systems. We found
the S-Boxes consume much of the total AES circuit power and the power for an
S-Box is mostly determined by the number of dynamic hazards. In this paper,
we propose a low-power S-Box circuit architecture: a multi-stage PPRM
architecture over composite fields. In this S-Box, (i) the signal arrival times of
gates are as close as possible if the depths of the gates from the primary inputs
are the same, and (ii) the hazard-transparent XOR gates are located after the
other gates that may block the hazards. A low power consumption of 29 �W at
10 MHz using 0.13 �m 1.5V CMOS technology was achieved, while the
consumptions of the BDD, SOP, and composite field S-Boxes are 275, 95, and
136 �W, respectively.

1 Introduction

DES (Data Encryption Standard) has been used as a de facto standard cipher for more
than 20 years. In 2001, NIST (National Institute of Standards and Technology) made
Rijndael the new standard cipher AES [1,2].

Reducing the power consumption of AES (Advanced Encryption Standard) circuits
is a critical problem when the circuits are used in embedded systems. Many circuit
architectures for AES have been proposed recently and their performances have been
evaluated by using ASIC libraries [3,4] and FPGAs [5,6]. However, most of them are
simple implementations according to the AES specification, and there is no report of
low-power AES implementations, as far as the authors know.

In this paper, we investigated a design methodology for a low-power AES.
Although many power reduction techniques for IP cores are known for various design
abstraction levels from the algorithm level to the transistor level [7], we focused on
the logic level (gate level), because the power optimization techniques at this level
can be applied in many applications. The optimizations at the other levels cannot be
adopted as often, because the AES circuit is usually used as an IP core in a system,
and changing the algorithm, operator scheduling, data-path architecture, and/or
arrangements of transistors of the AES is difficult under given requirements for
throughput, clock speed, and technology library.

By investigating the power consumption of each primitive component in AES
circuits, we found the S-Box in the SubBytes component consumes much of the total
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power (for instance, 75% is consumed in a 1 round/cycle loop architecture). The
power consumption of the clock drivers is not large. When the circuit structure of the
S-Box is changed, the power of the S-Box circuits can vary more than several-fold,
due to the changes in the situations creating and propagating dynamic hazards, even
though the total circuit size has less effect on the power consumption than expected.
In fact, the power consumption of SOP (Sum of Products) S-Box is less than that of a
composite field S-Box [8,9,10], while this circuit size is much larger.

We have developed a low-power S-Box architecture: a multi-stage PPRM (Positive
Polarity Reed-Muller form [11]) architecture for compact S-Boxes. It is an
improvement of the composite field S-Box, and in this S-Box, the gates are arranged
so that: (i) the signal arrival times at the gates are as close as possible if the depths of
the gates from the primary inputs are the same, to avoid generating dynamic hazards,
and (ii) the hazard-transparent XOR gates are located after the other gates that may
block the hazards, to avoid the propagation of dynamic hazards. The multi-stage
PPRM S-Box archives the lowest power consumption of 29 �W at 10 MHz using
0.13 �m 1.5 V CMOS technology, and its circuit size is still much smaller than
conventional S-Box implementations whose power consumptions are around 140 �W.

This paper is organized as follows. In Section 2, a standard AES circuit
implementation is shown. In Section 3, the results of power analysis of the AES are
described. In Section 4, the proposed S-Box architecture and its ASIC implementation
results are explained.

2 AES Algorithm and Its Circuit Implementations

2.1   AES Algorithm

In the AES algorithm [1,2], a sequence of four primitive functions, SubBytes,
ShiftRows, MixColumns, and AddRoundKey, are executed Nr-1 times. Each loop is
called a round and the concrete value of Nr is 10, 12, or 14 depending on the key
length. Prior to this main loop, AddRoundKey is executed for initialization. After
executing the main loop, SubBytes, ShiftRows, and AddRoundKey is executed  are
executed once more as the final round. In the decryption process, the inverse
operations of each primitive function are executed.

SubBytes is a one-byte input/output nonlinear transformation that uses 16-byte
(128-bit) S-Boxes. Each S-Box is a multiplicative inversion on a Galois field GF(28)
followed by an affine transformation. The irreducible polynomial used by the field is
m(x)=x8+x4+x3+x+1. ShiftRows is a cyclic shift operation in each row of four 4-byte
data blocks using 0~3-byte offsets. MixColumns treats the 4-byte data blocks in each
column as coefficients of a 4-term polynomial, and multiplies the data modulo x4+1
with a fixed polynomial. AddRoundKey is a simple bit-wise XOR operation on the
128-bit round keys and the data.

In Fig. 1, a standard circuit implementation of AES, which executes 1 round per
clock, is shown. A sequence of round operations is implemented as a combinational
circuit and its input and output are connected to a 128-bit data register. The 3:1
selector before the AddRoundKey (XOR) is used to skip some operations in the first
and last rounds.
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Fig. 1. A standard implementation of an AES encryption circuit (1 round/clock)

2.2   Various S-Box Circuit Implementations

There are two approaches for designing S-Box circuits:

(1) construct a multiplicative inversion circuit and an affine transformation circuit
independently, and then connect these two circuits in serial,

(2) construct a single circuit directly whose input-output relation is equivalent to the
S-Box.

In Method (1), circuit area reductions using mathematical theorems over Galois
fields (GF) [12] are possible. Various methods for constructing compact inversion
circuits over GF have been studied, based on Fermat’s Little Theorem [14], the Low-
latency algorithm of Itoh and Tsujii [13,14], the extended Euclid’s Algorithm, and so
on. In particular, the composite field (or tower field) inversion [8] is effective over
GF(28), and it can be used to create compact AES implementations [9,10]. The detail
of the composite field technique will be explained in the next sub-section.

In Method (2), a fast implementation is possible. The S-Box circuit can be obtained
from its truth table by using two-level logic such as SOP, POS (Product of Sums),
PPRM [11], or by using decision diagrams such as BDD (Binary Decision Diagram)
[15]. Our investigations’ results in [16,17] show that the variable ordering of the BDD
does not have much effect on the size and speed of the S-Box and GF inverter. Based
on this research, we designed a very fast S-Box called twisted-BDD [17], which is 1.5
to 2 times faster than the other S-Box implementations.

Although in many AES implementations the table-lookup method is used, where
the S-Box circuit is automatically synthesized using EDA tools, the performance of
these synthesized circuits is usually close to that of SOP or BDD implementations.

128
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2.3   A S-Box Implementation Based on Composite Field Technique

Fig. 2 shows the outline of an S-Box implementation using the composite field
technique [9,10]. The most costly operation in the S-Box is the multiplicative
inversion over a field A (the AES field), where A is extended from GF(2) with the
irreducible polynomial m(x) mentioned in Section 2.1. To reduce the cost of this
operation, the following 3-stage method is adopted:

(Stage 1) Map all elements of the field A to a composite field B, using an
isomorphism function �.

(Stage  2)  Compute the multiplicative inverses over the field B.
(Stage  3)  Re-map the computation results to A, using the function �   –1.

The composite field B in Stage 2 is constructed not by applying a single degree-8
extension to GF(2), but by applying multiple extensions of smaller degrees. To reduce
the cost of Stage 2 as much as possible, it is known to be efficient to construct the
composite field B using repeated degree-2 extensions under a polynomial basis using
these irreducible polynomials [10],
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where �14={1001}2.

An implementation of Stage 2 is shown in Fig. 3. For any composite fields
GF((2m)n), computing the multiplicative inverses can be done as a combination of
operations over the sub-fields GF(2n), using the following equation [8]:

)12/()12(      where,)( 111 −−=⋅= −−− mnmrr rPPP . (1)

For AES (n = 2, m = 22), this equation becomes
161171 )( PPP ⋅= −− . (2)

The circuit in Fig. 3 is an implementation of Equation (2), with additional
optimizations. In the circuit, P16 is computed first and then P17 is obtained by
multiplying P by P16 over GF(((22)2)2). Because P17 is always an element of GF((22)2)
(i.e., the upper 4 bits of P17 are always 0), computing the upper 4 bits of P17 is
unnecessary [8]. The value of (P17)-1 is computed recursively over GF((22)2), then
multiplied by P16 over GF(((22)2)2), and finally P-1 is obtained. This final multiplication
requires fewer circuit resources than conventional multiplication over GF(28), because
P17 is an element of GF((22)2). Further gate reduction is possible by sharing circuit
gates of the three GF((22)2) multipliers in Fig. 3, where common inputs are used. Note
that our multipliers and inverter over subfields GF((22)2) and GF(22) are also small.

The isomorphism functions � and ��-1 in Stages 1 and 3 were constructed as
follows. First, search for a primitive element � in the field A and a primitive element
� in the field B, where both � and � are roots of a same primitive irreducible
polynomial. Any primitive irreducible polynomial can be used, and here we used
p(x)=x8+x4+x3+x2+1. Once such elements � and � are found, the definition table of the
isomorphism functions �  and ��-1 are immediately determined, where �k is mapped to
��k (or ��k to �k) for any 1 � k � 254. The hardware implementation of these functions
can be obtained by mapping the basis elements of A (or B) into B (or A), and these
mappings are described as multiplications of constant matrices over GF(2). The
concrete descriptions of � and ��-1 are
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where the least significant bits are in the upper left corners. These matrices can be
merged with affine transformations for circuit size reduction, as shown in Fig. 2. All
of these isomorphism functions and the constant multipliers in the S-Boxes are
implemented as XOR arrays, and their Boolean logic is compressed by applying a
factoring technique based on a greedy algorithm [18].

3 Analysis of Power Consumption in AES Circuits

3.1   Power Analysis Method

For analyzing the power consumption of the AES circuits, a simulation-based analysis
method was used. In this method, a timing simulation (or delay simulation) at the gate
level is performed using a given set of test input data, and the switching activities of
all internal gates are logged. Then the circuit power is computed from this simulation
log and the cell information of the target ASIC library. Although this analysis method
requires much more CPU time than the often used probabilistic method (a kind of
static analysis method) [7], it is much more accurate because the effects of dynamic
hazards can be reflected in the power estimation results.

3.2   Power Consumption of Various S-Box Architectures

The power estimation results for each AES component in a 0.13 �m ASIC standard
cell library are shown in Table 1. Note that the estimation results depends on the test
data, although we observed no large differences between the various test data sets we
used. In this table, the SOP S-Box is used. Clearly, the SubBytes operations (16 S-
Boxes) consume much more power than the other components.

In Tables 2 and 3, a performance comparison of various S-Boxes in 0.13�m and
0.18�m ASIC libraries, including the proposed method (which will be described in
Section 4), is shown. We checked all patterns of primary input switching (28 � 28 =
65,536 patterns) and the average power consumptions obtained are shown in the
tables. Although the absolute values of circuit performance are different between the
two ASIC libraries, the relative relationships within each architecture are almost the
same.
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Until these experimental results were obtained, we thought the power consumption
of an AES with the composite field S-Box would be the lowest, because the circuit
size of the composite field S-Box is very small. However, the estimated power
consumption was unexpectedly large. In addition, the power consumption of the BDD
S-Box was much larger than that of the SOP, although their speed and size are
similar.

Table 1. Power consumption of each AES component
 (0.13 �m 1.5 V CMOS standard cell, 1 gate = 2 way-NAND)

Observed Max.
Power

(� W@10MHz)

Power ratio
(%)

SubBytes (SOP S-Box � 16) 1,940 75
MixColumns    262 10
AddRoundKey  > 10 > 1
Data Selectors  > 10 > 1
FFs + Clock Drivers   400 15

Table 2. Comparison of various S-Box architectures
(0.13 �m 1.5 V CMOS standard cell, 1 gate = 2 way-NAND)

Delay (ns) Size (gate) Average Power of
S-Box (�W@10 MHz)

Itoh and Tsujii [14] 2.79 1,771 2,100
PPRM (1-stage) 1.14 2,241    343
BDD 0.69 1,399    275
Twisted-BDD [17] 0.43 2,818    272
Table lookup 0.68 2,623    144
Composite Field [10] 2.19    354    136
SOP (1-stage) 0.69     1,650      95
Proposed method
(3-stage PPRM)

1.43    712      29

Table 3. Comparison of various S-Box architectures
(0.18 �m 1.8 V CMOS standard cell, 1 gate = 2 way-NAND)

Delay (ns) Size (gate) Average Power of
S-Box (�W@10 MHz)

Itoh and Tsujii [14] 4.11 1,540 3,490
PPRM (1-stage) 1.32 2,242    408
Twisted-BDD [17] 0.66 1,977    334
BDD 0.96    857    332
Table look-up 0.91 1,706    206
Composite Field [10] 3.01    305    166
SOP (1-stage) 0.97 1,142    138
Proposed method
(3-stage PPRM)

1.86    701      51
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3.3   Analysis

We determined that the power consumption of the S-Boxes was strongly influenced
by the number of dynamic hazards. In fact, the following two characteristics A and B,
which are the main reasons for creating or propagating dynamic hazards, are
significantly different among the S-Boxes.

A. Differences of Signal Arrival Time at Each Gate

The dynamic hazards can occur when the signal arrival times are different between
multiple inputs of a gate. If multiple gates are connected serially and some of the
internal gates generate hazards, then the hazards propagate into the circuit path and
some extra power is consumed.

Regarding S-Boxes, the composite field S-Box involves many crossing and/or
branched signal paths. The signal arrival times of the internal gates are very different
and as a result, the gates (or sub-operators) can switch many times per single
transition of the primary inputs, as shown in Fig. 4. This is the main reason for its
relatively large power consumption in spite of the small circuit size. The situation is
the same with the BDD S-Box and S-Box based on the algorithm of Itoh and Tsujii.
On the other hand, the signal arrival time of each gate is not much different in the S-
Boxes based on two-level logic, such as the SOP and PPRM S-Box.

B. Propagation Probability of Signal Trans

The kinds of the logic gates closely re
particular, the use of XOR gates can incre
probability of propagating a signal transiti
from input ports to output port, while the p
as AND and OR. The use of many XORs 
consumptions of the composite field S-Bo
S-Box.
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y times
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(1) 

 differences of signal arrival time
itions

lates to the propagation of hazards. In
ase the power consumption, because their
on is 1, i.e. all hazards can be propagated
robabilities are 0.5 in the other gates such

is another main reason for the large power
x and PPRM S-Box, compared to the SOP
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4 The Proposed Low Power S-Box Architecture and Its
      Evaluation Results

4.1   The Proposed Multi-stage PPRM Architecture

The complicated signal paths of the composite field S-Boxes, which is the main
reason for their large power consumption, can be simplified by converting some parts
of the S-Box logic into two-level logic. Although converting the entire circuit into a
single two-level logic structure would increase the circuit size and lose an important
advantage of the composite field S-Box, converting carefully selected sub-
components into two-level logic can generate a much better S-Box, if an appropriate
partitioning of the S-Box into sub-components is done.

In Fig. 5, the example S-Box circuit with the best performance in our trials is
shown. Three sub-components of the composite field S-Box were converted into
PPRM form: the pre-inversion section, the inversion section, and the post-inversion
section (see Appendix for their complete description). Two signal paths not passing
through the inversion section were connected to delay chains whose delay time is
close to that of the inversion. In this circuit, the signal arrival times at the gates are
almost equal, if the depths of the gates from primary inputs are the same. In addition,
the power consumption of the pre-inversion part can be greatly reduced, because the
XOR gates are located after the AND gates. The original pre-inversion part has the
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opposite XOR-AND structure, and the XOR gates must always switch state on any
change of the primary inputs.

As shown in Tables 2 and 3 in Section 3.2, the 3-stage PPRM S-Box achieves the
lowest power consumption. Its circuit size is much smaller than conventional S-Box
implementations. The circuit speed is not so fast, but it is still fast enough for
embedded systems.

When other partitioning methods such as a 2-stage PPRM, a 4-stage (XOR)-AND-
XOR etc. were used (Fig. 5), the power consumption was increased, as shown in
Table 4. The original composite field S-Box has a 5-stage (XOR)-AND-XOR
structure. Of those the authors tested, the 3-stage PPRM gives the lowest power
consumption. Another 2-stage PPRM implementation besides the one shown in Fig. 5
(combined inversion and post-inversion sections) is possible, but its circuit size and
power consumption are similar to those of the 1-stage PPRM implementation. In
addition, when each section was implemented in a form other than PPRM (such as
SOP), the circuit size and power consumption became significantly larger (see Table
4), because these sections contain many XOR gates.

Please note that computing over a composite field is highly recommended,
although the proposed circuit architecture only requires the use of Equation (2) in
Section 2.3 and the equation is independent of the field (i.e., the equation even holds
if a composite field is not used). If the inversion is not done over a composite field,
P17 in Equation (2) becomes an 8-bit vector and as a result, the circuit size must be
much larger.

4.2   Circuit Sha

The proposed m
circuits that perf
(for encryption) 

An example s
the AES field is
of the shared S-B
still smaller than
possible for the c

 (

PPRM

SOP
Table 4. Number of logic stages vs. S-Box performance
0.13 �m 1.5 V CMOS standard cell, 1 gate = 2 way-NAND)

Size (gate) Average Power of
S-Box (�W@10 MHz)

1-stage 2,241 343
2-stages 1,445 273
3-stages    712   29
4-stages    413   88
5-stages (Composite Field [10])    354 136
1-stage 1,650   95
2-stages 5,891 612
3-stages 6,114 697
ring between S-Box and S-Box-1

ulti-stage PPRM architecture is suitable for implementing AES
orm both encryption and decryption, because most gates of the S-Box
and the S-Box-1 (for decryption) can be shared.
hared S-Box circuit is shown in Fig. 6. In this circuit, an inverter over
 shared between the S-Box and the S-Box-1. The power consumption

ox is larger than that of the unshared 3-stage PPRM S-Box, but it is
 most S-Box implementations (see Table 5). Similar circuit sharing is
omposite field S-Box, but the power consumption is very large. Note
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that SOP and the other conventional S-Box implementations require two different
circuits to support both encryption and decryption, and the total circuit size (S-Box +
S-Box-1) can exceed 2,000 gates.

5 Conclusion

In this paper, we have developed a multi-stage PPRM architecture for low-power S-
Box circuits, because the S-Boxes consume much of the total power of AES designs.
The power consumption of S-Box circuits can be significantly reduced by avoiding
the creation and propagation of dynamic hazards. A power consumption of only 29
�W at 10 MHz using a 0.13 �m 1.5V CMOS technology was achieved, while the
power of the conventional BDD, SOP and composite field S-Boxes are 275, 95 and
136 �W, respectively.
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Appendix: PPRM Representations of Each Stage (3-Stage PPRM)

Variables x7-x0 denote primary inputs of an S-Box/S-Box-1/Inverter and y7-y0 denote
primary outputs (x7 and y7 are MSB). The other variables such as a and b denote
internal wires.

A-1. Stage 1 of S-Box

a3 = x7 xor x5

a2 = x7 xor x6 xor x4 xor x3 xor x2 xor x1

a1 = x7 xor x5 xor x3 xor x2

a0 = x7 xor x5 xor x3 xor x2 xor x1

b3 = x5 xor x6 xor x2 xor x1

b2 = x6

b1 = x7 xor x5 xor x3 xor x2 xor x6 xor x4 xor x1

b0 = x7 xor x5 xor x3 xor x2 xor x6 xor x0
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c3 = (x5 and x1) xor (x7 and x1) xor (x5 and x2) xor (x5 and x6) xor (x5 and x7) xor (x5 and
x4) xor (x7 and x4) xor (x5 and x0) xor (x7 and x0) xor (x3 and x1) xor (x4 and x1)
xor (x3 and x2) xor (x2 and x4) xor (x4 and x6) xor (x2 and x1) xor (x2 and x6) xor
(x6 and x1)

c2 = (x6 and x1) xor (x2 and x6) xor (x3 and x6) xor (x7 and x6) xor (x1 and x0) xor (x2 and
x0) xor (x3 and x0) xor (x4 and x0) xor (x6 and x0) xor (x7 and x0) xor (x5 and x2)
xor (x5 and x3) xor (x2 and x4) xor (x3 and x4) xor (x5 and x7) xor (x7 and x2) xor
(x5 and x6) xor (x3 and x2) xor (x7 and x3)

c1 = (x2 and x1) xor (x2 and x4) xor (x5 and x4) xor (x3 and x6) xor (x5 and x6) xor (x2 and
x0) xor (x3 and x0) xor (x5 and x0) xor (x7 and x0) xor x1 xor (x5 and x2) xor (x7 and
x2) xor (x5 and x3) xor (x5 and x7) xor x7 xor x2 xor (x3 and x2) xor x4 xor x5

c0 = (x1 and x0) xor (x2 and x0) xor (x3 and x0) xor (x5 and x0) xor (x7 and x0) xor (x3 and
x1) xor (x6 and x1) xor (x3 and x6) xor (x5 and x6) xor (x7 and x6) xor (x3 and x4)
xor (x7 and x4) xor (x5 and x3) xor (x4 and x1) xor x2 xor (x3 and x2) xor (x4 and x6)
xor x6 xor x5 xor x3 xor x0

 A-2. Stage 2 of S-Box

d3 = (c3 and c2 and c1) xor (c3 and c0) xor c3 xor c2

d2 = (c3 and c2 and c0) xor (c3 and c0) xor (c3 and c2 and c1) xor (c2 and c1) xor c2

d1 = (c3 and c2 and c1) xor (c3 and c1 and c0) xor c3 xor (c2 and c0) xor c2 xor c1

d0 = (c3 and c2 and c0) xor (c3 and c1 and c0) xor (c3 and c2 and c1) xor (c3 and c1) xor (c3

and c0) xor (c2 and c1 and c0) xor c2 xor (c2 and c1) xor c1 xor c0

A-3. Stage 3 of S-Box

y7 = (d3 and a0) xor (d2 and a1) xor (d1 and a2) xor (d0 and a3) xor (b2 and d3) xor (b3 and
d2) xor (b2 and d2) xor (d3 and a3) xor (d3 and a1) xor (d1 and a3) xor (b0 and d2)
xor (b2 and d0) xor (d3 and a2) xor (d2 and a3) xor (b0 and d3) xor (b1 and d2) xor
(b2 and d1) xor (b3 and d0)

y6 = ’1’ xor (a0 and d2) xor (a2 and d0) xor (d3 and a3) xor (a0 and d1) xor (a1 and d0) xor
(d3 and a2) xor (d2 and a3) xor (a0 and d0) xor (d3 and a0) xor (d2 and a1) xor (d1

and a2) xor (d0 and a3)
y5 = ’1’ xor (d3 and a3) xor (d3 and a1) xor (d1 and a3) xor (d3 and a2) xor (d2 and a3) xor

(b2 and d2) xor (b0 and d2) xor (b2 and d0) xor (b3 and d3) xor (b1 and d3) xor (b3

and d1) xor (d3 and a0) xor (d2 and a1) xor (d1 and a2) xor (d0 and a3)
y4 = (d3 and a1) xor (d1 and a3) xor (a0 and d0) xor (b3 and d3) xor (b0 and d1) xor (b1 and

d0) xor (d3 and a0) xor (d2 and a1) xor (d1 and a2) xor (d0 and a3) xor (a1 and d1)
xor (b2 and d2) xor (b0 and d0)

y3 = (b0 and d1) xor (b1 and d0) xor (b0 and d2) xor (b2 and d0) xor (b1 and d3) xor (b3 and
d1) xor (b0 and d0)

y2 = (a0 and d2) xor (a2 and d0) xor (a0 and d1) xor (a1 and d0) xor (b1 and d1) xor (b2 and
d2) xor (d3 and a1) xor (d1 and a3) xor (b0 and d2) xor (b2 and d0) xor (b3 and d3)
xor (a0 and d0) xor (b0 and d3) xor (b1 and d2) xor (b2 and d1) xor (b3 and d0) xor
(b0 and d0)

y1 = ’1’ xor (d3 and a0) xor (d2 and a1) xor (d1 and a2) xor (d0 and a3) xor (b1 and d1) xor
(b2 and d3) xor (b3 and d2) xor (d3 and a3) xor (d3 and a1) xor (d1 and a3) xor (b3

and d3) xor (d3 and a2) xor (d2 and a3) xor (b0 and d0)
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y0 = ’1’ xor (d3 and a0) xor (d2 and a1) xor (d1 and a2) xor (d0 and a3) xor (a0 and d2) xor
(a2 and d0) xor (b0 and d1) xor (b1 and d0) xor (d2 and a2) xor (b0 and d2) xor (b2

and d0) xor (b1 and d3) xor (b3 and d1) xor (d3 and a2) xor (d2 and a3) xor (b0 and
d0)

B-1. Stage 1 of S-Box-1

a3 = x6 xor x1 xor x7 xor x2

a2 = ’1’ xor x6 xor x1 xor x3 xor x0 xor x2 xor x7

a1 = ’1’ xor x6 xor x4 xor x5 xor x0

a0 = ’1’ xor x4 xor x5 xor x3

b3 = ’1’ xor x6 xor x1 xor x2 xor x5

b2 = x3 xor x0 xor x5

b1 = ’1’ xor x6 xor x4 xor x0 xor x3 xor x1

b0 = x4 xor x5 xor x3 xor x6 xor x7 xor x2

c3 = x7 and x1 xor (x2 and x1) xor (x3 and x1) xor x0 xor (x7 and x0) xor (x5 and x3) xor (x3

and x0) xor x4 xor (x7 and x4) xor (x5 and x4) xor (x2 and x0) xor (x4 and x2) xor (x6

and x2) xor (x4 and x1) xor (x6 and x0) xor (x6 and x4)
c2 = ’1’ xor x0 xor x7 xor (x7 and x0) xor (x7 and x5) xor (x6 and x5) xor (x1 and x0) xor (x3

and x1) xor x1 xor x6 xor (x7 and x1) xor x4 xor (x4 and x2) xor (x4 and x1) xor (x6

and x4) xor (x7 and x2)
c1 = x1 xor (x5 and x1) xor (x6 and x1) xor (x3 and x0) xor (x5 and x3) xor (x5 and x0) xor (x6

and x5) xor x2 xor (x4 and x2) xor (x6 and x2) xor x0 xor x5 xor x4 xor x7 xor (x7 and
x0) xor (x7 and x4) xor (x6 and x4) xor x6 xor (x7 and x2) xor (x7 and x1) xor (x3 and
x2)

c0 = ’1’ xor (x3 and x2) xor (x4 and x2) xor x3 xor x4 xor (x7 and x4) xor (x6 and x5) xor (x6

and x4) xor (x1 and x0) xor (x4 and x1) xor (x6 and x1) xor (x3 and x0) xor (x4 and
x3) xor (x5 and x4) xor (x7 and x0)

B-2. Stage 2 of S-Box-1

Same as the stage 2 of the S-Box in A-2.

B-3. Stage 3 of S-Box-1

y7 = (d3 and a0) xor (d2 and a1) xor (d1 and a2) xor (d0 and a3) xor (a0 and d2) xor (a2 and
d0) xor (a1 and d1) xor (a0 and d1) xor (a1 and d0) xor (b1 and d1) xor (b0 and d1)
xor (b1 and d0) xor (b2 and d3) xor (b3 and d2) xor (b2 and d2)

y6 = (d2 and a2) xor (a0 and d2) xor (a2 and d0) xor (d3 and a3) xor (d3 and a1) xor (d1 and
a3) xor (b2 and d2) xor (b0 and d2) xor (b2 and d0) xor (b3 and d3) xor (b1 and d3)
xor (b3 and d1)

y5 = (a0 and d2) xor (a2 and d0) xor (d3 and a3) xor (d3 and a1) xor (d1 and a3) xor (a1 and
d1) xor (a0 and d1) xor (a1 and d0) xor (d3 and a2) xor (d2 and a3) xor (b1 and d1)
xor (b0 and d1) xor (b1 and d0) xor (b2 and d3) xor (b3 and d2) xor (b2 and d2)

y4 = (a0 and d2) xor (a2 and d0) xor (d3 and a1) xor (d1 and a3) xor (a0 and d1) xor (a1 and
d0) xor (a0 and d0) xor (b0 and d2) xor (b2 and d0) xor (b3 and d3) xor (b1 and d3)



186         S. Morioka and A. Satoh

xor (b3 and d1) xor (b1 and d1) xor (b0 and d1) xor (b1 and d0) xor (b2 and d3) xor
(b3 and d2)

y3 = (a0 and d1) xor (a1 and d0) xor (d2 and a2) xor (a0 and d0) xor (d3 and a3) xor (b0 and
d3) xor (b1 and d2) xor (b2 and d1) xor (b3 and d0) xor (b0 and d2) xor (b2 and d0)
xor (b1 and d1) xor (b0 and d1) xor (b1 and d0)

y2 = (d3 and a1) xor (d3 and a0) xor (d2 and a1) xor (d1 and a3) xor (d1 and a2) xor (d0 and
a3) xor (a0 and d0) xor (a1 and d1) xor (b0 and d3) xor (b1 and d2) xor (b2 and d1)
xor (b3 and d0) xor (b0 and d2) xor (b2 and d0) xor (b1 and d1) xor (b0 and d1) xor
(b1 and d0)

y1 = (a0 and d1) xor (a1 and d0) xor (d2 and a2) xor (a0 and d0) xor (d3 and a3)
y0 = (a0 and d2) xor (a2 and d0) xor (d3 and a1) xor (d1 and a3) xor (a0 and d1) xor (a1 and

d0) xor (a0 and d0) xor (b2 and d2) xor (b0 and d2) xor (b2 and d0) xor (b1 and d3)
xor (b3 and d1) xor (b0 and d0) xor (b1 and d1) xor (b2 and d3) xor (b3 and d2)

C-1. Stage 1 of Inverter over the AES Field

Same as the stage 1 of the S-Box in A-1.

C-2. Stage 2 of Inverter over the AES Field

Same as the stage 2 of the S-Box in A-2.

C-3. Stage 3 of Inverter over the AES Field

Same as the stage 3 of the S-Box-1 in B-3.
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Abstract. Software counter measures against side channel attacks con-
siderably hinder performance of cryptographic algorithms in terms of
memory or execution time or both. The challenge is to achieve secure
implementation with as little extra cost as possible. In this paper we
optimize a counter measure for the AES block cipher consisting in trans-
forming a boolean mask to a multiplicative mask prior to a non-linear
Byte Substitution operation (thus, avoiding S-box re-computations for
every run or storing multiple S-box tables in RAM), while preserving
a boolean mask everywhere else. We demonstrate that it is possible to
achieve such transformation for a cost of two additional multiplications
in the field.
However, due to an inherent vulnerability of multiplicative masking to
so-called zero attack, an additional care must be taken to securize its im-
plementation. We describe one possible, although not perfect, approach
to such an implementation which combines algebraic techniques and par-
tial re-computation of S-boxes. This adds one more multiplication oper-
ation, and either occasional S-box re-computations or extra 528 bytes of
memory to the total price of the counter measure.

1 Introduction

With the increasing research endeavors in the field of side-channel attacks both
hardware and software implementations of cryptosystems have to take into ac-
count various counter measures. The main techniques are timing attacks [10],
simple (SPA) and differential power analysis (DPA) [11], and electromagnetic
attacks [7] . A particularly worrying factor is that the first three attacks can be
mounted using cheap resources. The last one requires more sophisticated set-up,
including the design of special probes and development of advanced measure-
ments methods.

In what follows we do not describe how the attacks work; papers [10,11,9,13]
provide an excellent study of this topic; we just outline their main principles.
Side-channel attacks work because there is a correlation between the physical
measurements taken during computations (e.g., power consumption, computing
time, EMF radiation, etc.) and the internal state of the processing device, which
is itself related to the secret key. An SPA is an attack where the adversary can
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directly use a single power consumption signal to break a cryptosystem. For
example, if an implementation of a cryptographic primitive includes branches
that depend on the secret data, particularly, if the bodies of the ‘then’ and ‘else’
branches differ, an SPA attack can be successfully mounted with very inexpensive
resources.

A DPA attack uses statistical analysis to extract information from a collection
of power consumption curves obtained by running an algorithm many times with
different inputs. Then the analysis of the probability distribution of points on
the curves is carried on. The DPA uses a correlation between power consumption
and specific key-dependent bits which appear at known steps of the encryption
computations. For example, a selected bit b at the output of one S-box of the
first round of the Advanced Encryption Standard (AES) [6] will depend on the
known input message and 8 unknown bits of the key. The correlation between
power consumption and b can be computed for all the 256 values of 8 unknown
bits of the key. The correlation is likely to be maximal for the correct guess of
the 8 bits of the key. Then the attack can be repeated for the remaining S-boxes.

It has been claimed that all “naive” implementations can succumb to attacks
by power analysis technique. The only solution is to re-implement cryptosystems
taking into account a wide range of counter measures, although the cost in terms
of performance and memory usage can be high. General strategies to combat
side-channel attacks are [9]:

– de-correlate the output traces on individual runs (e.g., by introducing ran-
dom timing shifts and wait states, inserting dummy instructions, random-
ization of the execution of operations, etc.);

– replace critical assembler instructions with ones whose “consumption signa-
ture” is hard to analyze, or re-engineer the critical circuitry which performs
arithmetic operations or memory transfers;

– make algorithmic changes to the cryptographic primitives so that attacks
are provably inefficient on the obtained implementation, e.g., masking data
and key with random mask generated at each run.

It had been shown [3,9] that among these, algorithmic techniques are the most
versatile, all-pervasive, and may be the most powerful. Also, in many contexts
it is the cheapest to put in place.

In [1], Akkar and Giraud described a practical implementation of the AES
using a new adaptive masking method. The idea is the following: the message is
masked by means of a traditional XOR operation with some random X at the
beginning of the algorithm; and thereafter everything is almost as usual. The
XOR operation is compatible with the AES structure except for an inversion in
the field; hence the mask must be arithmetic on GF (28). For this, the authors
devised a technique of transforming a boolean mask into a multiplicative mask,
namely a modified byte substitution. Of course, the value of the mask at some
fixed step (e.g., at the end of the round) must be known in order to re-establish
the expected value at the end of the execution. Fig. 1 illustrates the difference
between one round of the AES with and without masking counter measure. In
what follows we review the proposed counter measure and suggest a new solution
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Fig. 1. One round of the AES with and without multiplicative masking counter mea-
sure.

based on the same idea; a solution that significantly simplifies the structure of the
algorithm and reduces the number of expensive field operations. After which we
conduct a security analysis of the simplified method and propose some techniques
for its secure implementation.

2 Adaptive Masking Method for AES

The block cipher Rijndael [6] became an official new advanced encryption stan-
dard (AES) in 2001. It means that the AES will be used as the standard crypto-
graphic algorithm for financial transactions, for telecommunication applications,
and in many areas where DES is currently used. The large potential market is
making it worthwhile for chip manufactures to run AES on their Smart Card
micro-controllers. Since Smart Cards are easy victims to side-channel attacks,
implementation of counter measures is mandatory. However, a price to pay must
not be prohibitive for devices such as Smart Cards that have limited memory;
and their on-line usage requires reasonable time performance.

2.1 The Rijndael Round

For simplicity, we consider the 128-bit block- and and key sizes version on the
basis that the cryptanalytic study of the Rijndael during the standardization
process was primarily focused on this version. For a complete mathematical



190 E. Trichina, D. De Seta, and L. Germani

specification of the Rijndael algorithm we refer readers to [6]. An encryption
module is shown in Fig. 2. The total number of rounds (counting the extra
round performed at the end of enciphering) is 10, the key block length and data
block length are both equal to 4.

Add Round Key 

Sub_Key

Plain Text

Byte Substitution Shift Row Mix Column Add Round Key

Sub_Key

Byte SubstitutionShift RowAdd Round Key 

Sub_Key

Encrypted
    Data

Fig. 2. The main flow of the algorithm.

In the Rijndael, the 128-bit data block is considered as a 4×4 array of bytes.
The algorithm consists of an initial data/key addition, 9 full rounds (when the
key length is 128 bits), and a final (modified) round. A separate key scheduling
module is used to generate all the sub-keys, or round keys, from the initial key;
a sub-key is also represented as 4 × 4 array of bytes. The full Rijndael round
involves four steps.

The Byte Substitution step replaces each byte in a block by its substitute in
an S-box. The S-box is an invertible substitution table which is constructed by
a composition of two transformations, as Fig. 3 illustrates:

– First, each byte Ai,j is replaced with its reciprocal in GF (28) (except that
0, which has no reciprocal, is replaced by itself).

– Then, an affine transformation f is applied. It consists of
• a bitwise matrix multiply with a fixed 8× 8 binary matrix M ,
• after which the resultant byte is XOR-ed with the hexadecimal number

′63′.

The S-box is usually implemented as a look-up table consisting of 256 entries;
each entry is 8 bits wide; but it also can be computed “on-a-fly”. Although the
latter takes more time, it saves memory.

Ai,j A i,j
1

B i,j
Inversion Affine

transform. fin GF(2^8)

Fig. 3. Two steps of Byte Substitution transformation.
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Next comes the Shift Row step. Each row in a 4 × 4 array of bytes of data
is shifted 0, 1, 2 or 3 bytes to the left in a round fashion, producing a new 4× 4
array of bytes.

In the Mix Column step, each column in the resultant 4× 4 array of bytes is
considered as polynomial over GF (28) and multiplied modulo x4 +1 with a fixed
polynomial c(x) =′ 03′x3+′01′x2+′01′x+′02′. The operation of a multiplication
with a fixed polynomial a(x) = a3x

3+a2x
2+a1x

1+a0 can be written as a matrix
multiplication where the matrix is a circular matrix with the first row equal to
a0, a3, a2, a1, each subsequent row is obtained by a circular shift of the previous
one by 1 position to the left. Since multiplication is carried out in GF (28), the
product is calculated modulo irreducible polynomial m(x) = x8 +x4 +x3 +x+1,
or ′11B′ in hexadecimal representation.

The final step, Add Round Key, simply XOR-es the result with the sub-key
for the current round.

In parallel to the round operation, the round key is computed in the Key
Scheduling Block. The round key is derived from the cipher key by means of key
expansion and round key selection.

Round keys are taken from the expanded key (which is a linear array of
4-byte words) in the following way: the first round key consists of the first Nb

words, the second of the following Nb words, etc. The first Nk words are filled
in with the cipher key. Every following word W [i] is obtained by XOR-ing the
words W [i− 1] and W [i−Nk].

For words in positions that are multiples of Nk, the word is first rotated by
one byte to the left; then its bytes are transformed using the S-box from the
Byte Substitution step, after which XOR-ed with the round-dependent constant.

2.2 Adaptive Multiplicative Masking

It is easy to see that the problem of implementing a masking counter measure
comes from the Byte Substitution transformation, which is the only non-linear
part. One known solution [13] consists in masking a table look-up T which im-
plements the S-box with two boolean masks, the input mask Rin and the output
mask Rout, as follows: T [Ai,j ] = T ′[Ai,j ⊕ Rin] ⊕ Rout. This implies that the
masked table must be computed for each pair Rin, Rout. If done “on-a-fly”, it
takes time. Another solution is to fix a pair Rin, Rout prior each run, and pre-
compute table look-ups for all such pairs. If one wants to mask every byte in
128-bit data, it would require as much as 256×16 bytes, or 4K of memory, which
is not desirable for memory-limited devices like Smart Cards.

[1] suggests a method that allows to obtain the scheme without S-box re-
computations. The message is masked at the beginning of the algorithm by
XOR-ing it with a random value, generated for every new run; and thereafter
everything is nearly as usual.

Since the mask must be arithmetic on GF (28), the transformation “boolean
mask to multiplicative mask” is devised such that the first step of the Byte
Substitution, namely, the inversion in GF (28), produces a masked multiplicative
inverse of the input data, as shown in Fig. 4. Here Xi,j is an 8-bit random
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Fig. 4. Modified Byte Substitution with masking counter-measure.

value which masks data Ai,j and X1i,j = f(Xi,j) (this comes from the affine
property of f). Then, the reverse transformation “multiplicative mask to boolean
mask” is performed to restore an additive mask on the inverse data before an
affine transformation f takes place. The full scheme of the modified inversion
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Fig. 5. Modified inversion in GF (28) with masking counter measure.

is depicted in Fig. 5. As one can see, it requires an additional random variable,
Yi,j , one additional inversion, and 4 extra multiplications in the field. During
all stages of the modified inversion, intermediary values seem to be independent
from Ai,j .

While the masking methods, like in [13], must respect a masking condition
at each step of the algorithm, using the transformed method one only needs to
know the value of the mask at a fixed step (e.g., at the end of the round, or
at the end of a non-linear part). The expected value is re-established after the
computations at the end of the algorithm.
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3 Simplified Multiplicative Masking

The idea of the simplified transformed masking is the same as the one described
above. At the beginning of the byte substitution, the input value is Ai,j ⊕Xi,j ,
where Xi,j is a random byte (we can safely drop indices i, j). We found a very
efficient method that allows us to have A−1 ⊕ X at the end of the inversion
without compromising value A. It can be described using solely algebraic laws
for operations in finite fields.

Let us approach our goal from two directions simultaneously: from the input
A⊕X working forwards to get A−1⊕X−1, and from the output A−1⊕X working
backwards, also towards A−1 ⊕X−1.

1. Suppose, we managed to obtain A ⊗X from A ⊕X without compromising
A; then applying inversion in GF (28), we get A−1 ⊗X−1. Here how it can
be done.
a) We want to have a multiplicative masking A⊗X from an additive mask-

ing A ⊕X. A distributivity law (a ⊕ b) ⊗ c = (a ⊗ c) ⊕ (b ⊗ c) gives us
the idea. Substituting A for a and X for c, we get

(A⊕X) −→ (A⊕X)⊗X = A⊗X ⊕X2.

b) To obtain a pure multiplicative mask, we have to get rid of X2. An
algebraic law a⊕ a = 0 can be applied here

A⊗X ⊕X2 −→ A⊗X ⊕X2 ⊕X2 = A⊗X.

c) At this stage, one can safely apply inversion in GF (28)

A⊗X −→ (A⊗X)−1 = A−1 ⊗X−1.

2. Now we face a symmetric task of obtaining the additive mask A−1⊕X from
the multiplicative mask A−1⊗X−1. The algebraic law x−1⊗x = 1 will help
to get rid of the X−1; but before doing so, an additional step must be taken.
a) Ensure that the value A−1 will not be revealed in the process:

A−1 ⊗X−1 −→ A−1 ⊗X−1 ⊕ 1.

b) Now we can get rid of X−1:

A−1 ⊗X−1 ⊕ 1 −→ (A−1 ⊗X−1 ⊕ 1)⊗X = A−1 ⊗ 1⊕X = A−1 ⊕X.

Fig. 6 depicts this method graphically. Compare it with Fig. 5. As one can see,
ours is a significant simplification of the solution in [1]; it requires no extra
inversion in GF (28), and only two extra multiplications and one squaring.

One can argue that the first step in the “boolean mask to multiplicative
mask” transformation, can jeopardize the security of the masking because (a⊕
x)⊗x is not fully random for a random x. Indeed, as has been pointed out in [5],
the equation (a⊕ x)⊗ x = y has either zero solution, or two solutions; namely,
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Fig. 6. Inversion in GF (28) with simplified multiplicative masking.

substituting x with z ⊗ a in the equation above, we obtain z2 ⊕ z = y/a2. We
know that the equation z2 ⊕ z = b has zero solution if Trace(b) = 1, and two
solutions if Trace(b) = 0. So (a ⊕ x) ⊗ x reaches only half of the elements in
GF (28). However, it is sufficiently random to serve the purpose.

If the original additive mask is restored at the end of the round, as illustrated
in Fig. 1, there are no limitations on the choice of the random 128-bits mask X
apart from the requirements that none of its bytes Xi,j is equal to zero.

However, one can imagine the computation scheme, where, instead of restor-
ing the original mask Xi,j at the end of each round, one simply goes on with
the computations, taking the value X1i,j = f(Xi,j) as the mask for the second
round, X2i,j = f(X1i,j) for the third, etc.

Only at the end of the computations the data is unmasked. The correspond-
ing “correction” on the mask has to be carried out in parallel with the main
algorithm. In this case, due to the nature of the Mix Column and Shift Row
operations, some of the random bytes XKi,j for the K-th round, K = 2, ...9,
can turn to zeros.

A mathematical analysis of the effect of the Mix Column and Shift Row
operations on bytes of the mask indicates, and a simple computer experiment
with all possible choice of random bytes for a 128-bit random confirms, that the
sufficient condition which effectively prevents this from happening is that no two
bytes of the initial 128-bit random X should be the same.
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4 Securized Implementation of the Simplified
Multiplicative Masking

Let us ask a question: how to implement the simplified multiplicative masking in
a secure way? A straightforward implementation can lead to a potential security
flaw, as had been pointed out in [2,4,8]. The flaw consists in the fact that mul-
tiplicative mask masks only non-zero values, i.e., zero input value is mapped
into zero by the inversion. In other words, if an attacker can detect that the
value before (i.e., Ai,j ⊗Xi,j) and after (i.e., (Ai,j ⊗Xi,j)−1) the inversion is 0,
he/she gets an information on Ai,j . An attacker can exploit this fact and mount
the first order DPA attack as if no masking has been applied.

Hence, not to reveal the weakness, nowhere in the implementation there
should be a moment where both, Ai,j ⊗ Xi,j and (Ai,j ⊗ Xi,j)−1, are read or
written in clear. In other words, the counter measure shown in Fig. 6 must be
implemented in a completely protected environment. Currently we are working
on such an implementation. The obvious solution stems from the nature of our
simplified masking.

Indeed, since the constant 1 is to be added to every entry of the inverse table
(see Fig. 6), it can be done in advance, while creating the table itself. This,
however, may not protect from the attacker who now, instead of looking for 0
as the resulting value of the table lookup will look for 1. The situation can be
remedied as follows.

– Prior to a run of the AES algorithm, all entries of a table are XOR-ed with
some random constant value K. Then the result of the table lookup for
(Ai,j ⊗Xi,j) will be (Ai,j ⊗Xi,j)−1 ⊕K.

– The subsequent multiplication with Xi,j produces ((Ai,j)−1 ⊕ (K ⊗Xi,j)),
which either can be carried to the affine transformation f with K ⊗Xi,j as
a new random or can be replaced with Xi,j by further XOR-ing the table
lookup result with Xi,j ⊕ (K ⊗Xi,j).

This adds 256 bytes and one more field multiplication to the implementation;
however, computing a simplified multiplicative masking is still more efficient
than re-computing S-boxes for every run.

Still, the problem remains: how not to reveal Ai,j⊗Xi,j during computations?
We do not have a good answer to this question yet, which undoubtedly weakens
our counter measure. To prevent reading Ai,j ⊗ Xi,j in clear from the inverse
table T , the upper-most operation ⊕ with X2 in Fig. 6 must never be actually
performed.

One solution is that operation ⊕ with (X2
i,j ⊕M) for some a-priori chosen

M is carried out, simultaneously updating T in such a way that for a new table
T ′: T ′[B⊕M ] = T [B]. M could be chosen so that this re-computation amounts
to simple re-shufling of the indices; for example, if M = 1, T ′ is obtained from T
by simply “swapping” each even and odd entries. Obviously, from time to time,
M and, respectively, the table T ′ must be re-newed.

Another solution brings us back to S-box re-computations: instead of recov-
ering Ai,j⊗Xi,j from Ai,j⊗Xi,j⊕X2

i,j a new table T ′ such that T ′[Ai,j⊗Xi,j⊕
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X2
i,j ] = T [Ai,j ⊗Xi,j ] is computed. Since only the first and the last rounds are

most vulnerable to the DPA, it seems enough to apply re-computations (or store
two extra pre-computed S-boxes) only for these rounds.

A general algorithm to compute such T ′ given some table T and a random
value X is described below.

Look-up table re-computation.

Input: table T;
random X = (x_7, ..., x_1, x_0)

Output: table T’ such that T’[b+X] = T[b] for b = 0..255
T’ := T;
For every x_i from (x_7, ..., x_0) in random order do:

If x_i = 1 then
(1) split T’ into blocks, each block containing 2ˆ(x_i)

subsequent elements from T;
(2) swap pairwise j-th and j+1-st blocks;
(3) assign the result to T’;

Return T’

Notice, that the algorithm reads bits of X at random which provides some pro-
tection from an attacker during re-computations.

The proposed securized implementation of the simplified adaptive masking
is computationally more efficient than full S-box re-computations, thus repre-
senting a compromise between cost and security.

5 Conclusion

We have shown that the Modified Byte Substitution can be implemented in a way
that to some degree avoids a severe security flaw paying a price of additional
multiplications and RAM usage.

However, many security features are a matter of trade-offs. Described in this
paper implementation of the simplified multiplicative masking provides similar
protection as an S-box re-computation but has lower implementation costs, in
terms of both, memory and execution time; namely, the price to pay is, apart
from numerous XOR operations, only three to four extra multiplications in
GF (28) per round plus an occasional re-shuffling of the inverse table stored
in ROM. While may not ensuring a complete protection from a sophisticated
attacker due to an inherent vulnerability of a multiplicative masking in the field,
the method increases the number of power curves acquisitions and thus can be
sufficient for a low-end line of Smart Cards.

Another, quite different solution would be not to work in the field GF (28),
but in the field GF (28 + a) where a is chosen such that 28 + a is prime. The we
can avoid zero by replacing it by 28 + 1. This is what had been done in IDEA
cipher as a solution to the problem of inverting a number modulo 216 during
decryption [12].
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Abstract. The recently proposed multiplicative masking countermea-
sure against power analysis attacks on AES is interesting as it does
not require the costly recomputation and RAM storage of S-boxes
for every run of AES. This is important for applications where the
available space is very limited such as the smart card applications.
Unfortunately, it is here shown that this method is in fact inherently
vulnerable to differential power analysis. However, it is also shown that
the multiplicative masking method can be modified so as to provide
resistance to differential power analysis of nonideal but controllable
security level, at the expense of increased computational complexity.
Other possible random masking methods are also discussed.

Keywords. AES, differential power analysis, countermeasures, multi-
plicative masking.

1 Introduction

Side-channel attacks on software or hardware implementations of various cryp-
tosystems aim at recovering the secret key information from certain physical
measurements performed on the electronic device during the computation such
as the power consumption, the time, and the electromagnetic radiation. Power
analysis attacks [9] are very powerful as they do not require expensive resources
and as most implementations without specific countermeasures incorporated are
vulnerable to such attacks. Among them, the (first-order) differential power anal-
ysis (DPA) attacks are particularly impressive, because they use relatively simple
mathematical tools and techniques that are independent of the implementation
of the cryptographic algorithm. Moreover, the countermeasures are typically
costly in terms of speed performance and memory requirements.
� A preliminary version of this work was presented at the Gemplus Quarterly meeting,

La Ciotat, France, October 30–31, 2001.
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The goal of simple power analysis (SPA) attacks is to deduce some infor-
mation about the secret key, such as the Hamming weight of some parts of the
key, from a single power consumption curve. This may be possible if, for ex-
ample, there are branches in the computation that depend on the secret key.
More generally, one can also collect a large training set of power consumption
curves from different secret keys (and possibly different input data) and then
use appropriate statistical hypothesis testing methods in order to identify traces
or signatures of the parts of the secret key hidden in the curves. For example,
key scheduling algorithms for block ciphers may especially be vulnerable in this
regard, due to the absence of the randomization effect of input data. However,
the statistical techniques to be used may be complicated and dependent on the
particular implementation.

The DPA attack [9] requires a set of power consumption curves obtained by
running the cryptographic algorithm a number of times for the same secret key
and different inputs. A necessary algorithmic condition, the so-called fundamen-
tal hypothesis, for the DPA attack to be effective is the existence of one or more
intermediate variables in the algorithm that can be expressed as or are corre-
lated to functions depending on a small number of key bits and on known input
or output data. The key bits involved may then be reconstructed by partition-
ing the set of curves according to the value of the chosen intermediate variable
corresponding to the key bits guessed and to the input or output data known
and by computing and comparing some simple statistic, such as the average, on
the partitioned curves at individual points in time. The attack is successful if
the correct guess about the key bits results in a significant difference between
the computed average curves at one or more points in time. For other possibil-
ities, see [4]. What makes the attack practically very interesting is that many
cryptographic algorithms satisfy the fundamental hypothesis. For example, the
intermediate variables in the first or the last few rounds of practical block ciphers
are especially vulnerable.

A higher-order DPA attack is a generalization of the (first-order) DPA attack
in which the power consumption curves are analyzed by using a joint statistic
applied to collections of points in time. The general attack is more powerful, but
may be more complex and considerably more complicated as the choice of these
points and possibly also of the joint statistic is likely to depend on the particular
implementation.

In principle, the complexity of the side-channel attacks can be increased by in-
troducing physical or algorithmic countermeasures. A general strategy to render
the SPA and DPA attacks more difficult to mount is to balance and randomize
elementary computations involving the secret key, e.g., by randomly introducing
dummy operations and timing shifts, as well as by randomizing the order of el-
ementary computations and the computations themselves. A general technique
to prevent the first-order or higher-order DPA attacks is random data splitting
[7], [3], especially for the computation of intermediate variables satisfying the
fundamental hypothesis. It is pointed out in [10] that for the (first-order) DPA,
instead of splitting the data into two parts one may as well apply random masks
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to data which are easier to implement. Of course, one has to be careful to mask
the data completely and thus avoid weaknesses such as the one shown in [5]
for a masking technique from [10]. Also, the computations involved in masking
have to be performed in a secure way, which itself is not vulnerable to DPA.
Random masks have to be generated for each new run of the cryptographic al-
gorithm, but may be repeated within the algorithm. The repetitions generally
increase the vulnerability to higher-order DPA. The random masks can be com-
bined with data by using (quasi)group operations such as the bitwise addition
or modular integer addition.

If an affine transformation is applied to masked data and if the masking
operation is the same as the corresponding linear operation, then only the ad-
ditive constant has to be recomputed for each new mask in order to maintain
the equivalence of the data transformations. However, this is generally not the
case with nonlinear transformations. They typically have to be recomputed and
stored depending on the mask and this can be very costly for many cryptographic
algorithms including AES [6]. In AES, the only nonlinear transformations are
nonlinear parts of 8 × 8-bit S-boxes which perform the multiplicative inversion
in GF(256). In [2], a masking technique is proposed which combines the usual
binary additive masking with the multiplicative masking of data, using the mul-
tiplication in GF(256), thus avoiding the costly recomputation and RAM storage
of S-boxes.

In this paper, it is shown that this multiplicative masking technique is vul-
nerable to the first-order DPA attack and in some sense even more than AES
without masking. This is essentially because the all-zero input to the S-boxes is
not effectively masked by the multiplicative mask and the binary additive mask
is first removed in order to apply the multiplicative mask.1 Moreover, it is argued
that the weakness is inherent to the multiplicative masking and therefore cannot
be remedied so as to achieve ideal security. In addition, the so-called embedded
multiplicative masking technique which can achieve approximate security with a
controllable security level is introduced. It is also pointed out that the masking
technique [10] in which only one S-box is recomputed and stored in RAM and
used repeatedly during one execution of AES is vulnerable to a relatively simple
second-order DPA attack.

The main lines of the DPA attack [9] applied to AES are described in more de-
tail in Section 2 and the multiplicative masking technique is presented in Section
3. The inherent weakness is explained in Section 4, the embedded multiplicative
masking technique is proposed in Section 5, and conclusions are given in Sec-
tion 6.

1 A similar power analysis attack, although not in the DPA form, is independently
given in the unpublished manuscript “Time and memory efficiency in protecting
AES against higher order power attacks,” by N. T. Courtois and M.-L. Akkar, from
April 2002.
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2 Differential Power Analysis of AES

AES is a product block cipher composed of a number of rounds each consisting
of a reversible nonlinear transformation providing confusion and a reversible lin-
ear transformation providing diffusion, where the linearity is with respect to the
binary field, GF(2). The expanded secret key is bitwise added to the plaintext
and to the output of each round. The nonlinear transformation consists of iden-
tical 8 × 8-bit S-boxes each performing the byte substitution ByteSub defined
as the multiplicative inversion in GF(256), leaving the all-zero input intact, fol-
lowed by an affine 8 × 8-bit transformation. The linear transformation consists
of a permutation of output bytes of S-boxes denoted as ShiftRow followed by
a linear transformation denoted as MixColumn, which is removed from the last
round. More details can be found in [6], but are irrelevant for our analysis.

According to [9], the DPA attack on AES consists of the following stages.
The intermediate variables satisfying the fundamental hypothesis are the output
bytes of the S-boxes or of just the nonlinear parts of the S-boxes in the first
round. Each of them is a function of the input byte which itself is a bitwise
sum of the corresponding plaintext and expanded key bytes. Accordingly, if the
plaintext byte is known and the key byte is guessed correctly, then the S-box
output byte can be computed correctly. The objective of the attack is to recover
the expanded key in a byte-by-byte divide-and-conquer manner.

In the first stage, a sufficient number, N , of curves are obtained by measuring
the power consumption during the execution of (the first round of) AES for the
same secret key and N different plaintexts. The average C of these N curves is
then computed. The second stage is performed for each of the S-boxes in the
first round. For each of 256 possible values of the targeted expanded key byte
K, a subset of M (on average, M = N/2m) plaintexts resulting in a chosen fixed
m-bit value of the partial output byte of the considered S-box are identified,
the corresponding M curves are extracted, and their average C(K) computed.
For example, the chosen fixed value may have maximal or minimal Hamming
weight (all-one or all-zero m-bit words). More generally, if one knows good power
consumption models of the involved components, an optimal subset of M curves
can be chosen according to a set of 28−m or of any other number of output byte
values best distinguished from the others with respect to power consumption, as
proposed in [1] for m = 1.

A value K is then assumed to be correct if the difference between the two
average curves, C(K) and C, contains one or more noticeable peaks. The peaks
are due to the same value of the S-box output being computed at the same time
for each of the extracted M curves, if the value K is correct, and to unbalanced
power consumption associated with different S-box output values. This is the
main point of the DPA attack. On the other hand, if the value K is incorrect,
then the outputs of the S-box will vary and the peaks will not be observed. More
precisely, this is the case for m < 8. For m = 8, as the S-boxes are reversible, a
fixed output byte value implies that the input byte value is also fixed. Therefore,
even if the guessed value K is incorrect, then for the extracted curves both the
input and output bytes will have fixed values, different for different K, also
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giving rise to observable peaks, possibly of different magnitudes for different K.
As a consequence, the reliable statistical distinction of the correct K may be
infeasible.

If m decreases, then M increases, but the impact of the repeated computation
on each of the M extracted power consumption curves becomes statistically
less significant. Also, it is not clear how one can simultaneously use more than
just one fixed output m-bit value in order to increase the statistical distinction
between the correct and incorrect key values. Nonetheless, this may be possible.

According to the key schedule in AES, if the key size is not bigger than the
plaintext block size, then the recovered expanded key bytes directly specify the
secret key. Otherwise, the DPA attack should also be applied to the second round
of AES in order to recover the whole secret key.

3 Multiplicative Masking of AES

The starting idea of the method proposed in [2] in order to prevent the DPA
attack on AES is to use the binary additive mask which is compatible with the
binary linear or affine transformations in AES. Accordingly, as far as the affine
transformations are concerned, only the additive constants are affected by this
mask. However, if the additive mask is applied to the input of the nonlinear
part of an S-box in AES, then this nonlinear part has to be recomputed for each
new mask used. Recall that the nonlinear part, F , of the S-box transformation
ByteSub is the multiplicative inversion in GF(256) extended by mapping the
all-zero input into the all-zero output. For simplicity, F is called the inversion in
GF(256). The main idea from [2] is to use the nonzero multiplicative mask, with
respect to the multiplication in GF(256), for the data passing through F , without
having to recompute and store F . To this end, one has to convert the additive
mask into the multiplicative mask at the input of each F and to reproduce the
additive mask from the multiplicative mask at the output of each F . A way,
secure with respect to DPA, of converting the masks is suggested in [2]. More
details are given below.

Fig. 1 shows the data flow in the i-th round of AES without and with the
masking countermeasure. A general rule in all the figures presented is that the
expressions for input, output, and all intermediate data are displayed within
the rectangular blocks. It is assumed that the ByteSub and Modified ByteSub
transformations act on all the bytes in a block. Note that the expanded key
is bitwise added to the plaintext to form the input to the first round, that the
MixColumn transformation is removed from the last round, and that the additive
mask is not produced at the output of the last round. According to [2], the
additive mask X is the same in every round. In fact, keeping the same additive
mask in every round would matter if the S-boxes had to be recomputed for each
new mask, because in that case the same recomputed S-boxes could be used in
each round. So, restoring the same mask X in the last step of each round is not
really needed. Instead, one can just add the expanded key Ki and thus effectively
obtain the output mask X(3). Only in the last round, the output mask has to
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be removed. Here, the masks are transformed by the linear transformations as
X(1) = L(X), X(2) = ShiftRow(X(1)), and X(3) = MixColumn(X(2)), where L
denotes the linear part of the affine transformation of ByteSub combined for all
the bytes in a block. So, essentially only the ByteSub transformation has to be
modified, because of the nonlinear part contained.
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Fig. 1. The round i of AES without and with masking countermeasure.

The data flow through the original and modified ByteSub transformations,
acting on bytes, is shown in Fig. 2 (the index j stands for a particular byte in a
block and the index i stands for a particular round). The affine transformation is
unchanged, and only the nonlinear transformation, F , has to be modified. This
is achieved by using a nonzero multiplicative mask Yi,j in a way displayed in
Fig. 3, which is self-explanatory.
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Fig. 2. The ByteSub transformation without and with masking countermeasure.

Recall that the addition in GF(256) is the same as the bitwise addition. It
follows that F does not have to be recomputed and stored in a look-up table
for each new mask Yi,j . This is due to the multiplication in GF(256) being
compatible with F or, more precisely, to the equality

F (A⊗ Y ) = F (A)⊗ F (Y ) (1)

where F (Y ) �= 0 if Y �= 0, so that F (A) can be recovered from F (A) ⊗ F (Y ).
In other words, if a masked input is transformed by F itself, then the masked
desired output is obtained. So, one just has to convert the multiplicative into
the additive mask and vice versa, and that can be done by one more inversion,
four multiplications, and two additions in GF(256).

Note that in general, if two, possibly different, group operations ∗ and • are
used for masking the input and output data for a transformation F , respectively,
then the masked data should be transformed by the modified transformation F ′

satisfying F ′(A ∗ Y1) = F (A) • Y2. Equivalently, F ′ is defined by

F ′(A) = F (A ∗ Y −1
1 ) • Y2, (2)

where Y1 and Y2 are the input and output masks, respectively, which can be
mutually related. In order to resist DPA, F ′ should not be directly implemented
by using F and (2). For example, a secure way would be to use a look-up table
for F ′, but it has to be recomputed and stored in RAM for every new pair of
masks Y1 and Y2.
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The multiplicative masks Yi,j and the additive masks Xj can be randomly
chosen so as to be uniformly distributed and mutually independent. Also, Yi,j

can be the same for each round i and possibly related to Xj , but this gener-
ally increases the vulnerability to higher-order DPA. Since all the intermediate
variables in Fig. 3 are masked, it is claimed in [2] that the masked AES should
be resistant to the (first-order) DPA attack. This masking method is important,
because it avoids the recomputation and storage of S-boxes for each new run of
AES, which would, for example, require 256× 16 bytes of RAM for the 128-bit
AES if all the S-boxes in a round are masked by mutually independent masks.
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Fig. 3. Modified inversion in GF(256) with multiplicative masking countermeasure.



206 J.D. Golić and C. Tymen

4 Differential Power Analysis of Masked AES

In this section, a subtle security flaw of the masking method [2] described in
Section 3 is pointed out. In addition, it is argued that the multiplicative masking
for AES is inherently vulnerable to the DPA attack.

The basic problem with the multiplicative mask is that it does not mask
the all-zero byte value of data, that is, the all-zero byte remains unchanged after
masking by a multiplicative mask. On the other hand, the all-zero (intermediate)
data bytes cannot be avoided in AES. As a consequence, there are intermediate
variables in the modified inversion scheme from Fig. 3 that are not masked
completely and satisfy the fundamental hypothesis for DPA by being correlated
to a function depending on only 8 key bits and 8 plaintext bits.

More precisely, in the first round of the masked AES, the vulnerable inter-
mediate variables are the input byte Z1,j = A1,j ⊗ Y1,j and the output byte
Z2,j = F (A1,j ⊗ Y1,j) of the block implementing the inversion in GF(256). Note
that the data byte A1,j is given as A1,j = Pj ⊕K0,j where Pj and K0,j are the
corresponding plaintext and expanded key bytes, respectively. It follows that

K0,j = Pj ⇒ Z1,j = 0 ⇒ Z2,j = 0. (3)

So, interestingly, it turns out that the (first-order) DPA attack on the masked
AES can be mounted in essentially the same way as on the original AES without
masking, which is described in Section 2. The difference is that one has to target
the all-zero input byte or, equivalently, the all-zero output byte of F . In other
words, for each of 256 possible values of the corresponding expanded key byte
K0,j , the power consumption curves for which Pj = K0,j are extracted and
used for identifying the correct key. To this end, appropriately chosen plaintexts
can reduce the required number of power curves. Since m = 8, the DPA attack
on AES without masking would not be effective, as explained in Section 2.

However, for the masked AES, the DPA attack will be able to distinguish
between correct and incorrect guesses of the expanded key byte, because of the
randomization effect provided by the random multiplicative mask. Observe that
if K0,j is guessed correctly, then the peaks will appear because of the repeated
simultaneous computation of not only the all-zero output byte Z2,j , but also the
all-zero input byte Z1,j . Altogether, the DPA attack may be more effective than
the one on AES without masking, especially if one cannot find an effective way
to simultaneously use more than just one fixed target m-bit value in the DPA
attack on AES, where m < 8, or, more generally, a way to use (possibly optimal)
partitions of power consumption curves into more than just two sets, provided
that the power consumption models are available.

Now, the question is if the described DPA attack can be somehow prevented
by using some other implementation of the multiplicative masking. For exam-
ple, one may try to replace the modified inversion performed on Ai,j by the
modified inversion performed on some nonzero input byte whenever Ai,j = 0,
and then to replace the computed output value by the desired one. However,
detecting whether Ai,j = 0 and replacing the computed output value require
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specific computations that are themselves vulnerable to the DPA attack. In con-
clusion, it appears that the weakness of the multiplicative masking for AES is
hard to remove ideally. Nevertheless, there may exist measures for reducing the
weakness.

Of course, it would be practically important, especially for applications where
the space is very limited, to find another masking method that will not require
the recomputation and storage of S-boxes for every new run of AES. To this
end, one has to use group or, more generally, quasigroup operations for masking
the whole range of possible byte values which would at least simplify the secure
computation and/or storage of F ′ according to (2), where F is the inversion in
GF(256). However, this does not appear to be very likely.

In the next section, we propose an approximate, nonideal solution to the
problem which is based on a random embedding of GF(256) into a larger alge-
braic structure so that the zero value is mapped into a set of values and all the
operations remain compatible with GF(256).

5 Embedded Multiplicative Masking

5.1 Overview of Countermeasure

We represent the field GF(256) as the ring of binary polynomials in x modulo an
irreducible polynomial P (x) of degree 8. Let Q(x) be another binary irreducible
polynomial that is coprime to P (x) and has degree k. Then GF(256) is a subring
of the ring R = GF(2)[x]/(PQ), which is isomorphic to GF(256) × GF(2k),
with the isomorphism U �→ (UP , UQ), where the two coordinates are defined as
UP = U mod P and UQ = U mod Q.

To repair the multiplicative masking described above, we suggest to use the
random mapping ρ : GF(256)→ R defined by

ρ(U) = U + RP (4)

where R is a randomly chosen polynomial of degree less than k (a k-bit word).
Our basic idea relies on the fact that the zero in GF(256) is mapped onto 2k pos-
sible values in R and should hence be more difficult to detect when k increases.
Since ρ(U)P = U , ρ only randomizes the second coordinate, so that choosing
R of degree k or larger and taking the result modulo PQ will not increase the
randomization effect.

Let F ′ : R → R be a mapping defined by F ′(U) = U254. Then, because of
(F ′(U)P , F ′(U)Q) = (U254

P , U254
Q ), F ′ coincides with F on GF(256), and if 7 does

not divide k, then U254
Q is an 1-1 function of UQ, so that F ′ does not deteriorate

the randomization induced by ρ (for k = 7, U509 will do). The embedded mul-
tiplicative masking countermeasure then consists in modifying the data path in
Fig. 3 so that the input data Ai,j ⊕ Xj is mapped through ρ into R, the first
multiplication and two additions are taken modulo PQ, and F ′ is substituted
for F . The second multiplication along the data path and all other operations
involving the additive and multiplicative masks remain the same, that is, modulo
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P . Accordingly, in mathematical terms, the modified method is the same as the
original method with respect to the first coordinate, and the only difference is
in the introduced randomized second coordinate. Here, the k-bit word R essen-
tially acts as an additional mask. Of course, in a secure implementation the two
coordinates should not be computed explicitly.

5.2 Efficient Implementation

As k grows, it quickly becomes difficult to securely implement F ′ using a look-up
table. For k = 8, for instance, 220 bits of (ROM) memory space are required,
which is unacceptable in many practical situations. As a software alternative, it
is possible to evaluate F ′ using the traditional “square-and-multiply” method,
with about 8 squarings and 4 multiplications in R. This solution can be made
more efficient by chosing a specific representation for R, as it is shown now.

Recall that the AES standard specifies usage of the polynomial P0(x) =
1 + x + x3 + x4 + x8 to represent GF(256). The idea is to choose a different
polynomial that is more suitable for performing the multiplication. In particular,
since in GF(2)[x]

1 + x17 = (1 + x)(1 + x3 + x4 + x5 + x8)(1 + x + x2 + x4 + x6 + x7 + x8), (5)

the choice P (x) = 1+x3 +x4 +x5 +x8 instead of P0(x), and Q(x) = 1+x+x2 +
x4 + x6 + x7 + x8, k = 8, yields a particularly efficient encoding. The conversion
between the coordinates in the two corresponding bases is achieved by applying
the linear transformations determined by the 8× 8 binary matrices

M =






1 1 0 1 1 0 0 1
0 0 1 1 0 1 1 1
0 0 1 1 0 1 0 0
0 0 1 1 1 0 0 1
0 0 1 0 0 1 1 1
0 1 1 0 0 1 1 0
0 1 0 0 0 1 1 0
0 0 0 1 1 1 0 0






and M−1 =






1 1 1 0 0 0 1 1
0 1 1 1 0 1 0 1
0 0 0 0 0 1 1 0
0 1 0 0 1 0 0 0
0 0 1 0 0 1 1 1
0 1 1 0 1 1 1 0
0 0 0 1 1 0 0 1
0 1 1 1 1 0 0 1






(6)

with respect to the LSB-first representation. More precisely, the input and out-
put bytes in Fig. 3 should be multiplied as binary vectors (one-column matrices)
by M and M−1, respectively, and the additive mask used should be multiplied
by M , because of M(Ai,j ⊕Xj) = MAi,j ⊕MXj . Note that the output multi-
plication by M−1 restores the same additive mask. In fact, the explicit output
multiplication by M−1 can be avoided by incorporating M−1 into the affine part
of the ByteSub transformation shown in Fig. 2.

Let us look at how multiplication works in R16 = GF(2)[x]/(PQ) (see also
[13]). As all the elements of R16 can be represented as 16-bit words, let U and V
be two words representing two elements of R16, with the LSB-first convention.
We compute W = U ⊗ V in R16 by performing
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W1, W2 ← MULX U, V
W =	W2
W⊕ = W1
IF (W2)0 = 1 THEN W⊕ = FFFF ELSE W1⊕ = FFFF

where MULX denotes the polynomial multiplication, ⊕ denotes the 16-bit XOR
operation, and	 the 16-bit leftshift operation. The last operation W1⊕ = FFFF
is here only to ensure that the code runs in time independent of the input.
Concerning the square operation, let us consider more generally the mapping
si : U �→ U2i

in R16. As U(x) �→ U(x)2
i

mod (1 + x17) = U(x2i mod 17) is
simply a permutation of the coefficients of U(x), si can easily be implemented
in hardware by first permuting the bits of U , considering that the 16th bit of U
is set to zero (this operation requires no logical operations), and then XOR-ing
the result with FFFF if the resulting 16th bit is equal to 1. Hence, computing
si(U) requires basically one 16-bit XOR operation in hardware. In software, si

can be evaluated by using a table look-up, also with a complexity of one 16-bit
XOR.

The total complexity of evaluating F ′ can now be estimated as follows. From
the decomposition 254 = 2(1 + 2 + 22 + 23(1 + 2 + 22) + 26), V = U254 can be
evaluated by using the following sequence of operations :

V ← s1(U)
V ← V ⊗ U
V ← s1(V )
V ← V ⊗ U
V ← V ⊗ s3(V )
V ← V ⊗ s6(U)
V ← s1(V )

with the total cost of four multiplications and five calls to some si. This yields a
total complexity of roughly 4 MULX, 17 elementary 16-bit word operations, and
between 4 and 9 branching instructions. Besides the fact that our method offers
some resistance to DPA, it is much faster than GCD-based algorithms, like the
binary GCD of [8] or a variant of [12], which would require at least about 100
16-bit word operations. It is especially interesting for software implementations
on 16-bit or 32-bit microprocessors as well as for hardware implementations.

5.3 Security Analysis

We consider a power consumption model based on the Hamming weight, that
is, we assume that an attacker has access at any time to the Hamming weight
of the registers of the microprocessor through the power curves. The strategy
of the attacker consists in averaging the Hamming weight of the registers in
order to discriminate between the case ρ(U) = 0 mod P and the case ρ(U) �= 0
mod P . The inversion algorithm presented above involves 25 elementary 16-bit
word manipulations (5 different 16-bit values per multiplication and 1 per si).
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U �= 0 mod P U = 0 mod P U �= 0 mod P U = 0 mod P

8.01562 8.03137 7.59191 7.78039
7.00973 7.27843 6.51737 6.71373
7.92926 8.59608 8.27146 7.8902
8.06434 8.28235 7.50376 7.67059
7.00063 7.10588 6.49996 6.58824
7.98235 7.85882 8.26128 8.33725
8.00197 8.03137 7.48426 7.56078
6.97292 7.0902 6.48111 6.52549
7.92929 8.59608 8.32587 7.95294
8.01562 8.03137 7.49336 7.70196
6.99863 7.3098 6.49944 6.81569
7.99385 7.95294 8.25166 8.20784
8.00083 8.03137

Fig. 4. Average Hamming weight of each 16-bit register used in modified inversion.

Software simulation allows us to compute exactly the average Hamming weight
of each of the 25 registers, as shown in Fig. 4.

Looking at the difference of average Hamming weights between the two cases,
one observes a maximum difference of about 8.5%. This is a convincing empirical
argument that the proposed randomization technique is sound with respect to
DPA, and we emphasize that the security level increases with k. Furthermore, as
the recomputation and storage of S-boxes are not needed, in order to reduce the
vulnerability to higher-order DPA one should use as many mutually independent
masks as practically feasible, especially in the first and the last few rounds. In
particular, the additive masks used in different rounds can be made mutually
independent by using two mutually independent additive masks in the upper
and lower halves of Fig. 3.

6 Conclusions

Although the proposed embedded multiplicative masking countermeasure may
suffice for many applications, a possibly more secure alternative is to use random
binary additive masks and accordingly recomputed S-boxes stored in RAM, for
each new run of AES. In fact, it is proposed in [10] to recompute only one S-box
and use it repeatedly during one execution of AES. In general, if two intermediate
variables both satisfy the fundamental hypothesis for DPA and are masked by the
same mask, then their mutual correlation can be used to mount a second-order
DPA attack similar to the one proposed in [11]. In order to avoid this attack,
the input and output masks for an S-box should be mutually independent.

In principle, increasing the number of mutually independent random masks
increases the resistance against higher-order DPA as well as against more sophis-
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ticated statistical analysis of power consumption curves. If different masks are
generated pseudorandomly, then the security has to be examined more carefully.

With respect to the first-order and higher-order DPA, it is critical to pro-
tect the first and the last few rounds of AES by random masks, whereas the
protection of intermediate rounds may be useful with respect to more sophisti-
cated statistical power analysis. In this regard, it is safer to repeat the masks in
intermediate rounds rather than in the first or the last few rounds.

Even if the same recomputed S-box is used throughout the whole AES, the
(first-order) DPA attack is still prevented as it targets the individual points of
power consumption curves in time. However, such a solution is vulnerable to
a relatively simple second-order DPA attack, especially for implementations in
which the executions of S-box transformations are well separated in time (e.g.,
in software or limited-space hardware).

More precisely, one can identify the execution times of any two S-box trans-
formations in the first and/or the last round of AES, and then compare the power
consumption curves at the two points when the S-box outputs (or inputs) are
computed by using some simple statistic such as the average absolute value or
variance of the difference. The attack is enabled by the fact that the output (or
input) values of the two S-boxes are masked by the same mask. The correspond-
ing two expanded key bytes are guessed simultaneously in order to compute the
two values and the curves are then partitioned according to the bitwise XOR of
these values. To increase the security, it is then desirable to randomize the order
of S-box computations within a round, with preferably mutually independent
randomizations in the first and the last round.
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Abstract. This paper discusses the hardware foundations of the cryp-
tosystem employed by the XboxTM video game console from Microsoft.
A secret boot block overlay is buried within a system ASIC. This secret
boot block decrypts and verifies portions of an external FLASH-type
ROM. The presence of the secret boot block is camouflaged by a decoy
boot block in the external ROM. The code contained within the secret
boot block is transferred to the CPU in the clear over a set of high-speed
busses where it can be extracted using simple custom hardware. The
paper concludes with recommendations for improving the Xbox security
system. One lesson of this study is that the use of a high-performance bus
alone is not a sufficient security measure, given the advent of inexpensive
rapid prototyping services and affordable high-performance FPGAs.

1 Introduction and Background

Every cryptosystem is based on some kind of secret, such as a key. Regardless
of the cipher, the security of a cryptosystem is only as strong as the secrecy of
the key. Thus, some of the most startlingly effective attacks on a cryptosystem
involve no ciphertext analysis, but instead find flaws in the protocols that manage
the keys. Cryptosystems based on symmetric ciphers are particularly vulnerable
to protocol attacks, since both the sender and the receiver must be trusted to
have a copy of the same secret key. Despite the difficulty of key management in
symmetric ciphers, they remain attractive because of their algorithmic simplicity
and high throughput when compared to public key ciphers.

Symmetric cipher key management becomes especially problematic when the
receiving party is not trusted or is in a position that can be easily compromised.
This is where tamper-resistant hardware comes into play; a summary of tamper-
resistance guidelines can be found in [6]. Many systems employ tamper-resistant
hardware techniques in varying degrees, including the Sandia National Labs’
“Stronglink” micromechanical 24-bit lock [2], the Clipper chip [1], IBM’s 4758
PCI Cryptographic Coprocessor [3], Cryptographic Smartcards [5] [4], Auto-
matic Teller Machines (ATMs), and now, video game consoles. However, trust-
ing inadequate physical security measures to protect important secrets is risky.
[15] and [16] present examples of how some of the aforementioned tamper-
resistant systems can be defeated with surprisingly simple and direct methods.

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 213–227, 2003.
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In the case of the XboxTM video game console from Microsoft, the secret be-
ing protected is a key and an algorithm for decrypting and verifying a bootloader.
This bootloader then decrypts and verifies a kernel image. Both the bootloader
and kernel image are contained in an unsecured FLASH ROM. The kernel then
verifies the authenticity and integrity of the applications it runs. Thus, a chain
of trust is grown, bottom up, from a seed of trust. This seed – the secret key
and an algorithm – is planted in a physically secure, secret boot block.

The Xbox architecture results in the deployment of large number of identical
devices, all of which contain the same secret information. As the analysis below
illustrates, the security of such a system can be readily compromised, even if the
secret is protected by tamper-resistant hardware and obscured by algorithmic
complexity.

2 Xbox Hardware Cryptosystem Overview

The Xbox crypto protocol presents a strong defense in the face of unsecured
FLASH ROM-based modifications. Please refer to figure 1. The Xbox boots from
a 512-byte secret boot block that is hard-coded into the southbridge system ASIC
(the “MCPX”). This boot block performs the following functions, in order:
• Loads the “jam tables”, i.e., initializes the console chipset
• Turns on the processor caches
• Decrypts the kernel bootloader, contained in FLASH ROM
• Verifies that decryption was successful
• Jumps to the decrypted kernel bootloader

From there the kernel bootloader, now decrypted and verified, performs some
more system initialization, decrypts a kernel image from FLASH ROM, decom-
presses and verifies the decrypted image, and enters the kernel. The kernel de-
cryption key is stored within the bootloader image. Note that the secret boot
block code is structured so that the bootloader decryption key is never written
to main memory, thus defeating an attack that involves eavesdropping on the
main memory bus.

The bootloader is encrypted with RC-4 using a 128-bit key. The decryption
algorithm and key are stored in the secret boot block and executed by the
Pentium CPU; the busses between the secret boot block and the CPU are not
encrypted but assumed to be secure due to their high speeds. The decryption
of the bootloader image is verified by checking for a 32-bit magic number near
the end of the plaintext stream. One with knowledge of the secret key and the
magic number can easily create original bootloader images. It is fairly clear from
the code structure of the secret boot block that such a simple, unreliable check
was employed because there was not enough space for anything else. The magic
number check might also confuse efforts to create original bootloader code based
on a key obtained without full knowledge of the secret boot block’s contents, such
as through a personnel leak or brute force. However, a brute force approach to
recovering the bootloader is probably out of the question, since distributed.net’s
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“bovine” effort, running for over 4 years and currently capable of testing over
100 gigakeys/s, is still working on a 64-bit RC-5 cipher at the time of writing [7].

Given this secure boot protocol, modifying the contents of the FLASH ROM
alone will stand a very low chance of revealing anything useful about the console1.
This is compounded by the fact that the FLASH ROM contains a decoy boot
block with halfway reasonable looking decryption and initialization code. The
algorithm in the decoy boot block is a bastardized RC-4, and of course applying
this algorithm on the ROM contents yields nothing but white noise. Further
discussion on how the secret boot block was discovered is contained in the next
section.
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Fig. 1. Overview of the Microsoft Xbox hardware.

1 An important exception recently discovered is described in section 6
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3 Breaking the Physical Security

This section provides a chronology of how the Xbox’s physical security was
reverse engineered.

Reading out the FLASH ROM contents and tracing the processor’s execution
starting from the boot vector proved to be futile, as the contents of the boot
block in the FLASH ROM were a decoy, cleverly designed to thwart such activity.
The code within the FLASH ROM boot block followed the same general flow as
the code within the secret boot block; however, the decryption algorithm, the
keys and the ciphertext start location were incorrect but believable. The decoy
boot block initially resulted in a great deal of confusion but was later explained
by the discovery of the secret boot block overlay.

The realization of the existence of a secret boot block happened as a result of
the observation that overwriting the processor reset vector in the FLASH ROM
has no effect on the Xbox boot sequence. This led to a series of experiments that
mapped out the extent of the secret boot block. The block is believed to be 512
bytes in length, situated at the highest location in processor physical memory.

The following approaches were then considered for extracting the secret boot
block contents:
• Decapping the MCPX southbridge ASIC
• Using the JTAG boundary scan on the Pentium to step through the “real”

boot sequence
• Probing the main SDRAM memory bus for any portions of the boot block

that were written to memory
• Probing the processor-northbridge bus using a logic analyzer or custom hard-

ware
• Probing the HyperTransport northbridge-southbridge bus using custom hard-

ware

The direct approach of decapping the MCPX southbridge ASIC was rejected
because this ASIC appears to be manufactured in a 0.15µ process with perhaps
6 or 7 metal layers (figure 2). Extracting the bootblock from this ASIC would
require a delayering facility and access to an electron microscope. While there
are companies, such as Chipworks, that specialize in these kinds of services, it
is a difficult, expensive, and time-consuming task.

The JTAG boundary scan approach was rejected on the grounds that the
TRST# pin, used to hold the JTAG chain in reset, was tied active in a man-
ner that was difficult to modify without removing the processor. Removal and
socketing of the processor was considered to be prohibitively expensive and time
consuming; the cost of a BGA socket for the Pentium III is estimated to be
in the hundreds to thousands of dollars. In addition, the JTAG boundary scan
codes for the Pentium III are largely proprietary and would have to be reverse
engineered as well.

SDRAM probing was rejected on the grounds that far too many pins (128
data pins alone) had to be simultaneously probed, and on the grounds that
the decryption routine and/or key could be held entirely in processor cache and
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Fig. 2. Die shot of the MCPX Southbridge ASIC.

never written to SDRAM. Also, the cost of solder-on TQFP-100-to-logic-analyzer
adapters is prohibitive (around $600 per adapter; four are required). Probing the
processor-northbridge bus was rejected for similar reasons: at least 64 data pins
had to be probed, and tapping such a large number of GTL+ signals without
causing signal integrity issues was thought to be very difficult.

The northbridge-southbridge bus, however, showed promise because of its
simplicity. The bus has a low signal count (10 unique) and all the signal traces
are laid out on the console’s motherboard in a straight flow-through fashion (12-
mil center-to-center spacing within a differential pair, 13-mil spacing between
differential pairs, see figure 4). In addition, the clock and strobe signals for both
the transmit and receive directions are clearly labeled on the motherboard, per-
haps for manufacturing debug and test reasons (figure 3). Data on the nVidia
nForce chipset [9], a close relative to the Xbox chipset, indicates that the bus uses
the HyperTransport (formerly known as Lightning Data Transport (LDT)) pro-
tocol. The specifications for the HyperTransport protocol are open and readily
available [8].

The primary difficulties in tapping the HyperTransport bus are its high speed
(200 MHz DDR) and its use of differential signaling (few logic analyzers come
with support for differential signaling). It is interesting to note that Hyper-
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Fig. 3. HyperTransport bus layout showing silkscreen information, perhaps for manu-
facturing or test purposes.

Transport bus protocol analyzers are commercially available from vendors such
as FuturePlus, but they cost upward of $25,000. This price does not include the
high-end logic analyzer required to drive the protocol analyzer.

The alternative solution to tapping the northbridge-southbridge HyperTrans-
port bus was to build a relatively cheap, fully custom, differential-to-single-ended
“Tap Board”, and to connect the output of this board to an FPGA. A Xilinx
Virtex-E part was used in this study because it was readily available, as it was
used as part of the author’s thesis work; however, a better choice would be any of
the new Xilinx Virtex-II FPGAs. A suitable Virtex-II FPGA would cost about
$50 in single quantities.

The custom Tap Board can be produced with very attainable parts and
processes at a reasonable cost. The Tap Board uses a two-layer, 6 mil trace/space,
15 mil hole process from Advanced Circuits, offered at a price of $33 per board in
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small quantities. A Texas Instruments SN65LVDS386 LVDS-to-TTL converter
was used to turn the differential HyperTransport signals into a single-ended
format. It turns out that the HyperTransport physical signaling specification
is similar to LVDS, but with a different common-mode offset. The output of
the converter drives a cable to the FPGA board. The FPGA is configured to
receive the high speed signals with the CTT (Center-Tap Terminated) “Select
I/O” option. CTT is chosen because it allows the single-ended TTL drivers to
be terminated with a low impedance to 1.5V and still function properly. Note
that although Virtex-E FPGAs support LVDS directly, the target FPGA board
was not originally designed to support the LVDS configuration.

12 mil

13 mil

12 mil

differential signal pair

6 mil
trace

Fig. 4. Dimensions of the HyperTransport signal traces on the motherboard.

The Tap Board has on one edge a pattern of traces with no soldermask that
matches the pattern of traces on the Xbox motherboard. The Tap Board was
soldered directly to the Xbox’s northbridge-southbridge bus. Only the receive-
direction Tap Board was mounted for this study. The mating edge was shaped
using a belt sander, so that the tapping traces were flush with the edge of
the board, and the board could be mounted at a reclined angle to enhance
solderability. The soldermask on the Xbox was removed with fine-grit sand paper,
and the Tap Board was carefully aligned by hand, and then held roughly in place
by soldering a coarse piece of wire between the Tap Board and the motherboard.
A hard-setting adhesive, such as Miller-Stephenson Epoxy 907, was applied to
fix the angle and mating distance of the Tap board to the motherboard; once
the epoxy was cured, the holding wire was removed, and the traces between the
Tap Board and the Xbox motherboard were easily soldered using a fine-tip iron
and a microscope.

The polarity of the HyperTransport bus signals was determined by probing
the idle state of the wires, assuming that their idle state had a value of 0x00.
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Fig. 5. Tap Board connected to the FPGA board. The FPGA board was originally
developed by the author for another work.

Those signals that had the positive and negative pairs swapped relative to the
Tap board layout idled to a “1”. Signals with inverted polarity were restored to
their true value within the trace capture FPGA.

A Xilinx Virtex-E FPGA was used to capture traces of HyperTransport bus
activity. It was difficult getting the FPGA to manage the 200 MHz DDR data
rates with low skew. However, careful hand-layout of the input registers, post-
layout timing simulations at nominal temperature and voltage, and iterations
to manually tweak delays and skews eventually centered the clock signal within
the data signal on the FPGA’s input registers. The retimed data was then de-
multiplexed to a very manageable 100 MHz single-data rate 32-bit wide bus
and written into a bank of FIFOs, along with a sequence count that recorded
at what cycle relative to a reset signal the data was captured. Some additional
logic was incorporated into the FPGA that discarded idle values (0x0000 0000)
from the trace FIFOs and formatted the deserialized data relative to the strobe
signal, clearly identified on the Xbox motherboard as “RXD8 / RXD*8” (fig-
ure 3) in sector 5D (the Xbox motherboard has a coordinate system printed on
its periphery).

The reset signal can be determined by probing traces near the HyperTrans-
port bus that behaved like a reset signal. In reality, it is possible that some
signal that was not the true reset signal was used to trigger the trace capture,
but that is irrelevant as the signal chosen seemed to display a consistent timing
relationship with respect to the bus. In fact, the signal used to trigger the trace
capture exhibited a 350 ns runt pulse about 67 ms after power-on-reset; this runt
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Fig. 6. Close-up of the Tap Board mounted in the Xbox.

pulse was filtered out by a state machine, as it was erroneously restarting the
trace capture.

Once traces of data were captured by the FPGA, the order of the bits on
the HyperTransport bus relative to the Tap Board layout could be determined.
This can be done by correlating known values in the FLASH ROM with data
values captured on the HyperTransport bus. A 1’s count can be used to identify
candidate patterns and data sequences for manual correlation. Fortunately, very
early on in the trace several distinctive, sequential values are grabbed from the
FLASH ROM: a few values from the lowest address in FLASH ROM, followed
by a few values from the boot vector, which happens to be identical between the
decoy FLASH ROM contents and the secret boot ROM contents. The order of
the traces for the receive-direction bus on the motherboard are believed to be,
from the outside to the inside, bit 8 (CTL strobe), 4#, 0#, 7#, 2#, 3#, CLK#,
5, 6#, and 1#. Signals with # after them are inverted with respect to the Tap
Board layout.

The raw trace data captured by the FPGA was then dumped to files and
manually processed. An example illustrating the format of trace data can be
found in figure 7. The sequence number was critical in determining the bound-
aries of cache traces; blocks of 8 or 16 words are fetched by the processor, even
when the caches are off. Trace data was differentiated between secret boot code
and FLASH ROM data by searching for the first word of the candidate trace
in a dump of the FLASH ROM; if the data could not be found in the FLASH
ROM, it was guessed to be secret boot code. Because the processor boots with
its caches off, the first roughly 24 million bus cycles contained repeated line fills
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of the “jam table” interpreter initialization code, and were ignored as they just
performed the wrote initialization of the chipsets. The caches were then turned
on by the boot code, and very clear and simple to read blocks of instructions
and data were found. These instruction traces were mapped into the secret boot
block using the decoy FLASH ROM boot block as a template. The recovered
block of code was then disassembled, and the decryption algorithm was deter-
mined to be 128-bit RC-4. Since the location of the 128-bit key within the secret
boot block was ambiguous (the Tap Board only provides data traces without
addresses), a brute-force search was utilized to help isolate the key. A 16-byte
sliding “guess key” window over the captured data trace was used as input to an
RC-4 decryption engine, and a histogram of the data output was used to deter-
mine when the key was found. This information helped resolve some ambiguities
in the placement of the data within the secret boot block, and a full picture of
the important code within the secret boot block was assembled.

Now that the secret boot procedure is understood, it is possible to encrypt a
new ROM for the Xbox console, and to further study the structure of the Xbox
bootloader and kernel. Given the RC-4 algorithm, the 128-bit key, and the magic
check number at the end of the decrypted segment, one can run original code on
the Xbox.

00000097 : 664A1D55 ::: E : 000000C6
00000D5C : 05F108F6 ::: F : 01000000
00000DE0 : 2A1A2841 ::: 1 : CC003000
00000E5D : B6FE7F68 ::: E : A0552C01
00000EDA : 5932C662 ::: 1 : 000000FD
00000F57 : F9FBA4C1 ::: E : C7C94000
00000FD4 : F7F9B6AE ::: 1 : 000000C6
00001051 : 73376133 ::: E : 9EC49400
000010CE : FD0127AD ::: 1 : 000000D6
0000114B : 34E8FD29 ::: E : C7C94000
00001245 : 1814A022 ::: 1 : 000000C6
000012C2 : 38EBD672 ::: E : C7C94000
00022526 : C6C0847E ::: 1 : 000000C6
00022527 : A26216BB ::: E : C7C94000
00022528 : 99DA5F80 ::: E : 000000C6
00022529 : 453862E3 ::: 1 : C7C94000
000226D5 : B6DF18C0 ::: E : 000000C6
000226D6 : DA562768 ::: 1 : C7C94000
000226D7 : 0F1D66E3 ::: E : 000000C6
000226D8 : DDC59B59 ::: 1 : 8D42CBCD

Fig. 7. An example illustrating the format of trace data captured by the FPGA. Format
of the data is “sequence : data ::: aligner : unaligned data”.
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4 Lessons Learned

A. Kerckhoffs (1835-1903) once stated that the security of a cryptosystem must
not depend on keeping the algorithm secret; this is referred to as Kerckhoffs’
Principle [13]. Another way of stating this is that there is no security through ob-
scurity. In particular, it is an error to assume that a secret, distributed along with
the information it guards, is never revealed. For example, the Sega Dreamcast
uses a proprietary GD-ROM software format; but, the drive can read CD-ROM
disks. The discovery of a back door in the Dreamcast OS allowed executables to
be run directly from a standard CD-ROM, thus nullifying the barrier presented
by the proprietary GD-ROM format [14]. Other systems that rely on well-hidden
secrets, including the Clipper chip [15] and the smartcards used widely through-
out Europe to control access to services such as pay-TV, cell phones and gas,
have been shown to be surprisingly vulnerable [16]. In the case of the Xbox, the
Tap Board and trace capture FPGA design was developed in spare time over the
duration of three weeks–including the 5-day turn time for board fabrication–for
a total cost of around $50 per board. In other words, if you ship your secrets
in your hardware, it is a good assumption that the users will eventually–and
perhaps quickly–know your secrets.

Another lesson of this study is that the use of a high-performance bus alone
is not a sufficient security measure; the advent of cheap rapid prototyping ser-
vices and high performance FPGAs allows even poor students to create devices
that can tap the bus. However, encrypting a bus introduces its own problems.
A secure cipher on a high performance bus significantly impacts latency, power
consumption, and reliability. Power consumption is increased because the activ-
ity factor for the bus approaches 100%, if the encryption scheme is any good. In
this case, the power consumed driving the bus would increase by over an order of
magnitude, as the observed activity factor on the northbridge-southbridge bus
was well below 10%. Reliability is hurt because a single bit error, even during an
idle cycle, can corrupt large blocks of data; with a stream cipher, the corruption
would extend until the stream is resynchronized.

A compromise solution to the problem is to simply not embed the secret
key in the hardware. In this case, the secret boot block might employ a digital
signature protocol, such as Authenticode r©, using public key algorithms and
one-way hashes [10]. With this scheme, most of the security rests in the secrecy
of the private key, and the strength of the public key algorithm and hashes. In
order to prevent employee leaks from spreading a private key, a system similar
to the BBN SignAssureTM could be used to manage the key so that no human
ever has knowledge of the private key.

The hardware implementation of such a scheme would require a larger se-
cret boot block (perhaps a few kilobytes in size) and a small, inexpensive serial
EEPROM attached to the southbridge ASIC for storing the encrypted code sig-
natures. In the case of the Xbox, such an serial EEPROM is already provided
for the storage of non-volatile parameters such as the time zone setting, user
interface language preferences, and hard drive keys. The secure boot procedure
would then be implemented as follows:
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• Load the jam tables and turn on the processor caches
• Compute a hash of the entire FLASH ROM, including the jam tables
• Retrieve from the serial EEPROM a public-key encrypted hash of the ex-

pected FLASH ROM contents
• Decrypt the expected hash
• Compare the expected hash versus the computed hash; if they do not match,

halt the machine
• Decrypt the kernel bootloader, contained in FLASH ROM
• Verify that the decryption was successful
• Jump to the decrypted kernel bootloader

The above suggestion does not prevent someone from eavesdropping and
obtaining the plaintext of the operating system code, but it does effectively
defeat the replacement of FLASH memory with malicious code encrypted against
a common key contained in the user’s hardware. The public key scheme could be
defeated, however, by either replacing the system ASIC or by using very carefully
timed pulses to force values onto the HyperTransport bus or the processor’s front
side bus. As discussed previously, this approach is possible, but difficult; however,
the tenacity of an attacker should not be underestimated. For example, a known
attack on the Sony Playstation2 console was developed that is rumored2 to work
by dynamically patching its high-performance RAMBUS memory system. The
difficulty of a memory patch attack could be increased by using a simple periodic
hash and check of the critical code regions in memory.

To be very secure, the secret boot block should be embedded on the same
silicon as the processor itself. Embedding the secret boot block in the processor
silicon would be less of an issue for Sony or Nintendo, as they develop full-
custom or semi-custom processors for their platforms. However, one must keep
in sight that the goal on a game console is to simply make it not worth the
effort of circumventing its security measures. To this end, eliminating the FLASH
memory replacement attack and requiring a more sophisticated attack is possibly
sufficient to deter most recreational hackers.

Buffer overrun exploits are also a point of weakness, and they work regardless
of the secret boot protocol. An attacker sniffing an insecure bus could obtain the
decrypted kernel code and analyze it for weaknesses. However, any machine
architecture that employs guarded pointers [11] is much more difficult, if not
impossible, to attack using buffer overruns. A fast, efficient guarded pointer
scheme with a simple hardware implementation is described in [12]. This scheme
can easily be adapted to work in a 64-bit architecture.

The failure of the Microsoft Xbox console security protocol is compounded
by the fact that, as a console manufacturer, design-for-test and design-for-
manufacturability is paramount. Creating a console with too much security
makes it difficult to debug and manufacture. For example, the backside of the
Xbox motherboard is populated with test points–including test points for every
2 It is difficult to obtain any credible published references on the subject of the Playsta-

tion2 due to the threat of legal action against researchers and hobbyists under the
Digital Millennium Copyright Act (DMCA).
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pin on the FLASH ROM. These were originally installed because of the desire to
quickly test for faults during manufacturing. The flip side is that one could build
a custom “bed-of-nails” tester jig that uses the the FLASH-ROM test points to
reprogram Xbox motherboards with any desired code. This method would be
fast, inexpensive and solder-free. The lesson here is that even if a manufacturer
is very confident about their trust model and security protocols, it must guard
against the possibility that they may someday be broken. To this extent, a simple
physical security measure, such as a spray-on conformal coating, would severely
hamper the re-use of test structures for improper purposes. This of course greatly
complicates the repair of hardware failures in the field, but that is a business
trade-off the manufacturer must make.

A more radical alternative would be to design the gaming system using pro-
prietary hardware and proprietary media formats, thus limiting the practical
impact of any attack on the console. Game consoles are manufactured in very
high volumes, so the cost of developing a simple but effective proprietary for-
mat can be amortized. The format could then be patented, providing protection
against unauthorized use without the need for secrecy. This approach was taken
by Nintendo with their Nintendo 64 console [17]. Although patents have a 20
year lifetime, this is an eternity in the video game console industry: the original
Nintendo Entertainment System (NES) had its debut in 1985.

5 Future Work

Understanding the secret Xbox boot protocol is just the first step in under-
standing the Xbox, from here it will be possible to investigate the kernel and
bootloader in more detail. It has been determined that the kernel is also en-
crypted with RC-4/128, and it is also believed to be compressed using LZX
compression, a scheme employed by Microsoft’s canonical distribution format,
the “Cabinet” file. The structure and function of the kernel has been investigated
and is now fairly well understood by the community of research enthusiasts that
have grown around the Xbox.

One important issue to investigate is the privacy of users who use the Xbox for
on-line tasks. It is known, through a parallel effort of the author, that information
such as the serial number of the console is stored electronically and is probably
accessible to the kernel. What happens to this information when the Xbox is
plugged into the internet? Because of the encryption used to secure the Xbox,
the nature of the information that is relayed to Microsoft’s on-line game servers
is unknown. Thus, important future work is to try to determine what the Xbox
reveals about the user’s identity and personal gaming habits.

6 Addendum

It has recently been called to the author’s attention that the hardware initial-
ization procedure of the Xbox contains a significant weakness [18]. Recall from
section 2 that the first step in the Xbox boot process is to configure the console’s
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chipset, commonly referred to as loading the jam tables. A jam table consists
of a set of opcode-argument tuples that are executed by a simple interpreter.
The types of operations provided by the jam table interpreter include reads and
writes to memory, PCI, and IO space, along with conditional jumps and the
ability to perform register-indirect addressing. The goal of the jam table inter-
preter is to provide BIOS developers with a simple tool for orchestrating the
complex sequence of dependencies and decisions that have to be made during a
PC’s initialization procedure.

In the Xbox, the jam table interpreter is located within the secret boot block,
but the jam table’s contents are located within an unencrypted and unverified
region of the FLASH ROM. Thus, once the format of the jamtable opcodes has
been deduced, a number of interesting weaknesses can be exploited. The most
interesting weakness involves a bug in the Pentium processor implementation.
The secure boot procedure is coded such that when the decrypted kernel image
does not pass the verification step, the processor is directed to jump to a six-byte
code stub in the secret boot block located at 0xFFFF FFFA. One would expect
that when the processor is finished with the stub, an exception that halts the
machine should be thrown, as the program counter will overflow its segment by
rolling over 0xFFFF FFFF to 0x0000 0000. The bug is that instead of halting,
the processor happily executes whatever is located at 0x0000 0000–which cor-
responds to the beginning of the SDRAM memory. Thus, by attaching a short
code stub to the end of the jam table bytecode that writes a jump instruction
into 0x0000 0000 and also by presenting any corrupt ciphertext image to the
secret boot block, one can gain control of the Xbox without ever decrypting or
having any other knowledge of the bootloader or kernel plaintexts [18].

In other words, with plaintext-only modifications in the FLASH ROM, one
can entirely bypass the Xbox’s security mechanism. One could easily fix this
security hole, however, by verifying the jam table’s contents prior to bytecode
execution with a one-way hash function, or by explicitly coding all initialization
functions within the secure boot block. Both of these solutions, however, would
require the secure boot block to grow significantly from its current 512-byte size,
and neither solution allows easy changes to the initialization procedure in case a
bug is found or in case the hardware evolves as a result of cost reduction efforts.
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Abstract. Published DPA attack scenarios against the RSA imple-
mentation exploit the possibility of predicting intermediate data during
a straight-forward square-multiply exponentiation algorithm. An imple-
mentation of RSA using CRT (Chinese Remainder Theorem) prevents
the pre-calculation of intermediate results during the exponentiation
algorithm by an attacker. In this paper, we present a DPA attack that
uses byte-wise hypotheses on the remainder after the modular reduction
with one of the primes. Instead of using random input data this attack
uses k series of input data with an equidistant step distance of 1, 256,
(256)2, ..., (256)k. The basic assumption of this DPA attack named
MRED (“Modular Reduction on Equidistant Data”) is that the distance
of the input data equals the distance of the intermediate data after
the modular reduction at least for a subgroup of single measurements.
A function Fk that is composed of the k DPA results is used for the
approximation of a multiple of the prime. Finally the gcd gives the
prime. The number of DPA calculations increases linear to the number
of bytes of the prime to be attacked. MRED is demonstrated using
simulated measurement data. The practical efficiency is assessed. If the
applicability of this attack is limited due to padding formats in RSA
signature applications, the least significant bytes of the remainder after
the modular reduction step can still be revealed. Multiplicative message
blinding can protect the reduction modulo a secret prime against MRED.

Keywords. DPA, modular reduction, CRT, RSA, power analysis, side
channel analysis, smartcard

1 Introduction

For the last years an increased research is focused on vulnerabilities of imple-
mentations of cryptographic algorithms. These vulnerabilities in the ’real world’
applications are e. g. caused by the deterministic dependencies of the power con-
sumption, electromagnetic radiation and timing characteristics on the processed
data. Generally, these attacks don’t leave any visible damage to the crypto-
graphic module that can be recognised by the users. Besides that, there are
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fault analysis attack scenarios that aim to cause transient or permanent faults
during the cryptographic calculation that can be exploited mathematically ([9],
[10]). These kinds of attacks yield a new field of attacks on cryptographic al-
gorithms. They are generally summarised as ‘Side Channel Cryptanalysis’ in
contrast to the mathematical cryptographic analysis of the algorithm itself.

Processor smartcards that are applied in security relevant applications (e.
g. digital signature) are of a special interest. These products have to guarantee
that attack scenarios of ’Side Channel Cryptanalysis’ that fall into a category of
up to high attack potential are prevented effectively.

Power analysis attacks SPA (“Simple Power Analysis”) and DPA (“Differen-
tial Power Analysis”) were first published by P. Kocher et al. [1] and it turned
out that the statistical attack DPA is very effective and can be applied with-
out the knowledge of implementation details. DPA attacks were first used to
compromise DES keys during the use of the DES algorithm.

The first power analysis attacks on the RSA algorithm were published by
Thomas S. Messerges et al. [2]. Attack scenarios SEMD (“Single Exponent,
Multiple Data”), MESD (“Multiple Exponent, Single Data”) and ZEMD (“Zero
Exponent, Multiple Data”) were introduced. The ZEMD attack uses DPA tech-
niques to compromise the bits of the private RSA exponent sucessively. This
ZEMD attack is applied on the intermediate results during modular exponenti-
ation. A basic precondition of this attack is that the intermediate data of the
modular exponentiation can be predicted offline.

DPA attacks against RSA are classified as ‘chosen ciphertext’ attacks if ap-
plied at the RSA decryption. If the DPA attacks are applied against the RSA
signature the attacks belong to the ‘chosen plaintext’ category.

Due to the effectiveness of power and timing analysis on RSA implementa-
tions algorithmic countermeasures are introduced to counteract the predictabil-
ity of intermediate data. So far, a DPA attack on the CRT implementation
was not published. Thus, implementations using CRT may rely on the un-
predictability of intermediate data because of the modular reduction step that
is carried out with one of the secret primes before the modular exponentiation
starts.

2 RSA and the CRT Implementation

In this subsection we recollect the well known CRT algorithm.
The RSA cryptosystem is given by the secret RSA primes p and q, the public

modulus N with N = p q, the public exponent e and the secret exponent d
with e d ≡ 1(mod lcm(p− 1, q− 1)) as its parameters and the operations for
decryption y = xd mod N and encryption x = ye mod N .

Widely used techniques to perform the decryption operation are ‘square and
multiply’ algorithms in conjunction with techniques using the Chinese Remain-
der Theorem (CRT) for known secret primes p and q.

To perform a modular exponentiation c = ab mod m in Zm, the bitwise rep-
resentation b = [bn−1bn−2 · · · b1b0] is used. The ’square - multiply’ algorithm



230 B. den Boer, K. Lemke, and G. Wicke

evaluates this representation either starting from the least significant bit b0 (al-
gorithm A1) or from the most significant bit bn−1 (algorithm A2).

A1:
t := a
c := 1
for k := 0 to n-1 do {
if b[k]=1 then c := c*t mod m
t := t*t mod m

}
return c

A2:
c := 1
for k := n-1 down to 0 do {
c := c*c mod m
if b[k]=1 then c := c*a mod m

}
return c

To reduce calculation time of a RSA exponentiation with the secret key one
can solve a simultaneous system of modular congruencies. The existence of such
a solution is ensured by the Chinese Remainder Theorem (CRT). We follow the
common practice and denote also an algorithm that solves modular congruencies
using the theorem as a CRT algorithm. The special case of RSA requires the
representation of the exponentiation in terms of the RSA primes p and q and
their recombination to the solution modN . The calculation is then about four
times faster than an exponentiation modN .

Fermat’s little theorem allows the precalculation of the reduced secret expo-
nent values dp = d mod (p − 1) and dq = d mod (q − 1). Using A1 or A2 one
calculates then v1 = xdp mod p and v2 = xdq mod q. For the CRT algorithm ac-
cording to Garner (A3) one precalculated multiplicative inverse Pq = p−1 mod q
is needed:

A3:
u := (v2-v1)*Pq mod q
y := v1+u*p
return y

Alternatively, the CRT algorithm according to Gauss (A4) uses the two
precalculated multiplicative inverses Pq = p−1 mod q and Qp = q−1 mod p and
a final reduction modulo N :

A4:
y := (v1*q*Qp + v2*p*Pq) mod N
return y
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Because of memory constraints implementations on smartcards generally pre-
fer the usage of algorithm A2 and A3. Note that during exponentiation a modular
reduction modulo a secret value instead of a public one takes place. This is used
for the attack described below.

3 DPA against a Non-CRT Implementation

To apply DPA to RSA the attacker should have the possibility to randomly
vary the input data x of the RSA implementation to be attacked. Single power
consumption measurements P (x, t) of the cryptographic module are typically
carried out with a digital oscilloscope and stored on a file server or PC.

3.1 Key Hypotheses

If the RSA implementation uses a straigthtforward ’top-down square-multiply’
algorithm (A2 of section 2) the key hypotheses are set up on the next bits of the
exponent to proceed. The intermediate results of the exponentiation algorithm
proceeding these bits can be determined offline. E. g. in the simplest case the
attacker uses only two hypotheses, namely

1. ‘the next exponent bit is 0’ and
2. ‘the next exponent bit is 1’.

In case that the second hypothesis is correct, correlations are present for both
key hypotheses as the result of the first hypothesis is an intermediate result of
the second hypothesis. The correlations for the correct key hypothesis appear
last.

The number of exponent bits used can be optimised under the limitations
that taking a bigger number of bits increases the computation time. Generally,
it is even more useful to set up the key hypotheses on the sequence of elemen-
tary operation (squarings ‘Q’ and multiplications ‘M’). The simplest hypotheses
would be

1. ‘the next 2 modular multiplication units are composed of ‘QM’,
2. ‘the next 2 modular multiplication units are composed of ‘QQ’, and

– in case that the previous correct hypothesis ends up with a ‘Q’ – addition-
ally

3. ‘the next 2 modular multiplication units are composed of ‘MQ’.

In general, this set-up of key hypotheses is of interest if we deal with a greater
number of key hypotheses. The time window in which correlations are expected
can be limited to 1-2 elementary modular multiplication units.
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3.2 Selection Functions

Power Analysis is based on the dependency of the power consumption, used by
the hardware, on the value of intermediate data. The attacker knows or assumes
a model for this dependency. A common model is that the power consumption
correlates with the Hamming weight of intermediate data (see [3], [4], [5]).

The selection function has to be calculated on the intermediate result of each
key hypothesis that is applied. Intermediate results of the RSA exponentiation
are generally of the same bit length as the modulus used. The n-bit bus architec-
ture of the RSA coprocessor used determines the number of bits that are taken
into account for the Hamming weight. Common bus widths of cryptographic
RSA coprocessors are 32 and 64 bit. It is not necessary that an attacker knows
the precise internal bus width. It can be tested using DPA. DPA selection func-
tions d(x) should use the bit-width of the bus architecture to set up functions
on the Hamming weight W (x) of intermediate data. A simple selection function
d(x) assesses all intermediate data values that have a greater Hamming weight
than the n-bit expectation value E(n) = n/2 with 1, all values with smaller
Hamming weights than E(n) with −1 and to ignore all values that meet the
expectation value E(n).

d(x) =






−1, if W (x) < E(n)
0, if W (x) = E(n)

+1, if W (x) > E(n)
(1)

Translating towards the values {−1, 0, 1} looses information. The selection func-
tion d(x) can be refined in the linear model to be

d(x) = W (x)− E(n). (2)

The easiest selection function is the Hamming weight of intermediate data, or
for example the Hamming weight of just a byte of transported data.

3.3 Correlation

DPA identifies the correct key hypothesis by assessing the absolute maximum
of the correlation coefficients for each key hypothesis. The correlation is carried
out between the result of the selection function d(x, j) on the base of the key hy-
pothesis j and the input data x and the power consumption P (x, t) of the single
measurements as a function of x and the time t. The variable t could be narrowed
to a small time interval if simple power characteristics of the implementation are
obvious. The number i runs through all single measurements.

c(t, j) =
∑

i(d(xi, j)− d(xi, j))(P (xi, t)− P (xi, t))√∑
i(d(xi, j)− d(xi, j))2

√∑
i(P (xi, t)− P (xi, t))2

(3)

The correlation coefficient c(t, j) has to be assessed for each key hypothesis j. It
will be near zero if there aren’t any correlations between the selection function
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d(x, j) and P (x, t). In case of a strong correlation c(t, j) approaches 1 at some
specific points in time. If there are significant correlation results at a certain key
hypothesis j that do not occur at other key hypotheses this is a strong indication
of the correct key values.

The formula (3) gives an insight in the notion of (cross)-correlation, but for
efficient computation the formula should be reordered.

4 DPA Attack against a CRT Implementation

For performance reasons the CRT implementation is a common choice of a
RSA implementation. If the Chinese Remainder Theorem is used intermediate
data of the modular exponentiation algorithm are unknown, as the input
value of the modular exponentiation algorithm is reduced modulo the primes
p and q, respectively. The offline-prediction of intermediate data during the
square-multiply algorithm is not possible anymore.

4.1 Basic Idea: Hypotheses on the Remainder

In contrast to the ZEMD that has to correlate on the intermediate results of the
modular exponentiation algorithm this DPA attack on the CRT implementation
attacks the modular reduction modulo one of the primes performed prior to the
CRT exponentiation. It exploits power consumption signals that are caused by
the processing and data bus transfers of the residue.

The DPA attack on the CRT implementation uses measurement series with
input values of RSA that are equidistant. It assumes that input values can be
chosen by the attacker. At the first measurement series a starting value x0 is
chosen and the following input values are generated by decrementing the previous
input value by 1. We assume that each series contains m elements. Series are
numbered with k. Within the second series the input values have a distance of
256: x0, x0 − 1 · 256, x0 − 2 · 256, x0 − 3 · 256, ..., x0 − m · 256. Other series
follow with stepsize 256k until the exponent k reaches the size of the prime to
be attacked.

There aren’t any further restrictions on the input value x0. We can deal with
a purely random, modulus-sized number. For each series k we define the i-th
value

xi = x0 − i · (256)k . (4)

The DPA attack on the modular reduction sets up hypotheses on the remain-
der r after the reduction modulo the prime q. The aim of the first measurement
series with the distance 1 of the input values is to compromise the least significant
byte of the remainder r0 that fulfills

r0 ≡ x0 mod q . (5)
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We further define
ri = xi mod q . (6)

The further measurement series aim to compromise the k-th byte of the
remainder r0, respectively.
For demonstration purposes we focus first on the usage of the measurement series
with an equal distance of 1 before we give the general approach.

We assure that all input values xi of the first measurement series have a
remainder with the prime (in the following we assume that the prime q is going
to be attacked) that does not equal zero. We therefore exclude the unlikely
case of crossing a multiple of q by calculating the greatest common divisor with
the public modulus N and all input values xi of the first measurement series:
gcd(xi, N). In the unlikely case that a multiple of q is crossed the modulus N is
directly factorised.

There are 256 hypotheses Hj0(0 ≤ j ≤ 255) on the value of the least signifi-
cant byte of r0

Hj0 is {r0 mod 256 = j} (7)

that are going to be analysed with DPA.
All values of ri are related to the value r0. As the input values xi are equally

distant the difference between r0 and ri directly gives the value of the last byte
of the remainder for each hypothesis

Hji is {ri mod 256 = (j − i) mod 256} . (8)

The corresponding value of Hji can be read out from the Table 1.

Table 1. Table of hypotheses Hji

Hji x0 x1 x2 x3 x4 · · · xi

H0i 0 255 254 253 252 · · · −i mod 256
H1i 1 0 255 254 253 · · · (1− i) mod 256
H2i 2 1 0 255 254 · · · (2− i) mod 256
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
H255i 255 254 253 252 251 · · · (255− i) mod 256

The correlation is carried out with the Hamming weight W (x) for each hy-
pothesis Hji. The selection function d(x, j) is therefore based on 8 bit (see Table
2).

The strongest results are expected for that value of j where the hypothesis
corresponds to the reality. This value is called f0 from now on. The cyclic prop-
erty of Hji yields secondary correlation peaks. The second strongest correlations
are expected at the hypothesis Hj±128. The third strongest correlations should
be at the two hypotheses Hj±64. Therefore there are additional indices of the
correct hypothesis.
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Table 2. Table of the selection functions d(xi, j) on the base of hypotheses Hji using
the 8-bit Hamming weight W (x).

dji x0 x1 x2 x3 x4 · · · xi

d0i 0 8 7 7 6 · · · W (H0i)
d1i 1 0 8 7 7 · · · W (H1i)
d2i 1 1 0 8 7 · · · W (H2i)
. . . . . . . . . . . . . . . . . . . . . . . . .
d255i 8 7 7 6 7 · · · W (H255i)

As result of the first measurement series it is found that (x0 − f0) mod q is
divisible by 256.

4.2 The General DPA Attack: MRED

Accordingly to the first measurement series the attack scenarios on the more
significant bytes of the remainder r0 are carried out. k denotes the current byte
that is attacked with DPA and the least significant byte of the remainder is
referenced with k = 0.

The reference base of each measurement series for the successive approxima-
tion of r0 remains x0. All other bases are calculated by a decrement of (256)k.
The 256 hypotheses used for DPA are

Hji is
{
(ri mod (256)k+1) div (256k) = (j − i) mod 256

}
. (9)

We define Fk = r0 mod (256)k. With the discovery fk−1 of the previous
measurement series the function Fk is given by

Fk =
k−1∑

i=0

fi · (256)i . (10)

The pre-condition for the cyclic DPA attack is that

(x0 − i · (256)k) mod q = r0 − i · (256)k . (11)

Whether it holds for all m elements of the measurement series depends on
the fact whether r0 ≥ m · (256)k. Because of formula (10) this is equivalent
to (r0 − Fk) ≥ m · (256)k. If this is not true, then there exists a w ≤ m such
that (r0 − Fk) = w · (256)k. This last equality implies that (x0 − Fk) = (w ·
(256)k) mod q. To test whether such a w ≤ m has occurred, it is checked whether
((x0 − Fk)− i · (256)k) was divisible by q for one of the candidate values i ≤ m.
This testing is done by computing the gcd of all elements of a measurement
series with the modulus N and the check whether it is 1:

gcd(x0 − Fk − i · (256)k, N) != 1. (12)
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Otherwise, the modulus N is factorised as a result of the gcd and this is the
end criterion of this DPA attack. The check can be optimised by computing the
product of the elements modulo N , comparing with 0 at each step and one final
gcd calculation.

Then we examine the measurements on x0 − i · (256)k with DPA methods
to find fk, which means that (x0 mod q) mod (256)(k+1) equals Fk+1 = f0 + f1 ·
256 + · · ·+ fk · (256)k.

This procedure of alternating gcd calculation and DPA calculation finds more
and more bytes from r0, starting from the least significant byte. The function
x0−Fk continously approaches a multiple of the prime q starting from the least
significant byte. Along this line the measurements can be done beforehand, while
the alternate DPA search and gcd calculation in the end finds q.

The basic assumption for a successful DPA attack is formula (11). This DPA
attack that is referred to “MRED” (Modular Reduction using Equidistant Data)
is applicable if this equality holds at least for a certain percentage of single
measurements.

MRED needs up to qn measurement series whereas qn is the byte length of
the prime q. Each measurement series typically has to include a few hundred to a
few thousand single measurements. The measurements can be taken in advance
before the DPA calculations.

5 Results

The results that are expected using this DPA attack on the CRT implementation
are demonstrated using simulated measurement data. The generation of these
data is based on the power leakage model that the power consumption P (x, t) at
a certain point in time t can be split into a power contribution that varies with
the Hamming weight of the data x processed, into a power consumption that
represents a constant portion and a power consumption that is caused by noise
[6][7]. The simulation data are generated using P (x, t) = P ′(x, t)+N(t), whereas
P ′(x, t) is deterministic and depends on the Hamming weight of the data. N(t)
simulates a random noise level and should have zero mean. In the linear model
P ′(x, t) is proportional to the Hamming weight W (x) of the intermediate data
according to the expectation value E(n):

P (x, t) = (W (x)− E(n)) ·∆(t) + R(t) + N(t). (13)

∆(t) is a certain portion of power consumption for each bit transported that
does not equal zero in data dependent paths. R(t) is the remaining deterministic
part. Noise N(t) can be ignored at statistical attacks [6].

The underlying bus-architecture is chosen to be 8 and 32 bit, respectively.
The generation of simulated measurement data gives an output file for each expo-
nentiation that contains the Hamming weight of all intermediate data processed.
These output files replace the single measurement data files. The number of bits
used for the calculation of the Hamming weight is given by the bus-architecture.
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The starting value x0 was chosen randomly as 128 byte value. The value of prime
q was 63 byte long.

The test values used are the following.
q:

00 DA 2B AD CF F0 83 45 0E 4D 8F 32 EF 68 3A 57

06 DB E5 2E 15 8B 8F 9F 62 4C 15 D8 91 B9 03 56

B5 FB B8 35 88 5C E9 0B 4E 46 FF ED 68 B9 DC A8

37 5D 92 86 E5 BA B4 3B 98 A7 BE 65 90 BF 84 83

x0:

AE 67 0D 33 82 DF 4B 8D EC DE E0 B3 7D 2B FB A2

FD F4 C3 29 1B DB 74 F7 C1 CD B4 FD 63 41 C4 DE

A5 F7 8C 79 21 C4 5A 8B 54 63 9A 41 25 D3 1F 58

4E 82 56 A2 8D E0 1A 50 C2 96 A7 89 3E 07 33 61

0A 7D 99 BC 06 28 83 A5 A6 41 53 F9 CE 14 5D 71

0B 1E D6 5A 83 3D AB 44 ED 0F E0 65 3E 32 88 AF

BD 59 EE AC 85 8B FB DD F7 B8 4C 33 DD 5D A5 FE

A9 98 A9 D9 49 01 59 5B 40 C0 CE 5A 23 78 2A 48

r0:

00 09 47 50 DB C7 43 16 75 05 8E 99 E5 2C 92 50

96 D9 CD 3E 81 57 E3 B8 F8 15 47 BB 49 A2 8F 50

27 18 3E BD 86 A3 36 21 5A 42 E8 03 AE 1B 62 27

55 55 9A D9 B7 FF 41 FD 83 4E 33 B2 E5 A2 B5 42

The correct value f0 of the least significant byte of x0 mod q is in this example
42h resp. 66 in decimal representation.

5.1 First Case: 8-Bit Architecture

The DPA calculation reveals the following list of the best 17 candidates (out of
256 candidates) for the correct value of f0 on the base of 256 single measure-
ments.

Besides to the correct value 66 (decimal notation) secondary positive corre-
lation signals with decreasing amplitudes appear at the relative displacements
of ±128, ±64, ±32, ±16, ±8, ±4, ±2 and ±1 of the correct hypothesis 66. If the
number of single measurements is not a multiple of 256 the correlation coeffi-
cients of the secondary positive correlation coefficients differ slightly.

In the Fig. 2 both positive and negative correlation coefficients are taken
into account. Negative correlation coefficients occur mainly at small correlation
amplitudes. Strong correlation signals are caused by positive correlation coeffi-
cients.

5.2 Second Case: 32-Bit Architecture

During generation of the simulation data the 32-bit Hamming weight is used
instead of an 8 bit Hamming weight. The DPA correlation is performed on the
last 8 bits of the intermediate result after modular reduction.
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Hypothesis Correlation Coefficient Relative Displacement of f0

66 +1.000000 0
194 +0.750000 +128
2 +0.625000 -64
130 +0.625000 +64
34 +0.562500 -32
98 +0.562500 +32
50 +0.531250 -16
82 +0.531250 +16
58 +0.515625 -8
74 +0.515625 +8
62 +0.507812 -4
70 +0.507812 +4
64 +0.503906 -2
68 +0.503906 +2
65 +0.501953 -1
67 +0.501953 +1

Fig. 1. Graphical representation of the absolute correlation coefficients on the base of
256 single measurements over time. Correlations coefficients c(j, t) < |0.2| are neglected
in this trace for clarity reasons.

The correlation coefficient at the correct value f0 is the most significant and
can be easily recognised (Fig. 3). It is more significant as in case of 32-bit random
input values. Though the Hamming weight of the measurement series is based on
32 bit the correlation coefficients are nearly as significant as in case of an 8-bit
architecture. Because of the equidistant step width only up to two bytes of input
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Fig. 2. Graphical representation of the correlation coefficients on the base of 256 single
measurements. The smaller correlation amplitudes around f0 ± 128 of Fig. 1 turned
out to be mainly of negative sign.

data and their contribution to the overall 32-bit Hamming weight are affected.
A change at the more significant byte occurs at each 256th single measurement
only.

It turned out that the DPA attack on the CRT is robust on different hardware
architectures.

6 Efficiency of MRED

For the practical estimation of the attack potential we assume that we deal with
1024 bit RSA key size. The CRT implementation shall not include any restric-
tions on the input data and message blinding schemes that prevent MRED (see
section 7). The smaller prime used is assumed to be about 500 bit long. After the
first measurement series that serves as profiling step the further measurements
series can be limited to a small time frame at the beginning of the CRT calcula-
tion that includes the modular reduction step. In general, it is assumed that an
attacker needs a few hundred to a few thousand single measurements to prove
DPA signals within one measurement series. The gcd check is successful after
approximately 60-62 measurement series at the latest. For the overall number of
single measurements we would expect 30.000 < n < 300.000. The measurement
itself consumes the most part of the time needed. For a rough estimation the
overall measurement time t is expected to be 1 day < t < 3 weeks. It further
depends on the performance of the test set-up. The time of a DPA calculation
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Fig. 3. Graphical representation of the correlation coefficients on the base of 256 single
measurements. The correct value is f0 = 66. The characteristics is shifted asymmet-
rically regarding to Fig. 2 (The correlation coefficient of j = 2 is nearly as high as of
j = 194.)

on a standard PC should be done in the range of minutes depending on the time
frame width that is used for the measurement. Additional time is generally nec-
essary for re-synchronisation of single measurements. As it is possible to focus
on a small time frame re-synchronisation should be done within minutes to at
maximum 1 hour computing time for each measurement series.

MRED is linear to the bit size of the prime that is attacked. E. g. applying
this attack to a 2048 bit RSA key will double the overall time.

Table 3. Summary of the Attack Efforts needed for a 1024 bit RSA key

Attack Tasks of MRED
No. of Measurement Series: 60-62
No. of Single Measurements per Series: 500 - 5000
Single Measurement Data Size: small
Overall Measurement Time: 1 day to 3 weeks
Overall Re-Synchronisation Time: few hours to 2 days
No. of DPA calculations: 60-62
Overall DPA calculation time: few hours to 1 day
Overall Time: 2 days to 1 month



A DPA Attack against the Modular Reduction 241

Referring to the Common Criteria scheme [12] the attack potential of MRED
is assessed to be in the range of ’Moderate’ to ’High’ for a 1024 bit RSA key.
The assessment depends on the countermeasures of the implementation, the
necessary adaptation work of the attacker and the further development of the
attack methods.

7 Limitations and Countermeasures

There are three basic assumptions of the MRED attack, namely

1. a sufficient number of single measurements can be collected,
2. the input data x can be varied arbitrarily to construct equidistant input

data, and
3. (x0− i · (256)k) mod q holds (r0− i · (256)k) at least for a subgroup of single

measurements.

The first assumption deals with the number of single measurements that are
needed for this DPA attack. As said before, this DPA attack against a 1024 bit
RSA key demands for about 30.000 < n < 300.000 single measurements. The
upper boundary of single measurements may conflict with physical constraints
of smart cards, e. g. if EEPROM write accesses are involved. Nevertheless, the
authors assess that a few ten thousand measurements is a realistic number of
exponentiations that can be carried out using a typical smart card. A general
countermeasure to prevent these kind of statistical attacks is an usage counter for
the number of RSA exponentiations. To secure the RSA decryption an additional
failure counter can be implemented if a check of padding formats fails. On the
other side an improvement of MRED may reduce the number of exponentiations.

The second assumption affects RSA signing (“chosen plaintext”), but not the
RSA decryption (“chosen ciphertext”). The second assumption fails if the at-
tacker has to deal with padding formats in case of digital signature applications.
Typical padding formats used limit the range of variable data to the least signif-
icant 20 bytes of data that is the outcome of a hashing function. At the presence
of padding formats MRED will reveal at maximum the least significant 20 bytes
of the remainder of both primes p and q. Nevertheless, this information is of
minor use as it doesn’t give directly the least significant 20 bytes of the primes
p and q, but of an unknown multiple of p and q, respectively. A possible way
to proceed is a DPA attack that aims to find data correlations on the revealed
bytes of the remainder during the following ’square - multiply’ algorithm using
the exponents dp and dq. If data correlations can be proven at the multiplica-
tions this leads to the disclosure of the exponents dp and dq. The occurence of
these DPA signals during the exponentiation can be prevented by the common
message blinding schemes.

The third assumption of MRED can be destroyed by message blinding. Mul-
tiplicative message blinding scheme as e. g. proposed by [11] use pairs (νi, νk)
that are used for the blinding of the input data and unblinding of the result.
This multiplicative blinding is applicable to prevent the likeliness of the third
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assumption. Nevertheless, MRED might be useful to detect possible weaknesses
within the message blinding scheme.

8 Conclusion

In this paper, we developed a new DPA attack on the remainder that can be
applied at a CRT implementation of RSA to compromise one of the secret RSA
primes. The basic assumption for MRED is that (x0 − i · (256)k) mod q holds
(r0 − i · (256)k) at least for a subgroup of single measurements. The results
of this MRED attack are shown on the base of simulated measurement data.
Countermeasures against MRED should include the use of multiplicative blind-
ing schemes to protect the reduction modulo a secret prime.

Acknowledgements. The authors would like to thank Robert Hammelrath and
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and the test methods, as well as the referees for their valuable comments.
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Abstract. This paper contains three parts. In the first part we present a new side
channel attack on a plaintext encrypted by EME-OAEP PKCS#1 v.2.1. In con-
trast with Manger’s attack, we attack that part of the plaintext, which is shielded
by the OAEP method. In the second part we show that Bleichenbacher’s and
Manger’s attack on the RSA encryption scheme PKCS#1 v.1.5 and EME-OAEP
PKCS#1 v.2.1 can be converted to an attack on the RSA signature scheme with
any message encoding (not only PKCS). In the third part we deploy a general
idea of fault-based attacks on the RSA-KEM scheme and present two particular
attacks as the examples. The result is the private key instead of the plaintext as
with attacks on PKCS#1 v.1.5 and v.2.1. These attacks should highlight the fact
that the RSA-KEM scheme is not an entirely universal solution to problems of
RSAES-OAEP implementation and that even here the manner of implementa-
tion is significant.

1   Introduction

In 1998, Bleichenbacher [5] described an attack on the PKCS#1 v.1.5 encoding and in
2001 Manger [15] described an attack on the improved scheme EME-OAEP PKCS#1
v.2.1, called also RSAES-OAEP. These attacks underline the significance of the theo-
rem of RSA individual bits [13] which states that: If RSA cannot be broken in a ran-
dom polynomial time, then it is not possible to predict the value of any selected bit of
the plaintext with a probability not negligibly different from 1/2. A negligible differ-
ence for the purpose of this theorem is such �(n) that for any constant c > 0 it holds
that �(n) < L(n)-c, where L(n) is the length of an appropriate sufficiently large RSA
modulus n. From the standpoint of side channels it is important to understand this
theorem as saying: If the value of any chosen bit of the plaintext can be predicted with
a probability not negligibly different from 1/2 then RSA can be broken within a ran-
dom polynomial time. Breaking RSA [21] is understood here to mean that a value of
the plaintext is obtained. Bleichenbacher's and Manger's attacks use side channels
which provide the attacker with a relatively large amount of information about the
plaintext (at least that the two most significant bytes are 00 02 or the first one  is 00).
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In this paper plaintext will always mean a value of m which is created immediately
after an operation with a private RSA key, m = cd mod n, not the value of M obtained
after decoding m.

In Section 2 we present another possible attack on the RSAES-OAEP (PKCS#1
v.2.1) scheme. It is a chosen ciphertext based side channel attack using only the side
information about Hamming weight of certain 32-bit words produced in the process of
decoding m by the EME-OAEP-DECODE procedure according to PKCS#1 v.2.1.
Theoretically, it is a weakening of the assumptions of Manger’s and Bleichenbacher’s
attacks. From the practical point of view, the new attack can be used especially on
smart cards. It follows from the theorem of RSA individual bits that it is necessary to
prevent the leakage of any information about the individual bits of the plaintext. Our
attack demonstrates that the Hamming weight of a part of the plaintext can be used to
carry out a successful attack.

In Section 3 we present a very simple but efficient conversion of the Man-
ger/Bleichenbacher breaking oracle to a universal (signature) oracle. The principle that
a private RSA key should not be used simultaneously for encryption and for digital
signature is well known but is very often violated in practice. Typical examples in-
clude some of the current implementations of Public Key Infrastructure (PKI ), the
SSL protocol etc. We show that if we can perform Bleichenbacher’s or Manger’s at-
tack on the encryption scheme using PKCS#1 (v.1.5 or v.2.1) in such way that we can
obtain the plaintext then we can also obtain the digital signature of any message (en-
coded in any way) using the same private RSA key. In the SSL protocol this means the
ability to create signatures with the server-side private key and even create false serv-
ers with the identity of the original server, provided that sufficient decrypting speed
can be ensured.

In Section 4 we present a new fault side channel attack on the RSA-KEM. RSA-
KEM attempted to remove the structural relations in order to prevent leaking of in-
formation about the plaintext. Despite this we discovered a natural method of obtain-
ing such information. Input plaintext for RSA-KEM consists of symmetric encryption
keys, information about which can be obtained by means of an integrity check of the
messages they encrypt (e.g. checking the PKCS#5 [18] padding). The result produced
by the attack that uses this information is a private RSA key whilst the attacks on
PKCS#1 v.1.5 and 2.1 always discovered only a plaintext.

2   Side Channel Attack on RSAES-OAEP Plaintext

In this section we will demonstrate a new method of attacking the RSAES-OAEP
scheme (PKCS#1 v.2.1 [17]) at the time when decoding operation EME-OAEP-
DECODE(EM, P) is performed, see Fig. 1. The attack is based on the assumption that
there is a side channel carrying some information about the plaintext. In particular we
assume that the attacker can obtain the Hamming weight w(x) (i.e. the number of ’1’
bits) of a word x during the time when the plaintext m is being processed in the MGF
operation (to be specified later). As it was shown in [16], this assumption is realistic
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for instance in power side channels which tend to leak this information in a relatively
readable way. We note that this attack is possible with some modifications even when
we have access to the Hamming distance of processed data rather than the Hamming
weight.
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Fig. 1. New side channel attack against RSAES-OAEP

2.1   Attack Description

Consider RSA with a modulus n which has the length of L(n) bits where L(n) is the
multiple of 512, i.e. L(n) = 512*k, where k is a natural number. The attack will target
the RSAES-OAEP scheme during the processing of the plaintext immediately after the
RSA decryption operation cd mod n, see Fig. 1. SeedMask will be computed according
to [17] as seedMask = MGF(maskedDB,20) = SHA-1(maskedDB || 00 00 00 00),
where the four zero bytes (we will write constants mostly in the hex. notation) are
appended to the message by the MGF function. It follows from the definition of
OAEP encoding that maskedDB always contains 64*k-1-20 bytes, so that 64*k-17



Further Results and Considerations on Side Channel Attacks on RSA         247

bytes (4 extra zero bytes) enter SHA-1. By the definition of SHA-1 [22] the message
is divided into blocks of 64 bytes, which are processed sequentially by the compres-
sion function. Note that the least significant bit of the original message m is processed
in the last block. It is followed by four zero bytes and 17 bytes of the SHA-1 padding.
For various values of L(n) the particular value of the padding is different, but it is a
constant known to the attacker. To present an example, we will consider n, such that
L(n) = 1024. Let us denote the i-th byte of the plaintext as m[i] where m[0] is the least
significant byte. The last block entering the SHA-1 compression function is in this
case equal to m[42.....0] 00 || 00 00 00 80 || 00 00 00 00  || 00 00 00 00 || 00 00 00 00 ||
00 00 03 78, where m is followed by 4 zero bytes (from MGF) and the SHA-1 pad-
ding. The padding consists of bit 1, 71 zero bits and a 64-bit representation of the
message bit length. The length is 88810 = 0x00000000 00000378 bits in this case
(64*2–17 = 11110 bytes). The SHA-1 compression function fills this last block into 32-
bit variables W0, ..., W15, where W8  = m[10] m[9] m[8] m[7], W9 = m[6] m[5] m[4]
m[3], W10 = m[2] m[1] m[0] 00, W11 = 00 00 00 80, W12 = 00 00 00 00, W13 = 00 00 00
00, W14 = 00 00 00 00, W15 = 00 00 03 78. And then expansion to words W16 , ..., W79 is
performed according to the following relations (where S1 denotes the left cyclic shift
by one bit) W16 = S1(W13 xor W8 xor W2 xor W0), W17 = S1(W14 xor W9  xor W3 xor W1),
W18 = S1(W15 xor W10 xor W4 xor W2), etc. When calculating W16, the first operation
performed is W13 xor W8, where W13 is a known constant. This moment is an example
of a general situation when D-1 known parameters and one unknown enter a D-ary
operation. Here various side channels are often applicable, especially the power side
channel.

We assume that the attacker is able to gather the Hamming weight w(W8) �{0, ...,
32} of word W8 during the W13 xor W8 operation (W8 is the only unknown operand in
it). The same situation arises in the following two operations as well, so we are able to
gather w(W9) and w(W10).

We number the bits of the word Wi (from the msb to the lsb) as Wi,31 Wi,30 Wi,29 ... Wi,0.
We will show that now we can predict the value of W10,8 with a probability not negligi-
bly different from 1/2. Note that this is the value of the least significant bit (lsb) of the
plaintext m. Hence, using the theorem of RSA individual bits [13] we can design an
attack on the entire plaintext. It is widely known that information about the lsb of the
plaintext leads to very efficient attacks [25, p.144].

2.2   Obtaining the Least Significant Bit of a Plaintext (Building an lsb-Oracle)

The procedure which leads to obtaining the value of W10,8 is as follows. We denote the
ciphertext to be attacked as c, the modulus as n and the public RSA exponent as e.
First we let the attacked device decrypt and decode the original ciphertext c. During
decoding we gather the values of Hamming weights w(W8), w(W9) and w(W10). In the
next step we request the equipment to decrypt and decode a value c' = c*2-e mod n.
Plaintext m' is the result of this and during the calculation we will obtain Hamming
weights w(W8'), w(W9') and w(W10'). If the bit W10,8 is zero, then the decryption returns
the value m' = m >> 1, where ">> 1" means a shift one bit to the right. Otherwise m' =
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(m + n) >> 1. If we assume W10,8 = 0 then (W8’, W9’, W10’) will be created of (W8, W9,
W10) by a shift one bit to the right (with the exception of W10, where the shift only af-
fects the leftmost bits which are then independently complemented by eight zero bits).
The difference between appropriate Hamming weights w(W8), w(W9), w(W10) and
w(W8’), w(W9’), w(W10’) is therefore 0 or 1. More precisely w(W8’) = w(W8) - W8,0 + W7,0,
w(W9’) = w(W9) - W9,0 + W8,0, w(W10’) = w(W10) - W10,8  + W9,0 = w(W10) + W9,0 and there-
fore the three relations included in exactly one of the eight rows of Table 1 are valid.

Table 1. Possible relations among random variables W and W' when W10,8 = 0

W9,0 W8,0 W7,0 Possible relations

0 0 0 w(W10') = w(W10) w(W9') = w(W9) w(W8') = w(W8)

0 0 1 w(W10') = w(W10) w(W9') = w(W9) w(W8') = w(W8) +1

0 1 0 w(W10') = w(W10) w(W9') = w(W9) +1 w(W8') = w(W8) -1

0 1 1 w(W10') = w(W10) w(W9') = w(W9) +1 w(W8') = w(W8)

1 0 0 w(W10') = w(W10) +1 w(W9') = w(W9) -1 w(W8') = w(W8)

1 0 1 w(W10') = w(W10) +1 w(W9') = w(W9) -1 w(W8') = w(W8) +1

1 1 0 w(W10') = w(W10) +1 w(W9') = w(W9) w(W8') = w(W8) -1

1 1 1 w(W10') = w(W10) +1 w(W9') = w(W9) w(W8') = w(W8)

However, if W10,8 = 1, m’ is not created by a shift of m, but produced as (m + n) >>
1. This, with a high probability, destroys the linear relations in the Table 1. By the
obtained weights (w(W8), w(W9), w(W10)) and (w(W8’), w(W9’), w(W10’)) we determine
whether they fit all relations in any single row. If so, we adopt a hypothesis that W10,8 =
0, otherwise we refuse it and assume that W10,8 = 1. The probability of establishing the
bit W10,8 correctly is close to 1 for an ideal side channel. It will be sufficient to realize
that m is randomized by a hash function in MGF and n is assumed to be common, not
specially constructed. Therefore, the probability of adopting the hypothesis that W10,8 =
0 if it was W10,8 = 1, can be estimated as the probability that the random variables W8,
W9, W10 and W8’, W9’, W10’ (with the properties that lower nine bits of W10 are
1000000002 and lower eight bits of W10’ are 000000002) will fit any of the relations in
Table 1, which is approximately 0.008. That enables us to obtain the least significant
bit of the plaintext m with a high probability and therefore, in accordance with [13] we
can establish the remaining part of m.

For the demonstration purpose the procedures in [13] can be used directly, in par-
ticular we suggest the methods based on computing gcd (for details see [2]). However
some improvements of these procedures are necessary when planning a real practical
attack (mainly with respect to a minimization of oracle calls, because some devices
may limit the total amount of RSA decryptions). First we need to compute our oracle’s
advantage, which we define in the following way: Let the lsb(m) be the least signifi-
cant bit of the plaintext m corresponding the ciphertext c and let the Olsb(c) be the ora-
cle’s estimate of lsb(m). We assume that the oracle works according to the procedure
described above. The advantage adv is defined as  adv = |P[lsb(m) = Olsb(c)] – 1/2|,
where the probability of correct estimation, P[lsb(m) = Olsb(c)], is computed over the
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probability space of all possible ciphertexts and all possible oracle internal coin tosses.
From [13] we have that the adv must be at least non-negligible (c.f. above). The higher
advantage the better oracle we have. Of course, better oracle leads to a more efficient
attack. For instance, if we have an oracle with adv = 1/2, then we can use well known
and rather quick methods, needing approximately O(L(n)) oracle calls (c.f. for exam-
ple [25, p.144]).

If adv < 1/2, we have to employ some methods, which are equipped with a built-in
error correction. In fact, these methods must have been already employed in the proofs
of theorems in [2,13]. But these proofs have rather existential form, which is not suit-
able for a practical attack. However there are stronger proofs developed in [9] and
improved later in [10], which can be used to mount practically feasible attacks. In
particular we suggest to use the RSA inversion algorithm ([10, p.226]), which de-
scribes a randomized algorithm for the RSA decryption, which needs approximately
O(L(n)2adv-2) oracle calls ([10, p.223]).

Note that using the absolute value for adv (c.f. definition above) is possible here
since there is no dependence between previous oracle responses and further oracle
calls in the RSA inversion algorithm. Therefore we can run this algorithm (in particu-
lar parts 2. and 3. – c.f. [10, p.223]) twice, once for Olsb(c), once for neg(Olsb(c)), where
we use simple inversion of the responses captured in the previous run. Such a method
induces only a constant multiplicative slow down in the computational part of the
algorithm, without an increase of the number of total oracle calls. On the other hand
this method allows to exploit any correlation between oracle response and the correct
value of lsb(m). This further relaxes requirements on the quality of particular side
channel used in this attack.

There are other questions, which have to be carefully answered when developing an
efficient attack – namely on how to measure Hamming weights, whether to do some
error corrections during a measurement phase or whether to let it all on a majority
decision used in the RSA inversion algorithm, etc. In this paper we strive to show that
such an attack is possible and that it operates in a random polynomial time, having in
mind that its concrete efficiency strongly depends on a particular implementation.
From here we would like to emphasize the importance of a thorough implementation,
which cannot simply be reduced to the problem of finding “the right encoding
method” as was perhaps deemed earlier.

3   Note on Converting the Deciphering Oracle to a Signing Oracle

In this section we will demonstrate that if the attacker can use Bleichenbacher's or
Manger's attack on the PKCS#1 v.1.5 or 2.1 encryption scheme, he/she is also able to
create false signatures using the same private RSA key with any encoding of the mes-
sage to be signed. This conversion is technically very simple but it has interesting
practical consequences on the applications where the same key is used both for en-
cryption and for digital signature. One example is the SSL/TLS protocol used to se-
cure access to web servers. In its application the public key certificate at the server
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sometimes permits the use of the key both for encryption and for signature. That
means that a signature made by the server’s private key is meaningful in the PKI sys-
tem and it is not appropriate that it should be forgeable. Conversion will be demon-
strated for both Bleichenbacher’s attack on PKCS#1 v.1.5 and for Manger’s attack on
PKCS#1 v.2.1. Manger’s attack uses only one element of the EME-OAEP PKCS#1
v.2.1 encoding - whether a zero occurred in the most significant byte (MSB) of the
plaintext decrypted by the private key. We will denote the oracle which tells the at-
tacker this as “Partial information oracle” PIOMSB: PIOMSB(c) = "yes" iff c = me mod n,
MSB(m) = 0x00. Using this oracle a decryption machine (Whole information oracle)
WIOMSB is constructed in [15]. If the plaintext has a format of m = 00 || ...., then the
WIOMSB (using PIOMSB) can extract from the ciphertext c the original plaintext m =
WIOMSB(c) = cd mod n. Now, we will assume that the same private key (d) is used in
another RSA scheme (with any encoding) for digital signature. The attacker can now
easily forge the digital signature of any message using the same private key (d) if
he/she has access to PIOMSB. Let c be the message that the attacker prepares for sign-
ing. He/she then selects different random natural numbers r = r1, r2, ... smaller than n
and sends c' = c*re mod n to the oracle PIOMSB successively. After decryption there is
calculated m' = m*r mod n on the recipient's side. Unless the most significant byte of
m' is zero, it is rejected by PIOMSB: PIOMSB(c') = "no". Because the most significant byte
of m' is random, it is zero with a probability of 1/256. After several hundreds of trials
the value of c' will conform with the initial condition of Manger's attack and WIOMSB

then decrypts c': m'= WIOMSB (c') = (c')d mod n. The attacker then only has to calculate
m = m'* r-1 mod n as a valid signature of the message c. The particular type of encod-
ing for a signature is irrelevant here. The attacker follows the same procedure when
converting Bleichenbacher's attack. This attack assumes the oracle PIOPKCS-CONF, which
tells the attacker whether the plaintext produced by decryption is “PKCS#1 conform-
ing” [5]. That means that the two most significant bytes of the plaintext must be equal
to 00 || 02 and from the 11th byte onwards some byte must be zero (separator). On the
basis of PIOPKCS-CONF a decryption machine WIOPKCS-CONF is then constructed. If the
plaintext is “PKCS#1 conforming”, then WIOPKCS-CONF can use PIOPKCS-CONF on the corre-
sponding ciphertext c to obtain the original plaintext m = WIOPKCS-CONF(c) = cd mod n.
Using the same procedure as above, i.e. by a randomly selected r, we test whether
PIOPKCS-CONF on c' = c*re mod n responds “yes”. This time the probability of such an-
swer is several hundred times lower than in the case of Manger's attack (depending on
the number of bits of n; for 1024 it is approximately 715-times less, see [15]). As soon
as such a situation occurs, the attacker can again compute m = m'* r-1 mod n as a valid
signature of the message c. Note that the attack described in Section 2 of this paper
does not place any special requirements on the ciphertext. It is therefore suitable for
forging signatures even without any changes.

In the case of the SSL/TLS protocol the concrete threat of this attack depends not
on the protocol itself, but rather on the PKI, which the particular server works in. This
PKI manages the server certificate and this PKI decides (via certificate attributes)
whether signatures on behalf of that server are meaningful or not. In practice we have
seen many server certificates, which were attributed for the purpose of document
signing as well.
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4   Side Channel Attack on RSA-KEM

After Bleichenbacher’s attack on the scheme PKCS#1 v.1.5, the new scheme PKCS#1
v.2.1, based on the EME-OAEP encoding, was recommended for use. However, Man-
ger’s attack [15] showed that RSAES-OAEP is also vulnerable to side channel attacks.
After that Shoup [23] proposed the new key encapsulation mechanism RSA-KEM.
This mechanism was believed to have eliminated problems with side channels. We
show that RSA-KEM is also vulnerable to some types of side channel attacks, and
therefore has to be implemented carefully. Next we will describe an RSA confirmation
oracle (CO) based on RSA-KEM and show how to use a CO to obtain a RSA private
key.

4.1 Confirmation Oracle

The purpose of RSA-KEM is to transmit the symmetric key to the receiver, and so it is
natural to consider the properties of the whole hybrid public-key encryption scheme
H-PKEKEM, DEM, consisting of the Data Encapsulation Mechanism (DEM) and the Key
Encapsulation Mechanism (KEM) (c.f. [23]). Our attack on RSA-KEM is based on the
behaviour of the entire hybrid scheme. Its requirements are sufficiently general and
make it easily realizable in practical applications. We will start by reviewing some
important terms from [23] in a simplified form:

The Key Encapsulation Mechanism (KEM) has this abstract interface:
KEM.Encrypt(PubKey) � (K, C0) - generates a symmetric encryption key K and

by using the public key PubKey creates a corresponding ciphertext C0
KEM.Decrypt(PrivKey, C0) � (K) - decrypts C0 using the private key PrivKey and

derives the symmetric key K by applying the key derivation function KDF to that
result

The Data Encapsulation Mechanism (DEM) has this abstract interface:
DEM.Encrypt(K, M) � (C1) - encrypts the message M with the symmetric key K

and returns the corresponding ciphertext C1
DEM.Decrypt(K, C1) � (M) - decrypts the ciphertext C1 with the symmetric key

K and returns the plaintext M
The hybrid public-key encryption scheme H-PKEKEM, DEM is a combination of the

KEM and DEM schemes. The algorithm for the encryption of a message M by the
public key PubKey resulting in the ciphertext C is as follows:

1. (K, C0) = KEM.Encrypt(PubKey)
2. C1 = DEM.Encrypt(K, M)
3. Ciphertext C = C0 || C1
On the receiving end, the decryption of the ciphertext C with the private key

PrivKey is carried out as follows:
1. Let C = C0 || C1
2. K = KEM.Decrypt(C0)
3. M = DEM.Decrypt(K, C1)
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We assume that there is no integrity check for the key K (e.g. analogous to a check
used in the encoding method OAEP) however an integrity check exists for the mes-
sage M in the third step. It can be based on the message padding check, as in PKCS#5
[18], on the usage of labels as described in [23], or on any other technique. We assume
that the attacker will find out whether the receiver’s integrity check rejects a ciphertext
C. In this situation we can expect that the receiver will send an error message to the
sender. Acceptance or rejection of a ciphertext C defines the receiver oracle (RO). On
the basis of RO we can define the confirmation oracle (CO). This term may be defined
more generally, however, we will only define the RSA confirmation oracle (RSA-CO)
here.

We assume that the private key PrivKey is a private exponent d and n is a public
modulus. Later we will show that the modulus n should be part of the private key
rather than independently taken from the public key, as it is recommended in [23].

Definition. RSA confirmation oracle RSA-COd, n(r, y).
Let us have a receiver oracle RO that uses RSA in the hybrid encryption H-PKEKEM,DEM.

We will construct a RSA confirmation oracle RSA-COd, n(r, y) � (ANSWER =
“yes/no”) as follows:

1. K = KDF(r); KDF - Key Derivation Function
2. C0 = y; for simplicity we omit the conversion between integers and strings
3. C1 = DEM.Encrypt(K, M); where M contains an integrity check
4. C = C0 || C1
5. Send the ciphertext C to the receiver oracle ROd, n. RO then continues:

a. Compute K = KEM.Decrypt(d, C0) following these steps:
i. Check if y = C0 < n. If not, an error has occurred.
ii. Compute r' = (yd mod n)
iii. K' = KDF(r')

b. M' = DEM.Decrypt(K', C1)
c. Check the integrity of M'
d. If it is correct, the answer of RO is “yes”, otherwise it is “no”

6. The answer of RSA-COd, n(r, y) is “yes”, if RO returned “yes”, otherwise it is
“no”

We note that whenever r = (yd mod n), the oracle returns “yes”. If r � (yd mod n)
then the oracle returns “no” with a high probability close to 1 (the value depends on
collisions in the function KDF and the strength of the integrity check). The key point
is that an attacker may use the oracle RSA-COd, n(r, y) to check the congruence
r � yd (mod n) without knowledge of the particular value of the private key d used in
the step 5.a.ii above.

4.2   Fault Side Channel Attacks

The congruence r � yd (mod n) can be confirmed with the public key as well. How-
ever, using RSA-COd, n(r, y) is the natural way of exploiting the receiver's behaviour.
The oracle becomes far more interesting when an error occurs in step 5.a.ii of the
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algorithm above. This confirmation oracle can be used to design many attacks. There-
fore we will only present a brief description of two examples to illustrate the core of
this problem. We note that these attacks are targeted at the private key, rather than the
plaintext. This is paradoxically caused by the absence of structural checks of the
plaintext in RSA-KEM, which is really a positive quality in other contexts.

4.2.1   Faults in the Bits of the Private Exponent d
The impact of faults in the bits of the private exponent RSA was described in [3]. We
will show that the confirmation oracle RSA-COd, n can be used to mount these attacks
on the hybrid encryption scheme based on RSA-KEM. As an example we will assume
that the attacker is able to swap the i-th bit d(i) of the receiver’s private exponent d (in
step 5.a.ii), and this change will go undetected by the receiver. Such a situation can
occur with chip cards.

Let us assume that a fault occurred in the i-th bit d(i) and let us denote by d’ the de-
fect value of the private exponent. Depending on the value of d(i), either d’ = d + I or
d’ = d - I, where I = 2i. Let � �  yI (mod n) and �*�-1 � 1 (mod n). For the value r = yd’

mod n we have:
r = (yd * � mod n) if d(i) = 0
r = (yd * �-1 mod n) if d(i) = 1
Using the access to the confirmation oracle RSA-COd’ ,n we can find out the value of

d(i) in this way:
1. Randomly pick x, 0 < x < n
2. Compute y = xe mod n, where e is the corresponding public exponent RSA
3. Compute r = x * � mod n
4. If RSA-COd’, n(r, y) returns “yes” then set d(i) = 0 else set d(i) = 1.
We can repeat this procedure for various bit positions (and their combinations) and

thus obtain the whole private key d. In the case of irreversible changes we will gradu-
ally carry out an appropriate correction in step 3 using the previously obtained bits. In
this way the corruption of d is allowed to be irreversible. Moreover, it is enough to
obtain only a part of d from which the remaining bits can be computed analytically in
a doable time, see overview in [6]. In [3,7] we may find other sophisticated attacks of
this type. We have presented the confirmation oracle as an “interface” that allows the
attacker to apply some general attacks on “unformatted RSA” to RSA-KEM.

4.2.2   The Usage of Trojan Modulus
We have mentioned that in the RSA-KEM scheme, the modulus n is not part of the
private key. This would allow for a change of the modulus n without any security
alarm. The following attack shows the need to change this set up.

Let us assume that we can obtain the value r = gd mod n' for an unknown exponent
d and arbitrary values of g and n'. It is widely known that one such value r is sufficient
to discover d. We can, for instance, choose a modulus n' to be a prime in the form n' =
t*2s+1, where t is a very small prime number and s is a very large natural number.
Further we choose g to be a generator of the multiplicative group Zn’

*.
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Now we can solve the discrete logarithm problem in Zn’

* by a simple modification
of the Pohlig-Hellman algorithm [19]. This algorithm requires the value of r, r = gd

mod n’, directly, which we cannot obtain from the confirmation oracle. We can only
ask the oracle whether the pair of integers (x, g) satisfies the congruence x � gd mod n’.
On a closer look at the Pohlig-Hellman algorithm we notice that it can be modified so
that the value of r is not needed directly, but only in comparisons of the type
x =? (r� mod n’) for some integers x, �. It means that we only want to know whether x
=? ((g d) � mod n’), which can be obtained by calling the confirmation oracle RSA-COd,

n’(x, g� mod n’). This is the main idea of the modification. The complete algorithm A1
is presented in the next subsection.

This attack is also possible even if the modulus n is part of the private key. How-
ever in this case we can expect that it will be a little bit more difficult to plant a false
value of n’. This idea can also be extended to the case when a method based on the
Chinese Remainder Theorem is used for operations with the private key.

4.2.3 Algorithm A1: Computation of the Private Exponent Using the Access to
a RSA Confirmation Oracle

In the following we will describe an efficient algorithm for a private exponent d com-
putation, based on a modified Pohlig-Hellman algorithm for the discrete logarithm
problem in the multiplicative group Zp

*. This group has a special structure chosen by
an attacker, because the value of p is taken to be the fraudulent modulus n’.

Proposition. Let us assume to have an access to a confirmation oracle RSA-COd, p,
where p is a prime such that p = t*2s + 1 and t is a small prime. Let g be the generator
of Zp

*. (We note that the order of Zp

* has to be larger than the highest possible value of
d.) The following procedure computes the private exponent d in the three steps.

Step 1: Computation of the value Ds = d mod 2s

Let d = d(b-1)*2b-1 + d(b-2)*2b-2 + ...+ d(0), where b is the number of bits of the bi-
nary form of d, and d(i) � {0, 1}, for 0 � i � b-1. We assume that p-1 is divisible by 2i

and we define r = gd mod p and D(i) = d mod 2i. Let us denote  I = 2i and J = 2j. Then
r(p-1)/I � [gd](p-1)/I � [g(p-1)/I]d � [g(p-1)/I]d mod I � [g(p-1)/I]D(i) (mod p), and hence

r(p-1)/I � [g(p-1)/I]D(i) (mod p) . (1)

The value of D(i) can be expressed as D(i) = d(i-1)*2i-1 + d(i-2)*2i-2 + ...+ d(0). We
will show that having access to the confirmation oracle we can easily compute the
lowest s bits of the private exponent d (one bit of d per one oracle call). We will start
with the lowest bit d(0) and inductively go to the bit d(s-1). For i = 1 from (1) we have
r(p-1)/2 � [g(p-1)/2]d(0) (mod p). From the definition of r we have r(p-1)/2 � [g(p-1)/2]d (mod p), and
so

[g(p-1)/2]d � [g(p-1)/2]d(0) (mod p) . (2)

We note that g(p-1)/2 � p-1 (mod p), and [g(p-1)/2]d(0) mod p can achieve only two possi-
ble values, depending on the bit d(0). Using the confirmation oracle, we can either
confirm or refute the value of d(0) in (2). Let d(0) = 1 and let us make the oracle call
RSA-COd, p(p-1, p-1), which represents the congruence (2). If the oracle returns “yes“
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we set d(0) = 1, otherwise we set d(0) = 0. We note that a correctly generated private
exponent RSA should induce d(0) = 1, therefore this step can be omitted. We deter-
mine the remaining bits of D(s) inductively. We assume that we know the value D(j)
for some 0 < j < s. Next we will compute the value D(j+1). From (1) we have

r(p-1)/(2J) � [g(p-1)/(2J)]D(j+1) (mod p) . (3)

Let � = d(j) * 2j = d(j) * J. Then D(j+1) = d mod 2j+1 = � + D(j). For the value on the
right-hand side of (3) we have that [g(p-1)/(2J)]D(j+1) � [g(p-1)/(2J)]� *[g(p-1)/(2J)]D(j) � [g(p-1)/2]d(j) * [g(p-

1)/(2J)]D(j) � (p-1)d(j) * [g(p-1)/(2J)]D(j) (mod p), so we get r(p-1)/(2J) �
� (p-1)d(j) * [g(p-1)/(2J)]D(j) (mod p). Using the definition of r (r = gd mod p) we obtain

[g(p-1)/(2J)]d  � (p-1)d(j) * [g(p-1)/(2J)]D(j)  (mod p) . (4)

On the right-hand side of (4), almost entirely known values appear, with the excep-
tion of the value of d(j). We will again use the confirmation oracle to decide between
the two possible values of the bit d(j). We guess that d(j) = 0 and call the oracle in the
form RSA-COd, p([g

(p-1)/(2J)]D(j) mod p, g(p-1)/(2J) mod p), which represents the congruence
(4). If the oracle returns “yes“, we set d(j) = 0, otherwise we do the correction d(j) = 1.
The inductive step is finished and we have obtained Ds = D(s).

Step 2: Computation of the value Dt = d mod t
It is simple to show that an integer j, under the condition r(p-1)/t � [g(p-1)/t]j (mod p),

satisfies that Dt � j (mod t). Whenever j < t, then we directly obtain that Dt = j. There-
fore we can identify the value Dt in this step by testing every number j = 0, ..., t-1,
until we find the j that satisfies the congruence r(p-1)/t � [g(p-1)/t]j (mod p). This j is then
the sought value of Dt. In order to determine this value we rewrite the congruence
(using the definition of r) as follows:

[g(p-1)/t]d � [g(p-1)/t]j (mod p) (5)

and use the oracle in the form  RSA-COd, p([g
(p-1)/t]j mod p, g(p-1)/t mod p) gradually for j =

0,..., t-1. The correct value of j is reached when the oracle returns “yes“ and we set
Dt = j.

Step 3: Computation of the value d
In the previous steps we have obtained two congruencies d � Ds (mod 2s) and d � Dt

(mod t). It also holds that gcd(t, 2s) = 1, and so by the Chinese Remainder Theorem,
there exists a single value 0 � d < t*2s, satisfying both congruencies. The value of d
can be computed directly as bellow:

1. Compute �, �*2s � 1 (mod t), a unique value exists because gcd(t, 2s) = 1
2. Compute v = (Dt - Ds)*� mod t
3. d = Ds + v*2s

Note that this attack requires at most s + t oracle calls together with a trivially fea-
sible number of group multiplications on Zp

*.
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4.2.4 Other Computational Faults
So far we have only considered the attacks based on modifications of the private ex-
ponent d and the modulus n. However, similar attacks may be developed, considering
general permanent or transient faults that appear during RSA computations within the
function KEM.Decrypt. A discussion on these attacks, however, is beyond the scope
of this paper. For more details, the reader may consult papers [3, 7]. We can realisti-
cally assume that certain types of attacks described there can be used on RSA-KEM
with the use of the confirmation oracle.

4.2.5   Comparison of Attacks on RSA Schemes
Manger [15] showed that the RSAES-OAEP scheme has certain problems with the
most significant byte. These problems must be avoided by proper implementation. We
have shown that RSA-KEM has similar problems, when fault side channel attacks can
occur. Whenever we use RSA-KEM it is therefore essential to exclude fault side
channels. We must carry out reliable private key integrity checks (the modulus should
be a natural part of the private key) as well as using fault tolerant computations. We
still need to consider the consequences of the RSA individual bit theorem and make
sure that no information about any individual bit of the plaintext has leaked. Table 2
below contains a brief overview of the current state of most used RSA schemes when
side channel attacks are considered.

Table 2. RSA schemes and side channel attacks

PKCS1 v.1.5 RSAES-OAEP RSA-
KEM

Public attack Yes Yes Yes

Side channel
(information)
used in attack

The information
about whether
the plaintext is
PKCS#1 v.1.5
conforming

- The information about whether
the most significant byte of plain-
text is zero
- Hamming weight of processed
data

Fault
side
channel

Information
obtained in
attack

Plaintext Plaintext Private
key

4.3.   General Countermeasures

When we consider the state-of-the-art in cryptanalysis, we can specify three basic
security criteria that need to be satisfied in every cryptosystem design on the RSA
basis. These are:

(a) Resistance to adaptive chosen ciphertext attacks
(b) Resistance to side channel information leakage
(c) Resistance to fault side channels
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Imperfect resistance to any of these types of attack can result in the ability to de-
crypt ciphertext (mainly (a)) or to obtain directly the value of the private key (mainly
(c)). We have purposely omitted from the list resistance to purely algebraic attacks,
such as problems with a low value of the private or public exponent, among other
similar ones (their overview appears in [6]), since most successful attacks are based on
an incorrect use of RSA and implementation faults. The problem of the correct use of
RSA is rooted in the mathematics underlying the algorithm (for details see
[13,2,6,7,15,5,9,10] and attacks presented there) and thus it should be examined from
a mathematical perspective. It seems too risky to leave the issue in the hands of im-
plementators. We also note that cryptanalysis has gradually accepted the assumption
that an attacker has nearly unlimited access to an attacked system. We do not merely
consider attacks on "data passing through" but direct attacks on autonomous crypto-
graphic units

Furthermore, we can see that it is not possible to satisfactorily solve the defence
against the types of attacks specified above by a single universal encoding of data
being encrypted. This is a consequence of the fact that the encoding mechanism is
only part of the whole scheme and as such can only affect part of its properties.

Now we will look at basic defence mechanisms against the above types of attacks.
The first category, adaptive chosen ciphertext attacks, has not been considered in this
paper. We think that a satisfactory solution is the random oracle paradigm [4], which
has been successfully applied [23,24,11]. For category (b), we need to constantly bear
in mind the claim in [13], and prevent any leakage of plaintext information. It is not
possible to limit our attention only to the easily visible information such as the value
of the most significant byte of plaintext in RSAES-OAEP. In Section 2, we showed
that the leakage of information from completely other part of the scheme has also a
negative effect on security. Power side channel attacks [14,16,1] and nascent theory of
electromagnetic side channel attacks [20,12] is necessary to be considered a particu-
larly high threat. However, defence measures against these channel attacks [8] are
beyond the scope of this paper. It was our aim to show that these countermeasures
need to be used in every single function that deals with individual parts of the plain-
text. Here we focused our attention on the function SHA-1 as an example.

Finally the last category are fault attacks. The vulnerability of RSA to these attacks
does not originate directly from the theorem [13]. However, it seems to be an innate
quality of the RSA system [3,6,7]. As well as with the other types of attacks, certain
types of encoding can more or less eliminate fault attacks. We showed that RSA-
KEM, despite it seems to be well resistant to other types of attacks [23], can be easily
and straightforwardly affected by fault side channel attacks. To avoid fault attacks it is
recommended especially:

(i) To consistently check the integrity of the private key and of the other parameters
used with it in its processing

(ii) To minimize the range of error messages
(iii) Wherever possible, to use platforms equipped with fault detection and eventu-

ally also correction facilities (fault tolerant systems)
As a rather strong countermeasure, even though not 100% sure, we can recommend

to check every result x = (yd mod n) as y =? (xe mod n), where d is the private exponent,
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e is the public exponent and n is the modulus. This measure effectively prevents both
attacks presented as the examples in this paper. The proof is simple: with a high prob-
ability, the relationship e*d � 1 (mod ord(y)), where ord(y) is the order of y in the
multiplicative group Zn

*, will be violated in both examples.

5   Conclusion

The RSA individual bits theorem [13] is generally considered to be a good property of
RSA. However, it also shows the way for attacks based on side channels [5,15].

We have presented another possible attack on the encryption scheme RSAES-
OAEP where, in contrast with the previous work [15], we attack that part of the
plaintext “shielded” by the OAEP method. In this, we use the algebraic properties of
RSA, rather than some weakness of the OAEP encoding. To prevent this attack, we
need to eliminate the parasitic leakage of information from individual operations in
partial procedures of the entire scheme. This goes well beyond the scope of the gen-
eral description of the OAEP encoding method. Next we presented a new side channel
attack on the RSA-KEM. This scheme was built to prevent the parasitic leakage of
information about the plaintext, especially under the consideration of chosen cipher-
text attack. However, we managed to point out a side channel that allows the leakage
of this information. Unlike previous attacks that returned the plaintext, this time the
attacker obtains the RSA private key. The attack was again made possible by the basic
multiplicative property of RSA.

Our contribution underlines the significance of the known algebraic properties of
RSA in relation to rapidly evolving attacks based on side channels. Consequently, it is
possible to expect similar side channel attacks in other RSA schemes that may employ
different message encoding. Therefore, it is necessary to pay more attention to side
channel countermeasures in implementations of these cryptographic schemes.

As a small note in our paper, we pointed out the rule of keeping RSA keys for en-
cryption and digital signature strictly separated, which is often neglected. We assumed
that the rule is not adhered to, and described an approach to convert both Manger's and
Bleicherbacher's oracles for ciphertext decryption into oracles that can create valid
digital signatures for arbitrarily encoded messages.
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Abstract. This article describes concrete results and practically vali-
dated countermeasures concerning differential fault attacks on RSA using
the CRT. We investigate smartcards with an RSA coprocessor where any
hardware countermeasures to defeat fault attacks have been switched off.
This scenario was chosen in order to analyze the reliability of software
countermeasures.
We start by describing our laboratory setting for the attacks. Hereafter,
we describe the experiments and results of a straightforward implemen-
tation of a well-known countermeasure. This implementation turned out
to be not sufficient. With the data obtained by these experiments we
developed a practical error model. This enabled us to specify enhanced
software countermeasures for which we were not able to produce any
successful attacks on the investigated chips.
Nevertheless, we are convinced that only sophisticated hardware
countermeasures (sensors, filters, etc.) in combination with software
countermeasures will be able to provide security.

Keywords: Bellcore attack, Chinese Remainder Theorem, Fault attacks,
Hardware security, RSA, Spike attacks, Software countermeasures, Tran-
sient fault model.

1 Introduction

This paper shows and proves that fault attacks on RSA with the CRT (also
known as Bellcore attacks) due to [BDL] are feasible. They are indeed devas-
tating if there are neither hardware mechanisms (sensors, filters, etc.) nor any
appropriate software countermeasures implemented in the underlying smartcard
ICs. However, this does not imply that modern high-security smartcard ICs are
vulnerable to this kind of attacks. Instead, it shows that fault tolerance and
especially sophisticated hardware countermeasures are essential for the design
of secure hardware. Moreover, we stress that it is very difficult in the field to
switch off these sophisticated hardware countermeasures. This has been done
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exceptionally for our study concerning software countermeasures against the
Bellcore attack.

In order to provide better security for data protection under strong encryp-
tion more and more implementations on tamper-proof devices (e.g., smartcard
ICs) are proposed. The main reason is that smartcard ICs provide high reliability
and security with more memory capacity and better performance characteristics
than conventional magnetic stripe cards. With special characteristics of compu-
tational ability a large variety of cryptographic applications benefit from smart-
card ICs. This attracted a huge amount of research on physical attacks against
smartcards in 1996 due to [Koch], [BDL] and again 1999 by [KJJ], followed by
[GMO,SQ]. However, most research so far focused on Timing or Power Analysis
attacks. This is surprising as the frauds with smartcards by inducing faults are
reality, cf., [A,AK1,AK2], whereas no frauds via Timing or Power Analysis at-
tacks have been reported so far. Moreover, research on fault-based cryptanalysis
is not very active compared to the other side-channel attacks. Furthermore, no
practical investigation of the Bellcore attack is presently known. Indeed, this
topic will be publicly addressed within this paper for the first time. It answers
a question of Kaliski and Robshaw [KR] of how practical these attacks might
be, answered definitely here by physicists, designers and manufactures of secure
hardware.

The present paper is organized as follows: Section 2 briefly repeats RSA us-
ing the CRT and its fault-based cryptanalysis according to [BDL,JLQ]; it also
includes and discusses the advantages and limitations of so far publicly known
software countermeasures to defeat fault attacks on RSA in CRT mode. Section
3 firstly explains so-called spike attacks and their realization on smartcard ICs,
their complexity from an attacker’s point of view and reveals an appropriate
test equipment to implement fault attacks. Secondly, we will present the result-
ing errors on unprotected hardware and software for RSA in CRT mode. This
demonstrates the insufficiency of a straightforward implementation of a well-
known countermeasure due to [Sh]. Within section 4 we basically investigate
enhanced software countermeasures derived from our practical observations and
our proposed model to counteract fault attacks on RSA. Eventually, section 5
adds some practical conclusions concerning software countermeasures to prevent
Bellcore attacks.

2 Preliminaries

2.1 The RSA System

Let N = p · q be the product of two large primes of similar length. To sign a
message m ∈ ZN using RSA one computes S := md mod N , where d is the
private exponent satisfying e · d ≡ 1 mod (p− 1)(q − 1) for the public exponent
e. The computationally expensive part of signing is the modular exponentia-
tion. For better efficiency most implementations exponentiate as follows: using
repeated square and multiply they first compute Sp := md mod p and hereafter
Sq := md mod q. Then they construct the signature S = md mod N using the
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CRT. This last step takes negligible time compared to the two exponentiations.
It is done efficiently by computing

S = Sq +
(
(Sp − Sq) ∗ (q−1 mod p) mod p

) ∗ q, (1)

using Garner’s algorithm, cf. [Kn].
The exponentiation using the CRT is much faster than the full exponenti-

ation. To see this, observe that Sp = md mod p = mdmod(p−1) mod p. Usually,
d is of order N , while d mod (p − 1) is of order p. Consequently, computing Sp

requires half as many multiplications as computing S directly. In addition, in-
termediate values during the computation of Sp are only half as big — they are
in the range [1, . . . , p], rather than [1, . . . , N ]. Clearly, the same arguments are
valid for the computation of Sq. When quadratic time complexity is used, multi-
plying two numbers in Zp takes a quarter of the time as multiplying elements in
ZN . Hence, computing Sp takes an eighth of the time of computing S directly.
Thus, computing Sp and Sq this way takes a quarter of the time of computing
S directly. Thus, CRT exponentiation is four times faster than direct exponen-
tiation. This is the reason for using the CRT for RSA signature generation, cf.
[CQ,MvOV].

2.2 The Fault-Based Cryptanalysis of RSA Using CRT

We briefly recall the fault-based cryptanalysis of RSA with the CRT due to
[BDL,JLQ]. Assume that during the computation of an RSA signature for a
message m a random error occurs during the computation of Sp. This yields a
faulty signature part S′

p, whereas the computation of Sq is done correctly. The
combination of S′

p and Sq via (1) will yield an incorrect signature S′. For S′

it holds that S − S′ �= 0 but S − S′ ≡ 0 mod q. Therefore, one obtains the
factorization of N by computing

gcd ((m− (S′)e) mod N, N) = q.

2.3 Simple Software Countermeasure to Defeat the Fault Attack

Some simple ad-hoc countermeasures have been already suggested within [BDL,
KR]. One approach is to perform calculations twice and the other approach
suggests to verify the correctness of the signature by comparing the inverse result
with the input. The first approach is very time-consuming and it cannot always
provide a satisfactory solution because a permanent error may be undetectable
by computing the function more than once. The second approach is to verify
the correctness by comparing the inverse result with the input m. Generally,
this is not a satisfactory solution since the parameter e could be a large integer
and this checking procedure becomes time-consuming. Additionally, for a real
life software implementation the programmer cannot rely on the fact that e is
known and a small number. On the other hand, this countermeasure seems to
be the safest.
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An interesting countermeasure is the introduction of randomness into the
RSA signature process. Here, RSA is applied to F (m, r) where F is some for-
matting function and r is a random string which ensures that the user never signs
the same message twice and the attacker does not know the signed message, cf.
[BDL,BR,KR]. Other countermeasures are mentioned in [Ro].

2.4 Shamir’s Software Countermeasure

Shamir’s idea, cf. [Sh], is to select a random integer t and to do the following
computations

Spt := md mod p ∗ t,
Sqt := md mod q ∗ t.

In the case of Spt = Sqt mod t the computation is defined to be error free and S
is computed according to the CRT recombination equation (1).

One drawback in Shamir’s method, as pointed out in [JPY], is the following:
Within the CRT mode of real RSA applications the value d is not known, only
the values dp = d mod (p − 1) and dq = d mod (q − 1) are known. Although d
can be efficiently computed from dp and dq only, as described in [FS], it will
limit the acceptance of Shamir’s method. Moreover, his check will be shown to
be insufficient anyway. But, our enhanced software countermeasures will resolve
the above critical points of his method.

2.5 General Remarks on Methods to Overcome Fault Attacks

Only very recently the field of research on fault attacks countermeasures has
been emerged. For instance a series of papers [YJ,YKLM1,YKLM2,JQYY] as-
sume that the attacker has a very precise knowledge about the implementation
details and especially an absolute accurate control of the timing of his fault
induction. Under this strong assumption the private exponent d can be recon-
structed by abusing the implemented correctness check as an oracle for the bits
of d. However, all the described fault attacks can easily be prevented by various
randomization techniques for the RSA algorithm. In a side-channel secure RSA
signature implementation such techniques are present.

Moreover, [YKLM1] proposed the following very interesting countermeasure:
Their key idea is to influence the computation of Sq or the overall computation
of S when an error occurred during the computation of Sp, or vice versa. The
cryptanalysis given in section 2 shows that a successful fault attack is not possible
anymore. Unfortunately it was recently shown by [BMS] that their proposal for
a so-called infective RSA CRT computation is not secure.

3 Physical Fault Attacks Realization

First of all, we would like to stress again that modern high-end cryptographic de-
vices, e.g., smartcards, are usually protected by means of various and numerous
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sophisticated hardware mechanisms to detect any intrusion attempt into their
system behavior, cf. [Ma,NR]. This is due to the fact that hardware manufac-
turers of cryptographic devices such as smartcard ICs have been aware of the
importance of protecting against intrusions by, e.g., external voltage variations,
external clock variations, etc. for a long time. However, it should be clear that
the design of such mechanisms is a very difficult engineering task. Such mech-
anisms should be able to tolerate slight natural deviations from the standard
values of the electrical parameter to be safeguarded. This is necessary to ensure
a proper functionality of the underlying device within the specified range, as for
example described in [ISO]. On the other hand they also have to detect very fast
and unnatural low deviations from the specified standard range. This condition
is necessary to detect any attack attempt by modifying the electrical execution
conditions to alter a computation’s result. For example, the standard specifica-
tion [ISO] allows for the smartcard IC’s contact VCC under normal operating
conditions a voltage supply between 4, 5V and 5, 5V.

Although there are lots of possibilities to introduce an error during the cryp-
tographic operation of an unprotected smartcard hardware, we will only explain
in detail the so-called spike attacks. The reason is that spike attacks are non
invasive attacks. Thus, they require no physical opening and no chemical prepa-
ration of the smartcard IC. For further information on various methods how
to enforce erroneous computations of chips we refer to [A,AK1,AK2,Gu1,Gu2,
Koca,Ma].

3.1 Spikes

A smartcard of voltage class type A should be able to tolerate on the contact VCC

a supply voltage between 4, 5V and 5, 5V, where the standard voltage is specified
at 5V. Within this range the smartcard will be able to work properly. However,
a deviation of the external power supply of much more than the specified 10%
tolerance could cause problems with the smartcard IC. Indeed, it could then
lead to a wrong computation result, provided that the smartcard IC is still able
to finish its computation completely. But most often this is not possible, as the
spike causes too much trouble to the CPU of the smartcard IC. Although a spike
with the explanation above seems very simple, a specific type of a power spike
is determined by nine parameters. Using picture 1 we will explain them:

1. Initial value of the power supply V2.
2. Starting point t1 of the spike.
3. Rise time t2 − t1 of the spike.
4. Shape of the rising transition.
5. Height V3 − V1 of the power spike.
6. Length of the power spike t3 − t2.
7. Falling time t4 − t3 of the spike.
8. Shape of the falling transition.
9. Final value V1 of the power supply.



Fault Attacks on RSA with CRT 265

voltage

  t 1          t 2                    t 3                        t 4      time

V3

V2

V1

Fig. 1. Spike-parameters defining the shape of a specific spike.

This indicates the huge range of different parameters which must be scanned
for penetration attacks against cryptographic devices. On the other hand, it also
reveals the strong demands on the corresponding sensor and filter mechanisms.
From the former discussion of spike attacks, one can envision the difficulties
an attacker is confronted with, when he wants to overcome all the activated
hardware countermeasures within modern high-security smartcard ICs.

3.2 Laboratory Setting

In order to systematically investigate the effects of spikes and especially our pro-
posed countermeasures, we basically used the following spike enforcing hardware
set-up, which is shown in figure 2.

PC
1234

ch
ip

 c
ar

d 
ICcontrol/

communication

spike

spike generator

trigger

Fig. 2. Diagram of our test equipment.

With such a test set-up it is indeed possible to enforce a spike with a very
high accuracy. This is necessary, if the spike shall just only enforce a tiny ran-
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dom computation fault rather than a complete destruction of the smartcard’s
computation, which would make the smartcard’s computation result unusable
for a successful attack. Through the coupling of the control and communica-
tion of the smartcard with a PC, which is running a dedicated test-software,
it is possible to observe and analyze the smartcard’s reaction with respect to
the applied spike-form as discussed above, e.g., answering with a correct/wrong
answer sequence. Furthermore, the PC is responsible for the stimuli, timing and
controlling of the above spike parameters. Coupled with an interface card, the
spike generator is triggered by the PC which provides the time and voltage in-
formation for the specific spike to be applied to the card. The spike generator is
directly connected to the power supply VCC of the smartcard and provides its IC
with the necessary operating voltage including the voltage drop of the spike. By
means of the synchronization of the PC, the spike generator and the chipcard
itself a very high attack reproducibility of more than 90% can be achieved.

Now, one has to find parameters for such a spike which enables a tiny random
computation fault, but leaves the main computation untouched.

3.3 Results on Unprotected Hardware and Software

We will now discuss our results of successfully applied spike-attacks on unpro-
tected smartcards, i.e., ICs where any hardware countermeasures against fault
attacks have been switched off. Moreover, we have also switched off any (hard-
ware and software) countermeasures against other classical side-channel attacks,
like Timing Analysis [Koch], Power Analysis [KJJ], Electromagnetic Analysis
[SQ,GMO], etc.

However, to introduce a spike at the right position of the RSA with the CRT,
one should investigate the power profile of the critical computation first. Such a
power profile of our investigated smartcard equipped with an RSA coprocessor
is shown in figure 3. Let us explain this power profile a little bit more: The upper
line represents the profile of the smartcard’s I/O behavior. The first I/O activity
is the start impulse for the smartcard and the second peak is the answer sequence
given by the smartcard. Between these two peaks the smartcard is computing a
2048-bit RSA signature using the CRT. This is shown in the lower line where
the main power profile of the smartcard is depicted.

The RSA-CRT computation starts at the time block 1.5 and ends at the
time block 9.2. In the figure the blocks are numbered from 0 to 9. This is shown
by the fact that the power consumption increases — due to the coprocessors
activity. One immediately recognizes the two different exponentiations as they
are the main power consumers.

In our case the first exponentiation lies in the time frame 1.6 to 5.1, and the
second exponentiation lies in the time frame 5.3 to 8.8. Before the first exponen-
tiation one recognizes the loading of the data into the crypto coprocessor for the
first exponentiation, after the first exponentiation the corresponding correctness
checks and as well the loading of the data into the crypto coprocessor and for the
second exponentiation and after the second exponentiation again the correctness
checks of the second exponentiation. Finally, one sees the CRT combination of
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the two partial exponentiations followed eventually by an additional correctness
check for the CRT combination.

Fig. 3. Power profile of RSA with the CRT.

Results on completely unprotected RSA using the CRT. The first al-
gorithm we attacked with our spike equipment was the pure RSA signature
algorithm using the CRT:

input: m, p, q, dp, dq, q
−1 mod p

Sp := mdp mod p
Sq := mdq mod q
S := Sq + ((Sp − Sq) ∗ q−1 mod p) ∗ q
return(S)

output: md mod N

Before discussing the results of our spike attacks on the above algorithm,
we note that the inputs p, q, dp, dq, q

−1 mod p are usually stored in EEPROM,
while the message m is stored in RAM. However, in order to work with the data
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p, q, dp, dq, q
−1 mod p they must be moved from EEPROM into RAM or the

crypto coprocessor. By varying the time when we applied the appropriate spike
to the smartcard IC’s power supply VCC , we were able to induce the following
different errors:

Observed error Mainly due to
modification of p, q Moving data from E2 to coprocessor
modification of dp, dq Handling data within CPU
wrong exponentiation modp, q Error within CPU or coprocessor
modification of q−1 mod p Moving data from E2 to coprocessor
wrong combination of Sp and Sq All listed errors
faulty signature modp and modq Moving data from coprocessor
wrong answer of smartcard Fatal error within CPU

Note that the first five errors may lead to a successful attack, whereas the
last two do not. Thus, we can conclude that it is absolutely necessary to have
sophisticated hardware and software countermeasures to avoid such kinds of
attacks. Within the remaining sections we will analyze already existing software
countermeasures and also develop new and more reliable countermeasures.

Results on unprotected hardware with simple software countermea-
sures. Motivated by the devastating results obtained within the previous sec-
tion, we hereafter tested the reliability of the naively implemented software coun-
termeasures due to [Sh] as desribed in section 2. Thus, we applied spikes to the
unprotected smartcard while computing the following RSA signature algorithm
shown in figure 4.

Again, we firstly summarize some of the observed errors.

Observed error scenarios A B C
1 modification of p′, q′ time dep. time dep. no
2 modification of d time dep. time dep. yes
3 modification of d′

p, d
′
q yes yes yes

4 modification of r time dep. time dep. yes
5 wrong exponentiation modp, q prob. 1− 1/r yes yes
6 modification of Sp or Sq time dep. yes no
7 modification of q−1 mod p no yes no
8 error during comb. of Sp and Sq no yes no
9 faulty signature modp and modq no no yes

The above table is organized as follows. The second column denotes the kind
of error which might occur. Column A indicates whether the countermeasure rec-
ognizes the induced fault, column B indicates whether the corresponding faulty
signature S reveals the secret key and column C says whether the countermea-
sure is correctly working in the corresponding case. We will briefly comment the
observed errors row by row:
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input: m, p, q, d, q−1 mod p

randomly choose a short prime r of, e.g., 32 bits
p′ := p ∗ r
d′

p := d mod ((p− 1) ∗ (r − 1))
q′ := q ∗ r
d′

q := d mod ((q − 1) ∗ (r − 1))

S′
p := (m mod p′)d′

p mod p′

S′
q := (m mod q′)d′

q mod q′

Sp := S′
p mod p

Sq := S′
q mod q

S := Sq + ((Sp − Sq) ∗ q−1 mod p) ∗ q

if ((S′
p mod r) �= (S′

q mod r)) then
return(error)

else
return(S)

output: S = md mod (p ∗ q)

Fig. 4. Shamir’s countermeasure.

1. During the computation of p′ the value of p may be changed to some value p̃,
such that p′ = p̃r. Then S′

p is computed correctly modulo r, but not modulo
p. If p′ is destroyed later, then the check reveals the attack. If a destroyed p̃
will be used for the computation of d′

p then the check will not recognize this
relevant fault.

2. If d is changed before the first two reductions this will not be detected but
is not security relevant. If d is changed between the first two reductions, this
will be recognized by the check.

3. If d′
p or d′

q is destroyed the check will detect this modification.
4. Depending on the time r is destroyed, various things can happen: either the

errors will be recognized or they are not security relevant.
5. The destruction of one of the two exponentiations is the classical Bellcore

attack. This will be recognized.
6. If Sp will be changed before the combination to S then the check will fail.
7. If q−1 mod p will be changed then the faulty signature will reveal the key.

The check will not recognize the attack.
8. Cf. last row.
9. If the correct signature is destroyed S reveals no information about the key.
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4 Practical Fault Attacks Countermeasures for
Unprotected Hardware

Within this section we will use the formerly discussed errors to propose a simple
practical error model. Hereafter, we propose enhanced countermeasures.

RSA dp, pt

RSA dq, qt

RSA d, p

RSA d, q

m

p

q

d (p)

d (q)

check

sp

sq

Combine

p q p-1

s

p * p -1 = 1 (q) ?

m

p

q

dp

dq

S'p

S'q

cross

check

mod p

mod q

sp

sq

Combine scheck

s

Fig. 5. Information flow during checking.

4.1 Model to Understand Resulting/Possible Faults

From the observed error scenario, we have learned by an extensive data analysis
the following facts:
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– During the computation, every input value to the RSA signature algorithm
can be altered to a value different from the original value.

– During the computation, every variable can be changed.
– The instruction sent to the CPU or a peripheral can be changed.
– The only values to trust, are the values which are stored in ROM or EEP-

ROM.

Armed with this knowledge, we formulated the following checking philosophy:

Check (at least in a probabilistic sense) every computed intermediate result
with respect to its correctness by relying on trusted values only.

In a rough sense, this is reflected by figure 5. In this context we adapt the
transient fault model due to [BDL] which assumes that our power spikes intro-
duce arbitrary errors. Additionally, we assume that the attacker can induce only
one spike but at a specific time chosen by himself.

4.2 Software Countermeasures Derived According to the Model

Inspired by the previous section, we developed the following countermeasures
(shown in figure 6) to counteract fault attacks. It takes into account that in a
practical application only dp and dq are given. Also, it avoids the use of the
public exponent e, which in real applications is most often not known to the
signature software.

We will briefly comment on this algorithm. The check after the CRT com-
bination ensures that S is correctly computed from the data S′

p and S′
q. There-

fore, it remains to guarantee that the latter ones are correct. The central check
(Sdqt

pt ≡ S
dpt

qt mod t) proves that the two big exponentiations itself where pro-
cessed in a correct way — assuming that the inputs are not compromised. Note
that an erroneous pass of this check can only be due to some very subtle mod-
ifications of these input values. Such errors will be intercepted by the first two
checking blocks. Finally, we would like to point out the following important
advice for a careful implementation: for the two checking blocks the secret pa-
rameters dp and dq have to be reloaded from a secure area (EEPROM).

4.3 Measurement Results for Enhanced Software Countermeasures

By extensive penetration tests via spikes on the algorithm shown in figure 6 we
obtained the following table. It proves empirically the reliability of our software
countermeasures.
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input: m, p, q, dp, dq, q
−1 mod p

let t be a short prime number, e.g., 32 bits

p′ := p ∗ t
d′

p := dp + random1 ∗ (p− 1)
S′

p := md′
p mod p′

if ¬(p′ mod p ≡ 0 ∧ d′
p mod (p− 1) ≡ dp) then return(error)

q′ := q ∗ t
d′

q := dq + random2 ∗ (q − 1)
S′

q := md′
q mod q′

if ¬(q′ mod q ≡ 0 ∧ d′
q mod (q − 1) ≡ dq) then return(error)

Sp := S′
p mod p

Sq := S′
q mod q

S := Sq + ((Sp − Sq) ∗ q−1 mod p) ∗ q
if ¬((S − S′

p mod p ≡ 0) ∧ (S − S′
q mod q ≡ 0)) then return(error)

Spt := S′
p mod t

dpt := d′
p mod (t− 1)

Sqt := S′
q mod t

dqt := d′
q mod (t− 1)

if (Sdqt
pt ≡ S

dpt
qt mod t) then

return(S)
else

return(error)

output: md mod (p ∗ q)

Fig. 6. Practically secured RSA with CRT.

Observed error scenarios A B C
modification of p, p′, q, q′ yes yes yes
modification of d′

p, d
′
q yes yes yes

modification of t yes yes yes
wrong exp. modp, q prob. 1− 1/t yes yes
modification of Sp or Sq yes yes yes
modification of q−1 mod p yes yes yes
error during comb. of Sp and Sq yes yes yes
faulty signature modp and modq prob. 1− 1/t no yes

Clearly, the probability that an error is undetected is equal to 1/t. For t a
32-bit integer, this probability is small enough; t can thus be seen as a security
parameter.
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5 Conclusion

We have shown that the classical Bellcore fault attack is in principal feasible
when using completely unprotected microcontrollers. Moreover, it also shows
that unskilled implementations of countermeasures are not always reliable. It
again answers a question of Kaliski and Robshaw [KR], and shows that these
attacks are indeed practical. Our investigation also reveals that one should test
any conceivable countermeasures in reality against all possible attack scenarios
before trusting them. This was especially done with our newly developed software
countermeasures.

Although our software countermeasure seems to be very promising, we are
strongly convinced that cryptographic hardware should never be used without
appropriate hardware countermeasures in combination with software counter-
measures. As a result, we finish with an advice given by Kaliski and Robshaw
[KR] from the RSA Laboratories stating that good engineering practices in the
design of secure hardware are essential.
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Abstract. The Mist exponentiation algorithm is intended for use in
embedded crypto-systems to provide protection against power analysis
and other side channel attacks. It generates randomly different addition
chains for performing a particular exponentiation. This means that side
channel attacks on RSA decryption or signing which require averaging
over a number of exponentiation power traces become impossible.
However, averaging over digit-by-digit multiplication traces may allow
the detection of operand re-use. Although this provides a handle for
an attacker by which the exponent search space might be considerably
reduced, the number of possible exponents is shown to be still well
outside the range of feasible computation in the foreseeable future.

Keywords: Randomary exponentiation, Mist exponentiation algorithm,
division chains, addition chains, power analysis, DPA, DEMA, blinding,
smartcard.

1 Introduction

Because smartcards have very limited scope for the inclusion of physical secu-
rity measures, the prevalence of side channel leakage from embedded crypto-
graphic systems creates the need for new algorithms which can be implemented
in more secure ways than those currently in use. This is particularly true for
exponentiation, which is a major process in many crypto-systems such as RSA,
Diffie-Hellman and ECC. Initial power attacks required averaging over a num-
ber of exponentiations in order to reduce the effects of noise and dependence
on uninteresting data [3], [4]. Although the necessary alignment of power traces
can be made more difficult by the insertion of obfuscating, random, non-data-
dependent operations, the data transfers between operations usually reveal the
commencement of every long integer or elliptic curve operation very clearly in
each individual trace. So it is usually possible to perform the averaging process
and mount an attack to extract meaningful secret data. Fortunately, attacks
which require such averaging can be defeated by modifying the exponent d to
� Work started while the author was at the Computation Department, UMIST, Man-

chester, UK

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 276–290, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.2     Für schnelle Web-Anzeige optimieren: Ja     Piktogramme einbetten: Ja     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 600 600 ] dpi     Papierformat: [ 595.276 824.882 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 600 dpi     Downsampling für Bilder über: 900 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren     Methode: StandardArbeitsbereiche:     Graustufen ICC-Profil:  ¡M     RGB ICC-Profil: sRGB IEC61966-2.1     CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Nein     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: NeinANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ( ¡M)     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 600 600 ]>> setpagedevice



Some Security Aspects of the Mist Randomized Exponentiation Algorithm 277

d+rg where r is a random number and g is the order of the (multiplicative) semi-
group in which the exponentiation is performed [3]. This results in a different
exponentiation procedure being performed every time.

However, the author showed recently [9] that there were strong theoretical
grounds for believing that, given the right monitoring equipment [6,7,1], it would
be possible to break the normal m-ary exponentiation method [2] and related
sliding windows techniques using a single exponentiation. This method averages
over digit-by-digit products instead and relies on being able to use such aver-
aged traces to recognise the same operands being re-used over and over. These
operands are pre-computed powers of the initial text, and their use reveals the
secret exponent digit. Such an attack requires no knowledge of the modulus,
the input text or the output text. It would render useless the choice of d+rg
as a counter-measure, even for the case of m = 2, namely the standard binary
“square-and-multiply” algorithm.

Random modifications have been proposed for the algorithm as well as the
arguments of exponentiation in order to overcome these problems. The main
suggestions are suitable where the multiplicative (additive) inverse is easily com-
puted, such as in elliptic curve systems. Oswald and Aigner [5] have given one
such example. For integer RSA, a novel exponentiation algorithm1 called “Mist”
was presented at RSA 2002 [11]. This seems to avoid all of the above-mentioned
pitfalls and inverses are not required. It is more time efficient than the standard
binary method when squares and multiplies have equal computational cost and
it is comparable in space usage to 4-ary exponentiation. It can also be combined
with any counter-measures which modify the arguments. The algorithm relies
on the generation of random addition chains [2] which determine the operations
to be performed, and it is based on previous work by the author [8] for finding
efficient exponentiation schemes using division chains.

The Mist algorithm was created to defeat power analysis attacks which are
able to detect the re-use of arguments. [11] considered only efficiency issues for
the algorithm. The main aim here is to look at security issues, and, in particular,
to establish that knowledge of operand re-use does not significantly reduce the
effectiveness of the algorithm against power analysis or other similar attacks.
Although information about operand re-use provides a handle which prunes
a search tree for exponents considerably, it is still computationally infeasible
to recover a secret RSA key in this way unless very significant secret data is
obtained from other sources. A more likely scenario is that the attacker can only
distinguish squares from multiplies. Then the search space is vastly larger, and
so the algorithm appears to provide even more security.

2 The MIST Algorithm

For notation, let us assume that plaintext P = CD has to be computed from
ciphertext C and secret key D. m will always represent a “divisor” in the sense

1 Comodo Research Lab has filed a patent application is respect of this [10].
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of [8], and d a residue modulo m, but here these are viewed as base and digit
values respectively in a representation of D. A set of allowable bases m is chosen
in advance (it will be {2, 3, 5} here), and an associated table of addition chains
for raising to the power m is stored in memory. Several variables are used: there
are at least three for long integers which contain powers of C, namely Q, TempC
and P. Of these, TempC is for temporary storage when Q is being raised to the
power m, and so does not occur explicitly in the following code, and P contains
the accumulating required output. D is updated to contain the power to which
Q still has to be raised before the exponentiation is complete.

The Mist Exponentiation Algorithm [11]

{ Pre-condition: D ≥ 0 }
Q ← C ;
P ← 1 ;
While D > 0 do
Begin

Choose a random “base” m ;
d ← D mod m ;
If d �= 0 then P ← Qd×P ;
Q ← Qm ;
D ← D div m ;
{ Loop invariant: CD.Init = QD×P }

End ;
{ Post-condition: P = CD.Init }

Example. For D=235, m=3 yields d = (235 mod 3) = 1 and reduces D to
(235 div 3) = 78. Then m=2 would give d=0 and D=39. Next, m=5 produces
d=4 and D=7; m=2 gives d=1 and D=3; m=3 generates d=0 and D=1. Then,
finally, m=2 yields d=1 and so D becomes 0. The pairs (m, d) are:

(3,1), (2,0), (5,4), (2,1), (3,0) and (2,1).
The corresponding powers of C contained in the variables (Q, P ) are then:
(C1, C0); (C3, C1); (C6, C1); ({C6}5, {C6}4C1) = (C30, C25);
({C30}2, {C30}1C25) = (C60, C55); ({C60}3, {C60}0C55) = (C180, C55);
({C180}2, {C180}1C55) = (C360, C235). ��

When the base set consists of the single base 2, the method simplifies to the
binary square-and-multiply algorithm in which the least significant exponent
bit is processed first. In general, for fixed m, the algorithm simplifies to m-ary
exponentiation but performed from right to left rather than from left to right.
Since the base m is varied randomly here, the process might reasonably be called
“random-ary exponentiation”. Space and time efficiency were shown in [11] to
be comparable with 4-ary exponentiation. For application to integer RSA, the
multiplication is the operation in the multiplicative group of residues for the
chosen modulus. Explicit mention of the modulus is not necessary. Termination
is guaranteed because only base choices greater than 1 are allowed, and so D
decreases on every iteration. Correctness is easily established using the loop
invariant in terms of the initial value D.Init of D.
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The choices of base set and associated addition chains for each base/digit pair
(m, d) are made with security and efficiency in mind. In particular, for efficiency
the choice of addition chain for raising to the power m always includes d so that
the computation of Qm provides Qd en route at little or no extra cost. Thus, these
two power computations are not performed independently and consecutively, as
might be implied by the code. They are to be implemented so that Qm uses all
the work done already to compute Qd. So, in the case of RSA, the main cost
of a loop iteration is only the cost of computing Qm plus the conditional extra
multiplication involving P.

The random choice of base values from a pre-chosen fixed set achieves dif-
ferent exponentiation schemes on successive runs and so makes impossible the
usual averaging process required for differential power or electro-magnetic anal-
ysis (DPA/DEMA) [4,6].

Unlike the case for m-ary exponentiation, by reversing the direction of pro-
cessing the exponent, both arguments in the conditional product are changed for
every multiplication. In general, because the powers of C are always increasing,
no power of C is repeatedly re-used during the exponentiation. So the attack
described in [9] on a single exponentiation is inapplicable in its current form.

For convenience, the processing of the exponent D is presented as being
performed within the main loop. For security reasons, it should probably be
scheduled differently. The illustrated processing order may be less secure from
the point of DPA or DEMA because it can reveal the random choice of the
local base m, which should remain secret. Instead, the selection of the base and
associated addition chain instructions can be performed by the CPU on-the-fly
while the exponentiation is performed in parallel by a crypto co-processor, or it
can be done in advance and stored when there is no co-processor. At any rate,
these computations should be scheduled so as not to reveal the end points of
each iteration of the main loop. Otherwise, the number and type of long integer
operations during the loop iteration may leak enough information about the
values of m and d, enabling D to be reconstructed. This paper shows how such
data might be used to determine possible values for D.

3 The Base Choice and Addition Sub-chains

A typical safe set of allowable bases is {2,3,5}. The full list of minimal addition
sub-chains for these bases is given in Table 1. For example, the third case there
corresponds to computing C5 using the three multiplications C1×C1 = C2,
C1×C2 = C3 and C2×C3 = C5. The first three addition chains provide Cd

when digit d is 0, 1, 2 or 3: for 0 < d < m the chain already contains the value
of d, while the case d = 0 requires no multiplication and so 0 does not need to
appear. The last addition chain can be used when d = 4. Minimal here means
that any other addition chains which give a power equal to the base are longer.
The subchains in Table 1 are minimal. To achieve the fastest exponentiation,
longer chains are usually excluded, but they might improve security.
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Table 1. The Minimal Sub-chains.

1+1=2 for base 2 with any digit d
1+1=2, 1+2=3 for base 3 with any digit d
1+1=2, 1+2=3, 2+3=5 for base 5 with any digit except 4
1+1=2, 2+2=4, 1+4=5 for base 5 with any digit except 3

Table 2. A Choice for the Digit Sub-chains.

(m, d) Multiplication Instructions

(2, 0) (111)
(2, 1) (112, 133)
(3, 0) (112, 121)
(3, 1) (112, 133, 121)
(3, 2) (112, 233, 121)
(5, 0) (112, 121, 121)
(5, 1) (112, 133, 121, 121)
(5, 2) (112, 233, 121, 121)
(5, 3) (112, 121, 133, 121)
(5, 4) (112, 222, 233, 121)

Table 3. ([11], Tables 6.2 and 6.3.) The limit probabilities pm,d of the base/digit pairs
(m, d) and pm for each base m.

(m, d) 0 1 2 3 4 pm

2 0.3537 0.2757 - - - p2 = 0.6294
3 0.1826 0.0212 0.0244 - - p3 = 0.2283
5 0.0936 0.0124 0.0110 0.0127 0.0126 p5 = 0.1423

There is no instruction which updates the value of P in these addition sub-
chains, but it can be represented explicitly using the following notation. Suppose
the registers are numbered 1 for Q, 2 for TempC and 3 for P. Then the subchains
can be stored as sequences of triples (ijk) ∈ {1, 2, 3}3, where (ijk) means read
the contents of registers i and j, multiply them together, and write the product
into register k. In particular, P will always be updated using a triple of the form
(i33) and 3 will not appear in triples otherwise. Now, adding in the instruction
for updating P yields the list of subchains given in Table 2 as one possibility.
It contains one representative for each base/digit pair (m, d). Other choices are
possible. Such a table requires only a few bytes of storage.

The way in which the base is chosen from the allowable set has efficiency and
security implications. In [11] it was shown that the following choice provided
efficiency better than the binary method and nearly as good as the 4-ary method:
(Here the function Random returns a fresh, random real in the range [0,1].)
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m ← 0 ;
If Random < 7/8 then

If D mod 2 = 0 then m ← 2 else
If D mod 5 = 0 then m ← 5 else
If D mod 3 = 0 then m ← 3 ;

If m = 0 then
Begin

p ← Random ;
If p < 6/8 then m ← 2 else
If p < 7/8 then m ← 5 else

m ← 3 ;
End ;

The resulting probabilities pm of each base m and pm,d of each base/digit pair
(m, d) occurring in the representation of D are given in Table 32. They will be
used later to assess whether certain attacks are feasible. From them it is possible
to work out the average number of bases used in a Mist exponentiation scheme:

Theorem 1. ([11], Thm. 7.2) With the choices above, the average number of
digits in a Mist representation for D is approximately2 0.7566× log2 D.

4 The Sequence of Addition Chain Values

We now turn away from the powers of C generated during an exponentiation
and concentrate on the integers contained in the corresponding addition chain.
The individual addition sub-chains for each base can be formed easily into an
addition chain which describes a complete exponentiation scheme for D. In terms
of the triples in Table 2, the sub-chain lists just need to be concatenated. Each
value is associated with one of the variables Q, TempC or P according to the
register in which the corresponding power of C is to be written. We will work
with addition chains containing this extra detail. If S is the final value associated
with Q at the end of one subchain, then, by applying the instructions listed in
Table 2, the values computed in the next subchain are those listed in Table 1
multiplied by S, together with any which occurs for P.

Reconstruction of the sequence of digits and hence determination of the se-
cret exponent is investigated using knowledge of which of these addition chain
elements are equal, and which share equal summands. The following theorems
will be used to show that, for the most part, we only need to look locally in
the chain for such equality or sharing. With fairly minimal and reasonable re-
strictions on the choices of base set and associated addition sub-chains, these
theorems hold much more generally.

Theorem 2. The integers (i.e. exponents) associated with Q and P at the start
of successive subchains form monotonically increasing sequences. That for Q is
2 The figures here are corrected after a minor bug in the software for [11].
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strictly increasing and strictly dominates that for P. At the start of each subchain,
Q is associated with the largest integer in the addition chain up to that point.

Proof. Initially Q is associated with 1 and the other registers with 0. So the
domination property holds for the first values. Thereafter, suppose Q, TempC
and P contain the S, T and Uth powers of C respectively at the start of a
subchain for (m, d). Assume T < S and U < S. The next values associated with
Q and P are m×S and U+d×S. Then d < m means U+d×S < S+(m−1)×S =
m×S. So the next value for Q is larger than the next for P. Hence the sequence
for Q dominates that for P. Since 1 < m, S < m×S and the next Q is larger than
it was at the beginning of the subchain. So that sequence is strictly increasing.
Moreover, as U ≤ U+d×S the sequence for P is also increasing monotonically.

The exponents associated with TempC are multiples of S since the initial
value T for TempC is unused, and the value U of P is only used to update P. So,
as there are no other operations, these exponents only involve integers obtained
en route from S to the next Q value, and are strictly smaller than it. Thus,
at the start of each subchain, Q does indeed contain the largest power so far
calculated. ��

Theorem 3. Except for initialisation and the calculation of the first non-trivial
value for P, the addition chain contains no sum result more than once.

Proof. There are two cases to consider. First, suppose some integer is recom-
puted in two different subchains. Assume the second of these subchains initially
has integers S and U in Q and P respectively. Any updating operation in this
subchain or any future subchain gives an integer which is a linear combination
σS+πU for integers σ > 0 and π ∈ {0, 1}. This only creates integers ≥ S. Pick
σ and π to give the duplicated value. By the previous theorem, updating op-
erations in previous subchains only created integers at most S. Hence S is the
recomputed value and so σS+πU = S. Since S > 0 and U ≥ 0, this can only
hold if σ ≤ 1. Multiplications have at least two arguments, so σ+π ≥ 2. Hence
σ = π = 1, from which U = 0. This solution occurs only when the digit d is 1
and P is updated to its first non-trivial value. So the value recomputed in the
second subchain is uniquely determined. Moreover, since by the previous theo-
rem the values in Q are strictly increasing and represent the largest integers so
far calculated, the first computation of S is only in the immediately preceding
subchain. S exceeds the initial value U = 1 in P. So S is calculated just once in
the first of these two subchains.

Now consider the case where a value is recomputed within a single chain.
Such recomputation must involve an updating of P because the operations which
write to Q and TempC generate a strictly increasing sequence. We use the same
notation again. The value of the updated P is U+dS where d > 0 is the digit.
All other subchain additions output an integer of the form σS for some integer
σ > 1. So, choosing σ from another equal value gives σS = U+dS and hence
U = (σ−d)S where 0 ≤ U < S. This is impossible in integers unless U = 0 and
σ = d. So P is being given its first non-trivial value, and dS is recomputed. We
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have d > 1 in this case since the computation of dS is done in the same subchain
as P is updated. ��

In fact, the re-computation of the same power of C should never occur: a
good implementation should avoid the useless multiplication by 1, and should
also avoid the apparent need to write the initial non-trivial value to P by using
the value written to Q or TempC and renaming that register as P. The corre-
sponding entries in the addition chain can then be omitted.

Example. Continuing with the example from Section 2, the sequences of expo-
nents for Q and P are 1, 3, 6, 30, 60, 180, 360 and 0, 1, 25, 55, 235 respectively.
The first non-zero value of P, namely 1, appears already in the sequence for Q,
but there are no other repetitions.

5 Re-use of Summands

Our main assumption in the first threat model is that the attacker can recognise
the re-use of operands. Such re-use occurs when members of the addition chain
share summands. So we need to know when this can happen, i.e. when two sums
in the addition chain share a common input.

Theorem 4. i) No integer different from the first non-zero value for P is used as
a summand in more than three addition chain members. Addition chain elements
which share such common summands all belong to the same digit subchain. They
all lie within a sequence of at most four consecutive operations, and at most one
of those with the shared summand is a doubling. If three sequential operations
share such a common summand, then the digit associated with the subchain to
which they all belong is non-zero.

ii) The first non-zero value for P may be used as a summand in up to four
different addition chain operations. All but the last of the sums which use this
value of P belong to the same subchain, while the last (which updates P to its
second non-trivial value) belongs to a different subchain and may be arbitrarily
many operations after the initial case.

Proof. First consider the summands used in the sums on either side of a digit
sub-chain boundary where the Q value is S. All operands below the boundary
are less than S because S is the largest value computed up to that point, and it
has not been used as an operand yet. Above the boundary, all operands are S
or a multiple thereof with the single exception of the previous value for P when
it is next updated. So, if there are two equal summands belonging to different
digit sub-chains, they must be equal to a value of P.

However, from Theorem 3 we know that, apart from the first non-zero value,
values of P are distinct from each other and from values in Q or TempC. So, as Q
and TempC are computed from previous values of Q and TempC, their arguments
cannot have values equal to those acquired by P unless those arguments are equal
to the first non-zero value of P. Thus, with only that possible exception, each
value of P is used at most once as a summand, namely in the next sum which
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updates its value. Consequently, two equal summands belonging to different digit
sub-chains must actually be equal to the first non-zero value of P.

Hence, in case (i) for arguments different from the first non-zero value of P,
equal summands appear within the same digit sub-chain. Thus they lie within
a sequence equal to the longest such sub-chain, which is 4 here. Each doubling
involves different operands (otherwise there would be no point in performing
the subsequent doublings) and so the set of sums with a shared summand will
contain at most one doubling. Checking through all the subchains given in Table
1, no operand is used in more than two operations. Moreover, such operations
are adjacent and at most one of them is a square. So, when the sum which
updates P is included in the middle of the sub-chain, at most three operations
can occur using the same operand and, for our choice of insertion points, they
are sequential. Of course, this only occurs when d �= 0.

Now take case (ii) where the first non-trivial value for P is the operand under
consideration. As with the other case, this operand value is used in at most two
additions for updating Q and TempC. It is also used in at most two additions
which update P. The first of these may have been optimised out, replacing the
multiplication by 1 with an initialisation. This addition and those involving Q
and TempC all occur in the same digit sub-chain, as before. The last use, namely
the second to update P, occurs for a subsequent sub-chain after arbitrarily many
bases for each of which the digit is 0. ��
Example. Continuing with the example from Section 2, the first three pairs
(m, d) = (3, 1), (2,0) and (5,4) generate the instructions 112, 133, 121, 111, 112,
222, 233, 121. These produce:

TempC = C1×C1 = C2 ; P = C1×C0 = C1 ;
Q = C1×C2 = C3 ; Q = C3×C3 = C6 ;
TempC = C6×C6 = C12 ; TempC = C12×C12 = C24 ;
P = C24×C1 = C25 ; Q = C6×C24 = C30 .

Operand C1 is the first non-trivial value of P and it is used 4 times: the first
three lie in the subchain for (m, d) = (3, 1) and the last occurs in the subchain
for (m, d) = (5, 4). The intermediate subchain has d = 0.

6 Identifying the Digit Sub-chains

In order to describe detailed operand sharing in a sequence of operations some
further notation is needed. Let (123)(34) mean that in a list of exactly 4 op-
erations, the first three share a common operand, the third and fourth share a
different common operand, and no other operations in that list share a common
operand. So the numbers in the cycles represent positions in the sequence of
operations, starting at 1, and two operations will share a common operand if,
and only if, their position numbers both belong to a common cycle in the list.
Since a square or a doubling shares an operand with itself, the number of each
square or doubling appears twice in its cycle, as in (112). Also, an operation
which does not share operands with any other operation (or itself) will appear
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in a cycle on its own, as in (2). However, there are no cases of this here. With
this notation, the subchains listed in Table 2 share operands as in Table 4.

Table 4. Operand Sharing within each Digit Sub-Chain.

(m, d) Operand Sharing

(2, 0) (11)
(2, 1) (112)
(3, 0) (112)
(3, 1) (1123)
(3, 2) (113)(23)
(5, 0) (112)(23)
(5, 1) (1123)(34)
(5, 2) (113)(234)
(5, 3) (112)(24)(34)
(5, 4) (114)(22)(34)

Now assume that the operand sharing pattern is known for the complete
addition chain. By Theorem 3, except for the use of the first non-trivial value of
P, operands which are equal in the addition chain are equal because they were
explicitly selected equal in the sub-chain construction. By Theorem 4, we know
that the last use of the exceptional value of P as an operand is to update P, and
so it is not a square. Hence the squares in the addition chain are exactly those
expected from the structure of the component sub-chains.

It is now mostly straightforward to deduce what the individual subchains
are, and hence the sequence of bases and digits: each square (doubling) denotes
the start of a new sub-chain with the exception of those which are the second
operation in a subchain for (m, d) = (5, 4). When this case occurs, there is
operand sharing between the first and fourth operations of the sub-chain. This
is expressed in the pattern (114). According to Theorem 4, there is normally no
sharing of operands between different sub-chains. Hence, when the pattern (114)
is not observed, we know that normally both squares mark the start of different
sub-chains.

The only possible exception is if the shared operand in (114) is the first
non-zero value taken by P. Then the sharing pattern (114)(22)(34) for (5,4)
must ambiguously represent two division sub-chains which have lengths 1 and
3 respectively. The second subchain has pattern (11)(23) (when the operations
are re-numbered from 1 to 3). However, that pattern does not correspond to any
occurring in Table 4. So this case cannot arise. Hence:
Theorem 5. The pattern of operand re-use in an addition chain determines the
boundaries of each digit sub-chain uniquely.

In practice, this partitioning is performed by identifying the doublings first
and then writing down the patterns for operand sharing between the operations
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within each partition. If the pattern (11)(23) emerges, then its partition needs
to be merged with the previous one.

Example. In the same example as before, the operand sharing pattern is
(11237) (44)(558)(66)(78)(9 9 10)(11 11 12)(13 13 14). Partitioning this before
each square yields (11237); (44); (558); (66)(78); (9 9 10); (11 11 12); (13 13 14).
Re-numbering to make each sub-chain start with instruction 1 gives
(11237); (11); (114); (11)(23); (112); (112); (112). As 7 exceeds the length of the
longest sub-chain, it must represent the updating of P to its second non-trivial
value. So we delete it to obtain sharing only within sub-chains. Also, we must
merge (114) and (11)(23) since the latter is not a pattern in Table 4. This pro-
duces (1123); (11); (114)(22) (34); (112); (112); (112) from which we can extract
possible choices for the pairs (m, d): first (3,1); (2,0); (5,4) and then three oc-
currences of (2, 1) or (3, 0).

It is evident from Table 4 that every (m, d) has a distinct pattern of operand
sharing except for two: (2, 1) and (3, 0) have identical patterns (112). Thus
operand sharing almost determines the sequence of pairs (m, d):

Theorem 6. The pattern of operand re-use in an addition chain determines the
sequence of pairs (m, d) up to an ambiguity between (2, 1) and (3, 0).

Theorem 7. The average number of exponents with addition chains that have
the same operand sharing pattern as one for D is at least D1/3.

Proof. By Theorem 6, base/digit pairs can be derived in most cases. The
only ambiguities occur between the cases (2, 1) and (3, 0). Assuming succes-
sive base choices are independent, then the probability of an ambiguous case
is p2,1+p3,0 = 0.4583. Hence almost every other subchain has two possible
choices for the base/digit pair. By Theorem 1, an average exponent contains
0.7566× log2 D subchains. Hence the expected number of different matching ex-
ponents is about 20.7566× log2 D×0.4583 = D0.7566×0.4583 = D0.347 ��

Remarks. i) The choice of base is not constrained here. A deterministic selec-
tion of, for example, a base which exactly divides the current value of D would
place structural constraints which would further reduce the possible choices for
D.
ii) Successive base choices are not independent, but this makes only a marginal
difference to the exponent 0.347.
iii) We have assumed different choices of (m, d) lead to different values for D.
This is almost always true, and makes no practical difference to the number of
exponents that need to be considered in an attack.

Example. In the previous example, operand sharing gave 8 choices for the
division chain. The first three (m, d)s yield (Q, P ) = (C30, C25). The next (2,1)
or (3,0) produces (C60, C55) or (C90, C25). The following (2,1) or (3,0) doubles
the possibilities to (C120, C115), (C180, C115), (C180, C55) or (C270, C25). The last
alternative theoretically doubles this number, but (3,0) is impossible because the
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final (top) digit d must be non-zero. So, applying (2,1), the final output P is one
of C235, C295, C235 or C295. The example captures one of the few sources of
repeated values, which arises from the property 2+1 = 3+0.

7 The Operand Sharing Search Space

Let us assume that the Mist algorithm is being used because re-use of operands
can be detected, thereby making the standard algorithms unsuitable. So the
main assumption in the threat model here is that identical operands can be
detected, perhaps by averaging the power traces of digit-by-digit products using
the method given in [9], or by observing different addresses being sent along the
internal bus.

It is straightforward to show that, with a negligibly small number of ex-
ceptions, operand sharing in the addition chain occurs if, and only if, operand
sharing occurs in the exponentiation. This is because Ci = Cj ⇒ i = j holds
almost always. Since there are only some 0.7566 log2 D sub-chains in which to
check operand sharing, exceptions are unlikely to occur, even in a complete ad-
dition chain. Then Theorems 6 and 7 provide:

Theorem 8. If an attacker can determine operand re-use from side channel
leakage, then he can almost certainly deduce the sequence of pairs (m, d) used
in the Mist exponentiation scheme up to an ambiguity between (2, 1) and (3, 0).
This reduces the search space for the correct exponent to about D1/3.

The known ratio p3,0 : p2,1 = 0.1826 : 0.2757 enables the choices for D to be
ranked with those closest to this ratio being selected first. Then on average fewer
exponents would need to be investigated before the correct one is determined.
However, for a 384-bit exponent, say, the number of choices given by the theorem
is still around 2133 and that for a 512-bit exponent is around 2177. These are
reasonable minimum choices for when the Chinese Remainder Theorem is or is
not used. For RSA, both cases are computationally infeasible for the foreseeable
future. However, for ECC a typical 192-bit key would really be unsafe. Of course,
key lengths can still be increased for both of these if necessary.

In the case of the m-ary method, knowledge of operand sharing enables the
exponent to be deduced immediately without any further calculations [9]. So the
Mist algorithm is much stronger against such an attack.

8 S&M Chains

A much weaker threat model is that the attacker can distinguish between squares
(S) and multiplies (M). The first main task he has is to parse correctly the word
created from the alphabet {S, M} which is generated by the operations of the
exponentiation scheme. We will call the word an S&M chain. It must correspond
to a division chain [8]. The patterns of the S&M subchains corresponding to each
pair (m, d) are listed in Table 5 and their probabilities in Table 6.
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Table 5. The S&M Sub-chains for each Pair (m, d).

(2,0) S (5,0) SMM
(2,1) SM (5,1) SMMM
(3,0) SM (5,2) SMMM
(3,1) SMM (5,3) SMMM
(3,2) SMM (5,4) SSMM

Table 6. The S&M Sub-chain Probabilities.

pS = p2,0 = 0.3537
pSM = p2,1 + p3,0 = 0.4583
pSMM = p3,1 + p3,2 + p5,0 = 0.1393
pSMMM = p5,1 + p5,2 + p5,3 = 0.0361
pSSMM = p5,4 = 0.0126

Theorem 9. Suppose squares and multiplies can be distinguished, but not in-
dividual reuse of operands. Then the average number of exponents which can
generate the same sequence of squares and multiplications as a given one for D
is bounded below by D3/5.

Proof. As before, the occurrences of S determine almost all of the subchain
boundaries exactly. The exception is the case (5, 4) for which SSMM may split
as S and SMM. Suppose we perform this split. Then the number of subchains
is increased by a factor of 1+pSSMM and the probabilities of the minimal such
S&M sequences are then:

p′
S = (pS+pSSMM )/(1+pSSMM ) = 0.3618

p′
SM = pSM/(1+pSSMM ) = 0.4526

p′
SMM = (pSMM+pSSMM )/(1+pSSMM ) = 0.1500

p′
SMMM = pSMMM/(1+pSSMM ) = 0.0356

Assume, for simplicity, that the successive choices of base are independent3.
Then the number of choices for the base/digit pair underlying SMMM is 3,
that for SM is 2, that for S is 1. If SMM is preceded by M, it corresponds to
a complete subchain and there are 3 choices for it. However, if SMM is pre-
ceded by S, the two can be merged to form SSMM, giving 4 choices. Taking into
account the proportion of SMMs derived from SSMM, p′

SMM breaks up into
p′

SSMM = p′
SMM (pSSMM+pSpSMM )/(pSMM+pSSMM ) = 0.0611 for the latter

case and p′
MSMM = p′

SMM−p′
SSMM = 0.0889 for the former. Then the average

number of ways of selecting a base/digit pair from an S&M subsequence (includ-
ing repartitioning SSMM) is 1p′

S × 2p′
SM × 3p′

SMMM+p′
MSMM × 4p′

SSMM = 1.7079.

3 Overall, SMM occurs with probability 0.1393, but after S its probability is 0.1410.



Some Security Aspects of the Mist Randomized Exponentiation Algorithm 289

An average exponent contains 0.7566 log2 D subchains, and 1+pSSMM times
more minimal S&M subsequences. Hence the expected number of different
matching exponents is about 1.7079(1+pSSMM )×0.7566 log2 D = Dk where k =
(1+pSSMM ) × 0.7566 log2(1.7079) ≈ 0.5916 ≈ 3

5 . ��
Even more so than in the case of known operand sharing, the above demon-

strates that recovery of D is well outside the reach of an attacker when only the
sequence of squares and multiplies leaks for individual exponentiations.

Clearly, different choices of bases and addition sub-chains will provide dif-
ferent probabilities and hence may increase or decrease the strength of a given
attack. Care is therefore necessary in these choices. For example, the present
choices have been consciously selected to make the probabilities p2,1 and p3,0
the highest after p2,0, which itself needs to be high to provide the requisite effi-
ciency. This decreases the effectiveness of the above attacks. Moreover, the choice
of sub-chains means there are no long S&M sequences with a unique base/digit
interpretation which would prune the search space for matching exponents down
to a computationally feasible proposition.

9 Conclusion

The “Mist” randomary exponentiation algorithm has a variety of features which
make it much more resilient to attack by differential power or electro-magnetic
analysis than the normal m-ary or sliding window methods. Mist uses randomly
different multiplication schemes on every run in order to avoid the averaging
which is normally required for such side channel attacks to succeed.

The algorithm also avoids wide re-use of multiplicands within a single ex-
ponentiation, thereby defeating some other potentially more powerful attacks.
Knowledge of such operand re-use reduces the search space to about D1/3 for
an exponent D, but this leaves an infeasible quantity of computing for standard
RSA applications. Furthermore, knowledge of only the sequence of squares and
multiplies reduces the search space to around D3/5. These search spaces might
be reduced if an effective way can be found to share data deduced from different
exponentiations. This is an open problem, but the possible danger should be
adequately protected against by standard exponent blinding.

In consequence, the algorithm appears to be much safer than the standard
binary, m-ary or sliding windows techniques against current state-of-the-art in
DPA and DEMA side channel attacks, yet it makes no greater use of either space
or time.
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tors), Lecture Notes in Computer Science, 2162, Springer-Verlag, 2001, 286–299.

10. C. D. Walter, Improvements in, and relating to, Cryptographic Methods and Ap-
paratus, UK Patent Application 0126317.7, Comodo Research Laboratory, 2001.

11. C. D. Walter, MIST: An Efficient, Randomized Exponentiation Algorithm for Re-
sisting Power Analysis, Topics in Cryptology − CT-RSA 2002, B. Preneel (editor),
Lecture Notes in Computer Science, 2271, Springer-Verlag, 2002, 53–66.



The Montgomery Powering Ladder

Marc Joye1 and Sung-Ming Yen2,�

1 Gemplus Card International, Card Security Group
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Abstract. This paper gives a comprehensive analysis of Montgomery
powering ladder. Initially developed for fast scalar multiplication on
elliptic curves, we extend the scope of Montgomery ladder to any
exponentiation in an abelian group. Computationally, the Montgomery
ladder has the triple advantage of presenting a Lucas chain structure,
of being parallelized, and of sharing a common operand. Furthermore,
contrary to the classical binary algorithms, it behaves very regularly,
which makes it naturally protected against a large variety of implemen-
tation attacks.
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1 Introduction

Exponentiation or powering algorithms are of central importance in cryptogra-
phy as they are the basis of (nearly) all public-key cryptosystems. Although nu-
merous exponentiation algorithms have been devised, algorithms for constrained
devices are scarcely restricted to the square-and-multiply algorithm and its right-
to-left counterpart. A less-known algorithm due to Peter Montgomery is also not
much greedy for memory. Developed for fast elliptic curve multiplication, this
algorithm is of full generality and applies to any abelian group. Furthermore, it
presents several useful features not available in the classical binary algorithms.

This paper is aimed at giving a thorough analysis of Montgomery ladder, con-
sidering both the efficiency and security issues. Among other things, we show
how it reduces the memory requirements for elliptic curve computations or how
it speeds up by a factor of up to 50% the evaluation of full Lucas sequences. For
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(modular) exponentiation, we show that Montgomery ladder can be combined
with the common-multiplicand technique, leading to a 33% speed-up factor. The
Montgomery ladder is also prone to parallel implementations; on a bi-processor
device, the running time is divided by two, compared to the non-parallel version.
Last but not least, Montgomery ladder is a prime choice for a secure exponen-
tiation as its high regularity makes it naturally resistant to various side-channel
and fault attacks. A slight variant protected against the M safe-error attack is
presented.

The rest of this paper is organized as follows. The next section presents
the Montgomery ladder in terms of group-theoretic language. In Section 3, we
analyze the efficiency of Montgomery ladder and compare it to the classical
binary ladders. Section 4 analyzes the security of Montgomery ladder towards
implementation attacks. Finally, we conclude in Section 5.

2 Montgomery Ladder

Originally, the so-called Montgomery ladder [16] was proposed as a means to
speed up scalar multiplication in the context of elliptic curves. It has been then
rediscovered several times and applied to different settings.

To ease the discussion, we give hereafter a higher description of the algorithm.
We consider the general problem of computing y = gk in a (multiplicatively writ-
ten) abelian group G, on input g and k. Let

∑t−1
i=0 ki 2i be the binary expansion of

exponent k. The Montgomery ladder relies on the following observation. Defining
Lj =

∑t−1
i=j ki 2i−j and Hj = Lj + 1, we have

Lj = 2Lj+1 + kj = Lj+1 +Hj+1 + kj − 1 = 2Hj+1 + kj − 2
and so we obtain

(Lj , Hj) =
{
(2Lj+1, Lj+1 +Hj+1) if kj = 0 ,
(Lj+1 +Hj+1, 2Hj+1) if kj = 1 .

(1)

Suppose that, at each iteration, a first register, say R0, is used to contain the
value of gLj and that a second register, say R1, is used to contain the value of
gHj . Equation (1) implies that

(gLj , gHj ) =
(
(gLj+1)2, gLj+1 · gHj+1

)
if kj = 0

and
(gLj , gHj ) =

(
gLj+1 · gHj+1 , (gHj+1)2

)
if kj = 1 .

Remarking that L0 = k, this leads to an elegant algorithm for evaluating
y = gk: the Montgomery ladder.

For cryptographic applications, the group G may be taken as ZN
∗ (e.g.,

for RSA or Rabin encryption/signature), Fq
∗ (e.g., for DH key exchange), the

elements of a Lucas sequences (e.g., for LUC signature), the points of an elliptic
curve (e.g., for ECDSA signature), . . . Other practical applications include fast
primality tests and factorization algorithms.
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Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = t− 1 downto 0 do

if (kj = 0) then
R1 ← R0 R1; R0 ← (R0)2

else [if (kj = 1)]
R0 ← R0 R1; R1 ← (R1)2

return R0

Fig. 1. Montgomery Ladder.

3 Efficiency Analysis

The most widely used algorithm for computing gk are the square-and-multiply
algorithm, which processes the bits of exponent k from the left to the right
(Fig. 2 (a)), and its right-to-left counterpart (Fig. 2 (b)). We restrict our atten-
tion to constrained environments and do not consider more sophisticated expo-
nentiation algorithms (see [7] for a survey).

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = t− 1 downto 0 do

R0 ← (R0)2

if (kj = 1) then R0 ← R0 R1

return R0

(a) Left-to-right binary algorithm.

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = 0 to t− 1 do
if (kj = 1) then R0 ← R0 R1

R1 ← (R1)2

return R0

(b) Right-to-left binary algorithm.

Fig. 2. Classical Binary Ladders.

From a computational perspective, the Montgomery ladder (Fig. 1), in its
basic version, appears inferior to the classical binary algorithms as it requires 2t
multiplications instead of 1.5t multiplications, on average. Nevertheless, in some
cases, the Montgomery ladder may reveal itself more efficient by observing that

1. the value R1/R0 is invariant throughout the algorithm (and so equals g);
2. at each iteration, the two multiplications are independent;
3. at each iteration, the two multiplications share a common operand.

3.1 Lucas Chains

The key property of Montgomery ladder (Fig. 1) is that the relation R1/R0 =
g (or equivalently, R1 = R0 g) is maintained invariant. This was noticed by
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Montgomery [16,17] and applied to the ECM factorization method for a special
class of elliptic curves.

Input: G, k = (1, kt−2, . . . , k0)2
Output: Y = kG

R0 ← G; R1 ← 2G
for j = t− 2 downto 0 do

if (kj = 0) then
R1 ← R0 + R1; R0 ← 2R0

else [if (kj = 1)]
R0 ← R0 + R1; R1 ← 2R1

return R0

Fig. 3. Montgomery Ladder for Elliptic Curves.

Let R0 and R1 ∈ E(K) be two points on an elliptic curve E defined over a
field K. If the difference G := R1 −R0 is known then the x-coordinate of point
Y = kG can be computed from the x-coordinate ofR0, the x-coordinate of point
R1 and the x- and y-coordinates of point G [16]. Agnew et al. [2] (see also [13])
later observed (for binary fields K) that the y-coordinate of R0 can easily be
recovered when point G and the x-coordinates of R0 and of R0 + G (= R1)
are known. This was extended to fields K of characteristic p > 3 in [18,19] (see
also [3,6,8] for general Weierstraß elliptic curves).

Because the computations can be carried out with the x-coordinates only, a
lot of multiplications (in field K) are saved, resulting in an algorithm faster than
the classical binary algorithms (Fig. 2). Additionally, fewer memory is required
since the y-coordinates need not to be handled (and thus stored) during the
computation of x(kG). The y-coordinate of kG, y(kG), is computed at the end
of the algorithm from G, x(kG) and x(kG+G).

A similar technique exists for Lucas sequences. The special Lucas sequence
{Vk(P, 1)} with parameter Q = 1 is considered in [27] and the general case,
{Vk(P, Q)} along with the ‘sister’ sequence {Uk(P, Q)} is addressed in [9] (see
also [1, Section A.2.4]).

Analogously to elliptic curves, given (V1, U1) = (P, 1), Vk and Vk+1, the value
of Uk can be recovered as Uk = (2Vk+1 − P Vk)/∆ with ∆ = P 2 − 4Q. Provided
that division by ∆ is inexpensive or that the value of ∆−1 is precomputed,
this saves one multiplication per iteration compared to [9], resulting in a 22%
improvement in the general case and a 50% improvement when Q = 1.

3.2 Parallel Computing

A second property of Montgomery ladder is its intrinsic disposition of being
parallelized. This feature may reveal very useful in the near future as recent
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Input: P, Q, k = (kt−1, . . . , k0)2
Output: y = Vk(P, Q)
V0 ← 2; V1 ← P; q0 ← 1; q1 ← 1
for j = t− 1 downto 0 do

q0 ← q0 q1

if (kj = 0) then
q1 ← q0

V1 ← V0 V1 − P q0; V0 ← V0
2 − 2q0

else [if (kj = 1)]
q1 ← Q q0

V0 ← V0 V1 − P q0; V1 ← V1
2 − 2q1

return V0

Fig. 4. Montgomery Ladder for Lucas Sequences.

cryptographic tokens come equipped with several arithmetical co-processors [6,
Section 5].

To exhibit the parallel nature of Montgomery ladder, we simplify the pre-
sentation of Fig. 1. Using kj and its negation ¬kj as register indexes, the two
different cases can be rewritten into a single statement as

R¬kj
← R0 R1;Rkj

← (Rkj
)2 .

Hence, we clearly see that the two multiplications can be evaluated indepen-
dently.

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = t− 1 downto 0 do

/* Processor 1 */ /* Processor 2 */
R¬kj ← R0 R1 Rkj ← (Rkj )

2

return R0

Fig. 5. Parallel Montgomery Ladder.

For a modular exponentiation, if we denote by M the time for performing a
multiplication, an optimized squaring takes roughly 0.8M . So, on a bi-processor
device, each iteration is performed in time M . As a result, the parallel version of
the Montgomery ladder nearly attains the optimal 200% speed-up factor, over
the standard Montgomery ladder (Fig. 1), for an RSA-type implementation. For
elliptic curve implementations, the addition of two points or the doubling are
further dissimilar [8], so that the expected gain seems sub-optimal; it is however
possible to combine the operations of addition and doubling to lower the number
of (field) multiplications [6] to nearly obtain the 200% speed-up factor.
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3.3 Common-Multiplicand Multiplication

A third property of Montgomery ladder is that the two multiplications share a
common operand: both multiplications involve R0 when kj = 0 and R1 when
kj = 1. The ‘common-multiplicand multiplication’ method [26] is thus appli-
cable. The method was initially developed to speed up the right-to-left binary
algorithm (Fig. 2 (b)). Generalizations and improvements can be found in [22,
23].

The basic idea consists in rewriting the two involved multiplications with
logical operators. Defining Rcom = (R0 AND R1) and Ri,c = (Ri XOR Rcom), we
have

Ri = Ri,c +Rcom , i ∈ {0, 1} . (2)

Assume kj = 1 (the case kj = 0 is similar). Then the Montgomery ladder
requires the computation of R0 ← R0 R1 and R1 ← R1 R1. From Eq. (2), this
can be evaluated as R0 ← R0,c R1 +Rcom R1 and R1 ← R1,c R1 +Rcom R1. On
average, the Hamming weight (i.e., the number of nonzero bits) of Rcom and
Ri,c is twice smaller to that of Ri [27]. Consequently, each multiplication now
requires half less binary additions, on average, that is, a 33% expected gain since
the common multiplication Rcom R1 is only evaluated once.

For a modular exponentiation, the common-multiplicand method is partic-
ularly suited in certain hardware realizations (when logical operations can be
processed in parallel with arithmetical operations). When the group law is more
involved (as on elliptic curves), it may lead to software optimizations as well as
several common (basic) operations (e.g., a field multiplication) may be saved [15].

4 Security Analysis

This section analyzes the security of Montgomery ladder towards implementa-
tion attacks. We distinguish two types of implementation attacks: side-channel
attacks and fault attacks.

4.1 Side-Channel Attacks

Side-channel attacks are based on the observation that some side-channel infor-
mation (e.g., timing [12] or power consumption [11]) depends on the instruction
being executed and/or the data being handled.

The standard binary ladders (Fig. 2) contains conditional branchings. If the
conditional branching is driven by secret data (namely, if the bits of exponent k in
the computation of y = gk are secret) and if the two branches behave differently
regarding some side-channel analysis (e.g., simple power analysis (SPA)) then
secret data can be retrieved. To this end, dummy operations are added to the
basic algorithms, so that they behave more regularly [4].

As it clearly appears in the next figure, the Montgomery ladder is already
highly regular. Whatever the processed bit, there is always a multiplication fol-
lowed by a squaring.
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Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R2 ← g
for j = t− 1 downto 0 do

b← ¬kj

R0 ← (R0)2; Rb ← Rb R2

return R0

(a) Left-to-right binary algorithm.

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R2 ← g
for j = 0 to t− 1 do

b← ¬kj

Rb ← R0 R2; R2 ← (R2)2

return R0

(b) Right-to-left binary algorithm.

Fig. 6. (Simple) Side-Channel Protected Classical Binary Ladders.

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = t− 1 downto 0 do

R¬kj ← R0 R1; Rkj ← (Rkj )
2

return R0

Fig. 7. (Simple) Side-Channel Protected Montgomery Ladder.

Provided that the writing in registers R0 and R1 (resp. that the squaring of
registers R0 and R1) cannot be distinguished from a single side-channel mea-
surement, the Montgomery ladder can be implemented to prevent a given [sim-
ple] side-channel attack. It is worth noting that protections against simple side-
channel attacks do not ward off the differential attacks, consisting in acquiring
several side-channel measurements of different executions of the same algorithm
and after that in performing some statistical treatment. For example, the attack
of [4, § 3.2] conducted against the protected standard binary ladders (Fig. 6) read-
ily applies the above protected Montgomery ladder. However, standard blinding
techniques (e.g., [14,4]) easily prevent differential attacks.

Memory-wise, compared to the protected standard binary ladders, the pro-
tected Montgomery ladder requires one less register. Furthermore, it enjoys the
useful features mentioned in Section 3.

Remark 1. The Montgomery ladder for Lucas sequences (see Fig. 4) does not
behave regularly. This is however not a issue for cryptographic applications as
known cryptosystems based on Lucas sequences ([20,21]) use for parameter Q
the value Q = 1. Variables q0 and q1 are therefore useless.

4.2 Fault Attacks

An important lesson taught in [25] is that countermeasures must be considered
globally (see also [10]). This was illustrated with the C safe-error attack in [25]
and with the M safe-error in [24]. The next paragraphs analyze the security of the
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Montgomery ladder regarding to the C and M safe-error attacks and highlight
the interplay between different countermeasures.

Security against C safe-error attack. It was well known that a countermea-
sure developed against one implementation attack does not necessarily thwart
another kind of implementation attack automatically. More surprisingly, in [25],
it was pointed out that a countermeasure developed against a given attack, if
not carefully examined, may benefit another physical attack tremendously. In
that paper, a new type of computational safe-error attack (called a C safe-error
attack) was mounted against the classical, side-channel protected exponentia-
tion algorithms of Fig. 6. The C safe-error attack is developed by inducing any
temporary random computational fault(s) inside the ALU.

It is easy to see that the protected algorithm of Fig. 6 (a) (commonly known
as the square-and-multiply-always exponentiation algorithm) is susceptible to a
C safe-error attack. This follows by observing that since the algorithm runs in
constant time, an attacker can more easily locate the exact moment of the second
multiplication “Rb ← Rb R2” for each iteration. Moreover, when the current
exponent bit, say kj , is equal to 0, then this multiplication is a dummy operation
and so has no influence on the final result. Therefore, if an attacker induces any
kind of computational fault into the ALU during the operation of Rb ← Rb R2
at jth iteration, then according to whether the final result is incorrect or not,
she may deduce if kj = 1 or kj = 0. We note however that this attack only reveal
one bit of exponent k and may be made, in some circumstances, much harder
by randomizing exponent k prior to the exponentiation.

The same attack holds for the right-to-left protected algorithm of Fig. 6 (b).
For the Montgomery ladder (Fig. 7), the situation is different as there are no

dummy operations. Consequently, any fault induced into the ALU will result in
an incorrect exponentiation result.

Security against M safe-error attack. The M safe-error pointed out in [24]
can be illustrated on the modular multiplication, B ← A ·B mod N , by calling
the program routine listed in Fig. 8 as B ← MUL(A, B, N). In this routine, it is as-
sumed that multiplier B is represented in a 2T -ary form as B =

∑m−1
j=0 Bj (2T )j ,

and both multiplicand A and multiplier B are sent to the routine MUL by passing
their location address (i.e., the call by address technique). This call by address
assumption is reasonable since it is popular for both high-level programming
language (e.g., C) and all instruction-level language implementations.

The idea behind the M safe-error can be understood as follows. The value of
multiplier B will be correct after the assignment operation B ← A · B mod N ,
even if some blocks Bj (or Yj with the notations of Fig. 8) of the multiplier are
modified after they have been employed in the modular multiplication algorithm.
As suggested in [24], this M safe-error can be avoided if B is assigned as the
multiplicand, i.e., by calling the routine as B ← MUL(B, A, N). It should be
noted that the M safe-error attack needs to induce a temporary memory fault
inside a register or memory location. Compared to the C safe-error attack, this
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Input: X, Y, N
Output: R = MUL(X, Y, N)
R← 0
for j = m− 1 downto 0 do

R← (R · 2T + X · Yj) mod N

output R

Fig. 8. M Safe-Error on Interleaved Modular Multiplication.

implies stronger cryptanalytic assumptions, namely a higher controllability of
fault location and timing.

As presented in Fig. 7, the Montgomery ladder for modular exponentiation
is vulnerable to the M safe-error attack, no matter R0 or R1 is passed to the
routine as the multiplier in the multiplication R¬kj ← R0 R1. To prove above
claim, we consider the two following possible implementations. Suppose first
that R1 is assigned as the multiplier (that is, exactly the algorithm of Fig. 7):
[R¬kj

← R0 R1; Rkj
← (Rkj

)2]. Within this design, when kj = 1, the two
operations at iteration j are R0 ← R0 R1 and R1 ← (R1)2. Any error induced
into R1 cannot be an M safe-error. On the other hand, when kj = 0, the two
operations are R1 ← R0 R1 and R0 ← (R0)2. An error carefully induced into the
higher part of R1 is an M safe-error (because the error in register R1 is cleared
after the assignment R1 ← R0 R1) and so do not influence the computation.
Based on the two distinct behaviors, an attacker can recover the value of bit
kj . Likewise, if R0 is now assigned as the multiplier, depending on whether of
an error carefully induced into R0 at iteration j is an M safe-error or not, an
attacker can recover the value of bit kj .

As mentioned in § 3.2, the Montgomery ladder can be implemented in parallel
when two ALU’s are available. It can be easily verified that the above M safe-
error attack still applies in this parallelized implementation if these two ALU’s
share the source information of R0 and R1.

It is fairly easy to modify Montgomery ladder in order to counteract the
aforementioned M safe-error attack. It suffices to perform R¬kj ← R¬kj Rkj at
each iteration instead of R¬kj

← R0 R1 or R¬kj ← R1 R0.

Input: g, k = (kt−1, . . . , k0)2
Output: y = gk

R0 ← 1; R1 ← g
for j = t− 1 downto 0 do

b← ¬kj

Rb ← Rb Rkj; Rkj ← (Rkj )
2

return R0

Fig. 9. (Simple) Side-Channel and M Safe-Error Protected Montgomery Ladder.
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When kj = 0 (and b = 1), R1 ← R1 R0 is executed (by calling the routine
R1 ← MUL(R1, R0) with R0 as multiplier). On the other hand, when kj = 1 (and
b = 0), R0 ← R0 R1 is executed (by calling the routine R0 ← MUL(R0, R1) with
R1 as multiplier). It can be verified that no matter kj = 0 or kj = 1, any error
induced into R0 or R1 cannot be an M safe-error. The proposed modification
foils thus the above M safe-error attack.

5 Conclusion

This paper gave a generic description of Montgomery ladder in an abelian
group G. It thoroughly analyzed its main features for fast computation and
secure implementation on constrained devices. We hope having convinced the
reader that Montgomery ladder may be a first-class substitute of the celebrated
square-and-multiply algorithm.
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Abstract. We propose three differential power analysis (DPA) counter-
measures for securing the public key cryptosystems. All countermeasures
are based on the window method, and can be used in both RSA and el-
liptic curve cryptosystems (ECC). By using the optimal countermeasure,
performance penalty is small. In comparison with k-ary method, com-
putation time of our countermeasure is only 105% in 1024-bit RSA and
119% in 160-bit ECC.

1 Introduction

Differential power analysis (DPA, [4]), proposed by Kocher et al., is an attack
that enables extraction of a secret key stored in a cryptographic device, such as
smartcard. In this attack, an attacker monitors the power consumption of the
cryptographic devices, then statistically analyzes the collected power signal data
to extract the secret key. This attack can be used against both secret and public
key cryptosystems.

Currently, DPA is known as a big threat against the smartcard security, and
the necessity of countermeasure for protecting the cryptographic device from the
DPA attack is described in many standards. For example, the countermeasure
against this attack is commented in FIPS 140-2, which is the US standard of the
cryptographic module. Moreover, the requirement for DPA protection is included
in the protection profile (PP), which is a list of smartcard security requirements
based on the ISO 15408.

Various DPA countermeasures have been already proposed. Data random-
izing is a well-known DPA countermeasure, in which the intermediate data is
randomly transformed inside the cryptographic device. By using this technique,
statistical analysis method on DPA attack is disabled, because the intermediate
data on the encryption is unpredictable to the attacker. DPA countermeasure
using data randomizing technique can be used both in secret and public key
cryptosystems. We focus on the countermeasure for public key cryptosystems in
the rest of this paper.

Previous DPA countermeasures for public key cryptosystems are described in
[1] [2] [3] [5] [7] [8] [9] and [10]. Some of these countermeasures have demerits in
comparison with the straight-forward implementation. Roughly speaking, these
demerits are divided into 3 types. The first demerit is that, the countermea-
sures involve a performance penalty. Especially, an exponent splitting technique

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 303–317, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN ----------------------------------------Dateioptionen:     Kompatibilität: PDF 1.2     Für schnelle Web-Anzeige optimieren: Ja     Piktogramme einbetten: Ja     Seiten automatisch drehen: Nein     Seiten von: 1     Seiten bis: Alle Seiten     Bund: Links     Auflösung: [ 600 600 ] dpi     Papierformat: [ 595.276 824.882 ] PunktKOMPRIMIERUNG ----------------------------------------Farbbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitGraustufenbilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 150 dpi     Downsampling für Bilder über: 225 dpi     Komprimieren: Ja     Automatische Bestimmung der Komprimierungsart: Ja     JPEG-Qualität: Mittel     Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder:     Downsampling: Ja     Berechnungsmethode: Bikubische Neuberechnung     Downsample-Auflösung: 600 dpi     Downsampling für Bilder über: 900 dpi     Komprimieren: Ja     Komprimierungsart: CCITT     CCITT-Gruppe: 4     Graustufen glätten: Nein     Text und Vektorgrafiken komprimieren: JaSCHRIFTEN ----------------------------------------     Alle Schriften einbetten: Ja     Untergruppen aller eingebetteten Schriften: Nein     Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten:     Immer einbetten: [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     Nie einbetten: [ ]FARBE(N) ----------------------------------------Farbmanagement:     Farbumrechnungsmethode: Alle Farben zu sRGB konvertieren     Methode: StandardArbeitsbereiche:     Graustufen ICC-Profil:  ¡M     RGB ICC-Profil: sRGB IEC61966-2.1     CMYK ICC-Profil: U.S. Web Coated (SWOP) v2Geräteabhängige Daten:     Einstellungen für Überdrucken beibehalten: Ja     Unterfarbreduktion und Schwarzaufbau beibehalten: Ja     Transferfunktionen: Anwenden     Rastereinstellungen beibehalten: JaERWEITERT ----------------------------------------Optionen:     Prolog/Epilog verwenden: Ja     PostScript-Datei darf Einstellungen überschreiben: Ja     Level 2 copypage-Semantik beibehalten: Ja     Portable Job Ticket in PDF-Datei speichern: Nein     Illustrator-Überdruckmodus: Ja     Farbverläufe zu weichen Nuancen konvertieren: Nein     ASCII-Format: NeinDocument Structuring Conventions (DSC):     DSC-Kommentare verarbeiten: NeinANDERE ----------------------------------------     Distiller-Kern Version: 5000     ZIP-Komprimierung verwenden: Ja     Optimierungen deaktivieren: Nein     Bildspeicher: 524288 Byte     Farbbilder glätten: Nein     Graustufenbilder glätten: Nein     Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja     sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ( ¡M)     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue true     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ /Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 595.276 841.890 ]     /HWResolution [ 600 600 ]>> setpagedevice



304 K. Itoh et al.

described in [1] requires two times of the computation as that of the straight-
forward implementation. The second demerit is that, the countermeasures are
not always available in both RSA and elliptic curve cryptosystems (ECC). That
is, countermeasures described in [2] [3] [9] uses the technique by randomizing
the representation of projective coordinates, which are available only in ECC,
not in RSA. The third demerit is that, some countermeasures require the addi-
tional parameters. For example, a countermeasure described in [2] requires the
parameter φ(n) in RSA where n is a public modulo, or order of the base point in
ECC. This makes it hard to match the I/F of the cryptographic engine with and
without countermeasure, that is, a vulnerable engine can not easily be replaced
to a secure one.

In this paper, we propose three novel DPA countermeasures for securing the
public key cryptosystems. All countermeasures are based on the window method,
which is an efficient algorithm for computing the public key cryptosystems. By
using our countermeasures, all of the above demerits are avoided. In the first
countermeasure, we use the novel idea of ’overlapping window method’. In the
second countermeasure, we use the window method in which the pre-computed
table data is randomized. In the third countermeasure, we use a hybrid technique
of the first and second countermeasure. We call these countermeasures overlap-
ping window method (O-WM), randomized table window method (RT-WM) and
hybrid randomizing window method (HR-WM) respectively. These have different
characteristics, but have common three merits: (i) encryption operation is fast,
(ii) available in both RSA and ECC, and (iii) additional parameter is unneces-
sary. Merit (i) is that, the performance penalty of our countermeasure is small.
In comparison with the k-ary method, computation time of our countermeasure
is 119% in ECC and 105% in RSA. Merit (ii) dues to that our countermeasures
are base on the window method, and we show that two of our countermeasures
have high security against DPA attacks in both RSA and ECC. By merit (iii),
I/F of a cryptographic engine with and without DPA countermeasures can be
the same. That is, a vulnerable engine is easily replaced to a secure one.

We describe the previous data randomizing technique in section 2, our coun-
termeasures in section 3, security evaluation in section 4, DPA experiment result
in section 5 and performance comparison in section 6.

2 Data Randomizing Techniques

Data randomizing (blinding) is a well-known DPA countermeasure described
in [1] [2] [3] [5] [7] [8] [9] and [10]. These techniques make the intermediate
data on the encryption operation unpredictable to the attacker by randomly
transforming the data. Hence, an intermediate encryption data at a moment is
one of the possible values of the randomized data. We call the number of the
possible values of randomized data at a moment ’NRD’. It is easy to see that as
NRD is larger, DPA attack is harder, so that the security of the data randomizing
technique can be evaluated by NRD.

Previous data randomizing techniques that can be used for both ECC and
RSA are described in [1] [2] [5] [7] [8] and [10]. Among these countermeasures, we
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take up three typical methods in which NRD is clearly evaluated. These three
countermeasures are shown in following (A), (B) and (C).

(A) exponent blinding ([2]) : Instead of a secret key d, d′ = d + r × φ is used,
where r is randomly given and φ is an order. NRD is the number of possible
values of r.

(B) calculation randomizing ([7]) : Randomly choose the bit position of a secret
key d, then first perform a binary-method from the chosen bit to MSB, and
second, perform a binary-method from the chosen bit to LSB by using the
fist calculation result. NRD is log2d.

(C) exponent splitting ([1]) : From a secret key d, generate random numbers d1
and d2 that satisfy d = d1 + d2, then calculate ad1 × ad2 (mod n) = ad

(mod n). NRD is d.

We suppose that all above countermeasures provide enough security. That is,
NRD of (A), (B) and (C) ranges from log2d to d widely, but any countermeasures
listed above can attain enough security at current technology, because the size
of the spike is reduced to less than 1/100 of the device using a straight-forward
implementation.

On remarking the performance, two times modular exponentiation are re-
quired in (C), which makes the performance worse. So we compare our counter-
measure with (A) and (B).

3 Our Method

3.1 Overview

We propose three DPA countermeasures by improving the window method. First
one is overlapping window method (O-WM), second one is randomized table
window method (RT-WM), and third one is hybrid randomizing window method
(HR-WM). Each countermeasure has unique characteristics from the viewpoint
of operation, speed and security. Appropriate countermeasure can be chosen
according to the usage of the cryptographic devices (ex. encryption algorithm is
RSA or ECC). Details of our countermeasures are described in later sections. In
the rest of this paper, we use following notations.

– Our countermeasures can be used in both RSA and ECC, but we unified the
description for RSA for simplicity.

– We refer the ECC computation using the affine coordinates as ’ECC-2D’,
and that using the projective or Jacobian coordinates as ’ECC-3D’.

– d is the secret key, u is represented with u = log2d, wi is an index value
for the pre-computed table (i.e., wi is a window) and q is the number of wi.
(i.e., i = 0, 1, ..., q − 1.)

– EXPWM (w0, . . . , ws) represents the intermediate exponent (or scalar) value
when the table look-up operation proceeds from w0 to ws, where WM rep-
resents the type of window method, that is, k-ary, O-WM, RT-WM, or
HR-WM. For example, EXPk−ary(w0, . . . , ws) = (. . . (((2k × w0) + w1) ×
2k) . . .) × 2k + ws. Representations of EXPO−WM (), EXPRT−WM () and
EXPHR−WM () are described in the later section.



306 K. Itoh et al.

– DATWM (a, w0, . . . , ws) represents the intermediate data value when the ta-
ble look-up operation proceeds from w0 to ws for an input value a, where
WM represents the type of window method. When O-WM or HR-WM is
used in ECC-3D, the number of possible values of DATWM (a, w0, . . . , ws) is
much greater than that of EXPWM (w0, . . . , ws), because of the redundant
data representation in the projective coordinates. The reason for this is given
in section 4-2.

– NRD means the number of possible randomized data values at any given
moment when using the data randomizing techniques, as described in section
2.

– AR is attenuation ratio that represents the ratio of the size of the spikes
that appears in the differential power trace with and without DPA counter-
measure. Detail of AR is described in section 4-1.

– bit(a, x, . . . , y) represents the concatenation of the bit values of a, which
is represented in binary, from the x-th to the y-th bit. (x = 0, 1, . . . ; y =
0, 1, . . . ; x ≥ y.) The bit values upper than the MSB are regarded as 0. e.g.,
if a = 6 = (110)2, bit(a, 0) = 0, bit(a, 1) = 1, and bit(a, 4, 3, 2, 1) = (0011)2 =
3.

3.2 Overlapping Window Method (O-WM)

The characteristic of the O-WM is that, two continuous windows wi and wi+1
’overlap’ each other at the same bit position of d. We show the steps of O-
WM in algorithm 1 and an overview in figure 1. In O-WM, wi and wi+1
are allowed to ’overlap’ at the same bit position of d (figure 1). By overlap-
ping the wi, plural possible values of {w0, . . . , wq−1} are generated for a fixed
d. Hence, the intermediate data on the encryption operation will be unpre-
dictable to the attacker by randomly choosing one of these values. We de-
note hi as the overlapping bit length between wi and wi+1. If the table look-
up operation in step 18 is finished for i = s, EXPO−WM () is represented as
EXPO−WM (w0, . . . , ws) = (. . . (w0 × 2k−h0 + w1) . . .)2k−hs−1 + ws, whose bit
length is s× k − (h0 + . . . + hs−1) and lowest hs-bit randomly value (figure 1).

In comparison with the k-ary method, the overhead for table making is the
same, but the number of repeating the table look-up operations is larger.

Note 1. For securing against SPA attacks, we recommend to set hi a fixed value
h that satisfy h ≥ k/2. This tweak provides a protection against the SPA by
observing only one time execution of the cryptographic device, because multi-
plication and square are repeated in constant pattern. h must satisfy h ≥ k/2
to prevent the bias distribution of wi.

3.3 Randomized Table Window Method (RT-WM)

The characteristic of the RT-WM is that, pre-computed table data is random-
ized. We show the steps of RT-WM in algorithm 2 and an overview in figure 2.
In step 5, pre-computed table data is generated by tab[i] = ai×2b+r (mod n),

where i is an index value and r is a b-bit random value. If step 19 is finished
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Algorithm 1. Overlapping window method (O-WM)
1: /* pre-computed table data making */
2: for (i = 0; i < 2k; i + +) tab[i] = ai (mod n);
3: /* window wi and overlapping length hi making */
4: /* generate random number q and 0 < h0, h1, . . . , hq−2 < k
5: which satisfy q × k + (h0 + h1 + . . . hs) = u.
6: For securing against SPA, hi are recommended to be
7: the fixed value h ≥ k/2. */
8: (hi, q) = GenRandom(); u′ = u− k; dtq−1 = bit(d, u− 1, . . . u′);
9: for (i = 0; i < q − 1; i + +) = {
10: wi = (Random number, max(0, dti − 2hi + 1) ≤ wi ≤ dti);
11: dti+1 = (dti − wi)× 2k−hi + bit(d, u′ − 1, . . . , u′ − (k − hi));
12: u′ = u′ − (k − hi);
13: }
14: wq−1 = dtq−1;
15: /* modular exponent process */
16: v = tab[w0]; i = 1;
17: while (i < q) {
18: v = v2k−hi (mod n); v = v × tab[wi] (mod n); i = i + 1;
19: }
20: Return(v);
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Fig. 1. Overview of O-WM and EXPO−WM (w0, . . . , ws)
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Algorithm 2. RT-WM (Randomized Table Window Method)
1: /* Generate random number */
2: r = (b-bit random number);
3: /* pre-computed table data making */
4: t = ar (mod n)
5: for (i = 0; i < 2; i + +) tab[i] = ai×2b × t (mod n)
6: /* window making phase */
7: dw = d; q=0;
8: while (dw ≥ r × 2k×q ) {
9: dw = dw − r × 2k×q; q = q + 1
10: }
11: for (i = 0; i < q; i + +) {
12: wi = bit(dw, b + (q − i)× k − 1, . . . , b + (q − i− 1)× k);
13: }
14: dm = dw (mod 2b)
15: /* modular exponent process */
16: if (q == 0) Return(adm (mod n));
17: v = w0; i = 1;
18: while (i < q) {
19: v = v2k

(mod n); v = v × tab[wi] (mod n); i = i + 1;
20: }
21: /* normalization */
22: v = v × adm (mod n);
23: Return(v);
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Fig. 2. Overview of RT-WM and EXPRT−WM (w0, . . . , ws)

for i = s, the EXPRT−WM () is represented as EXPRT−WM (w0, . . . , ws) =
(. . . ((w0 × 2b + r) ×2k + w1 × 2b + r)× 2k . . .)× 2k + ws × 2b + r, whose lowest
b-bit data is random value (figure 2). To obtain the final result ad (mod n),
the randomized data must be ’normalized’ at the end of the operation. This
normalization step is v = v × adm (mod n) in step 22, where dm is b-bit value
generated in step 14.
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In comparison with the k-ary method, the number of repeating table look-up
operations are the same, but the overhead for the computation of table making
and normalization are larger.

3.4 Hybrid Randomizing Window Method (HR-WM)

HR-WM is a combination technique of O-WM and RT-WM. We show the steps
in algorithm 3 and an overview in figure 3. Pre-computed table data generation

Algorithm 3. HR-WM(Hybrid Randomizing Window Method)
1: /* Generate random number */
2: r = (b-bit random number);
3: /* pre-computed table data making */
4: t = ar (mod n)
5: for (i = 0; i < 2k; i + +) tab[i] = ar (mod n);
6: /* window making phase */
7: dw = d; q = 0;
8: while (dw ≥ r × 2k×q) {
9: dw = dw − r × 2k×q; q = q + 1;
10 }
11: dm = dw (mod 2b); dw = dw/2b;
12: u′ = (k − h)(q−1); dt0 = bit(dw, u′ + k − 1, .., u′);
13: for (i = 0; i < q − 1; i + +) {
14: wi = (Randomnumber, max(0, dti − 2h + 1) ≤ wi ≤ dti);
15: dti+1 = (dti − wi)2(k−h) + bit(dw, u′ − 1, . . . , u′ − (k − h));
16: u′ = u′ − (k − h);
17: }
18: wq−1 = dtq−1;
19: /* modular exponent process */
20: if (q == 0) Return(adm (mod n));
21: v = w0; i = 1;
22: while (i < q) {
23: v = v(2(k−h)) (mod n); v = v × tab[wi] (mod n); i = i + 1;
10 }
24: /* normalization */
25: v = v × adm (mod n);
26: Return (v);

is the same as that in RT-WM, and wi is generated by combination operation
of RT-WM and O-WM (steps.2-18). In HR-WM, the overlapping length h is a
fixed value. If step 23 is finished for i = s, the EXPHR−WM () is represented as
EXPHR−WM (w0, . . . , ws) = (. . . (w0 × 2b + r)× 2k−h . . .)× 2k−h + ws × 2b + r,
whose lowest (b + h)-bit data is random value (figure 3).

Similar to RT-WM, overhead the computation of table making and normal-
ization are larger in proportion to b and h. But when HR-WM is used, security
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Fig. 3. Overview of HR-WM and EXPHR−WM (w0, . . . , ws)

is also strengthened by both effect of O-WM and RT-WM. So, these parameters
can be smaller than that in O-WM and RT-WM for attaining the same security
level. By setting parameters b and h, an optimal balance between performance
and security can be chosen. In HR-WM, h can be small value such as h = 1,
because h is not limited to h ≥ k/2.

4 Security Evaluation against DPA

In this section, we evaluate the security of our countermeasures. At first, we
describe a basic idea of the security evaluation, then discuss the security of
each countermeasure. We finally show that all of our countermeasures have high
security in ECC-3D, and RT-WM and HR-WM have high security in RSA and
ECC-2D.

4.1 Basic Idea

Before explaining the basic idea of the security evaluation, we explain the DPA
attack against the k-ary method. In this attack, the attacker repeats monitor-
ing the power consumption of a cryptographic device N times when inputting
plaintext a0, . . . , aN−1. We denote these monitored data V (ai, t) where t is time.

The attacker analyzes d by guessing each w0, . . . , ws according to this order.
If he already has guessed the correct w′

0, . . . , w
′
s−1 that satisfy {w′

0, . . . , w
′
s−1} =

{w0, . . . , ws−1}, he guesses w′
s = ws, then calculates the difference power trace

∆(t) as shown (1), where e (0 ≤ e < (plaintext length)) is a bit position for
calculating the differential. If a spike appears in ∆(t), w′

s turns out to be correct,
otherwise it turns to be incorrect.
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∆(t) =
2
N

(
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=1

V (aj , t)

−
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=0

V (aj , t)) (1)

The attacker’s possibility for succeeding in the above analysis depends whether
the spike will appear or not. Hence, as the size of the spike is smaller, the
analysis is harder. If the size of the spike is almost zero, he can’t distinguish
the correctness of the guessed w′

s. Therefore, the security against DPA can be
evaluated by the size of the spike.

Here we describe the basic idea for the evaluation of the size of the spike
when our countermeasure is used. In our method, ws is randomly chosen value,
so equation (1) can be transformed to the following equation (2), where Prob[X]
represents the probability that equation X holds. (Note that the differential
power trace for Prob[DATWM (aj , w0, . . . , ws) �= DATWM (aj , w

′
0, .., w

′
s)] is 0.)

∆(t) =
2
N

(
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=1
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−
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=0

V (aj , t))

= Prob[DATWM (aj , w
′
0, . . . w

′
s) = DATWM (aj , w0, . . . ws)]

× 2
N

(
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s),e)=1
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−
∑

bit(DATW M (aj ,w′
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s),e)=0

V (aj , t))

+Prob[DATWM (aj , w
′
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′
s) �= DATWM (aj , w0, . . . ws)]

× 2
N

(
∑

bit(DATW M (aj ,w′
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V (aj , t)

−
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=0

V (aj , t))

= Prob[DATWM (aj , w
′
0, . . . w

′
s) = DATWM (aj , w0, . . . ws)]

× 2
N
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∑

bit(DATW M (aj ,w′
0,...w′

s),e)=1

V (aj , t)

−
∑

bit(DATW M (aj ,w′
0,...w′

s),e)=0

V (aj , t)) (2)

From (2), the size of the spike will be smaller in proportion to Prob[DATWM (aj ,
w0, . . . , ws) = DATWM (aj , w

′
0, . . . , w′

s)]. Therefore, we evaluate the security by
maximum value of the probability that DATWM (aj , w0, . . . , ws) is computed in
the device. We call maximum value of the probability ’attenuation ratio’ (AR) in
the rest of this paper. (Note that the probability represents the ratio of the size of
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spike of (1).) For evaluating AR, we discuss the NRD of DATWM (aj , w0, . . . , ws),
then evaluate the DATWM (aj , w0, . . . , ws) that appears with highest probability.

4.2 O-WM

In O-WM, evaluation of AR differs among RSA, ECC-2D, and ECC-3D. This
means that the NRD of DATO−WM (aj , w0, . . . , ws) is evaluated using the NRD
of EXPO−WM (w0, . . . , ws) for RSA and ECC-2D, and is roughly evaluated us-
ing the NRD of the sequence {w0, . . . , ws} for ECC-3D. Therefore, we discuss
RSA/ECC-2D and ECC-3D separately.

Note 2. The difference between ECC-2D and ECC-3D is due to the difference of
the data representation in the projective coordinates. For example, when calcu-
lating 7A for A = (X, Y, Z) by (X1, Y1, Z1) = 2((11)2(X, Y, Z)) + (01)2(X, Y, Z)
or (X2, Y2, Z2) = 2((10)2(X, Y, Z)) + (11)2(X, Y, Z), these two points represent
the same point in affine coordinates, but X1 �= X2, Y1 �= Y2, Z1 �= Z2 will hold
with high probability.

To see this fact, let us assume that the device computes B1 = f1A + g1A or
B2 = f2A+ g2A in projective coordinates for point A and scalar values f1, f2, g1
and g2, when f1 + g1 = f2 + g2, f1, f2 > g1, g2, and the data representation of
f1A, f2A are different. Under this assumption, data representation of B1 and B2
will be different with probability 1− 1/p where p is the size of the finite field.

In general, NRD of the data representation of Bz = fxA + gyA is ap-
proximated to (NRD of data representation of fxA) × (NRD of data
representation of gyA) when the data representation of fxA are different from
each other and fx > gy for any x, y. So, (NRD of data representation of
EXPO−WM (w0, . . . , ws)A) is approximated to (NRD of data representation
of 2k−hs−1 (EXPO−WM (w0, . . . , ws−1))A) × (NRD of data representation
of wsA), which is equal to the NRD of the sequence {w0, . . . , ws}.

RSA/ECC-2D. From figure 1, EXPO−WM (w0, . . . , ws) is s× k − (h0 + . . . +
hs−1)-bit and lowest hs-bit is randomized. Therefore, the probability (or AR)
that some EXPO−WM (w0, ..., ws) is used in the device, is represented as (3) for
some Wlen and Wval.

(Prob[s× k − (h0 + . . . + hs−1) = Wlen])× (Prob[lowest hsbits = Wval])
= α(s, Wlen)× β(s, Wval) (3)

α(s, Wlen) depends on h0, . . . , hs−1 and β(s, Wval) depends on hs and ws+1,
which are independent each other. Therefore, the maximum value of (3) is a
product of each maximum value.

α(s, Wlen) equals to the maximum value when h0 +h1 + . . .+hs−1 = s×k/2
(note that 0 < hi < k). It can be calculated directly, or is approximated as a
normal distribution by the central limit theorem, if s is large enough. When hi

is fixed value h, α(s, Wlen) = 1.
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β(s, Wval) is a probability that the lowest hs-bit is equal to Wval. Taking
into account that hs varies 1 to k − 1, it is easy to see that varying only LSB
can occur for all hi (Note that 1-bit varying is included in hi-bit varying.) The
probability is represented as (2−1 + ... + 2−(k−1))/(k − 1), where (k − 1) is a
number of possible value hi.

We show the graph of maximum value of AR in figure 4 when k = 4 and
1 ≤ hi ≤ 3. This graph can be approximated to 0.15×s−1/2, decreases slowly for
s. So this is thought as ’weak’ DPA countermeasure, but it can be used to the
device whose SNR (signal-to-noise ratio) is small. Detail of the SNR is described
in [6].

Here we note that the probability is a mean value. It depends on the partial
value of the secret key d that decides the variable range of ws. (See step 10 in
algorithm 1.) As the partial k-bit of d corresponding to ws is smaller, β(s, Wval)
will be larger. (ex. In figure 1, partial k-bit of d corresponding to w0 is (1011)2,
that to w1 is (1110)2 and that to w2 is (1101)2.) When hi is fixed value h,
β(s, Wval) = 2−h.
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Fig. 4. AR when k = 4 and 1 ≤ hi ≤ 3(RSA, ECC-2D)

ECC-3D. Following (4) represents the probability that some sequence
{w0, . . . , ws} is used in the device.

(Prob[s× k − (h0 + . . . + hs−1) = Wlen])× 2−(h0+h1+...+hs)

= α(s, Wlen)× 2−(h0+...+hs) (4)

If hi ranges 0 < hi < k, the upper bound of (4) is 2−(s+1), and if hi is a fixed
value h, (4) is equal to 2−h×(s+1).
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4.3 RT-WM

When RT-WM is used, intermediate encryption data is randomized by the pre-
computed table data, which is given by the b-bit random number. So, AR is
always equal to 2−b.

4.4 HR-WM

When HR-WM is used, NRD is represented as (NRD when using O−WM)×
(NRD when using RT −WM). If the encryption algorithm is RSA/ECC-2D,
NRD is 2h×2b. In HR-RM, intermediate data at any given moment is randomly
chosen from one of the possible values. Therefore, AR is equal to 2−(h+b). In
ECC-3D, NRD is 2h(s+1) × 2b, so that AR is equal to 2−(h(s+1)+b).

Table 1. Measured AR from DPA experiment (O-WM in RSA k = 4, 1 ≤ hi ≤ 3)

ws w0 w3 w6 w9 w12

AR (expected) 0.0400 0.104 0.0775 0.064 0.0556
AR (experiment) spike1 0.0411 0.0863 0.0910 0.0672 0.113

spike2 0.0414 0.0915 0.109 0.0825 0.120
spike3 0.0373 0.0887 0.101 0.0653 0.0760
spike4 0.0398 0.115 0.140 0.0815 0.128

partial 4-bit of d (1101)2 (0111)2 (0110)2 (1111)2 (0000)2

5 DPA Attack Experiment

For O-WM in RSA case, we have verified effect of the protection against DPA
through the experiment. We monitored the power consumption for the RSA
encryption by using 4-ary and O-WM in which k = 4, 1 ≤ hi ≤ 3 and analyzed
the secret key. When monitoring the power consumption, we have input 20000
plaintexts and set the sampling ratio 100 MHz. We have analyzed the key by
making the difference power trace when guessing w0, w3, w6, w9 and w12, and
confirmed the spike to measure AR. In the analysis, we guessed the sequence
{w0, . . . , ws} when the size of the spike that appears in (2) is maximum value.

Figure 5 shows the example of the differential power trace, and table 1 shows
the expected and measured AR for 4 spikes appeared in the differential power
trace. In table 1, partial 4-bit of d corresponding to ws is also shown. The
expected AR is well approximated to the measured AR, and when the partial
4-bit value of d is small, the measured AR is larger than the expected value.

6 Performance Comparison

In table 2, we show the comparison of the performance and security of our
countermeasures. The input bit-length of the pre-computed table data is fixed
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Fig. 5. Differential power traces when guessing w3 (4-ary:upper, O-WM:lower)

Table 2. Performance comparison among proposed countermeasures

O-WM RT-WM HR-WM
Time table making 2k b(2 + 1

k′ ) + 2k′
+ 2k b(2 + 1

k′ ) + 2k′
+ 2k

exponent u(S + M
k−h

) (u− b)(S + M
k

) (u− b)(S + M
k−h

)
normalization - b(S + M

k′ ) + 2k′
b(S + M

k′ ) + 2k′

Security RSA,ECC-2D Cs−1/2(hi:random) 2−b 2−(h+b)

(AR) 2h(hi :fixed)
ECC-3D ≤ 2s+1 (hi:random) 2−b 2−(h(s+1)+b)

2h(s+1) (hi:fixed)
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Table 3. Performance Comparison with other countermeasures

O-WM RT-WM HR-WM Coron Messerges
ECC Addition 256 279 264 241 214

(160-bit) AR ∼ 2−6(2D) 2−20 2−11(2D) 2−20 2−7.32

∼ 2−80(3D) 2−61(3D)
RSA Multiplication 1552 1359 1416 1321 1536

(1024-bit) AR ∼ 2−7.23 2−20 2−11 2−20 2−10

Additional parameter No No No Yes No

to k-bit among these countermeasures, so that the RAM size of the table data
are the same. S represents a computation time of squaring (or doubling), and
M represents that of multiplication (or addition). In the ’table making’ row, we
assumed S = M and showed the performance by the times of the multiplication
(or addition). (Note that S and M are omitted in this row.) In the ’O-WM’
column, h represents the average value of hi, and AR is represented when each
window method is processed from w0 to ws.

In table 3, comparison of our countermeasures with the Coron’s (counter-
measure (A) in section 2) and Messerges-Dabbish-Sloan’s (countermeasure (B)
in section 2) countermeasure are shown. In our countermeasures, the parameter
are set to k = 4 (O-WM, RT-WM, HR-WM), h = 2 (O-WM) /1 (HR-WM),
b = 20(RT-WM) /10 (HR-WM). In Coron’s countermeasure, we suppose that
the length of the random value is 20-bit, and 4-ary method is used. In Messerges’
countermeasure, we supposed that binary-method is used for RSA, and signed-
binary method is used for ECC.

We have evaluated the performance of these countermeasures in 1024-bit
RSA and 160-bit ECC case, assuming the computation time for squaring and
multiplication (doubling and addition) are the same.

6.1 Countermeasure Choice for an Encryption Algorithm

Suitable choice of our countermeasures depends on the encryption scheme and
the environment of the device. We categorize them by encryption algorithm as
followings.

– RSA/ECC-2D : RT-WM or HR-WM is suitable, O-WM is not recommended.
In table 2, HR-WM looks like to be most suitable, but it is because param-
eters b are different between RT-WM and HR-WM. When parameters b are
the same in these two methods, RT-WM is most suitable.

– ECC-3D : All countermeasures are suitable, but the countermeasure can be
chosen according to the requirement. When the code size is required to be
small, O-WM is suitable, because its computation steps are simple, similar
to the k-ary method. Moreover, we recommend to fix hi for securing against
SPA attack. When the encryption speed is significant, suitable countermea-
sure depends on the bit length of the key. When using the short length key,
O-WM is suitable. When using longer length key, HR-WM and RT-WM will
be suitable in this order.
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7 Conclusion

We proposed three DPA countermeasures based on the window method, O-WM,
RT-WM and HR-WM. For O-WM, we assured the effect of the countermeasure
through the DPA experiment. When choosing the optimal countermeasure ac-
cording to the encryption scheme, the computation time ratio to k-ary method is
only 105% in RSA and 119% in ECC.. In comparison with the Coron’s counter-
measure, our countermeasure has the merit that additional parameter is unnec-
essary. In comparison with the Messerges’ countermeasure, encryption speed of
our countermeasure is 13% faster in RSA. Except O-WM in which overlapping
length is fixed, our countermeasure can protect against SPA by observing only
one time execution of the cryptographic device, because square and multiplica-
tion are repeated by the constant pattern.

References

1. Christophe Clavier and Marc Joye, “Universal Exponentiation Algorithm – A First
Step Towards Provable SPA Resistance”, CHES 2001, LNCS 2162, pp. 300–308,
Springer-Verlag, 2001.
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Abstract. This paper describes several speedups for computation in
the order p + 1 subgroup of F∗

p2 and the order p2 − p + 1 subgroup
of F∗

p6 . These results are in a way complementary to LUC and XTR,
where computations in these groups are sped up using trace maps. As a
side result, we present an efficient method for XTR with p ≡ 3 mod 4.

Keywords: XTR, LUC, finite field, cyclotomic polynomial.

1 Introduction

Many cryptographic protocols rely on the assumed hardness of the discrete log-
arithm problem in certain groups. Well known examples are prime order sub-
groups of Z∗

p or of elliptic curves. Let Gx, for a positive integer x, denote a
cyclic (sub)group of order x. In this paper we focus on subgroups Gq of F∗

pd

with q a prime dividing the d-th cyclotomic polynomial Φd evaluated at p. The
cryptographic relevance of these groups was already pointed out in [11]: other
subgroups of F∗

pd can be embedded in a true subfield of F∗
pd , thereby making the

discrete logarithm computation substantially easier.
Computation in finite fields is a well studied problem. However, research

tends to emphasize on bilinear complexity [10], asymptotic complexity [24], or
binary characteristic [1]. The case of large prime characteristic with small ex-
tension degree has been studied less extensively [5,11,2]. Moreover, usually the
entire field is discussed, while hardly any attempt is made to look closely at the
cryptographically interesting cyclotomic subgroup. An exception is the afore-
mentioned article [11], but there the problem is not addressed in full detail. In
this paper, we consider the groups Gp+1 ⊂ F∗

p2 and Gp2−p+1 ⊂ F∗
p6 .

Currently the fastest exponentiation methods in the subgroups Gp+1 and
Gp2−p+1 use trace maps, resulting in respectively LUC [20] and XTR [13]. They
have the additional benefit of reducing the size of the representation of subgroup
elements to a half respectively a third of the traditional representation. Appli-
cation of LUC and XTR is advantageous in protocols where the subgroup oper-
ations are restricted to additions, and single or double exponentiations. But for
� The first author is sponsored by STW project EWI.4536

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 318–332, 2003.
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more involved protocols that also require ordinary multiplications of subgroup
elements or triple (or larger) exponentiations, they may lead to cumbersome
manipulations that outweigh the computational advantages. As a consequence,
using trace based representations in more complicated protocols may be incon-
venient (unless of course the small representation size is crucial).

For that reason, we consider in this paper how exponentiation speedups in
Gp+1 and Gp2−p+1 can be achieved in such a way that other operations are not
affected, i.e., while avoiding trace based compression methods. For quadratic
extensions we show that for both p ≡ 2 mod 3 and p ≡ 3 mod 4 inversions in
Gp+1 ⊂ F∗

p2 come for free, and that squaring in Gp+1 is cheaper than in the field
Fp2 . This results in single and double exponentiations that cost about 60% and
75%, respectively, of traditional methods. Both methods are still considerably
slower than LUC (see also [22]).

Our main result concerns sixth degree extensions, i.e., the case Gp2−p+1 ⊂
F∗

p6 . We show that for both p ≡ 2 mod 9 and p ≡ 5 mod 9 inversions in Gp2−p+1
are very cheap, while squaring in Gp2−p+1 is substantially faster than in Fp6 .
Moreover, the methods from [8,22] can be used to transform a k-bit single expo-
nentiation into a k/2-bit double exponentiation (i.e., the product of two k/2-bit
exponentiations). Using appropriate addition chains this results in a vastly im-
proved single exponentiation routine, that takes approximately 26% of the time
cited in [13, Lemma 2.1.2.iii]. The improvement for double exponentiation is less
spectacular, requiring an estimated 33% compared to [13, Lemma 2.1.2.iv]. Our
methods are slightly slower than the improved version of XTR [22], but faster
than the original XTR [13].

Our proposed methods do not have the compressed-representation benefits
or disadvantages of LUC or XTR. Protocols where our methods compare well
to LUC and XTR are especially those based on homomorphic ElGamal encryp-
tion [7] such as Brands’ protocols [3] and Schoenmakers’ verifiable secret sharing
scheme [19]. Another example is the Cramer-Shoup protocol [6].

Another consideration is the cost of subgroup membership checking, since the
security of several cryptographic protocols stands or falls with the correctness
of the generators and proper subgroup membership of other elements. For LUC
the cost of the subgroup membership test is negligible. For XTR it is small but
not really negligible. Testing membership of Gp+1 and Gp2−p+1 as proposed in
this paper only costs a small constant number of operations in the underlying
field and is thus negligible, as in LUC.

The proposed methods can also be used in conjunction with LUC and XTR.
Given an element in Gp+1 or Gp2−p+1 the cost of computing the LUC respectively
XTR representation is negligible. Going from LUC to Gp+1 requires a square root
computation in Fp, going from XTR to Gp2−p+1 can be done by computing the
roots of a third degree polynomial over Fp2 . In both cases extra information is
needed to resolve root ambiguities.

Unless indicated otherwise, all logarithms in this paper are natural.
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2 Preliminaries

2.1 Computational Model

Throughout this paper we use the following conventions to measure the costs of
operations. Let l be a positive integer that will be clear from the context. We use
M for the cost of multiplying two l-bit numbers (without modular reduction), S
for the cost of squaring an l-bit number (idem), D for reducing a 2l-bit number
modulo an l-bit number, A1 for adding two l-bit numbers (including a reduction
if needed), and A2 for adding two 2l-bit numbers (no reduction). A modular
addition (of cost A1) typically boils down to two or three plain l-bit additions
(which makes it hard to determine whether A1 > A2 or vice versa). Consequently,
the stated numbers of additions should be taken with a grain of salt. As another
example, in Lemma 3.24.iv the cost of subgroup squaring is approximated as
2S + 2D + A1, assuming that the cost of subtracting one or multiplying by two
is negligible compared to A1 and A2. Furthermore, the reduction (of cost D) is
sometimes fed numbers slightly larger than 2l-bits.

Anyway, for exponentiations we always switch back to the simplified case
A1 = A2 = 0, M = D = 0.5, and S = 0.3, assuming some fixed value for l. This
corresponds to the model where an l-bit modular multiplication is the unit of
measurement, a squaring costs 80% of a modular multiplication, and additions
are considered negligible. This simplification facilitates comparisons with other
results given in the literature.

2.2 Discrete Logarithm Problem

In this paper it is assumed that the discrete logarithm problem in the order q
subgroup Gq of F∗

pd is sufficiently difficult. Here we briefly review the well known
implications of this assumption for the choice of q given pd.

It follows from the Pohlig-Hellman algorithm [15] that q is best chosen as a
prime number. Furthermore, it follows from the Pollard-ρ method [16,23] that√

q should be sufficiently large, say at least 280 or 2100 depending on the security
requirements. Finally, it was shown in [11] that q divides Φd(p) if and only if Gq

cannot be embedded in a true subfield of Fpd , under the assumption that q > d.
This implies that, if a sufficiently large q divides Φd(p), then index calculus
method attacks on the discrete logarithm problem in Gq cannot be mounted in
any true subfield of Fpd but must take place in the field Fpd . Thus, such attacks
can be expected to take time

exp((1.923 + o(1))(log pd)1/3(log log pd)2/3),

for p→∞ and d fixed [9,17,18].
Summarizing, we find that the order q must be a prime of at least, say, 160

bits, irrespective of the value of d. For d = 2 we have the additional requirement
that q divides Φ2(p) = p + 1 and that the bit length of the prime p is at least,
say, 512. For d = 6 the order q divides Φ6(p) = p2− p+1 and p must be a prime
of bit length at least, say, 170.
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2.3 Finite Field Representation

In cryptography, d-th degree extensions of finite fields are most commonly rep-
resented using either polynomial or normal bases (see [14] for definitions and
details). With a proper choice of minimal polynomial (such as a trinomial with
small coefficients), polynomial bases allow relatively efficient multiplication and
squaring in the sense that the usual reduction stage from a degree 2d−2 product
to the degree d − 1 result can be performed at the cost of cd additions in the
underlying prime field, for a very small constant c. In general, this is not the case
for normal bases, but they have the advantage that the Frobenius automorphism
can be computed for free. For polynomial bases the Frobenius automorphism can
be computed at a small but non-negligible cost. A class of polynomial bases com-
bining the best of both worlds is featured in [5]. They are based on cyclotomic
fields. The following theorem, a slight adaptation of [14, Theorem 2.47(ii)], says
something about the extension degrees one obtains using cyclotomic fields.

Theorem 2.31 Given a field Fpe with p prime and some n coprime to p. Then
the n-th cyclotomic field over Fpe is isomorphic to Fped where d is the least
positive integer such that ped ≡ 1 mod n.

This theorem implies d|φ(n). We fix e = 1. Furthermore, we concentrate on
d = φ(n), i.e., the case that p mod n generates Z∗

n. This requires Z∗
n to be cyclic,

so that n is either 2, 4, the power of an odd prime, or twice the power of an odd
prime. We ignore n = 2, since it does not lead to a proper extension.

Actually, [5] is concerned with rings Z[γ]/pZ[γ] where n is a prime power, γ
is a primitive n-th root of unity, and p is an integer of which primality is to be
determined. If p is indeed a prime generating Z∗

n then Z[γ]/pZ[γ] is isomorphic
to Fp[γ] supporting identical representations.

Let Γ = (γ, γ2, . . . , γd) with γ as above, then Γ is a basis of Fpd over Fp. It is
understood that an element a ∈ Fpd is represented as ā = (a0, . . . , ad−1) ∈ (Fp)d,
where a = Γ · āT . We abuse notation by identifying a and ā.

We are interested in finding fast single and double exponentiations for Gq,
where q|Φd(p) (cf. Section 2.2). For that purpose we formulate fast multiplication
and squaring methods for Fpd , show that squaring in GΦd(p) can be done even
faster, and that the cost of p-th powering in Fpd (and thus of inversion in GΦd(p))
is virtually negligible. Of independent interest is membership testing for GΦd(p).

If d < 105 , then Φd(p) =
∑

i∈P pi −∑i∈N pi for appropriate index sets P
and N . Let a ∈ Fpd . Since F∗

pd is cyclic, a ∈ GΦd(p) if and only if aΦd(p) = 1,

which is equivalent to
∏

i∈P api

=
∏

i∈N api

. Testing this condition requires at
most d applications of the Frobenius automorphism and |P|+ |N | − 1 multipli-
cations in Fpd . Thus, for fixed d testing GΦd(p)-membership costs at most φ(d)
multiplications in Fpd . Membership x ∈ Gq can be established by verifying that
xq = 1.

The relation
∏

i∈P api

=
∏

i∈N api

gives rise to d possibly dependent relations
of degree |P|. In some cases these relations can be used to speed up |P|-th
powering in GΦd(p). This is exploited to get fast squaring in GΦd(p) for d = 2, 6.
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A major ingredient when calculating modulo Γ is writing powers > d of γ
as linear combinations in Γ . This reduction is performed in two stages. First, all
powers higher than n are reduced using γn = 1; next the relation Φn(γ) = 0 is
used to map everything to powers of γ between 1 and φ(n). Since d = φ(n), we
are done. Note that only additions and subtractions are needed for the reduction.

In [11] only pairs (p, n) are considered for which n is prime and for which p
generates Z∗

n, because they lead to so-called optimal normal bases. The relevance
of such bases for characteristics > 2 is limited, and the ‘cheap’ reduction they
achieve (just 2d− 1 additions in Fp) is almost met by the somewhat wider class
considered above.

2.4 Key Generation

Given n and d = φ(n) and a desired level of security, key generation consists of
two phases: sufficiently large primes p and q have to be found with p generating
Z∗

n and q dividing Φd(p), after which a generator of Gq has to be found.

2.41 Finding p and q. For small d, as in this paper, standard security require-
ments lead to log p > log q, cf. Section 2.2. In this case the obvious generalization
of the method from [13] can be used. First, an appropriately sized prime q is
selected, where q|Φd(p) may impose a priori restrictions on q (e.g., q ≡ 1 mod 3
for d = 6). Next, a root r of Φd[x] ∈ Fq[x] is found and p is determined as r + �q
for � ∈ Z≥0 such that p is a large enough prime that generates Z∗

n.
With larger d (or e > 1, cf. Theorem 2.31) one may aim for primes p that fit in

a computer word (i.e., log2(p) = 32 or 64). Although this may be advantageous,
log p becomes substantially smaller than log q. We are not aware of an efficient
method to find such p and q. If q is selected first, the probability is negligible
that an appropriate p exists such that q|Φde(p). If p is selected first, there is
only a very slim probability that Φde(p) has an appropriate prime factor, and
finding it leads to an unattractive integer factorization problem. In this paper
the possibility log p < log q is not further discussed.

2.42 Finding a generator of Gq. This problem is easily solved by selecting
h ∈ Fpd at random until g = h(pd−1)/q �= 1, at which point g is the desired
generator. A faster method is described in [12, credited to H.W. Lenstra, Jr.].
First an element h ∈ GΦd(p) is constructed directly and next g = hΦd(p)/q is
computed. If g = 1 another h has to be generated. The specifics follow.

Let f ∈ Fp and let γ be a primitive n-th root of unity as in Section 2.3.
Consider hf = (γ+f)(p

d−1)/Φd(p) ∈ GΦd(p). Since Φd(p) divides pd−1 irrespective
of p, we can write (pd − 1)/Φd(p) as r+(p) − r−(p) where r+ and r− are both
polynomials with positive coefficients. The equation (γ+f)r+ (p) = hf (γ+f)r− (p)

gives rise to a system of d equations in the coefficients of hf . Since the system
only depends on p’s congruency class modulo n (and not on p itself), solving the
system can be done before actually picking p. The resulting hf corresponding to
several different choices for f can be hardcoded in the program. In Section 4.4
the details for Gp2−p+1 with p ≡ 2 mod 9 are presented.
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2.5 LUC and XTR

For completeness, we give a very brief description of LUC and XTR. LUC [20]
is based on the subgroup Gp+1 ⊆ F∗

p2 and the trace map Tr : Fp2 → Fp defined
by Tr(g) = g + gp. Since g ∈ Gp+1 implies that (X − g)(X − gp) = X2 − (g +
gp)X + gpg = X2 − Tr(g)X + 1, the roots of the polynomial X2 − Tr(g)X + 1
are g and its conjugate gp. Define Vn = Tr(gn), then it can easily be verified
that Vn+m = VnVm − Vn−m using gp = g−1 for g ∈ Gp+1. Thus, computation
of Vn+m from Vn, Vm, and Vn−m costs a multiplication (a squaring if n = m)
in Fp. The Vn coincide with a special instance of the Lucas-function.

XTR [13] is based on the subgroup Gp2−p+1 ⊆ F∗
p6 and the trace map Tr :

Fp6 → Fp2 defined by Tr(g) = g + gp2
+ gp4

. In this case, g ∈ Gp2−p+1 and
its conjugates gp2

and gp4
are the roots of the polynomial X3 − Tr(g)X2 +

Tr(g)pX − 1. Define cn = Tr(gn), then it can be verified that cn+m = cncm −
cp
mcn−m+cn−2m. Since the cn are elements of Fp2 , efficient computation of cn+m

requires a suitable representation for Fp2 (in particular one that supports cheap
Frobenius).

Both LUC and XTR compute Tr(gn) instead of gn and in case of a double
exponentiation this would be Tr(gnhm) instead of gnhm. The necessity of know-
ing Vn−m respectively cn−m and cn−2m makes ordinary exponentiation routines
unapplicable. Nevertheless, in either case efficient exponentiation methods exist.
However, the shortest addition chain is typically considerably longer than the
shortest one. For further details, see [22] and the references contained therein.

3 Quadratic Extensions

In this section we discuss computing in Fp2 and Gp+1 ⊂ F∗
p2 . Fast computations

in the full field Fp2 with p ≡ 2 mod 3 are important for XTR and have been
discussed in [13]. We show that the field arithmetic for p ≡ 3 mod 4 from [5, Case
pk = 4] can be used for XTR without significant loss of efficiency compared to
p ≡ 2 mod 3. The subgroup Gp+1 is not relevant for XTR, but it is the subgroup
on which LUC is based. We show that it yields some extra computational benefits
that are, however, still not competitive with LUC.

We first discuss the field arithmetic for p ≡ 2 mod 3 in general and then focus
on the subgroup. The case p ≡ 3 mod 4 is dealt with similarly, first the field
arithmetic and then the subgroup arithmetic. Suitable exponentiation routines
that apply to either case conclude this section.

3.1 Field Representation for p ≡ 2 mod 3

3.11 Field arithmetic. Let p and q be primes with p ≡ 2 mod 3 and q|p + 1.
Then p generates Z∗

3 and Φ3(x) = x2 + x + 1|x3 − 1 is irreducible in Fp. Let γ
denote a root of Φ3(x), then γn = γ(nmod3) and in particular γp = γ2. Hence
Γ = (γ, γ2) is an optimal normal basis of Fp2 over Fp. Using Γ instead of
(1, γ) leads to slightly fewer additions than the basis (1, γ) discussed in [5, Case
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p = 3]. The following lemma is easily implied by the formulas from [13, Section
2.1] (cf. [13, Lemma 2.1.1], [22, Lemma 2.2], and [5, Case p = 3]).

Lemma 3.12 Let a, b, c ∈ Fp2 with p ≡ 2 mod 3.
i. Computing ap is free.
ii. Computing a2 costs 2M + 2D + 3A1.
iii. Computing ab costs 3M + 2D + 2A1 + 2A2.
iv. Computing ac− bcp costs 4M + 2D + 6A1 + 2A2.

3.13 Subgroup arithmetic. Because xp+1 = 1 for x ∈ Gp+1, we find that
inversion in Gp+1 is equivalent to p-th powering and thus for free. Let a = a0γ +
a1γ

2 with a0, a1 ∈ Fp, so a ∈ Fp2 . Then a ∈ Gp+1 if and only if ap+1 = ap ·a = 1,
i.e., (a1γ + a0γ

2)(a0γ + a1γ
2) = 1. This is equivalent to a2

0 − a0a1 + a2
1 = 1, so

that Gp+1-membership testing costs M + S + D + A1 + A2 plus a comparison
with one. This relation can also be exploited to speed up squaring in Gp+1, since
the value of a0a1 follows from a2

0 and a2
1 using only a handful of additions. More

specifically, a2 = (2−2a2
0−a2

1)γ+(2−a2
0−2a2

1)γ
2, which costs 2S+2D+2A1+3A2.

Free inversion in Gp+1 also results in an advantage for simultaneous compu-
tation of ab and ab−1 for a ∈ Fp2 and b ∈ Gp+1: since there are only four possible
combinations aibj , four multiplications suffice.

Lemma 3.14 Let Gp+1 be the order p + 1 subgroup of F∗
p2 with p ≡ 2 mod 3

and let a = a0γ + a1γ
2 ∈ Fp2 with Φ3(γ) = 0.

i. The element a is in Fp if and only if a0 = a1.
ii. The element a is in Gp+1 if and only if a2

0 − a0a1 + a2
1 = 1. Testing this

costs M + S + D + A1 + A2.
iii. Computing a−1 for a ∈ Gp+1 is free.
iv. Computing a2 for a ∈ Gp+1 costs 2S + 2D + 2A1 + 3A2.
v. Computing ab and ab−1 for b ∈ Gp+1 costs 4M + 4D + 6 min(A1, A2).

3.2 Field Representation for p ≡ 3 mod 4

3.21 Field arithmetic. Let p and q be primes with p ≡ 3 mod 4 and q|p + 1.
Then p generates Z∗

4 and Φ4(x) = x2 + 1 is irreducible in Fp. Let γ denote a
root of Φ4(x), then Γ = (1, γ) is a basis of Fp2 over Fp. (Since γ2 = −1 the
basis (γ, γ2) looks contrived and leads to slightly more complicated reductions.)
This field representation is identical to [5, Case pk = 4], although the number of
additions in our cost functions is slightly different.

Let a ∈ Fp2 be represented by (a0, a1) ∈ (Fp)2, i.e., a = Γ · (a0, a1)T =
a0 + a1γ. From γn = γ(nmod4) and thus γp = γ3 = −γ it follows that ap =
ap
0 + ap

1γ
p = a0 − a1γ so that p-th powering costs a modular negation. The

cost of multiplication is 3M + 2D + 2A1 + 3A2 since ab = a0b0 − a1b1 + ((a0 +
a1)(b0 + b1) − a0b0 − a1b1)γ. The cost of squaring is 2M + 2D + 2A1 since
a2 = (a0 +a1)(a0−a1)+2a0a1γ. The cost of computing ac− bcp for a, b, c ∈ Fp2

is 4M +2D+2A1 +2A2 since ac−bcp = (b0 +a0)c0 +(b1−a1)c1 +((a1−b1)c0 +
(a0 + b0)c1)γ. By analogy with Lemma 3.12 we get the following.
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Lemma 3.22 Let a, b, c ∈ Fp2 with p ≡ 3 mod 4.
i. Computing ap costs A1.
ii. Computing a2 costs 2M + 2D + 2A1.
iii. Computing ab costs 3M + 2D + 2A1 + 3A2.
iv. Computing ac− bcp costs 4M + 2D + 2A1 + 2A2.

It follows from Lemmas 3.12 and 3.22 and [13] that XTR can be generalized to
p ≡ 3 mod 4 without loss of efficiency compared to p ≡ 2 mod 3 as in [13].

3.23 Subgroup arithmetic. As in 3.13, inversion in Gp+1 is equivalent to p-th
powering; it costs A1. Let a = a0 + a1γ with a0, a1 ∈ Fp, so a ∈ Fp2 . Then
a ∈ Gp+1 if and only if ap+1 = ap · a = 1, i.e., (a0 − a1γ)(a0 + a1γ) = 1 which is
equivalent to a2

0 + a2
1 = 1. So, Gp+1-membership testing costs 2S + D + A2. It

also follows that a2 = 2a2
0 − 1 + ((a0 + a1)2 − 1)γ for a ∈ Gp+1, which implies

that squaring in Gp+1 can be done faster than in Fp2 .

Lemma 3.24 Let Gp+1 be the order p + 1 subgroup of F∗
p2 with p ≡ 3 mod 4

and let a = a0 + a1γ ∈ Fp2 with Φ4(γ) = 0.
i. The element a is in Fp if and only if a1 = 0.
ii. The element a is in Gp+1 if and only if a2

0 + a2
1 = 1. Testing this costs

2S + D + A2.
iii. If a ∈ Gp+1, then computing a−1 costs A1.
iv. If a ∈ Gp+1, then computing a2 costs 2S + 2D + A1.
v. Computing ab and ab−1 for b ∈ Gp+1 costs 4M + 4D + 6 min(A1, A2).

3.3 Subgroup Exponentiation

For a single exponentiation we have to compute am, where m has roughly the
same bitlength k as q. With signed flexible windows [4] of size 5, this requires
about k + 1 squarings and 7 + k/6 multiplications in Gq. With Lemmas 3.14.iv
and 3.24.iv the squaring cost is ≈ (3S + 2D)(k + 1) and with Lemmas 3.12.iii
and 3.22.iii the multiplication cost is ≈ (3M +2D)(7+k/6). Under the assump-
tion that M ≈ D and S ≈ 0.3M the resulting number of Fp-multiplications is
19.1 for the precomputation plus 2.0 per exponent bit.

For double exponentiation we have to compute ambn for m and n of roughly
equal size and with m as above. This can be computed using Solinas’ trick [21,
See also Appendix A], resulting in k squarings and k/2 multiplications in Gq.
With Gq-arithmetic as above, this becomes (2S+2D)k + (3M +2D)k/2 ≈ 2.85k
multiplications in Fp. The precomputation of ab and ab−1 uses Lemmas 3.14.v
and 3.24.v. Combination of these observations leads to the following theorem.

Theorem 3.31 Let p and q be primes with q|p+1, p ≡ 2 mod 3 or p ≡ 3 mod 4,
and 
log2 q� = k. Let a, b be in the order q subgroup Gq of F∗

p2 and m, n ∈ (0, q).
Assuming that M ≈ D and S ≈ 0.3M ,

i. computing am costs on average 19.1 + 2k multiplications in Fp, and
ii. computing ambn costs on average 4 + 2.85k multiplications in Fp.
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These results improve previously reported ones, but the resulting exponentia-
tions are less efficient than the LUC exponentiations. So, even though we have
several related results concerning improved key selection and other choices of p,
we leave the subject of quadratic extensions and move on to sixth degree exten-
sions because there our methods appear to have a more substantial impact.

4 Sixth Degree Extension

In this section fast exponentiation routines for the group Gp2−p+1 ⊂ F∗
p6 with p ≡

2 mod 9 are described. Let f be a sixth degree irreducible polynomial over some
ground field, with root γ. Consider the extension induced by γ and represented by
a polynomial basis consisting of six consecutive powers of γ, such as (1, γ, . . . , γ5)
or (γ, γ2, . . . , γ6). The cost of computation in this representation depends on the
general question of how many ground field multiplications are needed to multiply
two degree five polynomials, and on the specific question of what f looks like.
Therefore, a short word on the multiplication of fifth degree polynomials in
general, before going into details about the field representation and the benefits
the group offers. These results are then used in the subsequent exponentiation
routines. We conclude this section with an improved key selection method.

4.1 Multiplication of Fifth Degree Polynomials

Multiplication of two polynomials of degree five can be done in 18 multiplications
plus a handful of additions [2,5]. Indeed, let G(x) =

∑5
i=0 gix

i and H(x) =
∑5

i=0 hix
i be two fifth degree polynomials. Write G = G0 + G1x

3 and H =
H0 + H1x

3 where G0, G1, H0, and H1 are second degree polynomials. Then

GH = G0H0 + (G0H1 + G1H0)x3 + G1H1x
6,

so that, with C0 = G0H0, C1 = G1H1, and C2 = (G0−G1)(H0−H1), it follows
that

GH = C0 + (C0 + C1 − C2)x3 + C1x
6. (1)

Each of the Ci can be computed using 6 multiplications in the ground field. For
example, because G0 = g0 + g1x + g2x

2 and H0 = h0 + h1x + h2x
2,

C0 = g0h0+(g1h0+g0h1)x+(g2h0+g1h1+g0h2)x2+(g2h1+g1h2)x3+(g2h2)x4,

so that, with c0 = g0h0, c1 = g1h1, c2 = g2h2, c3 = (g0 − g1)(h0 − h1), c4 =
(g0 − g2)(h0 − h2), and c5 = (g1 − g2)(h1 − h2), we have that

C0 = c0 + (c0 + c1 − c3)x + (c0 + c1 + c2 − c4)x2 + (c1 + c2 − c5)x3 + c2x
4.

With similar expressions for C1 and C2 it follows that 18 ground field multipli-
cations (or squarings) suffice to compute the product GH (or the square G2).
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If the gi and hi are l-bit numbers, and one is interested in an (unreduced)
product with 2l-bit or sligthly larger coefficients, then computing C0 costs 6M +
6A1 + 7A2 and the cost of computing GH as in (1) is 18M + 24A1 + 21A2.

It remains to reduce GH modulo f , at a cost depending on f . This is discussed
in the remainder of this section for several ground fields Fp. In that case the
resulting coefficients must be reduced modulo p at a cost of 6D for l-bit p.

4.2 Field Representation for p ≡ 2 mod 9

4.21 Field arithmetic. Let p be prime with p ≡ 2 mod 9. Then p generates
Z∗

9 and Φ9(x) = x6 + x3 + 1 is irreducible in Fp. Let γ denote a root of Φ9(x),
then Γ = (γ, γ2, . . . , γ6) is a basis for Fp6 over Fp (in [5, Case pk = 9] the similar
basis (1, γ, . . . , γ5) is used).

Let a =
∑5

i=0 aiγ
i+1 ∈ Fp6 . From γn = γnmod9 and thus γp = γ2 it fol-

lows with Φ9(γ) = 0 that ap = a4γ + (a0 − a3)γ2 + a5γ
3 + a1γ

4 − a3γ
5 + a2γ

6.
Thus, p-th powering costs A1. In a similar way it follows that p3-th powering
costs 2A1. For multiplication in Fp6 the method from Section 4.1 is used, with
proper adjustment of the powers of x, e.g., G = G0x + G1x

4. It follows with
straightforward bookkeeping that collecting corresponding powers of x in Rela-
tion (1) combined with the modular reductions costs 12A2 + 6D. (For the basis
(1, γ, . . . , γ5) we find that the collecting phase costs 14A2, which slightly im-
proves the 18A2 reported in [5].) With Section 4.1 it follows that multiplication
can be done for 18M + 6D + 24A1 + 33A2. Doing more elaborate collecting re-
duces the 33A2 to 29A2. Squaring follows by replacing 18M by 18S, but it can
be done substantially faster by observing that

G2 = (G0γ + G1γ
4)2 = (G0 −G1)(G0 + G1)γ2 + (2G0 −G1)G1γ

5,

with G0, G1 ∈ Fp[γ] of degree two. Computing this costs 9A1 for the preparation
of the multiplicands, two polynomial multiplications costing 6M + 6A1 + 7A2
each, 7A2 for the collection, and 6D for the final reductions. It follows that
squaring can be done for 12M + 6D + 21A1 + 21A2. (This is A2 more than
reported in [5] for (1, γ, . . . , γ5).)

Lemma 4.22 Let a, b ∈ Fp6 with p ≡ 2 mod 9.
i. Computing ap or ap5

costs A1.
ii. Computing ap2

, ap3
, or ap4

costs 2A1.
iii. Computing a2 costs 12M + 6D + 21A1 + 21A2.
iv. Computing ab costs 18M + 6D + 24A1 + 29A2.

4.23 Subgroup arithmetic. Let a =
∑5

i=0 aiγ
i+1 ∈ Fp6 . Membership of one

of the three proper subfields of Fp6 is characterized by one of the equations api

=
a for i = 1, 2, 3. Specifically, a ∈ Fp if and only if ap = a which is equivalent to the
system of linear equations (a0, a1, a2, a3, a4, a5) = (a4, a0 − a3, a5, a1,−a3, a2).
The solution a0 = a1 = a3 = a4 = 0 and a2 = a5 is not surprising since
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1 + γ3 + γ6 = 0, so an element c ∈ Fp takes the form −cγ3 − cγ6. Similarly,
a ∈ Fp2 if and only if ap2

= a, which is equivalent to a = a2γ
3+a5γ

6, and a ∈ Fp3

if and only if ap3
= a or a = (a3−a4)γ+(−a3+a4)γ2+a5γ

3+a3γ
4+a4γ

5+a5γ
6.

More interesting for cryptographic purposes is the order p2− p + 1 subgroup
Gp2−p+1 of F∗

p6 , because that subgroup cannot be embedded in a true subfield

of Fp6 . The Gp2−p+1-membership condition ap2−p+1 = 1 is equivalent to ap2
a =

ap, which can be verified at a cost of, essentially, a single Fp6-multiplication.
From ap3

= a−1 it follows that inversion in Gp2−p+1 costs 2A1.
Computing ap2

a− ap =
∑5

i=0 viγ
i+1 symbolically produces

v0 = a2
1 − a0a2 − a4 − a2

4 + a3a5,
v1 = −a0 + a1a2 + a3 − 2a0a3 + a2

3 − a2a4 − a1a5,
v2 = −a0a1 + a3a4 − a5 − 2a2a5 + a2

5,
v3 = −a1 − a2a3 + 2a1a4 − a2

4 − a0a5 + a3a5,
v4 = a2

0 + a1a2 + a3 − 2a0a3 − a4a5,
v5 = −a2 + a2

2 − a1a3 − a0a4 + a3a4 − 2a2a5.

(2)

If a ∈ Gp2−p+1, then vi = 0 for 0 ≤ i < 6 and the resulting six relations
can be used to significantly reduce the cost of squaring in Gp2−p+1. Let V =
(v0, v1, . . . , v5) be the vector consisting of the vi’s. Then for any 6×6-matrix M ,
we have that a2 + Γ · (M · V T ) = a2 if a ∈ Gp2−p+1, because in that case V
is the all-zero vector. Carrying out this computation symbolically, involving the
expressions for the vi’s for a particular choice of M yields the following:

a2 = a2 + 2Γ ·






0 0 0 −1 0 0
0 −1 0 0 1 0
0 0 1 0 0 0
1 0 0 −1 0 0
0 −1 0 0 0 0
0 0 0 0 0 1






· V T = Γ ·






2a1 + 3a4(a4 − 2a1)
2a0 + 3(a0 + a3)(a0 − a3)
−2a5 + 3a5(a5 − 2a2)

2(a1 − a4) + 3a1(a1 − 2a4)
2(a0 − a3) + 3a3(2a0 − a3)
−2a2 + 3a2(a2 − 2a5)






.

(3)

Given that we are working over a sixth degree extension, the six multiplications
and reductions required for (3) seem optimal. The additions can be taken care
of in several ways; a reasonable solution results in 6M + 6D + 9A1 + 12A2.

Lemma 4.24 Let Gp2−p+1 be the order p2 − p + 1 subgroup of F∗
p6 with p ≡

2 mod 9 and let a = a0γ + a1γ
2 + · · ·+ a5γ

6 ∈ Fp6 with Φ9(γ) = 0.
i. The element a is in Fp if and only if a = a2γ

3 + a2γ
6.

ii. The element a is in Fp2 if and only if a = a2γ
3 + a5γ

6.
iii. The element a is in Fp3 if and only if

a = (a3 − a4)γ + (−a3 + a4)γ2 + a5γ
3 + a3γ

4 + a4γ
5 + a5γ

6.
iv. The element a is in Gp2−p+1 if and only if in relations (2) vi = 0 for

0 ≤ i < 6. This can be checked at a cost of essentially 18M + 6D.
v. Computing a−1 for a ∈ Gp2−p+1 costs 2A1.
vi. Computing a2 for a ∈ Gp2−p+1 costs 6M + 6D + 9A1 + 12A2.
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4.3 Subgroup Exponentiation

For a single exponentiation we have to compute am, where m has roughly the
same bitlength k as q. For the case q|p2−p+1 it is shown in [22, Section 4.4] that
m can quickly be written as m ≡ m1 + m2p mod q with m1 and m2 of bitlength
k/2. Hence am can be rewritten as am1(ap)m2 . This can be computed using
Solinas’ trick [21] at the cost of k/2 squarings and k/4 multiplications in Gq.
Tanja Lange pointed out to us that the precomputation only requires one group
multiplication, since apa−1 = ap2

. With Lemmas 4.24.vi and 4.22.iv the squar-
ing and multiplication costs become ≈ (6M + 6D)k/2 and ≈ (18M + 6D)k/4,
respectively. Assuming that M ≈ D this results in six Fp-multiplications per
exponent bit.

A double exponentiation ambn, with log m ≈ log n and m as above, can
be rewritten as am1(ap)m2bn1(bp)n2 with ≈ k/2-bit m1, m2, n1, and n2. This
quadruple exponentiation can be computed using Solinas’ trick simultaneously
on two pairs of two exponents (paired in any way), resulting in a total of k/2
squarings and twice k/4 multiplications. With Lemmas 4.24.vi and 4.22.iv this
becomes (6M + 6D)k/2 + 2(18M + 6D)k/4 ≈ 9k multiplications in Fp. Com-
bination of these obeservations leads to the following theorem.

Theorem 4.31 Let p and q be primes with q|p2 − p + 1, p ≡ 2 mod 9, and

log2 q� = k. Let a, b be in the order q subgroup Gq of F∗

p6 and m, n ∈ (0, q).
Assuming that M ≈ D,

i. computing am costs on average 6 + 6k multiplications in Fp, and
ii. computing ambn costs on average 12 + 9k multiplications in Fp.

The cost of this Fp6-exponentiation is comparable to XTR, cf. Section 5.

4.4 Key Selection

We elaborate on the improved key selection mentioned in Section 2.42 and similar
to [12, Algorithm 4.5]. With f ∈ Fp and hf = (γ + f)(p

6−1)/Φ6(p) it follows that
hf (γ + f)(γ + f)p = (γ + f)p3

(γ + f)p4
. Solving this equation for the coefficients

of hf gives

hf =
Γ

f6 − f3 + 1
·






−f + f2 + 3f3 − f4 − 2f5

−f − 2f2 + 3f3 + 2f4 − 2f5

(1− f2)3

f − f2 + f4 − f5

f − f2 + f4 − f5

−f3(1− 3f + f3)






. (4)

This gives h1/2 = 1
19 (0,−12, 9, 6, 6, 1) and h2 = − 3

19 (6, 2, 3, 2, 2, 8/3).
Given either h ∈ GΦd(p), compute g = h(p2−p+1)/q using [4] and Lem-

mas 4.24.vi and 4.22.iv. Assuming that p is only slightly larger in size than q
this takes 8 log p + 90 ground field multiplications (note that Theorem 4.31 does
not apply). The resulting g generates Gq unless g = 1. The probability of failure
may be expected to be q−1, independently for each h. This is negligible.
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Remark 4.41 Our methods work, and result in identical runtimes, as long as
p mod 9 generates Z∗

9. Since φ(φ(9)) = 2, the only other case is p ≡ 5 mod 9.
Several other choices of p can be handled in a similar fashion.

5 Timings

All methods were implemented to verify their correctness and runtime charac-
teristics. The table below summarizes runtimes for Gq ⊂ Gp2−p+1 ⊂ F∗

p6 for
170-bit p and q, and compares them to the XTR timings from [13,22]. They are
in milliseconds on a 600 MHz Pentium III NT laptop, averaged over 100 random
p, q pairs and 100 exponentiations per pair. The timings confirm that our new
methods for Fp6-subgroup exponentiation are superior to the original XTR and
almost competitive with the faster version of XTR from [22]. This shows that the
main reason to use XTR would no longer be its speed, but mostly its compact
— and sometimes inconvenient — representation.

Table 1. XTR and Gq ⊂ Gp2−p+1 runtimes.

XTR in [13] XTR in [22] Gq

key generation 64 ms 62 ms 85 ms
single exponentiation 10 ms 7.4 ms 8.9 ms
double exponentiation 21 ms 8.6 ms 13 ms
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24. J. von zur Gathen and M. Nöcker. Exponentiation in finite fields: theory and
practice. In T. Mora and H. Mattson, editors, AAECC-12, volume 1255 of Lecture
Notes in Computer Science, pages 88–133. Springer-Verlag, 1997.

A Solinas’ Trick

We briefly discuss Solinas’ trick for performing a double exponentiation gahb in
a group where inversion is cheap. This naturally occurs in the context of elliptic
curve cryptography, and also applies to the groups Gq as discussed in this paper.

Let g be a group element and a some exponent. Let the binary expansion
of a be

∑k
i=0 ai2i where all ai ∈ {0, 1}. On average, half of the ai’s will be

nonzero, hence the square-and-multiply method requires k squarings and k/2
multiplications.

If inversion, i.e., the computation of g−1 is cheap, single exponentiation can
be sped up by using a signed digit representation for the exponent. Once again,
write a =

∑k
i=0 ai2i, but relax the condition on the ai to ai ∈ {−1, 0, 1}. The

representation is no longer unique, but the non-adjacent form (NAF) is. On
average, only a third of the ai’s of the NAF will be nonzero. This improves the
square-and-multiply method to k squarings and k/3 multiplications.

A double exponentiation, i.e., the computation of gahb for given group ele-
ments g and h and exponents a and b, can be performed faster than two separate
exponentiations using Shamir’s trick. If a =

∑k
i=0 ai2i and b =

∑k
i=0 bi2i with

all ai, bi ∈ {0, 1}, switching to a vector notation c = (ab)T and ci = (aibi)T leads
to c =

∑k
i=0 ci2

i, where ci ∈ {
(0
0

)
,
(0
1

)
,
(1
0

)
,
(1
1

)}. Assuming a and b to be indepen-
dent, about three quarter of the columns ci will be nonzero. By precomputing
the value gh corresponding to ci =

(1
1

)
this yields a runtime of k squarings and

3k/4 multiplications for the square-and-multiply method.
If inversion is for free, one could consider combining the NAF with Shamir’s

trick. Given two random exponents, each having a NAF of length about k and
an expected number of 2k/3 zeroes, on average in 4

9 of the positions both ai

and bi be zero. This leaves 5
9k nonzero ci’s, resulting in an improvement of the

square-and-multiply method to k squarings and 5k/9 multiplications.
In [21], Solinas noted that computing the NAF’s independent of each other

might not be optimal to minimize the number of nonzero ci’s. As an alternative,
the joint sparse form is proposed, that satisfies the following properties:

1. There are at most two consecutive nonzero columns.
2. Adjacent terms do not have opposite sign, i.e., aiai+1 �= −1 and bibi+1 �= −1

for all i.
3. If aiai+1 = 1, then bi = 0 and bi+1 = ±1. Similarly for bibi+1 = 1.

An efficient algorithm is given in [21] that computes the Joint Sparse Form and
it is proven that on average, half of the resulting columns ci will be nonzero.
The running time of the square-and-multiply method thus becomes k squarings
and k/2 multiplications.
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Abstract. We present a variant of the complex multiplication method
that generates elliptic curves of cryptographically strong order. Our vari-
ant is based on the computation of Weber polynomials that require signif-
icantly less time and space resources than their Hilbert counterparts. We
investigate the time efficiency and precision requirements for generating
off-line Weber polynomials and its comparison to another variant based
on the off-line generation of Hilbert polynomials. We also investigate the
efficiency of our variant when the computation of Weber polynomials
should be made on-line due to limitations in resources (e.g., hardware
devices of limited space). We present trade-offs that could be useful to po-
tential implementors of elliptic curve cryptosystems on resource-limited
hardware devices.

1 Introduction

Elliptic curve cryptography constitutes a fundamental and efficient technology
for public key cryptosystems. One of the most important problems in elliptic
curve cryptography is the generation of cryptographically secure elliptic curves
over prime fields. One method to achieve this is by repeated applications of point
counting [4]: select an elliptic curve (EC) at random, count its order (number of
rational points on the curve), and check whether the order is suitable, that is, it
satisfies certain conditions that guarantee cryptographic strength (i.e., resistance
to known attacks). Unfortunately, this method can be extremely slow.

An alternative method which generates ECs of a suitable order is the Com-
plex Multiplication (CM) method [1]. This method first determines a suitable
order and then constructs an EC of that order. The input to the method is
a prime p (representing the order of the prime field) from which the so-called
CM discriminant D is computed. The EC is generated by constructing certain
polynomials based on D and finding their roots.
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There are two variations of Complex Multiplication, depending on whether
Hilbert or Weber polynomials are used (see Section 4), that have two main
differences: (i) Hilbert polynomials can have huge coefficients as the discriminant
D increases, while for the same discriminant the Weber polynomials have much
smaller coefficients and thus are easier to construct; (ii) the roots of the Hilbert
polynomial construct directly the EC, while the roots of the Weber polynomial
have to be transformed to the roots of its corresponding Hilbert polynomial to
construct the EC.

When one considers hardware implementations of the CM method on em-
bedded systems, one problem that immediately arises is that the Hilbert poly-
nomials require high-precision floating point and complex arithmetic (i.e., large
registers and floating point units) for their construction and storage. Thus, the
Hilbert polynomials do not seem appropriate for hardware implementation that
generates them on-line.

To alleviate this shortcoming of Hilbert polynomials, a variant of the CM
method was recently proposed in [16] that turns out to be rather efficient. This
variant takes as input the discriminant D and then computes the prime field’s
order p and the orderm of the EC. The only condition for cryptographic strength
posed on m is that it should be prime. Since Hilbert polynomials depend only
on D, they can be precomputed off-line (for various values of D) and stored for
subsequent use. Thus, if one wants to build an EC of a specific order (ensuring
cryptographic strength) for a certain value of D, then one could simply index
the stored Hilbert polynomial using D and, if succeeds in finding the desired
curve’s order, proceed with the next steps of the CM method.

Although the above variant tackles adequately the efficient construction of
ECs, there may still be problems with storing and handling several Hilbert poly-
nomials with huge coefficients on hardware devices (e.g., microcontroller chips)
with limited resources. Since in such devices the size of floating-point units and
the available memory for data and code are limited, it is desirable to keep their
sizes as low as possible. It is perhaps because of this reason that (to the best of
our knowledge) the vast majority of language tools developed for such hardware
devices are based on ANSI C.

In this paper, we further investigate the space and time efficiency of the CM
method by shifting our attention to the Weber polynomials. We present another
variant of the CM method, similar to the one given in [16], that uses Weber
polynomials. Our variant takes also as input the discriminant D, but selects the
field’s order p at random (or selects it from a set of prescribed primes) and sub-
sequently computes the curve order m using a different method, requesting that
m (is not necessarily prime but it) should satisfy the suitability conditions given
in [4, Sec. V.7] for cryptographic strength. We have implemented our variant in
ANSI C using the (ANSI C) library GNUMP [7]. Based on this implementation,
we have conducted an experimental study over a large number of ECs investigat-
ing the precision requirements for the off-line generation of Weber polynomials
in comparison with the generation of the corresponding Hilbert polynomials.
We were also interested in investigating the efficiency of our variant that uses
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precomputed Weber polynomials in comparison to the variant in [16] that uses
precomputed Hilbert polynomials, and the efficiency of our variant when con-
structing Weber polynomials on-line. The latter is of particular importance in
space-limited hardware systems.

Our experiments showed that for a wide range of discriminants and polyno-
mial degrees the construction of Weber polynomials requires significantly less
time and precision than that required for the construction of the Hilbert poly-
nomials. The experiments revealed a trade-off between the two CM variants
depending on the values of D, the polynomial degree h, and the space availabil-
ity of the hardware environment on which the CM method will be implemented.
In particular, our experiments showed that, for several values of D and rela-
tively small values of h, our CM implementation requires many fewer iterations
in order to find a suitable curve order m and its time efficiency compares fa-
vorably with that reported in [16]. When both h and D are getting relatively
large, however, our variant becomes less time efficient than the CM variant in
[16] (mainly because of the different method for computing m and finding the
roots of polynomials). Hence, if there is sufficient space availability for storing
either type of precomputed polynomials, the CM variant in [16] seems beneficial
for large values of D and h, while ours is better for smaller values of h. On the
other hand, if there are space constraints, the storage of Hilbert polynomials
for large values of D and h may not be possible. Our experiments showed that,
for several values of D and relatively small values of h, the time of our CM
implementation for generating an EC of a suitable order by computing on-line
the Weber polynomials compares favorably with the time the CM variant in [16]
takes to generate ECs of prime order using precomputed Hilbert polynomials.
Since a small value of h does not necessarily imply a compromise in security,
the on-line construction of Weber polynomials could be used in such cases as
an alternative to the off-line construction of Hilbert polynomials. Even in the
case where a larger value of h is required, it would be more space-efficient to
precompute and store the Weber polynomials for the requested large values of
h and compute on-line the Weber polynomials for the smaller values of h.

The rest of the paper is organized as follows. In Section 2, we state briefly
some basic definitions and results from elliptic curve theory. In Section 3, we
present the basic CM method and our variant, while in Section 4 we describe
the construction of the Hilbert and the Weber polynomials, along with some
examples aiming at the explanation of their computational requirements. In
Section 5 we discuss some implementation related issues, while in Section 6 we
discuss our experimental results. We conclude in Section 7.

2 Preliminaries of Elliptic Curve Theory

In this section we review some basic concepts regarding elliptic curves and their
definition over finite fields. The interested reader may find additional information
in e.g., [4,21]. We also assume familiarity with elementary number theory (see
e.g., [5]).
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An elliptic curve E(Fp) over a finite field Fp, where p > 3 and prime, is the
set of points (x, y) ∈ Fp (represented by affine coordinates) which satisfy the
equation

y2 = x3 + ax+ b (1)

and a, b ∈ Fp are such that 4a3 + 27b2 �= 0. The set of solutions (x, y) of Eq. (1)
together with a point O, called the point at infinity, and a special addition
operation define an Abelian group, called the Elliptic Curve group. The point O
acts as the identity element (details on how the addition is defined can be found
in e.g., [4,21]).

The order m of an elliptic curve is the number of the points in E(Fp). The
expression t = p+1−m (which measures the difference betweenm and p) is called
the Frobenius trace t. Hasse’s theorem (see e.g., [4,21]) states that |t| ≤ 2

√
p

which gives upper and lower bounds for m based on p:

p+ 1− 2
√
p ≤ m ≤ p+ 1 + 2

√
p. (2)

The order of a point P is the smallest positive integer n for which nP = O.
Application of Langrange’s theorem (see e.g., [5]) on E(Fp), gives that the order
of a point P ∈ E(Fp) always divides the order of the elliptic curve group, so
mP = O for any point P ∈ E(Fp), which in turn implies that the order of a
point cannot exceed the order of the elliptic curve.

Two important quantities associated with E(Fp) are the curve discriminant
∆ and the j-invariant, defined by

∆ = −16(4a3 + 27b2) (3)

and

j =
−1728(4a)3

∆
(4)

Given a j-invariant j0 ∈ Fp (j0 �= 0, 1728), two elliptic curves can be easily
constructed. The first EC is of the form defined by Eq. (1) and can be constructed
by setting a = 3k mod p, b = 2k mod p, where k = j0

1728−j0
mod p. The second

EC, called the twist of the first, is defined as

y2 = x3 + ac2x+ bc3 (5)

where c is any quadratic non-residue in Fp. If m1 is the order of an EC and
m2 is the order of its twist, then m1 +m2 = 2p+ 2, i.e., if one curve has order
p+ 1− t, then its twist has order p+ 1 + t, or vice versa [4, Lemma VIII.3].

The security of elliptic curve cryptosystems is based on the difficulty of
solving the discrete logarithm problem (DLP) on the EC group. To ensure in-
tractability of solving this problem by all known attacks, the group order m
should obey the following conditions:

1. m must have a sufficiently large prime factor (greater than 2160).
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2. m must not be equal to p.
3. For all 1 ≤ k ≤ 20, it should hold that pk �≡ 1 (mod m).

The first condition excludes the application of type of methods like the Pohlig-
Hellman [14] one to solve DLP, the second condition excludes the application
of the anomalous attack [15,20,22], while the third condition excludes the MOV
attack [12]. If the order of an EC group satisfies the above conditions, we shall
call it suitable.

3 The Complex Multiplication Method and Our Variant

The theory of complex multiplication (CM) of elliptic curves over the rationals
can be used to generate elliptic curves of a suitable order m, resulting in the so-
called CM method. The CM method computes j-invariants from which is then
easy to construct the EC. The method is based on the following idea (for more
details see [4,8]).

Hasse’s theorem implies that Z = 4p− (p+ 1−m)2 is positive. This in turn
implies that there is a unique factorization Z = Dv2, where D is a square free
positive integer. Consequently,

4p = u2 +Dv2 (6)

for some integer u satisfying

m = p+ 1± u (7)

D is called a CM discriminant for the prime p and the elliptic curve has a CM by
D. The CM method uses D in order to determine the j-invariant and constructs
an EC of order p+ 1− u or p+ 1 + u.

The method starts with a prime p and then chooses the smallestD along with
an integer u to satisfy Eq. (6). Then, checks whether p+1−u and/or p+1+u is
suitable. If neither is suitable, the process is repeated. Otherwise, the so-called
Hilbert polynomials (see Section 4) have to be constructed (based on D) and
their roots have to be found. A root of the Hilbert polynomial is the j-invariant
we are seeking. The EC and its twist are then constructed as explained in Section
2. Since only one of the ECs has the required suitable order, the particular one
can be found using Langrange’s theorem by picking random points P in each
EC until a point is found in some curve for which mP �= O. Then, the other
curve is the one we are seeking.

A major problem of the CM method is the construction of the Hilbert poly-
nomials which require high precision floating point and complex arithmetic that
makes their computation very expensive.

To overcome this problem, a variant of the CM method was proposed in
[16]. It takes as input a CM discriminant D (D ≡ 3 (mod 4)), and subsequently
calculates p and m, where the only condition posed on m is that it should be a
prime. The prime p is found by first picking randomly u and v of appropriate
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sizes, and then checking if (u2 + Dv2)/4 is prime. An important aspect of the
variant concerns the computation of the Hilbert polynomials: since they depend
only on D (and not on p), they can be constructed in a preprocessing phase and
stored for later use. Hence, the burden of their construction is excluded from the
generation of the EC.

In the rest of the section, we shall describe an alternative to the variant of
[16] with which some similarities are shared: our variant takes also as input a
CM discriminant D, and then computes p andm. The differences are that it uses
Weber instead of Hilbert polynomials, selects p at random (or selects it from a set
of prescribed primes), computes u and v in a different way (using Cornacchia’s
algorithm [6]), and requires m to be suitable (cf. Section 2). Actually, the order
m of the elliptic curves that we generate is of the form m = nq, where n is a
small integer and q is a large prime (larger than 2160). Weber polynomials is
the default choice of our variant, since they require much less precision and, as
our experiments show, result in much more efficient computation of ECs. (We
would like to mention that Hilbert polynomials can be equally used as well.) The
polynomials, like in [16], are also constructed in a preprocessing phase.

In the following, we shall give the main steps of our variant. In order to
facilitate the discussion of the experiments in Section 6, we will include also the
choice of Hilbert polynomials in the description.

Preprocessing Phase.
1. Choose a discriminant D ≡ 0 or 3 (mod 4) and D �≡ 3 (mod 8). In the

following section we will explain why this limitation is necessary.
2. Construct the Weber (or the Hilbert) polynomial using the discriminant D.

Main Phase.
3. Produce randomly (or select) a prime p and check whether Eq. (6) has a

solution (u, v), where u, v are integers, using Cornacchia’s algorithm [6]. This
algorithm solves a slightly different form, namely the equation p = x2+dy2,
but it is easy to convert Eq. (6) into this form. If a solution (u, v) is found,
then proceed with the next step. Otherwise, another prime p is chosen and
the step is repeated. The prime number p is going to be the order of the
underlying finite field Fp.

4. Having found a solution (u, v), the possible orders of the elliptic curve are
m = p+1−u and m = p+1+u. Check if (at least) one of them is suitable.
If none is suitable, then return to Step 3. Otherwise, m is the order of the
elliptic curve that we will generate and proceed to the next step.

5. Compute the roots (modulo p) of the Weber (or Hilbert) polynomial. This
is accomplished by using a slight modification of Berlekamp’s algorithm [2].
Transform the roots of the Weber polynomial (if it has been chosen) to the
roots of the corresponding Hilbert polynomial (constructed using the same
D).

6. Each (Hilbert) root computed in Step 5 represents a j-invariant. Construct
the two ECs as described in Section 2 (cf. Eq. (1) and (5)).

7. Determine which one of the two ECs is of a suitable order: repeatedly pick
random points P on each elliptic curve, until a point is found for which
mP �= O. Then, we are certain that the other curve is the one we seek.
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The most complicated part of the CM method is the construction of the
polynomials (Weber or Hilbert). This construction is presented in the following
section.

4 Construction of Hilbert and Weber Polynomials

In this section we shall elaborate more on the Hilbert and Weber polynomials
and discuss their strengths and limitations.

The CM discriminant D is the only input in the construction of Hilbert
and Weber polynomials, denoted by HD(x) and WD(x) respectively. They both
require complex and floating point arithmetic. The drawback of Hilbert poly-
nomials is that their coefficients can be huge and their construction demands
high precision. This implies that their construction can be very time consuming
and possibly impossible to be implemented in systems of limited memory or
with time constraints. Weber polynomials on the other hand, have much smaller
coefficients and therefore the precision that is needed for their construction is
not very high. In our code, we have implemented both polynomials and in the
following sections we present a comparison between them.

The Hilbert polynomial HD(x), for a given positive value of D, is defined as

HD(x) =
∏

τ

(x− j(τ)) (8)

for a set of values of τ given by the expression τ = (−β +
√−D)/2α, for all

integers α, β, and γ that satisfy the conditions: (i) β2 − 4αγ = −D, (ii) |β| ≤
α ≤ √D/3, and (iii) α ≤ γ, (iv) gcd(α, β, γ) = 1, and (v) if |β| = α or α = γ,
then β ≥ 0. We shall write HD[j](x) for HD(x) when we want to emphasize the
class invariant j(τ) in the construction of the polynomial.

Note that the pairs (α, β) that satisfy the above conditions are finite, which
in turn implies that the values of τ are finite and consequently the factors in the
Hilbert polynomial in Eq. (8). Let

z = e2π
√−1τ and h(τ) =

∆(2τ)
∆(τ)

(9)

where

∆(τ) = z



1 +
∑

n≥1

(−1)n
(
zn(3n−1)/2 + zn(3n+1)/2

)




24

. (10)

Then, the term j(τ) (the class invariant) is defined as

j(τ) =
(256h(τ) + 1)3

h(τ)
. (11)
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The method we followed for the construction of the Hilbert polynomials is
the one described in [4]. Let h be the degree or class number of HD(x). The
bit-precision required for the generation of the Hilbert polynomials (see [1,4]) is

H-Prec(D) = v0 +
(

h

�h/2�
)
π
√
D

ln 2

∑

τ

1
α

(12)

where the sum runs over the same values of τ as the product in Eq. (8) and
v0 is a positive constant that takes care of rounding errors (typically v0 = 33).
Clearly, H-Prec(D) can be rather high.

The above prohibitively large precision required for the computation of the
coefficients of Hilbert polynomials (even for moderate values ofD) can be circum-
vented by using the Weber polynomials which required much smaller precision
for the computation of their coefficients.

To define the Weber polynomial WD(x) we follow the approaches in [1,8].
Let α, β, γ be integers that satisfy the conditions: (i) β2 − αγ = −D, (ii)
|2β| ≤ α ≤ γ, (iii) gcd(α, 2β, γ) = 1, and (iv) if 2|β| = α or α = γ, then β ≥ 0.
Additionally, let θ = z−1 and F (z) = (∆(τ)/z)1/24 (where the complex number
z and the function ∆(τ) are those defined in Eq. (9) and (10)).

The construction of the polynomials is based on the so-called Weber functions
which are defined as follows:

f0(α, β, γ) = θ−1/24F (−θ)/F (θ2)
f1(α, β, γ) = θ−1/24F (θ)/F (θ2)

f2(α, β, γ) =
√
2 θ1/12F (θ4)/F (θ2)

For ease of notation, we shall occasionally drop in the following the arguments
α, β, γ from the Weber functions. Let

γ3 = (f240 + 8)(f81 − f82 )/f
8
0

Then, given D, the Weber polynomials are defined as follows:

1. If D �≡ 0 (mod 3) and D �≡ 3 (mod 8), then
a) If D ≡ 7 (mod 8), then WD(x) = H4D[f0/

√
2](x)

b) If D/4 ≡ 2 or 6 (mod 8), then WD(x) = HD[f1/
√
2](x)

c) If D/4 ≡ 5 (mod 8), then WD(x) = HD[f40 ](x)
d) If D/4 ≡ 1 (mod 8), then WD(x) = HD[f20 /

√
2](x)

2. If D ≡ 3 (mod 6), then WD(x) = HD[
√−Dγ3](x)

3. Otherwise, WD(x) = HD(x).

The above mathematical definition can be alternatively summarized by the
following equation given in [8], which actually helped us in the implementation
to easily construct the polynomials:

WD(x) =
∏

i

(x− C(αi, βi, γi)) (13)
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where αi, βi, γi satisfy the above mentioned conditions for α, β, γ, the values
of i run over all possible reduced symmetric matrices

(
αi βi

βi γi

)
which have D =

αiγi− β2i as a positive square-free determinant, and the function C is defined as

C(αi, βi, γi) =
[
N exp

(−π√−1KBL

24

)
2−I/6 (fJ(αi, βi, γi))

K

]G

where J ∈ {0, 1, 2}, G = gcd(D, 3), I,K ∈ [0, 6], and L,N are positive integers.
The precise values of these parameters depend on certain, rather tedious, condi-
tions among α, γ and D that encompass the various cases of the mathematical
definition of the Weber polynomials; the interested reader can find all the details
in [8].

The bit-precision required for the construction of the Weber polynomials (see
e.g., [23]) is

W-Prec(D) = v0 +
π
√
D

ln 2

∑

i

1
αi

(14)

where the sum runs over the same values of i as the product in Eq. (13). Hence,
the precision for the construction of the two polynomials differ by a multiplicative
factor of

(
h

�h/2�
)
. This factor increases as the degree of the polynomials increases.

Our experimental results confirm this fact and demonstrate the difference in
precision and time efficiency between the construction of Hilbert and Weber
polynomials.

To get an idea on the size of coefficients of Hilbert and Weber polynomials as
well as on their space requirements for storing them off-line, we next give three
examples for different values of D.

W40(x) = x2 − x− 1
H40(x) = x2 − 425692800x+ 910314547200

W292(x) = x4 − 5x3 − 10x2 − 5x+ 1
H292(x) = x4

−20628770986042830460800x3
−93693622511929038759497066112000000x2
+45521551386379385369629968384000000000x
−380259461042512404779990642688000000000000
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W472(x) = x6 − 12x5 − 22x3 − 12x− 1
H472(x) = x6 − 438370860938320369278668592000x5

+290243510038159955925726906822209766336000000x4

−6621978932864958986465185964976874629120000000000x3
+89663269021650272593765224657345386704896000000000000x2

+7782762847555792408664371720856640749568000000000000000x
+(8476837240896000000)3

It is clear that the memory required for the storage of Hilbert polynomials is
considerably larger than that required by the Weber polynomials.

Table 1. Transforming a root RW of a Weber polynomial to a root RH of the corre-
sponding Hilbert polynomial.

d mod 8 RH

1 (64R12
W −16)3

64R12
W

mod p

2 or 6 (64R12
W +16)3

64R12
W

mod p

5 (64R6
W −16)3

64R6
W

mod p

7 (R−24
W

−16)3

R−24
W

mod p

We argued that the use of the Weber polynomials has many advantages
compared to the Hilbert polynomials. However, if we choose to use them in the
CM method, we must transform their roots to the roots of the corresponding
Hilbert polynomials. To accomplish this, the two polynomials must have the
same degree in order to associate one root of the Weber polynomial to one of
the Hilbert polynomial. For discriminantD ≡ 3 (mod 8) the Weber polynomial’s
degree is two times the degree of the corresponding Hilbert polynomial and this is
the reason why we discard those values of D. A detailed analysis of transforming
a root RW of a Weber polynomial to its corresponding root RH of a Hilbert
polynomial is presented in [23]. The analysis results in a table that summarizes
the transformation, a modified version of which (due to a different polynomial
representation we use) is presented in Table 1. The value of d is determined as
follows. If D ≡ 0 (mod 4), then d = D/4, otherwise, d = D.

5 Implementation

In this section, we will discuss some issues regarding the implementation of our
variant of the Complex Multiplication method. The implementation has been
entirely written in ANSI C using the GNU Multiple Precision [7] library for high
precision floating point arithmetic and also for the generating and manipulating
integers of unlimited precision. Our implementation is also part of a software
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library for EC cryptography that we build [11]. The library is available from
http://www.ceid.upatras.gr/faculty/zaro/software/ecc-lib/.

The GNUMP library, uses as a basic precision unit the limb, which is com-
posed of 32 bits. Every floating point number in this library is represented by an
integral number of limbs. One may modify the precision with which the float-
ing operations are carried out using a special function that changes the number
of limbs. Note, however, that 2 limbs are the minimum precision required by
GNUMP for any computation.

As a first step, we implemented the basic algebraic operations for elliptic
curve arithmetic. We then turned our attention to the most demanding step of
the CM method, which was the construction of the Hilbert and Weber polyno-
mials. They both require high-precision complex and floating point arithmetic
with the greater demands placed, of course, by Hilbert polynomials. Also, the
operations involved required the implementation of functions such as cos(x),
sin(x), exp(x), ln(x), arctan(x) and

√
x. Since the basic complex number alge-

braic operations (addition, multiplication, exponentiation, and squaring) as well
as a high precision floating point implementation of the above functions did not
exist in GNUMP, we had to implement them from scratch. For the implemen-
tation of the particular functions we used their Taylor series expansion. As a
starting point for the construction of the Hilbert polynomials, we used the code
given in [24] which we considerably modified in order to support high precision
floating point arithmetic. For the construction of the Weber polynomials we im-
plemented the functions described in the IEEE Standard P1363 [8], adopting
a slightly different way for producing the coefficients α, β, γ described in the
standard. For the computation of the roots of polynomials modulo a prime, we
used the code given in [24], which we had to modify in order to handle correctly
prime numbers of any precision. Finally, the test for the suitability of the order
m was done as follows. The order must be of the form m = nq, where n is an
integer and q is a large prime (greater than 2160). The test proceeds by factoring
m and demanding that there are at most four small factors (smaller than 20),
while one factor should be prime. If this fails, then the particular m is rejected
and the process is repeated. It is easy to see that in this way, q is greater than
2160 for sizes of 192 or 224 bits for the field’s order, since n is at most 204.

6 Experimental Results

Our experiments were carried out on a Pentium III (933 MHz) with 256 MB of
main memory, running SuSE-Linux 7.1, and using the ANSI C gcc-2.95.2 com-
piler (along with the GNUMP library). All reported times are averages over 200
ECs per value of the discriminant D. For the size of the field’s order, we con-
sidered two values, namely 192 and 224 bits. Our code has size 69KB, including
the code for the generation of the polynomials (exclusion of the latter reduces
the code size to 56KB).

We first considered experiments regarding the construction of Hilbert and
Weber polynomials. Table 2 illustrates, for various values of D and h (degree
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of polynomial), the required limb-precision, the number of Taylor terms, and
the total time for the construction. As it turns out, the construction of Weber
polynomials can be done incredibly faster, and requires a much smaller number of
Taylor expansion terms. In addition, it requires only 2 limbs of precision (i.e., the
minimum in terms of GNUMP) for all cases considered, while the construction
of the Hilbert polynomials requires from 2 to 7 limbs depending on the values of
D and h (we noticed that 2 limbs were sufficient for Weber polynomials even for
larger values ofD and h, e.g.,D = 9640 and h = 16). Note also that the precision
required by the Hilbert polynomials increases with D even if h remains the same.
An interesting observation concerns the cases marked with an asterisk in Table 2.

Table 2. Construction of Weber and Hilbert polynomials. (∗) Coefficients of Hilbert
polynomials do not have trailing decimal zeros.

Weber polynomial Hilbert polynomial
D h limb-precision Taylor terms Time limb-precision Taylor terms Time
20 2 2 6 0.07 2 16 0.59
40 2 2 7 0.09 2 19 0.75
52 2 2 12 0.16 2 24 1.11
88 2 2 13 0.19 3 26 1.38
148 2 2 21 0.40 3 36 2.48
232 2 2 24 0.49 4 39 3.37
39∗ 4 2 20 0.54 3 32 3.29
56∗ 4 2 10 0.20 3 63 13.61
68 4 2 11 0.23 3 72 10.84
84∗ 4 2 18 0.61 3 175 237.82
120 4 2 20 0.70 4 39 7.06
132 4 2 21 0.83 4 38 6.50
136∗ 4 2 18 0.45 4 130 72.90
168 4 2 23 0.94 4 44 8.82
184∗ 4 2 22 0.64 4 197 263.55
228 4 2 27 1.26 5 51 13.01
292 4 2 28 1.00 5 90 37.97
116∗ 6 2 19 0.67 4 190 346.57
152 6 2 20 0.73 5 149 182.24
244∗ 6 2 27 1.26 5 329 1493.32
472 6 2 36 2.20 7 485 4980.67

The coefficients of the corresponding Hilbert polynomials in these cases do not
have trailing decimal zeros and this seems to require a higher number of Taylor
terms in order for the computations to converge. We observed that this situation
does not occur when D is even and ends in 0, 2 and 8. Since the trailing zeros
can be stored in a compact way, this observation would suggest which Hilbert
polynomials to consider for off-line computation and storage (if one wishes to
use them).
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A final remark concerns the comparison of the theoretically required preci-
sion, according to Eq. (12) and (14), with that measured experimentally. Our ex-
periments have shown that a smaller precision is required in practice. For exam-
ple, for D ∈ {232, 292, 472}, the equations give for the Hilbert polynomials bit-
precisions of H-Prec(232) = 364, H-Prec(292) = 1166, H-Prec(472) = 4983, and
for the Weber polynomials bit-precisions W-Prec(232) = 215, W-Prec(292) =
249, W-Prec(472) = 312. Clearly, the precisions given in Table 2 (as multiples
of 32 bits) are much smaller than these numbers.

We next turn to the efficiency of our CM implementation using only Weber
polynomials. Let #p denote the number of primes that we had to try in order to
find a solution (u, v) using Cornacchia’s algorithm (Step 3), and let #m be the
number of ordersm that we tried until a suitable one was found. We shall denote
by T (p,m) the time required to find a prime p and a suitable order m (Steps 3
and 4), by T5 the time required for the computation of roots of the polynomial
modulo p (Step 5), by T67 the time required for the construction of the elliptic
curve (Steps 6 and 7), and by Tmain the total time of the main phase (Steps 3-7)
of our variant. The Weber polynomials have been constructed off-line during the
preprocessing phase.

Table 3. Timing estimations (in secs) of our CM variant in the 192-bit finite field.

D h #p #m T (p, m) T5 T67 Tmain

232 2 4 5 0.63 0.01 0.32 0.96
568 4 7 6 1.02 0.04 0.33 1.39
1432 6 12 5 1.27 0.09 0.33 1.69
3448 8 15 5 1.34 0.14 0.35 1.83
5272 10 21 5 2.04 0.21 0.38 2.63
8248 12 24 5 2.39 0.32 0.31 3.02
9172 14 28 5 2.80 0.41 0.33 3.54
9640 16 33 6 3.69 0.51 0.39 4.59
9832 18 37 7 4.55 0.76 0.35 5.66
19492 20 42 5 4.78 1.22 0.30 6.30
29908 30 59 5 6.51 1.77 0.40 8.68
39796 50 102 6 11.73 6.11 0.39 18.23
39608 100 195 8 27.42 23.45 0.35 51.22

Table 3 reports the values of the above parameters for various values of
D and h and shows where exactly the time is spent throughout the steps of
our CM variant. According to [4], we have to try roughly 2h primes before
a solution can be found by Cornacchia’s algorithm. This fact was verified by
our experiments with surprising accuracy (cf. the third column of Table 3). The
number of trials for order m are approximately the same regardless of the degree
of the polynomial, which is reasonable as m is directly associated with the prime
p which we choose at random. Therefore, we do not expect that the number
of trials required will increase as the discriminant D increases. As expected, all
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Table 4. Timing estimations (in secs) of our CM variant.

192 bits 224 bits
D h T [W ] #p #m T (p, m) Tmain #p #m T (p, m) Tmain

20 2 0.07 4 10 0.82 1.23 4 10 1.30 1.72
40 2 0.09 3 9 0.73 1.12 4 9 1.21 1.60
52 2 0.16 4 8 0.75 1.02 4 8 1.12 1.53
88 2 0.19 4 7 0.61 0.94 4 8 0.98 1.41
232 2 0.49 4 5 0.63 0.96 4 6 0.83 1.30
56 4 0.20 7 10 1.45 1.88 7 11 2.63 3.20
84 4 0.61 7 9 1.40 1.77 8 9 2.29 2.83
136 4 0.45 8 8 1.43 1.80 7 9 2.27 2.77
292 4 1.00 7 6 1.13 1.45 8 8 2.20 2.68
568 4 2.00 7 6 1.02 1.39 8 7 1.98 2.43
116 6 0.67 11 9 1.89 2.33 11 13 3.90 4.39
244 6 1.26 11 9 1.86 2.30 12 11 3.58 4.17
472 6 2.20 11 8 1.52 1.96 12 10 3.33 3.96
1048 6 4.80 13 6 1.45 1.90 11 8 2.92 3.55
1432 6 6.64 12 5 1.27 1.69 11 6 2.03 2.57
376 8 2.26 16 8 2.34 2.79 16 10 4.41 4.95
952 8 6.34 16 7 2.22 2.75 15 9 3.74 4.38
1528 8 9.44 16 7 2.19 2.64 16 6 3.49 4.04
2212 8 16.99 16 6 1.71 2.18 16 6 2.94 3.20
3448 8 23.66 15 5 1.34 1.83 17 5 2.65 3.01
296 10 2.00 20 10 3.70 4.23 19 13 6.58 7.23
724 10 5.33 20 9 3.44 4.07 20 12 6.51 7.19
1268 10 9.80 20 6 2.29 2.85 19 9 4.28 5.01
3412 10 29.17 20 6 2.20 2.76 20 7 3.68 4.37
5272 10 46.49 21 5 2.04 2.63 20 5 2.84 3.54

times (except for T67) increase as the degree h of the polynomial increases. The
most time consuming step, as D and h increase, is the computation of the roots
of the polynomials.

Table 4 elaborates further by reporting values for the most important param-
eters regarding various values of D for the same value of h. In the table, T [W ]
denotes the time for constructing the Weber polynomial. A first observation is
that both T (p,m) and Tmain decrease as D increases, while h remains the same.
Another interesting observation is that for reasonably small values of h (which
do not necessarily compromise security), our variant remains efficient even in
the case where it is required that the computation of Weber polynomials should
be made on-line (e.g., due to limited resources posed by hardware devices).

Comparison with related work. The implementation of the CM variant in [16] was
done in C++ using the NTL library [19], which is a high-performance C++ library
for number theory and polynomial arithmetic. Also, their implementation was
equipped with clever heuristics to find quickly p and m. Their experiments were
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done on a Pentium PC (450 MHz) running Windows NT, considering the same
sizes of p (192 and 224 bits) and roughly similar values of D and h as we use. The
size of their code was 164KB, excluding the code for precomputing the Hilbert
polynomials which was done with MAPLE. In our implementation we didn’t use
any kind of heuristics. On the positive side, our variant uses considerably fewer
iterations to find a suitable m, and is faster1 compared to the times reported in
[16] for (at least) all h ≤ 30. On the negative side, the construction time of our
variant degrades when h increases above 30 and D is sufficiently large. This is
due to two reasons: (a) The efficient heuristics used in [16] to find p result in a
number of iterations proportional to ch/

√
D (for some constant c ≈ 300), while

in our variant the number of iterations is roughly 2h. Hence, the larger the D,
the less iterations are made by the variant of [16]. Moreover, our checking of
the suitability conditions for m take clearly more time than simply checking on
whether m is prime. (b) Our implementation takes more time to find the roots
of the Weber polynomial than the time required by the corresponding function
of the NTL library. We plan to further investigate the latter issue, as it is clear
from Table 3 that it will considerably improve the total time.

There are two other efficient C++ implementations of the CM method [3,18].
The latter uses the MIRACL [13] library and requires more code space (204KB)
than that in [16]. The former uses the advanced C++ library LiDIA [10] whose
adaptation to embedded systems seems very difficult (if at all possible).

7 Conclusions

We have presented an implementation of a variant of the Complex Multiplication
method for generating secure ECs. The variant uses Weber polynomials which
can be either precomputed off-line and stored as their storage requirements are
very low, or (if there are space limitations) can be constructed on-line without
sacrificing efficiency (at least for small values of h).

Acknowledgments. We would like to thank the referees for their helpful com-
ments.
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Abstract. Since its proposal by Victor Miller [17] and Neal Koblitz [15]
in the mid 1980s, Elliptic Curve Cryptography (ECC) has evolved into a
mature public-key cryptosystem. Offering the smallest key size and the
highest strength per bit, its computational efficiency can benefit both
client devices and server machines. We have designed a programmable
hardware accelerator to speed up point multiplication for elliptic curves
over binary polynomial fields GF (2m). The accelerator is based on a
scalable architecture capable of handling curves of arbitrary field de-
grees up to m = 255. In addition, it delivers optimized performance for
a set of commonly used curves through hard-wired reduction logic. A
prototype implementation running in a Xilinx XCV2000E FPGA at 66.4
MHz shows a performance of 6987 point multiplications per second for
GF (2163). We have integrated ECC into OpenSSL, today’s dominant
implementation of the secure Internet protocol SSL, and tested it with
the Apache web server and open-source web browsers.

1 Introduction

Since its proposal by Victor Miller [17] and Neal Koblitz [15] in the mid 1980s,
Elliptic Curve Cryptography (ECC) has evolved into a mature public-key cryp-
tosystem. Extensive research has been done on the underlying math, its security
strength, and efficient implementations.

ECC offers the smallest key size and the highest strength per bit of any known
public-key cryptosystem. This stems from the discrete logarithm problem in the
group of points over an elliptic curve. Among the different fields that can un-
derlie elliptic curves, integer fields F (p) and binary polynomial fields GF (2m)
have shown to be best suited for cryptographical applications. In particular, bi-
nary polynomial fields allow for fast computation in both software and hardware
implementations.

Small key sizes and computational efficiency of both public- and private-key
operations make ECC not only applicable to hosts executing secure protocols
over wired networks, but also to small wireless devices such as cell phones, PDAs
and SmartCards. To make ECC commercially viable, its integration into secure
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protocols needs to be standardized. As an emerging alternative to RSA, the US
government has adopted ECC for the Elliptic Curve Digital Signature Algorithm
(ECDSA) and specified named curves for key sizes of 163, 233, 283, 409 and
571 bit [18]. Additional curves for commercial use were recommended by the
Standards for Efficient Cryptography Group (SECG) [7]. However, only few
ECC-enabled protocols have been deployed in commercial applications to date.
Today’s dominant secure Internet protocols such as SSL and IPsec rely on RSA
and the Diffie-Hellman key exchange. Although standards for the integration of
ECC have been proposed [4], they have not yet been finalized.

Our approach towards an end-to-end solution is driven by a scenario of a
wireless and web-based environment where millions of client devices connect to
a secure web server.

The aggregation of client-initiated connections/transactions leads to high
computational demand on the server side, which is best handled by a hardware
solution. While support for a limited number of curves is acceptable for client
devices, server-side hardware needs to be able to operate on numerous curves.
The reason is that clients may choose different key sizes and curves depending on
vendor preferences, individual security requirements and processor capabilities.
In addition, different types of transactions may require different security levels
and thus, different key sizes.

We have developed a cryptographic hardware accelerator for elliptic curves
over arbitrary binary polynomial fields GF (2m), m ≤ 255. To support secure
web transactions, we have fully integrated ECC into OpenSSL and tested it
with the Apache web server and open source web browsers.

The paper is structured as follows: Section 2 summarizes related work and
implementations of ECC. In Section 3, we outline the components of an ECC-
enabled secure system. Section 4 describes the integration of ECC into OpenSSL.
The architecture of the hardware accelerator and the implemented algorithms are
presented in Section 5. We give implementation cost and performance numbers
in Section 6. The conclusions and future directions are contained in Section 7.

2 Related Work

Hardware implementations of ECC have been reported in [20], [2], [1], [11],
[10] and [9]. Orlando and Paar describe a programmable elliptic curve proces-
sor for reconfigurable logic in [20]. The prototype performs point multiplica-
tion based on Montgomery Scalar Multiplication in projective space [16] for
GF (2167). Their design uses polynomial basis coordinate representation. Multi-
plication is performed by a digit-serial multiplier proposed by Song and Parhi
[22]. Field inversion is computed through Fermat’s theorem as suggested by
Itoh and Tsujii [13]. With a performance of 0.21 ms per point multiplication
this is the fastest reported hardware implementation of ECC. Bednara et al. [2]
designed an FPGA-based ECC processor architecture that allows for using mul-
tiple squarers, adders and multipliers in the data path. They researched hybrid
coordinate representions in affine, projective, Jacobian and López-Dahab form.
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Two prototypes were synthesized for GF (2191) using an LFSR polynomial ba-
sis multiplier and a Massey-Omura normal basis multiplier, respectively. Agnew
et al. [1] built an ECC ASIC for GF (2155). The chip uses an optimal normal
basis multiplier exploiting the composite field property of GF (2155). Goodman
and Chandrakasan [11] designed a generic public-key processor optimized for
low power consumption that executes modular operations on different integer
and binary polynomial fields. To our knowledge, this is the only implementation
that supports GF (2m) for variable field degrees m. However, the architecture
is based on bit-serial processing and its performance cannot be scaled to levels
required by server-type applications.

3 System Overview

Figure 1 shows the implementation of a client/server system using a secure ECC-
enhanced protocol. We integrated new cipher suites based on ECC into OpenSSL
[19], the most widely used open-source implementation of the Secure Sockets
Layer (SSL). More specifically, we added the Elliptic Curve Digital Signature
Algorithm (ECDSA), the Elliptic Curve Diffie-Hellman key exchange (ECDH),
and means to generate and process X.509 certificates containing ECC keys.

ECC HW Accelerator

SolarisTM Driver

OpenSSL

Apache Web Server

PCI bus

OpenSSL

Dillo Web Browser

Server Client

Fig. 1. Secure Client/Server System.

We validated our implementation by
integrating it with the Apache web
server and open-source web browsers
Dillo and Lynx running on a hand-
held client device under Linux. To ac-
celerate public-key operations on the
server side, we designed and built a
hardware accelerator connected to the
host machine through a PCI interface.
The accelerator is accessed by a char-
acter device driver running under the
Solaris Operating Environment.

4 Secure Sockets Layer

Secure Sockets Layer (SSL aka TLS) [8] is the most widely deployed and used
security protocol on the Internet today. The protocol has withstood years of
scrutiny by the security community and, in the form of HTTPS1, is now trusted
to secure virtually all sensitive web-based applications ranging from banking to
online trading to e-commerce.

SSL offers encryption, source authentication and integrity protection for data
exchanged over insecure, public networks. It operates above a reliable transport
service such as TCP and has the flexibility to accommodate different crypto-
graphic algorithms for key agreement, encryption and hashing. However, the
1 HTTPS is HTTP over an SSL-secured connection.
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specification does recommend particular combinations of these algorithms, called
cipher suites, which have well-understood security properties.

Application Data Application Data

Finished

[ChangeCipherSpec]

[ChangeCipherSpec]

Finished

ServerClient

ClientHello (Includes proposed cipher suites)

ServerKeyExchange*
CertificateRequest*

ServerHello
Certificate*

(Specifies selected cipher suite)

} (Conveys server’s authenticated
public key)

(Rarely used, has acceptable
types, CAs)

ServerHelloDone

ClientKeyExchange (Has client’s ephemeral public key
(Has client’s long-term public key)Certificate*

or RSA-encrypted premaster)
(Proves possession of long-termCertificateVerify*
private key, if needed)

Fig. 2. SSL Handshake for an RSA-based Cipher Suite.

The two main components of SSL are the Handshake protocol and the Record
Layer protocol. The Handshake protocol allows an SSL client and server to ne-
gotiate a common cipher suite, authenticate each other2, and establish a shared
master secret using public-key algorithms. The Record Layer derives symmet-
ric keys from the master secret and uses them with faster symmetric-key algo-
rithms for bulk encryption and authentication of application data. Public-key
cryptographic operations are the most computationally expensive portion of SSL
processing, and speeding them up remains an active area for research and devel-
opment.

4.1 Public-Key Cryptography in SSL

Figure 2 shows the general structure of a full SSL handshake. Today, the most
commonly used public-key cryptosystem for master-key establishment is RSA
but the IETF is considering an equivalent mechanism based on ECC [4].

RSA-based Handshake. The client and server exchange random nonces (used
for replay protection) and negotiate a cipher suite with ClientHello and Server-
Hello messages. The server then sends its signed RSA public-key either in the
Certificate message or the ServerKeyExchange message. The client verifies the
2 Client authentication is optional. Only the server is typically authenticated at the

SSL layer and client authentication is achieved at the application layer, e.g. through
the use of passwords sent over an SSL-protected channel. However, some deployment
scenarios do require stronger client authentication through certificates.
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RSA signature, generates a 48-byte random number (the pre-master secret) and
sends it encrypted with the server’s public-key in the ClientKeyExchange. The
server uses its RSA private key to decrypt the pre-master secret. Both end-
points then use the pre-master secret to create a master secret, which, along
with previously exchanged nonces, is used to derive the cipher keys, initializa-
tion vectors and MAC (Message Authentication Code) keys for bulk encryption
by the Record Layer.

The server can optionally request client authentication by sending a Certifi-
cateRequest message listing acceptable certificate types and certificate author-
ities. In response, the client sends its private key in the Certificate and proves
possession of the corresponding private key by including a digital signature in
the CertificateVerify message.

ECC-based Handshake. The processing of the first two messages is the same
as for RSA but the Certificate message contains the server’s Elliptic Curve Diffie-
Hellman (ECDH) public key signed with the Elliptic Curve Digital Signature
Algorithm (ECDSA). After validating the ECDSA signature, the client conveys
its ECDH public key in the ClientKeyExchange message. Next, each entity uses
its own ECDH private key and the other’s public key to perform an ECDH op-
eration and arrive at a shared pre-master secret. The derivation of the master
secret and symmetric keys is unchanged compared to RSA. Client authentica-
tion is still optional and the actual message exchange depends on the type of
certificate a client possesses.

5 ECC Hardware Acceleration

Point multiplication on elliptic curves is the fundamental and most expensive
operation underlying both ECDH and ECDSA. For a point P in the group
({(x, y)| y2 + xy = x3 + ax2 + b; x, y ∈ GF (2m)} ∪ 0, +P ) defined by a non-
supersingular elliptic curve with parameters a, b ∈ GF (2m) and for a positive
integer k, the point multiplication kP is defined by adding P k-1 times to itself
using +P

3. Computing kP is based on a sequence of modular additions, mul-
tiplications and divisions. To efficiently support ECC, these operations need to
be implemented for large operands.

The design of our hardware accelerator was driven by the need to both pro-
vide high performance for named elliptic curves and support point multiplica-
tions for arbitrary, less frequently used curves. It is based on an architecture for
binary polynomial fields GF (2m), m ≤ 255. We believe that this maximal field
degree offers adequate security strength for commercial web traffic for the fore-
seeable future. We chose to represent elements of GF (2m) in polynomial basis,
i.e. polynomials a = am−1t

m−1 + am−2t
m−2 + · · ·+ a1t + a0 are represented as

bit strings (am−1am−2 . . . a1a0).

3 For a detailed mathematical background on ECC the reader is referred to [3].
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5.1 Architectural Overview

We developed a programmable processor optimized to execute ECC point mul-
tiplication. The data path shown in Figure 3 implements a 256-bit architecture.
Parameters and variables are stored in an 8kB data memory DMEM and program
instructions are contained in a 1kB instruction memory IMEM. Both memories
are dual-ported and accessible by the host machine through a 64-bit/66MHz
PCI interface. The register file contains eight general purpose registers R0-R7,
a register RM to hold the irreducible polynomial and a register RC for curve-
specific configuration information.
The arithmetic units implement division (DIV), multiplication (MUL) and

DIV MUL ALU
Reg.file
(R0..R7,
RM,RC)

DMEM

SBUSPCI
256

256DBUS

Control UnitIMEM

Fig. 3. Data Path and Control Unit.

fetch load RS0 load RS1 execute store RD0 store RD1execute execute execute

fetch load RS0 load RS1 execute store RD

fetch load RS0

I
0

I
1

I
2

Fig. 4. Parallel Instruction Execution.

squaring/addition/shift left (ALU). Source operands are transferred over the
source bus SBUS and results are written back into the register file over the
destination bus DBUS.

Program execution is orchestrated by the Control Unit, which fetches in-
structions from the IMEM and controls the DMEM, the register file and the
arithmetic units. As shown in Table 1, the instruction set is composed of mem-
ory instructions, arithmetic/logic instructions and control instructions.

Memory instructions LD and ST transfer operands between the DMEM and
the register file. The arithmetic and logic instructions include MUL, MULNR,
DIV, ADD, SQR and SL. We implemented a load/store architecture. That is,
arithmetic and logic instructions can only access operands in the register file.
The execution of arithmetic instructions can take multiple cycles and, in case of
division and multiplication, the execution time may even be data-dependent. To
control the flow of the program execution, conditional branches BMZ and BEQ,
unconditional branch JMP and program termination END can be used.

The data path allows instructions to be executed in parallel or overlapped.
The Control Unit examines subsequent instructions and decides on the execution
model based on the type of instruction and data dependencies. An example for
parallel and overlapped execution of an instruction sequence I0; I1; I2 is given
in Figure 4. Parallel execution of I0; I1 is possible if I0 is a MUL or MULNR
instruction and I1 is an ADD or SQR instruction and no data dependencies
exist between the destination register/s of I0 and the source and destination
register/s of I1. Execution of I1 and I2 can be overlapped if source register RS0
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Table 1. Instruction Set.

Instruction Type / Name Semantics Registers Cycles
Opcode
Memory Instr.
LD DMEM,RD Load DMEM → RD RD={R0..R7,RM,RC} 3
ST RS,DMEM Store RS → DMEM RS={R0..R7} 3
Arithmetic Instr.
DIV RS0,RS1,RD Divide (RS1/RS0) mod M → RD RS0,RS1,RD={R0..R7} ≤ 2m + 4
MUL RS0,RS1,RD Multiply (RS0*RS1) mod M → RD RS0,RS1,RD={R0..R7} 8 (7)
MULNR RS0,RS1,RD Multiply w/o RS0*RS1 → RD0,RD1 RS0,RS1,RD0,RD1= 8

Reduction {R0..R7}
ADD RS0,RS1,RD Add RS0+RS1 → RD RS0,RS1,RD={R0..R7} 3

(RD==0) → EQ
SQR RS,RD Square (RS*RS) mod M → RD RS,RD={R0..R7} 3

(RD==0) → EQ
SL RS,RD Shift Left {RS[254..0],0} → RD RS,RD={R0..R7} 3

RS[255] → MZ
(RD==0) → EQ

Control Instr.
BMZ ADDR Branch branch if MZ == 0 2
BEQ ADDR Branch branch if EQ == 1 4
JMP ADDR Jump jump 2
END End end program execution

of I2 is different from destination register RD1 of I0, i.e. RS0 can be read over
the SBUS while RD1 is written over the DBUS.

5.2 ALU

The ALU incorporates two arithmetic and one logic operation: Addition, squar-
ing and shift left. The addition of two elements a, b ∈ GF (2m) is defined as the
sum of the two polynomials obtained by adding the coefficients mod 2. This can
be efficiently computed as the bitwise XOR of the corresponding bit strings.

Squaring is a special case of multiplication and is defined in two steps. First,
the operand a ∈ GF (2m) is multiplied by itself resulting in a polynomial c0 = a2

of degree less than 2m − 1, i.e. deg(c0) < 2m − 1. c0 may not be an element
of the underlying field since its degree may be greater than m − 1. Second,
c0 is reduced to a congruent polynomial c ≡ c0 mod M , whereby c ∈ GF (2m)
is defined as the residue of the polynomial divison of c0 and the irreducible
polynomial M . Squaring a does not require a full multiplication since all mixed
terms aiajt

k, k = 1..2(m − 1), k = i + j, i �= j occur twice cancelling each other
out. Therefore, a2 = am−1t

2(m−1) + am−2t
2(m−2) + · · ·+ a1t

2 + a0 can be easily
computed by inserting zeros into the corresponding bit string. For example,
squaring (t3 + t2 + t + 1) results in (1111)2 = 1010101.

Reduction is based on the congruency

u ≡ u + vM mod M (1)

for an irreducible polynomial M and arbitrary polynomials u and v. Since the
degree of c0 is less than 2m−1, c0 can be split up into two polynomials c0,h and
c0,l with deg(c0,h) < m− 1, deg(c0,l) < m such that

c0 = a2 = c0,h ∗ tm + c0,l (2)
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Using tm ≡ M − tm mod M as a special case of (1), the congruency c1 = c0,h ∗
(M − tm) + c0,l ≡ c0 mod M is obvious. Given that deg(c0,h) < m − 1 and
deg(M − tm) < m, it follows that deg(c1) < 2m− 2. By iteratively splitting up
cj into polynomials cj,h and cj,l such that

cj+1 = cj,h ∗ (M − tm) + cj,l until cj,h = 0⇔ cj ∈ GF (2m) (3)

the reduced result c = ci can be computed in a maximum of i ≤ m−1 reduction
iterations. The minimum number of iterations depends on the second highest
term in the irreducible polynomial M [22], [12]. For

M = tm + tk +
k−1∑

j=1

Mjt
j + 1, 1 ≤ k < m (4)

it follows that a better upper bound for deg(c1) is deg(c1) < m+k−1. Applying
(3), deg(cj) gradually decreases such that

deg(cj+1,h) =

{
deg(cj,h) + k −m if deg(cj,h) > m− k

0 if deg(cj,h) ≤ m− k

The minimum number of iterations i is given by

m− 1− i(m− k) ≤ 0⇔ i � �m− 1
m− k

	 (5)

To enable efficient implementations, M is often chosen to be either a trinomial
Mt or pentanomial Mp:

Mt = tm + tk3 + 1, Mp = tm + tk3 + tk2 + tk1 + 1, m > k3 > k2 > k1 > 1

Choosing M such that k3 ≤ m−1
2 apparently limits the number of reduction

iterations to 2, which is the case for all irreducible polynomials recommended
by NIST [18] and SECG [7]. The multiplications cj,h ∗ (M − tm) can be op-
timized if (M − tm) is a constant sparse polynomial.

RA

1

n
SBUS

SQR
+

red163 red193 red233

[n-1..0]

DBUS

=0
1 n

2n-1

n

EQMZ

<<

Fig. 5. ALU.

In this case, the two steps of a squar-
ing operation can be hard-wired and
executed in a single clock cycle. As
shown in Figure 5, the ALU imple-
ments hard-wired reduction for the ir-
reducible polynomials t163 + t7 + t6 +
t3 + 1, t193 + t15 + 1 and t233 + t74 + 1,
respectively. Moreover, the ALU can
compute addition (XOR) and execute
a shift left. It further computes the
flags EQ and MZ used by the branch
instructions BEQ and BMZ as speci-
fied in Table 1.
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5.3 Multiplier

We studied and implemented several different architectures and, finally, settled
on a digit-serial shift-and-add multiplier. Figure 6 gives a block diagram of the
multiplier.
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Fig. 6. Shift-and-Add Multiplier.
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Fig. 7. Least-Significant-Digit-First Mul-
tiplier.

The result is computed in two steps. First, the product is computed by iter-
atively multiplying a digit of operand X with Y , and accumulating the partial
products in Z ′. Next, the product Z ′ is reduced by the irreducible polynomial.
In our implementation, the input operands X and Y can have a size of up to
n = 256 bits, and the reduced result Z has a size of m = 163, 193, 233 bits
according to the specified named curve. The digit size d is 64. We optimized
the number of iterations needed to compute the product Z ′ such that the four
iterations it takes to perform a full 256-bit multiplication are only executed for
m = 193, 233 whereas three iterations are executed for m = 163. To compensate
for the missing shift operation in the latter case, a multiplexer was added to se-
lect the bits of Z ′ to be reduced. The reduction is hard-wired and takes another
clock cycle.

The alternative designs we studied were based on the Karatsuba algorithm
[14] and the LSD multiplier [22]. Applying the Karatsuba algorithm to Figure 6,
we first split the 64-bit by 256-bit multiplication X[63..0]∗Y [255..0] into four 64-
bit by 64-bit multiplications X[63..0] ∗ Y [63..0], X[63..0] ∗ Y [127..64], X[63..0] ∗
Y [191..128], X[63..0] ∗ Y [255..192] and then use the Karatsuba algorithm to
calculate the four partial products. Compared with the shift-and-add algorithm
the Karatsuba algorithm is attractive since it lowers the bit complexity from
O(n2) to O(nlg3) [6]. It does, however, introduce irregularities into the wiring
and, as a result, additional wire delays. As we will show in Table 3, this design
did not meet our timing goal.

We also implemented the LSD multiplier shown in Figure 7. When compared
with the shift-and-add multiplier of Figure 6 the LSD multiplier is attractive
since it reduces the size of the register used for accumulating the partial results
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from 2n bits to n+d bits. This is accomplished by shifting the Y operand rather
than the product Z ′ and reducing Y every time it is shifted. The implementation
cost is an additional reduction circuit. Since the two reduction operations of Y
and Z ′ do not take place in the same clock cycle, it is possible to share one
reduction circuit. However, considering the additional placement and routing
constraints imposed by a shared circuit, two separate circuits are, nevertheless,
preferred. An analysis of our FPGA implementation shows no advantage in terms
of size or performance. The size of the multiplier is dominated by the amount
of combinational logic resources and, more specifically, the number of look-up
tables (LUTs) needed. Thus, there is no advantage in reducing the size of the
register holding Z ′. Note, that as the digit size d is reduced, the ratio of registers
and LUTs changes; given the fixed ratio of registers and LUTs available on an
FPGA device, the LSD multiplier, therefore, can be attractive for small digit
sizes.

As it is our goal to process arbitrary curve types, we can rely on the hard-
wired reducers only for the named curves. All other curve types need to be
handled in a more general way, for example, with the algorithm presented in
Section 5.5. We, therefore, need a multiplier architecture that either provides
a way to reduce by an arbitrary irreducible polynomial or offers the option to
calculate a non-reduced product. We opted for the latter option and added a
path to bypass the reducer in Figure 6. Note that with the LSD multiplier a
non-reduced product can not be offered thus requiring full multipliers to replace
the reduction circuits.

5.4 Divider

The hardware accelerator implements dedicated circuitry for modular division
based on an algorithm described by Shantz [21]. A block diagram of the divider
is shown in Figure 8. It consists of four 256-bit registers A, B, U and V and a
fifth register holding the irreducible polynomial M . It can compute division for
arbitrary irreducible polynomials M and field degrees up to m = 255.

Initially, A is loaded with the divisor X, B with the irreducible polynomial
M , U with the dividend Y , and V with 0. Throughout the division, the following
invariants are maintained:

A ∗ Y ≡ U ∗X mod M (6) B ∗ Y ≡ V ∗X mod M (7)

Through repeated additions and divisions by t, A and B are gradually re-
duced to 1 such that U (respectively V ) contains the quotient Y

X mod M . A
polynomial is divisible by t if it is even, i.e. the least significant bit of the corre-
sponding bit string is 0. Division by t can be efficiently implemented as a shift
right operation. In contrast to the original algorithm, which included magnitude
comparisons of registers A and B, we use two counters CA and CB to test for
termination of the algorithm. CB is initialized with the field degree m and CA
with m− 1. The division algorithm consists of the following operations:



An End-to-End Systems Approach to Elliptic Curve Cryptography 359

1. Division by t
a) If even(A) and even(U): A := A

t , CA := CA− 1
b) If even(B) and even(V ): B := B

t , CB := CB − 1
2. Congruent addition of M

a) If odd(U): U := U + M
b) If odd(V ): V := V + M

3. Addition of A and B
a) If odd(A) and odd(B) and CA > CB: A := A + B, U := U + V
b) If odd(A) and odd(B) and CA ≤ CB: B := A + B, V := U + V

The preconditions ensure that for any configuration of A, B, U and V at least
one of the operations can be executed. It is interesting to note that operations,
whose preconditions are satisfied, can be executed in any order without violat-
ing invariants (6) and (7). The control logic of the divider chooses operations
as preconditions permit starting with 1a and 2a. To ensure termination, 3a is
executed if CA > CB and 3b is executed if CA ≤ CB. CA and CB represent
the upper bound for the order of A and B. This is due to the fact that the order
of A + B is never greater than the order of A if CA > CB and never greater
than the order of B if CA ≤ CB. Postconditions of 2a, 2b, 3a and 3b guarantee
that either 1a or 1b can be executed to further decrease the order of A and B
towards 1.
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+
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M / t
+
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Fig. 8. Divider.

The division circuit shown in Fig-
ure 8 was designed to execute se-
quences of operations per clock cycle,
e.g. 3a,2a and 1a could be executed
in the same cycle. In particular, it is
possible to always execute either 1a or
1b once per clock cycle. Therefore, a
modular division can be computed in
a maximum of 2m clock cycles.

5.5 Point Multiplication Algorithms

We experimented with different point multiplication algorithms and settled on
Montgomery Scalar Multiplication using projective coordinates as proposed by
López and Dahab [16]. This choice is motivated by the fact that, for our im-
plementation, multiplications can be executed much faster than divisions. Ex-
pensive divisions are avoided by representing affine point coordinates (x, y) as
projective triples (X, Y, Z) with x = X

Z and y = Y
Z . In addition, this algorithm is

attractive since it provides protection against timing and power analysis attacks
as each point doubling is paired with a point addition such that the sequence of
instructions is independent of the bits in k.

A point multiplication kP can be computed with 
log2(k)� point additions
and doublings. Throughout the computation, only the X- and Z-coordinates
of two points P1,i and P2,i are stored. Montgomery’s algorithm exploits the
fact that for a fixed point P = (X, Y, 1) and points P1 = (X1, Y1, Z1) and
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P2 = (X2, Y2, Z2) the sum P1 + P2 can be expressed through only the X- and
Z-coordinates of P, P1 and P2 if P2 = P1 + P . P1 and P2 are initialized with
P1,�log2(k)� = P and P2,�log2(k)� = 2P . To compute kP , the bits of k are examined
from left (k�log2(k)�) to right (k0). For ki = 0, P1,i is set to 2P1,i+1 (8) and P2,i

is set to P1,i+1 + P2,i+1 (9).

X1,i = X4
1,i+1 + bZ4

1,i+1

Z1,i = Z2
1,i+1 ∗X2

1,i+1 (8)

Z2,i = (X1,i+1 ∗ Z2,i+1 + X2,i+1 ∗ Z1,i+1)2

X2,i = XZ2,i + (X1,i+1Z2,i+1)(X2,i+1Z1,i+1)
(9)

Similarly, for ki = 1, P1,i is set to P1,i+1 + P2,i+1 and P2,i is set to 2P2,i+1.
The Y-coordinate of kP can be retrieved from its X- and Z-coordinates using
the curve equation. In projective coordinates, Montgomery Scalar Multiplication
requires 6
log2(k)�+ 9 multiplications, 5
log2(k)�+ 3 squarings, 3
log2(k)�+ 7
additions and 1 division.

Named Curves. An implementation of Equations (8) and (9) for named curves
over GF (2163), GF (2193) and GF (2233) is shown in Table 2.

Table 2. Implementation and Execution of Projective Point Doubling and Addition.

// register R0, R1, R2, R3 Code Execution
// value X1, Z1, X2, Z2
MUL(R1, R2, R2) R2 = Z1 ∗ X2 MUL(R1, R2, R2); SQR(R1, R1)
SQR(R1, R1) R1 = Z2

1
MUL(R0, R3, R4) R4 = X1 ∗ Z2 MUL(R0, R3, R4); SQR(R0, R0)
SQR(R0, R0) R0 = X2

1
ADD(R2, R4, R3) R3 = Z1 ∗ X2 + X1 ∗ Z2 ADD(R2, R4, R3)
MUL(R2, R4, R2) R2 = Z1 ∗ X2 ∗ X1 ∗ Z2 MUL(R2, R4, R2); SQR(R1, R4)
SQR(R1, R4) R4 = Z4

1
MUL(R0, R1, R1) R1 = Z2

1 ∗ X2
1 MUL(R0, R1, R1); SQR(R3, R3)

SQR(R3, R3) R3 = Z3 = (Z1 ∗ X2 + X1 ∗ Z2)2

LD(data mem b, R5) R5 = b LD(data mem b, R5)
MUL(R4, R5, R4) R4 = b ∗ Z4

1 MUL(R4, R5, R4); SQR(R0, R0)
SQR(R0, R0) R0 = X4

1
LD(data mem Px, R5) R5 = X LD(data mem Px, R5)
MUL(R3, R5, R5) R4 = X ∗ (Z1 ∗ X2 + X1 ∗ Z2)2 MUL(R3, R5, R5); ADD(R4, R0, R0)
ADD(R4, R0, R0) R0 = X4

1 + b ∗ Z4
1

ADD(R2, R5, R2) R2 = X ∗ Z3 + (Z1 ∗ X2) ∗ (X1 ∗ Z2) ADD(R2, R5, R2)

The computation of the two equations is interleaved such that there are
no data dependencies for any MUL/SQR or MUL/ADD instruction sequences.
Hence, all MUL/SQR and MUL/ADD sequences can be executed in parallel.
Furthermore, there are no data dependencies between subsequent arithmetic
instructions allowing for overlapped execution.

Generic Curves. Squaring and multiplication require reduction, which can ei-
ther be hard-wired or implemented for arbitrary field degrees through an instruc-
tion sequence of polynomial multiplications (MULNR) and additions (ADD) as
shown in Section 5.2. Figure 9 shows a multiplication including reduction. Note
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Fig. 9. Non-Hard-Wired Reduction through Multiplication and Addition.

that the multiplier includes registers rl and rh, which have a width n = 256 not
equal to the field degree m. Therefore, the constant factor tn−m is used to align
multiplication results to the boundary between rl and rh. Computing cj+1,h and
cj+1,l from cj,h and cj,l based on Equation (3) requires one MULNR and one
ADD instruction. Hence, multiplication and squaring operations with reduction
for arbitrary field degrees can be computed with 3 + i MULNR and i ADD in-
structions with i as in Equation (5). Looking at the code sequence of a point
multiplication, optimization can be done by storing some multiplication results
multiplied by tn−m omitting the first and last step.

6 Implementation and Performance

We specified the hardware in Verilog and prototyped it in a Xilinx Virtex
XCV2000E-FG680-7 FPGA using the design tools Synplify 7.0.2 and Xilinx
Design Manager 3.3.08i. Area constraints were given for the ALU, the divider
and the register file, but no manual placement had to be done. The prototype
runs off the PCI clock at a frequency of 66.4 MHz.

Table 3 summarizes the cost and performance of the ALU, the divider and
three multiplier design alternatives. The cost is given as the number of used
4-input look-up tables (LUTs) and flip-flops (FFs). The multiplier clearly dom-
inates the design size with 73% of the LUTs and 46% of the FFs. However,
multiplication is the single most time-critical operation as shown in Table 4. For
point multiplication over GF (2163), field multiplications account for almost 62%
of the execution time. It is, therefore, justified to allocate a significant portion
of the available hardware resources to the multiplier. Parallel and overlapped
execution save more than 27% time compared to sequential execution. There is
still room for improvements since instructions BMZ, BEQ, SL, JMP and END
responsible for the flow control consume almost 21% of the execution time. This
time could be saved by separating control flow and data flow.

To evaluate the performance of the divider, we implemented an inversion
algorithm proposed by Itoh and Tsujii [13] based on Fermat’s theorem. With this
algorithm, an inversion optimized for GF (2163) takes 938 cycles (0.01413 ms),
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Table 3. Cost and Performance of Arith-
metic Units.

Unit LUTs FFs f[MHz]
Karatsuba Multiplier 9870 2688 52.2
LSD Multiplier 14347 2592 66.6
Shift-and-Add Multiplier 14241 2990 66.5
ALU 1345 279 80.4 (est.)
Divider 2678 1316 79.6 (est.)
Full Design 19508 6442 66.5

Table 4. Decomposition of the Execu-
tion Time for a GF (2163) Point Multipli-
cation.

Instruction #Instr. Cycles ms
DIV 1 329 0.00495
ADD 333 666 0.01003
SQR 3 6 0.00009
MUL 10 60 0.00090
MULNR 1 7 0.00011
MUL + ADD 162 972 0.01464
MUL + SQR 810 4860 0.07319
ST 11 33 0.00050
LD 344 688 0.01036
BMZ 326 652 0.00982
BEQ 2 8 0.00012
JMP 162 324 0.00488
SL 326 978 0.01473
END 1 5 0.00008
total 9588 0.14440

while the divider is almost three times faster speeding up point multiplication
by about 6.4%.

Table 5 shows hardware and software performance numbers for point mul-
tiplication on named and generic curves as well as execution times for ECDH
and ECDSA with and without hardware support. The hardware numbers were
obtained on a 360MHz Sun Ultra 60 workstation and all software numbers rep-
resent a generic 64-bit implementation measured on a 900MHz Sun Fire 280R
server. For generic curves, the execution time for point multiplications depends
on the irreducible polynomial as described in Sections 5.5 and 5.2. The obtained
numbers assume irreducible polynomials with k3 ≤ m−1

2 . Hard-wired reduction
for named curves improves the execution time by a factor of approximately 10
compared to generic curves.

For ECDH-163, the hardware accelerator offers a 12.5-fold improvement in
execution time over the software implementation for named curves. Overhead is
created by OpenSSL and accesses to the hardware accelerator leading to a lower
speedup than measured for raw point multiplication. A disproportionally larger
drop in speedup can be observed for ECDSA-163 since it requires two point
multiplications and one point addition executed in software. All numbers were
measured using a single process on one CPU. The hardware numbers for ECDH
and ECDSA could be improved by having multiple processes share the hardware
accelerator such that while one processes waits for a point multiplication to
finish, another process can use the CPU.

7 Conclusions

We have demonstrated a secure client/server system that employs elliptic curve
cryptography for the public-key operations in OpenSSL. We have further pre-
sented a hybrid hardware accelerator architecture providing optimized perfor-
mance for named elliptic curves and support for generic curves over arbitrary
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Table 5. Hardware and Software Performance.

Hardware Software Speedup
ops/s ms/op ops/s ms/op

Named Curves
GF (2163) 6987 0.143 322 3.110 21.7
GF (2193) 5359 0.187 294 3.400 18.2
GF (2233) 4438 0.225 223 4.480 19.9
Generic Curves
GF (2163) 644 1.554 322 3.110 2.0
GF (2193) 544 1.838 294 3.400 1.9
GF (2233) 451 2.218 223 4.480 2.0
ECDH
GF (2163) 3813 0.235 304 3.289 12.5
ECDSA (sign)
GF (2163) 1576 0.635 292 3.425 5.4
ECDSA (verify)
GF (2163) 1224 0.817 151 6.623 8.1

fields GF (2m), m ≤ 255. Previous approaches such as presented in [11] and [20]
focused on only one of these aspects.

The biggest performance gain was achieved by optimizing field multiplica-
tion. However, as the number of cycles per multiplication decreases, the relative
cost of all other operations increases. In particular, squarings can no longer be
considered cheap. Data transport delays become more critical and contribute
to a large portion of the execution time. To make optimal use of arithmetic
units connected through shared data paths, overlapped and parallel execution
of instructions can be employed.

For generic curves, reduction has shown to be the most expensive opera-
tion. As a result, squarings become almost as expensive as multiplications. This
significantly impacts the cost analysis of point multiplication algorithms. In par-
ticular, the Itoh-Tsujii method becomes much less attractive since it involves a
large number of squaring operations.

Dedicated division circuitry leads to a performance gain over soft-coded in-
version algorithms for both named and generic curves. However, the tradeoff
between chip area and performance needs to be taken into account.

Although prototyped in reconfigurable logic, the architecture does not make
use of reconfigurability. It is thus well-suited for an implementation in ASIC
technology. For commercial applications this means lower cost at high volumes,
less power consumption, higher clock frequencies and tamper resistance.

As for future work, we are in the process of setting up a testbed that will allow
us to empirically study the performance of ECC-based cipher suites and compare
it to conventional cipher suites. This includes measurements and analysis of the
system performance at the web server level. As for the hardware accelerator,
we intend to improve the performance of point multiplication on generic curves.
Furthermore, we want to optimize the hardware-software interface to achieve
higher performance at the OpenSSL level. We plan to discuss the results in a
follow-on publication.
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Abstract. We present a VHDL design that incorporates optimizations
intended to provide digital signature generation with as little power,
space, and time as possible. These three primary objectives of power, size,
and speed must be balanced along with other important goals, including
flexibility of the hardware and ease of use. The highest-level function
offered by our hardware design is Elliptic Curve Optimal El Gamal digital
signature generation. Our parameters are defined over the finite field
GF (2178), which gives security that is roughly equivalent to that provided
by 1500-bit RSA signatures.
Our optimizations include using the point-halving algorithm for elliptic
curves, field towers to speed up the finite field arithmetic in general, and
further enhancements of basic finite field arithmetic operations. The
result is a synthesized VHDL digital signature design (using a CMOS
0.5µm, 5V , 25◦C library) of 191,000 gates that generates a signature in
4.4 ms at 20 MHz.

Keywords: Digital Signature, Elliptic Curve, ECDSA, Optimal El
Gamal, Characteristic 2, Field Towers, Trinomial Basis, Quadratic Equa-
tion, Qsolve, Almost-Inverse Algorithm, Point Halving, Signed Sliding
Window, GF(289), GF(2178), Hardware, VHDL, Low Power

1 Introduction

While the value of elliptic curve arithmetic in enabling public-key cryptography
to serve in resource-constrained environments is well accepted, efforts in cre-
ative implementations continue to bear fruit. A particularly active area is that
of hardware implementations of elliptic curve operations, including hardware
description language developments, programmable hardware realizations, and
fabricated custom circuits. Kim, et al, [1] introduce a hardware architecture to
take advantage of a nonconventional basis representation of finite field elements
to make point multiplication more efficient. Moon, et al, [2] address field multi-
plication and division, proposing new methods for fast elliptic curve arithmetic
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appropriate for hardware. Goodman and Chandrakasan [3] tackle the broader
problem of providing energy-efficient public-key cryptography in hardware while
supporting multiple algorithms, including elliptic curve-based algorithms. Mov-
ing closer to applications of elliptic curve cryptography (ECC), Aydos, et al, [4]
have implemented an ECC-based wireless authentication protocol that utilizes
the elliptic curve digital signature algorithm (ECDSA).

We present a VHDL1 design that incorporates optimizations intended to
provide elliptic curve-based digital signature generation with as little power,
space, and time as possible. These three primary objectives of power, size, and
speed must be balanced along with other important goals, including flexibility
of the hardware (e.g., support of a class of elliptic curves) and ease of use (e.g.,
doesn’t require the user to supply or interpret complex parameters). Currently,
the highest-level function offered by our hardware design is digital signature gen-
eration. Our elliptic curve parameters are defined over the finite field GF (2178),
which gives security roughly equivalent to that provided by 1500-bit RSA signa-
tures2. As we don’t currently have hardware and therefore explicit power mea-
surements, the emphasis of this paper is on a design that reflects many choices
promoting a low-power outcome. In addition to the obvious goal of minimizing
the number of gates, the speed of execution is critical to power consumption since
power can be removed from circuits as soon as they complete their functions.

ECC solutions are well-known for their suitability in smart-card applications
and wireless communications security. Our work was motivated by the need
to reduce the resources required to provide strong public-key authentication
for sensor-based monitoring systems and critical infrastructure protection. For
these applications, signature generation is often performed in highly constrained,
battery-operated environments, whereas signature verification is performed on
desktop systems with only the typical constraint of purchasing power. Hence, our
hardware design focused primarily on the signature generation, with signature
verification to follow. Here, we present a chip design represented in VHDL of the
best to date, in our minds and for our applications, digital signature generation
solution for low-power, resource-constrained environments.

In Section 2, we start with the selection of an El Gamal digital signature
variant that minimizes the number of operations necessary for signature genera-
tion. Section 3 presents algorithmic optimizations of the computational elements
necessary to compute a digital signature. We note that many of these elements

1 VHDL stands for VHSIC Hardware Description Language, where VHSIC stands for
Very High Scale Integrated Circuit.

2 The number of computer instructions to factor a number, N , is estimated as
0.018e(1.923 3

√
logN(loglogN)2). The multiplier 0.018 is selected to give a figure of 10,000

MIPS-years to factor a 512-bit number. The number of elliptic curve operations
(point addition or halving) to solve a discrete log problem (and discover a secret
signing key, or forge a signature on a given message) is roughly the square root of
the group size. Our group size is about 2177 so the breaking work is about 288.5 curve
operations. Assuming 1, 000 computer instructions per elliptic curve operation, this
number of instructions would factor a 1570-bit number.
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can be applied to other elliptic curve algorithms over GF (2m). The focus of
this paper is on the implementation of highly-optimized versions of these core
operations. Section 4 presents the VHDL implementation of the digital signa-
ture algorithm and elliptic curve arithmetic operations. In Section 5, we provide
results of the number of gates and time required to generate a digital signature
and perform many of the underlying primitive functions that might be used in
an elliptic curve coprocessor.

2 The ‘Optimal El Gamal’ Authentication Algorithm

2.1 Optimal El Gamal Scheme

The signature algorithm is the Optimal El Gamal digital signature scheme
adapted for use with elliptic curves (see [5], [6] for original description and se-
curity proofs). For an introduction to elliptic curves see [7]. This variant of the
El Gamal algorithm was chosen because it avoids the computationally expensive
modular reciprocal during signature generation and verification.

Parameters. The public parameters for the Optimal El Gamal Signature
scheme are (E,G,W, r) where E is a choice of an elliptic curve, G ∈ E is a
point of large order, r, and W = sG is the public key where s (1 < s < r) is the
long-term private key. We assume that the public key parameters and a common
hash function are available to all relevant algorithms.

We denote by xP (resp. yP ) the x−coordinate of a point P ∈ E (resp.
y−coordinate).

Alg. 1 Elliptic Curve Optimal El Gamal Signature Generation

Input: Private Key, s; Message, M Output: Signature (c,d) of M

1. Generate a key pair (v, V = vG), where v �= 0 is a randomly chosen integer
modulo r

2. Compute c ≡ xV (mod r); If c = 0, then go to Step 1
3. Let f = Hash(M). Compute an integer d = (cfs + v) (mod r); If d = 0,

then go to Step 1
4. Output the pair (c, d) as the signature

Although our current chip design does not include signature verification, we
describe the algorithm for completeness. Most of the optimizations presented
later in the paper will benefit signature verification as well as generation.
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Alg. 2 Signature Verification
Input: Signature (c,d) on Message M Output: Accept/Reject

1. If c �∈ [1, ..., r − 1], or d �∈ [1, ..., r − 1], output “Reject” and stop
2. Compute f = Hash(M)
3. Compute the integer h = cf (mod r)
4. Compute an elliptic curve point P = dG − hW ; If P = O, output “Reject”

and stop
5. Compute c′ ≡ xP (mod r)
6. If c′ = c, then output “Accept”

We note that anyone can forge a signature on a message that hashes to 0.
However, inverting the hash to find such a message is thought to be computa-
tionally infeasible.

3 Algorithmic Optimizations

The field of definition for the elliptic curve is important since it is the basis for
all elliptic curve operations. Generally the curve is defined over either GF (p)
for some large prime p, or GF (2m). Since the arithmetic in the latter field is
much faster, that was our choice. In particular, we use the field GF (2178). One
reason for choosing this field is to make use of optimizations that can be derived
from the fact that it can be realized as a field tower: GF (2178) = GF ((289)2).
In the case of characteristic two fields, the equation for the elliptic curve can
be given by E : y2 + xy = x3 + ax2 + b. For simplicity and saving on storage,
we assume that a = (1, 0). This is useful since the point addition algorithms
use a but not b so we don’t need to store b (it is implied by the coordinates
of the generating point). Further, we exploit properties of GF (289) to reduce
some of the basic arithmetic operations (e.g. squaring, square root) to simple
XOR gates which are very fast in hardware. The ‘almost inverse’ algorithm in [8]
is especially fast for smaller degree fields. Finally, we modify our elliptic curve
multiplication algorithm to use point halving [9,10] which offers a savings over
the usual point doubling.

3.1 Finite Field Arithmetic and Field Towers

Our first optimization involves field towers, which simplifies all underlying op-
erations. The finite field is

GF (2m) ∼= GF (2)[x]/f(x)={a0+a1x+· · ·+am−1x
m−1(mod f(x)) | ai ∈ GF (2)}

where f(x) is an irreducible binary polynomial of degree m. An element a ∈
GF (2m) can therefore be represented as an m−tuple a = (a0, a1, ..., am−1) of
zeros and ones. Addition of two elements is a bitwise exclusive-OR (XOR) op-
eration:

a, b ∈ GF (2m), a+ b = (a0 ⊕ b0, a1 ⊕ b1, ..., am−1 ⊕ bm−1)
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and multiplication is like a plain multiplication without any carries but with
the XOR accumulation only. The result of the multiplication must, however, be
reduced by the field polynomial f(x). As the degree m of the field gets large, the
multiplication can become time-consuming and the representation of the num-
bers can become cumbersome. For a general reference on finite field arithmetic,
see [11].

Ifm is a composite number, we can use field towers to speed-up the computa-
tions. Suppose m = ns. Then we can think of GF (2m) = GF ((2n)s) as a degree
s extension of GF (2n). The elements are a ∈ GF (2m), a = (α0, α1, ..., αs−1),
where αi ∈ GF (2n).

For this work, we use the finite field GF (2178) and the corresponding field
tower GF ((289)2). Our choice of irreducible polynomial for GF (289) over GF (2)
is f(u) = u89 + u38 + 1, and the irreducible polynomial we use for GF ((289)2)
over GF (289) is g(V ) = V 2 + V + 1. We note that this field is not susceptible
to known attacks on elliptic curves over composite degree fields (see [12]). Using
a trinomial for the field polynomial over GF (289) makes the modular reduction
easy and also helps with squaring, square root, Qsolve, and the finishing step in
the almost inverse algorithm.

3.2 Finite Field Algorithms

As elements of GF (2178) are represented as pairs of GF (289) elements, all al-
gorithms can be described using the arithmetic over GF (289). While some of
our optimizations are for general fields, some are specific to our chosen field. We
first describe any optimizations over GF (289) and then give algorithms for the
extension to GF (2178).

Algorithms over GF (289). Unlike the situation with real numbers, squar-
ing and square-rooting are one-to-one operations in characteristic 2 finite fields.
Every field element has a single unique square root and square. The following
algorithms are specific to GF (289) with field polynomial f(u) = u89 + u38 + 1.
In the case of squaring, square root, and solving the equation a = z2 + z for
z (which we call “QSolve”), we note that the algorithmic descriptions can be
reduced to simple XORs of the input bits.

Alg. 3 Squaring
Input: a = (a00, ..., a88) ∈ GF (289)
Output: z = (z00, ..., z88) ∈ GF (289) where z = a2

z even bits: z00 − z36 : z2n = an ⊕ an+70

z38 − z74 : z2n = an ⊕ an+51

z76 − z88 : z2n = an

z odd bits: z01 − z37 : z2n+1 = an+45

z39 − z87 : z2n+1 = an+45 ⊕ an+26
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Alg. 4 Square Root
Input: a = (a00, ..., a88) ∈ GF (289)
Output: z = (z00, ..., z88) ∈ GF (289) where z =

√
a

z00 − z12 : zn = a2n ⊕ a2n+51 ⊕ a2n+13

z13 − z18 : zn = a2n ⊕ a2n+51 ⊕ a2n+13 ⊕ a2n−25

z19 − z31 : zn = a2n ⊕ a2n+13 ⊕ a2n−25

z32 − z37 : zn = a2n ⊕ a2n−63 ⊕ a2n+13 ⊕ a2n−25

z38 − z44 : zn = a2n

z45 − z63 : zn = a2n−89

z64 − z82 : zn = a2n−89 ⊕ a2n−127

z83 − z88 : zn = a2n−89 ⊕ a2n−127 ⊕ a2n−165

Quadratic Solve. We developed a special circuit for computing QSolve with
a relatively small number of XOR gates (387) and depth (35). The full circuit
and detailed derivation are in [13].

Alg. 5 Qsolve
Input: a = (a00, ..., a88) ∈ GF (289)
Output: z = (z00, ..., z88) ∈ GF (289) where a = z2 + z

Except for odd z in the range z01 − z19 (which are computed directly),
the bits of z are computed from the following equations:

a even bits: a00 − a36 : a2n = z2n ⊕ zn ⊕ zn+70

a38 − a74 : a2n = z2n ⊕ zn ⊕ zn+51

a76 − a88 : a2n = z2n ⊕ zn
a odd bits:

a01 − a37 : a2n+1 = z2n+1 ⊕ zn+45

a39 − a87 : a2n+1 = z2n+1 ⊕ zn+45 ⊕ zn+26

This derivation uses several observations to reduce the number of gates.

1. QSolve is linear, so we could precompute QSolve(uN ) for each N . The run-
time circuit XORs together the appropriate subset for a general polynomial
(see [14] for one method of doing the precomputation). This is fast, but uses
a lot of gates. We traded speed for size, getting a slower but smaller circuit.

2. We reduced the number of required QSolve(uN ) values by removing some
powers of u from the problem. For example, the substitution QSolve(u2N )
⇒ uN + QSolve(uN ) eliminates even powers of u. The substitution uN ⇒
uN−38 + uN+51 removes some odd powers of u. After repeated substitutions
like these, QSolve(uN ) is only needed for odd N in the range 1...19.

3. Only some of the answer bits are required: zodd in the range z01...z19. This
reduces the number of gates considerably. The remaining bits can be recov-
ered by solving the bit equations for QSolve. For example, we compute z45
from the equation a01 = z01 ⊕ z45.
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4. We assume that a00 is equal to a51. The actual value of a00 is ignored.
Furthermore, z00 is irrelevant, and is set equal to 0.

Our minimal size QSolve circuit used only 287 XOR gates, but had depth
65. We moved back from this extreme point on the speed-size tradeoff curve to
a circuit with 387 XOR gates and depth 35.

Division. Inversion over GF (289) is performed with an “almost inverse” algo-
rithm [8]. Division is a reciprocal followed by a multiply.

Algorithms over GF (2178). We consider GF (2178) as a degree two extension
of GF (289) with field polynomial V 2 + V + 1. Elements of ω ∈ GF (2178) are
pairs of elements from GF (289). So ω = (u1, v1) where u1, v1 ∈ GF (289); i.e.
ω = u1V + v1 where V 2 = V + 1. The algorithms from GF (289) are extended
to GF (2178) in the obvious way. We give here some examples where some opti-
mizations have been made.

Alg. 6 Multiplication GF (2178)
Input: x = (u1, v1), y = (u2, v2); Output: z = x ∗ y = (u3, v3)

1. u3 = (u1 + v1)(u2 + v2) + v1v2
2. v3 = u1u2 + v1v2

Alg. 7 Inversion GF (2178)
Input: x = (u1, v1); Output: x−1 = (u2, v2)

1. u2 = u1
(u1+v1)2+u1v1

2. v2 = u1+v1
(u1+v1)2+u1v1

Alg. 8 Squaring GF (2178)
Input: x = (u1, v1); Output: x2 = (u2, v2)

1. u2 = u21
2. v2 = u21 + v21

Alg. 9 Square Root GF (2178)
Input: x = (u1, v1); Output:

√
x = (u2, v2)

1. u2 =
√
u1

2. v2 =
√
u1 +

√
v1

Alg. 10 Qsolve GF (2178)
Input: a = (u1, v1); Output: z = (u2, v2) such that a = z2 + z



A Low-Power Design for an Elliptic Curve Digital Signature Chip 373

1. u2 = Qsolve(u1) (per Alg. 5)
2. Set t = u1 + v1 + u2 = t0t1...t88
3. If t0 ⊕ t51 = 1, then u2 = u2 + 1 and t = t+ 1
4. v2 = Qsolve(t)

In both GF (289) and GF (2178), only half of the field elements, a, have a
corresponding solution, z. Moreover, when z is a solution, so is z + 1. In step 3
of Algorithm 10, we choose the Qsolve solution u2 so that t can be Qsolved in
step 4.

3.3 Point Halving Algorithm

The slowest part of the signature algorithm is the multiplication of points. We
modified the point multiplication algorithm to use a point halving algorithm in
place of a doubling algorithm. The idea of “halving” a point P = (xP , yP ) is
to find a point Q = (xQ, yQ) such that 2Q = P . Note this is the inverse of
the point doubling problem. The point halving can nevertheless be used in our
algorithm by a simple adjustment on the base point of the elliptic curve used.
The algorithm offers a speed-up in software of a factor of about two to three
over the point doubling algorithm. We follow the algorithm of [9].

For this algorithm we sometimes write the coordinates of the points P ∈ E as
(xP , rP ) where rP = xP /yP . In fact, we use the (xP , rP ) form whenever possible,
but the input and output of the point addition algorithm need the Y coordinate,
so the halving algorithm must handle Y outputs and inputs. When the yQ output
is not required, the point halving algorithm needs only one field multiplication. It
is most efficient when point halvings are consecutive. Our signed sliding window
multiplication method uses about five halvings between additions.

Alg. 11 Point Halving over GF (2m)
Input: P ∈ E Output: Q = 1

2P ∈ E
1. Mh = Qsolve(xP + a), where a is the curve parameter
2. T = xP ∗ (Mh + rP ) or T = xP ∗Mh + yP

3. If parity(T and tm)= 0, then Mh =Mh + 1; T = T + xP

Here tm is a mask that depends upon the modulus polynomial. In our case,
tm = (u51 + 1, 0).

4. xQ =
√
T

5. rQ =Mh + xQ + 1
6. If needed, yQ = xQ ∗ rQ

3.4 Sliding Window Multiplication with Precomputation

The computation of elliptic curve multiplication, nP , is performed using a
4-bit signed sliding window algorithm [8]. The table of precomputed values
{1, 3, 5, 7}G are stored and the circuit automatically computes the negatives
{−1,−3,−5,−7}G as needed on the fly. On average there are 5 halvings per
addition.
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4 Hardware Architecture and Design

The hardware design is a full VHDL implementation of the Elliptic Curve Opti-
mal El Gamal Signature algorithm that can be targeted to a Field Programmable
Gate Array (FPGA) or an Application Specific Integrated Circuit (ASIC). The
implementation is a VHDL Register-Transfer-Level design. The goal is to maxi-
mize speed and functionality while conserving area and therefore power.

The overall strategy was first to develop a set of basic GF (2m) arithmetic
blocks (in VHDL) that would be used throughout the design. Basic building
blocks include addition, multiplication, reciprocal, squaring, etc. The design was
then built with these blocks to create the full algorithm implementation for
point addition, point halving, point multiplication, and signature generation.
The VHDL implementation was created using a bottom-up approach. This al-
lowed a great deal of flexibility throughout the development. As algorithms were
improved and/or optimized, the design was easily adaptable.

4.1 Hardware Implementation

The VHDL implementation consists of mapping algorithms discussed in the
previous sections to hardware functions and optimizing area and speed, where
possible, while allowing user flexibility.

The hardware was organized into four functional design blocks (Fig. 1). The
control block contains all the I/O interface circuitry and controls the flow of the
digital signature algorithm. The remainder is used for modular reduction in the
signature as well as in the pseudo-random number generation process. The SHA-
1 hash function serves a dual purpose in hashing the input message and creating
the pseudo-random number required for signature generation. The signature
algorithm block controls and performs the actual signing of the message.

Fig. 1. Top Level Architecture.

4.2 Command, Configuration, and Control

The command, configuration, and control circuitry is responsible for all the high-
level control and configuration of the device. It controls the external interface
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to the chip, message input and signature output, random number generation
control, power management, and algorithm flow control.

The external I/O interface to this chip is intended to hang off of a micro-
processor bus. There is a 16-bit address bus, an 8-bit data bus, and control
signals. The device is intended to be used as a memory-mapped device in which
communication to the device is via a read and write interface similar to that of
random access memory (RAM). In addition, there are interrupt signals that are
used to indicate to the host system signature status, error status, and signature
completion (Fig. 2).

Fig. 2. Secure Signature Generation Chip Interface

The architecture gives the end user a great deal of flexibility. The device
can be used in conjunction with any microprocessor that contains a memory-
mapped interface. Within the chip, there is a memory map for a full suite of
initialization, configuration, result, and status registers. In this respect, the as-
pects of the signature algorithm are programmable. The following parameters
can be programmed (i.e. written) into the Secure Signature Generation Chip.

• Message (up to 512 bits at a time) or Message Digest (based on configuration)
• Generating Point on the Elliptic Curve, G = (xG, rG)
• Order, r, of the Point G
• Private Key, s
• Random Number (178 bits) or Random Seed (320 bits) (based on configu-

ration), used to generate the per-message nonce
• Configuration Variables (message format, random number format, sleep

mode, 1st Message, etc.)

In addition, the signature algorithm generates a set of variables that can be
polled (i.e. read).

• Public Key Output
• Output Signature (c, d)
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The power management circuitry (in the control section) is essentially a clock-
gating circuit that controls when a certain functional area is receiving a clock.
The power management is used on a function-by-function basis. That is, the
clock-gating follows the circuit function, and, when a circuit is not calculating a
value (i.e. idling), the clock to that respective circuit is disabled. This logic is used
to reduce overall power consumption by controlling the switching capacitance of
respective functional blocks.

4.3 Random Number Generation

There are two methods for generating the per-message nonce needed for the El
Gamal signature generation. The first is to simply input the random number via
the I/O memory mapped interface. This allows the user to use a true-random
number if so desired, but has the obvious overhead of needing to input that
random number for each message to be signed.

The second approach is to use the on-chip pseudo-random number generator.
This method follows the updated pseudo-random number generation algorithm
of the Digital Signature Standard [15]. This circuit uses the remainder circuit
and the hash function to create the pseudo-random number. The methodology
is to use two 160-bit seeds to create two independent 160-bit hash values. These
values are fed back into the random seed registers for further creation of pseudo-
random numbers. They are then concatenated together to produce a 320-bit
value, from which the remainder (mod r) is extracted. This value is then used
as a 178-bit random number.

4.4 Message Input

There are two methods for message input. The user can configure the device to
accept a 160-bit message digest. This allows the user to generate the hash of the
message and input the message digest via the memory-mapped interface. The
hashing overhead would be under user control.

Alternatively, the user can have the on-chip circuitry hash a raw input mes-
sage using SHA-1. The SHA-1 VHDL was implemented per FIPS Standard [16]
and computes a 160-bit message digest from the incoming message.

4.5 Signature Algorithm

The VHDL implementation of the Elliptic Curve Optimal El Gamal Signature
Algorithm is a direct implementation of the algorithm described in Section 2.
As with the full-chip implementation, the control circuit is responsible for oper-
ation of the algorithm and data flow between the various blocks. The multiply
and remainder functions exist to compute the products and modular reductions
needed in the signature. They are both simple ripple/shift implementations of
the mathematical operations. The block diagram is shown in Fig. 3.
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Fig. 3. Signature Algorithm Architecture

4.6 Hardware Optimizations

There were several design optimizations that were used to improve area and
performance. Some of the more prominent and significant improvements are
discussed below.

For multiplication in a finite field (Section 3.1), which operates with a simple
shift and add, the radix of the multiply was increased to 16. This allowed us
to perform the multiply in 4-bit fragments, which provided a dramatic speed
increase with a slight area penalty. This operation was a bottleneck in the design,
thus this improvement provided a speed-up of about a factor of two.

In the Almost Inverse Algorithm ([8], p.50), there were three optimizations
that were implemented. The 1st is a parallel degree comparator circuit, which
was optimized for both area and speed. The 2nd optimizes the search for a 1 in
the LSB of a variable by using a “look ahead” technique with 4-bit blocks before
defaulting to operating on the data 1 bit at a time. This increased speed with
a very small area penalty. In a similar manner, the 3rd optimization is applied
to the last step in the algorithm, which divides and shifts the result a variable
number of times. This too performs a “look ahead” using 8-bit data blocks before
defaulting to the single-bit implementation.

The Qsolve Algorithm 5 was parallelized and the depth of the XOR tree has
been reduced to increase the speed as described in Section 3.2.

The implementation of the SHA-1 algorithm has been optimized to use a
shift register for the main data storage, which reduced the area used, with a
corresponding increase in speed.

5 Hardware Design Results

This design has not been realized in silicon. However, the design has been synthe-
sized to a target CMOS 0.5µm, 5V library. It has also undergone static timing
analysis, timing simulations, and power analysis. The following is a summary of
results for this target library.
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Signature Generation Time Using a 20 Mhz System Clock:

• Initialization: 0.25 ms
(Necessary any time the Generating Point is initialized and/or changed)

• Signature Generation: 4.4 ms

Synthesized Gate Count Approximations (target library 0.5µm, 5V ,
25◦C) of major sub-blocks, where a gate is equivalent to a standard library
NAND Cell.

– Chip: 191, 000 Gates
• Control: 27, 000 Gates
• SHA-1: 13, 000 Gates
• Remainder: 6, 700 Gates
• Signature Algorithm: 143, 000 Gates

∗ Control: 15, 000 Gates
∗ Multiply: 6, 200 Gates
∗ Remainder: 6, 800 Gates
∗ Point Multiplication: 112, 000 Gates

· Register & Control: 30, 000 Gates
· Point Addition: 52, 000 Gates
· Point Halving: 29, 000 Gates

Critical Timing Path (Setup Timing) (target library 0.5µm, 5V ,
25◦C):

• Critical Setup Timing Path (register to register): 48 ns

The critical timing path is located at the Signature Algorithm Level in the com-
putation of cfs + u (mod r). Specifically, it is located in the subtract circuit
within the Remainder that computes the modulo r value for the signature. Op-
timizations are still being performed to improve timing critical paths that affect
the overall performance of the device.

Power Analysis and Estimation Using 20 Mhz System Clock (target
library 0.5µm, 5V , 25◦C):

– Dynamic Power Consumption Estimation: 150 mW
– Static (Idle) Power Consumption Estimation: 6 µW

The above numbers were generated using the Synopsys Power Compiler (power
analysis tool) which uses gate switching data (based on typical simulation re-
sults) to generate power estimates. These estimates are library dependent and
are based on the accuracy of the library models provided.

Please note that these design results (performance/speed, gate count, and
power estimation) are only applicable to the target hardware process technol-
ogy, which is not the most advanced technology available today, but was the
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most accessible and complete for this analysis. If one were to target a more ad-
vanced technology, the design would certainly improve in performance (speed),
area (gate count), and power consumption. Specifically, the Critical Setup Tim-
ing Path could significantly improve, thus improving the overall speed of the
chip. Using power P = V 2/R, where V=operating voltage and R=operating
resistance, which is fixed, lowering V from 5V to 3.3V (1.8V ) would result in
a 56%(87%) reduction in power consumption. At 1.8V , the estimated dynamic
power consumption is 19mW .

6 Conclusions

Low-power hardware implementations of public-key cryptography continue to
enable its use in resource-constrained environments. Wireless applications alone
will further drive this market. In this paper, our VHDL design takes advantage
of several optimizations of both finite field and elliptic curve arithmetic for the
specific function of digital signature generation. We use hardware techniques to
reduce the overall power consumption by switching the clock off to areas that
are not currently being used. This reduces the power by reducing the effective
switching capacitance of the clock. Our design has been successful in achieving
performance attributes that are attractive to low-power applications requiring
strong public-key authentication. Opportunities to further develop optimized im-
plementations of elliptic curve-based signature algorithms include the following.

1. Further utilization of extension fields.
2. Additional improvements to point multiplication.
3. Improvement of the worst case setup timing path.

Finally, since our main focus was minimizing power consumption, we note
that we have ignored the problem of side channel attacks. Countermeasures
against such attacks are important and should be the subject of future work.
Under the auspices of technology transfer, anyone interested in employing our
current and future developments in their application is encouraged to contact
the authors.

Acknowledgements. The authors would like to thank Mark Torgerson for
many useful discussions and comments.
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Abstract. The performance of elliptic curve based public key cryp-
tosystems is mainly appointed by the efficiency of the underlying finite
field arithmetic. This work describes two generic and scalable archi-
tectures of finite field coprocessors, which are implemented within the
latest family of Field Programmable System Level Integrated Circuits
FPSLIC from Atmel, Inc. The HW architectures are adapted from
Karatsuba’s divide and conquer algorithm and allow for a reasonable
speedup of the top-level elliptic curve algorithms. The VHDL hard-
ware models are automatically generated based on an eligible operand
size, which permits the optimal utilization of a particular FPSLIC device.

Keywords. Elliptic Curve cryptography, GF(2n) arithmetic, Karatsuba
multiplication, VHDL model generator, coprocessor synthesis, FPGA
hardware acceleration, Atmel FPSLIC platform.

1 Introduction

Today there is a wide range of distributed systems, which use communication re-
sources that can not be safeguarded against eavesdropping or unauthorized data
alteration. Thus cryptographic protocols are applied to these systems in order to
prevent information extraction or to detect data manipulation by unauthorized
parties. Besides the widely-used RSA method [1], public-key schemes based on
elliptic curves (EC) have gained more and more importance in this context. In
1985 elliptic curve cryptography (ECC) has been first proposed by V. Miller [2]
and N. Koblitz [3]. In the following a lot of research has been done and nowa-
days ECC is widely known and accepted. Because EC methods in general are
believed to give a higher security per key bit in comparison to RSA, one can
work with shorter keys in order to achieve the same level of security [4]. The
smaller key size permits more cost-efficient implementations, which is of special
interest for low-cost and high-volume systems. Because ECC scales well over the
whole security spectrum, especially low-security applications can benefit from
ECC.

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 381–399, 2003.
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Each application has different demands on the utilized cryptosystem (e.g., in
terms of required bandwidth, level of security, incurred cost per node and number
of communicating partners). The major market share probably is occupied by
the low-bandwidth, low-cost and high-volume applications, most of which are
based on SmartCards or similar low complexity systems. Examples are given by
the mobile phone SIM cards, electronic payment and access control systems. In
case of access control systems, ECC allows to use one device and one key-pair
per person for the entire application. A very fine granular control is possible and
in contrast to present systems, which are mostly based on symmetric ciphers,
there is no problem regarding the key handling.

Depending on the application, the performance of genuine SW implementa-
tions of ECC is not sufficient. In this paper two generic and scalable architectures
of Finite Field coprocessors for the acceleration of ECC are presented. The first
one, which is mainly composed of a single combinational Karatsuba multiplier
(CKM), allows for a significant speed-up of the finite field multiplication while
spending only a small amount of HW resources. The second one is a finite field
coprocessor (FFCP), implementing field multiplication, addition and squaring
completely within HW. The proposed multi-segment Karatsuba multiplication
together with a cleverly selected sequence of intermediate result computations
permits high-speed ECC even on devices offering only approx. 40K system gates
of HW resources. A variety of fast EC cryptosystems can be built by disposing
the proposed system partitioning. Running the EC level algorithms in SW al-
lows for algorithmic flexibility while the HW accelerated finite field arithmetic
contributes the required performance.

Recently, Atmel, Inc. introduced their new AT94K family of FPSLIC devices
(Field Programmable System Level Integrated Circuits). This architecture inte-
grates FPGA resources, an AVR microcontroller core, several peripherals and
SRAM within a single chip. Based on HW/SW co-design methodologies, this
architecture is perfectly suited for System on Chip (SoC) implementations of
ECC.

The mathematical background of elliptic curves and finite fields is briefly de-
scribed in the following section. In Sec. 3 the architectures of the proposed finite
field coprocessors are detailed. Sec. 4 introduces the FPSLIC hardware platform.
Finally, we report on our implementation results give some performance numbers
and conclusions.

2 Mathematical Background

There are several cryptographic schemes based on elliptic curves, which work on a
subgroup of points of an EC over a finite field. Arbitrary finite fields are approved
to be suitable for ECC. In this paper we will concentrate on elliptic curves over
the finite field GF(2n)1 and their arithmetics only. For further information we
refer to [5] and [6].
1 In the context of cryptographic applications n should be prime, in order to be safe-

guarded against Weil decent attacks [7].
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EC-Double EC-Add

FF-AddFF-Mult FF-Square

k P

Fig. 1. EC arithmetic hierarchy

2.1 Elliptic Curve Arithmetic

An elliptic curve over GF(2n) is defined as the cubic equation

E : y2 + xy = x3 + ax2 + b (1)

with a, b, x, y ∈ GF(2n) and b �= 0. The set of solutions {(x, y) | y2 + xy =
x3+ax2+b} is called the points of the elliptic curve E. By defining an appropriate
addition operation and an extra point O, called the point at infinity, these points
become an additive, abelian group with O the neutral element. The EC point
multiplication is computed by repeated point additions such as

P + P + . . . + P + P︸ ︷︷ ︸
k times

= k · P = R

with k ∈ N and P, R ∈ E.
The hierarchy of arithmetics for EC point multiplication is depicted in Fig. 1.

The top level k·P algorithm is performed by repeated EC-Add and EC-Double
operations. The EC operations in turn are composed of basic operations in the
underlying finite field (FF). The proposed FF coprocessor (see Sec. 3.2 and
Sec. 5.2) is capable to compute the FF-Add and FF-Square operations within
one clock cycle. The operation FF-Mult is more costly. The number of clock
cycles for its computation depends on the particular architecture of the FF mul-
tiplier. Compared to FF-Add, FF-Square and FF-Mult the FF inversion is a
very expensive operation and is therefore not implemented in the coprocessor as
a basic operation. In order to avoid computing inverses, projective coordinates
are used during the computation of the EC operations. By exploiting a projec-
tive coordinate representation only one FF inversion is required to perform a
complete EC point multiplication. This single FF inversion has to be done at
the end of the k·P algorithm for the conversion back to affine coordinates.
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2.2 Finite Field Arithmetic

As previously mentioned, the EC arithmetic is based on a FF of characteristic
2 and extension degree n: GF(2n), which can be viewed as a vector space of di-
mension n over the field GF(2). There are several bases known for GF(2n). The
most common bases, which are also permitted by the leading standards concern-
ing ECC (IEEE 1363 [8] and ANSI X9.62 [9]) are polynomial bases and normal
bases. The representation treated in this paper is a polynomial basis, where
field elements are represented by binary polynomials modulo an irreducible bi-
nary polynomial (called reduction polynomial) of degree n. Given an irreducible
polynomial P (x) = xn +

∑n−1
i=0 pix

i, with pi ∈ GF(2); an element A ∈ GF(2n) is
represented by a bit string (an−1, . . . , a2, a1, a0), so that

A(x) =
n−1∑

i=0

aix
i = an−1x

n−1 + . . . + a2x
2 + a1x + a0

is a polynomial in x of degree less than n with coefficients ai ∈ GF(2). By
exploiting a field of characteristic 2, the addition is reduced to just XOR-ing the
corresponding bits. The sum of two elements A, B ∈ GF(2n) is given by

C(x) = A(x)⊕B(x) =
n−1∑

i=0

(ai ⊕ bi)xi (2)

and therefore takes a total of n binary XOR operations. The multiplication of
two elements A, B ∈ GF(2n) is equivalent to the product of the corresponding
polynomials:

C(x) = A(x) ·B(x) =
2n−2∑

i=0

cix
i denoting ck =

k∑

i=0

aibk−i for 0 ≤ k ≤ 2n− 2,

(3)

with ai = 0 and bi = 0 for i ≥ n. At the bit level the multiplication in GF(2) is
performed with boolean AND operation. Squaring is a special case of multipli-
cation. For A∈GF(2n) the square is given by:

A2(x) =
n−1∑

i=0

aix
2i. (4)

In the case of multiplication and squaring a polynomial reduction step has to be
performed, which is detailed in Sec. 2.

Karatsuba Multiplication. In 1963 A. Karatsuba and Y. Ofman discovered
that multiplication of two n bit numbers can be done with a bit complexity of less
than O(n2) using an algorithm now known as Karatsuba multiplication [10]. For
multiplication in GF(2n) the Karatsuba multiplication scheme can be applied as
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well. Therefore, a polynomial A ∈ GF(2n) is subdivided into two segments and
expressed as

A = A1x
n/2 ⊕A0 .

For polynomials A, B ∈ GF(2n) the n-bit multiplication C = A ·B is subdivided
into n/2-bit multiplications as follows:

C = A ·B
= (A1x

n/2 ⊕A0) · (B1x
n/2 ⊕B0)

= A1 ·B1x
n ⊕ (A1 ·B0 ⊕A0 ·B1)xn/2 ⊕A0 ·B0 .

By defining some additional polynomials

T1 = A1 ·B1

T2 = (A1 ⊕A0) · (B1 ⊕B0) = A1B0 ⊕A0B1 ⊕A1B1 ⊕A0B0

T3 = A0 ·B0

one gets A · B = T1x
n ⊕ (T2 � T1 � T3)xn/2 ⊕ T3 and since � and ⊕ are equal

in GF(2n)

A ·B = T1x
n ⊕ (T2 ⊕ T1 ⊕ T3)xn/2 ⊕ T3 . (5)

This results in a total of three n/2-bit multiplications and some extra additions
(XOR operations) to perform one n-bit multiplication.

Multi-segment Karatsuba Multiplication. The fundamental Karatsuba
multiplication for polynomials in GF(2n) is based on the idea of divide and
conquer, since the operands are divided into two segments. One may attempt
to generalize this idea by subdividing the operands into more than two seg-
ments. [11] reports on such an implementation with a fixed number of three seg-
ments denoted as Karatsuba-variant multiplication. The Multi-Segment Karat-
suba (MSK) multiplication scheme, which is detailed subsequently, is more gen-
eral because an arbitrary number of segments is supported. Disregarding some
slight arithmetic variations, the Karatsuba-variant multiplication is a special
case of the MSK approach.

Two polynomials in GF(2n) are multiplied by a k-segment Karatsuba mul-
tiplication (MSKk)2 in the following way: It is assumed that n mod k = 0; if
not, the polynomials are padded with the necessary number of zero coefficients.
A polynomial A ∈ GF(2n) is divided into k segments such that A =

⊕k−1
i=0 Ai ·x̂i,

with x̂ = xn/k. With Eqn. 6 holds C = A·B = MSKk(A, B) for any polynomials
A, B ∈ GF(2n):

MSKk(A, B) =

(
k⊕

i=1

Si,0(A, B) · x̂i−1

)

⊕
(

k−1⊕

i=1

Sk−i,i(A, B) · x̂i−1+k

)

(6)

with
2 A k-segment Karatsuba multiplication is subsequently termed as MSKk.



386 M. Ernst et al.

Sm,l(A, B) =

(
m−1⊕

i=1

Si,l(A, B)

)

⊕
(

m−1⊕

i=1

Si,l+m−i(A, B)

)

⊕Mm,l(A, B) , (7)

S1,l(A, B) = M1,l(A, B) and Mm,l(A, B) =

(
l+m−1⊕

i=l

Ai

)

·
(

l+m−1⊕

i=l

Bi

)

According to Eqn. 6 the entire product C = A ·B = MSKk(A, B) is composed
of the partial sums Sm,l(A, B). Each partial sum consists of partial products
Mm,l(A, B) according to Eqn. 7. The total number N(k) of required n/k-bit
multiplications in order to perform one n-bit multiplication using the MSKk

scheme is given by

N(k) =
k∑

i=1

i =
(k + 1) · k

2
. (8)

The application of the above equations for a MSK3 multiplication, made up of
six n/3-bit multiplications, is illustrated in the appendix of this paper.

Polynomial Reduction. For A, B ∈ GF(2n), the maximum degree of the
resulting polynomial C(x) = A(x) ·B(x) is 2n− 2. Therefore, in order to fit into
a bit string of size n, C(x) has to be reduced. The polynomial reduction process
modulo P (x) is based on the equivalence

xn ≡
n−1∑

i=0

pix
i mod P (x). (9)

Implementations of the reduction can especially benefit from hard-coded re-
duction polynomials with low Hamming weight such as trinomials, which are
typically used in cryptographic applications. Given such a trinomial as prime
polynomial P (x) = xn + xb + 1 the reduction process can be performed effi-
ciently by using the identities:

xn ≡ xb + 1 mod P (x)
xn+1 ≡ xb+1 + x mod P (x)

...
x2n ≡ xb+n + xn mod P (x)

This leads to

C(x) =
2n−2∑

i=0

cix
i

≡
n−1∑

i=0

cix
i +

2n−2∑

i=n

ci(xb+i−n + xi−n) mod P (x)
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=
n−1∑

i=0

cix
i +

n−1−b∑

i=0

ci+nxb+i +
n−1∑

i=n−b

ci+nxb+i +
n−1∑

i=0

ci+nxi

≡
n−1∑

i=0

cix
i +

n−1−b∑

i=0

cn+ix
b+i +

n−1∑

i=n−b

cn+i(x2b+i−n + xb+i−n) +
n−1∑

i=0

ci+nxi mod P (x)

=
n−1∑

i=0

cix
i

︸ ︷︷ ︸
(1)

+
n−1−b∑

i=0

ci+nxb+i

︸ ︷︷ ︸
(2)

+
b−1∑

i=0

c2n−b+ix
b+i

︸ ︷︷ ︸
(3)

+
b−1∑

i=0

c2n−b+ix
i

︸ ︷︷ ︸
(4)

+
n−1∑

i=0

cn+ix
i

︸ ︷︷ ︸
(5)

(10)

which results in a total of 2n+b binary XOR operations for one polynomial reduc-
tion. The particular terms (1...5) of the final equation are structured according
to Fig. 2 in order to perform the reduction. With respect to the implementation
in Sec. 3 a single n-bit register is sufficient to store the resulting bit string.

Result Register (n bit)

2n1 2nb

2nb1 n 2n1 2nb

n2n1

n1 0
(1)

(5)

(2) (4)

(3)

Fig. 2. Structure of the polynomial reduction

3 Hardware Architecture

An ideal HW/SW partitioning targeting a reconfigurable HW platform for an
EC based cryptosystem depends on several parameters. As stated before, the
FF arithmetic is the most time critical part of an EC cryptosystem. Depend-
ing on the utilized key size and the amount of available FPGA resources the
FF operations can not inevitably be performed completely within HW. There-
fore, flexibility within the HW design flow is essential, in order to achieve the
maximum performance from a specific FPGA device. In order to ensure this flex-
ibility, the HW design flow is based on the hardware description language VHDL,
which is the de-facto standard for abstract modeling of digital circuits. A VHDL
generator approach (similar to that one documented in [12]) was exploited to
derive VHDL models for both of the subsequently described FF coprocessors.
In Sec. 3.1 the combinational Karatsuba multiplier (CKM) is illustrated and
Sec. 3.2 details the architecture of the entire finite field coprocessor (FFCP).
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3.1 Combinational Karatsuba Multiplier (CKM)

As stated in Sec. 2.2 and shown in Fig. 3a the multiplication over GF(2) is com-
puted by a single AND operation. According to Eqn. 5 the multiplication of two
polynomials of degree m can be computed with three m/2-bit multiplications and
some XOR operations to determine interim results and to accumulate the final
result. This leads immediately to a recursive construction process, which builds
CKMs of width m = 2i for arbitrary i ∈ N (see Fig. 3). With slight modifica-
tions this scheme can be generalized to support arbitrary bit widths. Exploiting
the VHDL generator, CKM models for arbitrary m ∈ N can be automatically
generated.

To determine the number of gates that constitute an m-bit CKM, we take
a look at Fig. 4. In addition to the resources of the three m/2-bit multipliers,
2(m/2)=m 2-input XOR’s are needed to compute the sub-terms (A1⊕A0) and
(B1⊕B0) of T2. As can be seen from Fig. 4, 2(m/2−1)=(m−2) 4-input XOR’s
(light gray) and one 3-input XOR (dark gray) are in addition necessary to sum
up the product. Thus, we can calculate the number of gates of an m-bit CKM
with the following recurrences:

XOR2(m)=
{

0 m = 1
m + 3 ·XOR2(m/2) m > 1 XOR3(m)=

{
0 m = 1
1 + 3 ·XOR3(m/2) m > 1

AND2(m)=
{

1 m = 1
3 ·AND2(m/2) m > 1 XOR4(m)=

{
0 m = 1
m− 2 + 3 ·XOR4(m/2) m > 1

With the master method [13] it can easily be shown that all of these recur-
rences belong to the complexity class Θ(mlog2 3). Explicit gate counts for CKM
of various bit widths are summarized in the Tab. 1.

a 3 a 2 3b 2b

6
c

5c 4c 3c c
2

c
2

a 1 a 0 b1 b 0

1 0
ccc

0

a 0 b0

CKM2

CKM2

CKM2

a 1 a 0 b1 b0

c 1 c
0

CKM1 CKM1

CKM1

c) 4bit CKMb) 2bit CKMa) 1bit CKM

Fig. 3. Recursive construction process for CKM
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1

2

3

1 1

1 0 1

0 0

1m/21 m/21 m/2m/2

1

1

m/2

2m1

m/2B=B x  + B
A=A x  + A0

0

Fig. 4. Karatsuba multiplication

Table 1. CKM gate counts

Bit Width 1 2 4 8 16 32 64
AND2 1 3 9 27 81 243 729
XOR2 0 2 10 38 130 422 1330
XOR3 0 1 4 13 40 121 364
XOR4 0 0 2 12 50 180 602
SUM 1 6 25 90 301 966 3025

3.2 Finite Field Coprocessor (FFCP)

This section presents a generic and scalable FFCP architecture, which accel-
erates field multiplication, addition and squaring. Addition and squaring are
operations, which require only a few logical resources and hence can be imple-
mented by combinational logic. In contrast, the multiplication can not reasonably
be implemented by combinational logic only. By the use of the proposed MSK
multiplication scheme (see Sec. 2.2) and a cleverly selected sequence of interme-
diate result computations, the resulting datapath has only modest requirements
on logic resources and at the same time a low cycle count for a complete field
multiplication.

The datapath is build around a low complexity m-bit CKM as detailed in
Sec. 3.1, but of course any other multiplier design would also do. By application
of the sequential MSKk multiplication algorithm, k ·m bit wide operands can
be processed. With respect to the implementation in Sec. 5.2 and for reasons of
easy illustration we assume k = 5 in the following, but the scheme applies and
scales in a nice way for arbitrary k > 1.

Eqn. 6 evaluated for k = 5 (MSK5) is illustrated in Fig. 5a. Each rectangle
denotes the result of an m-bit multiplication. As one would expect, these prod-
ucts are as wide as two segments. The labels in the rectangles determine the
indices of the segments, whose sums have been multiplied. E.g., the label “234”
represents the term (A2⊕A3⊕A4) ·(B2⊕B3⊕B4), which is denoted M3,2(A, B)
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in Eqn. 7. The horizontal position of a rectangle denotes the exponent i of the
associated factor x̂i. E.g., the rectangle in the lower left edge labeled “4” together
with its position denotes the term (A4�B4) · x̂8. The result A�B is computed
by summing up (XORing) all the terms according to their horizontal position.
This product is 2k segments wide, as one would expect. The partial products
can be reordered as shown in Fig. 5b. This order was achieved in consideration
of three optimization criteria.

First, most partial products are added two times in order to compute the
final result. They can be grouped together and placed in one of three patterns,
which are indicated in Fig. 5b. This is true for all instances of the multi-segment
Karatsuba algorithm. In the datapath, these patterns are computed by some
additional combinational logic, which is connected to the output signals of the
CKM (see part (c) of Fig. 6).

Second, the resulting patterns are ordered by descending i of their factor x̂i.
In this way, the product can be accumulated easily in a shift register.

As the third optimization criterion the remaining degree of freedom is taken
advantage of in the following way: The patterns are once more partially re-
ordered, such that when iterating over them from top to bottom, one of the two
following conditions holds: Either the current pattern is constructed out of a
single segment product (e.g. A4 �B4), or the set of indices of the patterns seg-
ments differs only by one index from its predecessor (as in the partial products
(A0 ⊕ A1) · (B0 ⊕ B1) and (A0 ⊕ A1 ⊕ A2) � (B0 ⊕ B1 ⊕ B2)). In Fig. 5b this
criterion is met for all but one iteration step (namely it is not met for the step
from “23” to “1234”). Thus, based on the datapath in Fig. 6 the computation of
the partial product “1234” takes a total of two clock cycles, which is one more
compared to all other iteration steps. The number of additional clock cycles due
to the fact that this third criterion can not be met increases slowly with the
number of segments k.

x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂1 x̂02345678910

x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂ x̂1 x̂02345678910

b) A*BA*Ba)

1234

3

2

234

234
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23
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4

3

4
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12

01234

1
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2
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012
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012
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01
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0

4
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0123

01

012

0

01234

4

34
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3
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1 1

2 2
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Fig. 5. 5-Segment Karatsuba multiplication and operand reordering
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Fig. 6. Generic datapath architecture

By applying the third optimization criterion to the pattern sequence, the
partial product computations can be performed as follows: By placing m-bit
accumulator registers at the inputs of the CKM, the terms Mm,l(A, B) can be
computed iteratively. This results in a two stage pipelined design for the complete
datapath and yields a total of 17 clock cycles to perform one field multiplication
utilizing the MSK5.

The complete datapath is depicted in Fig. 6. In part a) the two operand reg-
isters of width l = k ·m are shown as well as their partitioning into five segments.
Both are implemented as shift-registers in order to allow data exchange with the
external controller. The multiplexors in part b) select one from the five segments
of the operands. They can both be controlled by the same set of signals, since
they are always operating synchronously. Besides the combinational addition
and squaring blocks, part c) illustrates the two accumulator registers. Both can
either be loaded with a new segment, or they can accumulate intermediate seg-
ment sums. Section d) of Fig. 6 consists of the CKM. Part e) covers the pattern
generation stage, which is mainly composed of multiplexors. Finally, in part f)
the multiplication accumulator register is shown. It can either hold its value or
the current pattern can be added to it in each cycle. Each time the intermediate
result is shifted left by m bit, an interleaved reduction step according to Eqn. 10
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Table 2. FFCP gate count

Datapath FF XOR2 AND2
3 MUX2:1 MUX3:1 MUX4:1

part a) 2l l

part b) 2m

2m + l+
part c) 2m 2n + b 2m

part e) m 2m 2m

part f) n 4m n

2m+ 7m + l+
SUM 2l + n 2n + b 2m 4m + n l 2m

n, b: according to
P (x)=xn+xb+1

m : CKM bit width
l : input Reg width

is performed. This way, the accumulator needs only to be n bits wide, where n
is the degree of the reduction polynomial. Furthermore, the necessary number of
logic elements for the reduction step is minimized and no additional clock cycle
is needed.

In order to reduce the amount of communication between the controller and
the FFCP, the result of the current computation is fed back to one of the operand
registers. Thus, interim results need not inevitably be transferred several times
between controller and FFCP.

Tab. 2 gives an overview of the amount of structural and logical components,
which are required to implement the proposed datapath (excluding the CKM
resources, please refer to Sec. 3.1 for the CKM implementation complexity).
The number of states of the finite state machine, which controls the datapath,
is in the order of Eqn. 8. Thus, logic resources for the FSM are negligibly small.

4 Atmel FPSLIC Hardware Platform

For the implementation of the previously detailed FF coprocessors the AT94K
FPSLIC hardware platform from Atmel, Inc. is used within this work [14]. This
product family integrates FPGA resources, an AVR 8-bit RISC microcontroller
core, several peripherals and up to 36K Bytes SRAM within a single chip. The
AVR microcontroller core is a common embedded processor, e.g., on SmartCards
and is also available as a stand-alone device. The AVR is capable of 129 instruc-
tions, most of which can be performed within a single clock cycle. This results
in a 20+ MIPS throughput at 25 MHz clock rate.

The FPGA resources within the FPSLIC devices are based on Atmel’s AT40K
FPGA architecture. A special feature of this architecture are FreeRam4 cells
which are located at the corners of each 4x4 cell sector. Using these cells results
in minimal impact on bus resources and by that in fast and compact FPGA
designs. The FPGA part is connected to the AVR over an 8-bit data bus. The
amount of available FPGA resources ranges from about 5K system gates within
the so-called µFPSLIC to about 40K system gates within the AT94K40.
3 MUX2:1 components with constant zero inputs have been optimized to AND2 gates.
4 Each FreeRam cell is organized as a 32x4 bit dual-ported RAM block.
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Both, the AVR microcontroller core and the FPGA part are connected to
the embedded memory separately. Up to 36K Bytes SRAM are organized as
20K Bytes program memory, 4K Bytes data memory and 12K Bytes that can
dynamically be allocated as data or program memory.

Atmel provides a complete design environment for the FPSLIC including
tools for software development (C Compiler), tools for hardware development
(VHDL synthesis tools) and a HW/SW co-verification tool, which supports the
concurrent development of hardware and software.

For the implementations detailed subsequently the Atmel ATSTK94 FPSLIC
demonstration board is used. This board comes with a AT94K40 device and is
running at 12 MHz clock rate. The FPGA part consists of 2304 logic cells and
144 FreeRam cells, which is equivalent to approx. 40K system gates.

5 Implementation

Three different prototype implementations were built in order to evaluate the
architectures detailed in Sec. 3. Due to the restrictions in terms of available
FPGA resources these implementations support 113 bit EC point multiplication
only. This is certainly not sufficient for high-security applications, but can be
applied in low-security environments.

The following sections present some implementation details and performance
numbers for a purely software based implementation, a design that is accelerated
with a 32-bit CKM and another one, which applies the FFCP. Furthermore an
extension to the FFCP design is proposed and performance numbers for this
extended version are estimated.

5.1 Pure Software without HW Acceleration

The software variant is entirely coded in assembler and has been optimized
regarding the following design criteria:

Table 3. SW performance values

Operation Bit Clock Cycles
Width Computation Overhead Total

FF-Mult 16 96 NA 96
FF-Mult 32 3 ∗ 96 = 288 131 419
FF-Mult 64 3 ∗ 419 = 1.257 383 1.640
FF-Mult 128 3 ∗ 1.640 = 4.920 489 5.409
FF-Square 128 340 NA 340
FF-Add 128 160 NA 160
FF-Reduce 113 420 NA 420
EC-Double 113 15.300 NA 15.300
EC-Add 113 25.200 NA 25.200
k·P 113 4.752.000 NA 4.752.000
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– High performance.

– Resistance against side channel attacks.

– Easy SW/HW exchange of basic FF operations.

Concerning the performance, special effort has been spent at FF level in opti-
mizing the field multiplication and reduction, which is the performance critical
part of the entire k·P algorithm. At the EC level the so-called 2P Algorithm
documented in [15] is utilized to perform the EC point multiplication. This
algorithm takes only 4 multiplications, 1 squaring and 2 additions in the un-
derlying FF for one EC-Add computation. One EC-Double takes only 2 multi-
plications, 4 squaring and 1 addition. Summing up, this k·P implementation is
about 2 times faster compared to standard Double-and-Add implementations.
Furthermore, the 2P Algorithm is inherently resistent against pertinent timing
resp. power attacks, since in every iteration of its inner loop both operations (EC-
Add and EC-Double) have to be computed, regardless of the binary expansion
of k. Thus, besides some pre- and postprocessing overhead, one k·P computation
over GF(2n) takes exactly n EC-Add and n EC-Double operations. At the FF
level countermeasures against side-channel attacks based on randomization and
avoidance of conditional branches are applied as well [16].

Tab. 3 summarizes the performance of the implementation on FF level as
well as on EC level. The analysis of the k·P algorithm identifies the field multi-
plication as the most time consuming operation, which amounts to about 85%
of the overall cycle count.

5.2 Hardware Acceleration

The subsequently detailed FPGA designs have been implemented by using the
design tools which are packaged with the utilized demonstration board. For
hardware synthesis this is Leonardo v2000.1b from Mentor, Inc. The FPGA
mapping is done with Figaro IDS v7.5 from Atmel, Inc. Also from Atmel, Inc.
there is the top-level design environment called System Designer v2.1, which is
required to build up the entire design based on the AVR and the FPGA part.

Acceleration Based on CKM. The genuine SW implementation can be ac-
celerated by utilizing a CKM as presented in Sec. 3.1, which is implemented in
the FPGA part of the AT94K40 device. Matching to the particular bit width m
of the raw CKM, two m-bit input registers and a 2m-bit output register is added
on the HW side. In order to allow a reasonable communication over the fixed
8-bit interface, the input registers are designed as 8-bit shift-in and parallel-out
registers. Accordingly, the output register is parallel-in and 8-bit shift-out.

Tab. 4 summarizes the performance of the combined HW/SW implementa-
tion based on a 32-bit CKM. The 32-bit CKM takes about 53% of the FPGA
resources. At the FF level this results in a speed-up of about 3 and for the k·P al-
gorithm there is still a speed-up factor of about 2.2 compared to the values given
in Tab. 3.
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Table 4. 32-bit CKM performance values

Operation Bit Clock Cycles
Width Computation Overhead Total

FF-Mult 32 1 16 17
FF-Mult 64 3 ∗ 17 = 51 383 434
FF-Mult 128 3 ∗ 434 = 1.302 489 1.791
EC-Double 113 8.100 NA 8.100
EC-Add 113 10.700 NA 10.700
k·P 113 2.201.000 NA 2.201.000

Table 5. FFCP performance values

Operation Bit FFCP Clock Cycles extended FFCP
Width best case worst case est. Clock Cycles

FF-Mult 113 32 152 19
FF-Add 113 16 136 3
FF-Square 113 1 91 3
EC-Double 113 493 53
EC-Add 113 615 85
k·P 113 130.200 16.380

The CKM architecture is of special interest for HW platforms offering only a
small amount of FPGA resources, such as the µFPSLIC (see Sec. 4). This device
is still sufficient for the implementation of an 8-bit CKM, which results in 3384
cycles for one 128-bit field multiplication. This is still a speed-up of about 1.6
compared to the genuine SW implementation.

Acceleration Based on FFCP. Utilizing the FFCP architecture detailed in
Sec. 3.2 instead of the stand-alone CKM design allows for a further significant
performance gain. For the implementation presented here, the particular de-
sign parameters are fixed to 113-bit operand width, 24-bit CKM and 5-segment
Karatsuba multiplication (MSK5). This results in a FPGA utilization of 96%
for the entire FFCP design.

Due to the fact that the result of each operation is fed back into one of the
operand registers, the cycle count of a particular operation (I/O overhead plus
actual computation) differs regarding to data dependencies. The corresponding
best- and worst-case value for each FF operation is denoted in Tab. 5.

Tab. 5 unveils that the major part of cycles is necessary to transfer 113-bit
operands over the fixed 8-bit interface between AVR and FPGA. These transfers
can be avoided almost completely with an additional register file on the FFCP
and an extended version of the finite state machine, which interprets commands
given by the software running on the AVR. Assuming a 2-byte command format
(4 bit opcode, 12 bit to specify the destination and the source registers) results
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in cycle counts according to the right column of Tab. 5. With respect to the
FPSLIC architecture and their special FreeRAM feature, such a register file can
be implemented without demand on additional logic cells. The extended version
of the FFCP is currently under development on our site.

5.3 Performance Comparison

There are several FPGA based hardware implementations of EC point multipli-
cation documented in the literature [12] [17] [18] [19]. The performance values of
these state-of-the-art implementations are given in Tab. 6. Additionally, Tab. 6
comprises the particular figures of the previously described FPSLIC based im-
plementations.

A performance comparison of hardware implementations against each other
is in general not straight forward. This is mostly because of different key sizes
and due to the fact that different FPGA technologies are used for their imple-
mentation.

A basically scalable HW architecture is common to all implementations
referenced in Tab. 6. In contrast to our SoC approach, the implementations
in [12] [17] [18] and [19] are mainly focusing on high-security, server based ap-
plications. Their functionality is entirely implemented within a relatively large
FPGA and no arrangements against side-channel attacks are documented.

In [12] and [17] the underlying field representation is an optimal normal ba-
sis. Both implementations are based on FPGAs from Xilinx, Inc. Furthermore,
VHDL module generators are used in both cases to derive the particular HW
descriptions. The approach in [17] allows for a parameterization of the key size
only. Parallelization, which is essential in order to achieve maximum performance
from a specific FPGA, is additionally supported by the design in [12]. For the
implementation in [17] a XCV300 FPGA with a complexity of about 320K sys-
tem gates is used. The design in [12] is based on a XC4085XLA device with
approx. 180K system gates.

The implementations in [18] and [19] are both designed for polynomial bases
and the field multiplications are in principle composed of partial multiplications.
The design in [18] is based on an Altera Flex10k family device with a complexity
of about 310K system gates. The architecture is centered around a w1-bit×w2-
bit partial multiplier. Due to the flexibility in w1 and w2 it is shown, that the
architecture scales well, even for smaller FPGA platforms. The best performing
implementation, representing the current benchmark with respect to k·P per-
formance, is described in [19]. It is highly optimized, exploiting both pipelining
and concurrency. The field multiplication is performed with a digit-serial multi-
plier. A Xilinx XCV400E FPGA with a complexity of about 570K system gates,
running at 76.7 MHz is used for the implementation. Compared to our design
this signifies a factor of more than 10 in space and a factor of about 6 in speed.
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Table 6. Performance comparison

Target Platform Bit Width k·P
FPGA (XCV300, 45 MHz) [17] 113 3.7 ms
FPGA (XC4085XLA, 37 MHz) [12] 155 1.3 ms
FPGA (EPF10K, 3 MHz) [18] 163 80.7 ms
FPGA (XCV400E, 76.7 MHz) [19] 167 210 µs
FPSLIC pure SW (AT94K40, 12 MHz) 113 396 ms
FPSLIC with 32-bit CKM (AT94K40, 12 MHz) 113 184 ms
FPSLIC with FFCP (AT94K40, 12 MHz) 113 10.9 ms
FPSLIC with ext. FFCP (AT94K40, 12 MHz) 113 1.4 ms (est.)

6 Conclusion

Speeding up the most time critical part of EC crypto schemes enables the use of
these methods within combined HW/SW systems with relatively low computing
power. Running the EC level algorithms in SW facilitates algorithmic flexibility
while the required performance is contributed by dedicated coprocessors.

Two generic and scalable architectures of FF coprocessors (CKM and FFCP)
which are qualified for SoC implementations have been illustrated in this pa-
per. While CKM supports only multiplication, the FFCP architecture imple-
ments multiplication, addition and squaring completely within HW. The pro-
posed multi-segment Karatsuba multiplication scheme, which is the core of the
FFCP architecture, permits fast and resource saving HW implementations. By
exploiting the presented coprocessor architectures a considerable speed-up of EC
cryptosystems can be achieved.
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Appendix: 3-Segment Karatsuba Multiplication

For any polynomials A, B ∈ GF(2n) the product C = A · B = MSK3(A, B)
using the 3-segment Karatsuba multiplication is according to Eqn. 6 given by:

MSK3(A, B) =

(
3⊕

i=1

Si,0(A, B) · x̂i−1

)

⊕
(

2⊕

i=1

S3−i,i(A, B) · x̂i+2

)
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= S1,0(A, B) x̂0⊕
S2,0(A, B) x̂1⊕
S3,0(A, B) x̂2⊕
S2,1(A, B) x̂3⊕
S1,2(A, B) x̂4

= M1,0(A, B) x̂0⊕
(S1,0(A, B)⊕ S1,1(A, B)⊕M2,0) x̂1⊕
(S1,0(A, B)⊕ S2,0(A, B)⊕ S1,2(A, B)⊕ S2,1(A, B)⊕M3,0(A, B)) x̂2⊕
(S1,1(A, B)⊕ S1,2(A, B)⊕M2,1(A, B)) x̂3⊕
M1,2(A, B) x̂4

= M1,0(A, B) x̂0⊕
(M1,0(A, B)⊕M1,1(A, B)⊕M2,0(A, B)) x̂1⊕
(M1,0(A, B)⊕ S1,0(A, B)⊕ S1,1(A, B)⊕M2,0(A, B)⊕M1,2(A, B)⊕
S1,1(A, B)⊕ S1,2(A, B)⊕M2,1(A, B)⊕M3,0(A, B)) x̂2⊕
(M1,1(A, B)⊕M1,2(A, B)⊕M2,1(A, B)) x̂3⊕
M1,2(A, B) x̂4

= M1,0(A, B) x̂0⊕
(M1,0(A, B)⊕M1,1(A, B)⊕M2,0(A, B)) x̂1⊕
(M1,0(A, B)⊕M1,0(A, B)⊕M1,1(A, B)⊕M2,0(A, B)⊕M1,2(A, B)⊕
M1,1(A, B)⊕M1,2(A, B)⊕M2,1(A, B)⊕M3,0(A, B)) x̂2⊕
(M1,1(A, B)⊕M1,2(A, B)⊕M2,1(A, B)) x̂3⊕
M1,2(A, B) x̂4

= M1,0(A, B) x̂0⊕
(M1,0(A, B)⊕M1,1(A, B)⊕M2,0(A, B)) x̂1⊕
(M2,0(A, B)⊕M2,1(A, B)⊕M3,0(A, B)) x̂2⊕
(M1,1(A, B)⊕M1,2(A, B)⊕M2,1(A, B)) x̂3⊕
M1,2(A, B) x̂4

with

M1,0(A, B) = A0 ·B0

M1,1(A, B) = A1 ·B1

M1,2(A, B) = A2 ·B2

M2,0(A, B) = (A0 ⊕A1) · (B0 ⊕B1)
M2,1(A, B) = (A1 ⊕A2) · (B1 ⊕B2)
M3,0(A, B) = (A0 ⊕A1 ⊕A2) · (B0 ⊕B1 ⊕B2)
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Abstract. Hyperelliptic curve cryptography with genus larger than one
has not been seriously considered for cryptographic purposes because
many existing implementations are significantly slower than elliptic curve
versions with the same level of security. In this paper, the first ever
complete hardware implementation of a hyperelliptic curve coprocessor
is described. This coprocessor is designed for genus two curves over F2113 .
Additionally, a modification to the Extended Euclidean Algorithm is
presented for the GCD calculation required by Cantor’s algorithm. On
average, this new method computes the GCD in one-fourth the time
required by the Extended Euclidean Algorithm.

1 Introduction

Hyperelliptic curves (HEC) are a generalization of elliptic curves and the first
suggestion of their cryptographic use was made by N. Koblitz at Crypto ’88
([10]). Elliptic curve cryptography (ECC) has received much attention because
it offers several benefits over other public-key cryptosystems, such as RSA. With
a higher security per bit than RSA, ECC allows for a comparable level of secu-
rity with a smaller key size. Additionally, many have reported ECC hardware
implementations require significantly fewer transistors.

This paper presents concrete performance results from a hardware-based
genus two hyperelliptic curve coprocessor over F2113 . Additionally, these per-
formance characteristics are compared to a software implementation over the
same field and curve.

The hardware version was implemented on a Field Programmable Gate Array
(FPGA). FPGAs allow programmers to input a logic structure which will be
emulated using the extensive set of gates available on the FPGA. These logic
structures are created using Hardware Description Language (HDL). In this
implementation, Verilog, a popular HDL, was used to describe the hardware.
From there, the Xilinx Integrated Software Environment was used to synthesize
and implement the logic design for a Xilinx Virtex II FPGA. Additionally, the
Modeltech Microsim simulator was used to verify the correctness of the design.
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A software version written in C++ was compiled using Microsoft’s Visual
Studio and tested on a Pentium system. Further results on the software imple-
mentation will be available in a forthcoming publication.

While no other complete hardware-based HEC coprocessor has been previ-
ously completed, [20] presents many of the architectural requirements. [20] did
not achieve a space-efficient implementation and consequently no accurate tim-
ing and area values were included. In contrast, this work presents a complete
implementation with accurate timing and area requirements.

Several theoretic results are also included. An alternate for computing the
GCD of three polynomials of small degree is presented, which significantly de-
creases processing time in Cantor’s Algorithm. The paper also presents a bound
on the expected computation time of point multiplication using a point adder
and a point doubler in parallel.

2 Basic Algorithms

This paper assumes the reader possesses a familiarity with groups, rings, and
fields, in addition to a basic understanding of elliptic curve cryptography. For
a complete review of abstract algebra, see [7] or [5]. For a background on the
mathematical concepts involved in elliptic curves, see [17] or [2].

Elements in the ECC group are pairs of finite field elements. The correspond-
ing group based on the hyperelliptic curve is its Jacobian. The points are de-
scribed by pairs of polynomials over a finite field. For a more rigorous treatment
of hyperelliptic curves, see [12].

This section develops the various algorithms used to handle binary operations
in finite fields, polynomial rings, and on the Jacobian of the hyperelliptic curve.
Additionally, some theoretic results on the processing time of certain algorithms
are derived.

2.1 Finite Fields

Using a polynomial basis over F2n , any finite field element can be represented as
coefficients of powers of x, which can be conveniently stored in memory as an
n-bit vector. Another basis called optimal normal basis (ONB) is also commonly
used because it allows for very efficient squaring; however, ONB is very slow
when performing inversions. This implementation uses polynomial basis.

Field Addition. When adding two field polynomials, their sum is the sum of
the coefficients. Under a characteristic two finite field, implementing addition
requires bitwise XOR-ing together the two vectors representing the polynomial
coefficients.

Field Multiplication. Multiplication can be efficiently achieved by using a
slightly modified version of the standard grade-school algorithm. A method for
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reducing the product as the algorithm progresses is required to prevent it from
growing too large, and is presented in Algorithm 1. An alternate field multipli-
cation algorithms originally presented in [19] multiplies D bits simultaneously,
requiring � n

D � clock cycles to complete; however, implementing such multipliers
in a hyperelliptic environment would not be area efficient enough to fit on most
FPGAs.

Algorithm 1: Field Multiplication

Input: a, b ∈ F2n , and reduction polynomial f
Output: c = a× b, with c reduced
1. c← 0
2. for i from n− 1 downto 1
3. if (bi = 1) then c← (c + a)� 1 else c← c� 1
4. if (shift carry = 1) then c← c + f
5. if (b0 = 1) then c← c + a
6. return c

Field Squaring. In a characteristic p finite field, (x1 + · · ·+xn)p = xp
1 + · · ·xp

n.
Hence when squaring in characteristic two, the powers of the basis terms double,
essentially spacing out the bits in the vector representation. For example, (x2 +
x+1)2 = x4+x2+1. After spacing the bits, the vector is twice its original length,
and the higher bits may need to be reduced. Algorithm 2 presents reassignment
of the lower bits, and reduction of the upper bits.

Algorithm 2: Field Squaring

Input: a ∈ F2n , and reduction polynomial f
Output: b = a2 ∈ F2n

1. g ← f � 1
2. Let b2i = ai, for 0 ≤ i ≤ �n

2 �
3. for i from �n

2 � to n-1
4. if (ai = 1) then b← b + g
5. if (gn−1 = 1) then g ← (g � 1) + f else g ← g � 1
6. repeat step 5
7. return b

Field Inversion. Inversion of finite field elements uses a modified version of the
Extended Euclidean Algorithm as reported in [6]. This version only keeps track
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of the minimal set of required information, and uses bit shifting with XOR. The
details are in Algorithm 3.

Algorithm 3: Field Inversion

Input: a ∈ F2n , and reduction polynomial f
Output: b = a−1 ∈ F2n

1. b← 1, c← 0, u← a, v ← f
2. While deg(u)�= 0
3. j ← deg(u) − deg(v)
4. if (j < 0) then u↔ v, b↔ c, j ← −j
5. u← u + (v � j), b← b + (c� j)
6. return b

2.2 Polynomial Rings

The set of all polynomials with coefficients in F2n forms a ring, and is denoted
F2n [u]. This section discusses the mathematical aspects of dealing with these
polynomials.

Ring Addition. Addition of two polynomials over a finite field equates to
adding each term of each coefficient. That is, to add two polynomials of degree
m, with ai, bi ∈ F2n

m−1∑

i=0

aiu
i +

m−1∑

i=0

biu
i =

m−1∑

i=0

(ai + bi)ui (1)

where ai + bi is field addition defined in Section 2.1.

Ring Squaring. Since a characteristic two finite field is being used, polynomial
squaring has the same property as when performing field squaring, where all odd
powers of u have a coefficient of zero. The result is b2i = a2

i , ∀ 0 ≤ i ≤ deg(a)
where a2

i is calculated as in Section 2.1.

Ring Multiplication. To multiply two ring elements, again defer to the grade-
school method. When multiplying a polynomial by a scalar in the field, multiply
each term of the polynomial by the scalar. To multiply two polynomials, extend
these steps to Algorithm 4.

Ring Division. When dividing two polynomials a and b, a quotient q and
remainder r are obtained, such that a = q × b + r. The algorithm required to
complete this is a slight modification of the Euclidean algorithm, and is presented
in Algorithm 5.
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Algorithm 4: Ring Multiplication

Input: a, b ∈ F2n [u]
Output: c = a× b ∈ F2n [u]
1. c← 0
2. for j from deg(a) downto 0
3. c← (c� 1) + aj × b
4. return c

× is scalar multiplication
� is polynomial coefficient shift

Algorithm 5: Ring Division

Input: a, b ∈ F2n [u]
Output: (q, r) ∈ F2n [u]: a = q × b + r

1. i← (bdeg(b))−1, r = a
2. for j from deg(a)− deg(b) downto 0
3. f ← (rdeg r × i)� j
4. t← b× f
5. r ← r + t, q ← q + f
6. return (q, r)

2.3 Hyperelliptic Curves

Hyperelliptic curves are a special class of algebraic curves. The following equation
defines a genus g hyperelliptic curve.

v2 + H(u)v = F (u) (2)

where F (u) is a monic polynomial of degree 2g + 1 and H(u) is a polynomial
with degree at most g. In this implementation, the ground field is F2113 , and it
uses the curve definition

v2 + uv = u5 + u2 + 1 (3)

whence g = 2, F (u) = u5 + u2 + 1, and H(u) = u.

Divisors. Divisors are pairs denoted div(A, B), where A and B are polynomials
that satisfy the congruence

B2 + H(u)B ≡ F (u) (mod A) (4)

Divisors are essentially points on the Jacobian of the hyperelliptic curve. Since
these polynomials could have arbitrarily large degree and still satisfy the equa-
tion, the notion of a reduced divisor is needed. In a reduced divisor, the degree of
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A is no greater than g, and the degree of B is less than the degree of A. Cantor’s
Algorithm includes a method for reducing divisors.

Additionally, div(A, B) can be normalized by multiplying A by α−1, where
α is the leading coefficient of A. Using normalized divisors speeds up several
portions of Cantor’s Algorithm.

Jacobian. The Jacobian of a hyperelliptic curve is the set of all reduced divisors.
This set is a group under the binary operation defined in the following section.
The largest prime dividing the size of this group determines the overall security
of the cryptosystem. For the implemented curve the largest prime dividing the
size of the group is sixty-eight digits long. This prime is much larger than the
current recommended value, and is therefore considered secure.

A more space efficient implementation could be achieved using different
curves over smaller fields, however the curve and field combination implemented
here is significantly more secure than other combinations of similar complexity.
A forthcoming publication, [4], expands the ideas presented here, and examines
performance results of genus two curves over other field sizes.

Cantor’s Algorithm. Originally presented in [3], Cantor’s Algorithm has been
the keystone of all computation on Jacobians of hyperelliptic curves. In [11],
Cantor’s original algorithm was modified for compatability with binary fields.
The Koblitz’s version of Cantor’s Algorithm is presented in Algorithm 6.

Algorithm 6: Cantor’s Algorithm

Input: reduced D1 =div(a1, b1), D2 =div(a2, b2)
Output: reduced div(a3, b3) = D1 + D2

1. Perform two extended GCD’s to compute
d = gcd(a1, a2, b1 + b2 + H) = s1a1 + s2a2 + s3(b1 + b2 + H)

2. a3 ← a1a2/d2

3. b3 ← (s1a1b2 + s2a2b1 + s3(b1b2 + F ))/d (mod a3)
4. while deg(a3) > g
5. a3 ← (F −Hb3 − b2

3)/a3

6. b3 ← −H − b3(mod a3)
7. return div(a3, b3)

The algorithm can be broken down into three independent steps. The first
step is computation of the extended GCD. The second is the composition step,
corresponding to steps two and three above. Steps four through seven corre-
spond to the reduction step. Improvements are discussed in each of the following
sections.
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Table 1. Genus Two GCD Computation Cases

d1 d2 d3 Result
x 0 −∞ d = 1, s = (0, 1, 0)
1 1 −∞ If γ1 = γ2 then d = u− γ2, s = (0, 1, 0)

Else d = 1, (s1, s2) = L(a1, a2), s3 = 0
2 1 −∞ If a1(−γ2) = 0 then d = u− γ2, s = (0, 1, 0)

Else d = 1, (s1, s2) = M(a1, a2), s3 = 0
2 2 −∞ Let D = d∆b −∆2

c where d = β1γ2 − β2γ1, ∆b = β2 − β1, ∆c = γ2 − γ1

If D �= 0 then d = 1, (s1, s2) = N(a1, a2), s3 = 0
ElseIf β1 = β2 then d = a1, s1 = (0, 1, 0)
Else d = u + ∆c∆

−1
b , s = (−∆−1

b , ∆b, 0)
x x 0 d = 1, s = (0, 0, 1)
x 0 1 d = 1, s = (0, 1, 0)
1 1 1 If γ1 = γ2 = γ3 then d = u + γ1, s = (0, 0, 1)

ElseIf γ1 �= γ2 then d = 1, s3 = 0, (s1, s2) = L(a1, a2)
Else d = 1, s2 = 0, (s1, s3) = L(a1, a3)

2 1 1 If γ2 �= γ3 then d = 1, s1 = 0, (s2, s3) = L(a2, a3)
ElseIf a1(−γ2) �= 0 then d = 1. s1 �= 0, s3 = 0 or s2 = 0.

(s1, s2) = M(a1, a2) or (s1, s3) = M(a1, a3)
Else d = u + γ2, s = (0, 0, 1).

x 2 1 a3 = u + γ3

If a1(−γ3) = a2(−γ3) = 0 then d = u + γ3, s = (0, 0, 1)
ElseIf a1(−γ3) �= 0 then d = 1, s2 = 0, (s1, s3) = M(a1, a3)
Else d = 1, s1 = 0, (s2, s3) = M(a2, a3)

L(a1, a2) = (−(γ2 − γ1)−1, γ2 − γ1)
M(a1, a2) = (−a1(−γ2)−1, a1(−γ2)−1u + (β1 − γ2)a1(−γ2)−1)

N(a1, a2) = ((∆b/D)u + (β2∆b −∆c)/D, (−∆b/D)u + (−β1∆b + ∆c)/D)

Extended GCD Calculation. Traditionally, the Extended Euclidean Algo-
rithm (EEA) is used twice to calculate the greatest common divisor of three
polynomials, resulting in d = s1a1 + s2a2 + s3a3 where a3 = b1 + b2 + H. How-
ever, for genus two curves with deg(H) ≤ 1, the degrees of a1, a2, and a3 are
maximally (and most frequently) 2, 2, and 1, respectively. Since a3 is of degree
one, it cannot be factored. Hence, the GCD of the original three polynomials
must be either 1 or a3. Similar arguments can be made for the other possible
degree cases. The complete proof of these results is not included in this paper,
but will be available in [4].

Table 1 shows a list of all the different cases for the degrees of a1, a2, and
a3 = b1+b2+H, and the explicit solution to the GCD and si values. For the cases
shown in Table 1, di = deg(ai), a1(u) = u2 + β1u + γ1, a2(u) = u2 + β2u + γ2,
and a3(u) = β3u + γ3. Additionally, assume that if deg(a2) > deg(a1), a1 and
a2 are swapped prior to computation.

Composition Step. The standard composition step in Cantor’s Algorithm
requires two polynomial divisions, in addition to a third in the form of modular
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reduction. In general, polynomial divisions are very time consuming in hardware.
However, for genus two curves, notice that d will almost always equal one. The
only occurance of degree one is when b1 + b2 + H exactly divides both a1 and
a2. Therefore, most of the time the two polynomial divisions can be completely
removed. Additionally, notice that four multiplications in the composition step
can be completed in parallel with the GCD to further increase speed.

Reduction Step. Consider the following:

Proposition 1. For any hyperelliptic curve of genus g, at most � g
2� reduction

iterations are required to completely reduce any semi-reduced divisor.

Proof. See [15], proof 51.

Corollary 1. Semi-reduced divisors of a genus two curve require at most a single
reduction iteration.

Given Corollary 1, the control logic for the reduction portion of Cantor’s
algorithm can be simplified. The while loop can be replaced with a single if
block. In [18], Nigel Smart presents an alternate reduction algorithm, based on
Tenner reduction. In a genus two case where only one reduction is required, this
algorithm is identical to the standard algorithm.

2.4 HEC Cryptosystems

As with most public-key cryptosystems, HEC cryptosystems are usually only
used for a symmetric key exchange, using the Diffie-Hellman protocol. Addition-
ally, they can be used to sign messages using the Digital Signature Algorithm
(DSA). For details on these algorithms, see [2].

Both algorithms involve scalar point multiplication (divisor P multiplied by
scalar integer k) on the Jacobian of the HEC, which is defined as adding P to
itself k − 1 times. Since k − 1 point additions is very slow, a square-and-add
approach called binary expansion can be used. Given k is expressed as a binary
vector, the bases can be calculated by repeatedly doubling P . Then for each 1 in
the binary representation of k, add the appropriate basis to a running total. On
average, this requires n doubles and n

2 adds, and can be efficiently implemented
using a point doubler and a point adder operating in parallel.

A point doubler is essentially a special case of a point adder where both inputs
are equal. Many multiplications can be replaced with squaring operations, which
are significantly faster because field squaring can be implemented very quickly.

Given it takes α time units to complete an add, and β time units to complete
a double, the statistical expected amount of time required to multiply a point
by an n-bit integer can be computed. For α < 2β, the time required is discussed
in Proposition 2.
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Proposition 2. Let Θ be an endomorphism of group G (e.g. the doubling map
for binary expansion). Let ki be statistically independent and not equaling 0 with
probability δ; α be the time to perform group addition; and β be the time required
to compute kiΘ

iP given Θi−1P , with δα < β and the two devices operating in
parallel. The expected time T to compute

(
n−1∑

i=0

kiΘ
i

)

P =
n−1∑

i=0

ki(ΘiP ) (5)

has a sharp upper bound of α2δ(1−δ)
2(β−αδ) + αδ + (n− 1)β.

Proof. The overall system can be modeled as a discrete time D/G/1 queue (see
[9]). Evaluation of the endomorphism corresponds to queue arrivals with deter-
ministic interarrival times X equal to β. For the service time process Y , each
queue departure is nonzero with probability δ and hence has service time α. The
following are the first and second order statistics for stochastic processes X and
Y :

E[X] = β Var(X) = 0 E[Y ] = αδ Var(Y ) = α2δ(1− δ) (6)

For a reasonably large n, the mean system waiting time, W , in equilibrium
converges in distribution to the mean system waiting time after (n − 1)β time
units due to the basic principles of renewal theory (see [9]). Therefore, T

d=
W + (n− 1)β. W can be easily bounded above by the Kingman Moment Bound
(see [1]).

W ≤ (1/E[X])(Var(X) + Var(Y ))
2(1− E[Y ]/E[X])

+ E[Y ] (7)

Substituting the statistics:

T
d= W + (n− 1)β ≤

1
β
(α2δ(1− δ))

2(1− αδ
β

)
+ αδ + (n− 1)β =

α2δ(1− δ)
2(β − αδ)

+ αδ + (n− 1)β

(8)

Notice that as αδ approaches β, the bound on the processing time goes to infinity.
This is because the queue length builds up indefinitely and the system is no
longer positive recurrent; the waiting time after (n − 1)β time units cannot be
approximated by the equilibrium distribution, and no general solution is possible
using this model.

Corollary 2. In the case where θ = [2] and G is the Jacobian of a hyperelliptic
curve: δ = 1

2 , α is the time to perform point addition, and β is the time to
complete point doubling, with α < 2β. Therefore the mean time T to perform a
point multiplication has a sharp upper bound of α2

8β−4α + α
2 + (n− 1)β
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3 Coprocessor Implementation

In order to effectively utilize FPGA area, the final coprocessor includes two
polynomial multipliers and one each of the other polynomial computation blocks.
A control unit is responsible for channeling data in and out of the computation
blocks, implementing Cantor’s algorithm.
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Fig. 1. Overall Coprocessor Architecture

3.1 Field Calculation Blocks

Since field addition is such a simple operation, a separate Verilog module was
not created to implement it.

Field multiplication is at the heart of most calculations, and therefore must
be done quickly and efficiently. Implemented in hardware, Algorithm 1 uses
combinatorial logic to compute ((c + a)� 1) + f , (c + a)� 1, (c� 1) + f , and
c� 1 and a multiplexor to select the correct result for a given iteration.

While an alternate multiplication design which processes multiple bits at a
time could be implemented, effectively making the coprocessor operate two to
three times faster, the extra area requirements are not physically realizable on
a Xilinx FPGA. These are known as D = X multipliers where X is the number
of bits that can be simultaneously computed.

For field squaring, Algorithm 2 step two is a rewiring, using no gates. If
the upper bits are zero (such as when squaring 1), the algorithm is complete.
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Otherwise, during each loop iteration, updating b and g can occur independently
and consequently during the same clock cycle. By considering two bits of g rather
than one, steps five and six can be combined using a multiplexor.

Field inversion is used in the polynomial GCD and polynomial division
blocks. Algorithm 3 is implemented as a finite state machine.

Table 2. Field Implementation Results

Module Clock Cycles Slices Max Speed
Field Multiplication 2 or 115 a 399 96 MHz

Field Squaring 2 or 59 b 186 124 MHz
Field Inversion 395 (avg) 1631 98 MHz

a When multiplying by zero or one, the result is immediate
b When squaring a field element of degree

⌊
n
2

⌋
or less, only reassignment is required

3.2 Polynomial Calculation Blocks

Polynomial blocks are collections of the appropriate field blocks combined to
implement various algorithms. The control structure only has access to polyno-
mial units; therefore, all functionality required by Cantor’s Algorithm must be
available through polynomial calculation blocks. Additionally, polynomials have
no maximum degree. The input size for each polynomial block was determined
by the maximal value of the intermediate states, and ensures there will be no
overflow problems.

The addition block accepts three input polynomials of maximum degree six,
and returns their sum. This requires 1582 XOR gates and is completely combi-
natorial.

The maximum degree ever encountered during multiplication for the first
input is five, and the second input is two. Therefore, the polynomial multiplier
must accommodate multiplication of a degree five polynomial by a degree two
polynomial. This requires each of six field multipliers to complete three multi-
plications, as demonstrated by Algorithm 4. The version implemented in this
design includes cases to check for multiplication by both zero and one, which
results in a two clock-cycle calculation.

The ring squarer accepts inputs with degree up to three, and returns polyno-
mials of maximal degree six. Its implementation consists of four field squarers,
operating in parallel.

Ring division is by far the most complex and time-consuming operation.
The number of required clock cycles greatly depends on the degrees of the two
input polynomials, which can range from zero to six for the numerator, and zero
to four for the denominator. The greater the difference in degree, the longer
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the processing takes. A special case of scalar multiplication by the inverse was
incorporated for a zero degree denominator.

Ring normalization makes a degree two polynomial monic by multiplying its
terms by the inverse of its leading coefficient. It is implemented using a field
inverter and two field multipliers.

C
O

N
T

R
O

L

C
O

N
T

R
O

L

+

X
+ −1

X

C3’

B1/B2

C1/C2

s1

s2

s3

z

y

s3 = yX + z
s1/s2 = y

A2(C3’)

A1(C3’)

+

+X

X

2C3’B3
C3 X

−1

C2
B2

B1
C1

d

Fig. 2. Dual Degree Two Case GCD Calculation Block

While all the cases described in Table 2 are significantly faster than using
the Extended Euclidean Algorithm for the GCD computations, the chip area
required to implementation all the cases is prohibitive. Therefore, only the final
case where d1 = d2 = 2 is implemented as shown in Figure 2, using two field mul-
tipliers, a field squarer, and a field inverter. For all other cases, the coprocessor
control subsystem uses the already existing polynomial logic blocks to perform
the Extended Euclidean Algorithm. Since the probability of having d1 < 2 or
d2 < 2 is small, the adverse performance effects are trivial.

Table 3. Ring Implementation Results

Module Clock Cycles Slices Max Speed
Ring Addition 1 791 83 MHz

Ring Multiplication 2 to 353 1,561 64 MHz
Ring Squaring 2 or 59 515 55 MHz
Ring Division 2 to 2,300 8,337 80 MHz
Ring GCD 1,270 (avg) 3,515 96 MHz
Ring Norm 615 (avg) 2,488 71 MHz

3.3 Control Implementation

Using the available polynomial computation blocks, a control block operated
by a finite state machine decides which data should enter each polynomial ring
unit, decides when the unit is done processing, and keeps track of intermediate
variables as Cantor’s algorithm progresses. The scheduling is programmed into
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the state machine. Since some computation blocks require a variable number of
clock cycles to complete, the control mechanism does not try to use a result that
has not yet been obtained, and it also does not waste time waiting for a result
that has already returned.

Two different control mechanisms were designed. The first is a finite state
machine which performs general point addition. The second is a finite state
machine which performs point doubling. The point doubler is not as simple as
the one described in [18] because the implemented curve uses H(u) = u rather
than H(u) = 1. The implementation results of both are included in the next
section.

4 Performance

Since the emphasis of this paper is on the hardware implementation, the software
implementation is not extensively discussed. The original intent of the software
version was to verify the correctness of the hardware version; however, an effort
was made to minimize both memory usage and runtime. On a Pentium III, 1.2
GHz, point addition, doubling, and multiplication can be completed in 1.97,
1.01, and 222 milliseconds, respectively.

Using the Xilinx ISE tools with target chip configured as the Virtex II FPGA,
the final implementation results for the hardware version are stated in Table 4.
Through both experimental tests and application of Corollary 2, point multipli-
cation can be achieved in 10.1 milliseconds. The smallest Xilinx device support-
ing the full point multiplication architecture using a parallel adder and doubler
is the Virtex II 2VP30, which has 30,816 slices.

Table 4. Hardware Implementation Results

Operation Clock Cycles Slices Max Speed Time
Point Addition 4,750 16,600 45 MHz 105 µs
Point Doubling 4,050 15,100 45 MHz 90 µs

5 Conclusion

By using many standard finite field algorithms, and an alternate method for com-
puting the GCD, this implementation is proof that HECC can be implemented
at speeds comparable to ECC, and realizable in areas suited for embedded ap-
plications.

An important thing to keep in mind when comparing these results to those of
ECC coprocessors implementing an equal level of security is the algorithm com-
plexity. Cantor’s algorithm operates over polynomials and not individual field
elements, which results in much higher FPGA area requirements. The timing
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results in Table 4 could easily be reduced by a factor of 10 by using a D = 16
field multiplier (such as in [16]); however, such a chip would have unreasonable
space requirements and not be physically realizable on most FPGA’s.

Future work on this project is expected at both the hardware and software
levels. We are interested in carrying the implementation forward and complet-
ing the ASIC level design and eventual fabrication of the chip. Additionally, we
are extending the implementation to use the τ -adic method for point multipli-
cation, as described in [8] and more extensively in [13]. We are also examining
implementations of a genus three curve over F261 , on a 64-bit system.
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Abstract. This paper presents a new True Random Number Generator
(TRNG) based on an analog Phase-Locked Loop (PLL) implemented in
a digital Altera Field Programmable Logic Device (FPLD). Starting with
an analysis of the one available on chip source of randomness - the PLL
synthesized low jitter clock signal, a new simple and reliable method
of true randomness extraction is proposed. Basic assumptions about
statistical properties of jitter signal are confirmed by testing of mean
value of the TRNG output signal. The quality of generated true random
numbers is confirmed by passing standard NIST statistical tests. The
described TRNG is tailored for embedded System-On-a-Programmable-
Chip (SOPC) cryptographic applications and can provide a good quality
true random bit-stream with throughput of several tens of kilobits per
second. The possibility of including the proposed TRNG into a SOPC
design significantly increases the system security of embedded crypto-
graphic hardware.

1 Introduction

Random number generators represent basic cryptographic primitives. They are
widely used for example as confidential key generators for symmetric key and
public-key crypto-systems (e. g. RSA-moduli) and as password sources. In some
algorithms (e.g. DSA) or protocols (e.g. zero-knowledge), random numbers are
intrinsic to the computation [1]. In all these applications, security depends
greatly on the randomness of the source.

Because security algorithms and protocols rely on the unpredictability of the
keys they use, random number generators for cryptographic applications must
meet stringent requirements. Unfortunately computers and digital hardware can
implement only pseudo-random generators. A Pseudo-Random Number Gener-
ator (PRNG) is a deterministic polynomial time algorithm that expands short
(hopefully true random and well distributed) seeds into long bit sequences, this
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c© Springer-Verlag Berlin Heidelberg 2003



416 V. Fischer and M. Drutarovský

distribution is polynomially indistinguishable from the uniform probability dis-
tribution. PRNGs rely on complexity and their use in cryptography, for example
to generate keys, is very critical. An alternative solution is to get true ran-
dom numbers, hence true security for crypto-systems, using a True Random
Number Generator (TRNG) based on a random physical phenomenon. Even an
ideal PRNG relies upon, and is limited by, the quality of its input seed data.
Good TRNG is designed to generate high-quality random numbers directly or
as a seed for PRNG. Current modern high-density Field Programmable Logic
Devices (FPLDs) provide a suitable hardware platform for a complete System-
On-a-Programmable-Chip (SOPC). This SOPC can be used for cryptographic
applications, even for system-level integration of embedded algorithms. Unfor-
tunately, high quality embedded TRNGs were not realizable in FPLDs. Most
hardware TRNGs follow unpredictable natural processes, such as thermal (re-
sistance or shoot) noise or nuclear decay. Such TRNGs are not compatible with
modern FPLDs and cannot provide a SOPC solution. The fact that TRNG can-
not be implemented inside the FPLD represents significant security and system
disadvantages in embedded cryptographic applications.

TRNGs can be produced using any non deterministic process. The funda-
mental probabilistic phenomena utilized by proposed TRNG is the frequency
instability of electronic oscillator. The use of this phenomena to generate truly
random numbers is not new and was used e.g. in [2], [3]. These implementations
used two free running oscillators with relatively high instability at least one of
them.

This paper describes implementation of new analog Phase-Locked Loop
(PLL) based TRNG that uses on-chip resources of recent Altera FPLD fami-
lies (e. g. APEX E [4], APEX II [5], etc.). Described TRNG uses two coupled
oscillators that are not free running and originally designed to be as stable as
possible. Proposed method reliably extracts intrinsic randomness from low-jitter
clock signals synthesized by on-chip analog PLL circuits and to our best knowl-
edge it is the first TRNG implementation that uses only on-chip FPLD resources.
This paper extends the description of the proposed method first announced in
[6], provides new results of tested output TRNG signals, reveals some deviations
from ideal TRNG, and discusses system aspects of proposed TRNG. It is orga-
nized as follows: a brief overview of jitter performance of analog PLL circuits
embedded in recent FPLDs is given in Sect. 2. In Sect. 3, a proposed new method
of reliable true randomness extraction from low jitter on-chip PLL synthesized
clock signal is presented. The experimental TRNG hardware used for the testing
of the proposed method is described in Sect. 4. In Sect. 5, statistical evaluations
of output TRNG signals are made. Finally, concluding remarks are presented in
Sect. 6.

2 PLL – Source of Randomness in Recent FPLDs

Recent FPLDs use often on-chip PLLs to increase performance of clock distribu-
tion and to provide on-chip clock-frequency synthesis. There are two fundamental
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approaches to implement PLL in FPLDs - one uses digital delay lines, or DLL,
(e.g. in XILINX Virtex FPLDs [7]) and the second one uses true analog PLL
(e.g. in Altera APEX E [4] and APEX II [5] FPLDs). Both approaches have
some system advantages and disadvantages but we believe that analog PLL is a
better candidate for cryptographic TRNG design since it contains analog source
of unpredictable randomness.

2.1 Analog PLL in Altera FPLD

To support high-speed designs, new Altera FPLD devices offer ClockLock, Clock-
Boost and ClockShift circuitry containing several integrated on-chip analog PLL
circuits. Block diagram of enhanced PLL sub-circuit available in latest versions
of APEX E and APEX II FPLDs is depicted in Fig. 1 [4], [5]. 
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Voltage-Controlled 
Oscillator  

ClockShift 
Circuitry  

Input 
Clock  FOUT1=FIN  
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FIN 

 

Fig. 1. Block diagram of enhanced Altera PLL circuit

In analog PLLs, various noise sources cause the internal voltage controlled
oscillator (VCO) to fluctuate in frequency. The internal control circuitry ad-
justs the VCO back to the specified frequency and this change is seen as jitter.
Under ideal conditions, the jitter is caused only by analog (non-deterministic)
internal noise sources. Such jitter is called an intrinsic jitter. Other possible
frequency fluctuations are caused by variations of supply voltage, temperature,
external interference through the power, ground, and even by the internal noisy
environment generated by internal FPLD circuits [7]. From cryptographic point
of view, these sources should be regarded as deterministic and the function of
TRNG must not be deteriorated by them. In other words, the output TRNG
must in any case depend also on the non-deterministic intrinsic jitter. Any ad-
ditional disturbing deterministic jitter is possible as far as dependency of the
output signal on intrinsic jitter is guaranteed.

2.2 Jitter Characteristics of Altera PLL Circuitry

Parameters of the proposed TRNG depend on the jitter characteristics of Altera
embedded PLLs. Real measurements of jitter parameters requires the use of
special equipment which was not available, so we had to rely on the parameters
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given in the Altera data sheets [4] and the application note [8]. Some of these
parameters have been independently confirmed by Xilinx and the results are
available in [7]. Since these parameters are fundamental for our TRNG design,
they are summarized and discussed in this subsection.

Altera tries to minimize the clock jitter1 by a proper design, for example
their typical analog intrinsic PLL jitter in an APEX FPLD has 1-sigma value
of σjit ≈ 15 ps (under Gaussian approximation, the peak-to-peak jitter value is
approximately tJITTER = 6σjit) for a F = 66.6 MHz synthesized clock signal and
multiplication factor of 2× [7]. Actual distribution of jitter values is depicted in
Fig. 2 [7]. These results were acquired under “ideal conditions”, with only a min-
imal amount of occupied FPLD resources and minimal input/output activities.

 

 

 
 

Fig. 2. APEX intrinsic jitter performance for 1,000 clock samples (bottom curve, peak-
to-peak value 97.0 ps, σjit ≈ 15.9 ps) and 1,000,400 clock samples (upper curve, peak-
to-peak value 151.4 ps, σjit ≈ 15.7 ps)

In [7] it was shown that the clock jitter in APEX FPLD is significantly higher,
when internal FPLD flip-flops are switching with different clock frequencies. It
was shown that when 35 % of the total available flip-flops were clocked with a 33.3
MHz clock and 35 % of the flip-flops with a 66.6 MHz clock, jitter is much higher
than that specified in the data-sheet. These conditions simulated an internal
noisy environment generated by internal FPLD circuits and jitter distribution
was split into two peaks with a 665 ps total peak-to-peak value [7]. Although
overall jitter performance exceeds data sheet specification, true intrinsic jitter
is still present and it is clearly visible as two approximated Gaussian peaks
have around 150 ps. We can conclude that under real conditions the clock jitter

1 There are two types of jitter described in [7], [8], period jitter and cycle-to-cycle
jitter. Period jitter is the deviation in time of any clock period from the ideal clock
period (also known as “edge-to-edge” jitter). Peak-to-peak jitter defines an upper
bound on the jitter. Cycle-to-cycle jitter is the deviation in clock period between
adjacent or successive clock cycles.



True Random Number Generator Embedded in Reconfigurable Hardware 419

always contains intrinsic jitter and only the overall jitter distribution is changed.
Such behavior is expected, since the intrinsic jitter cannot be removed by any
interference.

3 Randomness Extraction from an Intrinsic Jitter

The principle behind our method is to extract the randomness from the jitter of
the clock signal synthesized in the embedded analog PLL. The jitter is detected
by the sampling of a reference (clock) signal using a correlated (clock) signal
synthesized in the PLL. The fundamental problem lies in the fact that the refer-
ence signal has to be sampled near the edges influenced by the jitter. From the
previous section we know that clock edges of a synthesized signal can vary un-
der ideal conditions in the range of several tens of ps. This value is significantly
lower than the smallest delay obtainable in APEX FPLDs and our method must
overcome this problem.

3.1 Timing Analysis of the Logic Cell in Altera FPLD

The smallest possible delay in Altera FPLDs is obtainable between the carry-in
and carry-out of the Logic Cell (LC). A simplified timing model of the logic cell
is depicted in Fig. 3. 

tCLUT 

tC 

tCICO 

tLABCARRY

tSU 
tH 

CARRY-IN 

CARRY-OUT

CONTROL-IN 
DATA-OUT

tCLUT  – Look-up-table (LUT) delay for carry-in 
tSU  – Logic cell (LC) register setup time for data 
tH  – LC register hold time for data 
tC  – LC register control signal delay 
tCICO  – Carry-in to carry-out delay 
tLABCARRY – Routing delay for the carry-out signal of a LC     

driving the carry-in signal of a different LC in a 
different Logic Array Block (LAB).  

Fig. 3. Altera simplified logic cell timing model
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We have taken the parameters obtained from the Quartus II [9] version 2.0
timing analyzer as the basis for our method. From the result of this analysis we
can conclude that the smallest obtainable delay in APEX FPLDs is τ ≈ tCICO =
500 ps. The delay τ is only a statistical value and its real size can vary with time,
temperature and supply voltage.

3.2 Basic Principle of Randomness Extraction

The basic principle of the proposed randomness extraction is illustrated in Fig. 4
[6].  

 CLK 

PLL D 

CLK 

Q
CLJ x(nTQ)Decimator  

(KD) 

q(nTCLK)

 

Fig. 4. Basic principle of randomness extraction from low-jitter clock signal

Let CLK be a system clock signal with the frequency FCLK. In an actual
implementation CLK can be either an external signal or it can be internally syn-
thesized by an additional on-chip PLL. Let CLJ be an on-chip PLL-synthesized
rectangular waveform with the frequency FCLJ = FCLKKM/KD. Let values of
multiplication factor KM and division factor KD be relative primes, so

GCD (KM, KD) = 1 (1)

where GCD is an abbreviation for Greatest Common Divisor. Equation (1) en-
sures that the maximum guaranteed distance between the closest edges of CLK
and CLJ (denoted as MAX(∆Tmin)) is minimized. As it is discussed in Sect. 2,
signal CLJ certainly includes intrinsic analog PLL jitter σjit and it can also
contain other “deterministic” jitter components from external or internal envi-
ronment. This signal is sampled into the D flip-flop using a clock signal with
frequency FCLK. The sampled signal q (nTCLK) contains certain random values.
Their exact position is not known and potentially it can vary in time. Ran-
dom values can be easily extracted by a standard XOR decimator [10], [11]. In
the proposed design the decimator produces one output bit per KD input val-
ues q (nTCLK) (one period TQ). The next paragraphs analyze more deeply the
functionality of the proposed circuit.

Let us consider the output signal in two different conditions: ideal conditions
without jitter and real conditions when jitter is included in the synthesized
clock signal. Under ideal conditions when the jitter is zero (σjit = 0), signal
q(nTCLK), n = 0, 1, . . . is deterministic and under condition (1) periodic with
the period

TQ = KDTCLK = KMTCLJ . (2)
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Therefore decimated output signal x (nTQ) , n = 0, 1, . . .

x (nTQ) = q (nTQ) ⊕ q (nTQ − TCLK) ⊕ . . . ⊕ q (nTQ − (KD − 1)TCLK) (3)

which represents bit-wise addition modulo 2 of KD input samples, is also deter-
ministic. The situation is completely different under real conditions when the
jitter is nonzero (σjit > 0). If KD is chosen so, that the jitter σjit is compara-
ble with the maximum distance MAX(∆Tmin) between the two closest edges of
CLK and CLJ, we can guarantee that during TQ the rising edge of CLK will fall
at least once into edge zone of CLJ (edge zone means the time interval around
the edge including jitter2). The value MAX(∆Tmin) can be computed as

MAX(∆Tmin) = TCLK
GCD(2KM, KD)

4KM
= TCLJ

GCD(2KM, KD)
4KD

. (4)

The during current period of TQ, KD values of CLJ will be sampled into D flip-
flop and at least one of them will depend on the random jitter. The decimated
signal x (nTQ) will not be deterministic anymore and its value will depend on
this jitter. In Fig. 5-7 we analyze different possibilities for small values of KM
and KD that demonstrate the validity of (4).
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Fig. 5. Clock relation for KM = 5, KD = 7 ( FCLJ < FCLK )

Figure 5 shows the case when GCD(2KM, KD) = 1 and FCLJ < FCLK.
In real implementation it is not possible to guarantee the position of CLJ in
relationship to CLK. In this example the minimum distance ∆Tmin is 0 (the
last sample of the period TQ). The worst case (maximum value of the minimum
distance - MAX(∆Tmin)) will be the event when CLJ will be shifted by a half

2 For qualitative analysis we can assume that the width of the edge zone is for example
6σjit. Therefore there is some non-zero probability that the jitter will influence the
sampled signal value.
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step (the step is equal to3 TCLJ/2KD) to the left or to the right. In that case
the minimum difference will be the half step in at least one of critical samples
(they are indicated by arrows) and the output value Q will be nondeterministic
during one period TCLK (gray zones in Q output signal). Conclusion: the jitter
should be comparable with the half step, therefore σjit ≈ TCLJ/4KD and so

MAX(∆Tmin) =
TCLK

4KM
=

TCLJ

4KD
=

TCLJ

28
(5)

Figure 6 shows the case when GCD(2KM, KD) = 1 and FCLJ > FCLK.
Following the previous study it can be found that MAX(∆Tmin) can be expressed
in the same way as in (5), so (4) is valid, too.
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Fig. 6. Clock relation for KM = 7, KD = 5 ( FCLJ > FCLK )

Figure 7 shows the case when KD is even so GCD (2KM, KD) = 2 and FCLJ <
FCLK. It can be found that MAX(∆Tmin) can be expressed as

MAX(∆Tmin) =
TCLJGCD(2KM, KD)

4KM
=

2TCLJ

4KD
=

TCLJ

2KD
=

TCLJ

16
(6)

and (4) is valid also in this case.
Following this analysis we can conclude that according to (4) it is better (if it

is possible from system point of view) to choose relative primes KM, KD in such
a way that KD is odd. This choice will decrease MAX(∆Tmin) by the factor of
2.

3 Note that there are KD = 7 clock periods in interval TQ. The longest distance ∆T
is 7∆. 7∆ is a half period of CLJ. So the longest distance ∆T is the half period of
CLJ. The worst case of the largest distance MAX(∆Tmin) is 0.5∆ = 1/14 of the half
period of CLJ. That means 1/28 = 1/ (4KD) of the full period of CLJ.
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Fig. 7. Clock relation for KM = 7, KD = 8 ( FCLJ < FCLK )

3.3 TRNG Realization

Under real conditions D flip-flop in Fig. 4 produces signal q (nTCLK) that is
sampled KD times during the time interval TQ. Based on the analysis in Sect. 3.2
it is possible to express the decimated output signal x (nTQ) as

x (nTQ) = [q (nTQ) ⊕ q (nTQ − TCLK) ⊕ . . .

. . . ⊕ q (nTQ − (J − 1)TCLK) ⊕ q (nTQ − (J + 1)TCLK) ⊕ . . .

. . . ⊕ q (nTQ − (KD − 1)TCLK)] ⊕ q (nTQ − JTCLK) (7)

where the first term in (7) contains all values not influenced by the jitter (there-
fore they are deterministic) and the second term4 q (nTQ − JTCLK) is influenced
by the jitter. In general, values q (nTQ − JTCLK) are statistically biased random
bits that have expectation (long run average) p = E [q (nTQ − JTCLK)] different
from the ideal value of 1/2 by a bias b = p−1/2. Under Gaussian approximation
the bias for intrinsic jitter can be computed by

|b| =

∣∣∣∣∣∣∣∣

1√
2π

∆Tmin
σjit∫

−∞
e

−x2

2 dx − 1
2

∣∣∣∣∣∣∣∣

≤ 1
2
erf

(
MAX(∆Tmin)

σjit
√
2

)

<
1
2

(8)

where erf() is the Error function [15]. Since the exact value of J is not known
(it can be influenced by a non-deterministic jitter described in Sect. 2 or by the
temperature and supply voltage variations that influence delays in the D flip-flop)
it is necessary to use a decimator that produces x (nTQ) according to (7) with
the output sample rate TCLK/KD. This ensures that randomness included in the
value q (nTQ − JTCLK) is also included in x (nTQ) without precise knowledge of
4 In principle more terms could be influenced by the jitter but according to the previous
analysis, choosing proper values KM and KD we can guarantee that at least one
sample will be influenced by the jitter.
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the actual value J (position of the sample influenced by jitter in the frame of
one period TQ).

Good TRNG should produce binary outputs with equal probability, so b → 0.
Signal x (nTQ) generally does not fulfill this requirement. One common way to
reduce statistical bias is to use a XOR corrector [10], [11]. The simplest XOR
corrector takes non-overlapped pairs of bits5 from the input stream and XORs
them to produce an output stream with the half bit-rate of the input stream.
If input stream bits are statistically independent then the bias at the output
(decimated) stream is bout = −2b2in and |bout| < |bin| since |bin| < 1/2 [10]. There
are two XOR operators needed in the complete TRNG realization (see Fig. 8):
the XOR decimator implied by the basic principle of the method (described
above) and a XOR corrector of Nd samples

qi (nTCLK) = q



nTCLK −
i∑

j=0

jτj



 , i = 0, 1, . . . , Nd − 1, τj ≈ τ . (9)
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Fig. 8. Simplified block diagram of complete TRNG

To increase the probability of overlapping CLK and CLJ edge zones during
the TQ period, the signal CLJ is delayed in Nd − 1 delay elements. Outputs of
these elements are synchronously sampled with the frequency FCLK and XOR-ed
together to produce signal

xXOR (nTCLK) = q0 (nTCLK) ⊕ q1 (nTCLK) ⊕ . . . ⊕ qNd−1 (nTCLK) . (10)

Output of the complete TRNG can be written in the form:
5 This principle can be applied also to more non-overlapped bits that are XORed
together.
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x (nTQ) = xXOR (nTQ) ⊕ xXOR (nTQ − TCLK) ⊕ . . .

. . . ⊕ xXOR (nTQ − (KD − 1)TCLK) . (11)

The minimal signal delay obtainable in Altera APEX family is τ ≈ 500 ps
and actual values τi, i = 0, 1, . . . , Nd − 1 fluctuate around this value and are
influenced by the supply voltage and the temperature. This mechanism causes
fluctuation of biases bi of individual outputs of the delay line (since corresponding
values ∆T i

min, i = 0, 1, . . . , Nd − 1 influence bi according to (8)). In order to
decrease the output bias it is necessary to use a Nd which is as large as possible.
We propose to use about Nd delay elements, where the maximal value of Nd is
limited by

Nd ≤ TCLK/τ = 1/(FCLKτ) . (12)

The sum of the delays thus spans one period TCLK and ensures (for TCLK <
TCLJ) that if the edge of the CLJ signal is in the current TCLK window, the edge
zone is sampled only once with the probability σjit/τ . Larger values of Nd are
not recommended, since sampling one edge of CLJ signal two or more times can
create an undesired statistical dependency. Therefore at each output-sampling
interval nTQ, the signal x (nTQ) is the result of XOR-ing

NXOR = KDNd (13)

individual bits. There are 2KM edges of CLJ signal over TQ period, so approxi-
mately Nbit bits, Nbit being calculated by

Nbit ≈ 2KMσjit/τ, (14)

are influenced by the intrinsic jitter and these bits are used by XOR corrector for
a bias reduction. Although value (14) is just statistical estimation, it provides
information about the applicability of some statistical rules.

If the input bits were statistically independent, the decimated output se-
quence x (nTQ) would quickly converge to an unbiased binary sequence that is
uncorrelated. Since the binary stream xXOR (nTCLK) is influenced by an ana-
log part of the PLL, we can expect that obtained values will be statistically
independent. This hypothesis is tested in Sect. 5.

4 Experimental Hardware Implementation

To measure the real performance of our proposed TRNG, an Altera NIOS de-
velopment board was selected. This development board was chosen to elimi-
nate concerns about proper board layout technique. The same board was also
used in [7] for the reference PLL measurements so we can expect that jit-
ter characteristics presented in Sect. 2 can be directly applied to our design.
The board features a PLL-capable APEX EP20K200-2X with four on-chip
analog PLLs. In order to use as large output data rate as possible, the two6

6 It is possible to create TRNG based only on one PLL, but it requires a different
crystal than the NIOS board actualy uses.
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on-chip PLLs shown in Fig. 9 were used for generating CLJ and CLK sig-
nals. The external clock source was 33.3 MHz, on-chip synthesized clocks were
FCLK = 33.3 × 159/60 = 88.245 MHz and FCLJ = FCLK (785/1272) ≈ 54.459
MHz, so KM = 785 and KD = 1272. These values were chosen as a compromise
of minimal MAX(∆Tmin) for actual NIOS board constraints. According to (4)
they ensure that MAX(∆Tmin) ≈ 7.2 ps < σjit. The TRNG was implemented
for Nd = 22 in VHDL using standard Altera megafunction for embedded PLL
configuration.
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Fig. 9. Actual PLL configuration used in experimental hardware

There are two problems related to the random number generator implemen-
tation in an FPLD:

– the function of the generator cannot be verified using simulation (jitter is
not simulated),

– since detection of the jitter is based on a repetition of a small signal delay
using a carry chain, placement and routing has a significant impact on the
generator operation (for example, to guarantee the correct operation of the
generator, D flip-flops have to be implemented in the same logic array block
as the carry chain delay).

For a proper operation the design must use resource locking (assignments)
and the design must be verified and tested on a real hardware. Generator blocks
have been designed using both Altera Hardware Description Language (AHDL)
and VHDL. Since its implementation is hardware-specific, it seems to be more
practical to use AHDL instead of VHDL (at least for the jitter detector block),
because AHDL is closer to the hardware and the implementation can be better
controlled on a low level basis (assignments of hardware elements).

The FPLD resource requirements of the proposed TRNG block as well as the
supporting logic (FIFO, control logic) of the experimental hardware implemen-
tation is shown in Table 1. The first four columns show resource requirements
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(in Logic Cells and Embedded System Blocks (ESB)) of the generator, as it is
presented in Fig. 8. The second four columns give resource requirements of the
complete TRNG circuit including 8 bits wide 1024-byte FIFO and a data bus
controller. Presented results have been obtained using Altera Quartus II v. 2.0
[9]. Values x (nTQ) generated with bit-rate 1/TQ ≈ 69375 bits/s were saved on
the hard disk for further analysis.

Table 1. APEX FPLD resource requirements

TRNG only TRNG + FIFO
Device LCs LCs ESBs ESBs LCs LCs ESBs ESBs

# % # % # % # %

EP20K200EFC484-2X 48 0.6 0 0 121 1.5 4 7.7

5 Statistical Evaluation of TRNG

Testing a hardware random number generator differs from testing a PRNG [12].
In particular, if we know the design of the generator we can tailor some of the
tests. However, the random number generator (either random or pseudorandom)
might pass the test and still not be a good generator. There are some well
documented general statistical tests that can be used to look for deviations from
an ideal TRNG [13], [14], [15]. A good TRNG should pass all kinds of tests.

5.1 Testing of Basic Statistical Assumption

A potential problem of using XOR decimation technique for bias removing is
that XOR decimation should be used only with statistically independent bits.
Our XOR corrector performs XOR-ing of NXOR = 1272 ∗ 22 = 27984 input
bits. According to (14) there are about Nbit ≈ 47 input bits per one output
bit that are influenced by a non-deterministic jitter. Under ideal assumption
(statistically independent biased jitter values) the output signal must converge
to an almost unbiased binary sequence (B → 0) with probability of 1’s and 0’s
equal to 1/2 ± B, where the total bias B can be computed as

B = E [x (nTQ)] = E [f (q0 (nTQ) , . . . qNd−1 (nTQ) , b0, b1 . . . bNd−1)] +

+ (−2)Nd−1
Nd−1∏

i=0

bi . (15)

For statistically independent values the first term of (15) is zero and the sec-
ond term of (15) very quickly converges to a low value since |b|i < 1/2, i =
0, 1, . . . , Nd−1. Table 2 shows the results of the mean value computation for sev-
eral 1-Gigabit TRNG output records acquired from two available NIOS boards.
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It is clear that there is a certain small difference from an ideal TRNG. This
difference is caused by a certain small non-zero statistic dependency in the first
term of (15). This is the first7 detected difference between our TRNG and ideal
one.

Table 2. Mean values computed for several 1-Gigabit records

Record 1 2 3 4 5
NIOS (Board A) (Board B) (Board B) (Board B) (Board B)

Mean 0.500109 0.499917 0.499911 0.499896 0.499872

5.2 The NIST Statistical Tests

A large number of generalized statistical tests for randomness have been pro-
posed. It seems that the NIST statistical test suite [15] is currently the most com-
prehensive tool publicly available. Our NIST statistical tests were performed on
1-Gigabit of continuous TRNG output records and followed the testing strategy,
general recommendations and result interpretation described in [15]. We have
used a set of m = 1024 1-Megabit sequences produced by the generator and we
have evaluated the set of P -values (some typical values are shown in Table 3 [6])
at a significance level α = 0.01. The total number of acceptable sequences was
within the expected confidence intervals [15] for all performed tests and P -values
were uniformly distributed over the (0, 1) interval.

We have performed the same tests for several 1-Gigabit records and have
uncovered certain deviations in the FFT statistical test results. For ideal TRNG
the distribution of P -values is uniform in the interval (0, 1). For tested TRNG
this uniformity is checked by using a χ2 test distribution of P -values in subin-
tervals C1-C10. If the P -value shown in Table 4 (more precisely a P -value of
the P -values [15]) is lower than 0.0001 the test fails and indicates a detectable
difference from the ideal TRNG.

6 Conclusions

In this paper we have evaluated a new method of true random numbers generated
in SOPC based on a reconfigurable hardware. The randomness of the sequence
of numbers has been extensively tested and only small differences from an ideal
TRNG have been detected. We believe that intrinsic analog PLL noise is a good
source of true randomness and at least for typical cryptographic keys with the
length from hundreds to several thousands bits, our TRNG is not distinguishable
from the ideal TRNG. For very critical cryptographic applications the proposed
7 Note that this difference is really detectable only for long streams and we believe that
proposed TRNG can be used for key generation in typical cryptographic applications.
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Table 3. NIST test results (uniformity of P -values and proportion of passing sequence)
for 1-Gigabit record that passed all tests

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P -value Proportion Statistical Test

112 103 114 95 98 105 91 95 104 107 0.827418 0.9873 Frequency
111 103 103 91 104 110 101 108 93 100 0.920212 0.9922 Block-Freq.
103 113 89 100 92 104 107 97 92 127 0.242375 0.9873 Cusum
97 81 97 117 114 91 93 106 115 113 0.144842 0.9941 Runs
86 108 102 92 93 94 122 99 125 103 0.106543 0.9922 Long-Run
99 92 116 110 90 115 103 93 104 102 0.582174 0.9902 Rank
83 110 116 110 112 108 120 87 79 99 0.027813 0.9951 FFT
117 107 90 95 108 98 102 99 105 103 0.830876 0.9824 Periodic-Template
130 95 111 112 99 91 97 92 111 86 0.072399 0.9863 Universal
91 114 118 102 85 94 108 96 112 104 0.327204 0.9951 Apen
95 107 105 126 99 94 94 96 104 104 0.510619 0.9932 Serial
110 90 104 127 94 96 78 107 114 104 0.056616 0.9863 Lempel-Ziv
105 108 96 96 103 114 106 87 108 101 0.807953 0.9893 Linear-Complexity

Table 4. NIST FFT test results (uniformity of P -values and proportion of passing
sequence) for all tested 1-Gigabit records

# C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P -value Proportion Statistical Test

1 83 110 116 110 112 108 120 87 79 99 0.027813 0.9951 FFT
2 105 136 100 113 111 99 101 79 88 92 0.010138 0.9932 FFT
3 96 113 125 143 96 96 118 86 82 69 0.000002 *0.9951 FFT
4 107 132 133 110 117 95 71 93 86 80 0.000010 *0.9971 FFT
5 91 132 115 128 101 93 99 109 78 78 0.000301 0.9941 FFT

TRNG can be used at least as an useful internal source of entropy or efficiently
combined with one-way hash functions or PRNGs.

The proposed solution is very cheap. It uses very small amounts of FPLD
resources and it is fast enough for typical embedded cryptographic applications.
The advantage of our solution lies in the fact that the proposed TRNG block
together with symmetrical and asymmetrical algorithms can fit into one FPLD
chip and significantly increase the system security of an embedded cryptographic
SOPC system.

The bias reduction of the TRNG can be further improved by a proper choice
of parameters KM and KD and using more sophisticated XOR corrector. This
solution is currently in development and will be presented in a future paper.
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Abstract. Random number generators are essential components of
many cryptographic systems. Inappropriate random number generators
may weaken the security properties of the system considerably. This
paper considers evaluation criteria for true (physical) random number
generators. General objectives are formulated and possible criteria and
measures are discussed which shall ensure these goals. Central parts of
the mathematical-technical reference of the German evaluation guidance
document AIS 31 ([19,2]) are cited and rationale is given.
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1 Introduction

Many security mechanisms need nonrecurring and / or unpredictable data as
nonces or secrets. While the non-recurrence property is fulfilled for nearly all ran-
dom number generators (RNGs) with overwhelming probability (provided that
the length of the (pseudo-)random strings is sufficiently large) unpredictability
is more difficult to assure. An RNG with this property which can neither be
observed nor controlled by an attacker generates ideal secrets like cryptographic
keys. Random numbers are needed by many cryptographic applications. They
are used for the generation of random session keys, signature keys and signature
parameters, challenges and zero knowledge proofs, for instance.

Ideal random number generators are characterized by the property that the
generated random numbers are independent and uniformly distributed on a fi-
nite range. An ideal random number generator, however, is a fiction. The class
of (real world) RNGs falls into three subclasses. First, random microcosmic pro-
cesses may cause physical effects applicable as random noise sources. Examples
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are quantum random processes, time between emissions during radioactive de-
cay, inherent semiconductor thermal noise, shot noise from Zener diodes or free-
running oscillators. These processes are chaotic and non-deterministic by their
nature. Normally, the random noise source produces a time-continuous analog
signal which is digitised after uniform time intervals (e.g. by a comparator) which
yield the so-called digitized analog signals, briefly denoted as das random num-
bers. Such RNGs are called true or physical (TRNG) because of their random
noise source. In many designs the das random numbers are algorithmically post-
processed in order to reduce or at least to mask potential weaknesses. This gives
the so-called internal random numbers. Upon external call the TRNG outputs
external random numbers. TRNG are implemented e.g. in smart cards.

Pseudorandom number generators (or synonymously: deterministic random
number generators, DRNGs) form the second subclass. They generate pseudo-
random numbers deterministically from a randomly chosen seed. The third sub-
class are the ‘hybrid generators’ which refresh their seed regularly, for instance
by means of random numbers derived from user’s interaction (mouse movement
or key strokes) and / or register values of the used PC. Applying an appropri-
ate transformation (usually a compression algorithm) yields the desired random
numbers.

In the past a lot of research work has been devoted to the development of good
physical noise sources (see [4,21,14], for instance), and a variety of deterministic
and hybrid random number generators have been proposed. Less work has been
spent in the development of suitable tests and assessment criteria.

Random numbers are not only needed for cryptographic applications but
also for Monte Carlo methods and, above all, in stochastic simulations. Stochas-
tic simulations treat probabilistic problems which cannot be solved analytically
because they are too complex (consider the service times in complex multiuser
systems, for example). Roughly speaking, one generates pseudorandom numbers
([12,20]) with statistical properties depending on the specific simulation prob-
lem. Repeating this process many times one hopes to get reliable estimators for
the unknown solution of the underlying probabilistic problem (typically a distri-
bution of a random variable or a random vector or any restriction of it). A large
number of statistical tests and whole test suites have been proposed to assess the
statistical properties of the generated pseudorandom numbers ([20,22]) as unsuit-
able pseudorandom number generators may suggest false conclusions. These test
suites are also often applied to random numbers used for sensitive cryptographic
applications. However, besides statistical properties sensitive cryptographic ap-
plications demand that the used random numbers should have a backward and
forward unpredictability property (cf. Sect. 2). As will be explained below this
property cannot be assured by applying statistical blackbox tests. However, also
[24,25,27] provide blackbox test suites. (Note that in [27] support is given how
to apply the statistical tests, and in Sect. 1.1.2 it is noted explicitly that random
numbers should be unpredictable. However, similarly as in [13], for instance,
clear criteria are missing which assure this goal.) In [19] an approach for the
evaluation of physical random number generators (due to CC (Common Crite-
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ria; cf. [8]) or ITSEC (Information Technology Security Evaluation Criteria; cf.
[15])) is given which takes the construction of the TRNG explicitly into account.
[19] is the mathematical-technical reference of the AIS 31 ([2]) which has been ef-
fective in the German evaluation and certification scheme since September 2001.
In the present paper we will explain the main items of [19] and the central ideas
behind them. We point out that there is a similar document for deterministic
random number generators ([1,29]; cf. Section 2 for a brief discussion).

In Sect. 2 the fundamental differences between true, deterministic and hybrid
generators are explained. In Sect. 3 the general objectives of a TRNG evaluation
are briefly pointed out whereas Sects. 4, 5 and 6 go into detail. Generic require-
ments are formulated and concrete measures and criteria from [19] are given
which shall ensure these requirements. The paper ends with considerations con-
cerning the vulnerablity analysis and final remarks.

2 True, Deterministic, and Hybrid Random Number
Generators: Main Differences

RNGs generally consist of a random source and a deterministic postprocessing.
Of course, if a TRNG has an appropriate noise source a deterministic postpro-
cessing after the digitization of the analog signal is not necessary. Design and
analysis of an RNG is based on the understanding of randomness.

We already mentioned physical processes as random sources. Another kind
of randomness is based of the intersection of causal chains: the combination
of events of several processes which are independent of each other may behave
randomly. Consider, for example, system data as time of interrupts, hard-disk
seek times or user interactions. The randomness of the combined random source
will increase with the number of the processes, their ‘degree’ of independence
and the randomness within each of the processes. These processes are part of
the RNG and cannot be neglected in its analysis even if the RNG is mostly
implemented in software. An example of such a software RNG can be found in
OpenSSL implementations under Windows operating systems.

The postprocessing may transform the digitized random signals into uni-
formly distributed random numbers even if the initial signal has significant sta-
tistical defects. Moreover, the postprocessing may collect entropy of the random
noise source but it does not stretch the digitized random signal into longer
strings.

Deterministic random number generators rely on a completely different con-
cept. Viewed as an autonomous automaton a DRNG has an internal state whose
initial value is called the seed, a state transition function and a output function.
Such automatons are very cheap to implement as they merely require some addi-
tional lines of code. Their drawback lies in the fact that the seed (generated by a
true or hybrid generator) contains the overall entropy of all pseudorandom num-
bers which are generated until a new seed is chosen. Therefore the evaluation
methodology [29], for instance, requires a clear description of how the seed is
generated together with a rationale why this will induce a specified distribution.
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Depending on the applications the DRNG is designated for this methodology
distinguishes four DRNG classes K1 to K4. Class K1 generators only have to
produce mutually different vectors with high probability whereas their statisti-
cal properties are irrelevant. Such vectors might be used for challenge-response
protocols, for instance. The higher classes extend the possible applications of the
random numbers to the generation of key or signature parameters. The require-
ments increase from mutually different outputs, through statistical features of
the output (class K2), minimum bounds for the entropy of the seed and the prac-
tical impossibility for an adversary to work out preceding and following random
numbers of a known part of the output sequence (class K3). Class K4 addition-
ally demands that an adversary shall not be able to determine preceding random
numbers even if he knows the actual internal state of the DRNG. An example
of a K4-DRNG is the NIST approved DRNG for the DSA (see [26], Annex 3
and Change Notice 1) without the optional user input (provided that the seed
is generated in an appropriate manner).

While the overall entropy of the output sequence of a true RNG increases
with each random number, the entropy of the output of a DRNG is limited
by the entropy of the seed initializing the internal state. Hybrid RNGs try to
compensate the drawback of DRNGs by regular re-seeding the internal state
by a random source (like user’s interaction, register values of a PC or, more
favourably, by a TRNG) and stretching the internal state like a DRNG. We note
in this context that the randomness induced by the interaction of a user or by
register values of a PC is difficult to assess. For example LINUX implements
a hybrid RNG with a combined random source as /dev/urandom. The ANSI
X9.17 RNG [3] refreshes the seed by means of the time which has only little
entropy and might be guessed. Interestingly, the RNG [26], Annex 3, may be
weak in hybrid mode, namely if an attacker is able to control the optional user
input (see [18] for details).

It is important to note that a finite set of statistical tests may detect defects
of a random source. On the other hand these tests cannot verify the randomness
of the source. Moreover, the needs of IT security and especially of cryptography
are different from those of stochastic simulations.

Remark 1. The Kolmogorov complexity theory defines a sequence as random if
the length of the shortest program that generates a segment of the sequence arises
with the length of this segment. A cryptographic strong definition of randomness
requires pseudo-random sequences to be computationally indistinguishable from
a randomly chosen uniformly distributed sequence (cf. [7]).

In the context of cryptography we may be faced with an active attacker
who does not only analyze the RNG design and its output but additionally
tries to affect or control the RNG. We hence should not only have a theoretical
abstraction of an RNG in mind but also its concrete realization.
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3 General Objectives on a TRNG Evaluation

Normally, random number generators are part of an IT security product whose
overall security (or particular aspects thereof) has to be assessed. The random
number generation may be an externally visible security function, e.g. provided
by a smart card chip to the operating system for the key generation. However,
requirements on the TRNG often depend on the internal function they provide
for other cryptographic components.

Roughly speaking, a TRNG evaluation falls into two phases. At first, the
suitability of the random number generation process has to be checked at hand
of some prototypes. In Sects. 4 and 5 this phase is considered in detail.

However, even if the design of the TRNG has turned out to be convenient
this does not necessarily imply that each TRNG of the same production run
has the same pleasant properties as the prototypes in the lab all the time when
it is in operation. Tolerances of components of the random noise source maybe
responsible that the ‘quality’ of the actually produced random numbers is worse
than that of the carefully investigated prototypes. Also aging of the components
or even the impact of an attacker may affect the characteristics of the generated
das random numbers. In a worst case scenario the noise source may totally break
down, maybe for natural reasons or as a consequence of a successful attack. The
das random numbers are constant from then on, and the total entropy of the
das random number sequence does not increase any more.

In order to detect such defects TRNGs should perform start-up tests, online
test and so-called tot tests while they are in operation (cf. Sect. 6). The eval-
uation should give evidence that these measures are appropriate to assure this
goal.

ITSEC (Information Technology Security Evaluation Criteria) and CC (Com-
mon Criteria; cf. [8]) provide evaluation criteria. ITSEC and CC ‘will permit
comparability between the results of independent security evaluations. It does
so by providing a common set of requirements for the security functions of IT
products and systems and for assurance measures applied to them during a se-
curity evaluation. The evaluation process establishes a level of confidence that
the security functions of such products and systems and the assurance measures
applied to them meet these requirements.’ ([8], Part 1, Scope). A product or
system which has been successfully evaluated is awarded with an internationally
recognized IT security certificate.

Although random numbers play an important role in numerous cryptographic
applications, ITSEC, Common Criteria ([8]) and the corresponding evaluation
manuals do not specify any uniform evaluation criteria for random number gen-
erators. However, rules are needed for the evaluation of true (physical) random
number generators. The AIS 31 ([2,19]) supports this goal. It is mandatory in
the German evaluation and certification scheme if the TRNG affects the security
properties of the target of evaluation (TOE).

In the following sections we will work out the general objectives formulated
above. We will often refer to and cite important parts of [19] where concrete
criteria, statistical tests and decision rules are given that a TRNG should fulfil.
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4 Assessing the Random Number Generation I (Standard
Case)

The minimal requirements the external random numbers should at least fulfil
depend essentially on the particular application. In general the application reads
the external random numbers from the RNG asynchronous to the generation of
the internal random numbers. Therefore a TRNG evaluation can only consider
the properties of the das random numbers or the internal numbers. However,
as the external random numbers usually are obtained by concatenating internal
random numbers this is no serious restriction.

If the external random numbers serve as challenges or as openly transmitted
initialization vectors for symmetric block ciphers, for instance, it is fully sufficient
if the statistical behaviour of the internal random numbers is similar to that
of random numbers generated by an ideal source. Generically, in [19] (P1.c)
this reads as follows: ‘The statistical behaviour of the internal random numbers
should be inconspicious. This shall prevent replay and correlation attacks against
cryptographic algorithms and protocols that are based on statistical weaknesses
in the external random numbers used.’ More concrete, a TRNG is said to be a
P1-TRNG in the sense of [2] if its internal random numbers pass a particular
statistical test suite (cf. [19], Requirements P1.d(i),(ii) and P1.i(i),(ii)).

Good statistical properties of the internal random numbers are clearly not
sufficient for sensitive applications as the generation of session keys, signature key
pairs or signature parameters, for example. Note that even output sequences of
linear feedback shift registers (LFSR) should pass the P1-specific statistical tests
(and many others, cf. Example 1) unless the length m of the LFSR is extremely
small. The overall entropy of a pseudorandom number sequence generated by
a LFSR is contained in its seed. If a potential attacker knows about m output
bits (e.g. from random numbers used as an openly transmitted challenge) he can
easily compute all random numbers ever generated. All he has to do is to solve
a system of linear equations.

The key criterion is not the statistical behavior of the internal numbers but
their entropy. Consequently, in [19] a subclass of the P1-TRNGs is introduced,
called P2. For a P2-TRNG evidence has to be given that the increase of entropy
per internal random number is sufficiently large. In [19], P2.c, the aim of the
P2-specific requirements (cf. [19], P2.d)) is formulated generically: ‘In addition
to the P1-specific aim P1.c), the prospects of success for systematic guessing of
the external random numbers (realised through sytematic exhaustion attacks)
- even if external random number subsequences are known - should at best be
negligibly higher than would be the case if the external random numbers had
been generated by an ideal random number generator.’

To assure this goal the increase of entropy per internal random number must
be sufficiently large. Unlike the computational complexity for deterministic ran-
dom number generators (cf. Sect. 2) entropy yields a theoretical security bound.
However, entropy is a property of random variables but not of their realizations,
in our context, of the observed internal random numbers. Unfortunately, there
is no statistical test or reliable estimator (and it is hardly to believe that there
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might exist one) for the case where nothing is known about the distribution of
the underlying random variables.

Remark 2. The adjective ‘universal’ in the title of [23] has led to misunderstand-
ing and confusion in the past. To apply Maurer’s test the random numbers are
concatenated and interpreted as a bit stream which in turn is segmented into
blocks of equal size. If the block size tends to infinity Maurer’s test value yields
an estimator for the increase of entropy per random bit provided that the bits
were generated by a stationary binary random source with finite memory (cf.
also [11]). If this assumption is not fulfilled, however, Maurer’s test value need
not yield a reliable estimator for the entropy. For pseudorandom bits generated
by a LFSR, for example, the increase of entropy per bit obviously equals zero
whereas the test value ‘suggests’ a considerable amount of entropy per bit. We
point out that [19] indeed applies a test introduced by Coron (cf. [10]) which is
closely related with Maurer’s test but yields information on the entropy per bit
for fixed block size. As will be explained below Coron’s test is applied to the das
random numbers not until the respective random variables have shown to be (at
least approximately) Markovian.

Definition 1. A realization of a random variable X is a value assumed by X.
We call a random variable binary if it only assumes the values 0 and 1. If X
assumes values on a finite set Ω then

H(X) := −
∑

x∈Ω

Prob(X = x) log2(Prob(X = x))

is the entropy of X. In the context of random variables iid stands for ‘in-
dependent and identically distributed’. Applying a statistical test to a sample
x1, x2, . . . , xN delivers a numerical value called test value or test statistic t.
The test value itself may be interpreted as a realization of a random variable T ,
the so-called test variable.

Mathematical Model. In the following we interpret the das random numbers
b1, b2, . . . ∈ Ωdas (usually Ωdas = {0, 1}k for k ≥ 1) as realizations of random
variables B1, B2, . . .. Similarly, the internal random numbers r1, r2, . . . are viewed
as realizations of random variables R1, R2, . . .. The random variables R1, R2, . . .
result from B1, B2, . . . by applying the postprocessing algorithm.

Remark 3. The term

H(Bn | B1, . . . , Bn−1) := −
∑

b1,...,bn−1∈Ωdas

Prob(B1 = b1, . . . ,Bn−1 = bn−1) ×
∑

bn∈Ωdas

Prob(Bn = bn | Bj = bj for j < n) log2(Prob(Bn = bn | Bj = bj for j < n))

quantifies the increase of the total entropy of B1, . . . , Bn−1 by Bn. If the ran-
dom variables B1, B2, . . . are iid the conditional probabilities do not depend on
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the conditions. If B1, B2, . . . form a homogeneous Markov chain the conditional
probabilities do only depend on the preceding value bn−1, and for sufficiently
large n we have Prob(Bn−1 = bn−1) ≈ ν(bn−1) where ν stands for the sta-
tionary distribution (under the natural assumption that the Markov chain is
ergodic). If the context is clear, i.e. if we consider the whole sequence, we also
use the imprecise formulation ‘the entropy of Bn’. By abuse of language we will
often speak of ‘the increase of entropy per das random number’ or shortly ‘the
entropy of a das random number’.

A principle question is whether the das random numbers or the internal
random numbers should be considered for testing. The latter seems to be near
at hand since the internal random numbers are output. Example 1 (cf. [30],
Example 1, or [19], Example E.1), however, underlines that this approach may
be misleading.

Example 1. Suppose that the TRNG produces binary das random numbers and
let a LFSR of length 63 with primitive feedback polynomial be synchronized
with the digitization of the analog noise signal. In each time step the feedback
shift register outputs an internal random number (a single bit). The actually
generated das random number is XOR-ed to the feedback value, and this sum
is fed back into the LFSR. This mathematical postprocessing is a one-to-one
mapping for each initial value of the LFSR and hence cannot increase the average
entropy per bit. Consequently, weaknesses of the das random numbers cannot be
reduced but only transferred into others. If, for example, the das random numbers
are independent but not equidistributed (i.e., if the probability for “0” is not
0.5) the internal random numbers are basically equidistributed but dependent.
Unless its linear complexity profile is considered statistical tests applied to the
internal random number sequence will presumably not even detect the worst
case when the physical noise source has totally broken down. In fact, from this
moment on the das random numbers are constant, and the internal random
numbers are generated deterministically.

Example 1 underlines an important fact: Even if the internal random numbers
pass certain statistical tests which the das random numbers do not this does not
necessarily imply that the mathematical postprocessing improves the quality of
the das random numbers. Weaknesses may be merely masked and transformed
into others. Clearly, an increase of entropy per bit can only be achieved by a
data compression which in turn lowers the bit rate.

Of course, also the das random numbers may not be equidistributed and
there may exist dependencies on predecessors. However, in contrast to the in-
ternal random numbers there will not exist complicated algebraic dependencies.
Consequently, the das random numbers should always be tested if this is possi-
ble. As demonstrated above internal random numbers may pass statistical tests
even if their overall entropy equals zero.

The aim of a P2-evaluation is clear: Evidence shall be given that the increase
of entropy per bit is sufficiently large. The crucial requirement a TRNG has to
fulfil in the context of entropy is Requirement P2.d)vii): ‘Digitised noise signal



Evaluation Criteria for True (Physical) Random Number Generators 439

sequences (das random numbers) meet particular criteria or pass statistical tests
intended to rule out features such as multi-step dependencies. Moreover, the
entropy test T8 is passed. The tests and evaluation rules are specified in sub-
section P2.i)...’. For the normal case where the TRNG generates a single das
bit per time unit in [19] (P2.i)vii)) five tests and an overall decision rule are
specified which shall assure this goal. Test T7 represents a special case of Test
76 (a test for the equality of multinomial distributions) from [17]. In our context
(comparison of two bit sequences a1, . . . , an and a′

1, . . . , a
′
n) the test value is

given by

t7 :=
∑

t=0,1

(h[t]− h′[t])2

h[t] + h′[t]
(1)

where h[t] := |{j ≤ n | aj = t}| and h′[t] := |{j ≤ n | a′
j = t}|. Under the null

hypothesis, i.e. that the bit sequences a1, . . . , an and a′
1, . . . , a

′
n are realizations of

iid binary-valued random variables A1, . . . , An and A′
1, . . . , A

′
n, the test variable

T7 is asymptotically χ2-distributed with one degree of freedom. Note that the
random variables A1, . . . , An, A′

1, . . . , A
′
n need not be equidistributed on {0, 1}.

Especially, for significance level α := 0.0001 the null hypothesis is rejected if
t7 > 15.13.

In [19] the following test procedure is specified:

P2.i)(vii.a)The evaluator generates a digitised noise signal (bit) sequence w1,. . .,
wn0 with n0 := 100000. Let µemp = (µemp(0), µemp(1)) be its empirical
distribution (i.e. µemp(1) :=

∑n0
j=1 wj/n1). Property (vii.a) is fulfilled if

|µemp(1)− 0.5| < a0 := 0.025.
P2.i)(vii.b) The evaluator generates a further digitised noise signal sequence

w1, w2, . . . which he splits into 2 disjoint sub-sequences TF(0) and TF(1).
Here, the tuple (w2j+1, w2j+2) belongs to sub-sequence TF(r) if and only if
w2j+1 = r. The initial sequence w1, w2, . . . must be sufficiently long that
both sub-sequences contain at least n1 := 100000 elements. If we project
the first n1 2-tuples of sub-sequence TF(r) onto the second component, we
obtain the one-dimensional sample St(r). If we divide the frequencies at which
individual values (0 or 1) are assumed by the size of the sample n1, we
obtain the empirical 1-step transition distribution νemp(r)(·) for predecessor
r. Property (vii.b) is fulfilled if |νemp(0)(1) + νemp(1)(0)− 1| < a1 := 0.02.

P2.i)(vii.c)The evaluator generates a further digitised noise signal sequence
w1, w2, . . . which he splits into 22 = 4 disjoint sub-sequences TF((0)−(0)), . . . ,
TF((1)−(1)). Here, the triple (w3j+1, w3j+2, w3j+3) belongs to sub-sequence
TF((r)−(s)) if and only if (w3j+1, w3j+2) = (r, s). The initial sequence w1, w2,
. . . must be sufficiently long that each of these four sub-sequences contains
at least n2 := 100000 elements. If we project each of the first n2 3-tuples
of sub-sequence TF((r)−(s)) onto the third component, we obtain the one-
dimensional sample St((r)−(s)). For each s ∈ {0, 1} the evaluator compares
the underlying distributions of the two samples St((0)−(s)) and St((1)−(s))
with test T7 (cf. (1)) at the significance level a2 := 0.0001 for equality.
Property (vii.c) is fulfilled if both tests are passed. Otherwise Property (vii.c)
is considered not to be fulfilled.
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P2.i)(vii.d) The evaluator generates a further digitised noise signal sequence
w1, w2, . . . which he splits into 8 disjoint sub-sequences TF((0)−(0)−(0)), . . . ,
TF((1)−(1)−(1)). Here, the quadruple (w4j+1, w4j+2, w4j+3, w4j+4) belongs to
sub-sequence TF((r)−(s)−(t)) if and only if (w4j+1, w4j+2, w4j+3) = (r, s, t).
The initial sequence w1, w2, . . . must be sufficiently long that each of these
eight sub-sequences contains at least n3 := 100000 elements. If we project
each of the first n3 quadruples of sub-sequence TF((r)−(s)−(t)) onto the fourth
component, we obtain the one-dimensional sample St((r)−(s)−(t)). For each
pair (s, t) ∈ {0, 1}2 the evaluator compares the underlying distributions of
the two samples St((0)−(s)−(t)) and St((1)−(s)−(t)) with test T7 at the signif-
icance level a3 := 0.0001 for equality. Property (vii.d) is fulfilled if all four
tests are passed. Otherwise Property (vii.d) is considered not to be fulfilled.

P2.i)(vii.e) The evaluator generates a further digitised noise signal sequence
w1, w2, . . . and applies to it the entropy test (test T8 in [19]; cf. [10]) with
the parameters L = 8, Q = 2560 and K = 256000. Property (vii.e) is fulfilled
if the test variable f > 7.976.

Decision rule: If properties P2.i)(vii.a) - (vii.e) are fulfilled, then Property
P2.d)(vii) is considered to be fulfilled. If more than one sub-property is not
fulfilled, then Property P2.d)(vii) is considered not to be fulfilled. If precisely
one sub-property is not fulfilled, P2.i)(vii.a) - (vii.e) are applied to another
sample. If all sub-properties P2.i)(vii.a) - (vii.e) are fulfilled upon repetition,
then Property P2.d)(vii) is considered to be fulfilled. A further repetition is
not allowed.

We give a brief rationale for the criteria P2.i)(vii.a) to P2.i)(vii.e) and the
decision rule. Criterion P2.i)(vii.a) compares the one-dimensional distribution of
the das bits with the uniform distribution on {0, 1} where any dependencies from
predecessors are not taken into account. If the sequence B1, B2, . . . is iid and if
µ(1) := Prob(Bj = 1) ∈ [0.475, 0.525] then the entropy per das bit is > 0.998.
The sample size n0 was chosen so large that criterion P2.i)(vii.a) is met with a
probability of at least 1−0.00078 if µ(1) ∈ [0.48, 0.52]. Criterion P2.i)(vii.b) con-
siders the one-step transition probabilities. If the random variables B1, B2, . . .
form a homogeneous Markov chain and if the exact transition probabilities
ν(r)(s) := Prob(Bn = s | Bn−1 = r) meet the inequality |ν(0)(1) + ν(1)(0)− 1| <
0.02 the dependencies reduce the entropy at most by 0.00057 per bit (compared
with an iid sequence B′

1, B
′
2, . . . having the same one-dimensional marginal dis-

tribution µ). Note that ν(0)(1) + ν(1)(0) = ν(0)(1) + ν(0)(0) = 1 if the Bj are iid.
If |ν(0)(1) + ν(1)(0) − 1| < 0.012 then P2.i)(vii.b) is satisfied with a probability
of at least 1− 0.00017.

Remark 4. The das random numbers shall not have deeper than 1-step depen-
dencies from the predecessors. If such dependencies are significant the generation
rate of the das bits must be reduced. Slight one-step dependencies are tolerated
as those might be caused by dead times of components (e.g. by flip-flops).

Criteria P2.i)(vii.c) and P2.i)(vii.d) shall detect (resp. exclude) possible 2- or
3-step dependencies. Test T7 compares the conditional distributions Prob(Bn+2 |
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Bn = 0, Bn+1 = s) and Prob(Bn+2 | Bn = 1, Bn+1 = s) and Prob(Bn+3 | Bn =
0, Bn+1 = s, Bn+2 = t) and Prob(Bn+3 | Bn = 1, Bn+1 = s, Bn+2 = t), resp.,
where r, s ∈ {0, 1}. If the random variables B1, B2, . . . form a homogeneous
Markov chain the respective distributions are equal.

The applicant for an IT certificate (typically the producer of the TRNG)
has to ‘give clear description how the noise signal is generated, together with an
explanation of why a digitised noise signal is to be induced in this way’ ([19],
C.1(iii)). This description shall enable to detect or at least suspect (or, in the
positive case, rule out) long-term dependencies of the das random numbers (e.g.
caused by a beat). Detecting long-term dependencies by using any blackbox test
suite seems to be almost impossible. Similarly, the stationarity assumption shall
be made plausible in this way (eventually supported by adapted tests). The
Criteria P2.i)(vii.b) to P2.i)(vii.d) shall detect possible short-term dependencies
from predecessors. If these tests are passed this is viewed as an evidence that
the sequence B1, B2, . . . is (at least approximately) a stationary Markov chain.
(The stationarity assumption shall follow from the explanations mentioned at
the beginning of this paragraph.) In particular, this induces the entropy bounds
from above for the das random numbers, and the assumptions of Coron’s entropy
test are fulfilled. To be precise, if B1, B2, . . . were iid the expectation of Coron’s
test value equals the entropy per L-bit das block.

As the evaluation result is based on statistical tests it cannot be reproduced
with certainty. However, it is ‘quasireproducible’ in the sense that for ‘reasonable’
TRNGs it is extremely unlikely that Requirement P2.d)vii) is considered not to
be fulfilled. The probability for an ideal random number generator not to meet
the particular criteria is 0, 0, 2 · 10−4, 2 · 10−4, and 0, resp. The probability that
an ideal random number generator is not being attributed Property P2.d)(vii)
is about 6 · 10−7 (cf. P2.i)(vii.e)).

Remark 5. Clearly, the mathematical postprocessing must not reduce the av-
erage entropy per bit (Property P2.d)(viii)). (The adjective ‘average’ is due to
the fact that the particular bits of the internal random numbers need not be
identically distributed.)

Up to now we have exclusively considered the case that the das random
numbers are binary-valued. However, there are TRNGs which generate k-bit
das random numbers for k > 1. Unlike for the case k = 1 Reference [19] does
not provide a concrete test suite for k > 1. However, [19] does not exclude those
TRNGs. The applicant rather has to specify appropriate alternative tests which
shall not be weaker than those for k = 1, i.e. they must ensure at least the same
entropy bounds per bit. Depending on the noise source and the precise form of
digitisation the individual bits of the das random numbers need not be iden-
tically distributed and there might exist dependencies between particular bits.
A stationary {0, 1}k-valued sequence need not necessarily induce a stationary
binary valued sequence when the k-bit-values are interpreted as binary subse-
quences of length k. As a consequence, it is not sufficient just to apply the tests
from P2.i)(vii.a) to P2.i(vii.e) to the derived binary sequence (interpreting the
k-bit values as binary subsequences of length k) without further justifications.
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5 Assessing the Random Number Generation II
(Alternative Criteria)

In the previous section we claimed and justified that for P2 evaluations the das
random numbers should be investigated but not the internal random numbers.
The aim of Criteria P2.i)(vii.a)-(vii.e) (or the TRNG-individual criteria if k > 1,
resp.; cf. the final paragraph of the preceding section) was to verify with negligi-
ble error probability that the average entropy per das bit exceeds an acceptable
minimum limit. Further, the mathematical postprossing shall not reduce the en-
tropy per bit (cf. Remark 5). Note that there exist TRNGs for which the das
random numbers do not meet these requirements (Case 1), or due to the con-
struction of the TRNG the evaluator may not have access to the das random
numbers (Case 2). However, TRNGs of this kind need not necessarily be inap-
propriate. For Case 1, for instance, a suitable postprocessing might increase the
entropy per bit. The AIS 31 does not automatically exclude such TRNGs. It
is nonetheless conceded that a TRNG meets Requirement P2.d)(vii) (cf. Sect.
4) if the applicant is able to specify and justify suitable alternative evaluation
criteria.

In Case 1 the tests destined for the das random numbers have to be applied to
the internal random numbers. Additionally, and this is the crucial point which
may turn out to be difficult or even impossible for a concrete TRNG, in [19]
(Alternative criteria for P2.d)(vii); type 1)) it is specified that the applicant
has to give ‘Clear Proof that the internal random numbers achieve the goal set
with criterion P2.d)(vii). The proof must be provided taking into account the
mathematical postprocessing and on the basis of the empirical properties of the
digitised noise sequence’.

The ‘clear proof’ can be based on statistical tests of the internal random
numbers if their suitability is justified. Depending on the type of postprocessing
this may be rather difficult or even impossible (cf. Example 2 below). In Case 2
the situation is even more difficult. Again, the tests destined for the das random
numbers have to be applied to the internal random numbers. Additionally, in
[19] (Alternative criteria for P2.d)(vii); type 2)) it is specified that the applicant
has to give ‘Comprehensible and plausible description of a mathematical model
of the physical noise source and the statistical properties of the digitised noise
signal sequence derived from it.’ Further, he has to give a ‘Specification of sta-
tistical tests that guarantee the goal defined in criterion P2.d)(vii) insofar as the
internal random numbers pass these tests. It shall be comprehensibly justified
that these tests are suitable. The proof must be provided taking into account
the mathematical postprocessing and on the basis of the statistical properties
of the noise signal sequence derived from the mathematical model of the noise
source.’

Reference [19] explicitly permits alternative criteria since no reasonable ran-
dom number generator should be excluded from getting a certificate. It is not
the intention of [19] to favour or discriminate particular types of TRNGs. The
applicant himself has to specify and justify alternative criteria since it should
be reasonable to expect that he is able to give evidence why his TRNG design
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is suitable for sensitive cryptographic applications. If the evaluator has access
to the das random numbers (single bits) and if the das random numbers fulfil
the Criteria P2.i)(vii.a)-(vii.e) his work has already been done in [19] (cf. Sect.
4). The following example (cf. [19], Example E.4) illustrates the procedure and
general difficulties when alternative criteria are applied.

Example 2. Throughout this example we assume that the noise source generates
binary-valued das random numbers. We consider three different mathematical
postprocessings.

a) The das random numbers (bits) are XORed to the feedback value of an
LFSR (cf. Example 1).

b) Non-overlapping pairs of consecutive das bits are XORed.
c) The das bit sequence b1, b2, . . . is segmented into non-overlapping blocks

y1, y2, . . . of length 128. The internal random numbers are given by rj :=
AES(y2j−1, y2j), i.e. block y2j−1 is encrypted with key y2j .

(i) (Case 1) Suppose that extensive investigations of TRNG prototypes have
shown that the das bits may be viewed as realizations of iid random variables
but the (prototype-dependent) probability for assuming the value ”1” lies in the
interval [0.45, 0.47]. Obviously, the das random numbers do not meet criterion
P2.i(vii.a).
Postprocessing a) does not increase the entropy per bit and hence an evaluation
with alternative criteria is definitely not possible. Now assume that variant b) is
applied. As there is evidence that the das random numbers are independent the
internal random numbers should also behave like realizations of independent ran-
dom variables, and the probability for a ”1” lies in the interval [0.49875, 0.50125].
This argumentation provides a comprehensible proof sufficient for a Case 1 eval-
uation with alternative criteria. Consequently, the TRNG is conceded to meet
Property P2.d)(vii). For variant c) statistical tests of the internal random num-
bers cannot deliver any useful information because such tests had at least to take
the one-dimensional distribution of 128-bit blocks into consideration. An evalu-
ation with alternative criteria would instead require a theoretical proof that the
mathematical postprocessing leads to a sufficient increase of entropy per bit.
(ii) (Case 2) Suppose that a careful analysis of the precise realization of the
physical noise source (taking into account the switching times and dead times
of individual building blocks, sampling rates etc.) made it plausible to assume
that the das random numbers are independent. (A comprehensible justification
for deriving this mathematical model is extremely important!)
Postprocessing a) can easily be back-calculated, and Criteria P2i).(vii.a)-(vii.e)
can be applied to the das random numbers. As the postprocessing does not in-
crease the entropy per bit a Case 2 evaluation is only possible if the das bits fulfil
these criteria. Similarly as above we can argue that variant b) transforms the
das bits into independent internal random numbers. Consequently, it is necessary
and sufficient that the internal random numbers fulfil the Criteria P2.i)(vii.a)-
(vii.e). For c) the situation is even more complicated than in (i). An evaluation
with alternative criteria seems hardly be possible.
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6 Startup Test, Online Test, Tot Tests

In the previous sections we have intensively considered criteria for assessing the
suitability of the random number generation process. However, even if Property
P2.d)(vii) is conceded, i.e. if the prototypes in the lab generated ‘high-quality’
random numbers this may not be true for any TRNG of the same production
run all the time when it is in operation. Tolerances of components of the noise
source or aging effects may be responsible for this. In the worse case the noise
source breaks totally down so that the das random numbers are constant from
that moment on. Therefore, the developer should implement measures which
shall detect defects of this kind in case they occur. We distinguish between tot
tests (‘tot’ stands for ‘total failure of the noise source’), startup tests, and online
tests. As their names indicate a tot test shall detect a total breakdown of the
noise source, the startup test is used to verify the principle functionality of the
noise source when the TRNG has been started whereas the online test should
detect if the quality of the random numbers is not sufficient for this particular
TRNG (due to tolerances of components) or deteriorates in the course of the
time.

Remark 6. The properties of the random number generation determines the class
(P1,P2) to which the TRNG belongs. Besides, ITSEC and CC consider the
‘strength of mechanisms and functions’ as resistance against direct attacks. It
is distinguished between ‘low’, ‘medium’ and ‘high’ and is assessed by means of
the attack potential which is a function of expertise, resources and motivation
required for a success ([9], Annex B.8). In our context the conceded strength
of mechanisms or functions depends on the suitability to resist direct attacks
exploiting weaknesses in the implementation. The tot, startup and online test are
countermeasures to prevent negative effects of errors or failure of the TRNG or
of malicious external influences on the quality of the generated random numbers
(cf. Sect. 7). In such cases the random number generation should be stopped.

If the strength of mechanism (cf. [15]) or functions (cf. [8]) is low [19] does
not demand any tot test, startup test or online test. If the strength is medium or
high these tests are required. For class P1 these tests shall consider the internal
random numbers (cf. [19], P1.d)). We will not pursue this aspect in the following.
Instead, we will concentrate on class P2 with strength of mechanisms high.

The requirement on the startup test are rather mild. It only has to verify
statistical minimum properties of the das random numbers when the TRNG has
been started ([19], P2.d)(ix)). The tot test has to prohibit that random number
sequences are output for which the underlying das random numbers have been
generated completely after a total failure of the noise source ([19], P2.d)(x); cf.
also Remark 7(i)). The online test has to check the quality of the das random
numbers. The TRNG has to trigger the online test itself. The online test and the
call schema must be suitable for detecting unacceptable statistical defects of the
das random numbers or the deterioration of their statistical properties within an
acceptable period of time. For ideal random number generators the probability
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that at least one random alarm occurs in the course of a year of typical use of
the particular TRNG should be ≥ 10−6 ([19], P2.d)(xi),(xiii)).

Remark 7. (i) Ideally, no external random number should be output if any of
the used das random numbers has been generated after a total breakdown of the
noise source. This aim can be assured by using only internal random numbers
where an online test (applied to the das random numbers) has been passed af-
ter these internal numbers had been generated. The internal random numbers
should be generated from the das random numbers of the beginning of the test
sample. However, this is not always possible. The minimal requirement P2.d)(x)
in [19] needs concrete analysis for specific technical solutions.
(ii) If the internal random numbers are tested instead of the das random num-
bers an extra justification for the suitability of the tests is necessary (cf. [19],
Comment 2).
(iii) A minimum probability for an erroneous noise alarm was specified in order
to rule out weak statistical tests; e.g. if a noise alarm was released iff 64 consec-
utive das random numbers are equal. (However, this might be an appropriate
decision rule for the tot test.)
(iv) The tot test, startup test and the online test are usually a part of the TRNG
implementation. In exceptional cases they may be realized as external security
measures, e.g. by software calling the TRNG. In this case the applicant has to
provide an exact specification of these measures and a reference implementation
([19], Comments 1 and 3).
(v) Due to the small alarm probabilities the effectiveness of the online test has
to be justified on a theoretical basis.

The AIS 31 does not prescribe any concrete solutions. Reference [19] merely
demands properties tot tests, startup tests and online tests should have. More-
over, various examples are discussed ([19], Examples E.5-E.7).

Remark 8. (i) For the sake of efficiency the tot test, startup test and online test
may use the same statistical test, although with different decision rules (cf. [30]
or [19], Example E.7).
(ii) Many TRNGs release a noise alarm if a single test value exceeds a cer-
tain limit which is expected to occur with an extremely small probability (e.g.,
≤ 10−8). As pointed out in [30] (Sect. 4) this approach has two drawbacks:
Even for ideal random number generators usually only an approximation of the
distribution of the test variable is known (e.g. for the χ2-test). At the tail of
these distributions the relative error may be very large. Moreover, those approx-
imations normally give only little information on the rejection probability if the
random numbers are not independent and equidistributed.
(iii) In [30] (cf. also [19], Example E.7) a new online test procedure was proposed
where it is practically feasible to determine the expected number of noise alarms
within a time interval, even if the tested random numbers are not independent
and equidistributed. Moreover, the system designer can vary a whole parameter
set and hence can fit the test to the very special requirements of the intended
applications. Compared with the widely used online tests mentioned in (ii) the
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proposed solution does only need little more memory, some additional lines of
code and slightly more running time. These aspects are of particular importance
if the TRNG is integrated in a smart card.

7 Vulnerability Analysis

The evaluation process according to CC (cf. [8] and [9]) or ITSEC (cf. [15] and
[16]) will provide evidence for the correct implementation and the understand-
ing of the design. The statistical tests and the criteria described in Sects. 4 and
5 check the properties of the random numbers generated by prototypes. The
effectiveness of the tot, startup and online test is verified mostly by theoreti-
cal arguments. The goal of the vulnerability analysis is to determine whether
vulnerabilities have been identified during the evaluation of the construction
and anticipated operations of the TOE, or whether other methods (e.g. flaw
hypotheses) could allow users to violate the security policy of the target of eval-
uation. Vulnerabilities of the RNG may allow the ability to interfere with or alter
the random numbers. The analysis starts with obvious vulnerabilities which are
open to exploitation and requires a minimum of understanding of the TOE, skill,
technical sophistication, and resources in the public domain.

Note that the evaluation guidelines [19] themselves directly address counter-
measures against some obvious vulnerabilities of the TRNG, e.g. aging effects
and the total failure of the noise sources by requirements for tot, startup and
online tests. Obvious vulnerabilities might be suggested by the RNG external
and internal interface description. One easily sees the vulnerability of an hy-
brid RNG which uses external random data which are under the control of an
attacker. Noise sources based on inherent semiconductor thermal noise may be
vulnerable to environmental conditions like temperature. The attacker may try
to run the RNG at very low or very high temperature which could affect the
quality of the random numbers. Requirement [19], P2.d)(xii) demands that Re-
quirement P2.d)(vii) (cf. Sects. 4 and 5) are fulfilled under the intended external
usage conditions (temperature, power supply etc.) insofar as these can influence
the function of the noise source. If the environmental conditions are hostile,
it may be necessary to extend the tests under the aspect of the strength of
mechanisms and the analysis of the weaknesses. Smart card chips are normally
protected by means of a temperature sensor against operation out of range. The
evaluator should examine whether this range of temperature is valid for the nor-
mal operation of the RNG. In some cases the online tests may detect deviations
from normal RNG operations more effective than the sensor, especially if aging
of the random source is taken into account. The obvious vulnerability get more
specific if the concrete product is analyzed.

Another example of potential vulnerabilities of a TRNG (at least if it is
implemented on a smart card chip) are side channels caused by the physical
random source or the postprocessing. A vulnerability analysis of pseudo-random
number generators may be found in [18]. A very specific but very instructive
example of a DRNG vulnerability is described in [5]. The authors show that if
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the random parameter k in the Digital Signature Algorithm (DSA) is generated
by means of a linear congruential DRNG then the private key can quickly be
recovered from a few signatures even though this generator passes all statistical
tests and none of the pseudo-random numbers is ever revealed. D. Bleichenbacher
[6] discovered a flaw in the RNG described in the Appendix 3 of FIPS 186-2 that
result in the non-uniformity of the generated pseudo-random numbers. The RNG
is revised in the change notice to FIPS 186-2 ([26]).

The vulnerability analysis has to consider all information obtained during
the evaluation process of the TOE so far. All vulnerabilities have to be assessed
whether they might be used for practical attacks. One aspect is the expected
number of trials which are necessary to guess random numbers. The optimal
strategy in an exhaustive key search begins with the most likely bit string and
continues guessing in order of decreasing probabilities. Let Z denote a random
variable assuming values in {z1, z2, . . . , z2n}, the set of n-bit strings, ordered with
respect to their probabilities, i.e. P (z1) ≥ P (z2) ≥ · · ·P (z2n). For 0 ≤ δ ≤ 1 let
µ(n, δ) denote the minimum number of strings which must be guessed in order
to find the correct string with a probability of at least δ. Then clearly

µ(n, δ) := min

(

k |
k∑

i=1

P (zi) ≥ δ

)

.

Assume that an RNG may be viewed as an ergodic stationary binary-valued
source with p denoting the probability for the value 1. In [23] it is pointed out
that then

lim
n→∞

log2 µ(n, δ)
n

= H(p).

Generally the RNG need not generate binary-valued random numbers. In the
most extreme case it generates each n-bit string at one go. Then the strong as-
sumption of the Maurer’s formula does not hold. More generally, Pliam’s formula
([28]) is valid:

⌊
1

2 max1≤i≤2n P (zi)

⌋
≤ µ(n, 0.5) ≤

⌈

2n

(

1−
2n
∑

i=1

∣∣P (zi)− 2−n
∣∣
)⌉

.

Depending on the concrete numerical values the evaluator may use the lower
bound to show that the RNG is secure against a guessing attack and the upper
bound to point at a weakness.

8 Conclusions

A comprehensive introduction in the evaluation of physical random number gen-
erators was given. Fundamental differences to deterministic random number gen-
erators and hybrid number generators were pointed out and general principles for
the evaluation of TRNGs have been explained. Concrete measures and criteria
specified in [19] were cited and explained.
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The AIS 31 (cf. [2,19]) has been effective in the German evaluation and
certification scheme since September 2001. It is mandatory if a physical random
number generator influences the security properties of an IT product and if a
German IT security certificate is applied for. The AIS 31 does not favour or
exclude particular TRNG design principles. It prescribes properties and criteria
a TRNG should fulfil and the evaluation task to be performed.
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A Hardware Random Number Generator
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Abstract. Some of the desirable properties a cryptographic random
number generator should have are lack of bias, bit independence, unpre-
dictiability and nonrepeatability. In this paper, we discuss how a hard-
ware random number generator formed from simple components can pro-
vide these properties. The components include two state machines with
different structures, and free-running oscillators. The generated numbers
pass the DIEHARD battery of tests.

The main uses of random numbers are in simulation and for cryptography. For
simulation, the main requirement on the quality of the numbers is on their
statistical properties; that they appear random.

Random number generators are used in many cryptographic algorithms and
protocols. Their uses include generation of session keys and private keys, as a
challenge against a replay attack, and as padding material for short messages.
Weak random number generators can be targets for breaking into a crypto-
graphic system [1]. When used for cryptographic purposes, random numbers
must be unpredictable as well as have good statistical properties. We describe a
hardware random number generator, used at Motorola, which passes Marsaglia’s
DIEHARD battery of tests [2], as well as FIPS-140 [3] and Crypt-X [4].

Fig. 1. Hardware random number generator block diagram.

The 32-bit hardware random number generator is based on a linear feedback
shift register (LFSR), and a cellular automata shift register (CASR). Figure 1
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shows a simplified block diagram of the generator. Each shift register is clocked
by an independent ring oscillator, and the output is sampled only when a new
number is requested. The LFSR has 43 bits, and a characteristic polynomial of
X43 +X41 +X20 +X +1. This is a primitive polynomial and gives a cycle length
of 243 − 1, (the all zero pattern is missing).

Wolfram [5] describes using 1-dimensional cellular automata (CA) with a
neighborhood of three for generating random sequences. He defines CA rules
as one of the 256 functions of three variables to define the next state of each
cell site. The number of the rule is given by the decimal value of its eight row
truth table. Pries [6] describes a hybrid CA using rules CA90 and CA150. The
important property of this hybrid CA is that, with the appropriate selection of
the CA90 and CA150 rules for each cell site, it gives a maximal length sequence.
The CA90 rule is defined by the equation

ai(t + 1) = ai−1(t)⊕ ai+1(t)

while the CA150 rule is defined by the equation

ai(t + 1) = ai−1(t)⊕ ai(t)⊕ ai+1(t)

The hardware random number generator uses a 37-bit CASR with a CA150 at
cell site 28, and CA90s at all other cell sites. Hortensius [7] states “the hybrid
CA’s of maximal length that we have found all require null boundary conditions”,
and our CASR is no exception. The CASR has a maximal length of 237−1, (again
the all zero pattern is missing).

Fig. 2. State-time diagram of the LFSR, CASR and combined generator.

To generate a random number, 32 bits of the LFSR and CASR are selected
and permuted, and then XORed together. Because the cycle lengths of the two
state machines are relatively prime, the cycle length of the combined generator
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is close to 280 (actually 280 − 243 − 237 + 1). Because of the missing all zero
pattern from both the LFSR and the CASR, there is a slight bias in the output
bits, on the order of 2−43 and 2−37 respectively. In the combined generator, this
bias drops to close to 2−80. We have never generated enough random output to
actually measure this bias.

Figure 2 shows a state-time diagram for the LFSR, CASR and combined
generator. The initial states are shown at the top, and time progresses downward
for 150 steps. The LFSR shows significant patterns, as the data in the LFSR is
simply shifted right each step, and the only new bit is inserted at the left. The
CASR is better, but triangular artifacts can readily be seen. The combination
of the LFSR and CASR is much better (at least visually), but further testing
will show that used this way, the combination still is not of acceptable quality.

Hortensius [7] also describes “site spacing” and “time spacing” as means to
reduce the correlations between bits of the CA. The hardware random number
generator uses site spacing in the selection and permutation of the LFSR and
CASR bits it combines. Time spacing is also used in that there are two free
running oscillators used as clocks for the two state machines, and a variable
sampling period to capture the output data. The oscillators’ frequencies vary
with temperature, voltage and processing parameters. The state machines cycle
through their states at different rates from each other and from the system clock.
Even when not used, the hardware random number generator is active, keeping
the internal state unpredictable. When multiple words are requested, there is
a minimum sampling time which allows both state machines to clock at least
twice their length (i.e., the LFSR is allowed to clock through at least 86 clock
cycles). This minimum number of system clock cycles is determined by the lowest
expected frequency of the free running oscillators.

Because this hardware random number generator has internal state, it is crit-
ical that the sequence of numbers it generates is not repeatable. The frequencies
of the two oscillators are not controlled, and they drift with variations in temper-
ature and voltage. Also, the state registers are not reset at power up, so that the
intial state may take different values. These features allow the random number
generator to cycle through a different sequence each time it is restarted.

The different components of the hardware random number generator were
tested using DIEHARD. Figure 3 presents the results of running DIEHARD on
individual pieces of the hardware random number generator, as well as actual
silicon. DIEHARD is a collection of 15 tests, most of which give several results.
In total, there are 234 p-values generated by DIEHARD. P-values are uniform
over the range [0,1), for true random numbers. If uniform p-values are sorted and
plotted, the result is a straight line, shown in Figure 2 as Ideal. The results for
truely random data should approximate this line. The next three plots assume a
single clock and sample every clock cycle. Both the LFSR and CASR fail the tests
miserably, their p-values are not uniform. For the combination of the LFSR and
CASR, there are 15 p-values equal to 1.0000, showing that there are still flaws in
this generator, but it is a significant improvement over either individually. The
final graph is from output of the actual hardware random number generator.
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Fig. 3. DIEHARD results of the LFSR, CASR and combined generator

With variable time sampling, the hardware random number generator passes
these tests.

The entire design of the hardware random number generator is written in
Verilog RTL, with the exception of the ring oscillators, which are netlists of a
number of inverters. The selected lengths of the inverter chains depend on the
process technology and system clock frequency. If the random number generator
will not be used for some time, the oscillators can safely be turned off to reduce
power, thus allowing its use in lower power applications.

Acknowledgements. This random number generator has been used within
Motorola for a number of years, and has gone through several minor variations
in that time. Ezzy Dabbish and Steve Tugenberg developed the original hardware
design.
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Abstract. The Auto-ID Center is developing low-cost radio frequency
identification (RFID) based systems with the initial application as next
generation bar-codes. We describe RFID technology, summarize our ap-
proach and our research, and most importantly, describe the research
opportunities in RFID for experts in cryptography and information se-
curity. The common theme in low-cost RFID systems is that computation
resources are very limited, and all aspects of the RFID system are con-
nected to each other. Understanding these connections and the resulting
design trade-offs is an important prerequisite to effectively answering the
challenges of security and privacy in low-cost RFID systems.

1 Introduction

Automatic Identification (Auto-ID) systems have become commonplace in access
control and security applications, in industries requiring the tracking of products
through the supply chain or manufacturing process, and in industries requiring
the identification of products at the point of sale or point of service. Perhaps the
most widely recognized Auto-ID system is the bar code system developed during
the early 1970’s. More recently, Radio-Frequency Identification (RFID) systems
have begun to find greater use in automatic identification applications. RFID
systems consist of Radio Frequency (RF) tags, or transponders, and RF tag read-
ers, or transceivers. The transponders themselves typically consist of integrated
circuits connected to an antenna [8]. The use of silicon-based microchips enables
a wide range of functionality to be integrated into the transponder. Typical
functionality ranges from large read/write memories to integrated temperature
sensors to encryp! tion and access control functionality. The transceivers query
the transponders for information stored on them. This information can range
from static identification numbers to user written data to sensory data.

The potential applications for RFID systems are numerous. Consider, for
example, supply chain management applications and the use of EAN-UCC bar
codes. Today, over 5 billion bar codes are scanned daily world-wide [6]. Yet,
most bar codes are scanned only once during the lifetime of the item, namely at
the check out. RFID systems, if strategically deployed, are a single platform on
which a number of supply chain management applications can be simultaneously
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implemented, benefiting all parties involved in a commercial transaction: the
manufacturers, the retailers, the users, and even regulatory bodies (such as the
Food and Drug Administration (FDA) in the United States). Automated item
level inventory identification using RFID systems will revolutionize supply chain
management by enabling applications such as automated real-time inventory
monitoring (at the shelf and in the warehouse), automated quality control, and
automatic check-out.

The significant benefits that an inexpensive, open standards-based RFID sys-
tem can provide are widely understood and acknowledged. At the same time,
typical low-cost transponders are priced in the range of US$0.50-US$1.00, and
RFID systems lack widely accepted and implemented standards for communi-
cation and functionality, thereby limiting their practical usefulness and keeping
their system costs too high for many applications. In order to achieve significant
item-level penetration within most supply chain applications, transponders will
need to be priced well under US$0.10, and preferably under US$0.05. These cost
targets cannot be achieved without a system-level approach that encompasses
every aspect of the RFID technology, from IC design to RF protocols, from reader
design to back-end data systems, and from IC manufacturing to antenna man-
ufacturing. The challenge has been to develop a complete open standards-based
system that enables the design and manufacture of lo! w-cost RFID systems.

The Auto-ID Center, an industry sponsored research center with laboratories
at Massachusetts Institute of Technology, USA, Cambridge University, UK, and
the University of Adelaide, AU, has designed, developed, and deployed within
a large-scale field trial an open standards-based system that enables the unique
identification of and retrieval of information on ubiquitously tagged items. The
Center, in conjunction with its sponsors, has also undertaken projects to design
and manufacture open standard low-cost RFID transceivers and transponders
capable of little more than communicating a unique identifier stored within them.
Low-cost transponders enable the tagging and unique identification of virtually
all man-made items.

The commercial availability of low-cost, Auto-ID Center standards-based
RFID systems by mid-2003 has poised these systems to be one of the earli-
est and perhaps most explosive opportunities in ubiquitous computing. As these
systems leave the industrial applications and enter our daily lives, privacy and
security related issues will play an increasingly important role in their use and
ubiquity. The pupose of this paper is to explain the technology, the challenges,
and the opportunities ubiquitous RFID systems present to the security and pri-
vacy communities.

2 A Brief Introduction to RFID Systems

2.1 Basic System Components

All RFID systems are comprised of three main components:

– the RFID tag, or transponder, which is located on the object to be identified
and is the data carrier in the RFID system,
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– the RFID reader, or transceiver, which may be able to both read data from
and write data to a transponder, and

– the data processing subsystem which utilizes the data obtained from the
transceiver in some useful manner.

Typical transponders (transmitters/responders) consist of a microchip that
stores data and a coupling element, such as a coiled antenna, used to communi-
cate via radio frequency communication. Transponders may be either active or
passive. Active transponders have an on-tag power supply (such as a battery)
and actively send an RF signal for communication while passive transponders
obtain all of their power from the interrogation signal of the transceiver and
either reflect or load modulate the transceiver’s signal for communication. Most
transponders, both passive and active, communicate only when they are inter-
rogated by a transceiver.

Typical transceivers (transmitter/receivers), or RFID readers, consist of a ra-
dio frequency module, a control unit, and a coupling element to interrogate elec-
tronic tags via radio frequency communication. In addition, many transceivers
are fitted with an interface that enables them to communicate their received
data to a data processing subsystem, e.g., a database running on a personal
computer. The use of radio frequencies for communication with transponders
allows RFID readers to read passive RFID tags at small to medium distances
and active RFID tags at small to large distances even when the tags are located
in a hostile environment and are obscured from view.

The basic components of an RFID system combine in essentially the same
manner for all applications and variations of RFID systems. All objects to be
identified are physically tagged with transponders. The type of tag used and the
data stored on the tag varies from application to application.

Transceivers are strategically placed to interrogate tags where their data is
required. For example, an RFID-based access control system locates its readers
at the entry points to the secure area. A sports timing system, meanwhile, lo-
cates its readers at both the starting line and the finish line of the event. The
readers continuously emit an interrogation signal. The interrogation signal forms
an interrogation zone within which the tags may be read. The actual size of the
interrogation zone is a function of the transceiver and transponder characteris-
tics. In general, the greater the interrogation signal power and the higher the
interrogation signal frequency, the larger the interrogation zone. Sending power
to the transponders via the reader-to-tag communication signal is the bottleneck
in achieving large read range with passive tags. Active tags do not suffer from
this drawback; thus, they typically have larger communication ranges than an
otherwise equivalent passive tag.

The transceivers and transponders simply provide the mechanism for obtain-
ing data (and storing data in the case of writable tags) associated with physical
objects.

Passive RFID systems are the most promising to provide low-cost ubiquitous
tagging capability with adequate performance for most supply chain manage-
ment applications. These low-cost RFID systems are, of necessity, very resource
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limited, and the extreme cost pressures make the design of RFID systems a
highly coupled problem with sensitive trade-offs. Unlike other computation sys-
tems where it is possible to abstract functionality and think modularly, almost
every aspect of an RFID system affects every other aspect. We present a brief
overview of the critical components of RFID technology and summarize some of
these trade-offs in passive RFID design.

2.2 Transceiver-Transponder Coupling and Communication

Passive RFID tags obtain their operating power by harvesting energy from the
electromagnetic field of the reader’s communication signal. The limited resources
of a passive tag require it to both harvest its energy and communicate with a
reader within a narrow frequency band as permitted by regulatory agencies. We
denote the center of this frequency band by f , and we refer to RFID systems
operating at frequency f with the understanding that this is the center frequency
of the band within which it operates.

Passive tags typically obtain their power from the communication signal ei-
ther through inductive coupling or far field energy harvesting. Inductive coupling
uses the magnetic field generated by the communication signal to induce a cur-
rent in its coupling element (usually a coiled antenna and a capacitor). The
current induced in the coupling element charges the on-tag capacitor that pro-
vides the operating voltage, and power, for the tag. In this way, inductively
coupled systems behave much like loosely coupled transformers. Consequently,
inductive coupling works only in the near-field of the communication signal. The
near field for a frequency f extends up to 1/(2πf) meters from the signal source.

For a given tag, the operating voltage obtained at a distance d from the reader
is directly proportional to the flux density at that distance. The magnetic field
emitted by the reader antenna decreases in power proportional to 1/d3 in the
near field. Therefore, it can be shown that for a circularly coiled antenna the flux
density is maximized at a distance d (in meters) when R ∼=

√
2 ·d, where R is the

radius of the reader’s antenna coil. Thus, by increasing R the communication
range of the reader may be increased, and the optimum reader antenna radius
R is 1.414 times the demanded read range d.

Far field energy harvesting uses the energy from the interrogation signal’s far
field signal to power the tag. The far field begins where the near field ends, at
a distance of 1/(2πf) from the emitting antenna. The signal incident upon the
tag antenna induces a voltage at the input terminals of the tag. This voltage
is detected by the RF front-end circuitry of the tag and is used to charge a
capacitor that provides the operating voltage for the tag.

There is a fundamental limitation on the power detected a distance d away
from a reader antenna. In a lossless medium, the power transmitted by the
reader decreases as a function of the inverse square of the distance from the
reader antenna in the far field.

A reader communicates with and powers a passive tag using the same signal.
The fact that the same signal is used to transmit power and communicate data
creates some challenging trade-offs. First, any modulation of the signal causes a
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reduction in power to the tag. Second, modulating information onto an otherwise
spectrally pure sinusoid spreads the signal in the frequency domain. This spread,
referred to as a “side band,” along with the maximum power transmitted at any
frequency, is regulated by local government bodies in most parts of the world.
These regulations limit the rate of information that can be sent from the reader
to the tag. RFID systems usually operate in free bands known as Industrial-
Scientific-Medical (ISM) bands, where the emitted power levels and the side
band limits tend to be especially stringent.

The signaling from the tag to the reader in passive RFID systems is not
achieved by active transmission. Since passive tags do not actively transmit a
signal, they do not have a regulated limit on the rate of information that can
be sent from the passive tag to the reader. In the near field, tag to reader
communication is achieved via load modulation. Load modulation is achieved by
modulating the impedance of the tag as seen by the reader. In the far field, tag
to reader communication is achieved via backscatter. Backscatter is achieved by
modulating the radar cross-section of the tag antenna. Comprehensive reviews
of the operation of tags and readers are available in [8] and [17].

The powering of and communication with passive tags with the same commu-
nication signal places restrictions on the functionality and transactions the tags
are capable of. First, there is very little power available to the digital portion of
the integrated circuit on the tag. This limits the functionality of the tag. Second,
the length of transactions with the tag is limited to the time for which the tag is
expected to be powered and within communication range. Governmental regu-
lations can further limit communication timings. In the US in the 915 MHz ISM
band, regulations require that, under certain operating conditions, the commu-
nication frequency change every 400 ms. Since every change in frequency may
cause loss of communication with a tag, transponders must not be assumed to
communicate effectively for longer than 400 ms. Finally, it is important to min-
imize state information required in passive tags. In many practical situations,
power supplied to the tag may be errat! ic, and any long-term reliance on state
in the tag may lead to errors in the operation of a communication protocol.

2.3 Data Coding

The data, consisting of ones and zeroes, communicated between tags and read-
ers must be sent in a reliable manner. There are two critical steps to reliable
communication, the encoding of the data and the transmission of the encoded
data, that is, the modulation of the communication signal. The combination of
coding and modulation schemes determines the bandwidth, integrity, and tag
power consumption.

The coding and modulation used in RFID communications is limited by the
power and modulation/demodulation capabilities of the tags. Another limiting
factor is the bandwidth occupied by the signal. Readers are capable of trans-
mitting at high power but are limited to narrow communication bands by com-
munications regulations; therefore, the encoding used from reader to tag usually
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needs to occupy a low bandwidth. Passive tags, however, do not actively trans-
mit a signal; therefore, the encoding used for tag to reader communication can
occupy a high bandwidth.

There are two broad categories of codes used in RFID: level codes and tran-
sition codes. Level codes represent the bit with their voltage level. Transition
codes capture the bit as a change in level. Level codes, such as Non-Return-to-
Zero (NRZ) and Return-to-Zero (RZ), tend to be history independent; however,
they are not very robust. Transition codes can be history dependent, and they
can be robust. Figure 1 illustrates several codes.

Fig. 1. Examples of several coding schemes.

The simplest code is Pulse Pause Modulation (PPM) in which the length
between pulses is used to convey the bit. PPM codes provide low bit rates but
occupy only a small bandwidth and are very easy to implement. In addition,
these encodings can be adapted easily to ensure uninterrupted power supply
since the signal does not change for long periods of time.

The Manchester code is a higher bandwidth transition code that represents
a 1 as a negative transition at the half period and a 0 as a positive transition at
a half period. The Manchester Code provides for efficient communication since
the bit rate is equal to the bandwidth of the communication.

In RFID, the coding technique must be selected with three considerations in
mind: 1) the code must maintain power to the tag as much as possible, 2) the
code must not consume too much bandwidth, and 3) the code must permit the
detection of collisions. The collision detection ability of a code is discussed further
in Section 2.5. Depending on the bandwidth available, most RFID systems use
PPM or PWM to communicate from reader to tag and Manchester or NRZ to
communicate from tag to reader.
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2.4 Modulation

The data coding scheme determines how the data is represented in a continuous
stream of bits. How that stream of bits is communicated between the tag and
the reader is determined by the modulation scheme. For convenience, RF com-
munications typically modulate a high frequency carrier signal to transmit the
baseband code. The three classes of digital modulation are Amplitude Shift Key-
ing (ASK), Frequency Shift Keying (FSK) and Phase Shift Keying (PSK). The
choice of modulation is based on power consumption, reliability requirements,
and bandwidth requirements. All three forms of modulation may be used in the
return signal although ASK is most common in load modulation at 13.56 MHz,
and PSK is most common in backscatter modulation.

A problem unique to RFID systems is the vast difference in power between
the signal outgoing from the reader and that returning to the reader as reflected
from the tag. In some situations, this difference may be in the range of 80-
90 dB [8], and the return signal may be impossible to detect. To avoid this
problem, the return signal is sometimes modulated onto a sub-carrier, which is
then modulated on to the carrier. For example, in the ISO 15693 standard for
RFID, a sub-carrier of 13.56/32 (= 423.75 KHz) is used.

2.5 Tag Anti-collision

When multiple tags respond simultaneously to a reader’s signal, their commu-
nication signals can interfere with one another. This interference is referred to
as a collision and typically results in a failed transmission. In order for a reader
to communicate with multiple tags, a method for collision free tag communica-
tion must be employed. These methods are referred to as anti-collision methods.
An anti-collision method must be employed if an application will typically have
more than one tag communicating with a reader at the same time.

Anti-collision methods, or algorithms, in tags have similarities to anti-
collision algorithms in networking. Unlike standard networking however, RFID
tags pose a number of problems that arise from the very limited resources that
they are provided with. First, they can afford only limited computation power.
Second, state information, such as what portion of the tags identifier has al-
ready been read, may be unreliable. Third, collisions may be difficult to detect
due to widely varying signal strengths from the tags. Finally, as in most wireless
networks, transponders cannot be assumed to be able to hear one another.

A common classification of anti-collision algorithms, either probabilistic or
deterministic, is based upon how the tags respond during the anti-collision al-
gorithm. In probabilistic algorithms, the tags respond at randomly generated
times. There are several variations of probabilistic protocols depending on the
amount of control the reader has over the tags. Many probabilistic algorithms
are based on the Aloha scheme in networking [3]. The times at which readers
can respond can be slotted or continuous. The ISO 15693 protocol, for example,
supports a slotted Aloha mode of anti-collision.

Deterministic schemes are those in which the reader sorts through tags based
on their unique identification number. The simplest deterministic scheme is the
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binary tree-walking scheme, in which the reader traverses the tree of all possible
identification numbers. At each node in the tree, the reader checks for responses.
Only tags whose identifier is a child of the checked node respond. The lack of
a response implies that the sub-tree is empty. The presence of a response gives
the reader an indication as to where to search next.

The performance metrics that are traded-off by these algorithms and their
variants include: 1) the speed at which tags can be read, 2) the outgoing band-
width of the reader signal, 3) the bandwidth of the return signal, 4) the amount
of state that can be reliably stored on the tag, 5) the tolerance of the algorithm
to different types of noise in the field, 6) the cost of the tag, 7) the cost of
the reader, 8) the ability to tolerate tags which enter and leave the field during
the inventory-taking process, 9) the desire to count tags exactly as opposed to
sampling them, and finally, 10) the range at which tags can be read.

The impact of regulated reader-to-tag bandwidth on the anti-collision proto-
col can be severe. In the US, for example, two common operating frequencies for
RFID systems are the 13.56 MHz and the 915 MHz ISM bands. The regulations
on the 13.56 MHz band offer significantly less bandwidth in the communication
from the reader to the tag than do the regulations on the 915 MHz band. For
this reason, Aloha-based anti-collision algorithms are more common in systems
that operate in the 13.56 Mhz band and deterministic anti-collision algorithms
are more common in the 915 Mhz band.

In practice, most RFID anti-collision algorithms tend to be an amalgam of
probabilistic and deterministic concepts. Almost all require a unique ID to sort
through the tags. This in itself has implications on privacy, as we will discuss
later. The interplay between the anti-collision algorithm, the identifier, and the
bandwidth available has an impact on all transactions between the reader and
the tag. Approaches to security and privacy must therefore be geared to these
very subtle trade-offs. Protocols to secure the tag at 13.56 Mhz, for example,
must use far less signaling from reader-to-tag than at 915 Mhz. Either way,
when there are several tags in the field, it is best to leverage the anti-collision
algorithms as much as possible for efficiency.

2.6 Reader Anti-collision

RFID systems have traditionally been used in sparse applications where the
readers tend to be far apart. In the applications we have explored, particularly
those in supply chain management, the density of readers will often be very high,
creating a new class of problems related to reader interference. We first reported
the Reader Collision Problem in [7]. The solution to a reader collision problem
allocates frequencies over time to a set of readers. The solution may be obtained
in either a distributed or centrally controlled manner.

Reader collision problems have some similarities to frequency assignment
problems in mobile telephone systems. However, the approaches that work in
mobile telephones do not translate to RFID systems due to the limited func-
tionality in RFID tags. The inability of the transponders to aid in the communi-
cation process means that they are unable to discriminate between two readers
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communicating with them simultaneously. As a result, two readers that may
communicate with the same tag must communicate at different times.

In a cooperative, trusted environment, reader collisions can be handled in
a fairly seamless way. However, complications may arise in the execution of
commands that change the state of the tag. If the reader executing a series
of state changing actions is interrupted by another reader, it may be forced
to relinquish control over the tag. The new reader that acquires the tag may
further change the state of the tag without the cooperation of the first reader.
Transactions between readers and tags must therefore be brief and atomic.

2.7 Frequencies and Regulations

The operation of RFID systems worldwide is regulated by local governmental
bodies which control the electromagnetic spectrum in a region. Most RFID sys-
tems operate in so-called Industrial-Scientific-Medical (ISM) bands. These bands
are freely available for use by low-power, short-range systems. The ISM bands
are designated by the International Telecommunications Union (ITU) [11]. A
comprehensive summary of the standards is available in [17]. The most com-
monly used ISM frequencies for RFID are 13.56 MHz and 902-928 MHz (in the
US only). In addition, the low frequency band 9kHz-135 kHz is available for un-
licensed use in most regions, and the 868MHz-870MHz band is available for use
by nonspecific short-range devices in Europe. Each band has its own radiation
power and bandwidth regulations.

 

30 ? V/m 

251 ? V/m 

15,484 ? V/m 

13.56 MHz  
+/- 7kHz 

Astronomy band 
13.36-13.41 MHz 

Maximum intentional radiation 

Maximum spurious radiation 

Fig. 2. The 13.56 MHz ISM band US power regulations.

Each frequency band brings its own challenges and advantages in terms of
operation. The 13.56 MHz band shown in Figure 2 offers a great deal of asymme-
try between the forward and reverse communication. Since readers must power
the tags in passive RFID systems, the reader-to-tag communication must be at
maximum power for maximum communication range. This limits the bandwidth
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in reader-to-tag communication to a total of 14kHz. However, there is a great
deal more bandwidth available for the low-power return communication.

The 915 MHz ISM band in the US, in contrast, allows multiple reader-to-
tag communication options. The option that enables the longest communication
range, the most commonly used mode in RFID systems, requires the reader to
change its communication frequency every 0.4 seconds. The reader may ‘hop’
between 50 or more channels, each with a maximum bandwidth of 250 kHz. Fre-
quency hopping imposes several limitations on RFID systems. The most severe
of these limitations is that a tag cannot be assumed to be in continuous com-
munication across a frequency hop. This means that transactions with 915 MHz
RFID systems in the US should be limited to within the 0.4 second intervals al-
located to any single frequency sub-band. Constraints of this type also point to
the need for limited length, atomic transactions in RFID systems, a requirement
which must be respected in the design of security and privacy systems.

3 The EPC System: A Minimalist Approach

At the Auto-ID Center, we have developed and implemented a system that en-
ables all physical objects to be connected in real-time to the Internet by affixing
an RFID tag to the object [14]. The scale of the system (essentially a several
quadrillion node network), combined with the trade-offs in RFID design, created
an intriguing design challenge. We utilized a minimalist strategy for the RFID
tags (the most replicated component of the system) to enable extremely low-cost
RFID systems. The result is a system that minimizes the functionality on the
tag by moving that functionality to the ‘network.’

The four key components of this system are the Electronic Product Code
(EPC), the Object Name Service (ONS), the Savant, and the RFID transpon-
ders.

The EPC. The Electronic Product Code (EPC) is an identification scheme
designed to enable the unique identification of all physical objects. This is the
only data required to be stored on a tag, for once the unique identity of an object
is established, information about that object can be obtained from the network.
As such, the EPC acts like a pointer to this information.

The ONS. The Object Name Service (ONS) is a directory service that maps
the EPC to an IP (Internet Protocol) address where information about the asso-
ciated object can be written and/or accessed. The ONS is based entirely on the
Domain Name Service (DNS), the directory service used on the Internet today
to map a domain name (e.g., www.mit.edu) to an IP address (e.g., 18.181.0.31).
At the IP address pointed to by the ONS, data about the particular object is
stored in XML [20] format, and can be accessed by standard methods like HTTP
and SOAP [19].

ONS reduces the burden on the transponders, and provides several advan-
tages simultaneously. First, it reduces the memory and power requirements on
the tag. Second, by transferring much of the data communication to a much
higher-bandwidth back-end network, it saves precious wireless bandwidth. Third,
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it makes the system more robust: while it is difficult to store and recover informa-
tion from a failed tag, it is possible to back up databases inexpensively. Finally,
this approach significantly reduces the footprint of the tag’s microchip, reducing
the cost of the transponder. (The cost of the microchip is proportional to its
area [15].)

Savant. The Savant system is a hierarchical control and data management build-
ing block that can be used to provide automated control functionality and man-
age the large volumes of data generated by the RFID readers. A Savant enables
the distributed creation of a reader network by acting as a gateway to the next
higher level in the Savant hierarchy, effectively isolating the reader sub-network.
The use of Savants enables distributed security by providing convenient points
for network isolation.

The Savant network further reduces the burden on the tags while providing
several advantages. First, it reduces the memory and power requirements on the
tags by transferring the computationally intensive functionality to a powered
system. Second, it makes the system more robust: any single point of failure
has local effects. Third, it enables the entire system to be scalable as systems
and reader sub-networks may be added seemlessly. Finally, the Savant network
significantly reduces the footprint of the tag’s microchip, reducing the cost of
the transponder.

RFID Transponders. RFID transponders are the most numerous and cost
sensitive of our system components. We have designed RFID protocols for both
13.56 MHz and 915 MHz, both with the aim of having minimum cost identi-
fication tags with acceptable performance for supply chain applications. Both
transponders are designed to store a unique identifier, an EPC, and have that
identifier retrieved as part of the anti-collision algorithm. The 915 MHz, UHF,
transponder utilizes a directed tree search anti-collision algorithm, while the
13.56 MHz, HF, transponder utilizes a slotted Aloha-based anti-collision algo-
rithm. Both transponders also implement a password protected Self Destruct
command, that enables the owner of the tag to electrically and permanently
destroy the tag.

The implementation cost of securing the Self Destruct command was
weighed against the benefits of that security. It was determined that a secret
key must be used to execute the Self Destruct command; therefore, requir-
ing the destruction of a single tag at a time. The secret key is meant only to
discourage the unauthorized destruction of tags. In a pervasive reader environ-
ment, unauthorized Self Destruct commands can be detected by the readers,
enabling a proper reaction to the issuance of these commands.

We have taken a building-block approach to RFID transponder design in that
these minimal functionality tags form the foundation of the functionality that
will be found in higher-functionality tags. These higher functionality tags may
be used in applications that can afford the additional cost of the transponder
and require the transponder to implement the functionality.
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4 RFID Security Benefits and Threats

Universally deploying RFID tags offers many potential security benefits, yet may
expose new privacy threats. Otherwise intrusive or cumbersome security prac-
tices, such as airline passenger and baggage tracking, can be made practical by
using RFID systems. Authentication systems already take advantage of RFID
technology, for example car key-less entry systems. Embedding RFID tags as
seals of authenticity in documents, designer products, and currency may dis-
courage forgery. While RFID tags improve certain security properties in these
applications, they may exacerbate privacy threats or pose new security risks.

RFID systems are different from other means of identification because RF
communication is non-contact and non-line-of-sight, whereas other means of
identification are either contact-based or require line-of-sight. In other words,
it is more difficult for the owner of the RF tag to physically impede communi-
cation with the tag. The promiscuity of RF tags is not unique; magnetic stripe
cards, for example, are promiscuous, but we assume that the owner of the card
takes the physical responsibility of preventing unauthorized users from physically
accessing the card. Of course, the propagation characteristics of electromagnetic
fields do limit the range from which passive RFID cards can be read. In fact,
most tags operating at 13.56 MHz cannot be read from more than a meter away,
and 915 MHz tags are difficult to read through most materials. Yet, as the in-
formation stored on the tag becomes more and more valuable, it is necessary
to think through some of the security and privacy! related issues in RFID. We
present such a discussion in this section, ending with a proposed approach.

4.1 Previous Work

The contactless interface and constrained computational resources of RFID de-
vices present a unique set of characteristics most closely related to smart cards.
Many relevant lessons may be gleaned from the wealth of smart card and tamper
resistant hardware research. [1] discusses a range of smart card protocols and
analyzes cost and security trade-offs. Many RFID tags will operate in hostile
environments and may be subject to intense physical attacks. Analysis of smart
cards operation in hostile environments is presented in [9], while [18] provides
an excellent overview of many physical attacks and countermeasures. Several
specific lower cost physical attacks are detailed in [2] and are part of ongoing
research at the University of Cambridge’s TAMPER Lab [16]. Many results per-
taining to implementation of cryptographic primitives on smart cards apply to
RFIDs. Cautionary information regarding implementation of AES i! n smart
cards appears in [5]. Being contactless and passively powered may make RFID
devices especially susceptible to fault induction or power analysis attacks. Both
[4] and [12] highlight many of these issues in cryptographic devices.

4.2 Security Goals

It is useful to state clear security goals when discussing security properties of
various RFID designs. Tags must not compromise the privacy of their hold-
ers. Information should not be leaked to unauthorized readers, nor should it be
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possible to build long-term tracking associations between tags and holders. To
prevent tracking, holders should be able to detect and disable any tags they
carry. Publicly available tag output should be randomized or easily modifiable
to avoid long-term associations between tags and holders. Private tag contents
must be protected by access control and, if interrogation channels are assumed
insecure, encryption.

Both tags and readers should trust each other. Spoofing either party should be
difficult. Besides providing an access control mechanism, mutual authentication
between tags and readers also provides a measure of trust. Session hijacking and
replay attacks are also concerns. Fault induction or power interruption should
not compromise protocols or open windows to hijack attempts. Both tags and
readers should be resistant to replay or man-in-the-middle attacks.

4.3 Low-Cost RFID Issues

With these security goals in mind, consider the security properties of passive
factory-programmed, read-only tags. Each tag contains a unique identifier such
as an EPC. While no more “promiscuous” than an optical bar code, automated
monitoring of RF tags is possible. This basic design clearly violates the privacy
goal since tracking tag holders and reading tag contents are possible if the tag
is properly presented to a reader’s interrogation field. Neither tags nor readers
are authenticated; therefore, no notion of trust exists either.

To address these deficiencies, suppose we adopt a policy of erasing unique se-
rial numbers at the point of sale. Consumer held tags would still contain product
code information, but not unique identification numbers. Unfortunately, track-
ing is still possible by associating “constellations” of particular tag types with
holder identities. For example, a unique penchant for RFID-tagged Gucci shoes,
Rolex watches and Cohiba cigars may betray your anonymity. Furthermore, this
design still offers no trust mechanism.

Providing the stated security goals requires implementing access control and
authentication. Public key cryptography offers a solution. A particular (type of)
reader’s public key and a unique private key may be embedded into each tag.
During interrogation, tags and readers may mutually authenticate each other
with these keys using well understood protocols. To prevent eavesdropping within
the interrogation zone, tags may encrypt their contents using a random nonce
to prevent tracking. Unfortunately, supporting strong public key cryptography
is beyond the resources of low cost (US$0.05-0.10) tags, although solutions do
exist for more expensive tags [13] .

Symmetric message authentication requires each tag to share a unique key
with a reader or for a key to be shared among a batch of tags. To support a unique
key per tag, a complex key management overhead is necessary. If keys are to be
shared, tags must be resilient to physical attacks described in [18]; otherwise,
compromising a single tag effective compromises an entire a batch. Implementing
secure memory on a low cost tag with a logic gate count in the hundreds is a
daunting task, especially in light of the difficulty in securing memory on relatively
resource abundant smart cards. Even supporting strong symmetric encryption
is a challenge in the short term.
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4.4 Some Approaches to RFID Protection

Accepting short-term limitations on low-cost tag resources, we discuss a simple
RFID security scheme based on a one-way hash function. In practice, a hard-
ware optimized cryptographic hash function would suffice, assuming it may be
implemented with significantly fewer resources than symmetric encryption. In
this design, each hash-enabled tag contains a portion of memory reserved for a
“meta-ID” and operates in either an unlocked or locked state. While unlocked,
the full functionality and memory of the tag are available to anyone in the in-
terrogation zone.

To lock a tag, the owner computes a hash value of a random key and sends
it to the tag as a lock value, i.e. lock=hash(key). In turn, the tag stores the
lock value in the meta-ID memory location and enters the locked state. While
locked, a tag responds to all queries with the current meta-ID value and restricts
all other functionality. To unlock a tag, the owner sends the original key value
to the tag. The tag then hashes this value and compares it to the lock stored
under the meta-ID. If the values match, the tag unlocks itself.

Each tag always responds to queries in some form and thus always reveals
its existence. Tags will be equipped with a physical self-destruct mechanism and
will only be unlocked during communication with an authorized reader. In the
event of power loss or transmission interruption, tags will return to a default
locked state. A trusted channel may be established for management functions,
such as key management, tag disabling or even tag writes, by requiring physical
contact between a control device and a tag. Requiring physical contact for critical
functionality helps defend against wireless sabotage or denial of service attacks.

The hash-based lock mechanism satisfies most of our privacy concerns. Access
control to tag contents is restricted to key holders. Individuals may both locate
and disable tags they may be carrying since tags always respond to queries.
Long-term associations can be avoided since locked tags only respond with the
correct meta-ID. One caveat is that stale meta-ID values may be used to build
tracking associations over time. This necessitates periodically refreshing meta-ID
values by unlocking and re-locking tags.

Although authenticating readers and providing a trusted channel satisfies
some of our trust requirements, this design does sacrifice several security proper-
ties to save costs; specifically tag authentication. Tag MAC functionality would
allow tags to authenticate themselves, but is beyond current low-cost tag re-
sources. Lacking authentication exposes tags to man-in-the-middle attacks since
an attacker can query tags for meta-IDs, rebroadcast those values to a legitimate
reader, and later unlock the tags with the reader’s response keys. Many key-less
car entry systems currently possess the same vulnerability. Regardless, attack-
ers without access to an authorized reader cannot access tag contents outside
physical channels.

4.5 Future Research Directions

While this candidate design partially satisfies some desired security properties,
more secure implementations require several developments. One key line of re-
search is the further development and implementation of low cost cryptographic
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primitives. These include hash functions, random number generators and both
symmetric and public key cryptographic functions. Low cost hardware imple-
mentations must minimize circuit area and power consumption without adversely
affecting computation time. RFID security may benefit from both improvements
to existing systems and from new designs. More expensive RFID devices already
offer symmetric encryption and public key algorithms such as NTRU [10,13].
Adaptation of these algorithms for the low-cost (US$0.05-0.10), passive RFID
devices should be a reality in a matter of years.

Protocols utilizing these cryptographic primitives must be resilient to power
interruption and fault induction. Compared to smart cards, RFID tags possess
more vulnerabilities to these types of attacks. Protocols must account for dis-
ruption of wireless channels or communication hijack attempts. Tags themselves
must gracefully recover from power loss or communication interruption without
compromising security.

Continually improving technology will steadily blur the line between RFID
devices, smart cards and ubiquitous computers. Research benefiting the security
of RFID devices will help pave the way for a universal, secure ubiquitous com-
puting system. Developments related to RFID tags and other embedded systems
may all contribute to the creation of a robust and secure infrastructure offering
many exciting potential applications.

5 Conclusions

This article is a summary of a research effort underway by three universities,
more than 60 companies, and more than 50 researchers world-wide.

The effort has been fueled by the potential economic impact of inexpensive,
ubiquitous item identification in the supply chain. The roadmap towards cheap
tags has been laid out, but like any research effort, uncertainty is a part of
the challenge. Several technology alternatives will need to be tested for each
component of the system before the optimal one is determined. Even after the
first cheap tags have been manufactured, scaling production to the volumes
needed to meet expected demand will be a challenge. It may be years before the
supply meets the enormous demand that a technology of this type is projected
to generate. However, it is these very volumes that make it necessary for the
technology to be carefully thought out to save every fraction of a cent in the
cost of a tag and to ensure the security and privacy of its future users.
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Abstract. Invertible transformations over n-bit words are essential in-
gredients in many cryptographic constructions. When n is small (e.g.,
n = 8) we can compactly represent any such transformation as a lookup
table, but when n is large (e.g., n = 64) we usually have to represent
it as a composition of simpler operations such as linear mappings, S-P
networks, Feistel structures, etc. Since these cryptographic constructions
are often implemented in software on standard microprocessors, we are
particularly interested in invertible univariate or multivariate transfor-
mations which can be implemented as small compositions of basic ma-
chine instructions on 32 or 64 bit words. In this paper we introduce
a new class of provably invertible mappings which can mix arithmetic
operations (negation, addition, subtraction, multiplication) and boolean
operations (not, xor, and, or), are highly efficient, and have desirable
cryptographic properties. In particular, we show that for any n the map-
ping x→ x + (x2 ∨ C) (mod 2n) is a permutation with a single cycle of
length 2n iff both the least significant bit and the third least significant
bit in the constant C are 1.

1 Introduction

Block ciphers are among the most useful constructions in modern cryptography.
They are usually constructed by repeatedly applying a simple invertible round
function, which should be nonlinear with good avalanche properties. Since most
block ciphers are now implemented in software on standard microprocessors, it
is crucial to choose a round function which can be efficiently implemented with
very few machine instructions. The importance of software-based efficiency was
clearly demonstrated during the AES selection process [9] [11].

Since modern microprocessors have extremely fast arithmetic and boolean
operations on 32 or 64 bit words, we would like to choose round functions which
use such operations on complete words rather than operations that manipulate
individual bits or bytes. In addition, it is a good idea to mix arithmetic and
boolean operations in order to avoid pure algebraic or bit-oriented attacks, and
to reduce the probabilities of linear and differential attacks.

The invertibility of round functions is of course a necessary condition in block
ciphers, but it is also important in other constructions such as stream ciphers
and hash functions: If we repeatedly apply a round function to the internal state,
we want to prevent an incremental loss of entropy which can lead to early looping
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of the output stream or to undesirable collisions among the hashed values. In
these applications we do not actually want to run the round function backwards
— we just need a guarantee that the forward mapping is one-to-one. In other
applications such as the encryption of data stored on backup tapes, we have to
encrypt huge amounts of data once a day, but rarely decrypt the result. In these
cases the software efficiency of the backward mapping is relatively unimportant,
and we can use slightly asymmetric schemes in which the process of decryption
is slower (by a small factor) than the process of encryption. Such an asymmetry
can even help against some cryptanalytic attacks if the opponent only knows the
ciphertext and tries to perform exhaustive decryption under all possible keys.

The goal of this paper is to design new types of provably invertible round
functions with good cryptographic properties and extremely efficient software
implementations. They mix a small number of arithmetic and boolean operations
on full machine words, and cannot be inverted by executing the same program
backwards with inverse operations. Instead, we can use the mathematical proof
of invertibility in order to construct a completely different (and somewhat slower)
inversion algorithm, if we ever have to run the mapping backwards.

The best way to introduce the new idea is to describe several simple examples
which demonstrate the fine line between invertible and noninvertible mappings.
Let 1 denote the constant word 0 · · · 01, and assume that all the operations are
carried out on n-bit words. Then the following univariate mappings are invertible:

x→ x + 2x2, x→ x + (x2 ∨ 1), x→ x⊕ (x2 ∨ 1)

whereas the following closely related variants are noninvertible:

x→ x + x2, x→ x + (x2 ∧ 1), x→ x + (x3 ∨ 1)

The same techniques can be used to prove the invertibility of multivariate map-
pings such as:

(x, y)→ (x⊕ 2(x ∧ y), (y + 3x3)⊕ x).

2 Notations and Definitions

In this section we introduce our notations and basic definitions. We denote
the set {0, 1} by B. We use the same symbol x to denote the n-bit vector
([x]n−1 , [x]n−2 , · · · , [x]0) in B

n and an integer modulo 2n, with the usual con-
version rule: x←→∑n−1

i=0 2i [x]i.
The basic operations we allow in our constructions are the following arith-

metic and boolean operations:

Definition 1. Let x and y be n-bit input variables. A function φ : B
k×n → B

n

is called a primitive function if k = 1 and φ(x) is one of the operations of
negation: φ(x) = −x (mod 2n) and complementation: [φ(x)]i = [x]i, or if k = 2
and φ(x, y) is one of the operations of addition: φ(x, y) = x + y (mod 2n),
subtraction: φ(x, y) = x− y (mod 2n), multiplication: φ(x, y) = x · y (mod 2n),
xor: [φ(x, y)]i = [x]i ⊕ [y]i, and: [φ(x, y)]i = [x]i ∧ [y]i, or: [φ(x, y)]i = [x]i ∨ [y]i.
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Note that left shift is allowed (since it is equivalent to multiplication by
a power of two), but right shift and circular rotations are not allowed in our
framework, even though they are available as basic machine instructions in most
microprocessors.

When we deal with an m× n bit matrix p, we start numbering its rows and
columns from zero, and refer to its i-th row as pi−1,� and to its j-th column as
p�,j−1 . Our multivariate transformations operate on inputs represented by the
bit matrix p�,� (for plaintexts) and produce outputs represented by the matrix
c�,� (for ciphertexts), where the value of the i-th variable is represented by the
successive bits in row i− 1 in the matrix.

Definition 2. Parametric functions are functions g(x1, · · · , xa; α1, · · · , αb)
whose arguments are split by a semicolon into inputs (the xi’s) and parame-
ters (the αj’s). A Parametric Invertible Function (PIF) is a parametric
function whose input/output relationship is invertible for any fixed value of the
parameters:

∀α ∀x, y : g(x; α) = g(y; α) ⇐⇒ x = y

3 Previous Constructions of Invertible Mappings

To test the applicability of previous construction techniques, we will try to use
each technique in order to prove the claim that the univariate mapping x →
x⊕ (x2 ∨ 1) over n-bit words is invertible for any n.

The simplest way to construct a large class of invertible mappings is to com-
pose other invertible operations in various orders. A typical example is an S-P
network in which we alternately apply invertible substitution and permutation
operations. However, in our running example the global invertibility of the map-
ping x→ x⊕ (x2 ∨ 1) cannot be explained by the local invertibility of its basic
operations, since squaring and or’ing with 1 are non-invertible operations.

A second technique for constructing invertible transformations was proposed
by Feistel [3] in 1973 and used in many block ciphers such as DES [7]. Unlike
the first technique, it can use arbitrary non-invertible functions f in the con-
struction by using the PIF g(l; r) = l ⊕ f(r). The basic Feistel construction
maps two inputs (l, r) into (r, l⊕ f(r)), and the full Feistel construction iterates
this mapping any number of times. This idea was generalized in several direc-
tions, and in [13] Schneier and Kelsey gave “a taxonomy of Feistel networks”
which include unbalanced Feistel networks (UFN), homogeneous and heteroge-
neous UFNs, incomplete and inconsistent networks, etc. However, the Feistel
construction requires at least two variables, and thus it also fails to explain the
invertibility of our running example x→ x⊕ (x2 ∨ 1) (mod 2n).

A third method of constructing invertible multivariate transformations is
called triangulation, and is motivated by the way we use Gauss elimination to
solve a system of linear equations by first triangulating its matrix of coefficients,
and then computing the values of the variables in a sequential way. For example,
in 1993 Shamir proposed [14] two constructions of birational transformations, in
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which both the mapping and its inverse are defined by ratios of small polynomi-
als. The core of his first scheme was the fact that the mapping

(x0, . . . , xk−1) 	→ (f0(x0, . . . , xk−1), . . . , fk−1(x0, . . . , xk−1)) (1)

is uniquely invertible for almost all inputs if each fi has the following form:

fi(x0, . . . , xk−1) = gi(x0, . . . , xi−1)xi + hi(x0, . . . , xi−1) (mod N), (2)

where gi and hi are arbitrary non-zero polynomial functions modulo a large RSA
modulus N . The inversion process solves a series of trivial linear equations in one
variable, as demonstrated in the following mapping from (x, y, z) to (x′, y′, z′):

x′ = 7x (mod N)
y′ = (x2 + 12x + 7)y + x (mod N)
z′ = (xy + 4x3 + y)z + xy2 + y3 (mod N) (3)

Given the output (x′, y′, z′), we can derive x = x′
7 (mod N) from the first

equation, then use it to derive y = y′−x
x2+12x+7 from the second equation, and finally

use x and y to derive z = z′−(xy2+y3)
xy+4x3+y from the third equation. The derivation

fails only when one of the numeric denominators is not relatively prime to N ,
which is an extremely rare event. This approach could easily handle arbitrary
functions gi and hi which mix arithmetic and boolean operations, since these
functions have to be evaluated only in the forward direction. However, it cannot
explain the invertibility of our univariate running example, or the invertibility
of the bivariate example (x, y) → (x ⊕ 2(x ∧ y), (y + 3x3) ⊕ x)(mod 2n), which
can not be simplified into a triangular form.

A fourth approach is to concentrate on mappings which contain only the
arithmetic operations of addition, subtraction and multiplication. Such polyno-
mial mappings have a rich algebraic structure, and their invertible cases are
called permutation polynomials. The problem of characterizing permutation
polynomials over various domains is a very well studied problem in mathematics.
For example, Hermite made considerable progress in characterizing univariate
permutation polynomials modulo a prime p, and Dickson found an effective char-
acterization for all univariate polynomials with degrees smaller than 5. However,
even today the problem is not completely resolved for high degree polynomials
modulo a large prime p.

Over the ring of integers modulo 2n the problem seems to be much simpler. In
1997, the designers of the AES candidate RC6 [11] were looking for an invertible
mapping with good mixing properties which could be implemented in software
with a small number of arithmetic operations on 32 bit words. They chose the
mapping x → x + 2x2 (mod 232), and used an ad-hoc algebraic technique to
prove that it is a permutation polynomial. In 1999, Rivest [12] generalized this
proof technique and provided the following complete characterization of all the
univariate permutation polynomials modulo 2n:
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Theorem 1. Let P (x) = a0 + a1x + · · · + adx
d be a polynomial with integral

coefficients. Then P (x) is a permutation polynomial modulo 2n, n > 2 if and
only if a1 is odd, (a2 + a4 + · · ·) is even, and (a3 + a5 + · · ·) is even.

Unfortunately, his algebraic proof technique cannot be generalized to mappings
which mix arithmetic and boolean operations, and thus it can not prove the
invertibility of x→ x⊕ (x2 ∨ 1) or of (x, y)→ (x⊕ 2(x ∧ y), (y + 3x3)⊕ x).

4 The New Construction

To understand the new construction, assume that each input variable has n bits,
and we place the m input variables in the m rows of an m × n bit matrix. To
compute the mapping in the forward direction, we apply to the rows of this
matrix a sequence of primitive machine instructions. To compute the mapping
in the backward direction, we cannot sequentially undo the effects of the row
operations on the bit matrix, since some of them can be non-invertible. Instead,
we derive the backward mapping by analysing the overall effect of the forward
mapping on the columns of the bit matrix. Note that our goal is not to compute
the inverse mapping, but only to prove that it is uniquely defined for any output
matrix. Consequently, we don’t actually have to perform the time consuming
operation of changing the way bits are packed into words from row major to
column major representation.

The idea of switching from row operations to column operations was used
in 1997 by Eli Biham [2] to speed up the computation of DES. He placed 64
plaintexts in a 64 × 64 bit matrix, and encrypted all of them simultaneously
on an alpha microprocessor (with 64 bit words) by operating on the vertical bit
slices instead of on the horizontal plaintexts in the matrix. The row-oriented and
column-oriented algorithms look completely different (in particular, one of them
uses table lookups while the other uses only boolean operations to implement
the S-boxes), but they have the same overall effect. In Biham’s paper both the
encryption and the decryption operations are carried out on the columns of
the matrix, whereas in our case the forward mapping is performed on the rows
and the backward mapping is performed on the columns of the matrix. The
crucial observation which makes our construction possible is the fact that all
the primitive functions can be applied to truncated versions of their inputs and
provide truncated versions of the original outputs. To formalize this notion, we
need the following definition:

Definition 3. A function f from B
m×n to B

l×n is called a T-function if the
k-th column of the output [φ(x)]�,k−1 depends only on the first k columns of the
input: [x]�,0 , . . . , [x]�,k−1.

Consider, for example, the addition function: x + y = z (mod 2n). The
least significant bit of the result depends only on the least significant bits of the
operands: [z]0 = [x]0 ⊕ [y]0. The second bit depends on the first and second bits
of the operands [z]1 = [x]1 ⊕ [y]1 ⊕ α, where α is the carry into the second bit
position which is defined by the least significant bits of x and y. The same holds
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for all the other bits — in order to calculate bit number k of the result we only
need to know bits 0, 1, . . . , k of the operands. This is also true for subtraction and
multiplication, and trivially true for all the bit-oriented boolean operations. We
can thus conclude that all the primitive functions we allow in our constructions
are T-functions, whereas the excluded operations of bit rotations or right shifts
are not T-functions. The composition of two T-functions is also a T-function,
and thus any mapping defined by a sequence of primitive functions applied to
the input bit matrix is also a T-function.

The name T-function refers to the triangular dependence between the
columns of the operands. Note that this implicit triangulation is different from
the explicit triangulation in multivariate mappings which was mentioned in
the previous section. In fact, explicit and implicit triangulations are row/column
dual properties: A mapping has an explicit triangular shape if its i-th variable
(row) is combined only with previous variables in the given expressions, and has
an implicit triangular shape if its i-th bit slice (column) is combined only with
previous bit slices by the T-functions.

To demonstrate the new construction, let us prove the following result:
Theorem 2. For any composition f of primitive functions, the mapping x →
x + 2 · f(x) (mod 2n) is invertible.

Note that this class includes the RC6 function x→ x+2x2 (mod 2n)), along
with more complicated examples such as x→ x+2 · ((x∧x2)∨ (x̄∧x3)) in which
the bits of x are used to select between the bits of x2 and x3.
Proof. Our goal is to recover x from a given value of y = x + 2 · f(x) (mod 2n).
Assume that we already know bits 0, 1, . . . , i−1 of x, and our goal is to compute
bit number i. Since f is a composition of primitive functions, we can calulate
bits 0, 1, . . . , i−1 of f(x) by evaluating all the arithmetic operations in f modulo
2i, and truncating all the boolean operations after bit i− 1. By leftshifting this
result, we obtain all the values of bits 0, 1, . . . , i of 2 · f(x). When we reduce the
equation y = x + 2 · f(x) modulo 2i+1, the only unknown bit in the truncated
equation is the i-th bit in the first occurence of x in this expression, and thus we
can easily derive it from the equation. By repeating this process, we can recover
all the bits of x from lsb to msb in a unique way for any f which is a composition
of primitive functions.

Mappings defined by T-functions make it possible to consider vertical bit
slices in sequential order, but this notion does not guarantee invertibility (for
example, the mapping x → x + x2 (mod 2n) is a T-function but it maps both
−1 and 0 to 0). To guarantee invertibility, we combine the notions of Feistel
networks and triangulation in the following way:
Definition 4. A triangular Feistel Network (TFN) is any mapping over
bit matrices described by:

(p�,0, p�,1, . . . , p�,n−1)→
(g0(p�,0), g1(p�,1; p�,0), . . . , gn−1(p�,n−1; p�,0, p�,1, . . . , p�,n−2)), (4)

in which g0 is an invertible function and the gi’s for i > 0 are PIF’s.
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In fact, it is easy to prove that any T-function which is invertible is a TFN,
and thus this is the most general construction of invertible T-functions. We prove
this claim for bivariate mappings:
Lemma 1. Let A and B be finite sets, and let φ : A×B → A×B be an invertible
mapping of the form: (a, b)→(f(a), g(b, a)). Then f is invertible and g(b; a) is a
PIF.
Proof. Suppose that f is not invertible, so |{f(a)|a ∈ A}| is strictly smaller than
|A|. Then |{(f(a), φ(a, b))|a ∈ A, b ∈ B}| < |A|·|B|, which contradicts the invert-
ibility of φ. If g is not a PIF, then there exists a, b1 and b2, s.t. g(b1; a) = g(b2; a).
Consequently, φ maps (a, b1) and (a, b2) to the same pair of values.

5 Testing the Invertibility of Parametric Functions

In this section we consider the related issues of how to construct invertible map-
pings from primitive functions, and how to test the invertibility of a given map-
ping of this type. The general problem is quite difficult, but in practice we will
be interested mostly in univariate or bivariate mappings which are defined by a
small number of machine instructions, and in such cases our techniques seem to
work very efficiently.

Given such a mapping, we would like to test whether it is a TFN. We first have
to test whether the mapping of the least significant bit slice is invertible. The
simplest technique is to try the 2m possible combinations of the least significant
bits of the m variables, which is trivial for m ≤ 20. Next we have to test whether
for each i > 0, the parametric mapping gi(p�,i; p�,0, p�,1, . . . , p�,i−1) is a PIF.
This cannot be tested by exhaustive search, since the number of cases we have
to consider grows exponentially with i. Instead, we ignore the actual values
of additive parameters when we evaluate the primitive functions by using the
following recursive rules:
Lemma 2. If ◦ is a boolean operation, a, b are words, and i > 0, then

[a ◦ b]0 = [a]0 ◦ [b]0 (5)
[a ◦ b]i = [a]i ◦ [b]i (6)

[a + b]0 = [a]0 ⊕ [b]0 (7)
[a + b]i = [a]i ⊕ [b]i ⊕ α (8)
[a− b]0 = [a]0 ⊕ [b]0 (9)
[a− b]i = [a]i ⊕ [b]i ⊕ α (10)
[a · b]0 = [a]0 [b]0 (11)
[a · b]i = [a]i [b]0 ⊕ [a]0 [b]i ⊕ α (12)
[
ak
]
0 = [a]0 for any k > 0 (13)

[
ak
]
i
= [a]i [a]0 ⊕ α for any odd k > 0 (14)

[
ak
]
i
= α for any even k > 0 (15)

where the α’s are parameters denoting carries from previous bit positions.
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Proof. We only prove the last claim — all the other cases use similar ideas. Since
k is even t = k/2 is an integer, and thus we can use the claim about [a · b]i to get[
ak
]
i
= [at · at]i = [at]i [at]0 ⊕ [at]0 [at]i ⊕ α = α. Consequently, any bit position

in ak (except the least significant one) depends only on lower bit positions in a,
whose combination is considered as an additive parameter α.

To use these rules, we consider each expression in the multivariate mapping
as a tree with variables at the leaves, primitive functions at the internal nodes,
and one of the outputs at the root. We then compute the i-th bit of the output
by traversing the tree and evaluating its slice operations. This process is algorith-
mically similar to formal differentiation of algebraic expressions. To demonstrate
the process, consider the following bivariate mapping from the introduction:

x′ = x + 2(x ∧ y) (16)
y′ = (y + 3x3)⊕ x (17)

It is not clear, a-priori, whether this mapping is invertible. To test it, we first
compute the i-th bit (for any i > 0) of the first output as a parametric function:

[x′]i = [x]i ⊕ [2(x ∧ y)]i
= [x]i ⊕ [2]i [x ∧ y]0 ⊕ [2]0 [x ∧ y]i ⊕ δ

= [x]i ⊕ [2]i α⊕ 0⊕ δ = [x]i ⊕ θ

where δ, α and θ are parameters which can depend on the previous bit slices but
not on the i-th bit of any one of the input variables. In a similar way, we can
derive the parametric representation of the i-th bit (for any i > 0) of the second
output as

[y′]i =
[
y + 3x3]

i
⊕ [x]i = [y]i ⊕

[
3x3]

i
⊕ γ ⊕ [x]i

= [y]i ⊕ [3]i
[
x3]

0 ⊕ [3]0
[
x3]

i
⊕ δ ⊕ γ ⊕ [x]i

= [y]i ⊕ α⊕ [x]i [x]0 ⊕ [x]i ⊕ ε = [y]i ⊕ β [x]i ⊕ τ

It is now easy to see that the two parametric slice mappings:

[x′]i = [x]i ⊕ θ

[y′]i = [y]i ⊕ β [x]i ⊕ τ (18)

are invertible for any i > 0 and for any choice of the multiplicative parameter
β and the additive parameters θ and τ , and thus this mapping is a PIF. In
addition, it is easy to test that the mapping defined by the least significant slice
is invertible, and thus the original bivariate transformation over n bit words is
invertible.

As another example, let us reprove in our framework Rivest’s characteriza-
tion in Theorem 1 of permutation polynomials modulo 2n. First we check the
case of i = 0: Since all the powers of x are equal to x modulo 2, we can sim-
plify [P (x)]0 =

[
a0 + a1x + · · ·+ adx

d
]
0 = [a0]0 + [(a1 + · · ·+ ad)]0 [x]0, which

is invertible modulo 2 iff a1 + · · ·+ ad is odd.
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Next we have to check which polynomials have invertible slice mappings
for i > 0. By using our recursive simplification technique we get the following
parametric representations:

[
a1x

1]
i
= [a1]i [x]0 ⊕ [a1]0 [x]i ⊕ α1 = [a1]0 [x]i ⊕ α2

For higher even powers of x we get:
[
akxk

]
i
= [ak]i

[
xk
]
0 ⊕ [ak]0

[
xk
]
i
⊕ α3 = α4

and for higher odd powers of x we get:
[
akxk

]
i
= [ak]i

[
xk
]
0 ⊕ [ak]0

[
xk
]
i
⊕ α5

= [ak]i [x]0 ⊕ [ak]0 ([x]0 [x]i ⊕ α6)⊕ α5 = [ak]0 [x]0 [x]i ⊕ α7

Bringing it all together, [P (x)]i = [a1]0 [x]i⊕
⊕

odd k≥3 [ak]0 [x]0 [x]i⊕α. To make
sure that it is a PIF, this slice mapping should be invertible for both values of
[x]0. For [x]0 = 0 we get the condition [a1]0 = 1 , and for [x]0 = 1 we get the
condition a1⊕a3⊕a5⊕· · · = 1. Together with the condition a1⊕a2⊕a3 · · · = 1
from slice i = 0 we get Rivest’s characterization of permutation polynomials in
an almost mechanical way. As a bonus, we can use exactly the same proof to
get exactly the same characterization of invertible mappings of the form P (x) =
a0⊕a1x⊕· · ·⊕adx

d (which could not be handled by Rivest’s algebraic technique),
since there is no difference between + and ⊕ in the parametrized slice mappings.

As demonstrated by these examples, the invertibility of many types of map-
pings can be reduced to the invertibility of systems of linear equations modulo
2 with additive and multiplicative parameters (even when the original mapping
is highly nonlinear and combines arithmetic and boolean operations). If we have
only additive parameters, this invertibility does not depend on the actual val-
ues of the parameters and can be decided by evaluating a single determinant.
Multiplicative parameters are more problematic, as we have to test the invert-
ibility of parametrized matrices (modulo 2) for all the possible 0/1 values of the
parameters. Since the number of parameters is usually small, exhaustive search
is feasible, but this test can have a one-sided error: If all the parametrized ma-
trices are invertible then the original mapping is invertible, but in the other
direction noninvertible matrices may occur only for combinations of parameter
values which can never happen for actual inputs. Consequently, this test provides
a sufficient but not a necessary condition for invertibility.

An interesting special case happens when the parametrized coefficient matrix
is triangular with 1’s along its diagonal. Such matrices are invertible modulo 2
regardless of how parameters occur in its off-diagonal entries. This is demon-
strated in the system of equations 18, which is invertible for any choice of the
multiplicative parameter β.

When we consider the dual problem of constructing invertible mappings, we
should choose primitive operations whose slice mappings are linear systems of
equations with either no multiplicative parameters or with a triangular collec-
tion of multiplicative parameters. Alternatively, we can start with any simple
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combination of primitive functions and use our technique to diagnose its invert-
ibility. A failed test can indicate how the mapping should be modified in order
to make it invertible. As a typical example, consider the mapping x → x ⊕ x2.
Its i-th slice mapping for any i > 0 is the invertible [x′]i = [x]i⊕α, but for i = 0
we get the noninvertible [x′]0 = [x]0 ⊕ [x]0 = 0. To solve this problem, all we
have to do is to tweak the first slice mapping without affecting the other slice
mappings. The simplest way to do this is to “or” the constant 1 to x2, which
changes only the first slice mapping to the invertible [x′]0 = [x]0 ⊕ 1. This leads
in a natural way to the interesting mapping x→ x⊕ (x2∨1), which is invertible
for any word size.

6 Cryptographic Applications

So far we have defined a large class of complex mappings which can use a mixture
of standard arithmetic and boolean operations on arbitrarily long words. They
can be implemented very efficiently in software, and their invertibility can be
easily tested. In this section we describe one of their cryptographic applications.

Since the actual inversion of these invertible mappings is quite inefficient, we
would like to use them in situations where they are only executed in the forward
direction. A typical example of such an application is their iterated use on the
state S of a pseudo random number generator (PRNG). The initial state S0 of the
generator is derived from the key k, and after each iteration the PRNG outputs
some simple function O(Si) of its current state (e.g., its most significant bit or
byte). It is essential to use invertible update operations to avoid an incremental
loss of state entropy, but the update function is never run backwards in this
application.

Our goal is to choose a good state update function which uses the smallest
possible number of primitive functions, in order to achieve the highest possible
speed in software implementation. An exhaustive analysis of all the mappings
defined by up to two primitive functions indicate that there are only 8 families
of invertible mappings of this type: x ·C ′, x+C, x⊕C, (x+C1)⊕C2, x ·C ′ +C,
x·C ′⊕C, x·C ′′⊕x, (x⊕C)·C ′, where C, C1 and C2 are arbitrary constants, C ′ is
an arbitrary odd constant, and C ′′ is an arbitrary even constant. Unfortunately,
all these families are useless, either because they have a simple linear structure,
or because they have very short cycles. For example, the states defined by the
mapping x⊕C just oscillate between two possible states, and thus the output of
the PRNG is highly predictable. Consequently, we have to use at least 3 primitive
operations to update the state of the PRNG.

A very desirable property of an invertible state update mapping in this ap-
plication is that all the 2n possible states should be connected by a single cycle
of length 2n. In the case of linear feedback shift registers, this is almost achieved
by using a primitive feedback polynomial (which leaves only the all-zero state in
a second cycle). In general, it is very difficult to determine the cycle structure
of complex invertible mappings, but the possible cycle structures of T-functions
are severely limited by the following observation:
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Lemma 3. Let fn(x) = f(x) (mod 2n) be an invertible T-function. Then for
each cycle in fn−1 of length l, there are either two cycles of length l or one cycle
of length 2l in fn. Consequently, if f has any fixed point then for any i > 0 there
are at least 2i+1 points that belong to cycles of length at most 2i.

For n = 0 the only possible forms of f0 are f0(x) = x or f0(x) = x ⊕ 1
which have cycles of length 1 and 2. Consequently, the length of any cycle of an
invertible T-function is a power of 2. Another trivial corollary is that we should
only use functions which have no fixed points at all, since otherwise there are at
least two fixed points, at least four points on cycles of length bounded by 2, etc.

Consider, for example, the well known RC6 function fn(x) = x(2x + 1)
(mod 2n). Unfortunately, it has a fixed point x = 0, and thus it has several
small cycles. In fact, its cycle structure is much worse than the general bound
given above (for example, for n = 3, 4 out of the 8 possible inputs are fixed
points). It is easy to show that for any n this fn has exactly 2

n
2 fixed points,

exactly 2
n
2 −2 points on cycles of length 2, etc. This makes it very unsuitable for

our PRNG application.
A particularly interesting family of mappings is x→ x+(x2 ∨C) for various

constants C and word sizes n, for which we can prove:

Theorem 3. The mapping f(x) = x + (x2 ∨ C) over n bit words is invertible
if and only if the least significant bit of C is 1. For n ≥ 3 it is a permutation
with a single cycle if and only if both the least significant bit and the third least
significant bit of C are 1.

Proof. The first claim is trivial. For any bit slice i > 0 [f(x)]i = [x]i ⊕ α (where
α is a parameter) is invertible, and thus the only possible problem is the least
significant bit slice i = 0. There are two cases to consider: If [C]0 = 0, [f(x)]0 =
[x]0 ⊕ [x]0 = 0, whereas if [C]0 = 1, [f(x)]0 = [x]0 ⊕ 1. Consequently, the
invertibility of f(x) depends only on the least significant bit of the constant C.

The second claim is more complicated, and we prove it by induction on the
word length n. For n = 3 we can show by simple enumeration that the function
f(x) = x + (x2 ∨C) (mod 23) has a single cycle if and only if C = 5 or C = 7.
Note that this already implies that for any n ≥ 3 f(x) has more than one
cycle whenever C �∈ {5, 7} (mod 8), and thus we only have to prove that the
permutation has a single cycle whenever C ∈ {5, 7} (mod 8) (i.e., whenever
both the least significant bit and the third least significant bit of C are 1).

The length of any cycle of any T-permutation is of the form 2k for some k.
Our strategy is to show that ∀n ∃x :

[
f (2n−1)(x)

]

n−1
= [x]n−1 ⊕ 1, since this

implies the existence of some cycle of length larger than 2n−1, and the only
possible cycle length is then the full 2n.

Assume by induction that f has only one cycle for n−1. Consider the sequence
x0, x1 = f(x0) = x0 + (x2

0 ∨ C), x2 = f (2)(x0) = f(x1) = x1 + (x2
1 ∨ C) =

x0 + (x2
0 ∨C) + (x2

1 ∨C), . . ., x2n−1 = f (2n−1)(x) = x0 +
∑2n−1−1

i=0 (x2
i ∨C). From

the assumption that there is only one cycle for n − 1, we know that {xi mod
2n−1}2n−1−1

i=0 is just a permutation of {i}2n−1−1
i=0 . Since

[
x2
]
n−1 does not depend
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on [x]n−1 the set {(x2
i ) mod 2n}2n−1−1

i=0 is the same as {((xi mod 2n−1)2) mod

2n}2n−1−1
i=0 . So f (2n−1)(0) mod 2n =

∑2n−1−1
j=0 (j2 ∨ C) mod 2n. An expression

x∨2i is equal either to x if [x]i = 1 or to x+2i otherwise. Similarly j2∨C = j2+
∑

i:[C]i=1∧[j2]i=1 2i and
∑2n−1−1

j=0 (j2∨C) = 2n−1(
∑

i:[C]i=1 2jzj). Here zi denotes

the probability of ‘0’ in bit number i of x2 for random x, i.e.,
#{[x2]

i
=0}2i−1

x=0

2i . It
is easy to show that z0 = 1

2 , z1 = 1 and ∀i > 1 : zi = 1
2 (1+2−| i

2 |). 1 The formula
for the sum of squares is

∑k
j=0 j2 = k3

3 + k2

2 + k
6 , so σ = f (2n−1)(0) = (23n

3 +
22n

2 + 2n

6 ) − 22n + 2n−1(
∑

j:[C]j=1 2jzj) and we want to prove that [σ]n−1 = 1.

This is determined by the least significant bit of σ
2n−1 = 1

3 (22n+1 + 2n + 1) −
2n+1 +

∑
j:[C]j=1 2jzj . In binary 1

3 = 0.(10)2 and 2k

3 is either 1010 . . . 10.(10)2 or

1010 . . . 1.(01)2, so the infinite fraction 1
3 (22n+1 +2n) has either the form 0.(10)2

(if i is odd) or the form 1.(1)2 (if i is even). In both cases it represents a number
which is equal to ‘0’ modulo 2. In addition 2jzj = 0 (mod 2) for all j except ‘0’
and ‘2’, for which the values are 1

2 and 3, respectively. Finally σ
2n−1 (mod 2) =

1
3 + 1

2 + 3 (mod 2) = 1 and thus for x = 0,
[
f (2n−1)(0)

]

n−1
= 1 = [0]n−1 ⊕ 1

which completes the proof.

In particular, x+(x2∨1) is invertible but has multiple cycles of various sizes,
whereas x+(x2∨5) has only one cycle of length 2n and thus it is a better choice
for a PRNG application.

V. S. Anashin [1] published a somewhat related analysis of the cycle struc-
ture of functions defined over p-adic numbers. He used notions of ergodicity
and measure preservation in order to obtain topological characterization of such
mappings. In particular, he proved a theorem which could be translated into our
notation in the following way: if c, r �= 0 (mod p) then f(x) = d + cx + pv(x)
(mod pn) is invertible and g(x) = c+rx+p(v(x+1)−v(x)) (mod pn) has only
one cycle. For example, the invertibility of the RC6 function x(2x + 1) could be
shown by this theorem, but neither the invertibility nor the cycle structure of
x + (x2 ∨ 5) could be determined by his techniques.

The pure PRNG’s produced by invertible T-functions are not cryptograph-
ically secure by themselves, but they can serve as excellent building blocks in
software based generators (in the same way that linear feedback shift registers
are insecure as stand-alone designs, but they can serve as excellent components
in hardware based generators). They can have provably long cycles, and unlike
the case of LFSR’s, there is no need to worry about weak keys that fill the shift

1 For i ≤ 2 this could be checked by direct calculation. Every n-bit number x′ could
be represented as either 2x or 2x + 1, where x has n − 1 bits. In the first case
Pr[
[
x′2]

i
= 0| [x′]0 = 0] = zi−2, and in the second Pr[

[
x′2]

i
= 0| [x′]0 = 1] =

Pr[
[
4x2 + 4x + 1

]
i

= 0] = Pr[
[
x2]

i−2 ⊕ [x]i−2 ⊕ α = 0] = 1
2 (where α is a carry),

since [x]i−2 is independent of other bits (again note that
[
x2]

i
does not depend on

[x]i for i > 0) and equally likely to be 0 and 1. Combining both cases we get an
inductive proof of the claim.
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register with zeroes and get stuck in a fixedpoint. Even the simplest generators
can have excellent statistical properties. For example, we used the statistical
test suite [8] which was developed for the AES candidates [10], and we found
that the sequence of upper halves (top 32 bits) of the 64 bit numbers defined by
the iterated use of xi+1 = xi + (x2

i ∨ 5) (mod 264) is statistically random with
significance level α = 0.01 (which is better than for some of the AES candidates
themselves!). Since each iteration requires only 3 machine instructions, we can
use it as an exceptionally fast source of (weak) pseudorandomness.

Note that unlike the case of LFSR’s, when we iterate a T-function there is
no propagation of information from left to right in the state word. To overcome
this problem, we can alternately apply a T-function and a cyclic rotation to
the state. The combined mapping is clearly invertible, has both left-to-right and
right-to-left information propagation, but it is very difficult to analyse its cycle
structure. Consequently, such combinations have to be studied very carefully
before they can be adopted in new cryptographic schemes, and in particular
one should consider the linear and differential properties of these mappings, the
best way to combine them into stronger schemes, the best attacks against such
combinations, how many output bits can be extracted from the current state in
each iteration, etc.

7 Concluding Remarks

This paper proposes a new cryptographic building block which mixes boolean
and arithmetic operations, and analyses some of its cryptographic properties. In
particular, we use the multiplication operation (which on many modern micro-
processors take about the same time as addition) to thoroughly mix the input
bits in a nonlinear way and to enhance the statistical properties of the mapping.
In addition, we use the boolean operations to mask the algebraic weaknesses of
low degree polynomial mappings, and to control their cycle structures. The resul-
tant mappings have very compact and extremely fast software implementations,
and thus they could replace large S-boxes or LFSR’s in many software based
cryptographic schemes. We believe that as we move from 32 to 64 (and later to
128) bit processors, such wide-word mappings over mixed algebraic structures
will become an increasingly natural and attractive alternative to traditional bit
and byte oriented designs.
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Abstract.  Computing the inverse of a number in finite fields GF(p) or GF(2n)
is equally important for cryptographic applications. This paper proposes a novel
scalable and unified architecture for a Montgomery inverse hardware that
operates in both GF(p) and GF(2n) fields. We adjust and modify a GF(2n)
Montgomery inverse algorithm to accommodate multi-bit shifting hardware,
making it very similar to a previously proposed GF(p) algorithm. The
architecture is intended to be scalable, which allows the hardware to compute
the inverse of long precision numbers in a repetitive way. After implementing
this unified design it was compared with other designs. The unified hardware
was found to be eight times smaller than another reconfigurable design, with
comparable performance. Even though the unified design consumes slightly
more area and it is slightly slower than the scalable inverter implementations
for GF(p) only, it is a practical solution whenever arithmetic in the two finite
fields is needed.

1 Introduction

The modular inversion is an essential arithmetic operation for many cryptographic
applications, such as Diffe-Hellman key exchange algorithm, decipherment operation
of RSA algorithm, elliptic curve cryptography (ECC) [1,5], and the Digital Signature
Standard as well as the Elliptic Curve (EC) Digital Signature algorithm [4,5]. The
arithmetic performed in cryptographic applications consists mainly in modular
computations of addition, subtraction, multiplication, and inversion. Although
inversion is not as performance critical as all the others, it is the most time consuming
arithmetic operation [1,2,8-10,12,13]. Therefore, most of the practical
implementations try to avoid the use of inversion as much as possible. However, it is
not possible to avoid it completely [1,2,5], what motivates the implementation of
inversion as a hardware module in order to gain speed. In addition to that, hardware
implementations provide an increased level of security for cryptographic systems, as
discussed in [15].

Cryptographic inverse calculations are normally defined over either prime or
binary extension fields [5], more specifically Galois Fields GF(p) or GF(2n). All
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available application-specific integrated circuit (ASIC) implementations for inversion
computation [8-10,12,13] are modeled strictly for one finite field, either GF(p) or
GF(2n). If the hardware at hand is for GF(2n) calculations, such as [9,10,12,13], and
the application this time needs GF(p) computation, a completely different hardware is
required [5]. It is inefficient to have two hardware designs (one for GF(p) and another
for GF(2n)) when only one is needed each time. This issue motivated the search for a
single unified hardware architecture used to compute inversion in either finite field
GF(p) or GF(2n), similar, in principle, to the multiplier idea proposed in [4].

Cryptography is heavily based on modular multiplication [4,5], which involves
division by the modulus in its computations. Division, however, is a very expensive
operation [6]. P. Montgomery proposed an algorithm to perform modular
multiplication [7] that replaces the usual complex division with divisions by two,
which is easily performed in the binary representation of numbers. The cost behind
using Montgomery’s method is paid in some extra computations to convert the
numbers into Montgomery domain and vice-versa [7]. Once the numbers are
transformed into Montgomery domain, all operations (addition, subtraction,
multiplication, and inversion) are performed in this domain. The result is then
converted back to the original integer values. Few methods were aimed to compute
the inverse in the Montgomery domain [1-3] and are named Montgomery modular
inverse algorithms [1].

The GF(p) Montgomery inverse (MonInv) algorithm [18] is an efficient method for
doing inversion with an odd modulus. The algorithm is particularly suitable for
implementation on application specific integrated circuits (ASICs). For GF(2n)
inversion, the original inverse procedure (presented in [17]) has been extended to the
finite field GF(2n) in [16]. It replaces the modulus (p) by an irreducible polynomial
(p(x)), and adjusts the algorithm according to the properties of polynomials. We
implemented the inversion algorithms in hardware based on the observation that the
Montgomery inverse algorithm for both fields GF(p) and GF(2n) can be very similar.
We show that a unified architecture computing the Montgomery inversion in the
fields GF(p) and GF(2n) is designed at a price only slightly higher than the one for
only the field GF(p), providing major savings when both types of inverters are
required.

A scalable Montgomery inverter design methodology for GF(p) was introduced in
[18]. This methodology allows the use of a fixed-area Montgomery inverter ASIC
design to perform the inversion of unlimited precision operands. The design tradeoffs
for best performance in a limited chip area were also analyzed in [18]. We use the
design approach as in [14,18] to obtain a scalable hardware module. Furthermore, the
scalable inverter described in this paper is capable of performing inversion in both
finite fields GF(p) and GF(2n) and is for this reason called a scalable and unified
Montgomery inverter.

There are two main contributions of this paper. First, we show that a unified
architecture for inversion can be easily designed without compromising scalability
and without significantly affecting delay and area. Second, we investigate the effect
of word length (w) and the actual number of bits (n) on the hardware area, based on
actual implementation results obtained by synthesis tools. We start with a brief
explanation of scalability in Section 2. In Section 3, we propose the GF(2n) extended
Montgomery inverse procedure that has several features suitable for an efficient
hardware implementation. The unified architecture and its operation in both types of
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finite fields, GF(p) and GF(2n), are described in Section 4. Section 5 presents the
area/time tradeoffs and appropriate choices for the word length of the scalable
module. Finally, a summary and conclusions are presented in Section 6.

2 Scalable Architecture

Hardware architectures are generally designed for an exact number of operand bits. If
this number of bits needs to be increased, even by one bit, the complete hardware
needs to be replaced. In addition to that, if the design is implemented for a large
number of bits, the hardware will be huge and usually slow. These issues motivated
the search for the scalable inversion hardware proposed in [14].

The scalable architecture [14] solves the previous problems with the following
three hardware features. First, the design’s longest path should be short and
independent of the operands’ length. Second, it is designed in such a way that it fits in
restricted spaces (flexible area). Finally, it can handle the computation of numbers in
a repetitive way, up to a certain limit that is usually imposed by the size of the
memory in the design. If the amount of data exceeds the memory capacity, the
memory unit is replaced while the scalable computing unit may remain the same.
Therefore, the scalable hardware design is built of two main parts, a memory unit and
a computing unit. The memory unit is not scalable because it has a limited storage
that imposes an upper bound on the number of bits that can be handled by the
hardware (nmax). The computing unit read/write the data bits using another word size
of w bits, normally much smaller than nmax. The computing unit is completely scalable.
It is designed to handle w bits every clock cycle. The computing unit does not know
the total number of bits that the memory is holding. It computes until the actual
number of operand bits (n) is processed.

3 Montgomery Inverse Procedures for GF(p) and GF(2n)

In order to design a unified Montgomery inverse architecture, the GF(p) and GF(2n)
algorithms need to be very similar and this way consume the least amount of extra
hardware. Extending the GF(p) Montgomery inverse algorithm to GF(2n) is practical
due to the removal of carry propagation required in GF(p) and simple adjustments of
test conditions. In other words, the GF(2n) algorithm is like a simplification of the
GF(p) algorithm. The converse (modifying GF(2n) algorithms for GF(p)), on the other
hand, is very difficult [4,5,16].

The scalable GF(p) Montgomery inverse (MonInv) procedure suitable for this work
consists in two phases: the almost Montgomery inverse (AlmMonInv) and the
correction phase (CorPh) [18]. The AlmMonInv has a2m as input and produces r and k,
where r = a-12k-m mod p, 2n-1� p<2n and n< k<2n. The factor 2m (of the AlmMonInv
input a2m) is related to Montgomery arithmetic [4,5,16]. The only restriction on the
value of m is that it should not be less than the number of bits (n), i.e., m � n, as
discussed in [1]. The CorPh takes r and k to generate the Montgomery inverse
a-12mmod p. Both GF(p) AlmMonInv and CorPh algorithms were mapped to hardware
features and further modified for multi-bit shifting, a concept discussed in [18], which
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resulted in an efficient implementation of the GF(p) Montgomery inverse. The GF(p)
multi-bit shifting AlmMonInv and CorPh hardware algorithms (HW-Alg1 and HW-
Alg2, respectively), are outlined in Figure 1.

GF(p) Multi-Bit Shifting AlmMonInv HW Algorithm (HW-Alg1)  

Registers: u, v, r, s, x, y, z, and p (all registers hold nmax bits)
Input: a2m

�[1, p-1]; Where p = modulus, and m � n (2n-1
�  p<2n)

Output: result�[1, p-1] & k; Where result = a-12k-mmod p & n< k< 2n
1.    u = p; v = a2m; r = 0; s = 1; x = 0; y = 0; z = 0; k = 0
2.    if (u2u1u0=000) then {u=ShiftR(u,3);s=ShiftL(s,3);k=k+3}; goto 8
2.1. if (u2u1u0=100) then {u=ShiftR(u,2);s=ShiftL(s,2);k=k+2}; goto 8
2.2. if (u2u1u0=110) then {u=ShiftR(u,1);s=ShiftL(s,1)}; goto 7
3.    if (v2v1v0=000) then {v=ShiftR(v,3);r=ShiftL(r,3);k=k+3}; goto 8
3.1. if (v2v1v0=100) then {v=ShiftR(v,2);r=ShiftL(r,2);k=k+2}; goto 8
3.2. if (v2v1v0=110) then {v=ShiftR(v,1);r=ShiftL(r,1)}; goto 8
4.    x = Subtract(u, v); y = Subtract(v, u); z = Add(r, s)
5.    if (xborrow=0) then {u=ShiftR(x,1); r=z; s=ShiftL(s,1)}; goto 7
6.    s = z; v = ShiftR(y,1); r = ShiftL(r,1)
7.    k = k + 1
8.    if (v � 0) goto step 2
9.    x = Subtract(p, r); y = Subtract(2p, r)
10.  if (xborrow = 0) then {result=x}; else{result = y}

GF(p) Multi-Bit Shifting CorPh HW Algorithm  (HW-Alg2)  

Registers: r, u, v, x, y, z, and p (all registers hold nmax bits)
Input:       r, p, n, k; Where r (r=a-12k-mmod p)&k from HW-Alg1
Output:    result; Where result = a-12m (mod p).
11.       j = 2m-k; x = 0; y = 0; z = 0
12.      v = 2p; u = 3p
13.      While j > 0
14.           if j =1 then {r = ShiftL(r,1); j=j-1}
15.           else {r = ShiftL(r,2); j=j-2}
16.           x=Subtract(r,p); y=Subtract(r,v); z=Subtract(r,u)
17.           if (zborrow = 0) then  {r = z}
18.           else if (yborrow = 0) then {r = y}
19.           else if (xborrow = 0) then  {r = x}
20.      result = r

Fig. 1. Montgomery inverse hardware algorithm for GF(p)

Differently from what normally happens in a full-precision hardware design, the
scalable hardware, as in [4,14,18], has multi-precision operators for shifting, addition,
subtraction, and comparison. Observe the AlmMonInv algorithm in Figure 1, for
example, the scalable subtraction (step 4) is also used for comparison (u > v), which is
performed on a word-by-word basis (w-bit words) until all the actual data words (all n
bits) are processed. Then, borrow-out bit of the most-significant word is used to
decide on the result. Also, depending on the subtraction’s completion, variable r or s
has to be shifted. All variables, u, v, r and s, need to remain as is until the subtraction
process is complete, and the borrow-out bit appears. For this reason, eight registers
are required, as shown in Figure 1.
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3.1 Representation and Manipulation of Elements in GF(2n)

The inversion algorithm for GF(2n) used in this work was presented in [16]. Although
prime and binary extension fields, GF(p) and GF(2n), have different properties, the
elements of either field are represented using similar data structures. The elements of
the field GF(2n) can be represented in several different ways [5]. The polynomial
representation, however, is a useful and appropriate form to the unified
implementation, as used for the unified multiplier in [4]. According to the GF(2n)
polynomial representation, an element a(x)�GF(2n) is a polynomial of length n, i.e.,
of degree less than or equal to n-1, written as a(x)=an-1x

n-1+an-2x
n-2+ ... +a2x

2+a1x+a0,
where ai�GF(2). These coefficients ai are represented as bits in the computer and the
element a(x) is represented as a bit vector a = (an-1 an-2 ... a2 a1 a0).

The addition/subtraction of two elements a(x) and b(x) in GF(2n) is performed by
adding/subtracting the polynomials a(x) and b(x), where the coefficients are
added/subtracted in the field GF(2). As a consequence, both addition and subtraction
operations are exactly the same and equivalent to bit-wise XOR operations on the bit-
vectors a and b (ai � bi). In order to compute the inverse of element a(x) in GF(2n), we
need an irreducible polynomial of degree n. Let the irreducible polynomial be p(x)=
xn+pn-1x

n-1+pn-2x
n-2+ ... +p2x

2+p1x+p0. Whenever the degree of a polynomial obtained in
intermediate inversion calculations equals n, the polynomial is reduced (XORed) by
p(x). For example, if ||r(x)|| = ||p(x)|| (degree of r(x) equals degree of p(x)) then r is
replaced by p�r. Note that in some cases ||r(x)|| = ||p(x)|| while r < p. These cases
restrict the comparison of r to 2n only (xn not p(x)) to indicate if r(x) needs to be
reduced by p(x) (r = p�r); where 2n is the binary representation of xn.

3.2 Montgomery Inverse in GF(2n)

The GF(2n) Montgomery inverse of a(x)xm mod p(x) is a(x)-1xm mod p(x) [5]. The
Montgomery factor 2m of GF(p) is replaced by xm in GF(2n), which is exactly equal to
2m in a binary representations [4,5,16], where m � n. The elements of GF(p) and
GF(2n) are represented using similar binary data structures, a for both GF(p) and
GF(2n) equals (an-1 an-2  ... a2 a1 a0) while     p = (pn-1 pn-2 ... p2 p1 p0) for GF(p) and p=(1
pn-1 pn-2 ... p2 p1 p0) for GF(2n) [5]. Our adjusted binary GF(2n) Montgomery inverse
(MonInv) procedure consists in a GF(2n) AlmMonInv and a GF(2n) CorPh routines as
outlined in Figure 2.

For more clarification of the GF(2n) MonInv computation, see the numerical
example in Figure 3. It takes as inputs the polynomial a(x)= x3+1, represented into
Montgomery domain as a(x)x9 mod p(x)= x4+x2 (m=9� n=5), and p(x)= x5+x2+1 as
the irreducible polynomial. All the data are shown in its binary representation
(a=1001, a2m=10100, and p=100101). The example (Figure 3) follows the
convention:

Met condition � affected registers with their updated values.
The AlmMonInv routine generates the results a-12k-m = 1000, and k = (10)10 (k is a
normal decimal counter), which are used by the CorPh to provide the Montgomery
inverse result 111 (x2+x+1 in the polynomial form). The reader is referred to the
Appendix for checking the result of this example.
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GF(2n) AlmMonInv Algorithm  
Input:   a2m

�GF(2n) & p; (p=irreducible polynomial & m � n)
Output: result�[1, p-1] & k (result = a-12k-mmod p & n< k < 2n)
1.    u = p; v = a2m; r = 0; s = 1; k = 0
2.    While (v > 0)
3.          if u0 = 0 then {u = u/2; s = 2s}
4.          else if v0 = 0 then {v = v/2; r = 2r}
5.          else if u>v then {u = (u�v)/2; r = r�s; s = 2s}
6.          else {v = (u�v)/2; s = r�s; r = 2r}
7.          k=k+1
8.    if r � 2n+1 (||r|| > ||p||) then {result = 2p�r}
9.   else if r � 2n (||r|| = ||p||) then {result = p�r}
10. else result = r

GF(2n) CorPh Algorithm  
Input:       r, p, m, & cowherd r & k from AlmMonInv
Output:    result, where result = a-12m (mod p)
11.     j = 2m-k
12.    While j > 0
13.        r = 2r
14.        if r � 2n (||r|| = ||p||) then {r = p�r}
15.        j = j-1
16.    result = r

Fig. 2. GF(2n) Montgomery inverse algorithm in its binary representation

Observe on Figure 2 the several hardware operations applied to compute the
MonInv in finite field GF(2n). For example, the division and multiplication by two are
equivalent to one bit shifting the binary representation of polynomials to the right and
to the left, respectively. Checking the condition of step 5, if u>v, is performed
through normal (borrow propagate) subtraction and test of the borrow-out bit. The
subtraction result is completely discarded, only the borrow bit is observed. If the
borrow bit is zero, then u(x) is greater than v(x). Similarly, the conditions in steps 8, 9,
and 14 demand normal subtraction. However, the subtraction this time is used to
check ||r(x)||, which requires the availability of xn (2n in binary).

3.3 Multi-bit Shifting

A further improvement on the GF(2n) MonInv algorithm is performed based on a
multi-bit shifting method making it similar to the GF(p) algorithm in Figure 1. After
comparing different multi-bit shifting distances applied to reduce the number of
iterations of the GF(p) MonInv algorithm [18,19], the best maximum distance for
multi-bit shifting was found to be three, as clarified in [18,19]. The GF(2n) inverse
algorithm (Figure 2) is mapped to hardware involving multi-bit shifting and making it
very similar to the GF(p) algorithm (Figure 1) as shown in Figure 4. Note that xn is
required in the GF(2n) algorithm as an extra variable that is needless in the GF(p)
MonInv algorithm; xn (2n) is saved in register y in HW-Alg3 (used in step 9), and in
register s in HW-Alg4 (used in step 16.1). These registers (y in HW-Alg3 and s in
HW-Alg4) are not changed during the algorithms’ execution.
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GF(2n) AlmMonInv Numerical Example  
a = 1001 � GF(25), p=100101, m= 9, n=5
a2m mod p = 10100 � GF(26) (a in Montgomery domain)
u = p = 100101, v = a2m = 10100, s = 1, r = k = 0
v0 = 0 � v = 1010, r = 0, k=1
v0 = 0 � v = 101, r = 0, k=2
u > v � u = 10000, r = 1, s = 10, k=3
u0 = 0 � u = 1000, s = 100, k=4
u0 = 0 � u = 100, s = 1000, k=5
u0 = 0 � u = 10, s = 10000, k=6
u0 = 0 � u = 1, s = 100000, k=7
v > u � v = 10, s = 100001, r = 10, k=8
v0 = 0 � v = 1, r = 100, k=9
u = v � v = 0, r = 1000, s = 100101, k=10
||r||<||p|| � result = r

GF(2n) CorPh Numerical Example  
p=100101, m= 9, n= 5
r = 1000 � GF(26), k=10 (from AlmMonInv)
j = 8
r = 10000,  j = 7
r = 100000, ||r|| = ||p|| � r  = 101,  j = 6
r = 1010,  j = 5
r = 10100,  j = 4
r = 101000, ||r|| = ||p|| � r  =1101,  j = 3
r = 11010, j = 2
r = 110100, ||r|| = ||p|| � r  =10001,  j = 1
r = 100010, ||r|| = ||p|| � r  = 111,  j = 0

�GF(2n) MonInv of 10100 = 111 (a-12m); Where m=9 & n = 5

Fig. 3. GF(2n) MonInv computation numerical example

For both GF(p) and GF(2n) MonInv hardware algorithms (Figure 1 and Figure 4,
respectively), the AlmMonInv algorithm needs to finish its computation completely
before the CorPh begins processing. This data dependency allows the use of the same
hardware to execute both algorithms, i.e., both the AlmMonInv and CorPh. The
algorithms are implemented in the unified and scalable hardware architecture as
described in the following section.

4 The Unified and Scalable Inverter Architecture

Taking into account the amount of effort, time, and money that must be invested in
designing an inverter, a scalable and unified architecture that can perform arithmetic
in two commonly used algebraic finite fields is clearly advantageous. In this section,
we present the hardware design of a Montgomery inverse architecture that can be
used for both types of fields following the design methodology presented in [14]. The
proposed unified architecture is obtained from the scalable architecture given in [14]
but with some modifications, which slightly increases the longest path propagation
delay and chip area. The scalable GF(p) Montgomery inverse architecture presented
in [14] consisted in two main units, a non-scalable memory unit and a scalable
computing unit. The memory unit is not scalable because it has a limited storage
defined by the value of nmax. The data values of a and p are first loaded in the memory
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unit. Then, the computing unit read/write (modify) the data using a word size of w
bits. The computing unit is completely scalable. It is designed to handle w bits every
clock cycle. The computing unit does not know the total number of bits, nmax, the
memory is holding. It computes until the controller indicates that all operands’ words
were processed. Note that the precision of the actual numbers used may be way
smaller than nmax bits. The user needs to identify the type of finite field his application
needs at the beginning of the computation. An input signal FSEL (field select) is used
to tell the architecture weather GF(p) or GF(2n) is the desired arithmetic domain.

GF(2n) Multi-Bit Shifting AlmMonInv HW Algorithm (HW-Alg3)  
Registers:    u, v, r, s, x, y, z, & p (all registers hold nmax bits)
Input:          a2m, 2n

�[1,p-1] (p=irreducible polynomial & m�n)
Output:        result�[1, p-1] & k (result=a-12k-mmod p & n<k<2n)
1.    u = p; v = a2m; r = 0; s = 1; x = 0; y = 2n; z = 0; k = 0
2.    if (u2u1u0=000) then{u=ShiftR(u,3);s=ShiftL(s,3);k=k+3}; goto 8
2.1. if (u2u1u0=100) then{u=ShiftR(u,2);s=ShiftL(s,2);k=k+2}; goto 8
2.2. if (u2u1u0=110) then{u=ShiftR(u,1);s=ShiftL(s,1)}; goto 7
3.    if (v2v1v0=000) then{v=ShiftR(v,3);r=ShiftL(r,3);k=k+3}; goto 8
3.1. if (v2v1v0=100) then{v=ShiftR(v,2);r=ShiftL(r,2);k=k+2}; goto 8
3.2. if (v2v1v0=110) then{v=ShiftR(v,1);r=ShiftL(r,1)}; goto 8
4.    S1 = Subtract(u, v); x = v�u; z = r�s
5.    if (S1borrow=0) then {u=ShiftR(x,1); r=z; s=ShiftL(s,1)}; goto 7
6.    s = z; v = ShiftR(x,1); r = ShiftL(r,1)
7.    k = k + 1
8.    if (v � 0) go to step 2
9.    x = p� r ; z = 2p� r ; S1 = Subtract (y,x); S2 = Subtract (y,z)
10.    if (S1borrow=0) then {result=x}
10.1  else if (S2borrow=0) then {result=z}
10.2  else {result = r}

GF(2n) Multi-Bit Shifting CorPh HW Algorithm  (HW-Alg4)  
Input:       r, p, m, 2n & k; Where r (r=a-12k-mmod p)& k from HW-Alg3
Output:    result; Where result = a-12m (mod p).
11.     j = 2m-k-1; x = 0; y = 0; z = 0
12.    v = 2p;  u = 3p;  s = 2n

13.    While j > 0
14.        if j =1 then {r = ShiftL(r,1); j=j-1}
15.        else {r = ShiftL(r,2); j=j-2}
16.        x = p� r ; y = u� r ; z = u� r
16.1      S1=Subtract(s,x); S2=Subtract(s,y); S3=Subtract(s,z)
17.        if  (S3borrow = 0) then  {r = z}
18.        else if (S2borrow = 0) then {r = y}
19.        else if (S1borrow = 0) then  {r = x}
20.   result = r

The block di
The memory un
not changed fro
k and eight firs
variables. All re
Each FIFO regi
counters to keep
Fig. 4. Montgomery inverse hardware algorithm for GF(2n)
agram for the Montgomery inverter hardware is shown in Figure 5.
it is connected to the computing unit components. The memory unit is
m what is presented in [14]. It contains a counter to compute variable
t-in-first-out (FIFO) registers used to store the inversion algorithm’s
gisters, u, v, r, s, x, y, z and p, are limited to hold at most nmax bits.
ster has its own reset signal generated by the controller. They have
 track of n (the number of bits actually used by the application).
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Fig. 5. Scalable and unified inverter hardware

The computing unit is made of four hardware blocks: add/subtract, shifter, data
router, and controller block. The GF(p) add/subtract unit and the data router are the
only components that need to be adjusted to make the inverter hardware unified for
GF(p) and GF(2n) finite fields.

The GF(p) add/subtract unit is originally built of two w-bit subtractors, a w-bit
adder/subtractor, four flip-flops, one multiplexer, a w-bit comparator, and logic gates,
as detailed in [14]. This unit is adjusted to operate for GF(2n) by adding a set of 3w
parallel XOR gates used for steps 4 and 9 of HW-Alg3 and step 16 of HW-Alg4. The
new add/subtract unit is shown in Figure 6. The signal Control makes the unit
perform either two subtractions plus one addition (step 4 of HW-Alg1), or three
subtractions (step 16 of HW-Alg2 and step 16.1 of HW-Alg4). Three flip-flops are
used to hold the intermediate borrow bits of the subtractors and the carry bit of the
adder to implement the multi-precision operations. The fourth flip-flop is used to store
a flag that keeps track of the comparison between u and v, which is used to perform
step 8 of HW-Alg1 and HW-Alg3. The subtractors borrow-out bits are connected to
the controller through signals that are useful only at the end of each multi-precision
addition/subtraction operation. Subtractor1 borrow-out bit will affect the flow of the
operation to choose either step 5 or step 6 of both HW-Alg1 and HW-Alg3. It is also
essential in electing the result observed in step 10 of HW-Alg1 and of HW-Alg2. The
three subtractors borrow-out bits (S1borrow, S2borrow, S3borrow) are likewise necessary for
selecting the correct solution of the ‘if’ condition to be one of the steps 17, 18, or 19,
from the HW-Alg2 and from the HW-Alg4 algorithms.
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Fig. 6. Add/Subtract unit of the scalable and unified hardware

The shifter is made of two multiplexers and two registers with special mapping of
some data bits, as shown in Figure 7. Depending on the controller signal Distance, the
shifter acts as a one, two, or three-bit shifter. Two types of shifting operations are
needed in the HW-Alg1 and the HW-Alg3 algorithms, shifting an operand (u or v)
through the uv bus one, two, or three bits to the right, and shifting another operand (r
or s) through the rs bus by a similar number of bits to the left. Shifting u or v is
performed through Register1, which is of size w-1 bits. For each word, all the bits of
uv are stored in Register1 except for the least significant bit(s) to be shifted, it is (or
they are) read out immediately as the most significant bit(s) of the output bus uv_out.
Shifting r or s to the left is performed via Register2, which is of size w+3 bits similar
to shifting uv but to the other direction. When executing the HW-Alg2 or HW-Alg4,
the shifting is performed either to one or two bits to the left only, which is via MUX2
and Register2 ignoring MUX1 and Register1.

The data router capabilities are extended to satisfy the unified architecture
requirements. It interconnects the memory, add/subtract, and shifter units. The
possible configurations of the data router are shown in Figure 8.
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Fig. 7. Shifter unit hardware

Fig. 8. Data router configurations
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5 Modeling and Analysis

The unified and scalable inverter was modeled and simulated in VHDL. Previously, a
fixed design (full precision) and other scalable inverter designs for inversion in GF(p)
were also described in VHDL. All VHDL descriptions of the scalable designs,
including the new unified ones, have two main parameters, namely nmax and w. The
fixed hardware, however, is parameterized by nmax only. Their area and speed are
presented in this section. Also a reconfigurable hardware [16] that can perform the
inversion in both GF(p) and GF(2n), besides other functions, is considered in the
comparison. We didn’t define a specific architecture for the adders and subtractors
used in our VHDL implementations. Thus, the synthesis tool chooses the best option
in terms of area from its library of standard cells. As a result, all proposed designs use
the same type of adders and subtractors.

5.1 Area Comparison

The exact area of any design depends on the technology and minimum feature size.
For technology independence, we use the equivalent number of NOT-gates as an area
measure [6]. A CAD tool from Mentor Graphics (Leonardo) was used. Leonardo
takes the VHDL design code and provides a synthesized model with its area and
longest path delay. The target technology is a 0.5�m CMOS defined by the ‘AMI0.5
fast’ library provided in the ASIC Design Kit (ADK) from the same Mentor Graphics
Company [11]. It has to be mentioned here that the ADK is developed for educational
purposes and cannot be thoroughly compared to technologies adopted for marketable
ASICs. It however, provides a framework to contrast all scalable hardware designs
together and with the fixed one. The sizes of the designs are compared in Figure 9.
Observe that the fixed design has a better area if the maximum number of bits used
(nmax) is small which is useless in cryptographic applications [5]. The unified designs
are larger than the GF(p) ones with a calculated average of 8.4% more hardware area.

Fig. 9. Area comparison
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The area of the unified designs were also compared with the reconfigurable
hardware [16], but not shown in Figure 9. The reconfigurable design core is built of
880,000 devices [16]. Assume a device is corresponding to a transistor and our NOT-
gate is equivalent to two transistors [6], so the reconfigurable hardware core is
equivalent to 440,000 gates, which means that the reconfigurable design is eight times
greater than the largest unified hardware shown in Figure 9. Of course, the design in
[16] does more than inversion, but its datapath is responsible for most of the area, and
would be used anyway for the inversion computation.

5.2 Speed Comparison

The total computation time is a product of the number of clock cycles the algorithm
takes and the clock period of the final implementation. This clock period changes
with the value of w in the unified and scalable hardware, and changes with the value
of nmax in the fixed hardware. This is because w = nmax in the fixed hardware. All
VHDL coded designs clock cycle periods are generated automatically by Leonardo,
which determines the longest path delay of the hardware circuits. The clock period of
the reconfigurable design was considered as being 20ns/cycle (operates at 50MHz
clock rate frequency) [16].

The number of clock cycles depends completely on the data and the algorithm. A
probabilistic study described in [18] is used to estimate the average number of clock
cycles. For the fixed design, the average number of clock cycles equal to Cf = 1.525n.
For all scalable designs, the average number of clock cycles is Cs=(2.4125n+1)�n/w�,
which is exactly the same for the unified designs presented in this paper. Hence,
adjusting the scalable designs to be unified did not change the number of clock cycles
of the inverse computation. However, the clock cycle period of the unified designs
increased slightly, making the total computation time of the unified hardware
different than what was given in [18]. The number of clock cycles for the
reconfigurable hardware to complete the inversion process is Cr=14.5n [16].

Similar to the GF(p) scalable hardware of [18], the unified and scalable hardware
can have several designs for each nmax, depending on w. For example, Figure 10 shows
the delay of several designs of the unified and scalable hardware compared to the
reconfigurable, GF(p) scalable, and fixed hardware designs, all modeled for nmax=512
bits, which is a practical number for future cryptographic applications [5]. Observe
how the actual data size (n) plays a big role on the speed of the designs. In other
words, as n reduces and w is small, the number of clock cycles decrease significantly,
which considerably reduces the overall computing time of all scalable designs
(including the unified ones) compared to the others. This is a major advantage of the
scalable hardware over the fixed [14,18] and reconfigurable ones.

The new unified designs when compared to the scalable design for GF(p) only
have very similar characteristics. Overall, it needs an average of 19.8% more time
than the designs for GF(p) [18]. Another observation from Figure 10 is that the
unified designs are faster than the fixed one as long as:
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which is generalized for different nmax values. Several experimental tests were done for
nmax= 32, 64, 128, 512 and 1024 bits. Figure 10 also shows that the unified designs are
comparable to the reconfigurable one giving better performance when:

Consider the case when n=nmax=512 bits in Figure 10, the unified design with
w=64 bits has almost the same speed as the fixed one, but the ones with w=128 bits
remain faster. In fact, as w gets bigger the total time decreases, which is also true
when comparing among the different unified designs while n � w, as also proven
before in [18] for the GF(p) scalable designs. Whenever n < w considering the unified
and scalable designs, the scalability advantage of these designs is reduced since the
number of words to be processed reached its lower limit, but still the unified and
scalable designs are faster than the fixed one.

Fig. 10. Delay comparison of designs with nmax = 512 bits

6 Conclusion

This paper presents a scalable inverter for both finite fields GF(p) and GF(2n) in a
unified hardware module that applies the design approach proposed in [14,18,19]. The
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primary contribution of this research is to show that it is possible to design a unified
hardware without compromising scalability and area efficiency. The unified inverter
hardware is built of two main units, a memory unit and a computing unit. The
memory unit defines the upper bound of the number of bits that the hardware can
handle. The computing unit is the real scalable hardware, it is designed to fit in
constrained areas and perform the computation of numbers in a repetitive way. Our
analysis shows that as the word size of the scalable computing unit reduces, the
hardware area decreases and the possible clock frequency increases. However, if we
increase the computing unit word size, the clock frequency is reduced, but for n > w
the overall computing time is also reduced, which is considered a normal area-time
tradeoff.

Several configurations of the proposed inverter hardware (different word lengths)
were described and synthesized using Mentor Graphics CAD tools. They were
compared with equivalent configurations of a previously proposed inversion hardware
design for inversion in GF(p) only. The comparisons show that this unified and
scalable structure is very attractive for cryptographic systems, particularly for ECC
where there is a need for modular inversion of large numbers in both finite fields
GF(p) and GF(2n) depending on the application usage.
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Appendix

This Appendix details the computations and verifies the results used in the GF(2n) MonInv
numerical example shown in Figure 3. The example defines m=9 and n=5; where n is the
degree of the irreducible polynomial and m (of the Montgomery constant 2m) is any
number as long as m � n. To simplify the arithmetic lets only use the binary representation
of polynomials. The MonInv takes the inputs a=1001 and p=100101. However, a is
represented into Montgomery domain as a2m, which is calculated as follows:

a=1001 �  a2m=a29=1001000000000
but since 1001000000000 needs to be reduced by p or a multiple of p until the number of
significant bits of a29 is less or equal to n (the degree of polynomial a(x)xmmod p(x) should
be less than the degree of the irreducible polynomial (p(x))), so

a29� 27p=1001000000000�1001010000000=10000000
and 10000000 also needs reduction

10000000� 22p =10000000� 10010100 = 10100.
So

a2m mod p = a29 mod p = 1001000000000 mod p � 10100.
The fact that GF(2n) MonInv of 10100 is a-12m=111, can be similarly verified. The MonInv
numerical example in Figure 3 calculated that  a-129 = 111 �  a-1  = 111/29.
Any congruent polynomial can be XORed with the irreducible polynomial, such as:

a-129=111� 111� 100101 =100010 � a-128=10001
a-128=10001� 10001� 100101=110100� a-126=1101

a-126=1101� 1101� 100101=101000� a-123=101
a-123=101� 101� 100101=100000� a-1=100

To confirm that the GF(2n) MonInv of 10100 is 111, when m=9 and n=5, it is enough to
show that a . a-1 mod p= 1, as follows:

a . a-1= 1001 . 100 = 100100
100100 mod p = 100100� 100101=1
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Abstract. In this article we present a hardware solution for finite
field arithmetic with application in asymmetric cryptography. It
supports calculation in GF (p) as well as in GF (2m). Addition and
multiplication with interleaved modular reduction are the main func-
tionality of the unit. Additional functions—like shift operations and
integer incrementation—allow the calculation of the multiplicative
inverse and covering all operations required to implement Elliptic
Curve Cryptography. Redundant number representation and efficient
modular reduction make it ready for future cryptographic bitlengths and
allow operation at high clock frequency on moderate hardware resources.

Keywords: Finite field arithmetic, multiplication, modular reduction,
inversion, redundant number representation, hardware implementation.

1 Introduction

Finite field arithmetic is the backbone for nearly all public-key algorithms cur-
rently used. Widespread techniques like RSA encryption and Diffie-Hellman key
agreement operate on finite fields with modular integer arithmetic. These algo-
rithms have bitlengths up to 2048-bit to ensure information security for the next
decade [3]. The calculation of these algorithms relies on exponentiation, which
is computational intensive and demands dedicated hardware solutions when
throughput is of concern. More recently, Elliptic Curve Cryptography (ECC)
made the application of another type of finite fields popular: binary extension
fields where elements can be represented as polynomials instead of integers. Bi-
nary fields GF (2m) are considered advantageous for hardware solutions because
addition and modular reduction of polynomials are somewhat easier than those
of integers.

ECC has the advantage of shorter bitlengths while offering the same level
of security (163-bit up to 571-bit). That makes ECC attractive for application
in constrained systems like smartcards where chip area is limited and the com-
putational power of microprocessors is sparse. Applications of ECC are digital
� This work origins from the European Commission funded project USB CRYPT esta-

blished under contract IST-2000-25169 in the Information Society Technologies (IST)
Program.
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signature schemes, encryption schemes, and key agreement schemes [5,6,7]. The
Elliptic Curve Digital Signature Standard [8,4] defines prime fields GF (p) and
binary fields GF (2m) as underlying fields for elliptic curves. For a full support
of the standard, both type of fields have to be supported. This gives reason to
search for hardware architectures that operate in both fields. Such a dual-field
arithmetic unit can be realized and most of the hardware resources required for
calculations in the prime field GF (p) can be reused for operation in GF (2m).
The cost of such an unified arithmetic unit for GF (p) and Gf(2m) is only slightly
higher than for a mere GF (p)-multiplier [15,16].

Former arithmetic units have focused on an efficient implementation of the
multiplication and have neglected other operations. This is justified by the ob-
servation that the core operation of algorithms like RSA and Diffie-Hellman is
modular exponentiation, which is calculated by repeated multiplications. The
situation for ECC is slightly different. Although, the performance of ECC is also
determined by multiplication, ECC requires besides multiplication and squaring
also inversion, addition, and subtraction.

We will present a dual-field arithmetic unit that is capable to calculate all
these operations in both types of fields: GF (p) and GF (2m). The architecture
takes low-power design considerations into account and assures a short critical
path to enable operation at high clock frequencies. The intended applications
of the arithmetic unit are systems with limited silicon area where both types
of arithmetic are required and performance is not of utmost importance. The
main motivation for the design was to develop an unit that is capable to perform
all calculations of the Elliptic Curve Digital Signature Algorithm (ECDSA) and
key-agreement protocols defined by the American National Standards Institute
(ANSI) [4,5]. Further relevant ECC standards are published by the Institute
of Electrical and Electronic Engineers (IEEE) [6], the International Standards
Organization (ISO) [7], and the National Institute of Standards and Technology
(NIST) [8].

The proposed architecture of the dual-field arithmetic unit focuses on an
efficient implementation of operations in the finite fields GF (p) and GF (2m).
Operands are processed at full precision and most operations are executed
within a single clock cycle. Multiplication is a multi-cycle operation with bitserial
scheduling of the multiplier. Modular reduction is interleaved and uses quotient
prediction for operation in GF (p). Intermediate results of GF (p)-operations have
a redundant number representation which permits to scale the architecture’s
precision without affecting the maximum clock frequency. The architecture even
allows to calculate the Extended Euclidean Algorithm for inverting field ele-
ments. The architecture is highly regular and has only a small number of leaf
cells—which is a desired property for a full-custom implementation.

The remainder of this article presents related work in §2. In §3 the mathemat-
ical background of operations in prime fields and in binary fields is covered. §4
presents the proposed architecture and discusses design considerations. Finally,
we present results in §5 and draw conclusions in §6.
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2 Related Work

E. Savaş et al. published in 2000 a unified multiplier for GF (p) and GF (2m)
which uses Montgomery multiplication for both fields [15]. Multiplication is done
bitserial and the multiplicand is processed in blocks. Arbitrary precision multi-
plication is possible and precision is only constrained by memory. Their archi-
tecture is based on a pipeline of block-sized processing elements. The pipeline
can have different configurations to trade area for speed. This approach has the
smartness to process arbitrary precision numbers, which comes at the cost of
a more complicated architecture that seems to be challenging for a full-custom
implementation. Another restraint is the need of the Montgomery algorithm for
precomputed constants and the need of transformations.

J. Großschädl’s unified multiplier is bitserial too but processes the multipli-
cand in full precision [16]. Modular reduction is done by an interleaved quotient
prediction and a conditional modulus subtraction, which does not require any
pre-computations or transformations. Multiplication in GF (2m) takes m cycles,
whereas multiplication in GF (p) takes between log2 p and 2 log2 p cycles due
to a conditional extra modular reduction cycle. Intermediate results of GF (p)-
operations are stored in redundant representation because partial-product ac-
cumulation is done with carry-save adders. A carry-propagate adder with lower
wordsize converts redundant results iteratively into their binary representation.
The proposed architecture is simple, requires little hardware resources and has
a regular structure that is convenient for a full-custom implementation. The low
GF (p)-performance is a disadvantage. It is caused by the reduction algorithm
and the redundant-to-binary conversion.

J. Goodman et al. presented in [17] a VLSI implementation of a dual-field
arithmetic unit. Their so-called Domain-Specific Reconfigurable Cryptographic
Processor (DSRCP) is not a mere multiplier for GF (p) and GF (2m). It can cal-
culate all operations required for elliptic curve cryptography including inversion
and comparisons. These operations are executed on an extensive datapath which
is controlled by a microcoded control unit. Main components of the datapath are
a carry-propagate adder for operation in GF (p) that takes three cycles for an
addition and a reconfigurable datapath for operation in GF (2m). An additional
comparator allows comparisons of integers or polynomials. The Montgomery al-
gorithm is used for multiplication in GF (p). Multiplication in GF (2m) obeys an
iterative MSB-first scheme with interleaved modular reduction.

3 Mathematical Background

This section describes the representation of prime field elements and binary field
elements and presents operations on these elements.

Prime field elements A ∈ GF (p) are integers in the set {0, 1, . . . p− 1} where
p is prime. Binary field elements A(x) ∈ GF (2m) are polynomials of degree less
than m when a polynomial basis is used to represent the field elements. These
polynomials have coefficients in the set {0, 1}. Both types of field elements can
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be represented with bitstrings as shown in (1) and (2). The binary representa-
tion of a prime field element needs n = �log2 p� bits for storage. Elements of
GF (2m) require m bits to store all coefficients of the polynomial. The memory
requirement to store both types of elements is max(n, m) bits.

A ∈ GF (p) : A =
n−1∑

i=0

ai2i with n = �log2 p�, ai ∈ {0, 1} (1)

A(x) ∈ GF (2m) : A(x) =
m−1∑

i=0

aix
i, ai ∈ {0, 1} (2)

Although elements of both fields are stored uniformly, their field operations
differ. Addition of prime field elements is an integer addition with modular re-
duction, whereas addition of polynomials is done coefficient-wise without the
need of modular reduction. Multiplication requires modular reduction in both
cases because the result of an integer multiplication as well as the result of
a polynomial multiplication could have double the bitlength of their operands.
Surprisingly, an almost identical algorithm can calculate multiplication in GF (p)
and in GF (2m) which facilitates an unified hardware approach.

Not all cryptographic algorithms require the inversion of field elements. For
instance, the RSA algorithm and the Diffie-Hellman key-exchange are based
on exponentiation and require only multiplications and square operations. On
the other hand, elliptic-curve cryptography and the digital signature algorithm
require inversion too. The inverse of field elements can be calculated by expo-
nentiation using the Fermat theorem or by applying the Extended Euclidean
Algorithm (EEA) [1]. The latter has better running time but is more diffi-
cult to implement in hardware because it requires inconvenient operations like
magnitude-comparisons of integers or bitlength-comparisons of polynomials.

3.1 Addition and Modular Reduction in GF (p)

Addition of two integers A, B ∈ GF (p) is done by calculating the sum A+B with
carry propagation. In case, the sum A + B exceeds p − 1, a modular reduction
is necessary to obtain the result of A + B mod p in the range [0, p− 1].

In general, the result of a modular reduction of an integer I mod p is the
remainder of the integer division I

p . The remainder can be calculated using (3).

I mod p = I − q · p with q =
⌊

I

p

⌋
(3)

Equation (3) is not very practical because it determines the quotient q by
division of large integers. Division can be avoided when the reduction result
may exceed the desired interval [0, p− 1]. In this case, it possible to estimate a
quotient q̂ by comparing I with a number N in the magnitude of the modulus
p. A good choice is N = 2�log2 p� where only the most significant bit of p is set.
In case p is a generalized Mersenne prime, this estimation is very close.
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3.2 Multiplication and Squaring in GF (p)

Multiplication A ·B is a heavyweight operation compared to addition. The prod-
uct of two large integers cannot be calculated in a single step. The product is
calculated by accumulating partial products A · bi iteratively—this algorithm
is known as the double-and-add algorithm. Bitserial multiplication obeys the
double-and-add algorithm. It scans all bits bi of the multiplier B iteratively. If
the actual multiplier bit bi = 1, the multiplicand A is accumulated to the in-
termediate result as done in (4). Two different schemes are possible to scan the
multiplier bits: the LSB-first scheme and the MSB-first scheme. The LSB-first
scheme starts to scan multiplier bit b0 and ends with bn−1. The MSB-first scheme
operates in the opposite direction.

C = A ·B = A ·
(

n−1∑

i=0

bi2i

)

=
n−1∑

i=0

(A · bi)2i, n = �log2 B� (4)

Bitserial multiplication can easily be extended to modular multiplication
mod p. Extending Equation (4) by an interleaved modular reduction step will
reduce the intermediate result in each iteration and yield Algorithm 1. As men-
tioned above, exact modular reduction would require the calculation of the quo-
tient q = �C

p � which involves division. Algorithm 1 avoids division by estimating
the quotient q̂. The estimation simplifies the algorithm substantially but the re-
sult C may exceed the desired range [0, p− 1]. To obtain a fully reduced result,
the modulus p has to be added up to two times.

Algorithm 1 Multiplication in GF (p) with interleaved modular reduction
Input: A, B ∈ [0, p− 1], 2n−1 ≤ p < 2n

Output: C = A ·B mod p

1: C ⇐ 0
2: for i = n− 1 to 0 do
3: C ⇐ 2 · C + A · bi

4: q̂ ⇐ Q ESTIM(C)
5: C ⇐ C − q̂ · p
6: end for
7: while C < 0 do
8: C ⇐ c + p
9: end while

10: return C

Squaring is closely related to multiplication because A2 mod p = A·A mod p.
Systems that operate with wordsizes smaller than the bitlength of the operands—
like microprocessors—usually have an extra square function to exploit common
sub-expressions on wordsize-level. This could save nearly 50 percent of the re-
quired wordsize multiplications. For systems that operate on full-length operands
there is not such a short cut and squaring is done most efficiently by multipli-
cation.
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3.3 Inversion in GF (p)

Inversion calculates the multiplicative inverse A−1 of an element A. The inverse
has the property that A · A−1 mod p = 1. There are two different methods
to calculate the inverse. One is based on the theorem of Fermat that states
Ap−1 mod p = 1 and implies that Ap−2 mod p = A−1 mod p [1]. Using
this theorem, the inverse is calculated by exponentiation which requires about
1.5 log2 p multiplications—an expensive operation. The other method to calcu-
late the inverse is the Extended Euclidean Algorithm (EEA). It solves the equa-
tion A · X + p · Y = D for X, Y and D = gcd(A, p). The EEA’s procedure to
calculate the inverse is given in Algorithm 2. It is a slightly modified version of
the algorithm given in [13].

Algorithm 2 Inversion in GF (p): Extended Euclidean Algorithm (EEA)
Input: A ∈ [0, p− 1], p prime
Output: A−1 mod p

1: Y ⇐ A, D ⇐ p, B ⇐ 1, X ⇐ 0
2: while Y �= 0 do
3: while y0 = 0 do
4: Y ⇐ Y/2, B ⇐ (B + b0p)/2
5: end while
6: while d0 = 0 do
7: D ⇐ D/2, X ⇐ (X + x0p)/2
8: end while
9: if Y ≥ D then

10: Y ⇐ Y −D, B ⇐ (B −X) mod p
11: else
12: D ⇐ D − Y , X ⇐ (X −B) mod p
13: end if
14: end while
15: return X

3.4 Addition in GF (2m)

Addition in GF (2m) is done coefficient-wise as shown in Equation (5).

A(x) + B(x) =
m−1∑

i=0

aix
i +

m−1∑

i=0

bix
i =

m−1∑

i=0

(ai + bi)xi =
m−1∑

i=0

(ai xor bi)xi (5)

Coefficients of polynomials are elements of GF (2) = Z2 and therefore, ad-
dition of coefficients is done modulo 2 which corresponds to the Boolean XOR-
function. Multiplication of coefficients matches the Boolean AND-function. Sub-
traction in GF (2m) is identical with addition because the additive inverse of an
element is its identity: A(x) + A(x) = 0.
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3.5 Multiplication in GF (2m)

Multiplication in GF (2m) calculates the product of two polynomials and applies
modular reduction. Although, polynomial multiplication is completely different
from integer multiplication, the resulting algorithm for multiplication in GF (2m)
is very similar to Algorithm 1 for multiplication in GF (p). This property allows
building an efficient unified multiplier that supports both fields.

Multiplication in GF (2m) can also use the double-and-add approach used
for multiplication in GF (p) which accumulates partial products as shown in (6).
Partial products have to be aligned to the intermediate result which is indicated
in (6) by a multiplication by xi. Multiplication by xi can easily be computed by
shifting the binary representation of the partial product i positions to the left.

A(x) ·B(x) = A(x) ·
(

m−1∑

i=0

bix
i

)

=
m−1∑

i=0

(
A(x)bi

) · xi (6)

A modular reduction step after the polynomial multiplication assures that
the result is an element of GF (2m) with an degree less than m. Alternatively,
the reduction can be done during the accumulation of partial products as shown
in Algorithm 3.

Algorithm 3 Multiplication in GF (2m) with interleaved modular reduction
Input: A(x), B(x) ∈ GF (2m), irreducible polynomial P (x) of degree m
Output: C(x) = A(x) ·B(x) mod P (x)
1: C(x)⇐ 0
2: for i = m− 1 to 0 do
3: C(x)⇐ C(x) · x + A(x)bi

4: C(x)⇐ C(x) + cmP (x)
5: end for
6: return C(x)

The modular reduction A(x) mod P (x) in GF (2m) is done modulo an irre-
ducible polynomial P (x). This operation calculates in principle the remainder
of the polynomial division A(x)/P (x). Efficient implementations avoid division
by iterated subtraction of the product P (x) · xi. During bitserial multiplication
with interleaved modular reduction the intermediate result C(x) can not have
higher degree than m. Thus, modular reduction is only necessary when C(x) has
degree m. This condition is indicated by cm = 1.

3.6 Squaring in GF (2m)

In contrast to GF (p), squaring in GF (2m) has lower complexity than multi-
plication. One reason for this is, that A(x)2 mod P (x) is a linear operation in
GF (2m). Based on this observation one could square efficiently by calculating
A(x)2 =

∑m−1
i=0 aix

2i. A subsequent modular reduction will yield the desired
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result. This method is used in software implementations like [14]. Hardware im-
plementations can exploit this feature when the extension degree m and the
irreducible polynomial P (x) are fixed.

3.7 Inversion in GF (2m)

The inverse of an element A(x) ∈ GF (2m) can be calculated by the exponen-
tiation A(x)2

m−2 mod P (x) or by the Extended Euclidean Algorithm for poly-
nomials (EEA). An improvement of the EEA algorithm is the Modified Almost
Inverse Algorithm presented in [14]. Algorithm 4 is a slightly modified version
of this. Almost all calculations of the algorithm operate on polynomials but
comparisons of polynomials are replaced by integer subtractions and sign test-
ing to avoid additional circuitry in a hardware implementation. In Algorithm 4,
polynomials are multiplied by x−1 which is a simple shift-right operation.

Algorithm 4 Inversion in GF (2m): Modified Almost Inverse Algorithm
Input: 0 �= A(x) ∈ GF (2m), irreducible polynomial P (x) of degree m
Output: A(x)−1 mod P (x)
1: Y (x)⇐ A(x), D(x)⇐ P (x), B(x)⇐ 0, X(x)⇐ 1
2: loop
3: while y0 = 0 do
4: Y (x)⇐ Y (x) · x−1, X(x)⇐ (X(x) + x0P (x)) · x−1

5: end while
6: if not (1− Y < 0) then {comparison Y (x) = 1 by integer subtraction}
7: return X(x)
8: end if
9: if Y −D < 0 then {comparison deg Y (x) < deg D(x) by integer subtraction}

10: Y (x)⇐ Y (x) + D(x), X(x)⇐ X(x) + B(x)
11: D(x)⇐ D(x) + Y (x), B(x)⇐ B(x) + X(x)
12: else
13: Y (x)⇐ Y (x) + D(x), X(x)⇐ X(x) + B(x)
14: end if
15: end loop

4 Architecture

The Elliptic Curve Digital Signature Algorithm (ECDSA) [8] is the target appli-
cation of the dual-field arithmetic unit. The desired functionality of the unit can
be clearly derived from this application. Off course, multiplications in GF (p)
and GF (2m) are the most important functions, but addition and subtraction
are required too. In order to calculate the inverse, it is necessary to increment
integers, to check whether integer values are negative, and to shift values one
position to the left or to the right. Operations like holding the result or clearing
the result are obviously useful. The required operations can be summarized in
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the following categories: integer arithmetic, modular integer arithmetic, modular
polynomial arithmetic, and comparisons.

Functionality is one important aspect of a hardware module. Other quality
aspects of a circuit are its size, its speed, and its energy consumption. These
factors cannot be optimized independently because they influence each other.
Energy efficiency was a prime objective in the design of the arithmetic unit,
so the unit was not optimized for lowest gate-count or for a high degree of
parallelism. High throughput is achieved by keeping the critical path short to
enable operation at high clock frequencies. The architecture is scalable for the
maximum bitlength of integers respectively polynomials. Adjusting the bitlength
to the requirements of the application (e.g. 192-bit) keeps the gate-count low. It
is possible to process smaller integers/polynomials by pre-shifting them in order
to align them to the physical dimension of the unit.

A

SUM CARRY

PPG

MODRED

C

SHIFT SHIFT

CSAsS SC

CSAsS sC

C
SA FA FA FA c

in

cout

a0
b0 c0a1

b1 c1an-1
bn-1cn-1

sc0ss0sc0ss0scn-1ssn-1

Fig. 1. Architecture of the dual-field arithmetic unit

Figure 1 shows the architecture of the dual-field arithmetic unit. The unit has
three major components: a partial-product generator (PPG), a modular reduc-
tion unit (MODRED), and a shift unit (SHIFT). During bitserial multiplication,
which is done in the MSB-first scheme at full precision, the PPG masks the input
A with the actual multiplier bit bi to generate the partial product A · bi. The
partial product is generated the same way for GF (p) and for GF (2m). Note,
that the circuit which serializes the multiplier B is left out in the Figure 1. An
adder (CSA) accumulates the partial product to the intermediate result stored
in the registers SUM and CARRY. Prior to this addition the intermediate result
is shifted by the Shift unit one position to the left to align the last accumulation



Dual-Field Arithmetic Unit for GF (p) and GF (2m) 509

result. The MODRED unit inserts a modular reduction step by subtracting q̂ · p
in case of GF (p)-operation or q ·P (x) in case of GF (2m)-operation. A datapath
cycle is finished when the new intermediate result is stored in the registers SUM
and CARRY.

The arithmetic unit uses Carry-Save Adders (CSA) to eliminate carry-propa-
gation delay during GF (p)-operation. Carry propagation in conventional adders
would cause significant delay. CS-adders prevent this by a redundant representa-
tion of the output sum. The redundant sum consists of two integers SS and SC ,
which are stored in the registers SUM and CARRY. The number of storage bits
used for this is twice the amount to store the sum in a binary representation. The
additional hardware resources are justifiable because they allow to add integers
of arbitrary length in constant time. Carry-save adders are based on Formula (7)
and are implemented with conventional full-adder cells. The delay of an adder
of arbitrary width is equal to the delay of a single full-adder cell.

A + B + C = CSA(A, B, C) = SS + 2SC (7)
with sSi = ai xor bi xor ci and sCi = aibi or aici or bici

Carries are only required for addition in GF (p). Addition in GF (2m) does
not use them because polynomials are added coefficient-wise with the Boolean
XOR-function. The XOR-function is a sub-function of an CS-adder as Formula
(7) reveals: Keeping input C = 0, makes the sum-component SS = A xor B. The
carry-component will be SC = A and B in this case. This property of carry-save
adders is used to configure the arithmetic unit for GF (2m)-operation. By forcing
the carry-output of both CS-adders to zero, all carries are eliminated and in turn
the CS-adders will have the desired functionality of an n-bit XOR-gate.

The input and the output of the dual-field arithmetic unit is restricted to
binary n-bit values (input A, output C). Therefore, it is necessary to convert
integers stored internally in a redundant representation into their binary repre-
sentation before output. The conversion of a redundant number into a binary
number requires addition with carry propagation. Usually, such a conversion is
done with a carry-propagation adder implicating the performance problems men-
tioned above. Carry-save adders offer another possibility to do the conversion.
The observation that the result of an repeated carry-save addition of an redun-
dant number (S = SS + 2SC) and zero is the binary number S after log2 log2 S
iterations on average, leads to Algorithm 5. Addition, subtraction and multi-
plication in GF (p) require this conversion before output. Both CS-adders of
the arithmetic unit can be used to execute this operation. Hence, the expected
running time of an n-bit architecture is halved to 0.5 log2 n cycles. During con-
version, the PPG and MODRED unit have to output 0 in order to keep the third
CSA input 0. Conversion is finished when SC = 0. An n-bit NOR-gate reports
this condition.

The MODRED unit calculates the correction term for the interleaved mod-
ular reduction. It has different functionality for GF (p) and GF (2m)-operations.
During GF (2m)-operations, the functionality of MODRED is simple. Whenever
the most-significant bit sSm of the intermediate result SS is set, MODRED has to
output the irreducible polynomial P (x), otherwise 0. The subsequent CS-adder
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Algorithm 5 Redundant-to-binary conversion with carry-save adders
Input: redundant number S = (SS + 2SC)
Output: binary number S

1: while SC �= 0 do
2: (SS , SC)⇐ CSA(0, SS , 2SC)
3: end while
4: return SS

will execute the reduction by adding the correction term: SS mod sSmP (x)=
SS mod P (x). The reduction works for arbitrary irreducible polynomials and is
not restricted to a special kind of polynomials like trinomials or pentanomials.

Modular reduction by a prime integer is more complicated. The quotient
is estimated and causes a non-perfect reduction. The intermediate result can
exceed the bitlength of the modulus n = �log2 p�. Therefore, the datapath
is chosen to be n + 2 bits wide. The quotient estimation works as follows:
first the magnitude of the intermediate result is estimated by adding the three
highest bits of the redundant intermediate result with carry propagation Ŝ =
(sSn+1, sSn, sSn−1)+(sCn+1, sCn, sCn−1). Then the quotient q̂ ∈ {−2,−1, 0, 1, 2}
is determined by table-lookup. The table entries are chosen such that the de-
sired result of the reduction is in the range [0,−(p − 1)]. As a consequence of
this reduction algorithm the reduced intermediate result S− q̂ · p is usually neg-
ative and hence the datapath must be capable to handle signed numbers. This
reduction scheme works for arbitrary moduli p and is not restricted to gener-
alized Mersenne primes. To ensure that the final result of an operation is fully
reduced—or in other words is ∈ [0, p − 1]—, the modulus p may have to be
added up to two times until the result is positive. Positive results are indicated
by a cleared sign bit of SS and SC = 0. The sign bit is also used for integer
comparison, which are based on integer subtractions.

Signed numbers enable the calculation of subtractions. The arithmetic unit
can calculate a subtraction A−B by loading A in one cycle and adding −B in
the next cycle. −B is calculated by the PPG and a CSA: The PPG generates
the one’s-complement B̄ of B where b̄i = not bi by inverting all bits. The CSA
can turn B̄ into the two’s-complement −B by incrementation. Incrementation
is simply achieved by setting the lowest carry bit sC0 = 1 that is usually 0.

Shift operations are executed in the SHIFT unit. The SHIFT unit can output
either 0, its input I, I shift-left 1, or I shift-right 1.

5 Results

The different functionalities of all datapath components can be combined into
useful instructions of the whole arithmetic unit. The evolving instructions can be
summarized in four categories: load operations, shift operations, addition, and
multiplication. Load operations can either load the constants 0, 1 or the values
A, Ā, or −A. The shift operations can shift the stored value one position to the
left or to the right. In the addition category are the operations XOR, integer
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addition, integer subtraction, incrementation, and integer addition/subtraction
with modular reduction.

All the operations listed so far can be executed in one clock cycle. Multipli-
cation takes exactly n clock cycles and can calculate the product of two integers
smaller than 2n/2, or the product of two integers modulo p, or the product of
two polynomials mod P (x).

When the datapath is configured for GF (p)-operation and the MODRED
unit is inactive, the hold operation will convert redundant results into their
binary representation. On average, 192-bit numbers will be converted in 3.8
cycles, 224-bit numbers in 3.9 cycles, and 256-bit numbers in 4.0 cycles. Control
flags indicate whether the result is binary or it is negative. They are always
evaluated and are reused for comparisons.

Inversion is a compound operation that has to be controlled from outside.
Table 1 lists the estimated number of clock cycles for Algorithm 2 and Algorithm
4. These algorithms are about four times faster than calculating the inverse
by exponentiation. The clock-cycle ratio of inversion to multiplication is about
70 for GF (p) and 70 for GF (2m). This gives reason to avoid inversion when
possible and advises to use projective coordinates when implementing elliptic
curve cryptography. Table 1 also lists expected running times for a elliptic-curve
scalar-multiplication using projective coordinates. All estimates are conservative
and include the transformation to affine coordinates.

Table 1. Estimited cycles for inversion and ECC scalar multiplication

GF (p) INV (Alg. 2) ECC proj.
[cycles] [cycles]

192-bit 14,000 720,000
224-bit 16,500 900,000
256-bit 19,400 1,150,000

GF (2m) INV (Alg 4) ECC proj.
[cycles] [cycles]

163-bit 11,000 490,000
233-bit 16,200 905,000
283-bit 20,700 1,405,000

The dual-field arithmetic unit requires only a few hardware resources. Four
n+2-bit register are needed to store the modulus, the multiplier, and the result in
redundant representation. The two SHIFT units can be implemented with 2n+4
4-to-1 multiplexers. The PPG unit is built of n + 2 AND-gates and the same
amount of XOR-gates. The MODRED unit has the same complexity as PPG plus
n + 2 2-to-1 multiplexers. Two instances of CS-adders require 2n + 4 full-adder
cells and 2n + 4 AND-gates which eliminate carries during GF (2m)-operation.
Table 2 lists the gate count for different bitlengths and gives a rough estimation of
the area requirements of a standard-cell implementation on the 0.35 µm CMOS
process from Austriamicrosystems. The arithmetic unit is also well suited for a
full-custom implementation. The regular part of the datapath is composed of
only half a dozen of different gates. It should be of no difficulty to find a bitslice
architecture for that part and to design leaf-cells for the gates in an appropriate
logic style in order to obtain a sound full-custom layout. The datapath does not
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need sophisticated control because most instructions are executed in a single
cycle. Only multiplication consumes more cycles. The control unit for bitserial
multiplication can be used both for GF (p) and for GF (2m)-operation because
the same double-and-add algorithm in the MSB-first scheme is used.

Table 2. Gate count and estimated area on a 0.35 µm CMOS process

Size AND XOR MUX2 MUX4 FA REG area on 0,35 µm

163-bit 660 330 165 330 330 660 0.57 mm2

224-bit 904 452 226 452 452 904 0.78 mm2

283-bit 1140 570 285 570 570 1140 0.99 mm2

Most of the design decisions for the dual-field arithmetic unit were guided
by low-power considerations. Especially, the design on the algorithmic level and
the architectural level of a digital circuit offer promising options to save power
[9]. Contrary to low-power measures on logic level, they are difficult to estimate.
Therefore, a qualitative reasoning will be given. One design goal was to keep the
critical path short. This implicates on one hand a high clock frequency and gives
on the other hand the possibility to scale the supply voltage VDD of CMOS
circuits. Lowering VDD is an effective technique to save power as it contributes
quadratically to the dynamic power consumption [9]. A lowered supply voltage
will also slow down the circuit: VDD can be decreased until the critical path delay
reaches the clock period. Short critical paths have another advantage for low-
power circuit design: The probability of undesired signal transitions (glitches) is
lowered. Glitches will occur more frequently when the combinational logic-depth
is high. To ensure a short critical path of the arithmetic unit, CS-adders were
chosen. The critical path spans the partial product generator PPG, the modular
reduction unit MODRED and two CS-adders.

A low-power driven design decision on the architectural level is the modular
reduction unit MODRED. From the functional point of view, it would be pos-
sible to omit the MODRED unit and to cover its functionality by an enlarged
partial product generator PPG. Thereby, a former single-cycle operation with an
interleaved modular reduction would require two clock cycles: One cycle for the
operation itself and one for the modular reduction step. This would certainly in-
crease the energy-delay product. Furthermore, such an architecture would have
negative impact on the signal activity of the input A of the arithmetic unit:
During multiplication, this bus would always change between the multiplicand
A and the modulus p or P (x). The insertion of an extra MODRED trades in-
creased area-demands for lower power-consumption and helps to avoid wasteful
signal activity.
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6 Conclusion

In this article we presented a dual-field arithmetic unit that offers all instructions
to implement the elliptic curve digital signature standard over prime fields GF (p)
and binary extension fields GF (2m). Therefore, the unit can calculate shift-
operations, increments, and comparisons besides addition and multiplication.
These operations enable to calculate the inverse with the extended Euclidean
algorithm.

A design objective for the unit was energy efficiency, which yielded a low-
power architecture that can be realized on moderate silicon area. The unit re-
quires only little more hardware resources than a mere GF (p)-multiplier. The
GF (2m)-functionality and some other useful operations come at almost no ad-
ditional cost. The use of carry-save adders guarantees a short critical path that
allows operation at high clock frequencies—independent of the chosen datapath
precision. The simplicity of the architecture with its inherent regularity and its
limited number of leaf cells makes it well suited for a full-custom implementation.
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Abstract. In many of cryptographic schemes, the most time consuming
basic arithmetic operation is the finite field multiplication and its hard-
ware implementation may require millions of logic gates. It is a complex
and costly task to develop such large finite field multipliers which will
always yield error free outputs. In this effect, this paper considers fault
tolerant multiplication in finite fields. It deals with detection of errors
of bit-parallel and bit-serial polynomial basis multipliers over finite
fields of characteristic two. Our approach is to partition the multiplier
structure into a number of smaller computational units and use the
parity prediction technique to detect errors.

Keywords: Finite fields, fault tolerant computing, polynomial
basis multiplier, error detection.

1 Introduction

Among the basic arithmetic operations over finite fields GF (2m), multiplication
is the one which has received most attention in the literature [7,4,11,9]. This is
mainly because the implementation of a multiplier is much more complex com-
pared to a finite field adder and using multiplication operation repeatedly one
can perform other difficult field operations, such as inversion and exponentiation,
which are extensively used in cryptographic systems [1,10].

Finite field multiplication is quite different from its counterparts in integer
and floating point number systems. For todays cryptographic applications, the
field size can be very large and each input of the multiplier can be 160 to 2048
bits long. Such a multiplier may require millions of logic gates and it is a chal-
lenging task to implement it free of faults. If one can have a multiplier which is
capable of detecting error on-line at the presence of certain faults, cryptographic
schemes can be operated more reliably. The importance of eliminating errors in
cryptographic computations has been pointed out in some recent articles, for
examples [2,5]. The presence of faults in cryptosystems can lead to an active
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attack and the simplest way to prevent such an attack is to ensure that the
computational device verifies the values it computes before sending them out.

In an attempt to detect errors in finite field multipliers, the authors of [3] have
considered bit-serial multipliers in GF (2m) and have presented error detection
schemes for four types of multipliers using a parity prediction technique. Their
polynomial basis scheme for error detection is applicable to a special class of
fields. These fields are defined using irreducible all-one polynomials that are
available for certain values of m only. Additionally, when an all-one polynomial
is irreducible, the corresponding m is not a prime. This makes many designers
to avoid such a value of m and the corresponding irreducible all-one polynomial
that define the underlying field for certain cryptosystems, such as those based
on elliptic curve cryptography.

In this paper, we consider GF (2m) multipliers of both bit-parallel and bit-
serial types. The polynomial basis is used for representing the field elements. We
investigate error detection techniques for such multipliers and develop parity
prediction based error detection schemes for both bit-serial and bit-parallel mul-
tipliers. The new schemes can be used for any field defining irreducible binary
polynomial.

2 Preliminaries

2.1 Multiplication Using Polynomial Basis

Let

F (z) = zm +
m−1∑

i=0

fiz
i (1)

be a monic irreducible polynomial over GF (2) of degree m, where fi∈GF (2) for
i = 0, 1, · · · , m−1. Let α ∈ GF (2m) be a root of F (z), i.e., F (α) = 0. Then the
set {1, α, α2, · · · , αm−1} is known as the polynomial (or standard) basis and
each element of GF (2m) can be written with respect to (w.r.t.) this basis, i.e.,
if A is an element of GF (2m), then

A =
m−1∑

i=0

aiα
i, ai ∈ {0, 1}, (2)

where ai’s are the coordinates of A w.r.t. polynomial basis (PB). For convenience,
these coordinates will be denoted in vector notation as

a = [a0, a1, a2, · · · am−1]T , (3)

where T denotes the transposition of a vector.
Let C be the product of any two elements A and B of GF (2m). Then, C can

be represented w.r.t. PB as follows:

A ·B = A ·
m−1∑

i=0

biα
i =

m−1∑

i=0

bi · (Aαi),
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C = A ·B mod F (α) =
m−1∑

i=0

bi · ((Aαi) mod F (α)) (4)

=
m−1∑

i=0

bi ·X(i), (5)

where

X(i) = α ·X(i−1) mod F (α), 1 ≤ i ≤ m− 1 (6)

and
X(0) = A.

A bit-parallel architecture for GF (2m) multiplication using (5) is shown in
Figure 1. It mainly consists of three types of modules, namely, sum, pass-thru
and α modules. The sum module (denoted as a double circle with a plus inside)
is to simply add two GF (2m) elements and it can be realized in hardware using
m two-input XOR gates. The pass-thru module (denoted as a double circle with
a dot inside) is to multiply a GF (2m) element by a GF (2) element, i.e., if
X(i) ∈ GF (2m) and bi ∈ GF (2) are two inputs to a pass-thru module, then its
output is

bi X(i) =
{

X(i) if bi = 1,
0 if bi = 0.

In hardware, each pass-thru module consists of m two-input AND gates.
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Fig. 1. Multiplication of two elements in GF (2m)

In Figure 1, the third module (i.e., the rectangular shape α module) mul-
tiplies its input, which is an element of GF (2m), by α and reduces the result
modulo F (α). Thus, this module is to essentially realize equation (6) in hard-
ware.
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Since α is a root of F (z),

F (α) = αm +
m−1∑

i=0

fiα
i = 0. (7)

Then multiplication of an arbitrary element A ∈ GF (2m) by α gives

A · α = (
m−1∑

i=0

aiα
i) · α =

m−1∑

i=0

aiα
i+1 =

m−1∑

i=1

ai−1α
i + am−1α

m. (8)

Using (7) and (8), one can write

X � A · α mod F (α)
= am−1 · f0 +

∑m−1
i=1 (ai−1 + am−1 · fi)αi,

(9)

where xi’s are in GF (2) and are the coordinates of X w.r.t. the PB. For any irre-
ducible polynomial over GF (2), f0 = 1. Thus from (9), we write the coordinates
of X as

xi =
{

ai−1 + am−1 · fi 1 ≤ i ≤ m− 1,
am−1 i = 0.

(10)

If ω is the Hamming weight of the irreducible polynomial F (z), then the real-
ization of (10) requires ω−2 XOR gates, and so does an α module. Thus, unlike
the sum and pass-thru modules, the α module has a space (or circuit) complex-
ity which depends on F (z). The space complexity is minimum when F (z) is a
trinomial and maximum when F (z) is an all-one-polynomial (AOP).

In vector notations, the coordinates of the GF (2m) multiplication can be
calculated by the well-known formulation [7] as

c = [c0, c1, · · · cm−1]T = M · b, (11)

where M = [mi,j ], mi,j ∈ GF (2), is the m × m product matrix and b =
[b0, b1, · · · bm−1]T . Note that in Figure 1, the α array generates mi,j ’s and an-
other part of the multiplier which consists of all pass-thru and sum modules
realizes matrix-vector multiplication of (11).

2.2 Error Detection Strategy

In the following sections, we investigate error detection schemes for GF (2m)
multiplication operation that relies on the architecture shown in Figure 1. To-
wards this effort, the parity prediction method is used. This method is shown in
Figure 2 where the CUT (circuit under test) block can be either a complete finite
field multiplier or a part of it with A and B as inputs and Y as output, where
A, B, Y ∈ GF (2m). In this figure, the parity generation (PG) block produces the
actual parity of Y, i.e., pY =

∑m−1
i=0 yi, where yi’s are the coordinates of Y w.r.t.

the PB. The actual parity pY is then compared with the predicted parity p̂Y
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using a single XOR gate as shown in the figure. This comparison is monitored
by an error indicator flag êCUT where êCUT = 0 indicates that no error has been
detected and êCUT = 1 flags the detection of errors. The parity prediction (PP)
block predicts the parity of the output Y using a PP function which depends
only on the inputs of the CUT as

p̂Y = ΓCUT(A, B).

We assume that the parity of A and B (i.e., pA and pB , respectively) are available
or they can be reliably pre-computed while loading the coordinates of A and B
into the multiplier. We also assume that the PP and PG blocks can be made
fault free or any fault in them can be detected using a suitable mechanism since
these blocks are simple and/or regular (for example PP can be as simple as an
XOR gate and PG is a modulo 2 adder). In the following sections, we derive the
function ΓCUT for each of the modules of the multiplier of Figure 1.
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Fig. 2. Error indication of the circuit under test (CUT) using parity prediction method.

For the purpose of this investigation, we consider GF (2m) multiplier circuit
with a single fault. The single fault case provides simplicity in our analysis.
Although various types of multiple faults in the multiplier can be detected, we
first consider the single fault case and then we show how multiple faults can be
detected. This fault is modeled as a stuck-at fault, which appears to be the most
common model used for logical faults. For this model, a fault in a logical gate
(i.e., XOR, AND, OR, etc.) results in one of its inputs or the output being fixed
to either a logic 0 (stuck-at-0, or s-a-0 in short) or a logic 1 (stuck-at-1, or s-a-1),
respectively [6].

3 Parity Predictions of Individual Module

In the following, we obtain the parity prediction functions of the modules of
the bit-parallel multiplier of Figure 1. PB multipliers (both bit-parallel and bit-
serial) that are capable of detecting errors are considered in the next section.
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3.1 Parity Prediction in α Module

Let ω be the Hamming weight of the irreducible polynomial F (z). Then, (1) can
be written as

F (z) = 1 +
ω−2∑

j=1

zρj + zm, (12)

where ρj ’s are powers of z in (1) with fρj
= 1, 1 ≤ j ≤ ω − 2. Then we have

1 ≤ ρ1 < ρ2 < ρ3 · · · < ρω−2 ≤ m− 1

and (10) can be written as

xi =
{

aρj−1 + am−1 i = ρj , 1 ≤ j ≤ ω − 2,
ai−1 mod m otherwise. (13)

Using (13), a circuit diagram for the α module is shown in Figure 3. Note
that a stuck-at fault in one of the (ω − 2) XOR gates of this module causes at
most one error at the output.

For j ∈ {ρ1, ρ2, · · · , ρω−2}, assume that the j-th gate in Figure 3 is faulty.
Then all the output coordinates, except xj , are error free. If the upper input of
the j-th gate is stuck, then the erroneous j-th coordinate is

ẋj =
{

am−1 for s-a-0,
am−1 for s-a-1,

(14)

where x indicates complement of x. On the other hand, if the lower input is
stuck, then

ẋj =
{

aj−1 for s-a-0,
aj−1 for s-a-1.

(15)

Detection of such errors are discussed below.
Assume that A and X are the input and output of the α module, respectively.

Then we have the following lemma.
Lemma 1. Let pA =

∑m−1
i=0 ai and pX =

∑m−1
i=0 xi be the parity bits of A and

X, respectively. Then, the predicted parity of X is

p̂X = Γα = pA + am−1, (16)

where am−1 is the (m− 1)-th coordinate of input A.
Proof. Using (10), p̂X can be written as

p̂X = am−1 +
m−1∑

i=1

(ai−1 + am−1fi) = am−1

m−1∑

i=1

fi +
m−1∑

i=0

ai .

Since F (z) is irreducible over GF (2), F (z) is not divisible by z + 1, and
F (1) = 1. Then from (1), one obtains

∑m−1
i=1 fi = f0 = 1 and the proof is

complete.
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Fig. 3. The original circuit of α module.

Using (16), we can obtain the relation between X and A in the fault free α
module as

pX + pA = am−1. (17)
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Fig. 4. The circuit for detecting a single fault.

In the α module, a stuck-at fault in one of its gates will result in an output
which is different from X and (16) will not hold. Thus, equation (16) can be
used for detecting an error in the output of the α module. Circuit for detecting
such errors is shown in Figure 4, where êα = 0 indicates that no error has been
detected and êα = 1 flags the detection of an error. Since (16) is over GF (2),
the values of êα would detect not only a single error, but also any odd number
of errors. With a similar argument, it is clear that even number of errors are not
detected by êα.
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3.2 Parity Predictions of Sum and Pass-Thru Modules

The sum module of Figure 1 is a finite field adder which produces sum of the
two elements of GF (2m) at its output. Let A = (a0, a1, · · · , am−1) and B =
(b0, b1, · · · , bm−1) be two inputs to this module. Then the output is D = A+B =
(d0, d1, · · · , dm−1) where di = ai + bi for 0 ≤ i ≤ m−1. The architecture of this
module uses m two-input XOR gates. Let pA =

∑m−1
i=0 ai and pB =

∑m−1
i=0 bi

be the parity bits of A and B, respectively. Then the parity bit of the output,
pD =

∑m−1
i=0 di , is predicted by

p̂D = Γsum = pA + pB (18)

using one extra XOR gate. Let us denote this m + 1 XOR gates as the new sum
module.

The pass-thru module of Figure 1 multiplies an element A ∈ GF (2m) by a
single bit b ∈ GF (2) which can be implemented using m two-input AND gates.
Let G ∈ GF (2m) be the output of such a module with inputs of A and b. Thus,
the output of this module G is zero when b = 0 and A when b = 1.

Detection of an odd number of errors is accomplished by using a single parity
bit similar to the α and sum modules. Let A and pA =

∑m−1
i=0 ai be the input

of the pass-thru module and its parity bit respectively. Then, the parity bit of
the output G = bA is found as pG =

∑m−1
i=0 gi, where gi = b · ai , 0 ≤ i ≤ m− 1,

are the coordinates of G. Thus, the predicted parity bit of the output can be
expressed as

p̂G = Γpass = b · pA (19)

which requires only one AND gate for its implementation. Let us denote the
original pass-thru module together with this AND gate as the new pass-thru
module similar to the new sum module. These new modules are used in the next
section.

4 Error Detections in Polynomial Basis Multipliers

The discussions of the previous section deals with the parity prediction functions
of individual modules of the multiplier of Figure 1. Using these parity functions,
below we attempt to detect errors in the entire multiplier.

4.1 Bit-Parallel PB Multiplier

Let us generalize (1) for the cascading of j, 1 ≤ j ≤ m−1, α modules as follows:
Lemma 2. As defined earlier x

(k)
m−1 and bj are the (m− 1)-th and j-th coordi-

nates of X(j) = Aαj mod F (α) and B w.r.t. the polynomial basis, respectively.
Then

p̂X(j) = pA +
j−1∑

k=0

x
(k)
m−1, j = 1, 2, · · · , m− 1, (20)
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Thus, the parity bit of the output of the polynomial basis multiplier can be
predicted using the following theorem.

Theorem 1. Let C be the product of two arbitrary elements A and B of
GF (2m). Let pA, pB and pC be the parity bits of A, B and C respectively.
Then,

p̂C =
m−1∑

j=0

bj p̂X(j) , (21)

A proof of the above theorem is not included here for lack of space. Note that
the theorem is not restricted to any particular irreducible polynomials. When
F (z) is an all-one polynomial, the expression for p̂C , which can be obtained from
Theorem 1, matches the corresponding result reported in [3].

To detect only one error (in general any odd number of errors) at the output
of the multiplier, equation (21) can be realized easily by replacing all the α, pass-
thru and sum modules in Figure 1 with the α′ module and the new pass-thru and
sum modules as shown in Figure 5 (these three new modules are shaded in this
figure to distinguish them from the old ones). The bus width of this multiplier is
m+1. Since the output of any gate of the shaded pass-thru and sum modules in
Figure 5 is connected to only one gate, the single stuck fault at any gate of these
modules changes only one coordinate of the output of this multiplier. Therefore,
a circuit that compares the actual parity pC with the predicted p̂C , which is
shown at the end of the figure, is capable of detecting any single fault in the
shaded sum and pass-thru modules of Figure 5. Also, it is clear that any single
fault in any XOR gate in the parity generation circuit pC and the very last XOR
gate can be detected by ê. This circuit, however cannot detect a single stuck-at
fault in any of the α′ modules with the exception of the rightmost α′ module,
because such a fault is most likely to change more than one bit of the multiplier
output. Then, these errors cannot be detected if an even number of output bits
are changed due to a single fault in the α′ array. To overcome this problem, the
following method is proposed.
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Fig. 5. Multiplication of two elements in GF (2m) with error detection capability.



524 A. Reyhani-Masoleh and M.A. Hasan

For detecting a single fault in the entire multiplier one can change the α
array (all α′ modules excluding the XOR gates for parity prediction of p̂X(j) ’s)
in such a way so that all X(i)’s, 0 ≤ i ≤ m − 1, are obtained directly from A
(instead of X(i−1)), i.e., X(i) = αiA and this is shown in Figure 6. This makes
the output of any gate inside the new α array connected to only one gate. In
Figure 6, the output of the αi modules, X(i), 1 ≤ i ≤ m− 1, are found directly
from A. Also, it is noted that the coordinates of X(i)’s are obtained using the
following matrix equation

x(i) = Gi · a, 1 ≤ i ≤ m− 1, (22)

where x(i) is a vector whose entries are coordinates of X(i) defined by (6) and

G =










0 0 · · · 0 1
1 0 · · · 0 f1
0 1 · · · 0 f2
...

...
. . .

...
...

0 0 · · · 1 fm−1










is the α-multiplication matrix. Using (22), the αi module in Figure 6 is realized
with XOR gates according to the Gi matrix. As a result, a single stuck-at fault
at any logic gate in the multiplier, except in the XOR gates for parity prediction
of p̂X(j) ’s, can affect at most one bit of the output so that it is detected using
the parity prediction of (21).

Note that x
(k)
m−1 used in (20) is a function of A and can be calculated and

then should be realized separately by using Proposition 4.1 of [7] as follows

x
(k)
m−1 = am−1−k +

k−1∑

t=0

qk−1−t,m−1 am−1−t , k = 1, · · · , m− 1, (23)

where qi,m−1 ∈ {0, 1}, for i = 0, 1, · · · , m− 2, is the i-th entry of the last column
of the m− 1×m binary reduction matrix Q associated with F (z) as follows:






αm

αm+1

...
α2m−2






= Q






1
α
...

αm−1






mod F (α).

By substituting (23) into (21), one can realize p̂X(j) as a function of the
coordinates of A using XOR gates. Thus any single stuck-at fault in the entire
new multiplier results in at most one error and can be detected.

4.2 Bit-Serial PB Multiplier

The PB multiplier of Figure 1 can be realized in a bit-serial fashion as shown in
Figure 7. In this figure, both X and Y are m bit registers. Let X(n) and Y (n) be
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Fig. 6. The architecture of new α array to have a detection capability at the output.

the contents of X and Y registers, respectively, at nth, 1 ≤ n ≤ m, clock cycle.
Suppose the X register is initialized by A, i.e., X(0) = A, then the content of this
register at the nth clock cycle is X(n) = X(n), where X(n) ∈ GF (2m) is defined
in (6). Also, suppose that the register Y is cleared at the initial step, i.e., Y (0) =
0. Then one can obtain the content of Y at the first clock cycle as Y (1) = b0A

and in general at the nth clock cycle as Y (n) = b0A+
∑n−1

i=1 biX(i), 1 < n ≤ m.
It is easy to verify that after m clock cycle Y contains C = AB ∈ GF (2m), i.e.,
Y (m) = C.

.
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Fig. 7. Bit-serial PB multiplier.

In order to detect errors in the bit-serial multiplier of Figure 7, we check
the contents of two registers in every clock cycle. Consider Figure 7 before the
triggering of the nth clock cycle when the input and output of the X register
are X(n) and X(n− 1), respectively and using Lemma 1, we have
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p̂X(n) = pX(n−1) + xm−1(n− 1) =
m−2∑

i=0

xi(n− 1),

where xi(n− 1) ∈ GF (2) is the ith coordinate of X(n− 1). In order to compare
p̂X(n) with the actual value of pX(n), we store p̂X(n) into a 1 bit register DX as
shown in Figure 8. Then, after the nth clock cycle, X(n) appears at the output of
the X register and the actual value of pX(n) is evaluated and compared with the
value of DX , i.e., p̂X(n) using the last XOR gate of Figure 8. Similar expression
can be obtained for the Y register. Since Y (n) = Y (n− 1)+ bn−1X(n− 1), then

p̂Y (n) = pY (n−1) + bn−1pX(n−1),

and can be implemented and compared with the actual value of pY (n) as shown
in Figure 8. As a result, after the first clock cycle, both êCX and êCY should be
0 during the next m clock cycles if there are no single errors.
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Fig. 8. Detection of errors in the bit-serial PB multiplier.

5 Conclusions and Future Work

In this article, we have considered detection of errors in polynomial basis multi-
pliers. We have used a multiplier structure where a single stuck-at fault causes
only odd number of errors at the output. Towards the detection of this type
of errors, necessary theoretical results have been presented. Compared to the
previously published results [3], the work presented here is quite generic in the
sense that it can be applied to any irreducible polynomial defining the field. The
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parity prediction method of [3] is only for bit-serial multipliers and based on
the prediction of the output parity after the final clock cycle and then compar-
ing it with the actual parity. Although, it reduces the cost of overhead, but its
probability of error detection is only about 50% or less. This is because a single
fault in their bit-serial multiplier produces multiple errors after m clock cycles
and the number of effective errors resulting from the single fault is either odd or
even and only the odd number of errors can be detected. The proposed circuit in
Figure 8 overcomes this problem. It compares the predicted parity of the stor-
age registers with the actual ones at every clock cycle. Although it costs extra
hardware, the probability of error detection of our bit-serial multiplier is about
100%. This result has been verified using a simulation program for a prototype
multiplier with F (z) = z4 + z + 1. Using VHDL, we have injected single faults
at different nodes of the bit-serial multiplier for all elements of A and B. The
probability reaches unity as m increases.

The proposed error detection schemes are not limited to the multiplier ar-
chitectures discussed in this article. They can be easily extended and applied to
other GF (2m) multipliers. For example, we have considered the bit-serial mul-
tiplier introduced by Peterson [7] and have made it capable of detecting single
faults. Furthermore, although our discussions have centered around bit-parallel
and bit-serial multipliers over GF (2m), by combining the error detection schemes
for serial and parallel multipliers, one can develop an error detection scheme for
hybrid multipliers over composite fields [8].

More research is needed to reduce the overhead cost of the proposed multi-
plier. For example, hardware implementation of the architecture shown in Figure
6 appears to be expensive. Currently we are trying to develop an architecture
that can alleviate this problem.
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Abstract. In this paper we examine a number of ways of implementing
characteristic three arithmetic in hardware. While this type of arithmetic
is not traditionally used in cryptographic systems, recent advances in
Tate and Weil pairing based cryptosystems show that it is potentially
valuable. We examine a hardware oriented representation of the field ele-
ments, comparing the resulting algorithms for field addition and multipli-
cation operations, and show that characteristic three arithmetic need not
significantly under-perform comparable characteristic two alternatives.

1 Introduction

There has been a recent increase in research activity surrounding cryptosystems
based on the Tate and Weil pairings. Identity based encryption schemes [6] and
signature algorithms [11,16,17] as well as general signature algorithms [7] have
been developed and published, all of which utilise pairing based operations.
Additionally, extensions to higher genus curves have been fully explored [8].
Pairing based cryptosystems were traditionally thought to be weak when it was
shown [13] that the discrete logarithm problem in supersingular curves was re-
ducible to that in a finite field using the Weil pairing. However, this view changed
when Joux [12] presented a simple tripartite Diffie-Hellman protocol based on
the Weil pairing on supersingular curves which, in part, rekindled interest in this
area.

Although there is little discussion about implementation, it was noted by
Galbraith [8] that in terms of bandwidth efficiency, it is more efficient to use
elliptic curves in characteristic three for systems based on the Weil or Tate
pairing. This notion contradicts conventional advice when implementing elliptic
curves, which generally suggests using fields of either large prime characteristic
or characteristic two. The use of such fields is generally based on the assumption
that arithmetic in characteristic three is much slower than the given alternatives
and has resulted in a gap in literature surrounding the topic.
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Since the efficient hardware implementation of elliptic curves arithmetic in
characteristic three is potentially of value to the expanding list of systems which
use the Weil or Tate pairing, we will fill this gap in this paper. The purpose of this
work is to facilitate the use of characteristic three arithmetic in pairing based
cryptosystems, and hence reap the advantages of doing so, without imposing
the performance overhead which may traditionally be expected. In Section 2
we discuss the Tate pairing and develop some parameters for the comparison of
our techniques. We present a way of representing polynomials and performing
arithmetic on them in Sections 3 and 4. Finally, we implement these arithmetic
operations in field programmable hardware and present the performance results
in Section 5.

2 Supersingular Elliptic Curves and the Tate Pairing

We let G denote a prime order subgroup of an elliptic curve E over the field Fq,
which for the moment we assume is a general finite field of arbitrary character-
istic. Let the order of G be denoted by l and define α to be the smallest integer
such that

l|qα − 1

In practical implementations we will require α to be small and so will usually
take E to be a supersingular curve over Fq. Let G denote the group of points of
order l of the elliptic curve E over the field Fqα . While the group G is cyclic of
order l, the group G is a product of two cyclic subgroups of order l.

The bandwidth performance of the schemes based on the Weil pairing usually
grow with log2 q rather than with α · log2 q, hence it is better to try to minimise
q. This leads us to consider fields of characteristic three, since they aid us in
minimising the value of q and hence minimising the bandwidth. However, it is
unclear as to whether this comes at the expense of a decrease in performance
when compared against fields of characteristic two. In this paper we go some
way to address this issue in hardware by performing a comparison of the field
primitives. A comparison of the actual protocols we leave to a later publication.

In this paper we shall be interested in protocols which make use of the mod-
ified Tate pairing given by the map

t̂ : G×G→ F
∗
qα ,

which satisfies the following properties

1. Bilinearity:
– t̂(P1 + P2, Q) = t̂(P1, Q) · t̂(P2, Q).
– t̂(P, Q1 + Q2) = t̂(P, Q1) · t̂(P, Q2).

2. Non-degeneracy: There exists a P ∈ G such that t̂(P, P ) �= 1.
3. Computable : One can compute t̂(P, Q) in polynomial time.

If we let φ denote a “distortion map”, or group endomorphism which maps
elements in E[l] into linearly independent elements of E[l], then we can define
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the modified Tate pairing from the standard Tate pairing t(P, Q) via the use of
distortion maps

t̂(P, Q) = t(P, φ(Q))(q
α−1)/l

That the Tate pairing is efficiently computable follows from an unpublished, but
much referenced, algorithm of Miller [14].

We wish to compute t̂(P, Q) where P, Q ∈ G. This requires some operations
to be performed in Fq and some to be performed in Fqα , see [5] and [9]. The
exact value of α depends on which supersingular curve is chosen. The optimal
choices in each characteristic are given by the following table

Field Curve α
F2p y2 + y = x3 + x 4
F2p y2 + y = x3 + x + 1 4
F3p y2 = x3 − x + 1 6
F3p y2 = x3 − x− 1 6
Fp y2 = x3 + 1 2
Fp y2 = x3 + x 2

Notice, the value of α is bounded by four in characteristic two, by six in charac-
teristic three and two for curves defined over large prime fields. The underlying
security of the system is based both on the computational Diffie-Hellman prob-
lem in the subgroup of order l of E(Fq) (the so called ECDLP security) and on
the computational Diffie-Hellman problem in the finite field F

∗
qα (the so called

MOV security). Note that the decision Diffie-Hellman problem on supersingular
elliptic curves is easy due to the existence of the Weil and Tate pairings, as was
first pointed out by Joux [12].

We therefore need to choose, assuming standard current security recommen-
dations,

– l ≈ 2160

– qα ≈ 21024

If we wish to deploy a system with security roughly equivalent to 1024-bit
RSA or 160-bit ECC, then we are led to consider the following parameters in
each characteristic

Field Curve ECDLP Security MOV Security
F397 y2 = x3 − x + 1 151 922
F2241 y2 + y = x3 + x + 1 241 964

We shall consider these parameters when describing our implementation of char-
acteristic three arithmetic below, and the corresponding characteristic two im-
plementation with which we compare it.

3 Polynomial Arithmetic Modulo Three

In order to improve on the expected performance of characteristic three arith-
metic, we decided to use a novel representation of polynomials [10]. Each set of
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polynomial coefficients is held as two values, which we shall denote w1 and w2.
A given bit in w1 is set if the corresponding coefficient of the polynomial is equal
to one, while if the given bit in w2 is set then the coefficient of the polynomial
is equal to two. If both bits are clear then the coefficient is zero, while the case
of both bits set is considered invalid.

Put more simply, w1 holds the least significant bits of all coefficients in the
polynomial while w2 holds the most significant bits. This method of holding the
coefficients is similar to the practice of bit-slicing which is often performed in
software. By bit-slicing the high and low bits of each coefficient into separate
values, we offer a much more effective way to perform arithmetic as well as a
natural representation which is bit oriented in the same way that characteristic
two arithmetic is commonly implemented. As an example of this representation,
consider the trinomial x6 + x + 2 which can be described as in Figure 1

x^3 = 0
x^2 = 0
x^1 = 1
x^0 = 2

x^6 = 1
x^5 = 0
x^4 = 0

least significant 
bits
most significant 
bits

0100001
0000 00 1

Fig. 1. Bit-sliced Representation

Note that as we are working in hardware and not tied to a word oriented design,
where each coefficient occupies a number of bits which roughly equate to the
word-size of a processor, this representation is far more compact than other
methods. The size of w1 and w2 simply grow in length as the degree of the
polynomial they represent grows.

3.1 Addition

Addition of polynomials is done on a per-value basis using seven logic oper-
ations. Consider the example which adds the polynomial represented by the
values (a1, a2) to the polynomial (b1, b2), producing a result in (r1, r2). We can
express the addition as a logic diagram, shown in Figure 2, or in the form of a
simple pseudo-code program

t = (a1 | b2) ˆ (a2 | b1);
r1 = (a2 | b2) ˆ t;
r2 = (a1 | b1) ˆ t;

Note that negation and multiplication by two in this representation are partic-
ularly easy operations to implement since

2 · (a1, a2) = −(a1, a2) = (a2, a1)
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OR

OR

OR

OR

XOR

XOR

XOR

A2 A1 R1

R2B1B2

00010010001..0

00100001000..1

00101000110..1

00001110011..0

00000100100..0

00011001010..0

Fig. 2. Addition

3.2 Multiplication

A natural way to multiply elements in this representation is in a bit-serial man-
ner. In this method we take two operands and perform a multiply by repeatedly
shifting the multiplier down by one bit position and shifting the multiplicand
up by one bit position. The multiplicand is then added or subtracted from the
output value, on each iteration, depending on whether the least significant bit of
the first or second word of the multiplier is set to one. This is possible due to the
identity mentioned above which notes that the double operation is equivalent to
the negation operation.

MULTIPLIER

MULTIPLICAND

000101001

011000110 0

1

0

011110001

0000011000

1

1

ADD/SUB
CHOICE

ACCUMULATOR

010001001

011010010

Fig. 3. Multiplication

The advantage of this full bit serial technique is that it requires less intermediate
storage and is far more suited to a hardware implementation, using a basic
iterated structure and only simple logic elements, i.e. no direct multiplier or
adder circuitry is required. However, a major disadvantage of the full bit-serial
multiplier is that an analogous cubing operation is only as fast as a general
multiply, where as with other representation methods we can perform a more
efficient cubing operation than a general multiply.
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4 Implementation of Arithmetic in F36p

When considering pairing based cryptosystems, we are not only required to
perform some operations in F3p but will also need to compute in the extension
F36p . Since in applications p is a prime greater than five we can use the following
representation of the finite field F36p

F36p = F3p [θ]/(θ6 + θ + 2)

This provides a performance efficient reduction operation for multiplication. For
example, consider the multiplication of two polynomials, a and b, in the field
F36p which we denote

a = a5θ
5 + a4θ

4 + a3θ
3 + a2θ

2 + a1θ + a0

and
b = b5θ

5 + b4θ
4 + b3θ

3 + b2θ
2 + b1θ + b0

Firstly, we multiply the two polynomials using a school-book method to produce
a degree ten resulting polynomial r. We can then perform reduction of r, with
respect to the irreducible trinomial θ6 + θ + 2, using the circuitry as in Figure 4
since the multiplication results in

a · b = r = r10θ
10 + r9θ

9 + · · ·+ r2θ
2 + r1θ + r0

= s5θ
5 + s4θ

4 + s3θ
3 + s2θ

2 + s1θ + s0

and we know that θ6 = 2θ + 1, so

s0 = r0 + r6

s1 = r1 + 2r6 + r7

s2 = r2 + 2r7 + r8

s3 = r3 + 2r8 + r9

s4 = r4 + 2r9 + r10

s5 = r5 + 2r10

Note that we can perform a subtraction operation in place of the double opera-
tion because of the characteristic of this field and representation as described in
Section 3.

5 Timing of Field Operations

In order to show that arithmetic in F3n is suitable, in terms of performance
and size, for use in cryptosystems, we implemented a number of algorithms in
field-programmable hardware. Our algorithms for addition and multiplication
were implemented using version 2.1 of the Celoxica [1] Handel-C [2] hardware
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R10 R9 R8 R7 R6 R5 R4 R3 R2 R1 R0

R5 R4 R3 R2 R1 R0

ADD

ADD

ADD

ADD

ADD

SUB

SUB

SUB

SUB

SUB

001..0 010..1 000..0 010..1 011..0 000..0 011..1 010..0 011..0 010..1 001..1

010..0 010..1 001..1 110..1 011..0 001..1

Fig. 4. Reduction Modulo θ6 + θ + 2

compilation system and a PCI resident, Xilinx4000XL FPGA based prototyping
device [3]. The Handel-C language and compiler tool-chain allowed us to exper-
iment in a familiar high level language, very similar to C, and directly produce
hardware implementations from a program in that language. The output of the
Handel-C compiler was placed and routed using Xilinx Foundation 3.1i.

All designs communicate input and output data though on-board RAM and
use a system clock of 20MHz. We average the results of our timings over 10000
experiments to gain a more representative answer than might otherwise be ob-
tained.

We note that due to our use of a slightly unconventional design process, our
results may not be suitable for comparison with, for example, highly optimised
VHDL designs. Additionally, we note that we used a somewhat dated version
of the Handel-C and Xilinx tool-chains and that more recent versions may offer
enhanced optimisation phases which could improve the performance, clock speed
and size of our designs. Specifically, we expect to drastically reduce the size of
our designs, by using shared arithmetic elements, since the current results are
blatantly larger than one might expect. However, we feel that the comparisons
offered below are valid in showing both the advantage of our alternative repre-
sentation and that such arithmetic need not be considered significantly slower
than comparable characteristic two alternatives.

In all our experiments, the following notation is used to describe the type of
arithmetic being tested

– F397−S corresponds to an implementation using the standard software tech-
nique of representing each polynomial as an array of 97 integers, where arith-
metic is performed using a naive multiplication algorithm.



536 D. Page and N.P. Smart

– F397 − B refers to our alternative representation using a full bit-serial mul-
tiplication method.

The performance for F2241 and F397 polynomial addition and multiplication,
modulo their respective irreducible trinomial, are shown below

Hardware implementation [unoptimised]
Field Addition Multiplication Slices
F397 − S 25.29µs 4393.34µs 2149
F397 −B 1.20µs 102.21µs 4136
F2241 0.80µs 96.63µs 4920

Notice that addition and multiplication, in our alternative representation of char-
acteristic three, are an order of magnitude faster than the standard F397 algo-
rithms. Additionally, addition and multiplication are very close to being as fast
as arithmetic in F2241 .

These addition and multiplication algorithms were implemented with the
same basic structure with reduction happening in-place rather than at the end
of a multiplication. However, since both the F397 and F2241 algorithms are bit
rather than word oriented, they can easily be accelerated by making size/speed
tradeoffs. For example, we can use some extra space to allow reduction to be
performed at the end of multiplication and sacrifice further space to add a degree
of parallelism to our bit-serial multiplication technique. We also apply additional
optimisations which are based on knowledge about how the Handel-C compiler
generates hardware for a given input.

By applying these optimisations, we obtain two faster versions of our basic
algorithms in both fields

Hardware implementation [optimised]
Field Addition Multiplication Slices
F397 1.15µs 50.68µs 8733
F2241 0.70µs 37.32µs 10139

Since the majority of elliptic curve operations will use these primitives as the
basis for more complex operations, the small difference in terms of performance
is an important result, it essentially says that characteristic three arithmetic is
not necessarily much slower than characteristic two arithmetic.

We can use these optimised addition and multiplication designs as the basis
for further algorithms to perform arithmetic in extensions of their respective base
fields. We now need to compare arithmetic in F36·97 with arithmetic in F24·241

due to the different values of α in Section 2

Hardware implementation [optimised]
Field Addition Multiplication Slices
F36·97 5.90µs 1843.71µs 10854
F24·241 3.10µs 609.04µs 12286
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These results show that addition in the two extension fields is roughly equivalent
in terms of how long it takes, while using multiplication in F36·97 is three times
as costly as in F24·241 . The space required for both implementations is about the
same.

Notice that the above implementation used naive arithmetic for performing
the extension field multiplication. This was chosen so as to minimise the area of
the final hardware solution. Hence, we see that in both cases that if Mb denotes
the time needed to perform a base field multiplication and Me denotes the time
needed to perform an extension field multiplication, that

Me ≈ n2Mb

where n = 6 in characteristic three and n = 4 in characteristic two.
An interesting extension to these results would be to consider the use of

Karatsuba multiplication. Although this would lead to a significant increase in
area, due to the need to store intermediate results, it could further improve on
the arithmetic performance in both fields.

First we deal with the case of even characteristic, where we need to multiply
two polynomials of degree three. Using Karatsuba multiplication we can reduce
this to three multiplications of polynomials of degree one, plus a little book keep-
ing which we shall ignore. We then multiply the polynomials of degree one, again
using Karatsuba, using three base field multiplications. Hence, in characteristic
two one expects to obtain

Me ≈ 9Mb.

In characteristic three we need to multiply two polynomials of degree five over
the base field. Using a trivial extension of Karatsuba, which can be found for
example in [4] in a similar context, we first apply standard Karatsuba to reduce
the problem to the multiplication of three polynomials of degree two. These three
products are then computed via performing six base field multiplications each.
Hence, in characteristic three one expects to obtain

Me ≈ 18Mb.

We would therefore expect that a fully optimised version of extension field arith-
metic for both characteristics would result in a multiplication algorithm for char-
acteristic three extension fields which is four times slower than the corresponding
implementation of characteristic two extension fields. This may not be such a
problem in practice as much of the protocols based on the Tate pairing make use
of only base field arithmetic, and only the computation of the pairing requires
extension field arithmetic. When implementing pairing computations one also
attempts to reduce the number of full extension field multiplications that one
needs to perform, see [5] and [9] for details.

Finally, to offer further comparison between our techniques, we also imple-
mented them in a software environment. The timings were taken using the same
150MHz Intel PentiumPro equipped FPGA host PC used in the hardware exper-
iments and were compiled using GCC 2.95.1 with all optimisations turned on.
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The timings for addition and multiplication in both the base field and extension
field are shown below

Software implementation [optimised]
Field Addition Multiplication
F397 − S 11.89µs 1013.61µs
F397 −B 3.98µs 153.85µs
F2241 3.31µs 178.60µs

Software implementation [optimised]
Field Addition Multiplication
F36·97 8.91µs 5138.75µs
F24·241 5.12µs 3156.86µs

By comparing the results for software and hardware implementation, we can see
that in both cases F397 − B based arithmetic is quicker than a corresponding
naive representation. Furthermore, the improvement in the hardware implemen-
tation of F397 −B over F397 − S is greater than that in software indicating that
it is indeed more naturally defined in this medium. Finally, even though our
software test environment is far from state of the art, in both cases our hard-
ware implementations significantly out-perform their software equivalents. This
is clearly the expected outcome but it is reassuring that even by using an out of
date hardware design tool-chain, we were able to produce effective designs using
the Handel-C system.

6 Conclusion

We have shown how the use of a novel representation can result in an implemen-
tation of characteristic three arithmetic suitable for use in hardware cryptosys-
tems based on the Tate pairing. The use of characteristic three with the Tate
pairing is preferred due to the improved bandwidth considerations implied by
the security parameters.

Our implementation techniques offer a considerable improvement over the
standard techniques based on using a word oriented approach to holding poly-
nomial coefficients. We have also demonstrated that it is possible to implement
characteristic three arithmetic which is comparable in performance to a space-
equivalent characteristic two alternative. This is a valuable result which allows
system designers to benefit from bandwidth reduction without degraded perfor-
mance.
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Abstract. In [2], Gallant, Lambert and Vanstone proposed a very effi-
cient algorithm to compute Q = kP on elliptic curves having non-trivial
efficiently computable endomorphisms. Cryptographic protocols are sen-
sitive to implementations, indeed as shown in [6,7] information about the
secret can be revealed analysing external leakage of the support, typically
a smart card. Several software countermeasures have been proposed to
protect the secret. However, speed computation is needed for practical
use. In this paper, we propose a method to protect scalar multiplication
on elliptic curves against Differential Analysis, that benefits from the
speed of the Gallant, Lambert and Vanstone method. It can be viewed
as a two-dimensional analogue of Coron’s method [1] of randomising the
exponent k. We propose two variants of this method (one linear and
one affine), the second one slightly more effective, whereas the first one
offers “two in one”, combining point-blinding and exponent randomisa-
tion, which have hitherto been dealt separately. For instance, for at most
a mere 37.5% (resp. 25%) computation speed loss on elliptic curves over
fields with 160 (resp. 240) bits the computation of kP can take on 240

different consumption patterns.

Keywords. Public key cryptography, differential power analysis, elliptic
curve cryptosystem, fast computation.

1 Introduction

Since the paper of Kocher [6] on the timing attack in 1996 and the Kocher, Jaffe
and Jun paper Differential Power Analysis (DPA) [7] in 1999, it is well known
that non careful implementations can leak and that it is possible to recover the
secret key using the information on which access is possible. For the particular
case of elliptic curves, different methods has been proposed to prevent these
attacks as [1,4,5,8,9]. Independently Gallant Lambert and Vanstone, proposed
in [2] a new principle of computation using efficient endomorphism on certain
elliptic curves. In the past, Solinas also proposed to use such endomorphisms but
his method could only be applied for elliptic curve defined over binary fields, the
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endomorphism considered being the Frobenius. However, the motivation of the
Gallant-Lambert-Vanstone (GLV for short) and Solinas methods are not exactly
the same, in the first case “reduction” of secret multiplier is obtained and in the
second new decomposition is the basis of speedup computation.

In this paper we propose a specific method that benefits from fast endomor-
phisms, allowing its use in the case of smart card or parallel implementation. The
speedup obtained by using a particular endomorphism is not helpful in solving
the discrete logarithm problem. Hence the curves on which our methods apply
are not cryptographically weaker than a generic curve. The methods presented
here do not immunise elliptic curve cryptosystems against simple power analy-
sis. It is possible to combine several methods to prevent simple and differential
power analysis, such as randomisation of the private multiplier or blinding the
point (see [1]) or elliptic curve isomorphisms, field isomorphisms or extension
fields (see [5]). Differential analysis is not only a theoretical attack but can be
applied in practice to recover the secret key, analysing leakage.

This paper is organised as follows. In a first part, a countermeasure against
differential analysis using randomisation is reviewed. Afterwards, the GLV
method based on efficient endomorphisms to speed up computation is explained.
Then our method to prevent elliptic curve cryptosystems from differential anal-
ysis is proposed. It is based on random sublattices, and after a theoretical dis-
cussion distinguishing two cases a practical application is given. At the same
time considerations of extra computation time is taken into account and analy-
sis of real prevention is discussed, by counting the number of different possible
representations of the same multiplier k. Before concluding, an affine generali-
sation is introduced which from the implementation perspective is quite inter-
esting because of the small modifications needed compared to the original GLV
method. For all methods presented here, no extra routine are necessary to be
implemented.

2 Differential Analysis and Previous Work on
Randomised Endomorphisms

In [7], Kocher, Jaffe and Jun introduced the differential power analysis (DPA).
In practice, a cryptosystem is not a black box, it can reveal a part of informa-
tion about the secret. DPA consists in using side-channel information about the
state of the machine which computes, typically a smart card. Differential power
analysis uses power consumption and analyses such data statistically. We refer
the reader to [1,5] for a description in case of elliptic curve cryptography.

Let us just mention that we consider two generic types of countermeasures
to protect the computation of a multiple kP of P lying on an elliptic curve.

– blinding the base point: replace P by a random P̃ such that kP = kP̃ ,
– randomised secret exponent: replace k by a random k̃ such that kP = k̃P .

In all currently proposed countermeasures, only one consists of a modified
efficient scalar multiplication technique based on randomised endomorphisms.
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Joye and Tymen first presented in [5, Section 5] a randomised endomorphism
to prevent DPA for elliptic curve implementation, based on previous work of
Solinas [12]. Let us consider a Koblitz curve E defined over F2n with y2 + xy =
x3 + ax2 + 1 as equation, and a ∈ {0, 1}. Letting τ : (x, y) �→ (x2, y2) the
Frobenius endomorphism, which satisfies the equation u2 − (−1)1−au + 2 = 0.
The ring Z[τ ] is an euclidian domain with the norm N(.) defined as N(r+ τs) =
r2 + (−1)1−ars + 2s2. The key point of their countermeasure with randomised
endomorphisms [5, Section 5] is to use the following property. Let ρ ∈ Z[τ ].
If k1 ≡ k2 (mod ρ(τn − 1)), then ∀P ∈ E, k1P = k2P . Thus, they choose
randomly ρ ∈ Z[τ ] such that N(ρ) < 240, then compute κ′ = k (mod ρ(τn− 1)),
they decompose κ′ =

∑
i k

′
iτ

i using NAF algorithm [3], and compute Q = kP
as
∑

i k
′
iτ

i(P ).
This method only applies in characteristic two and for ABC curves. We

propose hereafter a new method valid in any characteristic. After recalling the
GLV method which constitutes the base of our algorithms in the next section,
we develop a first variant of our DPA-resistant algorithm in two versions (cases
1 and 2). These variants combine the two countermeasure types expressed above
into a unique algorithm. Thereafter, Section 7 will explore another variant of
a DPA-resistant algorithm based on the GLV method, which achieves better
performance over similar proved security. Here we only randomise the exponent
k. On the other hand the implementation code contains only slight modifications
of its deterministic version.

3 The Gallant-Lambert-Vanstone Computation Method

In this part, we briefly summarize the GLV computation method [2]. Let E be
an elliptic curve defined over a finite field Fq and P be a point of this curve
with order a large prime n (say #E(Fq)/n ≤ 4). Let us consider Φ a non-trivial
endomorphism of E defined over Fq andX2+rX+s its characteristic polynomial.

By the Hasse bound, since n is large, Φ(P ) = λP for some λ ∈ [1, n − 1].
Indeed, there is only one copy of Z/n inside E(Fq) and Φ(P ) has also order
dividing n. We can easily exclude the case where λ = 0 which is exceptional (for
instance in the examples we have n � s, by the Hasse bound). In all cases, λ is
obtained as a root of X2 + rX + s modulo n. The GLV algorithm decomposes
k as k ≡ k1 + k2λ (mod n) where ki = O(

√
n) for i = 1, 2. We quickly describe

this construction. Let f : Z × Z → Z/n denote the homomorphism defined by
(i, j) �→ (i+jλ) (mod n). The goal is to find a small vector u such that f(u) = k.
As f((k, 0)) = k, the problem is reduced to finding two linearly independent
vectors v1 and v2 of small length (say O(

√
n)) such that f(v1) = f(v2) = 0 and

to decompose (k, 0) in this basis with coefficients in Q and then rounding off
(k, 0) to the nearest vector v which is a linear combination of v1 and v2 with
coefficient in Z. Finally, u is chosen as u = (k, 0)− v. The problem of finding v1
and v2 is solved in [2] using the extended Euclidean algorithm (see also [10,11]
for alternative methods).
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Finally kP is computed more efficiently than previous existing methods by
calculating first Φ(P ), decomposing k ≡ k1+k2λ (mod n) with max(|k1|, |k2|) =
O(
√
n), and computing k1P+k2Φ(P ) using elliptic Straus-Shamir multiplication

described in [3] or in [13].

4 Elliptic Scalar Multiplication Using Sub-lattices and
the GLV Method

4.1 Retrieving New v1 and v2

Let Φ be a non trivial endomorphism defined over Fq such that Φ2+ rΦ+ s = 0,
as in the GLV method. We want to describe a way to mask scalar multiplication
using a GLV decomposition so that it becomes immune to DPA. The idea is
to use a random sub-lattice L = A(Z × Z), or rather a random matrix A with
coefficients in some range (here [0, R] for an given integer R, to be chosen later).
We will denote ∆ = detA. The linear map A will often be viewed as a matrix

A =
(
α β
γ δ

)
with respect to the canonical basis. Later, we will also translate

Z × Z ∼= Z[Φ] via the isomorphism which sends the canonical basis to {1, Φ}.
The matrix A will be therefore also viewed as a linear transformation of Z[Φ],
sending {1, Φ} respectively to {Φ0, Φ1}.

Consider the GLV homomorphism:

f : Z× Z→ Z/n
(i, j) �→ i+ λj (mod n) .

For a sublattice L = A(Z×Z) ⊂ Z×Z, we denote v(L)1 and v
(L)
2 two linearly

independent vectors in the kernel of (Z× Z)|L → Z/n which is the restriction
of f to L. We also require that v(L)1 and v

(L)
2 have rectangle norm O(

√
n).1

Such vectors can be computed from the traditional GLV vectors v1 and v2.
Indeed, note that the index of L inside Z× Z is

(Z× Z : L) = |∆| ,

and this is also the order of (Z× Z)/L. Therefore we may set2

v
(L)
i = ∆vi ∈ (ker f) ∩ L . (1)

1 The rectangle norm of (x, y) is by definition max(|x|, |y|). We denote it by |(x, y)|.
2 The vectors v

(L)
i generate a sublattice of index |∆| inside (ker f)∩L. In practice (see

Appendix A) we use different vectors v′
i than those defined by (3). However we can

only prove a bound on the length of the GLV decomposition using these vectors, so
in the future performance loss could still be lowered theoretically.
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4.2 Decomposition of k

We want to write kP = k′
1Φ0(P ) + k′

2Φ1(P ) for some k′
1, k

′
2 = O(

√
n). We use

the same strategy as in the original GLV method. Indeed as before there exist
λ0, λ1 ∈ [0, n − 1] such that Φ0(P ) = λ0P and Φ1(P ) = λ1P . We are aiming
therefore at a decomposition of the form

k ≡ k′
1λ0 + k′

2λ1 (mod n), with k′
1, k

′
2 = O(

√
n) . (2)

Note that λ0 ≡ α + βλ (mod n) and λ1 ≡ γ + δλ (mod n). Let us consider
the modified GLV map

f ′ : Z× Z→ Z/n(
i

j

)
�→ iλ0 + jλ1 (mod n) .

Observe that f ′ is a linear map which can be written in matrix form as
(
i

j

)
�→ (i, j)

(
λ0
λ1

)
= (i, j)A

(
1
λ

)
(mod n) .

Hence, denoting by AT the transpose of A, we can write f ′ = f ◦ ", with
" : Z× Z→ Z× Z(

i

j

)
�→
(
i′

j′

)
= AT

(
i

j

)
.

Let L′ = "(Z× Z), K′ = ker f ′ and K = ker f . Note that ∆ is also the index of
L′ inside Z× Z. Therefore two short vectors v′

1 and v′
2 of K′ are given by

v′
i = ±

(
AT)−1

v
(L′)
i i = 1, 2

= ÂTvi by (1) , (3)

where Â =
(

δ −γ
−β α

)
is the adjoint matrix of A.

Since |vi| ≤
√
1 + |r|+ s

√
n by [11, Theorem 1], if α, β, γ, δ ∈ [0, R] we get

|v′
i| ≤ 2R |vi| ≤ 2R

√
1 + |r|+ s

√
n . (4)

To find k′
1 and k′

2 satisfying (2), we proceed as in the original GLV method
with a small difference. We need first to find a vector w such that f ′(w) = k
(mod n). In the original method, we could take w = (k, 0). Here we define
λ−1
0 ∈ [0, n− 1] such that λ0λ−1

0 ≡ 1 (mod n) (we have λ0 �≡ 0 (mod n), see the
discussion following (7)). Finding λ−1

0 amounts to an application of the extended
Euclidean algorithm to n, λ0. Then we have f ′(kλ−1

0 , 0) = k (mod n). From this
point everything else is identical to the original method by replacing (k, 0) with
(kλ−1

0 , 0). At the end we get that

max(|k′
1|, |k′

2|) ≤ 2Rmax(|k1|, |k2|) ≤ 2R
√
1 + |r|+ s

√
n . (5)
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4.3 The Case of Small Determinant

The bound of (5) can be considerably sharpened when ∆ is small. We shall not
dwell on all cases, but shall consider only the case ∆ = 1. Let us draw some
generic observations from the last section. Indeed from the relation f ′ = f ◦ " it
is immediate to see that "(K′) ⊂ K. On the other hand clearly

ÂT(K) ⊂ K′ ,

which implies

∆K ⊂ ATK′ ⊂ K .

Hence if ∆ = 1 one gets equalities in all the above inclusions. In particular,
K′ = K and this implies that one may take (v′

1, v
′
2) = (v1, v2) in the GLV sub-

lattice decomposition, so that in (5) the parameter R is no longer there.
In the appendix, we give full details of the modified GLV algorithms. In the

following, we measure the protection offered by this method against DPA and
its performance slow-down.

5 On the Protection Offered by the Randomised GLV
Method against DPA

We have seen in the previous section how the choice of a random A with coef-
ficients in [0, R] affects the length of the vector u = (k1, k2). A more detailed
performance analysis of the analogue of the GLV algorithm in this case will be
carried out in the next section. Here we will evaluate the number of different
decompositions of kP offered by different choices of A with coefficients less than
R.

In order to evaluate this quantity, we note that the number of matrices A
such that ∆ �= 0 is around R4 and the number of those with ∆ = ±1 is around
R2.

The starting point of the analysis is the remark that DPA as described in
Section 2 cannot work if the GLV decomposition is randomised as before, because
the power consumption pattern is also randomised for a single exponent k. This
will be quantified by the analysis of (6) and (7) below.

We are concerned with two points, both of which add entropy and enhance

the security of our system. Let A be the previous matrix and B =
(
ε ζ
η θ

)
�= A

another such matrix, with coefficients in [0, R]. Call
(
Ψ0
Ψ1

)
= B

(
1
Φ

)
.

We want to avoid a situation where

kP = k′
1Φ0(P ) + k′

2Φ1(P ) = k̃′
1Ψ0(P ) + k̃′

2Ψ1(P ),

k′
i = k̃′

i and (6)
Φi(P ) = Ψi(P ) i = 1, 2 . (7)
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Let us analyse first (7). This condition is equivalent to

α+ βλ+ c1n = ε+ ζλ and γ + δλ+ c2n = η + θλ , (8)

with c1, c2 ∈ Z. We want to show that one must have c1 = c2 = 0 as soon as for
instance

R <
√
n/
√

1 + |r|+ s . (9)

We analyse the left-hand inequality, the other one being analogous. One has

(α− ε) + (β − ζ)λ ≡ 0 (mod n) ,

so that (α− ε, β − ζ) ∈ ker f . But for (x, y) ∈ ker f −{(0, 0)} it is known by the
proof of [11, Theorem 1] that

max(|x|, |y|) > √n/
√

1 + |r|+ s > R ,

by (9), hence this forces (x, y) = (0, 0), thus proving our claim. Therefore, given
A, there is no other B satisfying (6) and (7).

Case 1: ∆ �= 0. Since the total number of matrices A is of order R4, the proba-
bility that two decompositions of kP match is less than 1/R4.

Case 2: ∆ = ±1. In this case the total number of A’s is around R2, so the
probability that two decompositions of kP match is less than 1/R2.

6 On the Additional Computation Cost of the
Randomised GLV Method

We now measure the extra computation cost of this method with respect to the
plain GLV method. Three parts of extra computation can be distinguished:

1. computation of Φ0(P ), Φ1(P ),
2. computation of v′

1 and v′
2,

3. computation of kP = k′
1λ0P + k′

2λ1P with respect to the original kP =
k1P + k2λP .

We analyse these points.
The decomposition of k into k′

1λ0 + k′
2λ1 through the GLV method can be

applied as described at the end of Section 4.2. The increase in computation is
to invert λ0 modulo n, and it can be neglected in comparison with the global
computation of the elliptic curve scalar multiplication.

The computation of v′
1 and v′

2 by (3) is also fast and can be neglected. This
step does not apply in Case 2 (∆ = ±1).

Secondly, the elliptic Straus-Shamir method of Solinas [13] can be used to
compute Φ0(P ), Φ1(P ) and k′

1Φ0(P ) + k′
2Φ1(P ). It is known that its average
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computation cost C(l) for l = max(log2 k′
1, log2 k

′
2) is l doublings and l/2 curve

additions to obtain k′
1Φ0(P ) + k′

2Φ1(P ). Therefore, using (5), the cost of com-
puting k′

1Φ0(P ) + k′
2Φ1(P ) is augmented by






300
C(log2R)
C (log2

√
n)

% ≈ 300 log2R
log2
√
n

% in Case 1,

200
C(log2R)
C (log2

√
n)

% ≈ 200 log2R
log2
√
n

% in Case 2.
(10)

since log2 ki ≈ (log n)/2. By letting

R < n1/16 which implies (9) , (11)

one gets for instance that the augmentation cost is less than 37.5%. This is the
case, for instance, if n has 160 bits and R = 210.

In Case 2, one has to double the size of R to achieve the same security, but
performance is better than Case 1 for the same R, hence the 50% increase in
computation cost.

7 An Affine Generalisation

One can in fact easily generalise our ideas to an affine setting, where instead of
masking the GLV decomposition with a linear map x �→ Ax, one uses an affine
map x �→ Ax+ρ. We present a special case of this affine method, in which A = Id
and only ρ is randomised. It can be implemented with very small modifications
of the code. The idea is to randomise the part “Finding v” of [2].

The vector (k, 0) breaks down as (k, 0) = β1v1 + β2v2, with β1, β2 ∈ Q

using [2, Lemma 1]. Let R > 0, ρ1, ρ2 ∈ [0, R] two random integers and b′
i =

�βi� − ρi for i ∈ {1, 2}, where �·� means the nearest integer. The vector u′ =
(k′

1, k
′
2), constructed as u′ = (k, 0) − v′ where v′ = b′

1v1 + b′
2v2, has norm at

most cmax(|v1|, |v2|) with c ≤ 2R + 1. Furthermore, by construction we have
kP = k′

1P + k′
2Φ(P ).

With our method, we have a very easy control between the additional running
time and the expected security, indeed for a typical field elliptic curve with a
160-bit number n, |v1| and |v2| are 80-bit numbers and we have a 25% increase
in computation compared to the plain GLV method when R = 220.

On the other hand, security here can easily be justified, since the difference
between the modified vector u′ and the original one u is ρ1v1 + ρ2v2, which is a
different vector for each choice of ρ1, ρ2. Hence the probability that (6) holds is
R−2.

8 Conclusion

In this paper, we propose to modify the Gallant-Lambert-Vanstone computation
method to prevent differential analysis, in a way which benefits from the com-
putational speedup of the method. The class of curves where this computation
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is possible is the same as for the GLV method. Our method can be viewed as a
two-dimensional generalisation of Coron’s [1].

We have distinguished two cases of possible linear randomisations. In the sec-
ond one the class of random matrices is more restricted and security is slightly
reduced, however, this class offers the advantage of not having to redo the pre-
computation stage to find the vectors v′

i which we take to be the original vi of
the plain GLV method.

Thus, for instance, a single computation of kP can assume a randomly chosen
consumption pattern, the probability that two of these matching being less than
2−40 independently of the chosen elliptic curve. With this security threshold, on
a 160-bit elliptic curve, performance is only at most 37.5% slower than using the
original GLV method (50% when using unimodular matrices).

In these two cases, we mask both the exponent k and the points P , Φ(P ).
These considerations can be carried through to affine randomisations, where

we presented the simplest example with collision probability 2−40 and 25% ad-
ditional running time on a 160-bit elliptic curve. This variant can be considered
as a generalisation of Coron’s first countermeasure of randomising the private
exponent [1, Section 5].
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A Algorithm for Elliptic Scalar Multiplication Using
Sub-lattices

1. Randomly choose α, β, γ, δ ∈ [1, R] such that αδ − βγ �= 0 in Case 1
(resp. = ±1 in Case 2).

2. Compute Φ0(P ) and Φ1(P ) with Solinas’ algorithm as
(
Φ0(P )
Φ1(P )

)
=
(
α β
γ δ

)(
1

Φ(P )

)
.

3. Compute λ−1
0 ∈ [0, n − 1] such that λ0λ

−1
0 ≡ 1 (mod n) with an

application of the extended Euclidean algorithm.
4. Compute λ′ = λ1λ

−1
0 (mod n).

5. Find v′
1 and v

′
2 in Z×Z by applying the original GLV algorithm, replacing

λ by λ′ (resp. v′
i = vi in Case 2).

6. Express (kλ−1
0 , 0) = β1v

′
1 + β2v

′
2, where βi ∈ Q.

7. Let bi = �βi� and v′ = b1v
′
1 + b2v

′
2.

8. Compute (k′
1, k

′
2) = (kλ−1

0 , 0)− v′.
9. Compute kP as k′

1Φ0(P ) + k′
2Φ1(P ) with the elliptic Straus-Shamir

(Solinas) algorithm.
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B Algorithm for Affine Generalisation

1. Randomly choose ρ1, ρ2 ∈ [1, R].
2. Decompose k as (k, 0) = β1v1+β2v2, with β1, β2 ∈ Q using [2, Lemma

1].
3. Let b′

i = �βi� − ρi for i ∈ {1, 2}, where �·� means the nearest integer.
4. Let u′ = (k, 0)− v′ where v′ = b′

1v1 + b′
2v2, and (k′

1, k
′
2) = u′.

5. Compute kP as kP = k′
1P + k′

2Φ(P ), with the elliptic Straus-Shamir
(Solinas) algorithm
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Abstract. Recently it has been shown that smart cards as crypto-
graphic devices are vulnerable to power attacks if they have no defence
against them. Randomization on ECC scalar multiplication is one of
the fundamental concepts in methods of defence against side-channel
attacks. In this paper by using the randomization concept together with
the NAF recoding algorithm, we propose an efficient countermeasure
for ECCs against power attacks. The countermeasure provides a
randomized signed-scalar representation at every scalar multiplication
to resist DPA. To protect against SPA it additionally employs a
simple SPA-immune addition-subtraction multiplication algorithm.
Our analysis shows that it needs no additional computation load
compared to the ordinary binary scalar multiplication, where the av-
erage number of doublings plus additions for a bit length n is 1.5n+O(1).

Keywords: Elliptic curve cryptosystems, Side-channel attack, Power
analysis attack, SPA, DPA, Non-adjacent form.

1 Introduction

The use of elliptic curve cryptosystems(ECC) was first proposed in 1985 by Miller
[1] and Koblitz[2]. ECCs can use much smaller sizes of key bits, typically around
160 bits which provides the same security level as a 1024 bit RSA. In addition
ECCs have better performance in computation speed than other multiplicative
groups of RSA and ElGamal type encryptions at the same security level. These
advantages make ECCs more attractive for cryptographic implementation on
smart cards because limited memory and computation capability are available
on them. Unfortunately cryptographic systems on smart cards are much vulner-
able to side-channel attacks[3,4,5,6,7,8,9,10,11,12,13,14,15] such as fault attacks,
timing attacks and power attacks. Since power attacks are known to be the most
practical and powerful especially to cryptosystems on smart cards, in this paper
we discuss in building a countermeasure against power attacks.
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Kocher et al.[7] originally presented power attacks of the simple and differen-
tial power analyses(referred to as SPA and DPA, respectively). In SPA, a single
power signal trace of a cryptographic execution is measured and analyzed to
classify point doublings or additions over the power trace. On the other hand,
a DPA attacker usually measures hundreds of power signal traces and divides
them into two groups by using a classification criterion, and makes a subtraction
between the two averaged values. Since the averaging can reduce noisy compo-
nents and result in the amplification of small power differences occurred in the
execution of an algorithm, DPA is in general more powerful than SPA. Coron[8]
introduced three key concepts to build countermeasures against power attacks;
randomization of the private exponent, blinding the point and randomized pro-
jective coordinates.

More recently Oswald and Aigner[9] randomized the binary algorithm itself to
resist power attacks. They inserted a random decision in the process of building
the addition-subtraction chain which had been originally utilized for speeding
up the ordinary binary scalar multiplication of an elliptic curve point[16]. The
speeding-up chain method was first introduced in 1990 by Morain and Olivos[17].

The contribution of this paper is to propose a simple and powerful coun-
termeasure for ECC scalar multiplication against power attacks. It uses the
randomization concept together with non-adjacent form(NAF) algorithm[18,19]
to change an ordinary binary multiplication representation to a form of signed-
scalar one. The proposal provides an differently randomized signed-scalar repre-
sentation at every scalar multiplication to resist DPA. To defeat SPA it employs
a simple SPA-immune addition-subtraction multiplication algorithm. In addition
the new countermeasure seems to be able to make timing attacks very difficult
to work because every execution time of scalar multiplication depends on ev-
ery different signed-scalar representation. The analysis shows that our proposal
needs no additional computation load compared to the ordinary binary scalar
multiplication, where the average number of doublings plus additions for a large
n is 1.5n + O(1).

This paper is organized as follows. The ECC ordinary scalar multiplication
and power attacks are briefly described in section 2. We explain the non-adjacent
form(NAF) recoding algorithm in section 3, and finally present the new coun-
termeasure with analyses and comparisons.

2 Elliptic Curve Cryptosystems and Power Attacks

An elliptic curve is a set of points (x, y) which are solutions of a bivariate cubic
equation over a field K. An equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where ai ∈ K, defines an elliptic curve over K. As an example, if char K �= 2
and char K �= 3, the above equation can be transformed to

y2 = x3 + ax + b
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with a, b ∈ K. This curve has one point O at infinity, which is the identity
element of the group.

Let P = (x1, y1) �= O be a point, inverse of P is −P = (x1,−y1). Let
Q = (x2, y2) �= O be a second point with Q �= −P , the sum P + Q = (x3, y3)
can be calculated as

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

with

λ =

{ y2−y1
x2−x1

3x2
1+a4

2y1

, if P �= Q

, if P = Q.

To subtract the point P = (x, y), one adds the point −P .

2.1 Binary Scalar Multiplication

The operation of adding a point P to itself k times is called scalar multiplication
by k and denoted Q = kP . We usually make use of the binary algorithm for
the computation of the scalar multiplication Q = kP . The binary algorithm is
described in the following figure 1. The binary algorithm is the analogue of the
square-and-multiply method for exponentiation. For validity and explanation see
[16].

Binary algorithm

Input: A point P , an n-bit integer k =
∑n−1

i=0 ki 2i, ki ∈ {0, 1}
Output: Q = kP

1.1 Q = O
1.2 for i = n− 1 to 0 by -1 do {
1.3 Q = 2Q
1.4 if (ki == 1 ) then Q = Q + P }
1.5 Return Q

Fig. 1. Binary scalar multiplication algorithm

If the occurrence of 1’s of a scalar integer k is assumed 1
2 in probability, the

number of doublings in the algorithm is equal to n, and the average number of
additions n

2 , where n is the number of bits of k.

2.2 Power Attacks

Power attacks of SPA and DPA were introduced in [7]. An SPA consists in
observing the power consumption of one single execution of a cryptographic
algorithm. In ECC computing of Q = dP as shown in figure 1, it might be
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possible to distinguish a point addition from a measured power signal trace,
because the step 1.4 of figure 1 is conducted over the period of ki = 1. Figure 2
shows a countermeasure[8] to the SPA, where the instructions conducted during
a cryptographic algorithm do not depend on the data being processed.

Notice that the algorithm of figure 2 no longer defends against DPA. The
step of 2.5 in the figure 2 has a small different amount of power consumption
depending on whether the bit is 1 or 0. Even though it is very hard to find
such a small difference by SPA, DPA is a powerful technique that exploits secret
information by statistical analyzing power consumption.

SPA resistant Binary algorithm

Input: A point P , an n-bit integer k =
∑n−1

i=0 ki 2i, ki ∈ {0, 1}
Output: Q[0] = kP

2.1 Q[0] = O
2.2 for i = n− 1 to 0 by -1 do {
2.3 Q[0] = 2Q[0]
2.4 Q[1] = Q[0] + P
2.5 Q[0] = Q[ki] }
2.6 Return Q[0]

Fig. 2. Binary scalar multiplication algorithm immune to SPA

In order to be resistant to DPA, some countermeasures have been proposed[8,
9,10,11,12,13,14,15]. Three countermeasures for ECC were first suggested by
Coron[8] : randomization of the private exponent, blinding the point P and ran-
domized projective coordinates. Specific countermeasures on a Koblitz curve[12],
on a Montgomery-form elliptic curve[13], on a Jacobi-form elliptic curve[14], and
on a Hessian-form elliptic curve[15] were also proposed.

More recently, Oswald-Aigner[9] have proposed randomized addition- sub-
traction chains for an elliptic curve scalar multiplication as a countermeasure
against power attacks. It randomizes the binary algorithm by using addition-
subtraction chains which had been proposed by Morain-Olivos[17].

Our difference from Oswald-Aigner’s work is to use a randomization on the
NAF algorithm to resist DPA, and employ a simple SPA-immune scheme. Even
though the idea seems somewhat straightforward, the result turns out to be a
simple and powerful countermeasure against power attacks. Moreover it needs no
additional computation load compared to the ordinary binary algorithm, while
the randomized addition-subtraction chains proposed by Oswald-Algner needs
approximately 9% more additions than the ordinary binary algorithm.
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3 Non-adjacent Form(NAF) Recoding Algorithm

Since subtraction has the same load as addition in the elliptic curve group, the
NAF representation in the form of addition-subtraction chain can reduce the
number of point operations in ECCs compared to the ordinary binary repre-
sentation. A minimum discussion about the NAF to describe the randomized
signed-scalar representation will be given here. For details see [16,18,19,20,21].

Consider an integer representation of the form d =
∑n

i=0 di 2i, di ∈ {1̄, 0, 1}
where 1̄ = −1. We call it a binary signed-digit representation. A non-adjacent
form (NAF) has the lowest weight among all signed-digit representations of a
given k. Notice that every integer k has each unique NAF. The NAF recoding
number d of scalar k can be constructed by the NAF recoding algorithm of
Reitwiesner[18] given in table 1. First the auxiliary carry variable c0 is set to
0. Reitwiesner’s algorithm computes d starting from the LSB of k and scanning
two bits at a time to the left. The i-th NAF recorded digit di and (i+1)-th value
of the auxiliary binary carry ci+1 for i = 0, 1, 2, · · · , n are successively produced
using table 1[19].

Even though the number of bits of k is equal to n, the number of bits in the d
can be n + 1, As an example, when k = (11110) in the binary form, we compute
the NAF recoding number d as follows.

k = (11110) = 24 + 23 + 22 + 21 = 30

d = (10001̄0) = 25 − 21 = 30

Given a NAF recoding number d, the addition-subtraction scalar multiplica-
tion algorithm is given in figure 3. The number of doubling operations required
can be at most 1 more than that of the ordinary binary algorithm. On the other
hand, the number of subsequent additions or subtractions is simply equal to the
number of non-zero bits of the NAF recoding number d. The average number of
additions (or subtractions) for the bit length n can be reduced n

3 [20,21].

Table 1. NAF recoding method

Input Output
ki+1 ki ci ci+1 di

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 0
1 0 1 1 1̄
1 1 0 1 1̄
1 1 1 1 0
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Addition-Subtraction algorithm
Input: A point P , an (n + 1)-bit integer d =

∑n

i=0 di 2i, di ∈ {1̄, 0, 1}
Output: Q = dP

3.1 Q = O
3.2 for i = n to 0 by -1 do {
3.3 Q = 2Q
3.4 if (di == 1 ) then Q = Q + P
3.5 if (di == 1̄ ) then Q = Q− P }
3.6 Return Q

Fig. 3. Addition-subtraction scalar multiplication algorithm

4 The New Countermeasure Based on Randomized
Signed-Scalar Representation

4.1 Randomized Signed-Scalar Representation

To prevent DPA, we intend to randomize the ECC scalar multiplication proce-
dure. The randomization results in a signed-scalar representation which is not
in the form of NAF. The randomized signed-scalar recoding algorithm can be
built by employing the concept used in the NAF recoding algorithm as follows.

Note that we use auxiliary carry ci+1 in the NAF recoding algorithm. The
carry ci+1 means an (i + 1)-th carry with c0 = 0, and di is an i-th NAF digit.
Therefore, the concatenated ci+1di has the value of ci+121 + di20. Therefore, we
can consider that the representation ci+1di = 01 has another identical represen-
tation, i.e. ci+1di = 11̄, or the reverse.

To insert randomness in the NAF recoding algorithm, we generate a random
number r = (rn−1rn−2 · · · r0) which is an n-bits integer. In our countermeasure
algorithm, the random recorded digit di and next value of the auxiliary binary
variable ci+1 for i = 0, 1, 2, · · · , n can be sequentially generated as shown in
table 2.

As an example, if we have ki+1kici = 001 and random bit ri = 0, we take
NAF recoding ci+1di = 01. For ri = 1, then we can choose another recoding
ci+1di = 11̄. However, two different choices have the same value. In all cases
except when ki+1kici = 001, ki+1kici = 010, ki+1kici = 101 or ki+1kici = 110
the random signed-scalar recoding method is always adapted independent of ri.

As a practical example, when k = (111011110) in binary form, we compute
a random recoding number d with r = (101010011).
k = (111011110) = 28 + 27 + 26 + 24 + 23 + 22 + 21 = 478
c = (1111111000), r = (101010011)
d = (10001̄001̄10) = 29 − 25 − 22 + 21 = 478
With a random number r = (110101001), we compute another recoding number
d as follows.
c = (1110111100), r = (110101001)
d = (1001̄10001̄0) = 29 − 26 + 25 − 21 = 478
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Table 2. Random singed-scalar recoding method

Input Output
ki+1 ki ci ri ci+1 di Remarks

0 0 0 0 0 0 NAF
0 0 0 1 0 0 NAF
0 0 1 0 0 1 NAF
0 0 1 1 1 1̄ AF
0 1 0 0 0 1 NAF
0 1 0 1 1 1̄ AF
0 1 1 0 1 0 NAF
0 1 1 1 1 0 NAF
1 0 0 0 0 0 NAF
1 0 0 1 0 0 NAF
1 0 1 0 1 1̄ NAF
1 0 1 1 0 1 AF
1 1 0 0 1 1̄ NAF
1 1 0 1 0 1 AF
1 1 1 0 1 0 NAF
1 1 1 1 1 0 NAF

The hardware or software implementation of randomized signed-scalar rep-
resentation is not difficult. In hardware, it additionally needs a random number
generator and a 4-input/2-output logic circuit to implement the operations of
table 2. This computational load is negligible.

4.2 Analysis and Comparisons

It is possible to find the probability of each symbol in the new random recoding
algorithm for a given value of k. We assume that an n-bit binary number k is
uniformly distributed in the range [0, 2n−1]. Thus each bit of k can be generated
a value of zero or one with equal probability, i.e. P (ki = 0) = P (ki = 1) = 1

2
for all i. It is also supposed that the each bit probability of zero or one for a
random number r is 1/2. The random signed-scalar numbers produced by the
new algorithm can be considered a finite Markov chain model which is a similar
analysis method to that employed in [19]. In this paper, the state variables
are taken to be the quadruplets (ki+1, ki, ci, ri). There are 16 states for 4-bit
combinations of input as given in table 3.

For example, consider input state s2 which represents (ki+1, ki, ci, ri) =
(0, 0, 1, 0). The output (ci+1, di) can be calculated as (0, 1) using the table 3
and the next state is (ki+2, ki+1, ci+1, ri+1) = (ki+2, 0, 0, ri+1). By assuming
P (ki+2 = 0) = P (ki+2 = 1) = 1

2 and P (ri+1 = 0) = P (ri+1 = 1) = 1
2 , there

are 4 transitions with equal probability from state s2 = (0, 0, 1, 0) to the states
s0 = (0, 0, 0, 0), s1 = (0, 0, 0, 1), s8 = (1, 0, 0, 0) and s9 = (1, 0, 0, 1).
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Table 3. State transition table for the random singed-scalar recoding algorithm

State Output Next state
(ki+2, ri+1)

si (ki+1, ki, ci, ri) (ci+1, di) (0,0) (0,1) (1,0) (1,1)
s0 (0,0,0,0) (0,0) s0 s1 s8 s9

s1 (0,0,0,1) (0,0) s0 s1 s8 s9

s2 (0,0,1,0) (0,1) s0 s1 s8 s9

s3 (0,0,1,1) (1,1̄) s2 s3 s10 s11

s4 (0,1,0,0) (0,1) s0 s1 s8 s9

s5 (0,1,0,1) (1,1̄) s2 s3 s10 s11

s6 (0,1,1,0) (1,0) s2 s3 s10 s11

s7 (0,1,1,1) (1,0) s2 s3 s10 s11

s8 (1,0,0,0) (0,0) s4 s5 s12 s13

s9 (1,0,0,1) (0,0) s4 s5 s12 s13

s10 (1,0,1,0) (1,1̄) s6 s7 s14 s15

s11 (1,0,1,1) (0,1) s4 s5 s12 s13

s12 (1,1,0,0) (1,1̄) s6 s7 s14 s15

s13 (1,1,0,1) (0,1) s4 s5 s12 s13

s14 (1,1,1,0) (1,0) s6 s7 s14 s15

s15 (1,1,1,1) (1,0) s6 s7 s14 s15

Let Tij be the probability of moving from state si to state sj . From the
above example we find that T20 = T21 = T28 = T29 = 1

4 and T0j = 0 for
j = 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15 using table 3. By computing probabilities
Tij for all i and j, we can draw the one-step transition probability matrix of the
chain as follows.

T =
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Let πi denote the limiting probability of state si. It can be found by solving
linear equations πT = π with π0 + π1 + · · · + π15 = 1. The solutions of these
equations are πi = 1

16 for 0 ≤ i ≤ 15. Therefore the probability of each digit in a
random signed-scalar number d is found by summing the limiting probability πi

of the state according to each output. As an example, the states for di = 0 are 8
states for i = 0, 1, 6, 7, 8, 9, 14, 15. By summing each limiting probability we get

P (di = 0) = π0 + π1 + π6 + π7 + π8 + π9 + π14 + π15 =
1
2
,

P (di = 1) = π2 + π4 + π11 + π13 =
1
4
,

P (di = 1̄) = π3 + π5 + π10 + π12 =
1
4
.

It is interesting to note that the average number of non-zero digits in the
randomized signed-scalar number d is equal to n

2 . Therefore the average number
of additions (subtractions) required by the randomized signed-scalar recoding
algorithm is n

2 , which is the same as in the ordinary binary algorithm.
We consider now some possible power attacks. In DPA, suppose that the

difference between doubling and addition (subtraction) operations is not distin-
guishable with a single power measurement. Every time the scalar multiplication
is performed, it traces a different computational path due to randomization of
the scalar such as that performed by our countermeasure algorithm. Therefore
it makes the DPA attacks infeasible. In addition, the intermediate values to be
attacked are computed at different times, or sometimes not even calculated. This
make the DPA bias signal useless.

In the SPA case, it is assumed that the distinction between doubling and
addition (subtraction) is visible with one power consumption measurement. It
would be used to identify the correct secret key as in an ordinary binary repre-
sentation. However, attackers can not distinguish addition from subtraction in
our algorithm, which makes it difficult to identify the correct key.

Any possible weakness from the viewpoint of SPA can totally destroy DPA
immunity countermeasure. This clearly shows the importance of developing a
good SPA countermeasure. We here present a countermeasure against SPA,
which is the SPA-immune addition-subtraction scalar algorithm given in figure 4.
The proposed method is modified using the SPA resistant binary algorithm de-
scribed in figure 2. The scheme in figure 4 also makes the power consumption
independent of the secret digits. Consequently, the SPA countermeasure adopted
the random signed-scalar recoding method makes the power attacks infeasible
since random exponent d changes at each new operation of the scalar multipli-
cation.

At this point we briefly compare the efficiency of the new algorithm with other
algorithms that exist. The comparison of the number of operations is shown in
table 4, which includes major operations(additions and doublings) without data
copying or selection. Firstly, we compare our algorithm with the unprotected
ordinary binary algorithm as each faces power attacks. The expected numbers
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SPA resistant Addition-Subtraction algorithm
Input: A point P , an (n + 1)-bit integer d =

∑n

i=0 di 2i, di ∈ {1̄, 0, 1}
Output: Q[0] = dP

4.1 Q[0] = O
4.2 P [0] = P, P [1] = P, P [1̄] = −P
4.3 for i = n to 0 by -1 do {
4.4 Q[0] = 2Q[0]
4.5 Q[1] = Q[0] + P [di]
4.6 Q[1̄] = Q[1]
4.7 Q[0] = Q[di] }
4.8 Return Q[0]

Fig. 4. SPA-immune addition-subtraction multiplication algorithm

of additions and doublings for an unprotected ordinary algorithm are n
2 and n

respectively. As mentioned above, the NAF algorithm can reduce the additions
(subtractions) to n

3 from n
2 of a ordinary binary algorithm. Our algorithm to

resist DPA required n
2 additions and (n + 1) doublings which takes no extra

time over using the unprotected ordinary binary algorithm. If this algorithm is
compared with the unprotected NAF algorithm, it would be somewhat slower
according to the above analysis. It is clear that the protected algorithms for
SPA using the ordinary binary method required n additions and n doublings.
Our countermeasure algorithm against DPA and SPA required almost exactly
the same computation load.

Table 4. Comparison of expected operations

Algorithm Additions Doublings References
Unprotected ordinary binary n

2 n Fig. 1
Unprotected NAF n

3 n + 1 Fig. 3, Table 1
Protected ordinary binary against SPA n n Fig. 2
Protected our algorithm against DPA n

2 n + 1 Fig. 3, Table 2
Protected our algorithm against DPA + SPA n + 1 n + 1 Fig. 4, Table 2

Coren also proposed a modified binary scalar multiplication algorithm to
resist SPA and three countermeasures against DPA[8]. We especially compare
our countermeasure with the Coren’s first DPA solution adopted SPA immuune
algorithm as shown in figure 2. In his countermeasure, one needs to store an
additional parameter the number of points #E(K), which is often not desirable.
The main difference with our countermeasure is the bitlength of randomized key.
If one selects a random number r of size m bits, in practice m = 20 bits, then
his solution to resist DPA and SPA may increase computational operations up
to (n + m) additions and (n + m) doublings.
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(a) Difference between the correct one {1, 0, 0, X,· · ·} and other scalar {1, 0, 1, X,· · ·}

(b) Difference between the correct one {1, 0, 0, X,· · ·} and the randomized signed-scalar
representation

Fig. 5. The MESD attack with averaging over 300 traces for each scalar multiplication

4.3 Experimental Result

We experimentally applied the new countermeasure against a multiple-exponent,
single-data (MESD) attack[11] for a simple test. The experimental result is shown
in figure 5, where we assumed the attack was on the third digit {0} from the
correct NAF scalar digits {1, 0, 0,· · ·}. Since the step 4.4 and 4.5 of the multipli-
cation algorithm procedure in figure 4 make a difference in power consumption,
the averaged power peaks occur at the bit period right after the wrong guessing
bit. The difference trace of (a) in figure 5 shows a lot of peaks over the period
right after the third bit, where (a) is the difference between the averaged trace
of the correct one {1, 0, 0, X,· · ·} and a different representation {1, 0, 1, X,· · ·},
and “don’t care” is denoted by X. The occurrence of peaks implies that our guess
is wrong in third bit. Therefore, the MESD attack is successful.

If we use the countermeasure, it generates a differently randomized signed-
scalar representation at every multiplication execution. Due to the randomiza-
tion, there are no peak appearances distinguishable between two power traces.
It can make DPA including MESD infeasible. This is shown in (b) of figure 5.
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5 Conclusion

The countermeasure provides a differently randomized signed-scalar represen-
tation at every multiplication execution so that it makes DPA infeasible. In
addition it uses an addition-subtraction multiplication algorithm to interleave
dummy operations to protect against SPA. It also seems to be able to defeat tim-
ing attacks because every execution time of a scalar multiplication changes ac-
cording to every differently randomized signed-scalar representation. The struc-
ture of the countermeasure was analyzed using a finite Markov chain model.
The result shows that it needs no additional computation load compared to the
ordinary binary scalar multiplication, where the average number of doublings
plus additions for a bit length n is 1.5n + O(1).

Acknowledgments. We would like to thank JongRok Kim and SungHyun Kim
at the Samsung Electronics Corporation for their providing with experimental
devices and helpful discussions. We are also grateful to the anonymous referees
for their comments and suggestions.
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Abstract. Our development of efficient methods for the precompu-
tation of multi-scalar multiplication for elliptic curve cryptosystems
(ECCs) is presented. Multi-scalar multiplication is required in many
forms of ECC, including schemes for the verification of ECDSA
signatures. The simultaneous method is one known method for fast
multi-scalar multiplication. The method has two stages: a precomputa-
tion stage and an evaluation stage. Points for use in the evaluation stage
are computed in the precomputation stage. The actual multi-scalar
multiplication is carried out on the basis of the precomputed points
in the evaluation stage. In the evaluation stage of the simultaneous
method, we are able to quickly compute the points of the multi-scalar
multiple because few additions are required. On the other hand, if we
use a large window width, we have to compute an enormous number
of points in the precomputation stage. Hence, we have to compute an
abundance of inversions, which carries a high computational cost. The
result is that a large amount of time is required by the precomputation
stage. This is the well-known draw-back of the simultaneous method.
In our proposed method, we apply the Montgomery trick to reduce the
number of inversions required with a width window w from O(22w)
to O(w). In addition, our proposed method computes uP and vQ for
any u, v, then compute uP + vQ, where P, Q are elliptic points. This
procedure enables us to remove points that will not be used later
from the process of precomputation. Without our proposed method,
an algorithm to compute precomputation table would have to be
changed dependently on unused points. Compared with the method
without Montgomery trick, our proposed method is 3.6 times faster
than the conventional simultaneous method, i.e., than in the absence
of the Montgomery trick. Moreover, the optimal window width for our
proposed method is 3, whereas the corresponding width for conventional
simultaneous methods is 2.

Keywords: elliptic curve cryptography, multi-scalar multiplication, pre-
computation, Montgomery trick, simultaneous
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1 Introduction

During the world-wide deployment of the electronic-signature law, the infrastruc-
ture for digital signatures is spreading. To support the expected rapid growth
in the scale of electronic commerce, efficient implementation of public key cryp-
tosystems such as digital signatures is becoming more and more important. Sev-
eral digital signature schemes have been developed, studied, and to some extent,
applied; these include RSA [RSA78] and DSA [DSA] schemes. The ECDSA signa-
ture scheme [ANSI,IEEEp1363,SEC-1], which is based on elliptic curve cryptog-
raphy [Kob87,Mil86], is particularly noteworthy, because it provides high levels
of security with short keys. In this article, we will propose an elliptic multi-
scalar multiplication method that includes an efficient form of precomputation.
This method provides a faster way to carry out the multi-scalar multiplication
that is required in such elliptic curve cryptosystems as the signature verification
procedure of an ECDSA signature scheme.

1.1 Elliptic Curve Operations

Some elliptic curve cryptosystems such as signature generation of ECDSA sig-
nature scheme need operations of scalar multiplication. In many cases, scalar
multiplication is dominant in the overall time taken in computation. Several
methods for the fast computation of scalar multiplication have been proposed;
these include methods base on the use of more efficient coordinate systems (such
as projective coordinates [CC87] and Jacobian coordinates [CC87,CMO98]), on
the use of precomputation tables (such as the window method [Knu81] and
comb method [LL94]), on the subtraction of points (such as NAF [MO90]),
and on the non-use of the y-coordinate (such as the Montgomery-form elliptic
curve [Mon87]), and others.

On the other hand, verifying an ECDSA signature requires an operation in
which the point kP+lQ is computed from the elliptic points P, Q and the integers
k, l. This operation is referred to as multi-scalar multiplication. While two rounds
of scalar multiplication are conventionally used to obtain kP and lQ, certain
methods operate by the direct computation of the multi-scalar multiple, i.e., by
the simultaneous computation of kP + lQ. The simultaneous method [Elg85,
HHM00,BHLM01] and interleaving exponentiation [Möl01] are two examples of
methods that operate in this way.

Multi-scalar multiplication has other applications. A method of scalar mul-
tiplication in which endomorphisms [GLV01] are applied for faster computation
has recently been proposed. This method requires multi-scalar multiplication.
Thus, fast methods of multi-scalar multiplication are desirable for use in elliptic
curve cryptosystems.

1.2 Our Contributions

We propose a simultaneous method of multi-scalar multiplication in which Mont-
gomery trick [Coh93] is applied to obtain an efficient form of precomputation.
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A simultaneous method for calculating multi-scalar multiple consists of two
stages: a stage of precomputation and a stage of evaluation [Möl01]. Points for
use in multi-scalar multiplication in the evaluation stage are computed in the
precomputation stage. The additions calculated in the precomputation stage
are in affine coordinates, since the points have to be in this form for the fast
computation of elliptic addition in the evaluation stage. However, each addition
of points in affine coordinates requires a finite field operation of inversion, and
inversion carries a high computational cost. In particular, a given increase in
the number of points to be precomputed leads to a much greater increase in the
computational cost of precomputation.

The main contribution of our method is that Montgomery trick is used in
the precomputation of additions of points in affine coordinates. Montgomery
trick [Coh93] provides a way of inverting n elements of a finite field with a single
inversion operation and 3(n − 1) multiplications rather than with n inversion
operations. A further advantage of Montgomery trick is that no more memory is
consumed in computation than with the straightforward method. Montgomery
trick thus reduces the number of inversion operations required in plural additions
of points in affine coordinates, while taking up no more memory. This reduction
allows us to compute O(w) inversions instead of O(22w) inversions for a window
width w. As a result, precomputation according to our proposed method is 3.6
times faster than with an otherwise equivalent method in which Montgomery
trick is not applied.

Another known example of the use of Montgomery trick in fast compu-
tation is in precomputation for elliptic scalar multiplication by the window
method [CMO98]. While uP is computed in precomputation for scalar multi-
plication, uP +vQ is precomputed in multi-scalar multiplication, so the relation
between the procedures of computation is complicated. This is particularly, in
cases where some pairs (u, v) need not be computed and in the case of NAF
(Non Adjacent Form) pairs (±u,±v). In our proposed method, uP and vQ are
computed first, and this is followed by the computation of uP + vQ. Following
this procedure simplifies the relation between the procedures of computation.

This simplification adds a further improvement to that which we obtain by
using Montgomery trick. As the window width is increased, increasingly large
numbers of precomputed points go unused in the evaluation stage. We eliminate
the computation of such points in the precomputation stage. The simplification
allows us to discard such points without modifying the procedure of computa-
tion for the remainder of the points of precomputation. Without our proposed
method, the algorithm for computing the precomputation table would have to
be changed according to the unused points. Eliminating the computation of the
unused points achieves further speedup and further reduces the consumption of
memory. The respective effects are estimated as a 20% speedup and a reduction
of about ten points in the precomputation stage for the simultaneous sliding
window NAF method with a window width w of 3 and 160-bit scalars. More-
over, the optimum window width for our proposed method is 3, whereas the
corresponding width for conventional simultaneous methods is 2.
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As well as the simultaneous sliding window NAF method, our proposed
method is adaptable to simultaneous methods in general, including the NAF
method [Aki01], the interleaving exponentiation method [Möl01], and so on.

The remainder of this article is organized as follows: Section 2 explains multi-
scalar multiplication. Section 3 is a review of conventional simultaneous methods
of scalar multiplication. Section 4 outlines the efficient method of precomputa-
tion in which Montgomery trick is applied. Section 5 gives a comparison of the
method and conventional methods in terms of computational cost. We confirm
that the proposed method is faster than an otherwise equivalent method in which
Montgomery trick is not applied.

2 Multi-scalar Multiplication

Let P and Q be elliptic points, and k and l be integers. In multi-scalar multipli-
cation, an elliptic point kP +lQ is computed from points P and Q and integers k
and l. Multi-scalar multiplication is widely used in such elliptic curve cryptosys-
tems as the procedure for signature verification in the ECDSA signature [ANSI,
IEEEp1363,SEC-1], and EC-MQV [IEEEp1363,SEC-1] schemes. Furthermore,
multi-scalar multiplication has other applications. Recently, a method of scalar
multiplication [GLV01] in which endomorphisms are used for fast computation
has been proposed. This method of scalar multiplication involves multi-scalar
multiplication. In most cases where multi-scalar multiplication is applied, the
process is dominant in determining the overall computational cost.

Methods for the computation of multi-scalar multiples can be classified into
two types. In methods of one type, independent computation of the scalar multi-
ples kP and lQ is followed by addition (kP )+(lQ). In methods of the other type,
the multi-scalar multiple kP + lQ is computed in one stage, without separate
computation of kP and lQ. An example of the former type is a method in which
kP is computed by a comb method [LL94] and lQ is computed by a window
method; these steps are followed by computation of kP + lQ. This approach has
been applied in the signature verification process of the ECDSA, where we can
assume that the point P is fixed; we can thus use a fixed-base comb method to
compute kP and a window method to compute lQ, then compute the addition
of the two. Examples of the latter type are examples of simultaneous methods.
This article is mainly concerned with such examples.

3 Simultaneous Scalar Multiplication

A simultaneous method for scalar multiplication has two stages; one of precom-
putation and the other of evaluation. All of the elliptic points which will be
required in the evaluation stage are computed and stored in a table during the
precomputation stage. In the evaluation stage, the multi-scalar multiplied point
is computed by using the table which was prepared in the precomputation stage.

Concrete algorithms for the precomputation stage of conventional simulta-
neous methods of scalar multiplication are often omitted; for example, this step
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will be given as “Compute points of precomputation”. In the remainder of this
section, we describe some actual algorithms for the precomputation stage and
review simultaneous methods of scalar multiplication.

Hereafter, we assume that p is a prime and Fp is the prime field of character-
istic p, and we limit our discussion to those elliptic curves which are defined over
the finite field Fp. The argument applies to all elliptic curves defined over finite
fields of characteristic 2 and those over optimal extension fields (OEF) [BP98].
In that case, while our proposed method may be fast, it is unfortunately, not
particularly fast. This is because there are fast methods for inversion in such
fields [HHM00,BP99]. For further details on elliptic curve cryptography, see
[BSS99,Eng99,Men93,Sil86].

We choose the simultaneous sliding window NAF method from among the
simultaneous methods, and now explain this method. However, the method
we propose below is adaptable to the other simultaneous methods. The NAF
and sliding window tricks are applied in the simultaneous sliding window NAF
method. The original simultaneous method is known as Shamir’s trick [Elg85,
HHM00,BHLM01]. We assume that w ≥ 2 applies to the window width w in the
simultaneous sliding window NAF method.

Precomputation Stage. In the precomputation stage of the simultaneous
sliding window NAF method, we compute elliptic points uP + vQ for all u, v ∈
[−f(w), f(w)] such that u �= 0 (mod 2) or v �= 0 (mod 2), where f(w) is the
integer which is given by f(w) = 2w+2−(−1)w−3

6 . Here, the condition u �= 0
(mod 2) or v �= 0 (mod 2) is needed because the least significant bits of u and
v which are equal to 0 are not used in the evaluation stage when we apply the
sliding window technique.

The relation −R = (x,−y) holds for any elliptic point R = (x, y). Thus, once
we have computed uP + vQ and −uP + vQ, we are easily able to get the points
−uP − vQ and uP − vQ without significantly adding to computational costs, by
simply substituting −y for the y-coordinate y.

The formulae for the addition of points in affine coordinates are as follows:
x3 = ( y2−y1

x2−x1
)2 − x1 − x2, y3 = ( y2−y1

x2−x1
)(x1 − x3) − y1, where P1 = (x1, y1),

P2 = (x2, y2), P3 = (x3, y3) and P3 = P1 + P2. Hence, the addition formulae
require an inversion, (x2−x1)−1. Since the points uP and −uP have the same x-
coordinates, the inverse of the addition uP +vQ is the same as that of −uP +vQ.

Algorithm 1 : The precomputation stage in the simultaneous sliding window
NAF method

INPUT : Elliptic points P and Q and the window width w
OUTPUT : The precomputation table {uP + vQ|u, v ∈ [−f(w), f(w)] s.t. u �=

0 (mod 2) or v �= 0 (mod 2)}
1. for u = 2 to f(w) do

1.1. uP ← (u− 1)P + P .
2. for u = 1 to f(w) do

2.1. −uP ← −(uP ).
3. for v = 2 to f(w) do
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3.1. vQ← (v − 1)Q + Q.
4. PreComp = {(u, v) ∈ [1, f(w)] × [1, f(w)]|u �= 0 (mod 2) or v �= 0

(mod 2)}.
5. for any (u, v) ∈ PreComp do

5.1. uP + vQ← (uP ) + (vQ), −uP + vQ← (−uP ) + (vQ).
6. for v = 1 to f(w) do

6.1. −vQ← −(vQ).
7. for any (u, v) ∈ PreComp do

7.1. −uP − vQ← −(uP + vQ), uP − vQ← −(−uP + vQ).

Evaluation Stage. In the evaluation stage, we use the table prepared in the
stage to compute the multi-scalar multiple kP + lQ.

Algorithm 2 : The evaluation stage in the simultaneous sliding window NAF
method

INPUT : t-bit integers k and l, elliptic points P and Q, the window width
w, and a precomputation table {uP + vQ|u, v ∈ [−f(w), f(w)] s.t. u �= 0
(mod 2) or v �= 0 (mod 2)}

OUTPUT : The multi-scalar multiple kP + lQ

1. Write k = (kt−1, kt−2, · · · , k0) and l = (lt−1, lt−2, · · · , l0), where each ki and
li is an NAF bit.

2. R← O, i← t− 1
3. while i ≥ 0 do

3.1. if ki = 0, li = 0 then R← 2R, i← i− 1
else do

3.1.1 j ← max{i− w + 1, 0}.
3.1.2 while kj = 0, lj = 0 do

3.1.2.1 j ← j + 1.
3.1.3 k′ ← (ki, ki−1, · · · , kj), l′ ← (li, li−1, · · · , lj).
3.1.4 R← 2i−j+1R + (k′P + l′Q).
3.1.5 i← j − 1.

4. Output R.

For fast computation, the precomputation stage uses the addition formulae
of A ← A + A and the doubling formulae of A ← A, and the evaluation stage
uses the addition formulae of Jm ← J + A, the doubling formulae of J ←
Jm for doubling prior to addition, and the doubling formulae of Jm ← Jm

for doubling prior to doubling, where A, J and Jm indicate affine coordinates,
Jacobian coordinates, and modified Jacobian coordinates [CMO98], respectively.

Other examples of simultaneous methods of scalar multiplication are the
interleaving exponentiation method [Möl01] and the method of simultaneous
scalar multiplication [Aki01] on a Montgomery-form elliptic curve [Mon87].
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4 Proposed Precomputation Stage

We explain our proposed method in this section, that is, the method of compu-
tation for use in the precomputation stage in which Montgomery trick is applied
to obtain efficiency. Our proposed method reduces the number of inversions re-
quired and thus provides a quick way of preparing the precomputation table.

Given a window width of w, precomputation for a simultaneous method
requires the computation of O(22w). Thus, a large window width requires the
computation of an enormous number of points. Moreover, the computation of
points in affine coordinates1 requires the computation of inversion, which carries
a high computational cost. Therefore, we have to reduce the number of inversion
operations to obtain faster computation in the precomputation stage.

For faster computation in our proposed method, Montgomery trick is applied
in computing plural inverses with a single inversion operation rather than with
plural inversion operations. Montgomery trick has been applied for fast com-
putation in, for example, precomputation for elliptic scalar multiplication with
the window method [CMO98]. While precomputation for scalar multiplication is
required to provide {uP |u ∈ [0, 2w − 1]}, precomputation for multi-scalar mul-
tiplication is required to provide {uP + vQ|u, v ∈ [0, 2w − 1]}. In the case of
scalar multiplication, u is the only variable we need to consider, so we compute
{2P}, {3P, 4P}, {5P, 6P, 7P, 8P}, · · ·. However, we have two variables in the case
of multi-scalar multiplication, namely u and v, so the relation between proce-
dures of computation is complicated. This is particular so in cases where some
pairs (u, v) need not be computed and in cases of NAF pairs (±u,±v). This is
because the flow of the algorithm used to compute the precomputation table may
have to change according to the presence of such unused points. In our proposed
method, {uP |u ∈ [0, 2w − 1]} and {vQ|v ∈ [0, 2w − 1]} are computed first, and
these are followed by computation of {uP + vQ|(u, v) ∈ [1, 2w− 1]× [1, 2w− 1]}.
This procedure simplifies the relation between procedures of computation.

In the rest of this section, after reviewing Montgomery trick, we go on to
describe our proposed method of precomputation in which we apply the trick.

4.1 Montgomery Trick

Given n elements a1, a2, · · · , an from a finite field Fp, Montgomery trick2 may
be used to compute their inverses b1, b2, · · · , bn in the following way [Coh93]:

Algorithm 3 : Montgomery trick
INPUT : a1, a2, · · · , an

OUTPUT : Inverses b1, b2, · · · , bn of a1, a2, · · · , an

1 If the precomputation table is not represented in affine coordinates, computation of
the multi-scalar multiples in the evaluation stage will be slow.

2 The algorithm of Montgomery trick which is given in [Coh93] is for integer fac-
torization. We have modified algorithm 3 for use as the precomputation stage of
simultaneous scalar multiplication by removing the part that carries out integer
factorization.



Fast Multi-scalar Multiplication Methods on Elliptic Curves 571

1. c1 ← a1.
2. for i = 2 to n do

2.1. ci ← ci−1ai.
3. u← c−1

n .
4. for i = n down to 2 do

4.1. bi ← ci−1u.
4.2. u← uai.

5. b1 ← u.

The computational cost of Montgomery trick is 3(n−1)M + I, where M and
I respectively denote operations of multiplication and inversion in Fp.

Lemma 1. For n elements, we apply Montgomery trick m times, and compute
n inverses. The computational cost of this is then 3(n−m)M + mI.

Proof. Assume that we separate n into n1 + n2 + · · ·+ nm. The computational
cost is then

m∑

j=1

(3(nj − 1)M + I) =



3
m∑

j=1

njM



− 3mM + mI

= 3(n−m)M + mI.

��

Remark 1. Lemma 1 shows that dividing n elements into m groups and applying
Montgomery trick to each group leads to a computational cost of 3(n−m)M +
mI, which is independent of the division into m groups. This implies that the
computational cost of the precomputation stage is solely dependent on number
of times Montgomery trick is applied in the precomputation stage.

4.2 Simultaneous Sliding Window NAF Method

We describe a fast algorithm, in which Montgomery trick is applied, for the
precomputation stage of the simultaneous sliding window NAF method. For a
point R, xR and yR respectively denote the x- and y-coordinates.

Algorithm 4 : Applying Montgomery trick in a precomputation stage for the
simultaneous sliding window NAF method

INPUT : Elliptic points P and Q and window width w
OUTPUT : The precomputation table {uP + vQ|u, v ∈ [−f(w), f(w)] s.t. u �=

0 (mod 2) or v �= 0 (mod 2)}

1. for i = 1 to w − 1 do
1.1. Compute points 2i−1P + jP, 2i−1Q + jQ for any j ∈ [1, 2i−1]:

1.1.1 Use Montgomery trick to compute inverses of (xjP −x2i−1P ), (xjQ−
x2i−1Q), (2y2i−1P ) and (2y2i−1Q) for any j ∈ [1, 2i−1 − 1].
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1.1.2 Compute points (2i−1 + j)P, (2i−1 + j)Q using (xjP − x2i−1P )−1,
(xjQ − x2i−1Q)−1, (2y2i−1P )−1 and (2y2i−1Q)−1.

2. Compute points 2w−1P + jP, 2w−1Q + jQ for any j ∈ [1, f(w)− 2w−1]:
2.1. Use Montgomery trick to compute inverses of (xjP − x2w−1P ), (xjQ −

x2w−1Q) for any j ∈ [1, f(w)− 2w−1].
2.2. Compute points (2w−1+j)P, (2w−1+j)Q using (xjP−x2w−1P )−1, (xjQ−

x2w−1Q)−1.
3. for u = 1 to f(w) do

3.1. −uP ← −(uP ).
4. PreComp = {(u, v) ∈ [1, f(w)] × [1, f(w)]|u �= 0 (mod 2) or v �= 0

(mod 2)}.
5. Compute points uP + vQ,−uP + vQ for any (u, v) ∈ PreComp:

5.1. Use Montgomery trick to compute inverses of (xvQ−xuP ) for any (u, v) ∈
PreComp.

5.2. Compute points uP + vQ,−uP + vQ using (xvQ − xuP )−1.
6. for v = 1 to f(w) do

6.1. −vQ← −(vQ).
7. for any (u, v) ∈ PreComp do

7.1. −uP − vQ← −(uP + vQ), uP − vQ← −(−uP + vQ).

Remark 2. The use of a coordinate system other than affine coordinates leads
to greatly increased computational costs. This is because the computational
cost of the precomputation stage with affine coordinates is 5M + S per point
due to the application of Montgomery trick, whereas the equivalent cost with
Jacobian coordinates (J ← J + A) is 8M + 3S per point; the former approach
thus provides a faster way to compute elliptic addition, where S denotes an
operation of squaring in Fp.

4.3 Further Improvement: Reducing the Number of Points in
Precomputation

We now propose a further improvement to the precomputation stage. As was
mentioned above, while a larger window width requires the computation of larger
numbers of points in precomputation, it also leads to fewer additions in the eval-
uation stage. Hence, a relatively large window width requires the precomputation
of points which are not actually used in the evaluation stage. For example, in the
case of the simultaneous method with a window width w of 3, while 63 points
are precomputed, only 46 additions are computed, on average in the evaluation
stage for 160-bit scalars. Thus, about 17 points are unnecessarily precomputed.
Therefore, we thus use a trick to avoid the precomputation of points that will
not actually be used. This provides us with a further increase in speed along
with reduced memory consumption, since fewer points have to be stored. For
the simultaneous sliding window NAF method with a window width w of 3 and
160-bit scalars, the effects are estimated as a 20% speedup and the elimination
of about ten points in the precomputation stage.
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Remark 3. This improvement is only achieved within the framework of our pro-
posed method. For example, improvement in this way is not applicable to the
following method. P, Q→ 2P, P +Q, 2Q→ 3P, 4P, 2P +Q, 3P +Q, P +2Q, 2P +
2Q, 3Q, P + 3Q, 4Q → · · ·. If P + Q is an unused point which is eliminated
from the computation, then 3P + Q is not computable in the third phase, since
(P +Q)+2P is the only available way to compute 3P +Q. Thus, unused points
require modification of the algorithm.

Next, we show a concrete algorithm which determines precomputation points
that are used in the evaluation stage.

Algorithm : An algorithm which determines precomputation points that are
used in the evaluation stage of the simultaneous sliding window NAF method
INPUT : t-bit integers k, l, a window width w.
OUTPUT : Pairs of integers (k′, l′) that are used in the evaluation stage.

1. Write k = (kt−1, kt−2, · · · , k0) and l = (lt−1, lt−2, · · · , l0), where each ki

and li is an NAF bit.
2. i← t− 1, num← 0.
3. while i ≥ 0 do

3.1. if ki = 0, li = 0 then i← i− 1
else do

3.1.1 j ← max{i− w + 1, 0}.
3.1.2 while kj = 0, lj = 0 do
3.1.2.1 j ← j + 1.
3.1.3 k′ ← (ki, ki−1, · · · , kj), l′ ← (li, li−1, · · · , lj).
3.1.4 for j = 1 to num
3.1.4.1 If T [j] = (k′, l′) then go to Step 3.1.6.
3.1.5 num← num + 1, T [num]← (k′, l′).
3.1.6 i← j − 1.

4. Output T .

Algorithm 4, the proposed precomputation stage, computes points ujP + vjQ
for T [j] = (uj , vj) for j = 1, · · · , num in Step 5.

5 Computational Cost and Comparison

5.1 Precomputation Stage

Here, we start by estimating the computational cost of Algorithm 1, which is the
conventional method of precomputation. Assume that w > 1. Doubling is the
operation at both Steps 1.1 and 3.1 if u or v is equal to 2. If not, both steps are
additions. The two elliptic additions in Step 5.1 only require a single 1 inversion,
because they have a common inverse. The number of iterations of Step 5 is

#PreComp = f(w)2 −
(
� f(w)

2 	
)2

. That is, (2#PreComp + 2f(w) − 4) elliptic
additions and 2 elliptic doublings are computed by Algorithm 1. Meanwhile, the
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number of inversions is reduced by (#PreComp). Thus, the computational cost
is

(2#PreComp + 2f(w)− 4) (2M+ S+I) + 2(2M+ 2S+I)− (#PreComp) I

= (4#PreComp + 4f(w)− 4) M + (2#PreComp + 2f(w)) S

+ (#PreComp + 2f(w)− 2) I.

In the case of w = 1, the computational cost is 4M + 2S + I.
Next, we estimate the computational cost of Algorithm 4, our proposed

method. Assume that w > 2. In our proposed method, (2#PreComp+2f(w)−
2w) elliptic additions and (2w− 2) elliptic doublings are computed. Meanwhile,
the number of inversions is reduced by (#PreComp) and Montgomery trick is
applied (w + 1) times in computing (#PreComp + 2f(w) − 2) inverses. Using
Lemma 1, we obtain the following results for computational cost.

(2#PreComp + 2f(w)− 2w)(2M + S + I)
+(2w − 2)(2M + 2S + I)− (#PreComp)I

= (4#PreComp + 4f(w)− 4)M + (2#PreComp + 2f(w) + 2w − 4)S
+(#PreComp + 2f(w)− 2)I

→ (4#PreComp + 4f(w)− 4)M + (2#PreComp + 2f(w) + 2w − 4)S
+3 (#PreComp + 2f(w)− 2− (w + 1))M + (w + 1)I

= (7#PreComp + 10f(w)− 3w − 13)M
+(2#PreComp + 2f(w) + 2w − 4)S + (w + 1)I.

Here, #PreComp = f(w)2−
(
� f(w)

2 	
)2

. In the case of w = 2, the computational
cost is 25M + 10S + 2I.

5.2 Evaluation Stage

AD, DA and DD respectively denote addition prior to doubling, doubling prior
to addition and doubling prior to doubling in the evaluation stage. We use the
following coordinate systems for fast computation: AD : J+A→ Jm (9M +5S),
DA : Jm → J (3M + 4S), DD : Jm → Jm (4M + 4S).

The white space of (0, 0) between two consecutive windows has expected
length of 4/9

1−(4/9) (= 0.8), since the probability that a NAF bit is equal to 0
is 2

3 . As a result, an average of t−w
w+0.8 additions have to be computed in the

multi-scalar multiplication. Thus, the computational cost3is

t− w

w + 0.8
(AD + DA) +

(
t− w − t− w

w + 0.8

)
DD

3 Since 0 and non-zero bits are not randomly distributed, we need an estimate of the
number of computations in which the bit dependence is considered. The smaller
the window width, the larger the error in the estimate. In the case of w = 2, the
computational cost for a 160-bit scalar is about 1869.5M .
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=
t− w

w + 0.8
(AD + DA + (w − 0.2)DD)

=
t− w

w + 0.8
((4w + 11.2)M + (4w + 8.2)S).

Table 1. Computational cost for point multiplication kP + lQ

Method Precomputation Evaluation Total Points
Proposed method Stored

Simultaneous (w = 1) 2.8M + I 2575.8M 2608.6M 3
2.8M + I 2608.6M

Simultaneous (w = 2) 38.0M + 13I 2039.2M 2467.2M 15
68.0M + 3I 2197.2M

Simultaneous (w = 3) 172.4M + 61I 1770.9M 3773.3M 63
345.0M + 4I 2235.9M

Simultaneous NAF (w = 1) 5.6M + I 2204.8M 2240.4M 8
5.6M + I 2240.4M

Simultaneous NAF (w = 2) 29.6M + 6I 1910.4M 2120.0M 24
41.6M + 2I 2012.0M

Simultaneous NAF (w = 3) 164.0M + 33I 1725.0M 2879.0M 120
252.6M + 4I 2097.6M

Simul. slid. window NAF(w = 2) 24.0M + 5I 1869.5M 2043.5M 16
33.0M + 2I 1962.5M

Simul. slid. window NAF(w = 3) 141.6M + 29I 1626.2M 2637.8M 96
159.2M + 4I 1905.4M (33.6)

Interleaving (w = 4) 35.2M + 12I 1740.3M 2135.5M 20
52.4M + 4I 1912.7M

Interleaving (w = 5) 68.8M + 24I 1642.4M 2431.2M 44
119.0M + 5I 1911.4M

“Precomputation”, “Proposed method” and “Evaluation” indicate the computational
cost of the conventional precomputation method, our proposed method of precompu-
tation, and the evaluation stage, respectively “Total” means the overall computational
cost of the precomputation and evaluation stages. “Points Stored” means the number
of points stored in the precomputed table. This number determines the consumption
of memory. We assume that t = 160, S = 0.8M , and I = 30M , where t is the number
of bits in the input integers k and l.

5.3 Comparison

Firstly, we compare the computational cost of the respective precomputation
stages. The computational cost of Algorithm 1 is 16M +10S +5I for w = 2 and
100M + 52S + 29I for w = 3, while the corresponding figures for Algorithm 4,
our proposed method, are 25M + 10S + 2I and 175M + 54S + 4I4, respectively.
4 When we take the elimination of unused points into consideration, this computational

cost is about 159.2M +4I and the number of the points stored in the precomputation
table is about 33.6.
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Table 2. Computational cost for point multiplication kP + lQ, with P fixed

Method Precomputation Evaluation Total
Proposed method

Simultaneous (w = 1) 2.8M + I 2575.8M 2608.6M
2.8M + I 2608.6M

Simultaneous (w = 2) 31.6M + 11I 2039.2M 2400.8M
58.6M + 2I 2157.8M

Simultaneous (w = 3) 155.0M + 55I 1770.9M 3575.9M
311.6M + 3I 2172.5M

Simultaneous NAF (w = 1) 5.6M + I 2204.8M 2240.4M
5.6M + I 2240.4M

Simultaneous NAF (w = 2) 26.0M + 5I 1910.4M 2086.4M
35.0M + 2I 2005.4M

Simultaneous NAF (w = 3) 152.0M + 29I 1725.0M 2747.0M
230.0M + 3I 2045.0M

Simul. slid. window NAF(w = 2) 20.4M + 4I 1869.5M 2009.9M
26.4M + 2I 1955.9M

Simul. slid. window NAF(w = 3) 129.6M + 25I 1626.2M 2505.8M
137.4M + 3I 1853.6M

Interleaving (w = 4) 14.8M + 5I 1740.3M 1905.1M
31.0M + 4I 1891.3M

Interleaving (w = 5) 31.6M + 11I 1642.4M 2004.0M
63.6M + 5I 1856.0M

“Precomputation”, “Proposed method” and “Evaluation” indicate the computational
cost of the conventional precomputation method, our proposed method of precompu-
tation, and the evaluation stage, respectively. “Total” means the overall computational
cost of the precomputation and evaluation stages. We assume that t = 160, S = 0.8M
and I = 30M , where t is the number of bits in the input integers k and l.

Secondly, we compare the respective results for total computational cost.
Assume that t = 160, where t is the number of bits in the input integers k and l.
In the actual implementation [LH00], S/M = 0.8 and I/M = 30 are assumed5.
The computational cost of Algorithm 2 is 1869.5M for w = 2 and 1626.2M
for w = 3, respectively. Thus, the total computational cost with Algorithm 1 is
2043.5M for w = 2 and 2637.8M for w = 3, and the corresponding figures with
Algorithm 4 are 1962.5M and 1905.4M , respectively. The comparative results
on computational cost that we have covered thus far are covered in Table 1.

We see from Table 1, the simultaneous sliding window NAF method is the
fastest in terms of total computational cost. In the precomputation stage for the
simultaneous sliding window NAF method, Algorithm 4, our proposed method,
is 1.9 times faster than Algorithm 1 when w = 2, and 3.6 times faster when
w = 3. The best choice of window width for the simultaneous sliding window

5 If the ratio I/M is larger than 30, the proposed method is much more efficient than
the conventional method. If not, the proposed method is not so efficient.
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NAF method with our proposed method is 3, whereas the best width with the
conventional method is 2.

On the other hand, in the multi-scalar multiplication kP + lQ of the ECDSA
scheme’s signature-verification procedure, the point P is assumed to be fixed.
Thus, the computation of points uP for u ∈ [0, 2w − 1] or [0, f(w)] in advance
of the precomputation stage removes the cost of computing these points from
the precomputation stage. Moreover, the simultaneous computation of vQ and
uP + vQ reduces the number of applications of Montgomery trick by one, that
is, the number of inversions is reduced by one. In a case where P is fixed, we
obtain Table 2 in the same way6.

Acknowledgements. The authors would like to thank the anonymous referees
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[BHLM01] Brown, M., Hankerson, D., López, J., Menezes, A., Software Implementa-
tion of the NIST Elliptic Curves over Prime Fields, Topics in Cryptology
- CT-RSA 2001, LNCS2020, (2001), 250-265.

[BP98] Bailey, D.V., Paar, C., Optimal Extension Fields for Fast Arithmetic
in Public-Key Algorithms, Advances in Cryptology - CRYPTO’98,
LNCS1462, (1998), 472-485.

[BP99] Bailey, D.V., Paar, C., Inversion in Optimal Extension Fields, Confer-
ence on The Mathematics of Public Key Cryptography, (1999).

[BSS99] Blake, I.F., Seroussi, G., Smart, N.P., Elliptic Curves in Cryptography,
Cambridge University Press,(1999).

[CC87] Chunnovsky, D., Chundovsky, G., Sequences of numbers generated by ad-
dition in formal groups and new primality and factoring tests, Advances
in Applied Mathematics, 7 (1987), 385-434.

[CMO98] Cohen, H., Miyaji, A., Ono, T., Efficient Elliptic Curve Exponentiation
Using Mixed Coordinates, Advances in Cryptology - ASIACRYPT ’98,
LNCS1514, (1998), 51-65.

[Coh93] Cohen, H., A course in computational algebraic number theory, GTM138,
Springer-Verlag, New York, (1993).

[DSA] National Institute of Standards and Technology (NIST), Digital Signa-
ture Standard (DSS), FIPS PUB 186-2, (2000).

6 The combination of a fixed-base comb method and a sliding window method might
provide good efficiency for the ECDSA verification. The fixed-base comb method
(w = 8) and the sliding window method (w = 4) using the technique of Montgomery
trick is an optimal choice in terms of speed and memory consumption. The compu-
tational cost with 160-bit scalars is 1862.6M . Thus, the simultaneous sliding window
NAF (w = 3) is faster.



578 K. Okeya and K. Sakurai

[Elg85] ElGamal, T., A public-key cryptosystem and a signature scheme based on
discrete logarithm, IEEE Transactions on Information Theory 31 (1985),
469-472.

[Eng99] Enge, A., Elliptic Curves and their applications to Cryptography, Kluwer
Academic publishers,(1999).

[GLV01] Gallant, R.P., Lambert, R.J., Vanstone, S.A., Faster Point Multiplication
on Elliptic Curves with Efficient Endomorphisms, Advances in Cryptol-
ogy - CRYPTO 2001, LNCS2139, (2001), 190-200.

[HHM00] Hankerson, D., Hernandez, J.L., Menezes, A., Software Implementation
of Elliptic Curve Cryptography over Binary Fields, Cryptographic Hard-
ware and Embedded Systems (CHES2000), LNCS1965, (2000), 1-24.

[Kob87] Koblitz, N., Elliptic curve cryptosystems, Math. Comp. 48, (1987), 203-
209.

[Knu81] Knuth, D.E., The Art of Computer Programming, 2 - Semi-numerical
Algorithms, Addison-Wesley, 2nd edition, (1981).

[IEEEp1363] IEEE P1363 Standard Specifications for Public Key Cryptography
(1999). Available at http://grouper.ieee.org/groups/1363/

[LH00] Lim, C.H., Hwang, H.S., Fast implementation of Elliptic Curve Arith-
metic in GF (pm), Proc. PKC’00 LNCS1751, (2000), 405-421.

[LL94] Lim, C.H., Lee, P.J., More Flexible Exponentiation with Precomputation,
Advances in Cryptology - CRYPTO ’94, LNCS839, (1994), 95-107.

[Men93] Menezes, A.J., Elliptic Curve Public Key Cryptosystems, Kluwer Aca-
demic Publishers, (1993).

[Mil86] Miller, V.S., Use of elliptic curves in cryptography, Advances in Cryp-
tology - CRYPTO ’85, LNCS218,(1986),417-426.

[MO90] Morain, F., Olivos, J., Speeding up the computations on an elliptic curve
using addition-subtraction chains, Theoretical Informatics and Applica-
tions 24 No.6, (1990), 531-544.
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Abstract. This paper describes the authors’ experiences attacking the
IBM 4758 CCA, used in retail banking to protect the ATM infrastruc-
ture. One of the authors had previously proposed a theoretical attack to
extract DES keys from the system, but it failed to take account of real-
world banking security practice. We developed a practical scheme that
collected the necessary data in a single 10-minute session. Risk of dis-
covery by intrusion detection systems made it necessary to complete the
key “cracking” part of the attack within a few days, so a hardware DES
cracker was implemented on a US$995 off-the-shelf FPGA development
board. This gave a 20-fold increase in key testing speed over the use of
a standard 800 MHz PC. The attack was not only successful in its aims,
but also shed new light on the protocol vulnerabilities being exploited.
In addition, the FPGA development led to a fresh way of demonstrating
the non-randomness of some of the DES S-boxes and indicated when
pipelining can be a more effective technique than replication of process-
ing blocks. The wide range of insights we obtained demonstrates that
there can be significant value in implementing attacks “for real”.

1 Introduction

The IBM 4758 is a “cryptoprocessor” or “security module” – a tamper-resistant
coprocessor that runs software providing cryptographic and security related ser-
vices. Its API is designed to protect the confidentiality and integrity of data while
still permitting access according to a configurable usage policy. Cryptoprocessors
are commonly used in financial environments to protect ATM (cash machine) in-
frastructures, process customer Personal Identification Numbers (PINs), and se-
cure transaction streams between banks. Other applications of cryptoprocessors
include the protection of credit dispensing networks for prepayment electricity
meters, and governing access to keys at certification authorities.

In [2] one of the authors of this paper described a number of flaws in the
Common Cryptographic Architecture (CCA) – the default financial software for
the IBM 4758. We set out to implement an actual attack on a 4758 in a simulated
banking environment, combining these flaws to extract valuable key material. In
particular, we wished to demonstrate the extraction of a “PIN derivation key”,
a Triple DES (3DES) key which can be used to calculate a customer’s PIN from
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the account number embossed on the front of their card. By creating fake cards
with real account numbers, an attacker could then use the calculated PINs to
plunder ATMs of their choice, anywhere in the country.

During this process, it became clear that there is far more to implementing
a practical attack than meets the eye, and we had to make substantial modifica-
tions to the scheme and create new technology in order to get the job done. As
a direct result of this work, IBM have released a new version of the CCA [12]
containing multiple modifications to the API to defeat each technique used, and
so the attack we describe can no longer be mounted.

Section 2 summarises the theory behind the building blocks of the attack,
and section 3 describes why the banking environment and procedural controls
make successful application of these building blocks a difficult task. Section 4
describes the extensions made to satisfy the requirements from section 3 – in
particular, the attack was restructured to collect all necessary data within a
single, very quick, period of access to the 4758. Section 5 covers the design and
implementation of an FPGA based DES cracker to provide the necessary brute
force attack performance. This provided some unexpected insights into DES and
key cracker design generally. Section 6 presents brief results from test runs, and
finally, conclusions are drawn in section 7.

2 Attacks on the IBM 4758 CCA

In his earlier paper [2], Bond identifies a number of weaknesses in the CCA,
which he termed “building blocks”.

The CCA keys are typically DES or 3DES keys, and are stored by encryption
under a master key. When keys are to be transferred between banks, they are
encrypted with a key-encrypting key (KEK) instead of the master key. As a
KEK is the highest level of key shared between banks, there is no option but to
transfer the KEK itself in plaintext. The standard procedure is to split it into
three parts using XOR, and transfer each part with a separate courier. At the
destination, three “security officers” enter the key parts into the cryptoprocessor,
which recombines them into the original key. This procedure leads to a significant
security problem: although the security officers must all collude to discover the
key value, just one of them could modify the final key at will by changing the
value of their single key part. In fact, unknown key parts can be generated which
simulate the presence of other officers and so the control that a single corrupt
security officer has over their own key part is enough to allow the CCA software
to be attacked.

The CCA software does not place restrictions on key generation, so it is easy
to create a large number of unknown DES keys. A particular test pattern can
be encrypted under each of these keys to create a set of test vectors. A brute
force attack can then be used to attack all of the unknown keys in parallel. To
determine a single key by brute force might take decades to complete, but as
there are multiple targets the expected time to determine one of the key values
becomes only a few days. Therefore there is a trade-off between the time spent
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on key generation and the time (and memory) spent on the brute force activity,
which can be characterised as a “meet-in-the-middle” attack.

Bond also described a key binding problem. The CCA uses the common “two
key” mode of 3DES, where keys consist of two halves, each a single DES key.
The mode consists of encryption with the first half, decryption with the second
and then encryption again with the first half. So-called “replicate keys” can be
generated with both halves identical. In this case, two of the DES operations
cancel out, making the key in effect a single DES key, and therefore suitable
for inter-working with legacy systems. However, the CCA permits halves to be
swapped at will between different keys. This binding problem means that if two
replicate keys can be discovered, their halves can be swapped to create a full
(non-replicate) 3DES key whose value is known.

Bond went on to combine these building blocks into several hypothetical
attacks that were capable of compromising all the exportable keys in the device.
However, the assembly of building blocks was only demonstrative, and his paper
stopped short of actually describing attack code that could be deployed. Further
investigation has made it clear that although the basic theory was correct, the
security procedures in a banking environment would put extra requirements
upon the attack that are not easy to fulfil.

3 Banking Security

To deploy any attack on a real-world bank, an attacker must circumvent a wide
range of bank procedures that protect against fraud. These include:

– Dual control
– Functional separation
– Double-entry book-keeping
– Regular audits of security procedures
– Analysis of mainframe audit trails
– Compulsory uninterrupted holiday periods for staff

Before we show how to defeat the dual control on the security module using
Bond’s techniques, it is instructive to consider why the attacker does not target
the bank mainframe. If an attacker had control over this he could simply in-
crease his bank balance, creating money from nowhere. But bank procedures are
specifically designed to ensure that even with top-level access, covering up the
evidence of such a change is very difficult, and sophisticated balancing checks
would report an inconsistency.

To determine how the fraud was done, the internal auditors would consult the
audit trails. Practically every action that takes place in a bank leaves a logging
record behind, from international fund transfers right down to the times that staff
enter and exit rooms. Given the size and complexity of these auditing systems,
cleaning every record to remove details of unauthorised activity is a mammoth
task. The need for redundancy in the face of failure means that many of the
mainframe logs will be append-only files kept at multiple remote, physically
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secured, sites. There may be further trails to clean on other external machines
and the attacker will only be able to guess whether the cover-up work is complete.

As an alternative to attacking the mainframe, security modules could be
targeted. They do have much better physical security than other bank systems
(for instance, the IBM 4758 is validated to FIPS 140-1 Level 4, which is the
highest commercial evaluation level attainable). However, access to their software
API is poorly audited, and the conditions under which to raise an alarm are
badly understood. For instance, in order to steal PINs, the attacker need only
breach the confidentiality of data rather than damage its integrity. The data
flowing out of security modules is encrypted and the programmers creating the
audit procedures may not fully understand the consequences of access to this
“unreadable” data and fail to record all of the relevant events.

Bond’s attack has the potential to defeat the dual controls on the CCA
software within the 4758 and steal PIN derivation keys (or encryption keys for
randomly chosen PINs), and this unauthorised activity would be likely to go un-
noticed. But to manufacture false cards for use with stolen PINs, access to the
mainframe database is needed to retrieve account information. If the attacker
chooses the right access point, he could passively observe genuine database ac-
cesses, or could camouflage his requests by mixing them in with other traffic. It
is definitely possible to collect this information stealthily, but there is always a
risk that a particular sequence of events will be flagged as unusual and a detailed
manual inspection triggered. The sooner the fraud is complete the better.

Similar time constraints apply to attacks on “Bills of Lading” systems, which
are also protected by security modules. Here, the assets might be the multi-
million pound cargo of an oil tanker that is in transit at sea for a month. If a
corrupt insider can defeat the security module and sell the same oil twice, he
will want the maximum possible time before the deception is detected.

Thus, in all attack scenarios the risk of early detection and the weight of
evidence remaining must be assessed. The attacker needs to buy as much time
as possible in which to launder money and assume a new identity.

Unfortunately, näıve application of Bond’s “meet-in-the-middle” approach to
key extraction from the CCA does not make for a promising attack. It requires
multiple DES keys to be discovered, with each discovery providing data for the
next stage of the attack. The source data has to be collected in three separate
sessions of unauthorised access to the security module, with the cracking intervals
between sessions lasting from a week to a month, depending upon the computing
power available to the attacker. This exposes the attacker to considerable risk of
detection and if one of the earlier sessions triggers an investigation it gives the
authorities the opportunity to catch him “red-handed”.

We therefore set out to optimise the key extraction attack with two main
goals in mind:

– Collect all the data required to complete the attack in one session lasting
under half an hour – fast enough to perform during a lunch-break.

– Minimise the number of meet-in-the-middle attacks required, and implement
the brute-force search cheaply and quickly.
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4 Optimisation of the Attack Code

4.1 The Original Attack

Straightforward assembly of Bond’s building blocks results in a three-stage at-
tack:

(1) Test Pattern Generation: Discover a normal data encryption key to
use as a test pattern for attacking an exporter key. This is necessary because
exporter keys are only permitted to encrypt other keys, not chosen values. The
method is to encrypt a test pattern of binary zeroes using a set of randomly
generated data keys, and then to use the meet-in-the-middle attack to discover
the value of one of these data keys.

(2) Exporter Key Harvesting: Use the known data key from stage (1) as
a test pattern to generate a second set of test vectors for a meet-in-the-middle
attack that reveals two double-length replicate exporter keys (replicate keys have
both halves the same, thus acting like single DES keys). Once this stage is
complete, the values of two of the keys in the set will be known.

(3) Valuable Data Export: Retrieve the valuable key material (e.g. PIN
derivation keys). This requires a known double-length exporter key, as the CCA
will not export a 3DES key encrypted under a single DES exporter key, for
obvious security reasons. Here, the key-binding flaw in the CCA software is used
to swap the halves of two known replicate keys from stage (2) in order to make
a double-length key with unique halves. This full 3DES key can then be used for
the export process.

4.2 The Optimised Attack

In order to perform the attack in a single access session, the second set of test
vectors had to be generated immediately after the first. However, it was not
possible to know in advance which data key from the set would be discovered by
the search, in order to use it as a test pattern. Generating a second set of test
vectors for every possible data key would work in principle, but the number of
operations the security module would have to perform would be exponentially
increased, and at the maximum transaction rate (roughly 300 per second) would
take ten days of unauthorised access.

So the first stage of the online attack had to yield the value of a particular
data key that was chosen in advance, which could then be used as the test pattern
for the second stage. The solution was to create a “related key set” using the
Key Part Import command as described in Bond’s paper. From the discovery
of any single key, the values of all of the rest can be calculated. This related key
set was made by generating an unknown data key part and XORing it with 214

different known values (the integers 0 . . . 16383 were used). Any one of the keys
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could then immediately be used for the second stage of the attack, even though
its actual value would only be discovered later on.

The second stage was to export this single data key under a set of double-
length replicate exporter keys and to use a meet-in-the-middle attack on the
results. Two keys needed to be discovered so that their halves could be swapped
to create a non-replicate exporter key. Once again the same problem arose in
that it would be impossible to tell in advance which two keys would be dis-
covered, and so the valuable key material could not be exported until after the
cracking was complete. Generating a set of related exporter keys again solved
the problem. Discovering just one replicate key now gave access to the entire
set. Thus a double-length exporter with unique halves could be produced prior
to the cracking activity by swapping the halves of any two of the related keys.

Implementation of this second stage of the process revealed an interesting
and well-hidden flaw in the Key Part Import command. Although the concept
of binding flaws had already been identified in the encrypted key tokens, it was
also present in Key Part Import. It was possible to subvert the creation of a
double-length replicate key so as to create a uniquely halved double-length key
by the simple action of XORing in a new part with differing halves. This second
instance of the flaw would have been missed had the theory not actually been
implemented “for real”. From the point of view of the system maintainer, this
demonstrates the well-known principle that when generic weaknesses have been
identified in an API, equally generic solutions should be sought, and patching
individual parts of the transaction set is unlikely to solve all of the problems.

Finally, the new double-length exporter key made from the unknown replicate
key part from stage two was used to export the valuable key material.

Although the attack still has three conceptual stages, there is no dependency
on knowing the actual values of keys during the period of access to the 4758,
so the stages can be run in a single session and the cracking effort done in
retrospect.

5 Optimising the Key Search with an FPGA

5.1 Cracking Performance

Bond’s paper proposed using a home PC for the DES key cracking, reflecting the
resources available to a real-world attacker. However, experimentally cracking a
single key showed that a typical 800 MHz machine would take about 20 days to
crack one key out of a set of 216, this being the maximum number of encrypted
results that it is realistic to consider producing during a “lunch-break-long”
period of access to the CCA software. The cost of getting “no questions asked”
access to multiple PCs in parallel is substantial, so a faster method was desirable
in order to reduce the risk of the bank spotting the unauthorised access to the
4758 before the attack was complete.

DES was designed to work well with the integrated circuits of the mid-1970s
and it has proved to be difficult to create high-speed software implementations
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on contemporary processor architectures. Hardware solutions are known to be
many orders of magnitude faster than software crackers running on general pur-
pose PCs. We therefore investigated the capabilities of modern FPGA systems.
High-level hardware design languages such as Verilog allow them to be pro-
grammed by relative amateurs, so this was not stepping outside of the attack
scenario. We became particularly interested in Altera’s “Excalibur” NIOS eval-
uation board [1], which is an off-the-shelf, ready-to-run, no-soldering-required
system that comes complete with all the tools necessary to develop systems such
as a DES cracker. Altera’s generosity meant that we got our board free; other
attackers would be able to purchase it for US$995.

5.2 How the DES Cracker Works

The basic idea of a brute force “DES cracker” is to try all possible keys in turn
and stop when one is found that will correctly decrypt a given value into its
plaintext. Sometimes, the plaintext that is to be matched is known, as in this
case, and sometimes the correct decryption can only be determined statistically
or through an absence of unacceptable values (for example, in the RSA decryp-
tion challenges posed in the late 1990s [16], the decrypted output needed to
resemble English text).

This cracker design actually works the other way round; it takes an initial
plaintext value and encrypts it under incrementing key values until the encrypted
output matches one of the values being sought. The design runs at 33.33 MHz,
testing one key per clock cycle, which is rather slow for cracking DES keys – and
it would take, with average luck, 34.6 years to crack a single key. However, the
attack method allows many keys to be attacked in parallel and because they are
interrelated it does not matter which one is discovered first.

The design was made capable of cracking up to 16384 keys in parallel (i.e. it
simultaneously checks against the results of encrypting the plaintext with 16384
different DES keys). The particular Excalibur board being used imposed the
16384 limitation; if more memory had been available then the attack could have
proceeded more quickly. The actual comparison was done in parallel by creating
a simple hash of the encrypted values (by XORing together groups of 4 or 5 bits
of the value) and then looking in that memory location to determine if an exact
match had occurred. Clearly, there is a possibility that some of the encrypted
values obtained from the 4758 would need to be stored in identical memory
locations. We just discarded these clashes and collected rather more than 16384
values to ensure that the comparison memory would be reasonably full.

As already indicated, 69.2 years are necessary to try all possible keys and
therefore guarantee a result. However, probabilistic estimates can be made of the
likely running time. These estimates are valid because so many keys are being
searched for, and because DES can be viewed as creating essentially random
encrypted values (approximating a random function being a property of good
crypto algorithms). Over a full search, the average time to find the next key
can be calculated, by simple division, to be about 37 hours. However, it is more
useful to consider the time to find the first key and model the system using a
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Poisson distribution. The probability that the first r attempts will all fail is e−λr

where λ is the probability any given attempt matches, which if checking against
16384 keys will be: 214/256 = 2−42. At 33.33 MHz with average luck (p = 0.5),
the first key will be found within 25.4 hours. With bad luck (p = 0.001, i.e. all
except one run in a thousand) the first key will be found within 10.5 days.

As already indicated, the attack requires two cracking runs, so one would
hope to complete it in just over 2 days. In practice, the various keys we searched
for were found in runs taking between 5 and 37 hours, which is well in accordance
with prediction.

5.3 Implementation Overview

The DES cracker was implemented on the Altera Excalibur NIOS Develop-
ment board [1]. This board contains an APEX EP20K200EFC484-2X FPGA
chip which contains 8320 Lookup Tables (LUTs) – equivalent to approximately
200,000 logic gates. The FPGA was programmed with a DES cracking design
written in Verilog alongside of which, within the FPGA, was placed a 16-bit
NIOS processor. The NIOS is an Altera developed RISC design which can be
easily integrated with custom circuitry. The NIOS processor runs a simple pro-
gram (written in GNU C and loaded into some local RAM on the FPGA) which
looks after a serial link. The test vectors for the DES crack are loaded into
the comparison memory via the serial link, and when cracking results are ob-
tained they are returned over the same link. Although the NIOS could have been
replaced by a purely hardware design, there was a considerable saving in com-
plexity and development time by being able to use the pre-constructed building
blocks of a processor, a UART and some interfacing PIOs. Fig. 1 shows the
general arrangement:

DES

N
IO

S

APEX 20K200EFC484-2X FPGA

32K x 16bit SRAM 32K x 16bit SRAM

Altera "Excalibur"
 Evaluation Board

Configure

Data

Fig. 1. DES cracker design



Experience Using a Low-Cost FPGA Design to Crack DES Keys 587

A pipelined version of the DES algorithm was used with the same input data
value being encrypted by a succession of key values. At each clock interval, the
intermediate left/right results of each DES stage are clocked into the next set of
registers to act as inputs for the next stage of the encryption. Therefore, after
an initial start-up period of 16 clocks, results appear from the end of pipeline at
the clock rate of 33.33 MHz.

The key value must remain available for use by every stage of the algorithm,
however we avoided the need to provide registers to pipeline its value from stage
to stage. Instead, we used a Linear Feedback Shift Register (LFSR), which has
been extended beyond its 56-bit value so that as it shifts, the extra bits serve to
keep a record of older values of the key. This extended register is then statically
connected, in an appropriate manner, to provide the key for the various pipeline
stages. This space-saving technique was previously used by Hamer and Chow
in their Transmogrifier DES cracker design [8]. The use of the LFSR had the
further benefit of searching key space in a pseudo-random manner, so the 4758
programs were able to use densely packed sets of key values.

A tedious complication was that the Altera board has a limited amount of
RAM as standard, just two 32K × 16-bit SRAMs. These could be arranged to
form a single 32K × 32-bit memory, but it was still necessary for the 64-bit
comparison to be done in two halves. If the first half matches (as will happen
every few seconds) then the pipeline must be suspended for a moment and the
second half of the value checked.

This can be seen on the logic analyser picture in Fig. 2 below. The regular
signal on the third trace is the clock. The second signal down shows a 32-bit
match is occurring. This causes a STOP of the pipeline (top signal) and access
to an odd numbered address value (bottom signal). The other signals are some
of the data and address lines.

Fig. 2. The DES cracker actually running
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5.4 Implementation of the DES S-Boxes

Although most of the cracker design was straightforward, the implementation of
the DES S-boxes is of some interest. There are eight of these, each taking six
bits of input and providing a 4-bit result. The S-boxes provide the non-linear
component within the DES algorithm and they are defined in FIPS-46 [15] as
tables of values that appear to be completely random.

The simplest way to implement the S-boxes would be as 128 read-only memo-
ries (8 for each of the 16 pipeline stages). Unfortunately, although the particular
Altera FPGA architecture being used can be programmed to provide ROMs,
only 52 were available on the particular chip being used. Therefore, the S-boxes
had to be created from logic components. Hamer and Chow [8] (who used the
same FPGA architecture) observed that one could create the 6-bit LUTs needed
for the S-box bits from six 4-bit LUTs as shown in Fig. 3:

A3 A2 A1 A0A3 A2 A1 A0 A3 A2 A1 A0 A3 A2 A1 A0

A5 A4 A5 A4

Fig. 3. Using six 4-input LUTs to create one DES S-box bit

The final OR of the results is achieved “for free” by the FPGA circuitry. This
gives a LUT count for each S-box of 24, giving an overall usage of 3072 LUTs
for the whole design. This is over a third of the entire chip (8320 LUTs).

Because multi-level logic minimisation is complex, some optimal solutions
may be missed. In order to ensure that the logic synthesis program would use
the Hamer/Chow scheme, we wrote the Verilog for the S-boxes as follows:

wire [5:0] A = {address[5], address[0], address[4:1]};
reg [3:0] row0, row1, row2, row3;
always @(A)
begin

case (A[3:0])
0: begin row0 = 14; row1 = 0; row2 = 4; row3 = 15; end

... etc etc
15: begin row0 = 7; row1 = 8; row2 = 0; row3 = 13; end

endcase
case ({A[5],A[4]})

0: result = row0;
1: result = row1;
2: result = row2;
3: result = row3;

endcase
end
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However, when making S-box 4, the logic minimisation process managed to
save a couple of LUTs. This was of considerable interest because the design was
clearly going to be quite a tight fit into the FPGA, so it was investigated further.

As can be seen by inspecting the code, the use of A0. . . A3 in the first stage
and A4. . . A5 in the second stage is essentially arbitrary. The same result is
obtained using another selection of 4 and then 2 bits by suitable alteration of
the A[i] in the case statements. All of the 720 possible arrangements were tried,
for each of the eight S-boxes. The result was that several other S-boxes were
found to exhibit small amounts of non-randomness:

S-box 1 2 3 4 5 6 7 8
LUTs 24 23 23 16 24 24 23 22

Thus at each pipeline stage, 13 LUTs can be saved (almost 7% of the total).
This was not an entirely surprising result, although this is a new way of

finding it. It has long been known that the DES S-boxes do have some internal
structure [9,17,3] and in the 1970s this led some people to conclude that there
were back doors into the DES system, especially since the NSA were said to have
been involved in the S-box designs.

5.5 Pipelining vs. Looping Designs

Key-cracking machines can be constructed at two extremes of system architec-
ture. The cryptographic primitive can be arranged in a loop with a counter, as
would be usual in a software implementation, or the loop can be “unrolled” to
create a pipelined design. Between these two extremes, one can create hybrids
where a few stages are pipelined and a lower maximum value of loop counter
is used. No matter what the architecture, provided there is room within the
FPGA, it is possible to add further instances of the basic design in parallel so
as to provide a performance increase. It is interesting to consider which of these
architectures is in fact optimal.

Experiments showed that a “loop” architecture duplicated 16 times, along
with the logic to select results from each loop unit in turn, occupied 11,662
LUTs. In contrast, a fully pipelined architecture occupied 8,303 LUTs. Exactly
the same performance might be expected from both designs; there is a start-up
delay of 16 clocks and then they deliver one encrypted value on every subsequent
clock. Therefore, it might seem that the pipeline design is to be preferred.

However, if one’s FPGA is not large enough to hold the design (and it appears
to be a fundamental rule of systems design that one inevitably runs out of gates
or pins) then the pipelined architecture will not be implementable since it is “all
or nothing”. In contrast one can remove loop units to produce a cut-down design
that delivers, for example, 10 results per 16 clocks. The saving is approximately
540 LUTs per loop unit (logic minimisation effects mean that the exact saving
can vary). This might make the loop architecture preferable.

Historically, designs were always of the loop variety [5,4] because until rela-
tively recently it was an achievement to get the whole of a single loop unit into
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a chip. By 1993, chips were larger and Wiener [18] proposed a pipelined design.
However, although he used an LFSR to avoid the difficulty of a “ripple carry”
across a 56-bit counter, he did not use the Hamer/Chow insight into how this
could be used to avoid pipelining the key values. Kaps and Paar investigated
several different FPGA designs [14], though their interest was in determining
how pipelining or partial loop unrolling affected maximum clock speed. In the
current work, the limiting speed was the external SRAM, so there was no benefit
in making the cracker design run faster since all of the designs generated results
faster than they could be compared against the set of encrypted values.

Speed and size are not the only constraints. The first machine to be actu-
ally constructed, the Electronic Freedom Foundation’s (EFF) design [6], used a
multiple loop unit design. A pipelined scheme was considered, but was rejected
as being more complex and hence more risky for a project that needed to work
first time [7].

One must conclude that there is no easy solution here. The optimal design
approach seems to be to try the pipelined design first. If that does not fit into a
particular chip then it will be necessary to discard the work done thus far and
create a design that crams in as many loop units as possible.

6 Results

Although many paper designs for DES cracking machines were proposed in the
1970s [5], 1980s [4] and 1990s [18], no publicly known machines were actually con-
structed until the Electronic Freedom Foundation built Deep Crack in 1998 [6].
This was an ASIC gate-array design, since this was the cheapest way of building
it. Other work has been done before and since on FPGA based cracker designs
such as [14,8] and most of these designs appear to have been synthesised and
tested. However, the current work appears to be the first FPGA DES cracker
design in the open literature (and only the second actual system after the EFF
machine) that has actually found a key “in anger”. Of course this achievement
could only be done so quickly and for such a low cost because of the “meet-in-
the-middle” nature of the problem we tackled.

The full attack described in this paper was run on two occasions in 2001 at
the full rate of 33.33 MHz (approx. 225 keys/second). In both cases the expected
running time of 50.8 hours (based on average luck in locating a key) was comfort-
ably beaten and so it would have been possible to start using the PIN derivation
keys well before unauthorised access to the 4758 would have been detected.

Date Start Finish Duration Key value found

Aug 31 19:35 17:47 22 h 12 min #3E0C7010C60C9EE8
Sep 1 18:11 23:08 4 h 57 min #5E6696F6B4F28A3A

Oct 9 17:01 11:13 19 h 12 min #3EEA4C4CC78A460E
Oct 10 18:17 06:54 12 h 37 min #B357466EDF7C1C0B
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We communicated our results to IBM. In early November 2001 they issued a
warning to CCA users [11] cautioning them against enabling various functionality
that the attacks depended upon. In February 2002 they issued a new version of
the CCA software [12] with some substantial amendments that addressed all the
issues raised by our attacks and those discussed by Bond in his earlier paper.

7 Conclusions

We have shown that the practical implementation of a theoretical attack is a
worthwhile activity. Our research revealed aspects of both the system attacked
and the attack method itself that would have been difficult to spot in any other
way.

At the hardware design level we showed that pipelined implementations of
DES could be made considerably smaller than designs using multiple looping
units. We also found a new way of demonstrating that the DES S-boxes are not
as random as they might at first appear.

At the conceptual level, we discovered a second specific instance of the generic
key-binding flaw discussed in Bond’s original paper. This highlights the risks of
patching individual parts of a system to deal with security problems. Generic
solutions must be sought for generic problems.

The specification-level faults that have been exploited in this attack have
turned out to be just part of the story. Although we devoted some of our effort
into reducing the effective strength of the CCA’s 3DES implementation to that
of single DES, IBM’s analysis of our attack uncovered an implementation-level
fault that made this whole stage unnecessary [13]. The CCA code was failing
to prevent export of a double-length key under a double-length replicate key,
despite the specifications stating that this would not be allowed.

In the future we must expect to see attacks that combine exploitation of both
specification mistakes and faults in implementing the specification. It is hard to
see how existing analysis practices at either the specification or the implemen-
tation level can hope to spot this type of hybrid. Making serious attempts to
actually implement otherwise theoretical attacks may be our only handle on this
problem.
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Abstract. In 1980, Martin Hellman [1] introduced the concept of crypt-
analytic time-memory tradeoffs, which allows the cryptanalysis of any
N key symmetric cryptosystem in O(N

2
3 ) operations with O(N

2
3 ) stor-

age, provided a precomputation of O(N) is performed beforehand. This
procedure is well known but did not lead to realistic implementations.
This paper considers a cryptanalytic time-memory tradeoff using distin-
guished points, a method referenced to Rivest [2]. The algorithm pro-
posed decreases the expected number of memory accesses with sensible
modifications of the other parameters and allows much more realistic im-
plementations of fast key search machines. We present a detailed analysis
of the algorithm and solve theoretical open problems of previous mod-
els. We also propose efficient mask functions in terms of hardware cost
and probability of success. These results were experimentally confirmed
and we used a purpose-built FPGA design to perform realistic tradeoffs
against DES. The resulting online attack is feasible on a single PC and
we recover a 40-bit key in about 10 seconds.

1 Introduction

Generally speaking, a block cipher allows to encrypt a n-bit text using a k-bit
key to produce a n-bit ciphertext. Let q = � k

n�. If q plaintext/ciphertext pairs
are known, with a high probability, the key can be determined by exhaustive key
search, but it usually requires a too long processing time. Another possibility
is a chosen plaintext attack using a precomputation table where an attacker
precomputes the encryptions of q chosen plaintexts under all possible keys and
stores the corresponding ciphertext/key pairs, but it usually requires a too large
memory. The aim of a time-memory tradeoff is to mount an attack of which
the online processing complexity is lower than an exhaustive key search and the
memory complexity is lower than a precomputation table.
In [3,4,5], Borst et Al. propose a theoretical analysis of the time-memory tradeoff
using distinguished points. They conclude that of theoretical interest remains
the problem of determining two parameters: the expected number of chains and
average chain length after sort. In this paper, we present a theoretical analysis

B.S. Kaliski Jr. et al. (Eds.): CHES 2002, LNCS 2523, pp. 593–609, 2003.
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of a time-memory tradeoff using distinguished points and evaluate the different
parameters introduced by this variant of Hellman’s method. We discuss the
complexity of the attack as well as the resulting probability of success, isolate
the different phenomenons involved in a tradeoff using distinguished points and
evaluate their practical influence. Precisely, we propose approximations to solve
the open problem of [5] and correct the probability of success to correspond with
practical implementations. The resulting analysis was confirmed by experimental
results and allowed to mount realistic attacks against the block cipher DES.
The paper is organized as follows. In section 2, some basic schemes are given
to help the understanding of the tradeoff. Formal definitions and algorithms are
in section 3 and 4. Section 5 identifies the critical situations due to the use of
distinguished points in the tradeoff. Section 6 proposes efficient mask functions
in terms of success rate and hardware cost. The main contribution of this paper
lies in section 7 and 8. We evaluate the different parameters of the tradeoff
and compare the resulting theory with experimental results. Conclusions are in
section 9.

2 Basic Scheme

The time-memory tradeoff method for breaking ciphers is composed of a pre-
computation task and an online attack. We briefly introduce these steps with
two intuitive schemes:

Fig. 1. Precomputation task

1. A chain is formed by a number l of encryptions using a chosen plaintext and
l different keys. A defined property holds for the first and last keys and we
call them distinguished points. During the precomputation, we compute a
number of chains and store start points, end points and the corresponding
chain length in a table.

2. Let the chosen plaintext be encrypted with a secret key. During the attack,
we can use the resulting ciphertext as a key and start a chain until we find a
distinguished point. Then, we check if this end point is in our table, take the
corresponding start point and restart chaining until we find the ciphertext
again. The secret key is its predecessor in the computed chain.

This basic scheme illustrates that the success rate of the attack depends on
how well the computed chains ”cover” the key space. In the next sections, we
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Fig. 2. Online attack

develop these two schemes and present effective algorithms for precomputation
and online attack.

3 Definitions

Let E : {0, 1}n × {0, 1}k → {0, 1}n be a block cipher with block length n and
key length k. The encryption of one block is written as:

C = EK(P ) (1)

Where C ∈ {0,1}n, K ∈ {0,1}k and P ∈ {0,1}n denote the ciphertext, the secret
key and the plaintext.
We define two functions. The first one just mixes its arguments and rejects z
bits to reach the key size k = n− z.

g : {0, 1}n → {0, 1}k. (2)

We call g a mask function. There are many possibilities to define g. Earlier papers
proposed to use permutations. In section 6, we suggest efficient mask functions
in terms of implementation cost and probability of success.
We also define a function f : {0, 1}k → {0, 1}k

f(K) = g(EK(P )) (3)

Finally, for a random start point SP ∈ {0, 1}k, we define a chain
K0, K1, K2, ..., Kt of length t as

K0 = SP (4)

Ki = f(Ki−1) = f i(K0) (5)

In the tradeoff, only the start point SP and end point EP = Kt are stored.
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Definition of a DP -property: Let {0, 1}k be the key space and d ∈ {1,2,3,...,k-
1}. Then DP-d is a DP-property of order d if there is an easily checked property
which holds for 2k−d different elements of {0, 1}k. In our application, having d
bits locked to a fixed value, say 0, is a DP-property of order d.

Definition of a distinguished point: Let K ∈ {0, 1}k and d ∈ {1,2,3,...,k-1}.
Then K is a distinguished point (DP) of order d if the DP-property defined
beforehand holds for K. Note that using this definition of distinguished point,
we do not need to store the fixed bits and reduce the memory requirements of
the tradeoff.

4 Algorithms

The algorithm proposed requires to choose a DP-property of order d and a
maximum chain length t. We precompute r tables by choosing r different mask
functions. For each mask function m different start points (which are distin-
guished) will be randomly chosen. For each start point a chain will be computed
until a DP is encountered or until the chain length is t + 1. Only start points
iterating to a DP in less than t iterations will be stored with the corresponding
chain length, the others will be discarded. Moreover, if the same DP is an end
point for different chains, then only the chain of maximal length will be stored.
This involves a lower memory complexity than Hellman’s tradeoff.

Precomputation algorithm: Generate r tables with (SP,EP,l)-triples, sorted on
EP.

1. Choose a DP-property of order d.
2. Choose r different mask functions gi, i = 1, 2, ..., r. It defines r different f

functions: fi = gi(EK(P )), i = 1, 2, ..., r.
3. Choose the maximum chain length t.
4. For i = 1 to r

a) Choose m random start points SP
(i)
1 , SP

(i)
2 , ..., SP

(i)
m .

b) For j = 1 to m, l = 1 to t

i. Compute f l
i (SP

(i)
j ).

ii. If f l
i (SP

(i)
j ) is a DP then store the triple (SP

(i)
j , EP

(i)
j = f l

i (SP
(i)
j ), l)

and take next j.
iii. If l > t ”forget” SP

(i)
j and take next j.

c) Sort triples on end points. If several end points are identical, only store
the triple with the largest l.

d) Store the maximum l for each table: limax.

For the search algorithm, a table only has to be accessed when a DP is encoun-
tered during an iteration which allows efficient implementations of the online
attack. Moreover, if the encountered DP is not in the table, then one will not
find the target key by iterating further. Hence the current search can skip the
rest of this table.
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Search algorithm: Given C = EK(P ) find K.

1. For i = 1 to r
a) Look up limax.
b) Y = gi(C).
c) For j = 1 to limax

i. If Y is a DP then
A. If Y in table i, then

– Take the corresponding SP (i) and length l in the table.
– If j < l

• Compute predecessor K̃ = f l−1−j
i (SP

(j)
l ).

• If C = EK̃(P ) then K = K̃: STOP.
• If C �= EK̃(P ), take next i.

B. Else take next i.
ii. Set Y = f(Y ).

5 Overlap Situations

In the tradeoff method described, one tries to store information about as many
different keys as possible by taking as long chains as possible. Consequently,
the very short chains increase the memory complexity of the tradeoff and could
be rejected. However, different critical overlap situations can appear and add
constraints to the tradeoff.

1. A chain can cycle. This is the case where we find i and j with i �= j and
Ki+1 = Kj+1.

2. Two chains computed with the same mask function can merge. This is the
case where two different start points have the same image. This means that
from the moment of the merge until the end of at least one chain, both chains
contain the same keys.

3. A chain can collide with another chain computed with a different mask
function. This is the situation where two chains computed with different
mask functions have some common points between SP and EP. It means
that some keys are stored several times, which is not efficient.

As suggested by the precomputation algorithm, we dealt with cycles by choosing
an adequate maximum chain length t and the mergers were rejected after the
precomputation by keeping the longest of two merging chains. Consequently,
the effectiveness of the tradeoff highly depends on the choice of its parameters.
In the section 7, we evaluate the different parameters of the tradeoff as well as
the resulting complexity and probability of success of both precomputation and
online attack.

6 Efficient Mask Functions

In previous papers about time-memory tradeoffs, mask functions were imple-
mented as permutations. We propose efficient mask functions in terms of colli-
sions and implementation cost.
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Basically, the problem when using a permutation is the possibility that two
mask functions have some common keys after a collision. For example, if the
mask function corresponds to a permutation of two bits, the common length
after a collision is obviously 1

2 + 1
4 + 1

8+...
Moreover, if a large number of mask functions is needed (which is practically
probable), their implementation becomes fastidious (specially in hardware de-
signs that are particularly efficient in time-memory tradeoffs). We suggest the
following definition of efficient mask functions. Let mi(x) and mj(x) be two mask
functions:

mi(x) : {0, 1}n → {0, 1}n
mj(x) : {0, 1}n → {0, 1}n

Let n(x) = mi(x)−mj(x). Efficient mask functions are such that for every i �= j,
we have

Ker(n(x)) = �1. (6)

We define mask functions as:

mi(x) : {0, 1}n → {0, 1}n : x→ mi(x) = x⊕ i (7)

Where ⊕ denotes the bitwise XOR operator. These mask functions fulfill condi-
tion 6 and are specially easy to implement in hardware or software.

7 Theoretical Analysis

As mentioned in section 5, the effectiveness of the tradeoff highly depends on the
choice of its parameters. Consequently, their correct prediction before implemen-
tation is crucial. Although existing papers evaluate the processing complexity,
memory complexity and success rate of the tradeoff and mention that length of
chains, number of chains and number of mask functions play a crucial role in
the performance of the tradeoff, there exist no precise indications about how to
choose these parameters. Actually, only [3,4,5] focus on the distinguished points
variant but their analysis is not complete and some problems remained open. In
the next section, we propose a theoretical model for cryptanalytic time-memory
tradeoffs using distinguished points that takes into account the new situations
due to distinguished points. Approximations are proposed to solve the open
problem of [5].

7.1 Probability to Reach a Distinguished Point

The main modification caused by the introduction of distinguished points is the
variable chain length. Consequently, we computed the probability to reach a
distinguished point in less than l iterations. In the following computation, we
guess that the maximum chain length is such that no cycle could appear. Let
1 Ker(n(x)) = {x ∈ {0, 1}n|n(x) = 0}
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P1(l) be the probability that a DP is reached in less than (≤) l iterations. Let
P2(l) be the probability that no DP is reached in less than l iterations. We have
P1 = 1− P2 and we can easily compute P2(l):

P2(l) =
l−1∏

i=0

(1− 2k−d

2k − i
) (8)

An approximate expression can be obtained knowing that i	 2k, by fixing i to
l−1
2 :

P2(l) 
 (1− 2k−d

2k − l−1
2

)l (9)

Finally, we have

P1(l) = 1−
l−1∏

i=0

(1− 2k−d

2k − i
) (10)

P1(l) 
 1− (1− 2k−d

2k − l−1
2

)l (11)

Obviously, the probability to reach a distinguished point in exactly l iterations
can be derived from P1(l) - P1(l − 1) if we guess that P1(0) = 0. Important
information about the efficient areas of computation can be observed when rep-
resenting the amount l×P (A DP is reached in exactly l iterations) as shown by
Figure 3 for the DP-10 property.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
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Fig. 3. X = l, Y=l × P (A DP is reached in exactly l iterations)
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7.2 Compute the Average Chain Length β

Figure 3 suggests that practical precomputations should possibly be performed
for an efficient interval of chain lengths. Therefore, we evaluate the average chain
length in a region between lengths tmin and tmax:

β =

∑tmax

l=tmin
l.P (DP.in.exactly.l.iterations)

∑tmax

l=tmin
P (DP.in.exactly.l.iterations)

(12)

The denominator is easy to estimate and corresponds to the quotient between
the number of chains included in region [tmin, tmax] and the total number of
chains. We call it cover and denote it γ:

γ =
tmax∑

l=tmin

P (DP.in.exactly.l.iterations) = P1(tmax)− P1(tmin − 1) (13)

Numerator can be estimated with the next formula:
tmax∑

l=tmin

l.P (DP.in.exactly.l.iterations)

=
tmax∑

l=tmin

l.(
l−2∏

i=0

(1− 2k−d

2k − i
)− (

l−1∏

i=0

(1− 2k−d

2k − i
))



tmax∑

l=tmin

l.((1− 2k−d

2k − t
2
)l−2 − (1− 2k−d

2k − t
2
)l−1) (14)

Where t = tmax+tmin

2 . We can rewrite equation 14 in a simpler form:

tmax∑

l=tmin

l.((1− x)l−2 − (1− x)l−1) (15)

Where x = 2k−d

2k− t
2
. Hence

tmax∑

l=tmin

l.((1− x)l−2 − (1− x)l−1)

= tmin.(1− x)tmin−2 − tmax.(1− x)tmax−1 +
tmax−2∑

l=tmin−1

(1− x)l

= (1− x)tmin−2.(tmin +
1− x

x
)− (1− x)tmax−1.(tmax +

1
x

) (16)

Finally, the average chain length is:

β 
 (1− x)tmin−2.(tmin + 1−x
x )− (1− x)tmax−1.(tmax + 1

x )
γ

(17)
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We designed some experiments in order to confirm this analysis and computed
chains using a block cipher DES with a reduced key of 40 bits. First, we evaluated
the influence of the DP-property:

DP-property Length region (log2) Experimental β (log2) Theoretical β (log2)
DP-11 9-13 11.2140 11.2140
DP-12 10-14 12.2137 12.2139
DP-13 12-14 13.0965 13.0966
DP-14 13-15 14.0967 14.0966
DP-15 11-18 15.0771 15.0836

Then, we observed the influence of the chain lengths:

DP-property Length region (log2) Experimental β (log2) Theoretical β (log2)
DP-13 10-13 11.9790 11.9987
DP-13 12-14 13.0965 13.0966
DP-13 13-16 14.0107 13.9955

7.3 Previous Proposals for the Success Rate

In this section, we consider the success rate when using one table generated
with one mask function and denote it SR. The probability of success when
using several mask functions is evaluated later and we denote it PS. For all
the following computations, the function f is modelled as a random function
mapping the key set onto itself if the key K is randomly chosen. Actually, earlier
evaluations of the success rate, [1,7], do not consider the distinguished point
variant and SR was always estimated in the following way: first the probability
P (Kij is new) that a newly generated key Kij is different from all keys generated
previously is evaluated by:

P (Kij .is.new) ≥ (1− it

N
)j+1 (18)

Where i is the number of chains already computed, j the length of current chain,
t the fixed chain length and N = 2k is the size of the key space. Then a lower
bound of the success rate is evaluated:

SR ≥ 1
N

m∑

i=1

t∑

j=1

(1− it

N
)j+1 (19)

Where m is the number of chains computed. Using e−x 
 1 − x, we have the
following approximation:

(1− it

N
) 
 e

−it
N

(1− it

N
)j+1 
 e

−ijt
N (20)

Equation 20 indicates that for a fixed value of N , there is not much to be gained
by increasing m and t beyond the point at which mt2 = N . Because when
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e
−ijt

N 
 e
−mt2

N and mt2 � N , most terms will be small. Finally, we can evaluate
the success rate:

SR ≥ 1
N

m∑

i=1

t∑

j=1

(1− it

N
)j+1


 1
t

m∑

i=1

1− e
−it2

N

it
N

t

N


 1
t

∫ mt
N

0

1− e−tx

x
dx


 h(u)
mt

N
(21)

Where u = mt2

N and h(u) = 1
u

∫ u

0
1−e−x

x dx. The function h(u) denotes a lower
bound of coverage. The next table evaluates h(u) for different values of u and
illustrates that h(u) rapidly decreases after u exceeds 1.

u h(u) u h(u) u h(u)
2−4 0.99 2−1 0.89 22 0.49
2−3 0.97 20 0.80 23 0.33
2−2 0.94 21 0.66 24 0.21

However, in case of a tradeoff using distinguished points, equation 19 is not
correct anymore when the merger problem appears. Indeed, the keys are stored
in terms of a number of chains and the relevant probability is the probability to
find a new chain, not a new key. The practical consequence is that the success rate
(21) does not correctly take the mergers into account. This point was neglected
in [5] and in the next section, we propose other approximations and show that
the possibility to carry on computing chains after mt2 = N has to be considered
if the objective is to get the fastest online attack.

7.4 A Prediction of the Mergers

Let s(j) be a storage function denoting the number of keys stored after sort and
rejection of mergers and j = γm be the number of chains computed in region
[tmin, tmax] (γ is the cover defined in section 7.2 and m is the number of start
points considered). Let p(j) be the probability that a new chain is found after a
storage s(j). We have:

s(j) = s(j − 1) + β × p(j − 1) (22)

p(j) =
β−1∏

l=0

2k − s(j)− l

2k
(23)
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Because l	 2k, e can reduce this system to a non-linear difference equation:

s(j + 1) = s(j) + β ×
β−1∏

l=0

1− s(j)
2k
− l

2k

s(j + 1) 
 s(j) + β × (1− s(j)
2k

)β (24)

First proposal for s(j): We computed a lower bound for s(j) by using the linear
approximation: (1− s(j)

2k )β = (1− β × s(j)
2k + O(s(j)2)) and solving the resulting

linear recurrence:

s(j + 1) 
 (1− β2

2k
)× s(j) + β (25)

Which has solution:

s(j) 
 (s(0)− 2k

β
)× (1− β2

2k
)j +

2k

β
(26)

The function (1 − s(j)
2k )β represents the probability that a new chain is found.

If we define the saturation as the moment when we have s(j + 1) = s(j) cor-
responding to a probability zero that a new chain is found, Figure 4 illustrates
that our linear approximation involves a too fast saturation. As a consequence,
we can derive a lower bound for the success rate: SR ≤ s(γm)

2k .
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Fig. 4. Linear approximation of (1− x)k with k = 210

Comparing this result with precedent conclusions about the success rate, we ob-
serve that the amount s(γm) is defined as a number of keys stored and β is the
average chain length. This means that s(γm)

β is a number of chains like m. There-
fore the condition suggested by Hellman: mt2 = N is similar to the condition of
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saturation when considering a linear approximation of the probability to find a
new chain: s(γm) = 2k

β is equivalent to s(γm)
β = 2k

β2 . This last point suggests that
the decision to stop computations as soon as mt2 = N is not always optimal.
For example if the objective is to get the fastest online attack, we will try to
minimize the number of mask functions which involves the largest number of
chains stored for every mask function.

Second proposal for s(j): An improved approximation of the storage function
is based on the convergence of Euler’s methods described in [8]. The following
equation:

sn+1 − sn

1
= β × (1− sn

2k
)β (27)

Can be approximated by
s′(j) = f(s, j) (28)

Where f(s, j) = β × (1− s(j)
2k )β if | dfds | < L and |s′′(j)| < Y (L and Y are fixed

constants). Because s(j) is a storage function, it is obvious that s′′(j) < 0 and
lim(s′′(j)) = 0. As df

ds = −β2

2k (1− s
2k )β−1 and s ∈ [0, 2k], the second condition is

also fulfilled. Therefore, we solved the following differential equation:

s′(j)
β

= (1− s(j)
2k

)β (29)

Using t(j) := (1− s(j)
2k ) and t′(j) := −s′(j)

2k , equation 29 is equivalent to:

−2k

β
× t′(j) = t(j)β (30)

Which has an exact solution. Finally, we found

s(j) = 2k × (1− (
2k

−βj + β2j + K
)

1
β−1
)

(31)

With K = 2k × (1− s(0)
2k )1−β and the discretization error is estimated by:

en+1 − en =
df

ds
(j, s)× en +

1
2
s′′(j) (32)

These computations are in accordance with experimental results presented in
section 8. We can conclude that:

1. The success rate evaluated in precedent papers is not directly applicable to
tradeoffs using distinguished points. Mergers were not correctly taken into
account.

2. The decision to stop precomputations at mt2 = N is not always optimal,
depending on the objective: optimal precomputation time or optimal attack
time.
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7.5 A Prediction of the Average Chain Length after Sort

An important consequence of the mergers is the possible modification of the
average chain length after sort. Intuitively, this modification depends on the
number of chains rejected and the choice of tmin and tmax. Looking at equation
23, we can observe that the probability that a chain merges is increasing with
the length of this chain. Consequently, the average length of rejected chains is
larger than the initial average chain length predicted by equation 17.
Practically, the rejection process is such that if two chains merge, only the longest
one is stored. Therefore, a possible prediction of the modification of the average
chain length could be achieved by computing the mergers prediction for every
possible chain length, using initial conditions for the storage:

βmod =

∑tmax

tmin
l.nl

∑tmax

tmin
nl

(33)

Where nl denotes the number of chains of length l after sort and is evaluated
using the storage function of section 7.4. As the evaluation of tmax− tmin differ-
ence equations is fastidious, we can divide the chain lengths in a number of sets.
Let m be the number of chains computed, with average length β and cover γ.
Let p be the number of sets used to evaluate βmod (we chose p = 4). According
to section 7.2, we evaluate β and γ for each set and denote them βi and γi (good
approximations need γi 
 γj for every i, j). If m is the total number of chains
computed, the number of chains computed in each region, say Ni is:

Ni = m× γi (34)

Then we solve for i = p to 1:

si(j + 1) 
 si(j) + βi × (1− si(j)
2k

)βi (35)

With the initial condition sp(0) = 0 and si−1(0) = si(Ni). From equation (26) or
(31), we can derive the quantities si(Ni) and s1(N1) denotes the final number of
keys stored. Finally, we compute the number of chains in each region: ci(Ni) =
si(Ni)−si(0)

βi
and approximate the modified average length of chains as:

βmod 

∑p

i=1 ci(Ni)× βi∑p
i=1 ci(Ni)

(36)

7.6 Prediction of Collisions and Final Probability of Success

According to previous sections, the expected success rate using only one mask
function is:

SR 
 s(γm)
2k

(37)

If we use r different mask functions, the resulting probability of success is:

PS(r) = 1− (1− SR)r (38)
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7.7 Memory Complexity

Storage is needed for r tables. Each table contains about s(γm)
βmod

chains. These
are in the form of triples and if we denote by e the actual size of an entry in
the table, using the result of the previous section for r, the memory complexity
Cmem can be expressed as:

Cmem 
 e× s(γm)
βmod

× r (39)

7.8 Precomputation Complexity

During the precomputation, we iterate for each point until either a distinguished
point is reached or tmax iterations have been made. If a distinguished point is
reached, then on average β iterations are computed. If a distinguished point is
not reached, then tmax iterations are computed. We define the expected number
of iterations for one chain as δ:

δ = tmax × (1− P1(tmax)) + β × P1(tmax) (40)

As iterations are made on r × m start points, the precomputation complexity
Cprec can be estimated by:

Cprec 
 r ×m× δ (41)

7.9 Processing Complexity

In a tradeoff using distinguished points, a table only has to be accessed when a
DP is encountered during an iteration which means that for every mask function,
only one chain has to be computed. Moreover, if the encountered DP is not in
the table, then one will not find the target key by iterating further. Therefore,
if r is the number of tables generated and βmod is the average length of chains
after sort, the processing complexity Cproc can be lower bounded by:

Cproc ≤ r × βmod (42)

Note that the possible reduction of the average chain length improves Cproc and
the resulting online attack is faster. This last point strengthens the assump-
tion that, for a fixed DP-property, computations beyond mt2 = N should be
considered if the fastest online attack is to be reached.

8 Practical Experiments

To confirm our analysis, we compare some theoretical predictions with exper-
imental results. All our precomputations were carried out on a VIRTEX1000
FPGA board developed by the Microelectronics Laboratory at UCL. The board
is composed of a control FPGA (FLEX10K) and a VIRTEX1000 FPGA as-
sociated with several processors (ARM, PIC) and fast access memories. The
description of the hardware/software co-design used to perform the tradeoff and
the complete experimental results can be found in [6].
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Practically, we implemented two tradeoffs:

1. A first one against DES with a 40-bit key where we optimized the online
attack. In this way, we illustrated a situation where condition mt2 = N is
not optimal. The 40-bit DES is obtained from DES by fixing 16 key bits to
arbitrary values.

2. A second one against DES with a 56-bit key where the precomputation task
was critical. Therefore, we only implemented one mask function in order to
evaluate the mergers and average chain length.

Both experiments confirmed our theoretical estimations. It is important to notice
that experimental storage values were counted in terms of chains and therefore
s(γm)
βmod

is the most significant data to compare. β and βmod were evaluated on a
sample of the results.

8.1 DES-40

Precomputation task: Table 1 summarizes our experimental results and theo-
retical predictions (in a log2 scale) with a DP-property DP-11 and chain lengths
∈ [29 − 213]. It confirms our analysis to be a correct prediction of the tradeoff.

Table 1. Experimental results - Theoretical predictions

m β βmod s(γm) s(γm)
βmod

23.4219 11.2140 10.9721 30.4181 19.4460

m β βmod s(γm) s(γm)
βmod

21 11.2140 11.0400 29.7609 18.7209
22 11.2140 10.9653 30.0504 19.0851
23 11.2140 10.8847 30.2713 19.3866
24 11.2140 10.8040 30.4447 19.6407

Remark that mt2 = N would mean to limit the precomputations to m = 217.5738

which would not lead to an optimal online attack. As the precomputation com-
plexity was easily reachable using FPGA’s, we maximized the storage s(γm).
Moreover the diminution of the average chain length also improves the online
attack efficiency.

Online attack: As the success rate of one single table is 230.4181

240 , we can derive
the final probability of success in terms of a number of mask functions r. Ex-
perimentally, we used 210 mask functions and observed a probability of success
of 72% which is to compare with the 73.74% theoretically predicted. The online
attack2 was performed on a single PC3. Thanks to the optimized Cproc, we re-
covered a key in about 10 seconds. An exhaustive key search on the same PC
would have taken about 50 days.
2 First presented at the rump session of CRYPTO2001
3 18Gbytes ROM/256Mbytes RAM/350MHz
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8.2 DES-56

Precomputation task: For this experiment, we experimentally observed the stor-
age function s(γm) at different levels of precomputation. Table 2 summarizes
our experimental results and theoretical experiments (in a log2 scale) with a
DP-property DP-18 and chain lengths ∈ [20 − 230]. Due to the critical pre-

Table 2. Experimental results - Theoretical predictions

m β βmod s(γm) s(γm)
βmod

20 18 17.8284 37.3781 19.5497
21 18 17.8261 38.1309 20.3048
22 18 17.6150 38.6140 20.9990
23 18 17.2983 38.9408 21.6425

m β βmod s(m) s(γm)
βmod

20 18 17.8310 37.3022 19.4712
21 18 17.7242 37.8599 20.1357
22 18 17.5819 38.2685 20.6866
23 18 17.4104 38.5461 21.1357

computation task, this experiment was not likely to be optimized in terms of
processing complexity. Anyway, it confirms our analysis to be a correct predic-
tion of the tradeoff. Online attacks against DES-56 offer a variety of compromises
between time and memory. The average chain lengths and number of mask func-
tions needed to reach high success rates (β = 218 and r 
 218 in our example)
will make FPGA’s the relevant tools to mount efficient online attacks. They
offer the high encryption rates and reconfigurability needed for cryptanalytic
applications.

9 Conclusion

Confirmed by experimental results, we propose a new theoretical analysis of
cryptanalytic time-memory tradeoffs using distinguished points and underline
particularities of this variant of Hellman’s proposal. The model allows the pre-
diction of both precomputation and online attack parameters: the complexity
of the tradeoff is evaluated as well as its resulting probability of success. Pre-
dictions of earlier papers are modified in order to correctly take the mergers
into account and we suggest situations where our theoretical predictions induce
practical improvements.

We implemented the tradeoff against DES with a 40-bit key and recovered a key
in 10 seconds, with a success rate of 72%, using one PC. The exhaustive search
of the key on the same PC would have taken about 50 days. In parallel, practical
experiments against DES with a 56-bit key confirmed the effectiveness of FPGA’s
in cryptanalytic applications. We used FPGA’s to perform precomputation tasks
but in case of tradeoffs implemented against ciphers with large keys, an FPGA-
based implementation of the online attack would be very efficient and reasonably
expensive compared with software ones.
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