
A DHT-based Backup System

Emil Sit, Josh Cates, and Russ Cox
MIT Laboratory for Computer Science

10 August 2003

1 Introduction

Distributed hash tables have been proposed as a way to
simplify the construction of large-scale distributed appli-
cations (e.g. [1, 6]). DHTs are completely decentralized
systems that provide block storage on a changing collec-
tion of nodes spread throughout the Internet. Each block
is identified by a unique key. DHTs spread the load of
storing and serving blocks across all of the active nodes
and keep the blocks available as nodes join and leave the
system.

This paper presents the design and implementation of a
cooperative off-site backup system, Venti-DHash. Venti-
DHash is based on a DHT infrastructure and is designed to
support recovery of data after a disaster by keeping regular
snapshots of file systems distributed off-site, on peers on
the Internet. Whereas conventional backup systems incur
significant equipment costs, manual effort and high ad-
ministrative overhead, we hope that a distributed backup
system can alleviate these problems, making backups easy
and feasible. By building this system on top of a DHT, the
backup application inherits the properties of the DHT, and
serves to evaluate the feasibility of using a DHT to build
large scale applications.

The backup system is based around the Venti archival
storage system [9], replacing the storage back-end with
the DHash distributed hash table [5]. Venti-DHash oper-
ates as an archiver that takes complete file system snap-
shots, at a block level. Each unique block is only stored
once, even across snapshots. DHash is used to balance
storage and network load, as well as to provide adequate
availability blocks.

A number of changes were made the internals of DHash
in order to meet our desired performance and availability
goals. Our improved version of DHash is a DHT with
good read and write performance, and 5 nines of avail-
ability per block (assuming an average node reliability of
90%). The resulting system is now being tested by run-
ning backups of our primary file server.

The rest of the paper is structured as follows. Section 2

briefly surveys related work. The design of the backup
system is presented in Section 3. Next, we describe how
DHash was changed to achieve the desired performance
and availability goals in Section 4. Section 5 describes
some preliminary performance benchmarks and analysis
we have conducted on our prototype. Finally, we conclude
in Section 6.

2 Related Work

Venti-DHash is based on combining two systems.
Venti [9] is an archival storage system, designed for
archiving data in a read-only fashion efficiently to hard
disks. While Venti itself is application independent, we
use the ideas for physical backup presented in [9]. DHash
is a distributed hash table built on top of the Chord lookup
protocol [5]. Chord organizes nodes into a sorted ring of
160-bit identifiers without central control; DHash stores
blocks keyed by 160-bit identifiers on the Chord node that
is the successor of the block’s key.

Several peer-to-peer derived backup systems have ap-
peared in the past few years. Lillibridgeet al described
a cooperative Internet backup scheme [7]. This sys-
tem is not based on a DHT — instead, they arrange for
introductions between systems that have roughly equal
storage availability and requirements via a centralized
server. Each peer uses the introducer to find a set of suffi-
ciently diverse peers that will hold its backups. The paper
also discusses a number of different attacks and methods
needed to defend against these attacks.

Pastiche is a peer-to-peer backup system that relies on
Pastry to find buddies that have largely similar content [3].
For example, a machine will seek out a buddy machine
running the same operating system, ensuring that the two
machines will share a fair amount of system data. How-
ever, user home directories are less likely to share content
than two machines running the same version of Windows.
Our system does not rely on the need to find appropri-
ate partners for the system. Instead, we store encrypted

1



Internet (Chord overlay)chord

dhash

chord

dhash

chord

dhash

NFS Server

fs2dhash

Figure 1: Backup Architecture

blocks out on the system, and use efficient snapshots to
minimize the additional overhead on the system.

Some of the improvements to DHash were based on
ideas used in the OceanStore prototype [11]. Compared to
OceanStore, DHash is simpler and focused more on per-
formance. Features such as Byzantine fault tolerance are
not present in DHash.

3 Design

Our backup system must provide a number of general
high-level qualities.

1. Availability: It is not acceptable for a block to be
lost.

2. Confidentiality: Administrators and users should be
able to specify that data is to be encrypted so that
random peers storing blocks will not have access to
private data.

3. Ease of use: The system should operate relatively
transparently to the administrator and end user.

4. Performance: System should be able to store and re-
trieve large quantities of data at reasonable speeds.
In particular, it must be possible to back up a full
day’s incremental changes to a typical file system in
a few hours.

A high-level block diagram of Venti-DHash is shown in
Figure 1. The system operates at a filesystem level: pe-
riodically, a snapshot is taken of all the active blocks
in a filesystem. The blocks are then streamed directly
into DHash, organized as a Venti stream, described be-
low. DHash provides availability and performance (as de-
scribed in Section 4); Venti provides the confidentiality
and ease of use.

To provide confidentiality, Venti-DHash builds an en-
crypted block store on top of the simpleput and get
interface provided by DHash. DHash takes a given data
block and stores it directly using a 20-byte keyk =
SHA1(block contents). Prior to storing disk blocks in
DHash, Venti-DHash first encrypts data using AES. Thus,
keys in the backup system are 40-byte signatures. The

first half specifies the hash used to fetch the encrypted
block from DHash: this is the SHA1 of the content of
the encrypted block. The second half of the key specifies
the cryptographic key that was used to encrypt the block.
Selection of the encryption key is discussed below.

Given this encrypted block store primitive, Venti-
DHash builds an encrypted stream store primitive that
stores an arbitrary stream of data, recursively hashing it
down to a 40-byte signature. The recursive hash proce-
dure works conceptually as follows. The stream is pre-
fixed with a header marking it as a data stream. Then the
stream is broken into eight kilobyte chunks, each of which
stored under its 40-byte signature. The 40-byte signatures
for each chunk are concatenated to form a new stream,
which is prefixed with a header marking it as a signature
stream. The the “break into chunk, hash, and concatenate
the signatures” cycle is repeated until a single signature
remains, which is the signature for the entire stream. The
result is a perfectly balanced tree with the original data
stream at the leaves. Such a structure allows for efficient
random access. On updates, if some bytes in a file change,
only the modified blocks and their ancestors will have dif-
ferent signatures upon rehashing, so the bulk of the tree
can be reused in a subsequent store operation.

When time comes to restore, two methods are possible.
One application communicates with DHash and streams
data out of DHash and creates a FFS image. The image
could be directly written to a physical disk device. For
interactive use, we can view each snapshot as a read-only
file system, using a loop-back NFS server that retrieves
data from DHash. By requesting specific blocks out of
DHash, the NFS server can reconstruct any snapshot of
the backed up filesystem on the fly, and present it as a real
browsable filesystem to the user.

Encryption poses an interesting problem: if multiple
people insert the same block, we would like not to store
it multiple times. To achieve this, we use the SHA1 hash
of the unencrypted block as its encryption key. Then if
blocks are identical, they will have identical encryption
keys and thus identical encryptions (assuming a determin-
istic encryption function). Such a scheme provides decent
confidentiality from casual snooping but is susceptible to
a dictionary attack: a block’s contents can be guessed and
then verified. To avoid dictionary attacks, we could en-
crypt blocks with a random key instead of the plaintext
hash. Pseudocode for the insert operation is:

sig
insert(block b, bool private)
{

if(private)
key = random();

else
key = sha1(b);

2



eb = encrypt(b, key);
ehash = sha1(eb);
if(!dhash_lookup(ehash))

dhash_insert(ehash, eb);
return concat(ehash, key);

}

The price of using a completely random key is that the
hash of the encrypted block changes at every backup even
when the block has not. It is possible to generate the ran-
dom key only once per block and store it somewhere on
the system. On a per-node basis, this restores the property
that each unique block is stored only once. Across peers,
identical blocks are encrypted with different random keys
and therefore cannot be coalesced.

4 DHash and Chord Improvements

In this section, we describe some of the changes that were
made to DHash and Chord in order to achieve the perfor-
mance and reliability goals that are needed for a robust
backup application.

4.1 Erasure codes

In order to improve the reliability of the system, we chose
to change DHash to use an erasure code to store data. As
has been well established in the literature (e.g. [7, 12]),
erasure codes offer significantly improved availability for
a given amount of storage overhead. With erasure codes,
a block of data is encoded intok fragments, of which
some subsetm, are needed to reassemble the message.
We chose to use Rabin’s Information Dispersal Algorithm
(IDA) [10] for our erasure code, withp = 65537. IDA has
the nice property that for a givenm, practically any num-
ber of fragments can be generated and with probability
1 − 1

p = 65536
65537 ), anym subset of these fragments can be

used to reconstruct the original block.
This algorithm has the benefit that it allows anyone with

a copy of the block to produce one of a very large set of
possible fragments. This allows nodes who wish to ac-
quire a fragment to easily produce a fragment that is dis-
tinct from all of the other fragments in the system. This
is important for our data synchronization technique de-
scribed below. However, a major downside is that the cur-
rent encoding makes it infeasible for servers to verify the
validity of individual fragments.

Our system is nominally designed for blocks that are
8K in size, though it can easily accommodate smaller and
larger blocks. We divide all blocks intok = 14 frag-
ments and store them on the successors of the key: DHash
uses Chord to find the successor of the key in the ring and

obtain the current successor list. DHash then pushes a
unique fragment to the firstk successors. An 8K block
can easily be fragmented such thatm = 7 fragments are
needed for reassembly. This gives each fragment a size
slightly larger than 1K, which makes it easy to fit into a
single UDP packet. A value ofm = 7 also gives a two-
times storage overhead for five nines of availability.

4.2 Efficient data synchronization

One key problem in large distributed distributed hash ta-
bles is how to efficiently move data between nodes: as
nodes enter or leave the network, the data that each node
is responsible for changes. Some mechanism must ensure
that a sufficient number of distinct fragments remains in
the system to guarantee availability, and that these frag-
ments are stored on the correct nodes, so that they can be
found. Data must be moved around efficiently and with a
minimum amount of overhead.

DHash uses two maintenance procedures to ensure that
enough distinct fragments exist in the correct locations.
The first is a local procedure that ensures that new nodes
joining the successor set for a given block have the frag-
ments that they need (e.g. because a complete new node
has joined the system, or because a node in the set has
left the system). Nodes in each group of successors con-
tinuously exchange summaries of block lists (represented
compactly as Merkle trees), so that they can quickly de-
termine whether they are missing fragments for blocks
that they are responsible for. When missing fragments are
discovered, the node that is missing the fragment recon-
structs the block and generates a new fragment.

A global procedure is responsible for moving block
fragments that are very far out of place. This can happen
when a very large number of nodes joins the system, for
example. Each node scans its own database periodically,
looking for fragments from blocks that it is not respon-
sible for. For these fragments, the node will perform a
lookup for the key and attempt to push each fragment to
its proper home.

These algorithms are described in more detail in [2].

4.3 Locality awareness

Chord lookups and DHash retrievals must contact a large
number of nodes in the network. Because node IDs are
assigned randomly, a lookup and fetch may incur signif-
icant latency from having to contact nodes on the other
end of trans-oceanic links. Fortunately, data and routing
information is replicated and we can attempt to select the
closest replica, if the nodes have access to some latency
information.

3



We chose a distributed machine learning algorithm that
can quickly synthesize coordinates based on latency mea-
surements and converges relatively quickly [4]. The coor-
dinates place each node in a three dimensional Euclidean
space where the distance between each pair of nodes is an
estimate of the expected latency between the two nodes.
While this algorithm is still undergoing refinement, it can
definitely distinguish between nodes in different conti-
nents and can often provide real-time estimate of laten-
cies.

Each node starts at a random set of coordinates. Each
RPC call includes the current coordinates of the caller and
the response includes the RPC current coordinates of the
receiver. The caller uses the measured round-trip time to
adjust his own coordinates. Over time, each node inde-
pendently migrates to a location that minimizes the error
that the coordinates predict for the latencies that it mea-
sures to other nodes.

This coordinate information can be used to improve a
number of performance issues in Chord and DHash. For
example, by including coordinates of nodes in Chord and
DHash messages, a node can immediately estimate the
expected round trip time to one of the nodes included in
the message, even if it has never communicated with that
node before. This allows the transport protocol to cor-
rectly detect RPC timeouts. Because timeouts indicate
failures, reducing the number of incorrect timeouts helps
keep routing tables stable.

For DHash, coordinates allow clients to select frag-
ments to download from optimal peers. When the suc-
cessor list for a block is retrieved, the client is given the
coordinates for each of the successors. Since onlym of
the more thank successors need to be contacted, DHash
clients can sort the successor list and select them most
optimal peers.

5 Evaluation

We have implemented this system for Unix systems, such
as FreeBSD, running the Berkeley Fast File System (FFS).
The DHash/Chord software is written in C++, using the
event-driven UDP RPC package provided by the SFS
toolkit [8]. The Venti archiving portion was written in
C and largely ported from the Plan 9 implementation of
Venti.

5.1 Performance

We have tested the Venti-DHash prototype by storing data
onto a Chord network running on PlanetLab and RON.

Berkeley NYU Mazu Australia
0

100

200

300

400

500

T
hr

ou
gh

pu
t (

K
B

ps
)

TCP 
TCP 95th percentiles
Venti-DHash (Restore)
Venti-DHash (Backup)

Figure 2: Comparison of bandwidths obtained by Venti-
DHash and by direct TCP connections from several dif-
ferent PlanetLab+RON sites.

Figure 2 shows the read and write performance when run-
ning on a testbed of seventy-seven PlanetLab nodes and
eighteen RON nodes. As we expect Venti-DHash per-
forms more poorly than the best TCP connection, but
much better than the worst.

5.2 Usability

Our implementation also attempts to make the system
easy to use, though some extra administrative overhead
remains. A single binary provides access to the enhanced
DHash DHT: the administrator must configure a machine
(or set of machines) that will provide DHT service, con-
tributing disk space to the system and providing a gate-
way for local backups. This can be a central service pro-
vided by a site administrator. On each workstation to be
backed up, a lightweight client application runs nightly,
processing raw disk partitions for changes and storing new
blocks, encrypted and fragmented, into DHash via an RPC
protocol to the local DHash gateway. The loop-back NFS
server can be set to automatically make each daily snap-
shot available as it becomes available.

6 Conclusion and Future Work

Peer-to-peer backup systems show significant potential
for enabling cheap and easy backup. We have built a co-
operative backup application that uses a distributed hash
table infrastructure to simplify the application’s complex-
ity. We found that certain aspects of our DHT implemen-
tation needed improvement, but we were able to address
the most important issues using erasure coding and local-
ity awareness.

Of course, there are aspects of the system that we hope
to improve. For example, we would like to improve the
verifiability of fragments in DHash so that servers can

4



avoid simple disk space wasting attacks. Fortunately, be-
cause Venti-DHash is largely independent of DHash, any
subsequent improvements to DHash will be available to
the system as well. We expect usability to improve with
time as we gain experience with the system.

In the future, we hope to explore how DHTs such as
DHash can be used to build other large-scale distributed
applications and how the needs of those applications will
interact with the design and features of DHTs.

References
[1] Project Iris.http://www.project-iris.net .

[2] CATES, J. Robust and efficient data management for a
distributed hash table. Master’s thesis, Massachusetts In-
stitute of Technology, May 2003.

[3] COX, L. P.,AND NOBLE, B. D. Pastiche: making backup
cheap and easy. InProceedings of the 5th Symposium
on Operating Systems Design and Implementation(Dec.
2002).

[4] COX, R., AND DABEK , F. Learning Euclidean coor-
dinates for internet hosts.http://www.pdos.lcs.
mit.edu/˜rsc/6867.pdf , Dec. 2002.

[5] DABEK , F., KAASHOEK, M. F., KARGER, D., MOR-
RIS, R., AND STOICA, I. Wide-area cooperative storage
with CFS. InProceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP ’01)(Oct. 2001).
http://www.pdos.lcs.mit.edu/chord/ .

[6] K UBIATOWICZ , J., BINDEL , D., CHEN, Y., CZERWIN-
SKI, S., EATON, P., GEELS, D., GUMMADI , R., RHEA,
S., WEATHERSPOON, H., WEIMER, W., WELLS, C.,
AND ZHAO, B. OceanStore: An architecture for global-
scale persistent storage. InProceeedings of the Ninth in-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS
2000)(Boston, MA, Nov. 2000), pp. 190–201.

[7] L ILLIBRIDGE , M., ELNIKETY, S., BIRRELL, A., BUR-
ROWS, M., AND ISARD, M. A cooperative backup system
scheme. InProceedings of the 2003 USENIX Technical
Conference(June 2003).

[8] M AZI ÈRES, D. A toolkit for user-level file systems. In
Proceedings of the 2001 USENIX Technical Conference
(June 2001), pp. 261–274.

[9] QUINLAN , S.,AND DORWARD, S. Venti: a new approach
to archival storage. InProceedings of the 1st USENIX Con-
ference on File and Storage Technologies (FAST)(2002).

[10] RABIN , M. Efficient dispersal of information for security,
load balancing, and fault tolerance.Journal of the ACM
36, 2 (Apr. 1989), 335–348.

[11] RHEA, S., EATON, P., GEELS, D., WEATHERSPOON, H.,
ZHAO, B., AND KUBIATOWICZ , J. Pond: the OceanStore

prototype. InProceedings of the 2nd USENIX Conference
on File and Storage Technologies (FAST)(2003).

[12] WEATHERSPOON, H., AND KUBIATOWICZ , J. D. Era-
sure coding vs. replication: A quantitative comparison. In
Proceedings of the 1st International Workshop on Peer-to-
Peer Systems(Mar. 2002).

5


