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Approximately achieving Gaussian relay

network capacity with lattice-based QMF codes
Ayfer Özgür and Suhas Diggavi

Abstract

In [1], a new relaying strategy, quantize-map-and-forward (QMF) scheme, has been demonstrated to approximately

achieve (within an additive constant number of bits) the Gaussian relay network capacity, universally, i.e., for arbitrary

topologies, channel gains and SNRs. This was established using Gaussian codebooks for transmission and random

mappings at the relays. In this paper we develop structured lattice codes that implement the QMF strategy. The main

result of this paper is that such structured lattice codes can approximately achieve the Gaussian relay network capacity

universally, again within an additive constant. In addition, we establish a similar result for half-duplex networks, where

we demonstrate that one can approximately achieve the capacity using fixed scheduling and uniform power allocation.

I. INTRODUCTION

Characterizing the capacity of relay networks has been a long-standing open question in network information

theory. The seminal work of Cover and El-Gamal [6] has established several basic achievability schemes for relay

channels. More recently there has been extension of these techniques to larger networks (see [11] and references

therein). In [1], motivated by a deterministic model of wireless communication, a new relaying strategy, called

quantize-map-forward (QMF) was developed. It was shown that the quantize-map-and-forward scheme achieves

within a constant number of bits from the information-theoretic cutset upper bound. This constant is universal in

the sense that it is independent of the channel gains and the operating SNR, though it could depend on the network

topology (like the number of nodes). Moreover QMF was shown to be robust in that the relays did not need

information about network topology or channel conditions, and it also achieved the compound network capacity

approximately.

In the QMF scheme developed in [1], each relay node first quantizes its received signal at the noise level, then

randomly maps it directly to a Gaussian codeword and transmits it. The critical difference in the QMF strategy from

the compress-forward strategy of [6] is that it does not map the quantized signal to a digital bin-index, which is

then encoded onto the transmit codebook. Instead at each relay, QMF directly maps the quantized sequence to the

transmit sequence, and therefore does not require explicit choices of binning rates. This subtle, but critical difference

enables analysis for arbitrary wireless relay networks where it was shown that QMF is approximately optimal. The
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direct mapping at the relays also gives a “universality” property, which allows the same relay operation to work

for multiple destinations (multicast) and uncertain network situations (compound networks).

Following this result, there have been several papers that build on this approximation approach (see for example

[2], [3], [5], [7] and references therein) where many interesting ideas have been developed (including extension to

discrete memoryless networks and connections to algebraic flows). A natural question that we address in this paper

is whether lattice codes retain the approximate optimality of the above scheme. This is motivated in part since

lattice codes along with lattice decoding could enable computationally tractable encoding and decoding methods.

For example lattice codes were used to achieve the capacity of Gaussian channels in [17], and for communication

over multiple-access relay networks (with orthogonal broadcast) in [16]. The main result of this paper is to show

that the QMF scheme using nested lattice codes for transmission and quantization along with structured lattice-to-

lattice maps still achieves the Gaussian relay network capacity within a constant. This result1, is summarized in

Theorem 2.1. It also enables many other approximation results established in [1]; all those approximation results

can now be achieved through structured lattice codes. These include the result for multicast networks as well as

for compound networks.

The use of structured lattice codes requires the specification of a structured lattice-to-lattice mapping between the

quantization and transmission codebooks at each relay. We design such a map by using the representation of nested

lattices through linear codes lifted appropriately to the real domain. Such a representation of nested lattices was

studied in [20] and also [17]. This enables us to design lattice-to-lattice maps at the relays, which can be effectively

implemented using linear (finite-field) operations 2 but still retain approximate optimality. In this paper we make

several other technical contributions to establish the main result: (i) we use a lattice vector quantizer instead of

the scalar lattice quantizer used in [1], and this enables us to get a better approximation constant. (ii) we develop

a “typical decoder” analysis for lattices that enables us to establish the approximation result, which might be of

independent interest. (iii) we develop a simple outer bound on the information-theoretic capacity of half-duplex

networks, earlier upper bounds apply under the restriction of fixed schedules and no transmit power optimization

across the half-duplex states as explained below.

Half-duplex radios have the constraint that they cannot transmit and receive signals simultaneously over the

same frequency band. Therefore, each relay needs to develop a strategy of when to listen and when to transmit.

Fixed scheduling strategies are those where the listen-talk states of the relays are established prior to the start

of communication (but perhaps depending on global channel/network conditions). However, random scheduling

strategies are those which allow the schedules to change during run-time, so that the transmit and receive states

of the relays can be used to convey additional information. Moreover, the transmit power of the relays can be

1This result was first presented in [4], is the first structured code for approximately achieving the wireless network capacity.
2The relay operations are quite simple, and just involve matrix-vector multiplication over finite fields and remapping bits into lattice points.

Therefore we believe that these are easily implemented in practice. However, the decoding could still be onerous. Recently approaches based

on iterative codes have been proposed to implement QMF [9], [10]. These are heuristic approaches which seem to yield excellent performance

with almost linear complexity for simple topologies, but as of yet do not have proof of approximate optimality.
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optimized across different configurations of the network. Note that in a network of N relays where each relay

can be in either transmit or receive state, there are 2N different possible configurations for the network. We show

that the QMF strategy with fixed schedules and an equal power allocation strategy across the half-duplex states,

can approximately achieve the capacity of half-duplex networks. This establishes the first approximation result for

half-duplex networks. Note that earlier approximation results were based on restricting to fixed scheduling strategies

with equal power allocation [1]. It is easy to observe that the random strategies can increase the capacity by at most

one bit per relay over fixed schedules, or N bits/s/Hz in total. This has been pointed out in [14], [15]. However, to

the best of our knowledge, the capacity gain due to transmit power optimization across the 2N states of the network

has not been investigated earlier. We show that this gain can be at most linear in N .

The paper is organized as follows: In Section II, we state the network model and our main results. In Section III,

we summarize the construction of the nested lattice ensemble. In Section IV, we describe the network operation. In

particular, we specify how we use the nested lattice codes of Section III for encoding at the source, quantization,

lattice-to-lattice mapping and transmission at the relay nodes, and decoding at the destination node. In Section V,

we analyze the performance achieved by the scheme. In Section VI, we establish the approximation result for

half-duplex networks. Many of the detailed proofs are given in the Appendices.

II. MAIN RESULTS

We consider a Gaussian relay network with a set M of N nodes, where a source node s ∈ M wants to

communicate to a destination node d ∈ M, with the help of relay nodes M\{s, d}. The signal received by node

i ∈M is given by

yi =
∑
j 6=i

Hijxj + zi (1)

where Hij is the Ni ×Mj channel matrix from node j comprising Mj transmit antennas to node i comprising Ni

receive antennas. Each element of Hij represents the complex channel gain from a transmitting antenna of node j

to a receiving antenna of node i. The noise zi is complex circularly-symmetric Gaussian vector CN (0, I) and is

i.i.d. for different nodes. The transmitted signals xj are subject to an average power constraint P . Note that without

loss of generality we have scaled the noise power to 1.

The following theorems are the main result of this paper.

Theorem 2.1: Using nested lattice codes for transmission and quantization along with structured mappings at the

relays, we can achieve all rates

R ≤ min
Ω
I(xΩ;yΩc |xΩc)− (2 + log 2)

∑
i∈M\s

Ni

between s and d, where Ω is a source-destination cut of the network, xΩ = {xi, i ∈ Ω} and xi, i ∈ M are i.i.d.

CN (0, (P/Mi)I).3

3The logarithms in the paper are base e.
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It has been shown in [1] (see Lemma 6.6) that the restriction to i.i.d. Gaussian input distributions is within

2
∑
i∈MMi bits/s/Hz of the cut-set upper bound. Therefore the rate achieved using lattice codes in the above

theorem is within 2
∑
i∈MMi + (2 + log 2)

∑
i∈MNi bits/s/Hz to the cutset upper bound of the network (or∑

i∈MMi + (2 + log 2)/2
∑
i∈MNi for real Gaussian networks)4. This is summarized in the following result.

Theorem 2.2: Using nested lattice codes, we can approximately achieve the capacity of Gaussian wireless

networks to within 2
∑
i∈MMi + (2 + log 2)

∑
i∈MNi bits/s/Hz.

The same lattice coding techniques used to obtain the approximate characterization of Theorem 2.2, can be

used to get the approximate characterization for multiple-source multicast (where there are multiple sources and

destinations, which are interested in all the sources) as well as for compound relay networks. The extensions of

lattice codes to these cases are straightforward applications of the ideas in this paper using the tools developed in

[1], [12], [13]. Another interesting case is that of half-duplex networks considered in [1], where it was established

that the QMF scheme approximately achieved the best possible rates, when attention was restricted to the class of

fixed schedules with constant transmit power for the relays. This left open the question whether allowing random

schedules could invalidate the approximate optimality of QMF. In this paper, we establish the approximation result

for any scheme over half duplex networks. Moreover, we show that a uniform power allocation across the states is

approximately optimal. The following result is proved in Section VI.

Theorem 2.3: Using nested lattice codes and fixed scheduling of transmission states, we can approximately

achieve the capacity of Gaussian relay networks with half-duplex constraint to within N + 4
∑
i∈MMi + (2 +

log 2)
∑
i∈MNi bits/s/Hz.

For simplicity of presentation, in the rest of the paper we concentrate on scalar channels where every node has a

single transmit and receive antenna. Moreover, we focus our attention to layered networks, which were defined in

[1]. These are networks, where the number of hops are the same for every path from the source to the destination

in the network. An example of such a layered network is given in Figure 1. More precisely, the signal received by

node i in layer l, 0 ≤ l ≤ ld, denoted i ∈Ml, is given by

yi =
∑

j∈Ml−1

hijxj + zi

where hij is the real scalar channel coefficient from node j to node i and s ∈M0, d ∈Mld . The analysis can be

extended to arbitrary (non-layered) networks by following the time-expansion argument of [1] (see Section VB of

that paper) and to multicast traffic with multiple destination nodes as well as to multiple multicast where multiple

source nodes multicast to a group of destination nodes. The complex case follows by representing each complex

number as a two-dimensional real vector. The extension to multiple antennas is discussed inside the text.

4These constants can be further tightened by using a sharper analysis and adjusting the quantization distortion levels, but our goal here is not

to get the tightest bound for the constants.
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III. PRELIMINARIES: CONSTRUCTION OF THE NESTED LATTICE ENSEMBLE

In this section we review some of the basic properties of lattices that can be found in standard references like

[17], [18], [19]. We summarize these properties to make this paper more self-contained, as well as to establish the

notation used throughout this paper.

Consider a lattice Λ, or more precisely, a sequence of lattices Λ(n) indexed by the lattice dimension n, with V

denoting the Voronoi region of Λ. The second moment per dimension of Λ is defined as

σ2(Λ) =
1

n

1

|V|

∫
V
‖x‖2dx

where |V| denotes the volume of V . We also define the normalized second moment of Λ,

G(Λ) =
σ2(Λ)

|V|2/n
. (2)

Throughout the paper, we assume that Λ (or more precisely, the sequence of lattices Λ(n)) is both Rogers and

Poltyrev-good. The existence of such lattices has been shown in [18]. Formally, Λ satisfies the following properties:

• (Rogers-good) Let Ru and Rl be the covering and effective radius of the lattice Λ. Λ (more precisely the

sequence of lattices Λ(n)) is called Rogers-good if its covering efficiency approaches 1 as the dimension n

grows,

ρcov(Λ) =
Ru
Rl
→ 1. (3)

It is known that a lattice that is good for covering is necessarily good for quantization. A lattice is called good

for quantization if

G(Λ)→ G∗n (4)

where G∗n is the normalized second moment of an n-dimensional sphere and G∗n → 1
2πe when the dimension

n becomes large. (4) follows from (3) and the relation (see [18])

G(Λ) ≤ n+ 2

n
G∗n (ρcov)

2.

• (Poltyrev-good) Let Z be a Gaussian random vector whose components are i.i.d. N (0, σ2), such that σ2 ≤

σ2(Λ). The volume to noise ratio of the lattice Λ relative to N (0, σ2) is defined as µ = σ2(Λ)/σ2. Then, Λ

(more precisely the sequence of such lattices Λ(n)) is called Poltyrev-good if

P(Z /∈ V) < e−n[EP (µ)−on(1)]

where EP (µ) is the Poltyrev exponent given by

EP (µi) =


1
2 [(µi − 1)− logµi] 1 < µi ≤ 2

1
2 log eµi

4 2 ≤ µi ≤ 4

µi
8 µi ≥ 4.
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Let the n × n full-rank generator matrix of Λ be denoted by GΛ, i.e., Λ = GΛZn.5 This fixed lattice Λ will

serve as the coarse lattice for all the nested lattice constructions in this paper. The fine lattice Λ1 is constructed

using Loeliger’s type-A construction [20]. Let m,n, p be integers such that m ≤ n and p is prime. The fine lattice

is constructed using the following steps:

• Draw an n × m matrix G such that each of its entries is i.i.d according to the uniform distribution over

Zp = {0, 1, . . . , p− 1}.

• Form the linear code

C = {c : c = G ·w,w ∈ Zmp }, (5)

where “·” denotes modulo-p multiplication.

• Lift C to Rn to form 6

Λ′1 = p−1C + Zn.

where for two sets A ⊂ Rn and B ⊂ Rn, the sum set A+B ⊂ Rn denotes A+B = {a+b : a ∈ A,b ∈ B}.

• Λ1 = GΛ Λ′1 is the desired fine lattice. Note that since Zn ⊆ Λ′1, we have Λ ⊆ Λ1.

• Draw v uniformly over p−1Λ ∩ V and translate the lattice Λ1 by v. The nested lattice codebook consists of

all points of the translated fine lattice inside the Voronoi region of the coarse lattice,

Λ∗ = (v + Λ1) mod Λ = (v + Λ1) ∩ V. (6)

In the above equation, we define x mod Λ as the quantization error of x ∈ Rn with respect to the lattice Λ, i.e.,

x mod Λ = x−QΛ(x), (7)

where QΛ(x) : Rn → Λ is the nearest-neighbor lattice quantizer defined as,

QΛ(x) = arg min
λ∈Λ
‖x− λ‖.

Note that the quantization and mod operations with respect to a lattice can be defined in different ways. The mod

operation in (7) maps x ∈ Rn to the Voronoi region V of the lattice. More generally, it is possible to define a mod

or quantization operation with respect to any fundamental region of the lattice. In particular, when we consider the

integer lattice Zn in the sequel, or more generally its multiples pZn where p is a positive integer, we will assume

that

x mod pZn = x− bxcp

where bxcp denotes component-wise rounding to the nearest smaller integer multiple of p. In other words, the mod

operation with respect to pZn will map the point x ∈ Rn to the region p [0, 1)n.

5For any operation f : Rn → Rn and a set A ⊂ Rn, f(A) ⊂ Rn denotes f(A) = {f(a) : a ∈ A}.
6In the sequel, we slightly abuse notation by using C to denote both the code over the finite field and its projection to the reals. Hence, the

codewords c are either considered as vectors in Zn
p , in which case they are subject to finite field operations, or they are considered as vectors

in Rn subject to real field operations. It is to be deduced from the context to which of these two cases the notation refers to.
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The above construction yields a random ensemble of nested lattice codes that has a number of desired properties

as we discuss next.

First, note that there is a bijection between

Znp ↔ p−1Znp = p−1Zn ∩ [0, 1)n ↔ p−1Λ ∩GΛ [0, 1)n ↔ p−1Λ ∩ V.

The last bijection follows from the fact that both GΛ [0, 1)n and V are fundamental regions of the lattice Λ, i.e.,

they both tile Rn. Since C ⊆ Znp , the above bijection restricted to C yields,

C ↔ p−1C = Λ′1 ∩ [0, 1)n ↔ Λ1 ∩GΛ [0, 1)n ↔ Λ1 ∩ V ↔ Λ∗. (8)

Note also that Λ∗ ⊆ p−1Λ ∩ V . The bijections above can be explicitly specified in both directions and we will

make use of this fact in the next section.

Note that w in (5) runs through all the pm vectors in Zmp . Let us index these vectors as w(i), i = 0, . . . , pm−1.

Let us index the corresponding codewords in C as C(i) = G · w(i), i = 0, . . . , pm − 1. The pm codewords in C

need not be distinct. By the bijection in (8), each codeword in C corresponds to one fine lattice point in Λ1 ∩ V

and one codeword of Λ∗. Let us similarly index the points in Λ1 ∩ V as Λ1(i) and the corresponding codewords

of Λ∗ as Λ∗(i), for i = 0, . . . , pm − 1. We have,

Λ1(i) = GΛp
−1C(i) mod Λ Λ∗(i) = (v + Λ1(i)) mod Λ. (9)

Proposition 3.1: The random codebook Λ∗ defined in (9) has the following statistical properties:

• Let λ ∈ p−1Λ ∩ V ,

P(Λ∗(i) = λ) =
1

|p−1Λ ∩ V|
=

1

pn
. (10)

• Let λ1, λ2 ∈ p−1Λ ∩ V, ∀i 6= j,

P(Λ∗(i) = λ1,Λ
∗(j) = λ2) =

1

|p−1Λ ∩ V|2
=

1

p2n
. (11)

In other words, the construction in this section yields an ensemble of nested lattice codes such that each

codeword of the random codebook Λ∗ is uniformly distributed over p−1Λ ∩ V and the codewords of Λ∗ are

pairwise independent. These two properties suffice to prove the random coding result of this paper.

Proof of Proposition 3.1 The first property (10) simply follows from the fact that v is uniformly distributed on

p−1Λ ∩ V . For the second probability, we have

P(Λ∗(i) = λ1,Λ
∗(j) = λ2)

= P ((v + Λ1(i)) mod Λ = λ1, (v + Λ1(j)) mod Λ = λ2)

= P((v + Λ1(i)) mod Λ = λ1, (v + Λ1(j)) mod Λ− (v + Λ1(i)) mod Λ = λ2 − λ1)

= P(Λ1(i) = (λ1 − v) mod Λ, (Λ1(j)− Λ1(i)) mod Λ = (λ2 − λ1) mod Λ)

= P((Λ1(j)− Λ1(i)) mod Λ = (λ2 − λ1) mod Λ)

× P(Λ1(i) = (λ1 − v) mod Λ | (Λ1(j)− Λ1(i)) mod Λ = (λ2 − λ1) mod Λ). (12)
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Note that the first probability in (12) is independent of v. Let us denote λ = (λ2 − λ1) mod Λ ∈ p−1Λ ∩ V , we

have

(Λ1(j)− Λ1(i)) mod Λ = λ ⇔ (GΛp
−1C(j) mod Λ−GΛp

−1C(i) mod Λ) mod Λ = λ

⇔ (GΛp
−1C(j)−GΛp

−1C(i)) mod Λ = λ

⇔ (GΛp
−1C(j)−GΛp

−1C(i)) = λ+ x, x ∈ Λ

⇔ (C(j)− C(i)) = pG−1
Λ λ+ pG−1

Λ x, pG−1
Λ x ∈ pZn

⇔ (C(j)− C(i)) mod pZn = pG−1
Λ λ mod pZn (13)

⇔ G · (w(j)−w(i)) = c, (14)

where all equations except the last one are over the reals. The last equation (14) is a restatement of (13) in terms

of finite field operations with c = pG−1
Λ λ mod pZn in (14) treated as a finite-field vector in Znp . Since j 6= i, the

vector w(j)−w(i) has at least one nonzero entry. Since the corresponding column of G is uniformly distributed

over Znp , we have

P(G · (w(j)−w(i)) = c) = P((Λ1(j)− Λ1(i)) mod Λ = (λ2 − λ1) mod Λ) =
1

pn
.

For the second probability in (12), it is easy to observe that for any realization of G, hence Λ1(i), there is exactly

one choice of v out of pn possible choices that satisfies the equality Λ1(i) = (λ1 − v) mod Λ. Combining these

observations yields the conclusion in (11). �

The above construction yields a random ensemble of nested lattice pairs Λ ⊆ Λ1 with coding rate,

R =
1

n
log |Λ∗|

which can be tuned by choosing the precise magnitudes of m and p. Note that |Λ∗| = pm if the random matrix G

in (5) is full rank. The probability that G is not full rank can be upper bounded by

P(rank(G) < m) =
∑

w∈Zmp ,w 6=0

P(G ·w = 0) = (pm − 1) p−n.

Therefore if m ≤ βn for β < 1, the above probability decreases to zero at least exponentially as n increases (p may

also grow with n). We assume that m is chosen to satisfy this condition in all our nested lattice code constructions

in the next section.

IV. LATTICE BASED QMF SCHEME

The quantize-map-forward (QMF) strategy, introduced in [1] is the following. Each relay first quantizes the

received signal at the noise level, then randomly maps it to a Gaussian codeword and transmits it. The destination

then decodes the transmitted message, without requiring the decoding of the quantized values at the relays. This

overall operation ensures that the relays need not know the network topology, or the channel gains of the signals

DRAFT



9

being received by it7. The specific scheme that [1] focused on was based on a scalar (lattice) quantizer followed by

a mapping to a Gaussian random codebook. However, the use of vector quantizers and Gaussian codebooks leads

to similar approximation results (see [2], [13] and references therein). However, the focus of this paper is to use

lattices in order to implement the QMF scheme and analyze it.

We first replace the (Gaussian) quantizer and the Gaussian transmit codebook at each relay with lattice versions.

This basically leads us to design lattice-to-lattice maps at the relays. Intuitively, this is done by using the linear

code representation of the lattices described in Section III. Once the relay quantizes the received signal, using the

bijection given in (8) we can extract the point c in the finite field corresponding to the quantized value ŷ. Now,

this point is linearly transformed using a random matrix G over the finite field, and then Gc is viewed as a finite

field representation of the transmit lattice Λ. Therefore it can be “lifted” to the real domain and transmitted. This

intuition is made precise in (22) and Proposition 4.2. Note that this transformation effectively only requires a matrix

multiplication over the finite field and hence has polynomial complexity in the number of operations required to

implement it8.

As mentioned earlier, description of the lattice-based scheme and its analysis (in Section V) will be done for

layered networks (illustrated in Figure 1). However, the extension of these results to arbitrary (non-layered) networks

is done through the standard technique of time-expansion (see [1], Section VI B). In order to implement the

QMF scheme, we also need to specify the decoder used by the destination. For this, we define a lattice-based

“typicality” decoder9. Such a decoder finds a “plausible” sequence of received (quantized) sequences that could

have resulted in the received observation. Given this definition, we can bound the probabilities using appropriate

Gaussian approximation and therefore use an analysis inspired by [1]. A more precise definition of the lattice

typicality decoder is given in (26) and the precise analysis is done in Section V.

In the previous section, we have constructed an ensemble of nested lattices where the coarse lattice Λ is fixed and

the fine lattice Λ1 is randomized. It has been shown in [21] that with high probability, a nested lattice (Λ1,Λ) in this

ensemble is such that both Λ1 and Λ are Rogers and Poltyrev-good. (The fixed lattice Λ is Rogers and Poltyrev-good

by construction.) For quantization and transmission at each relay, we use randomly and independently generated

codebooks by the construction of the earlier section. Even though we use the same construction, the codebooks are

generated with different parameters depending on whether we do transmission or quantization and also depending

on the noise level at each relay. The mapping between the quantization and transmission codebooks at each relay

is specified below.

Source: The source has psms messages, where ps is prime and ms ≤ n. The messages are represented as length-ms

vectors over the finite field Zps and mapped to a random nested lattice codebook Λ∗ following the construction in

7Of course the final destination, which needs to decode the source message needs to know these channels to be able to unravel the

transformations to decode.
8This is assuming that the quantization to the lattice point can be done efficiently. This is true for integer lattices.
9The definition of the typicality decoder for lattices is inspired by the Gaussian version. This might be independently useful for any lattice

based scheme.
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Fig. 1. Example of a layered network, where all paths from S to D are three hops. Additionally this clarifies the notation Ml for the lth

layer, where M1 = {A1, B1} and M1 = {A2, B2}, with ld = 3, implying that MLd = {D}.

Section III. In the construction, the coarse lattice Λ is scaled such that its second moment,

σ2(ΛT ) =
n

n+ 2

G(ΛT )

G∗n

1

(ρcov(ΛT ))2
P, (15)

where ΛT now denotes the scaled version of the lattice Λ to satisfy the power constraint. Note that σ2(ΛT )→ P as

n increases since ΛT is Rogers-good. This choice ensures that every codeword of Λ∗ satisfies the power constraint

P . This result is stated in the Proposition 4.1 below. The information rate of the code is given by

R =
1

n
log ps

ms .

Let us denote by x
(w)
s , w ∈ {1, . . . , enR} the random transmit codewords corresponding to each message w of the

source node. Note that by Proposition 3.1, the messages w are mapped uniformly and pair-wise independently to

the lattice points p−1ΛT ∩ VT .

Proposition 4.1: Each transmitted codeword x
(w)
s satisfies the transmit power constraint P .

Proof of Proposition 4.1: Since every transmitted codeword x
(w)
s ∈ VT , we have

1

n
‖x(w)

s ‖2 ≤
1

n
(RTu )2,

where RTu is the covering radius of ΛT . We now relate the covering radius RTu of ΛT to its second moment σ2(ΛT ).

Let G∗n be the normalized second moment of the n-dimensional sphere B(RTl ) of radius RTl . We have the identity

G∗n |B(RTl )|2/n =
(RTl )2

(n+ 2)

Since |VT | = |B(RTl )| when RTl is the effective radius of ΛT , we have

RTl =

√
n+ 2

n

G∗n
G(ΛT )

√
nσ2(ΛT ).

Thus, the covering radius RTu of the lattice ΛT is given by

RTu = ρcov(Λ
T )

√
n+ 2

n

G∗n
G(ΛT )

√
nσ2(ΛT ) (16)
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This expression together with our choice in (15), yields

1

n
‖x(w)

s ‖2 ≤ P.

�

Relays: The relay node i receives the signal yi. As explained earlier, the QMF strategy at the relay is to quantize

the received signal using a lattice quantizer and then mapping it to a lattice transmit codebook. The main task is

to design the appropriate lattice-to-lattice map that we described informally earlier.

Quantize: The signal yi is first quantized by using a nested lattice codebook Λ∗Q,i which is randomly and

independently generated at each relay i by using the nested lattice construction of Section III using the following

parameters (same for all relays): Let

Ds = max
i

∑
j∈Ml−1

|hij |2 P. (17)

The coarse lattice ΛQ is a scaled version of the lattice Λ such that

σ2(ΛQ) = 2η(Ds + 1) (18)

for a constant η > 1 which is more precisely specified in the proof of Lemma 5.1. Recall that we had set the noise

variance to be 1. We denote the generator matrix of the scaled coarse lattice ΛQ by GΛQ . The parameters mr and

pr are chosen such that mr = (log n)2 and pr is the prime number such that10

pmrr = enRr , where Rr =
1

2
log σ2(ΛQ). (19)

Note that since Rr is independent of n, pr = e
nRr

(logn)2 , i.e, pr → ∞ as n → ∞. With the choice in (19) for Rr,

the second moment of ΛQ1 is given by

σ2(ΛQ1 ) =
G(ΛQ1 )

G(ΛQ)
, (20)

which follows from (2) by noting that |VQ1 | = |VQ|/enRr . It is shown in [21] that the construction of Section III

yields nested lattices where the fine lattice is Rogers and Poltyrev-good with high probability if m ≥ (log n)2. (The

coarse lattice is both Rogers and Poltyrev-good by construction.) Since both ΛQ1 and ΛQ are Rogers-good w.h.p.,

σ2(ΛQ1 )→ 1 when n increases. Therefore, we are effectively quantizing at the noise level.

At each relay, we independently generate a fine lattice ΛQ1 from the above ensemble, denoted by ΛQ1,i, and use

the corresponding nested lattice codebook denoted by Λ∗Q,i. As before, we can index the enRr codewords of Λ∗Q,i as

ŷ
(ki)
i , ki ∈ {1, . . . , enRr} where ki enumerate the prmr vectors w in Zmrpr underlying the construction of the nested

lattice codebook in (5). Note that by Proposition 3.1, for two indices ki 6= k′i, ŷ
(ki)
i and ŷ

(k′i)
i are independent,

each uniformly distributed over the set of lattice points p−1
r ΛQ ∩ VQ. Moreover, for different relays i 6= j, ŷ(ki)

i

and ŷ
(kj)
i are independent.

10To be more precise, one can take pr to be the largest prime number such that pr ≤ enRr/mr in which case the rate of the code is
1
n

log pmrr ≤ Rr . When n is large, the difference becomes negligible and is therefore ignored.
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The quantized signal at relay i is given by

ŷi = QΛQ1,i
(yi + ui) mod ΛQ

where ui is a random dither known at the destination node and uniformly distributed over the Voronoi region VQ1,i
of the fine lattice ΛQ1,i. The dithers ui are independent for different nodes. We will either say that yi is quantized

to ŷi or to ki meaning that ŷi = ŷ
(ki)
i .

Map and Forward: Let us scale the coarse lattice Λ such that its second moment σ2(ΛT ) is given by (15). Let

GΛT denote the generator matrix of the scaled coarse lattice. The quantized signal ŷi at relay i is mapped to the

transmitted signal xi by the following mapping,

xi = GΛT p
−1
r

(
Gi pr

(
G−1

ΛQ
ŷi mod Zn

)
mod prZn

)
+ vi mod ΛT , (21)

where Gi is an n × n random matrix with its entries uniformly and independently distributed in 0, 1, . . . , pr − 1

and vi is a random vector uniformly distributed over p−1
r ΛT ∩VT , where VT is the Voronoi region of ΛT . Gi and

vi are independent for different relay nodes. We denote by x
(ki)
i , ki ∈ {1, . . . , enRr} the corresponding sequence

that the codeword ŷ
(ki)
i is mapped to in (21).

The mapping in (21) can be simplified to the form,

xi = GΛT GiG
−1
ΛQ

ŷi + vi mod ΛT . (22)

Effectively, it takes the quantization codebook Λ∗Q,i, expands it by multiplying with a random matrix with large

entries (of the order of pr) and then folds it to the Voronoi region of ΛT . Since the entries of Gi are potentially very

large, even if two codewords are close in Λ∗Q,i, they are mapped independently to the codewords of the transmit

codebook. Note that the complexity of the mapping is polynomial in n, while random mapping of the form in [1]

has exponential complexity in n.

Proposition 4.2: The mapping in (21) or (22) has the following properties:

(i) At each relay i, the transmitted sequences xi ∈ Λ∗i , where Λ∗i is a random nested lattice codebook.

(ii) Given two quantization codewords ŷ
(ki)
i , ŷ

(k′i)
i ∈ Λ∗Q,i at relay i such that ki 6= k′i, the corresponding transmit

codewords x
(ki)
i and x

(k′i)
i are independent, each uniformly distributed over p−1

r ΛT ∩ VT .

(iii) The mapping induces an independent distribution across the relays. Formally, given a set of quantization

codewords {ŷ(ki)
i , i ∈M} the corresponding transmit codewords {x̂(ki)

i , i ∈M} are independently distributed.

Proof of Proposition 4.2: The proposition says that the quantization codebooks at each relay are independently

mapped to a random nested lattice codebook from the ensemble constructed in the earlier section. The proof is based

on the bijection given in (8): There is one-to-one correspondence between the codebook Λ∗Q,i and its underlying

finite field codebook CQ,i. The mapping in (21) first takes the codeword ŷi ∈ Λ∗Q,i to its corresponding codeword
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in CQ,i. Note that

ŷi ∈ ΛQ1,i ⇒ G−1
Λ ŷi ∈ p−1

r Zn

⇒ G−1
Λ ŷi mod Zn ∈ p−1

r Zn ∩ [0, 1)n

⇒ pr (G−1
Λ ŷi mod Zn) ∈ Znp .

Therefore, c = pr (G−1
Λ ŷi mod Zn) ∈ CQ,i. This codeword c ∈ CQ,i is then mapped to a random finite-field

codebook Ci = {c′ : c′ = Gi · c, c ∈ CQ,i}. We finally form the nested lattice codebook Λ∗i corresponding to Ci
following again the construction of Section III. Note that, for c′ ∈ Ci,

GΛT p
−1
r c′ + vi mod ΛT ∈ Λ∗i ,

where Λ∗i = (vi + ΛT1,i) mod ΛT and ΛT1,i is the fine lattice generated by Ci. Therefore, since Λ∗i is obtained by

the construction of Section III from the random linear code Ci, we obtain the result specified in (i). The second

property (ii) follows by similar observations as in Section III: The random matrix Gi maps every nonzero vector

c ∈ CQ,i uniformly at random to another finite field vector in Znp . Two quantized values ŷ
(ki)
i , ŷ

(k′i)
i ∈ Λ∗Q,i at relay

i such that ki 6= k′i correspond to two distinct codewords in CQ,i which are randomly mapped into new finite field

codewords by the random linear map Gi. The fact that the lattice points x
(ki)
i ,x

(k′i)
i corresponding to these new

finite-field codewords are independently and uniformly distributed over p−1
r ΛT ∩ VT can be shown by following

the arguments in the second part of Proposition 3.1. The third property follows from the independence of the Gi’s

and vi’s for different nodes i. �

Destination: Given its received signal yd, together with the knowledge of all codebooks, mappings, dithers and

channel gains, the decoder performs a consistency check to recover the transmitted message. For each relay i and

quantization codeword ŷ
(ki)
i , it first forms the signals

ỹ
(ki)
i = ŷ

(ki)
i − ui mod ΛQ. (23)

If yi denotes the received signal at node i ∈Ml in the lth layer, where Ml refers to the nodes in the lth layer

of the layered network, ŷi its quantized version and the ỹi the resultant signal after the transformation above, we

have

ỹi = ŷi − ui mod ΛQ

= QΛQ1,i
(yi + ui)− ui mod ΛQ

(a)
= (yi − (yi + ui) mod ΛQ1,i︸ ︷︷ ︸

u′i

) mod ΛQ

=
∑

j∈Ml−1

hijxj + zi − u′i mod ΛQ, (24)

where (a) follows by definition in (7) and the quantization error u′i = (yi + ui) mod ΛQ1,i is independent of yi

and is uniform over the Voronoi region of ΛQ1,i. This follows by the so called Crypto Lemma which is extensively

used in the sequel. We state the lemma below for completeness.
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Lemma 4.1 (Crypto Lemma,[17]): Let u be a random variable uniformly distributed over the Voronoi region V

of a lattice Λ. For any random variable x ∈ V , statistically independent of u, we have the sum y = x+u mod Λ

is uniformly distributed over V , and is statistically independent of x.

To conclude that u′i = (yi + ui) mod ΛQ1,i is independent of yi, note that u′i = (yi mod ΛQ1,i + ui) mod ΛQ1,i.

By the Crypto Lemma, u′i is independent of yi mod ΛQ1,i. Since it also independent of QΛQ1,i
(yi), we conclude

that u′i is independent of yi.

The decoder then forms the set Ŵ of messages ŵ such that

Ŵ = {ŵ : ∃{ki}such that (x(ŵ)
s ,yd, {ỹ(ki)

i ,x
(ki)
i }i∈M) ∈ Ãε} (25)

where Ãε denotes consistency. We define consistency as follows: For a given set of indices {ki}i∈M, we say

(x
(ŵ)
s ,yd, {ỹ(ki)

i ,x
(ki)
i }i∈M) ∈ Ãε if

‖(ỹ(ki)
i −

∑
j∈Ml−1

hijx
(kj)
j ) mod ΛQ‖2 ≤ nσ2

c , (26)

for all i ∈ Ml, 1 ≤ l ≤ ld where for convenience of notation we have denoted x
(ŵ)
s = x

(kj)
j , j ∈ M0, and

yd = ỹ
(ki)
i , i ∈Mld . Recall that Ml refers to the nodes in the lth layer of the layered network. We choose

σ2
c = 2(1 + ε) (27)

for a constant ε > 0 that can be taken arbitrarily small. Recall from (1), (18) that the noise variance and the

quantization error were set to 1.

The decoder declares ŵ to be the transmitted message if it is the unique message in Ŵ . An error occurs when

the declared message ŵ is not the same as w, or when there are multiple messages in Ŵ .

We can interpret the consistency check as follows: For each layer l = 1, . . . , ld − 1 the decoder picks a

set of potential (quantized) received sequences {ỹ(ki)
i }i∈Ml

and the transmit sequences corresponding to them

{x(ki)
i }i∈Ml

. It checks for each layer l, whether the inputs and outputs are consistent, or jointly “typical”, i.e.,

whether the examined outputs {ỹ(ki)
i }i∈Ml

at the layer l can be explained (to within the noise and quantization

error) by the transmitted sequences {x(ki)
i }i∈Ml−1

of layer l − 1 for indices {ki}. The relation (24) and the fact

that ΛQ1,i is Rogers-good ensures that for large n the inputs {x(ki)
i }i∈Ml−1

and those outputs {ỹ(ki)
i }i∈Ml

that

are generated from these inputs are consistent with high probability. Note that the termination conditions for the

consistency check across the layers are known, i.e., xs is known for the message being tested, and yd is the observed

sequence at the destination. Therefore, effectively the decoder checks whether there exists a plausible set of input

and output sequences at each relay that under the message w could yield the observation yd. Note that the definition

of consistency in (26) is closely related to weak typicality. Indeed, it is a variant of the weak typicality condition

for Gaussian vectors. Therefore, effectively our decoder is a (weak) typicality decoder designed for lattices.

A. Multiple Antennas

A slightly modified version of the above scheme applies to the case of multiple transmit and receive antennas at

each node. Let Mi be the number of transmit and Ni be the number of receive antennas at each node.
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Source: The source node s maps its message to Ms independent nested lattice codebooks Λ∗1, . . .Λ
∗
Ms

and transmits

its codeword from its corresponding transmit antenna.

Relays: The relay node i receives Ni signals denoted yi,1, . . . ,yi,Ni . It individually quantizes each signal by adding

an independent random dither,

ŷi,a = QΛQ1,i
(yi,a + ui,a) mod ΛQ, a = 1, . . . , Ni.

The transmitted codeword from the b’th transmit antenna of node i is given by

xi,b = GΛT

Ni∑
l=1

Gi,b,aG
−1
ΛQ

ŷi,a + vi,b mod ΛT . (28)

where Gi,b,a is n×n random matrix independent across i, a and b. The mapping is modified from (22) so that at each

relay, the set of quantization codewords ŷ
(ki,1)
i,1 , . . . , ŷ

(ki,Ni )

i,Ni
is mapped independently to Mi random nested lattice

codebooks. For each of the Mi random codebooks, two different sets of quantization codewords ŷ(ki,1)
i,1 , . . . , ŷ

(ki,Ni )

i,Ni

and ŷ
(k′i,1)

i,1 , . . . , ŷ
(k′i,Ni

)

i,Ni
are mapped uniformly and independently to the set p−1

r ΛT ∩ VT , if ∃a ∈ 1, . . . , Ni such

that ki,a 6= k′i,a.

Destination: Similarly to the single antenna case, for a given message ŵ and a set of observations yd,1, . . . ,yd,Nd ,

the destination node checks whether there exist a set of indices {ki,a}i∈M,1≤a≤Ni such that the inputs and outputs

at each layer are consistent.

The error analysis in the next section is performed for the single antenna case and follows similar lines for the

case of multiple antennas.

V. ERROR ANALYSIS

Overview of proof:: Due to the nature of the decoder at the destination, described in (25), an error occurs when

either the transmitted message w is not in Ŵ or when there is a message w′ 6= w which is in Ŵ . The transmitted

message w from the source and the resulting observation at the destination will pass the consistency check in (26)

with high probability because the channel and the quantization noise at relays will be typical, confined inside a ball

of radius
√
nσc, with probability approaching 1 as n increases. This is made more precise in (33). An error occurs

when there exists an incorrect message w′ that is also consistent with the observation at the destination, i.e., there

exists a plausible sequence of received (quantized) values that can result in the signal seen at the destination if w′

were transmitted.

The main focus in the error analysis is on bounding the probability that a particular incorrect message w′ will

pass the check when w is transmitted. We first split this error event into 2N disjoint subevents indexed by Ω.

Consider the two plausible sequences of received (quantized) values that correspond to w and w′. Ω denotes the

event that these two sequences are different for nodes in the set Ω and same for nodes in Ωc. When this is the

case, we say that nodes in Ω can “distinguish” between the correct and the incorrect message while the nodes in

Ωc can not. This notion of distinguishability was also used in [1]11. The probability of Ω can be split into parts:

11In [1] this was done for Gaussian transmit codebooks and scalar quantizers, whereas in this paper we used lattice vector quantizers and

lattice transmit codebooks.
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the probability that the nodes in Ωc are confused times the probability that the nodes in Ω are not confused given

that the nodes in Ωc are confused. We upper bound the first probability in Lemma 5.2 and the second probability

in Lemma 5.3. Combining the results of the two lemmas we obtain the conclusion in Theorem 2.2. Given this

overview, now we proceed to the more formal arguments.

Proof of Theorem 2.2:: Let w be the transmitted message from the source. As described earlier, We will

analyze error event:

E def=
{
w /∈ Ŵ

}
∪
{
w′ ∈ Ŵ for some w′ 6= w

}
, (29)

where Ŵ is defined in (25). If w is the transmitted message, this probability can be upper bounded as,

P[E ] ≤ enR P[w′ ∈ Ŵ, w′ 6= w] + P[w /∈ Ŵ]︸ ︷︷ ︸
<ε

(30)

where P[w′ ∈ Ŵ] is the probability that a particular incorrect message w′ 6= w passes the consistency check in

(26). This probability can be upper bounded by using the union bound as

P
[
∃{k′i}i∈M s.t. (x(w′)

s ,yd, {ỹ
(k′i)
i ,x

(k′i)
i }i∈M) ∈ Ãε

]
≤

∑
k′1,...,k

′
N

P
[
(x(w′)
s ,yd, {ỹ

(k′i)
i ,x

(k′i)
i }i∈M) ∈ Ãε

]
,

(31)

where each term in the summation is the probability that the corresponding set of particular quantization indices

k′1, . . . , k
′
N make w′ plausible with the observation at the destination.

The second term P[w /∈ Ŵ] in (30) is small for large n since for the correct message the consistency check in

(26) simply reduces to checking whether the quantization and the additive noise are typical. Let {k1, . . . , kN} be the

quantization indices produced during transmission of w. The consistency check in (26) for these actual quantization

codewords is given by

‖(zi − u′i) mod ΛQ‖2 ≤ nσ2
c , (32)

for all i ∈M where we used the relation (24). The noise zi is N (0, 1), therefore for large n, P[‖zi‖2 ≤ n(1+ε)]→

1. This can observed from Lemma 5.2. On the other hand, the quantization noise u′i is uniformly distributed over

the Voronoi region of ΛQ1,i. Since this lattice is Roger’s good, its covering radius Ru → σ2(ΛQ1,i) → 1 when n

is large. Therefore P[‖u′i‖2 ≤ n(1 + ε)] → 1. This can be verified by combining the results of Lemma 7.1 and

Lemma 7.2. Since ‖zi − u′i‖2 ≤ ‖zi‖2 + ‖u′i‖2, we conclude that P[‖(zi − u′i)‖2 ≤ 2(1 + ε)n] → 1. Since there

are finitely many of relays, the union bound gives the same conclusion simultaneously for all relays. Therefore, we

conclude that

P[w /∈ Ŵ]→ 1, (33)

for large n. In the above argument, we have ignored the mod ΛQ operation in (32) because zi − u′i lies in the

Voronoi region of ΛQ with high probability due to our choice for σ2(ΛQ) and the fact that the lattices are Roger’s

good.

DRAFT



17

In order to compute the upper bound in (31), we will condition on the event that the correct message w produced a

sequence of indices k1, . . . , kN . Since these are generic indices, we can carry out the entire calculation conditioned

on a particular sequence k1, . . . , kN and then average over it. In this case, the summation over the N indices

k′1, . . . , k
′
N in (31) can be rearranged to yield∑

Ω

∑
k′i,i∈Ω

k′i 6=ki

P
(

(x(w′)
s ,yd, {ỹ

(k′i)
i ,x

(k′i)
i }i∈M) ∈ Ãε s.t. k′i = ki, i ∈ Ωc

)
︸ ︷︷ ︸

P

, (34)

where Ω ⊂M is a source-destination cut of the network, i.e.,

Ω ⊂M such that s ∈ Ω, d ∈ Ωc. (35)

Now, let us examine the probability denoted by P . For a given set of {k′i}i∈M such that k′i = ki, i ∈ Ωc and

k′i 6= ki, i ∈ Ω, the consistency condition for a node i ∈Ml in the lth layer of the network is given by (26) as

‖(ỹ(k′i)
i −

∑
j∈Ml−1

hijx
(k′j)

j ) mod ΛQ‖2 ≤ nσ2
c , ∀i ∈Ml, 1 ≤ l ≤ ld (36)

where for convenience of notation we denote yd = ỹ
(ki)
i , i ∈ Mld and x

(w′)
s = x

(k′j)

j , j ∈ M0. The condition in

(36) takes two different forms depending on whether i ∈ Ω or i ∈ Ωc:

For nodes i ∈ Ωc, ỹ(k′i)
i = ỹ

(ki)
i and from (24) it is related to the inputs from the previous layer as

ỹ
(ki)
i =

∑
j∈Ml−1

hijx
(kj)
j + zi − u′i mod ΛQ. (37)

In this case, the condition (36) is equivalent to

Ai = {‖(
∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′j)

j ) + zi − u′i) mod ΛQ‖2 ≤ nσ2
c}, (38)

where Ωl−1 = Ω ∩Ml−1 and we denote this event by Ai12. Note that we have have used the fact that for nodes

i ∈ Ωc, since k′i = ki, we have x
(k′i)
i = x

(ki)
i .

For nodes i ∈ Ω, the condition yields

Bi = {‖(ỹ(k′i)
i −

∑
j∈Ωcl−1

hijx
(kj)
j −

∑
j∈Ωl−1

hijx
(k′j)

j ) mod ΛQ‖2 ≤ nσ2
c}, (39)

where Ωcl−1 = Ωc ∩Ml−1 and we denote this event by Bi).

To summarize, for i ∈ Ωc, Ai is the event that ỹ(k′i)
i is consistent (jointly typical) with transmitted sequences

corresponding to {k′i}, and Bi is the corresponding event for nodes i ∈ Ω.

Now, coming back to the calculation of P in (34), we can write

P = P ({Ai, i ∈ Ωc}, {Bi, i ∈ Ω}) (40)

= P (Ai, i ∈ Ωc) P (Bi, i ∈ Ω | Ai, i ∈ Ωc) .

12The condition is slightly different for the destination node d, in particular it does not contain the term u′i in (38), since we operate directly

on the observation yd and not it’s quantized version. This fact is ignored since it does not create any significant difference in the below analysis.

Alternatively, it can be assumed that the destination node first quantizes its received signal and then performs the consistency check.
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Note that due to Proposition 4.2, for all j ∈ M, when k′j 6= kj , the relay mapping induces transmit sequences

x
(kj)
j ,x

(k′j)

j that are pairwise independent and uniformly distributed over p−1
r ΛT ∩VT .13 Also, due to the dithering

in (23), ỹ(k′i)
i in (39) is uniformly distributed over the Voronoi region VQ1 of the quantization lattice point ŷ(k′i)

i .

We will first bound the probability P (Ai, i ∈ Ωc) by conditioning on the event defined in the following lemma,

which is proved in the Appendix.

Lemma 5.1: Let us define the following event,

E1
def
=
{
∃ i ∈ M, ∃ {kj , k′j} s.t.

∑
j

hij(x
(kj)
j − x

(k′j)

j ) + zi − u′i /∈ VQ
}
, (41)

then we have P(E1)→ 0 as n→∞.

When E1 is true, we declare this as an error. This adds a vanishing term to the decoding error probability by the

above lemma. Conditioning on the complement of E1 allows us to get rid of the mod operation w.r.t ΛQ in (38).

Given Ec1 , the event Ai, for i ∈ Ωc is equivalent to

A′i =
{
‖(
∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′j)

j ) + zi − u′i)‖2 ≤ nσ2
c

}
. (42)

Therefore, we have

P (Ai, i ∈ Ωc) = P (Ec1)P (Ai({k′i}), i ∈ Ωc | Ec1) + P (E1)P (Ai({k′i}), i ∈ Ωc | E1) (43)

≤ P (Ai, i ∈ Ωc , Ec1) + P (E1) = P (A′i, i ∈ Ωc , Ec1) + P (E1)

≤ P (A′i, i ∈ Ωc) + P (E1)︸ ︷︷ ︸
→0

n→∞
= P (A′i, i ∈ Ωc)

We upperbound this probability in the following lemma.

Lemma 5.2:

P (A′i, i ∈ Ωc) = P
(
‖
∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′j)

j ) + zi − u′i‖2 ≤ nσ2
c , ∀i ∈ Ωc

)
≤ e−n(I(XΩ;HXΩ+ZΩc )− 1

2 |Ω
c|(1+log(1+ε))−on(1)),

where Xi, i ∈ Ω are i.i.d Gaussian random variables N (0, P ), ZΩc are i.i.d Gaussian random variables N (0, σ2)

and H is the channel transfer matrix from nodes in Ω to nodes in Ωc.

The proof of the lemma involves two main steps. Recall that x
(kj)
j ,x

(k′j)

j , j ∈ Ω are elements of a lattice

and therefore are discrete random variables, which are uniformly distributed over p−1
r ΛT ∩ VT and are pairwise

independent. We first show that the probability in the lemma is upper bounded by

enε2P
[
‖
∑

j∈Ωl−1

hij(xj − x′j) + zi − z′i‖2 ≤ nσ2
c , ∀i ∈ Ωc

]
(44)

13For the source node, x
(kj)

j and x
(k′j)
j or equivalently x

(w)
s and x

(w′)
s are uniformly distributed over p−1ΛT ∩ VT where p is different

than pr . However, this fact does not create any difference in the following analysis and is therefore ignored.
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where xj ,x
′
j , j ∈ Ω and z′i, i ∈ Ωc are all independent Gaussian random variables such that xj ,x′j ∼ N (0, σ2

xIn),

z′i ∼ N (0, σ2
zIn) and σ2

x → σ2(ΛT )→ P as n→∞ if ΛT is Rogers-good, σ2
z → σ2(ΛQ1,i)→ 1 as n→∞ if ΛQ1,i

is Rogers-good, which is our case here. ε2 → 0 when n increases, again if ΛT and ΛQ1,i are Rogers-good. Given

this translation to Gaussian distributions the problem becomes very similar to the one for Gaussian codebooks in

[1]. The second step is to bound the probability in (44) by following a similar approach to [1]. The proof is given

in the Appendix.

Using Lemma 5.2, Lemma 5.1 in (40), we can upperbound the error probability given in (34) as,∑
Ω

e−n(I(XΩ;HXΩ+ZΩc )− 1
2 |Ω

c|(1+log(1+ε))−on(1))
∑
k′i,i∈Ω

k′i 6=ki

P (Bi, i ∈ Ω | Ai, i ∈ Ωc) (45)

The last term in (45) is upper bounded in the following lemma.

Lemma 5.3: We have ∑
k′i,i∈Ω

k′i 6=ki

P (Bi, i ∈ Ω | Ai, i ∈ Ωc) ≤ e|Ω|n 1
2 (log(2(1+ε))+1+on(1)). (46)

The proof of the lemma is based on two steps. We first argue that due to the random construction of the

quantization codebook at each relay, ỹ(k′i)
i is uniformly distributed over the Voronoi region VQ of the quantizer and

is independent across different relay nodes i ∈ Ω. Due to the Crypto Lemma ( Lemma 4.1), this is also true for

the random variables

νi = ỹ
(k′i)
i −

∑
j∈Ωcl−1

hijx
(kj)
j −

∑
j∈Ωl−1

hijx
(k′j)

j mod ΛQ, i ∈ Ω

appearing in the definition of the event Bi because the ỹi’s and xi’s are independent of each other. More precisely,

due to the random mapping between the quantization and transmission codebooks at each relay, the set of random

variables {ỹ(k′i)
i , i ∈ Ω} are independent from the set of random variables {x(ki)

i , i ∈ Ωc}, {x(k′i)
i , i ∈ Ω}. Therefore

by the Crypto Lemma [17] (see Lemma 4.1), νi’s are also independent of the xi’s which allows to remove the

conditioning on the event Ai, i ∈ Ωc in (46), which only governs xi’s. Finally, each term in the summation in (46)

reduces to evaluating the probability P
(
‖ν‖2 ≤ nσ2

c

)
, where ν is a random variable uniformly distributed over

VQ. This probability is upper bounded in the following lemma which is proved in the Appendix.

Lemma 5.4: Let ν be uniformly distributed over VQ. We have,

P
(
‖ν‖2 ≤ nσ2

c

)
≤ e
−n2

(
log

(
σ2(ΛQ)

σ2
c

)
−1+

σ2
c

σ2(ΛQ)
−on(1)

)
.

Using the results of Lemma 5.2 and Lemma 5.3 in (45), together with the summation over all possible source-

destination cuts in (34), we obtain

P[w′ ∈ Ŵ, w′ 6= w] ≤
∑
Ω

e−n(I(XΩ;HXΩ+ZΩc )−N−on(1)) ≤ 2N e−nminΩ(I(XΩ;HXΩ+ZΩc )−(1+(log 2)/2)N−on(1)).

(47)
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Combining this upper bound with (30), demonstrates that if R < minΩ I(XΩ;HXΩ + ZΩc) − (1 + (log 2)/2)N

then P[E ]→ 0. This proves the main result of this paper which is stated in Theorem 2.1.14

VI. HALF-DUPLEX RELAY NETWORKS

A common practical constraint in wireless networks is that nodes can not transmit and receive at the same time

on the same frequency band, termed as the half-duplex constraint. In this section, we will extend the constant gap

result of the earlier sections to half-duplex relay networks.

Since each node in a half-duplex network can be in either transmitting or receiving mode, there are 2N different

possible states for the overall network. Each state is a partitioning of the nodes into two distinct sets of transmitters

and receivers. A schedule defines the fraction of time the network operates in each of these 2N states. We call

a schedule fixed if it is decided ahead of time and revealed to all the nodes in the network. As shown in [1],

the quantize-map-and-forward relaying scheme can be combined with a fixed schedule and applied in half-duplex

networks. Theorem 8.3 of [1] shows that the rate achieved by the quantize-map-and-forward scheme is within a

constant gap to the capacity of the half-duplex network evaluated under fixed schedules and uniform power allocation

across different states. However, since the half-duplex schedule can also be random and not fixed, it is not clear if the

performance of the quantize-map-and-forward scheme is within a constant gap to the actual information-theoretic

capacity of the network. For example, [14] demonstrates that random schedules can yield higher rates than fixed

schedules in wireless networks. Even more importantly, the average transmit power constraint allows to optimize the

transmit power of each node across the 2N states of the network and not necessarily transmit with the same power

at every state. In this section, we improve the result of [1] by showing that the quantize-map-and-forward scheme

combined with a fixed schedule and uniform power allocation P across all the states of the network achieves the

information-theoretic capacity of the network within 3N bits/s/Hz in the single antenna case (or 2
∑
i∈s,M,Mi+N

bits/s/Hz in the case of multiple antennas.) For simplicity, we concentrate on the single-antenna case in the sequel.

The multiple-antenna case follows similarly. Our results are based on the memoryless model developed in [14] for

half-duplex relay networks.

A. Half-Duplex Channel Model

We follow the model developed in [14]. Due to the half-duplex constraint each node i in the network can be in

either transmit or receive mode, denoted by mi = T and mi = L respectively. When mi = T , the received signal

of the node i is equal to zero, i.e. yi = 0. When mi = L, the transmitted signal by the node i is equal to zero, i.e.

xi = 0. These constraints can be incorporated to the channel model by considering the transmitted signals which

are inputs to the channel to be the vectors x̄i = (xi,mi) with alphabet

Xi = {(0, L), (C, T )}

14The gap in Theorem 2.1 is for the complex case.
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where C is the set of complex numbers. Accordingly, the Gaussian channel model is modified to

yi =


∑
j 6=iHijxj + zi if mi = L

0 if mi = T,

where as before Hij’s are the corresponding channel matrices and zi is the additive Gaussian noise. As before, an

individual average power constraint applies to each transmitting node i, i.e.,

E[||xi||2] ≤ P, ∀i ∈M∪ {s},

where as we recall from Section II that M is the set of all relay nodes, excluding the source and the destination

nodes. We assume that the source node is always transmitting and the destination nodes are always receiving.

B. Cut-set Upper Bound

As noted in [14], the memoryless model allows to use the existing theory on memoryless relay networks. In

particular, applying the cut-set bound [8, Theorem 14.10.1], we can upper bound the communication rate between

the source and the destination in the half duplex network by

Ch.d = max
px̄s,M (·)

s.t.E[||xi||2]≤P,∀i

min
Ω

I(x̄Ω; yΩc |x̄Ωc) = max
pmM,xs,M (·)

s.t.E[||xi||2]≤P,∀i

min
Ω

I(mΩ, xΩ; yΩc |mΩc , xΩc), (48)

where x̄s,M = {(xi,mi), i ∈ {s,M}}, mM = {mi, i ∈ M}, Ω is a source-destination cut of the network and

x̄Ω = {x̄i, i ∈ Ω}, yΩc = {yi, i ∈ Ωc} and x̄Ωc , mΩ, xΩ, mΩc , xΩc are defined similarly.

C. A Simple Upper Bound on the Cut-set Upper Bound

In this section, we develop an upper bound on the cut-set upper bound in (48) that provides the connection to

the performance of quantize-map-and-forward with fixed schedules and uniform power allocation. First note that

the mutual information in (48) can be separated into two terms,

I(mΩ, xΩ; yΩc |mΩc , xΩc) = I(xΩ; yΩc |mΩ,mΩc , xΩc),+I(mΩ; yΩc |mΩc , xΩc) (49)

≤ I(xΩ; yΩc |mM, xΩc) +N. (50)

The inequality (50) follows by upper bounding the second mutual information in (49) by N bits/s/Hz since each

of the N random variables mi, i ∈ M are binary. The first mutual information governs a fixed schedule and the

expression in (48) involves a maximization of this mutual information over all possible schedules. Moreover, we

can allocate different transmit powers for the nodes in different states of this optimal schedule. Below we will show

that an optimal power allocation across the states differs by at most 2N bits/s/Hz from the case where all the nodes

transmit with uniform power P whenever they are transmitting. A priori, one can expect this gap to scale with 2N ,

the number of different states of the network.

Let us denote the average transmit power of node i at state m with Pi(m). Clearly the individual power constraint

translates to E[Pi(m)] ≤ P , where the expectation is over the states. Then, the cutset upper bound can be rewritten
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and upper bounded as follows:

Ch.d ≤ max
pmM (·) pxs,M|mM (·)
s.t.E[||xi||2]≤P,∀i

min
Ω

I(xΩ; yΩc |mM, xΩc) + N

= max
pmM (·)

max
Pi(m),∀i

s.t.E[Pi(m)]≤P

max
pxs,M|mM (·) s.t.

E[||xi||2 |mM=m]≤Pi(m),∀i,∀m

min
Ω

I(xΩ; yΩc |mM, xΩc) + N

≤ max
pmM (·)

min
Ω

max
Pi(m),∀i

s.t.E[Pi(m)]≤P

max
pxs,M|mM (·) s.t.

E[||xi||2 |mM=m]≤Pi(m),∀i,∀m

I(xΩ; yΩc |mM, xΩc) + N

= max
tm≥0, s.t.∑
m tm=1

min
Ω

max
Pi(m),∀i

s.t.E[Pi(m)]≤P

max
pxs,M|mM (·) s.t.

E[||xi||2 |mM=m]≤Pi(m),∀i,∀m

∑
m

tm I(xΩ; yΩc |mM = m,xΩc) + N, (51)

where we use m to enumerate the 2N states of the network and to simplify notation tm = pmM(m). Clearly,

the inner most maximization in the above expression leads to Gaussian pxs,M|mM(·|m) for each state m with

the variance of xi at state m equal to Pi(m). Therefore the inner most maximization reduces to optimizing the

covariance matrix of xΩ for each state m under the constraint that the diagonal entry of this matrix corresponding

to i ∈ Ω should be smaller than Pi(m).

We will next argue that if we consider independent transmissions from the nodes in the network, corresponding

to an identity covariance matrix, and discard the optimization of the power allocation across the states m, i.e., take

Pi(m) = P, ∀i, and ∀m, the gap to the expression in (51) is upper bounded by 2N , which leads to the conclusion

that

Ch.d ≤ max
tm≥0, s.t.

∑
m tm=1

min
Ω

∑
m

tm I(xmΩ ; ymΩc |xmΩc) + 3N, (52)

where {xi, i ∈ {s,M} andmi = T} are independent, each with distribution CN (0, P ). xmΩ = {xi, i ∈ Ω andmi =

T}, ymΩc = {yi, i ∈ Ω andmi = L} and xmΩc = {xi, i ∈ Ωc andmi = T}.

To prove (52), in the sequel we consider a MIMO channel with NR receive and NL transmit antennas, NR×NL
channel matrix H and a total average transmit power constraint of NLP at the transmitter. Let us assume that there

are a number of states for communicating over this channel, state m occurring with probability tm and
∑
m tm = 1,

where each state corresponds to using a subset of the transmit and receive antennas. In other words, each state

induces a sub-MIMO channel with a channel matrix Hm that contains a subset of the rows and the columns of the

original channel matrix H . Let σi,m denote the singular values of the matrix Hm, some of which can be zero. We

next prove that

max
Pi(m),

s.t.
∑
m,i tmPi(m)≤NLP

∑
m

tm

K∑
i=1

log(1 + σ2
i,mPi(m))−

∑
m

tm

K∑
i=1

log
(
1 + σ2

i,mP
)
≤ NL

e
+K, (53)

where K = min(NR, NL). Note that the difference between the two terms above upperbounds the difference

between the first term in (51) and the first term in (52) because the mutual information terms in (51) and (52)

correspond to a MIMO channel between xΩ and yΩc . In (51), optimal power allocation across the eigenvalues of
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the channel matrices induced at different states is allowed, while in (52) we allocate equal power to all eigenvalues

at all states.

We will prove that the upper bound in (53) on the difference of the two terms holds for any schedule {tm} and

any power allocation strategy {Pi(m)}. For any {tm} and {Pi(m)}, we have
K∑
i=1

∑
m

tm log

(
1 + σ2

i,mPi(m)

1 + σ2
i,mP

)
(a)

≤
K∑
i=1

∑
m

tm log

(
1 + σ2

i,mPi(m)

max{1, σ2
i,mP}

)
(54)

=

K∑
i=1

∑
m

tm log

(
1

max{1, σ2
i,mP}

+
σ2
i,mPi(m)

max{1, σ2
i,mP}

)
, (55)

≤
K∑
i=1

∑
m

tm log

(
1 +

σ2
i,mPi(m)

σ2
i,mP

)
, (56)

where (a) follows by lower bounding the denominator of the first term, 1 + σ2
i,mP by max{1, σ2

i,mP}. Now, we

will use Jensen’s inequality to further bound (56), as follows
K∑
i=1

∑
m

tm log

(
1 +

Pi(m)

P

)
≤

K∑
i=1

log

(
1 +

∑
m

tm
Pi(m)

P

)
=

K∑
i=1

log

(
1 +

Pi
P

)
where we define Pi =

∑
m tmPi(m). Now, we use the fact that

∑K
i=1 Pi ≤ NLP to see that, due to the waterfilling

solution,
K)∑
i=1

log

(
1 +

Pi
P

)
≤

K∑
i=1

log

(
1 +

NL
K

)
= K log

(
1 +

NL
K

)
= K log

(
NL
K

)
+K log

(
1 +

K

NL

)
(d)

≤ K log

(
NL
K

)
︸ ︷︷ ︸

log
(
NL
K

)K
+K

(c)

≤ NL
e

+K,

where (d) follows because K ≤ NL and (c) follows because maxK
(
NL
K

)K ≤ eNL/e and we also take natural

logarithms. For simplifying the statement of the result, in Theorem 2.3, we just upper bound15 NL
e + K ≤ 2NL

and note that for the MIMO channel induced by any cut Ω the number of transmit antennas are smaller than N ,

the total number of nodes in the network.

D. QMF in Half-Duplex Networks

The main result of the earlier section in (52) shows that the cutset upper bound evaluated for i.i.d. Gaussian

distributions along with uniform power allocation and a fixed schedule is within an additive constant of 3N of the

15Note that this is clearly a loose bound and we could have retained the sharper bound. But we just use the simpler bound, since in any case

the character of the approximation does not change, i.e., it is still linear in the number of nodes in the network.
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information-theoretic cutset upper bound on the capacity of half-duplex networks. It is straightforward to argue that

the cutset upper bound for any fixed schedule under i.i.d. Gaussian distributions and uniform power allocation can

be approximately achieved using a QMF strategy. This was already demonstrated in Theorem 8.3 of [1] and here

we briefly summarize the main idea.

Fix a schedule tm,m = 1, . . . , 2N s.t.
∑
m tm = 1 for the half-duplex network. Divide the total bandwidth

W of the network to 2N bands of width tmW , for m = 1, . . . , 2N . Each mode of the network operates over

the corresponding band tmW and therefore the half-duplex constraint is satisfied, no node transmits and receives

simultaneously over the same frequency band. Conceptually, different frequency bands can be thought as a MIMO

channel with a diagonal channel transfer matrix. It is as if each relay node has 2N−1 transmit and 2N−1 receive

antennas corresponding to each of the 2N−1 modes where it is transmitting and the 2N−1 modes where it is

receiving, but each antenna m operates on a limited portion tmW of the total bandwidth corresponding to the mode

m. The transfer matrix from the 2N−1 transmit antennas of any node j to the 2N−1 receive antennas of any node i

is diagonal with all diagonal entries equal to hij since the channel is assumed to be flat on W . The QMF strategy

with multiple modes on multiple frequency bands operates similarly to the multiple antenna QMF strategy described

in Section IV-A. The received signals from different modes at each relay are quantized and jointly mapped into

independent transmit sequences to be transmitted over different transmit modes of the relay. Following the analogy

with multiple antennas, the rate achieved by QMF is given by16

R ≥ min
Ω

∑
m

tmWI(xmΩ ; ymΩc |xmΩc)− 2WN

where xmi , i ∈ {s,M},m = 1, . . . , 2N are i.i.d. Gaussian CN (0, tmP ) if node i is transmitting in state m and

xmΩ = {xmi , i ∈ Ω}. Since channels for different modes are independent, the total information flow over any cut is

given by the sum of the informations flowing over different modes. The first term in the above expression is equal

to the first term in the upper bound in (52), except for the difference that (52) is expressed in bits/s/Hz. Note that

since the noise accumulated over bandwidth tmW has variance tmN0W , the spectral efficiency achieved with power

tmP over bandwidth tmW is equal to the one with power P over bandwidth W . Choosing the fixed schedules

tm,m = 1, . . . 2N that maximizes the above rate, we observe that we can achieve the right-hand side of (52)

within 5N bits/s/Hz, using random Gaussian codebooks. The half-duplex QMF strategy above can be equivalently

implemented by allocating different time-slots for different modes instead of different frequency slots. See [1].

The result in Theorem 2.3 is a straightforward generalization of the above arguments to the case when nodes

contain multiple transmit and receive antennas, as well with the use of lattice-based codes that have been developed

in this paper.

16Note that in the earlier sections of the paper we have expressed the rate in bits/s/Hz, with the understanding that the total rate achieved

over the bandwidth W is given by W times this rate.
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VII. APPENDIX

We first introduce the following two technical lemmas that we use repeatedly in this appendix.

Lemma 7.1: (Lemma 11 of [17])

(a) Let u ∼ unif (B(R)). Let us denote 1
nE[‖u‖2] = R2

n+2 := σ2. Let z ∼ N (0, σ2In). Then,

fu(x) ≤ fz(x) enε2 ,

where ε2 = 1
2 log(2πeG∗n) + 1

n .
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(b) Let u ∼ unif(V) where V is the Voronoi region of a lattice Λ. Note that 1
nE[‖u‖2] = σ2(Λ). Let z ∼

N (0, σ2In) such that

σ2 =
G∗n
G(Λ)

(ρcov(Λ))2σ2(Λ).

Then,

fu(x) ≤ fz(x) enε2(Λ),

where ε2(Λ) = log(ρcov(Λ)) + 1
2 log(2πeG∗n) + 1

n .

The significance of the above lemma is that it allows to upper bound the probability distribution of a random

variable u, either uniformly distributed on an n-dimensional sphere or over the Voronoi region of a Rogers-good

lattice, with the probability distribution of a Gaussian vector of identity covariance matrix and of the same variance

with u. Note that ε2 in part (a) of the lemma goes to zero with increasing dimension n. Similarly in part (b),

ε2(Λ)→ 0 and σ2 → σ2(Λ) as n increases if Λ is Rogers-good.

Lemma 7.2: Let zi, i = 1, . . . , n be independent random variables with distribution N (0, γ2
i ). Then,

P

(
n∑
i=1

z2
i ≤ nc

)
≤ e−( 1

2

∑n
i=1 log(1+2γ2

i t)−ntc)

for any t > 0. When γ2
i = γ2, ∀i, such that γ2 > c, we have

P

(
n∑
i=1

z2
i ≤ nc

)
≤ e−

n
2

(
log
(
γ2

c

)
−1+ c

σ2

)
.

Proof of Lemma 7.2: The proof of the lemma follows by a simple application of the exponential Chebyshev’s

inequality. For any t > 0, we have

P

(
n∑
i=1

z2
i ≤ nc

)
= P

(
e−t

∑n
i=1 z

2
i ≥ e−ntc

)
≤ E[e−t

∑n
i=1 z

2
i ] entc =

n∏
i=1

E[e−t z
2
i ] entc

=

n∏
i=1

(
1√

1 + 2γ2
i t

)
entc = e−( 1

2

∑n
i=1 log(1+2γ2

i t)−ntc).

When γ2
i = γ2, ∀i, choosing t = ( 1

2c −
1

2γ2 ) yields

P

(
n∑
i=1

z2
i ≤ nc

)
≤ e− supt≥0(n2 log(1+2γ2t)−ntc) ≤ e−

n
2

(
log
(
γ2

c

)
−1+ c

σ2

)
.

�

The proof of Lemma 5.4 follows by a straightforward application of the above two lemmas.

Proof of Lemma 5.4: If ν is uniformly distributed over VQ, by part-(b) of Lemma 7.1 we have

P
(
‖ν‖2 ≤ nσ2

c

)
≤ enε2(ΛQ)P

(
‖ν′‖2 ≤ nσ2

c

)
where ν′ ∼ N (0, σ2

νIn) with

σ2
ν =

G∗n
G(ΛQ)

(ρcov(Λ
Q))2 σ2(ΛQ) = (1 + on(1))σ2(ΛQ).

Applying Lemma 7.2 for the case of equal variances yields the result

P
(
‖ν′‖2 ≤ nσ2

c

)
≤ e
−n2

(
log

(
(1+on(1))σ2(ΛQ)

σ2
c

)
−1+

σ2
c

(1+on(1))σ2(ΛQ)

)
,
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and therefore

P
(
‖ν‖2 ≤ nσ2

c

)
≤ enε2(ΛQ)e

−n2

(
log

(
(1+on(1))σ2(ΛQ)

σ2
c

)
−1+

σ2
c

(1+on(1))σ2(ΛQ)

)
= e
−n2

(
log

(
σ2(ΛQ)

σ2
c

)
−1+

σ2
c

σ2(ΛQ)
−on(1)

)
.

�

To prove Lemmas 5.1 and 5.2, we introduce the following lemma as an intermediate step.

Lemma 7.3: Let xj ,x′j , j = 1, . . . , N1 be independent discrete random variables uniformly distributed over the

pnr lattice points p−1
r ΛT ∩ VT . Let zi and u′i, i = 1, . . . , N2 be independent random variables with distributions

zi ∼ N (0, σ2In) and u′i ∼ unif(VQ1,i) where VQ1,i denotes the Voronoi region of the lattice ΛQ1,i. Let S1, . . . ,SN2
⊆

Rn. Then,

P

 N1∑
j=1

hij(xj − x′j) + zi − u′i ∈ Si, ∀i = 1, . . . , N2


≤
(

(1 + ε4(ΛT ))N2 enε1(ΛT )+nε2
)2N1

(
enε2(ΛQ1,i)

)N2

P

 N1∑
j=1

hij(x̃j − x̃′j) + z̃i ∈ Si, ∀i = 1, . . . , N2


where x̃j , x̃

′
j , j = 1, . . . , N1, z̃i, i = 1, . . . , N2 are all independent Gaussian random variables such that x̃j , x̃′j ∼

N (0, σ2
xIn) with

σ2
x = (1 + p−1

r )2(ρcov(Λ
T ))2 G∗n

G(ΛT )
σ2(ΛT )

and z̃i ∼ N (0, σ2
zIn),

σ2
z = (1 + ε5)2N1

(
1 +

G∗n

G(ΛQ1,i)
(ρcov(Λ

Q
1,i))

2σ2(ΛQ1,i)

)
where all ε1(ΛT ), ε2, ε2(ΛQ1,i) ε4(ΛT ), ε5 → 0 as n → ∞. Furthermore σ2

x → σ2(ΛT ) and σ2
z → 1 + σ2(ΛQ1,i)

since both ΛT and ΛQ1,i are Rogers-good.

Proof of Lemma 7.3: First, by using Part-(b) of Lemma 7.1, we can upper bound the probability

P

 N1∑
j=1

hij(xj − x′j) + zi − u′i ∈ Si, ∀i = 1, . . . , N2


by (

enε2(ΛQ1,i)
)N2

P

 N1∑
j=1

hij(xj − x′j) + zeq,i ∈ Si, ∀i = 1, . . . , N2

 , (57)

where zeq,i are i.i.d with distribution N (0, σ2
eqIn),

σ2
eq = 1 +

G∗n

G(ΛQ1,i)
(ρcov(Λ

Q
1,i))

2σ2(ΛQ1,i).
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Since ΛQ1,i is Rogers-good, ε2(ΛQ1,i) given in the lemma vanishes with increasing n. The probability in (57) can be

expressed as,

P

 N1∑
j=1

hij(xj − x′j) + zeq,i ∈ Si, ∀i = 1, . . . , N2


=
(
p−nr

)2N1
∑

x1,...,xN1
,x′1,...,x

′
N1

∈ p−1
r ΛT∩VT

P

 N1∑
j=1

hij(xj − x′j) + zeq,i ∈ Si, ∀i = 1, . . . , N2

 . (58)

The last probability is only over zeq,i’s and note that the xj and x′j’s now denote the dummy variables of the

summation. Consider one of the summations above of the form,

p−nr |VT |
∑

x1∈ p−1
r ΛT∩VT

P

 N1∑
j=1

hij(xj − x′j) + zeq,i ∈ Si, ∀i = 1, . . . , N2

 ,

where x1 denotes the dummy variable of the summation and x2, . . . ,xN1
,x′1, . . . ,xN1

are fixed vectors. We show

below that this summation is upper bounded by

(1 + ε4(ΛT ))N2

∫
VT+p−1

r VT
dx1 P

 N1∑
j=1

hij(xj − x′j) + z′eq,i ∈ Si, ∀i = 1, . . . , N2

 (59)

where z′eq,i ∼ N (0, (1 + ε5)σ2
eqIn) and both ε4(Λ) and ε5 → 0 as n→ 0. For two sets A ⊂ Rn and B ⊂ Rn, the

sum set A+B ⊂ Rn denotes A+B = {a + b : a ∈ A,b ∈ B}. Applying this upper bound recursively to all the

summations in (58) yields

P

 N1∑
j=1

hij(xj − x′j) + zeq,i ∈ Si, ∀i = 1, . . . , N2


≤ (1 + ε4(ΛT ))2N2N1

1

|VT |2N1

∫
VT+p−1

r VT
. . .

∫
VT+p−1

r VT
dx1 . . . dxN1

dx′1 . . . dx
′
N1

P

 N1∑
j=1

hij(xj − x′j) + z̃i ∈ Si, ∀i = 1, . . . , N2


≤ (1 + ε4(ΛT ))2N2N1

1

|VT |2N1

∫
B((1+p−1

r )RTu )
. . .

∫
B((1+p−1

r )RTu )
dx1 . . . dxN1 dx

′
1 . . . dx

′
N1

P

 N1∑
j=1

hij(xj − x′j) + z̃i ∈ Si, ∀i = 1, . . . , N2

 (60)

where z̃i ∼ N (0, (1+ε5)2N1σ2
eqIn). RTu in the last inequality denotes the covering radius of VT and B

(
(1 + p−1

r )RTu
)

denotes an n-dimensional sphere in Rn of radius (1 + p−1
r )RTu . The last inequality follow follows the fact that

VT + p−1
r VT ⊆ B

(
(1 + p−1

r )RTu
)

which in turn follows from the definition of RTu . We can rewrite (60) as

(1 + ε4(ΛT ))2N2N1

(
enε1(ΛT )

)2N1 1∣∣B ((1 + p−1
r )RTu

)∣∣2N1

∫
B((1+p−1

r )RTu )
· · ·
∫
B((1+p−1

r )RTu )

dx1 · · · dxN1
dx′1 · · · dx′N1

P

 N1∑
j=1

hij(xj − x′j) + z̃i ∈ Si, ∀i = 1, . . . , N2

 (61)
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where, ∣∣B ((1 + p−1
r )RTu

)∣∣
|VT |

=

∣∣B ((1 + p−1
r )RTu

)∣∣∣∣B (RTl )∣∣ =

(
(1 + p−1

r )RTu
RTl

)n
= enε1(ΛT )

and ε1(ΛT ) = log(1 + p−1
r ) + log ρcov(Λ

T ). Recall that the effective radius RTl of the lattice ΛT is defined as the

radius of a sphere having the same volume as the Voronoi region of ΛT . Since ΛT is Rogers-good and pr → ∞

as n→∞, we have ε1(ΛT )→ 0. We can upper bound (61) by applying Part-(a) of Lemma 7.1 which gives

P

 N1∑
j=1

hij(xj − x′j) + zeq,i ∈ Si, ∀i = 1, . . . , N2


≤
(

(1 + ε4(ΛT ))N2 enε1(ΛT )+nε2
)2N1

P

 N1∑
j=1

hij(x̃j − x̃′j) + z̃i ∈ Si, ∀i = 1, . . . , N2

 , (62)

where x̃j , x̃
′
j , j = 1, . . . , N1 are independent ∼ N (0, σ2

x In) with

σ2
x =

(
(1 + p−1

r )RTu
)2

n+ 2
. (63)

Plugging the expression in (16) to (63), yields

σ2
x =

(
(1 + p−1

r )RTu
)2

n+ 2
= (1 + p−1

r )2(ρcov(Λ
T ))2 G∗n

G(ΛT )
σ2(ΛT ).

The upper bounds (57) and (62) together yield the result stated in the lemma.

It remains to prove (59). We will first show that

p−nr |VT | P

 N1∑
j=1

hij(xj − x′j) + zeq,i ∈ Si, ∀i = 1, . . . , N2


≤ (1 + ε4(ΛT ))N2

∫
p−1
r VT

ds P

hi1s +

N1∑
j=1

hij(xj − x′j) + z′eq,i ∈ Si, ∀i = 1, . . . , N2

 (64)

where xj , x′j’s are fixed vectors and zeq,i ∼ N (0, σ2
eqIn), z′eq,i ∼ N (0, (1 + ε5)σ2

eqIn) and both ε4(Λ) and ε5 → 0

as n→ 0.

First, note that for z′eq,i ∼ N (0, δ2In), i = 1, . . . , N2,

P

hi1s +

N1∑
j=1

hij(xj − x′j) + z′eq,i ∈ Si, ∀i = 1, . . . , N2


=

N2∏
i=1

P

hi1s +

N1∑
j=1

hij(xj − x′j) + z′eq,i ∈ Si,


=

N2∏
i=1

∫
Si

fz′eq,i

zi − hi1s−
N1∑
j=1

hij(xj − x′j)

 dzi. (65)

The probability density function fz′eq,i(c) of z′eq,i depends only on ‖c‖. By the triangle inequality, for any two

vectors a and b, we have

‖a + b‖2 ≤ ‖a‖2 + 2‖a‖‖b‖+ ‖b‖2.
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Also for any t > 0,

‖a‖‖b‖ ≤ ‖a‖
2

t
+ t ‖b‖2.

Therefore, for any t > 0,

‖a + b‖2 ≤
(

1 +
2

t

)
‖a‖2 + (1 + 2t)‖b‖2.

Using this inequality, we obtain

fz′eq,i(a + b) ∝ e−
‖a+b‖2

2δ2 ≥ e−(1+ 2
t )
‖a‖2

2δ2 e−
(1+2t)‖b‖2

2δ2 ∝ fzeq,i(a) e−
(1+2t)‖b‖2

2δ2

where zeq,i ∼ N (0, σ2
eqIn) with σ2

eq =
(
1 + 2

t

)−1
δ2. Applying this inequality to (65) with ai = zi−

∑N1

j=1 hij(xj−

x′j) and bi = hi1s yields

P

hi1s +

N1∑
j=1

hij(xj − x′j) + z′eq,i ∈ Si, ∀i = 1, . . . , N2


≥

N2∏
i=1

∫
Si

e−
(1+2t)‖hi1s‖

2

2δ2 fzeq,i

zi −
N1∑
j=1

hij(xj − x′j)

 dzi,

≥ e−
(1+2t)N2

2δ2
p−1
r RTu P

 N1∑
j=1

hij(xj − x′j) + zeq,i ∈ Si, ∀i = 1, . . . , N2

 , (66)

where we make of use of the inequality

‖hi1s‖ = |hi1|‖s‖ ≤ |hi1| p−1
r RTu . (67)

From (16) for RTu and the choice for pr in (19), we know that p−1
r RTu = O(

√
ne
− nRr

(logn)2 ) → 0 as n → 0. We

choose t such that t−1 → 0, while t p−1
r RTu → 0. For example, choose t = n. Integrating both sides of the

inequality (66) with respect to s over the region p−1
r VT , this yields the desired result in (64) where we denote

1 + ε4(ΛT ) = e
(1+t)

2δ2
p−1
r RTu and 1 + ε5 =

(
1 + 2

t

)
.

The conclusion in (59) follows by combining (64) with the following observation,

∑
x1∈ p−1

r ΛT∩VT

∫
p−1
r VT

ds P

hi1(x1 + s)− hi1x′1 +

Ni∑
j=2

hij(xj − x′j) + zeq,i ∈ Si, ∀i = 1, . . . , N2


≤
∫
VT+p−1

r VT
dx1 P

hi1x1 − hi1x′1 +

Ni∑
j=2

hij(xj − x′j) + zeq,i ∈ Si, ∀i = 1, . . . , N2

 .

This observation simply follows from the fact that the summation and the integration in the first case, together

correspond to integrating the function

P

hi1x1 − hi1x′1 +

Ni∑
j=2

hij(xj − x′j) + zeq,i ∈ Si, ∀i = 1, . . . , N2


over the sum region p−1

r ΛT ∩ VT + p−1
r VT which lies inside the second region VT + p−1

r VT . �
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Proof of Lemma 5.1: For a given i ∈ {M, d} and a set of indices kj , k′j , j = 1, . . . Ni we first consider the

probability

P

 Ni∑
j=1

hij(x
(kj)
j − x

(k′j)

j ) + zi − u′i /∈ VQ
 , (68)

where Ni denotes the number of nodes j that have non-zero channel coefficients to node i. x(kj)
j and x

(k′j)

j are

independent and uniformly distributed over the pnr lattice points p−1
r ΛT ∩VT , zi ∼ N (0, σ2), and u′i ∼ unif(VQ1,i).

Note that we can immediately apply Lemma 7.3 by identifying S1 in the lemma as the complement of VQ, and

switch from the discrete distribution over the lattice points p−1
r ΛT∩VT for x(kj)

j and x
(k′j)

j to a Gaussian distribution.

More precisely the above probability is upper bounded by(
(1 + ε4(ΛT )) enε1(ΛT )+nε2

)2Ni
enε2(ΛQ1,i) P

 Ni∑
j=1

hij(x̃j − x̃′j) + z̃i /∈ VQ
 ,

where x̃j , x̃
′
j , j = 1, . . . , Ni are independent ∼ N (0, σ2

x In) with

σ2
x = (1 + p−1

r )2(ρcov(Λ
T ))2 G∗n

G(ΛT )
σ2(ΛT ),

and z̃i ∼ N (0, σ2
zIn),

σ2
z = (1 + ε5)2Ni

(
1 +

G∗n

G(ΛQ1,i)
(ρcov(Λ

Q
1,i))

2σ2(ΛQ1,i)

)
where all ε1(ΛT ), ε2, ε2(ΛQ1,i) ε4(ΛT ), ε5 → 0 as n→∞.

Note that
∑Ni
j=1 hij(x̃j − x̃′j) + z̃i has distribution N (0, σ2

i In), where

σ2
i = 2 + 2

Ni∑
j=1

|hij |2 P + on(1),

which follows from our choices for σ2(ΛQ1,i) and σ2(ΛT ) in (20) and (15) respectively. Note that both ΛT and ΛQ1,i

are Rogers-good and from (19), pr = e
nRr

(logn)2 and hence p−1
r → 0 as n→ 0. Since ΛQ is Poltyrev-good, we have

P

 Ni∑
j=1

hij(x̃j − x̃′j) + z̃i /∈ VQ
 ≤ e−n[EP (µi)−on(1)] (69)

where EP (µi) is the Poltyrev exponent,

EP (µi) =


1
2 [(µi − 1)− logµi] 1 < µi ≤ 2

1
2 log eµi

4 2 ≤ µi ≤ 4

µi
8 µi ≥ 4

(70)

and µi = σ2(ΛQ)/σ2
i . By the union bound, for node i ∈ {M, d},

P

∃ {kj , k′j} s.t.
Ni∑
j=1

hij(x
(kj)
j − x

(k′j)

j ) + zi − u′i /∈ VQ


≤
(

(1 + ε4(ΛT )) enε1(ΛT )+nε2
)2Ni

enε2(ΛQ1,i)
(
e2nRr

)Ni
e−n[EP (µi)−on(1)]
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since for every j = 1, . . . , Ni, kj and k′j run over the enRr possible transmit codewords. Finally,

P

∃ i ∈ {M, d}, {kj , k′j} s.t.
∑
j

hij(x
(kj)
j − x

(k′j)

j ) + zi − u′i /∈ VQ


≤
(

(1 + ε4(ΛT )) enε1(ΛT )+nε2
)2Ni

enε2(ΛQ1,i) (N + 1) e−n[EP (µ)−2Rr Ns−on(1)] (71)

where Ns = maxi∈{M,d}Ni and µ = σ2(ΛQ)/σ2
s with

σ2
s = 2 + 2Ds + on(1).

Recall from (17) that Ds = maxi∈{M,d}
∑
j |hij |2P . We have chosen in (18) and (19)

Rr =
1

2
log σ2(ΛQ) and σ2(ΛQ) = 2η(1 +Ds)

for some η > 0. Therefore Rr increases logarithmically in η while the Poltyrev exponent is linear in µ ( and hence

in η) in the third regime in (70). By choosing the constant η large enough, we can ensure that the exponent in (71)

is negative and hence the probability decreases to zero when n increases. �

Proof of Lemma 5.2: Let us denote NL = |Ω| and NR = |Ωc|. We want to evaluate the probability

P

‖ ∑
j∈Ωl−1

hij(x
(kj)
j − x

(k′j)

j ) + zi − u′i‖2 ≤ nσ2
c , ∀i ∈ Ωc

 .

where x
(kj)
j and x

(k′j)

j , j ∈ Ω are independent and uniformly distributed over the pnr lattice points p−1
r ΛT ∩ VT ,

zi ∼ N (0, σ2), and u′i ∼ unif(VQ1,i). We can rewrite the above expression in the form

P

‖∑
j∈Ω

hij(x
(kj)
j − x

(k′j)

j ) + zi − u′i‖2 ≤ nσ2
c , ∀i ∈ Ωc

 .

with the understanding that hij is only non zero if i ∈ Ml and j ∈ Ml−1 for some l = 1, . . . , ld. Note that

we can immediately apply Lemma 7.3 by identifying Si in the lemma as B(
√
nσ2

c ), and switch from the discrete

distribution over the lattice points p−1
r ΛT ∩VT for x(kj)

j and x
(k′j)

j , j ∈ Ω to a Gaussian distribution. More precisely,

the above probability is upper bounded by(
(1 + ε4(ΛT ))NR enε1(ΛT )+nε2

)2NL (
enε2(ΛQ1,i)

)NR
P

‖∑
j∈Ω

hij(x̃j − x̃′j) + z̃i‖2 ≤ nσ2
c , ∀i ∈ Ωc

 , (72)

where x̃j , x̃
′
j , j ∈ Ω are independent ∼ N (0, σ2

x In) with

σ2
x = (1 + p−1

r )2(ρcov(Λ
T ))2 G∗n

G(ΛT )
σ2(ΛT ),

and z̃i, i ∈ Ω are independent ∼ N (0, σ2
zIn),

σ2
z = (1 + ε5)2NL

(
1 +

G∗n

G(ΛQ1,i)
(ρcov(Λ

Q
1,i))

2σ2(ΛQ1,i)

)
where all ε1(ΛT ), ε2, ε2(ΛQ1,i), ε4(ΛT ), ε5 → 0 as n→∞. Furthermore σ2

x → P and σ2
z → 2 as n→∞ since all

ΛT , ΛQ and ΛQ1,i are Rogers-good.
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The probability in (72) can be upper bounded as follows:

P

‖∑
j∈Ω

hij(x̃j − x̃′j) + z̃i‖2 ≤ nσ2
c , ∀i ∈ Ωc


≤ P

(
‖H (X̃ − X̃ ′) + Z̃‖22 ≤ NR nσ2

c

)
(73)

= P
(
‖Σ (X̃ − X̃ ′) + Z̃‖22 ≤ NR nσ2

c

)
(74)

≤ P

min(NR,NL)∑
i=1

‖σi(x̃i − x̃′i) + z̃i‖2 +

(NR−NL)+∑
i=1

‖z̃i‖2 ≤ NR nσ2
c

 , (75)

where H is the NR × NL transfer matrix from the nodes in Ω to the nodes in Ωc and Σ is a diagonal matrix

containing the singular values σi, i = 1, . . . ,min(NR, NL) of H . X̃ and X̃ ′ are NL × n matrices, their j’th row

containing the vectors x̃j and x̃′j respectively. Z̃ is NR × n matrix, its i’th row containing the vector z̃i. The

entries of the matrix X̃ − X̃ ′ are i.i.d. with distribution N (0, 2σ2
x) and the entries of the matrix Z̃ are i.i.d. with

distribution N (0, σ2
z). Inequality (73) follows from the definition of the Frobenius norm for matrices. (74) is obtained

by replacing H with its singular value decomposition UΣV † and noting that for any matrix A, ‖U†A‖2 = ‖A‖2
when U is unitary. Moreover, the distribution of U†Z̃ is the same as Z̃ and the distribution of V †(X̃ − X̃ ′) is the

same as (X̃ − X̃ ′).

The probability in (75) can be bounded using Lemma 7.2. For any t > 0,

P

min(NR,NL)∑
i=1

‖σi(x̃i − x̃′i) + z̃i‖2 +

(NR−NL)+∑
i=1

‖z̃i‖2 ≤ NR nσ2
c

 ≤
e
−n2

(∑min(NR,NL)

i=1 log(1+2(2σ2
i σ

2
x+σ2

z)t)+
∑(NR−NL)+

i=1 log(1+2σ2
zt)−2tNR σ

2
c

)
.

Choosing t = 1/2σ2
c , yields an exponent

−n
2

min(NR,NL)∑
i=1

log

(
1 +

2σ2
i σ

2
x + σ2

z

σ2
c

)
+

(NR−NL)+∑
i=1

log(1 +
σ2
z

σ2
c

)−NR


in the above expression. We have

2σ2
i σ

2
x + σ2

z

σ2
c

→ σ2
i P + 1

(1 + ε)
,

σ2
z

σ2
c

→ 1

1 + ε
,

as n→∞. Combining everything together yields,

P

‖ ∑
j∈Ωl−1

hij(x
(kj)
j − x

(k′j)

j ) + zi − u′i‖2 ≤ nσ2
c , ∀i ∈ Ωc


≤ e−

n
2

(∑min(NR,NL)

i=1 log(1+σ2
iP)−NR(1+log(1+ε))+on(1)

)
.

In the last expression we identify 1
2

∑min(NR,NL)
i=1 log

(
1 + σ2

i P
)

as I(XΩ;HXΩ +ZΩc), where XΩ is an NL × 1

Gaussian vector with i.i.d entries of variance P and ZΩc is an NR×1 Gaussian vector with i.i.d entries of variance

σ2 and H is the corresponding transfer matrix between nodes in Ω and Ωc.
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Proof of Lemma 5.3: Note that a priori the random variables ỹ
(k′i)
i , i ∈ Ω in (39) for a fixed set of indices

{k′i}i∈Ω are independent and uniformly distributed over VQ. This is because the quantization codebook at each

relay is chosen at random from the ensemble of Section III (note that the construction of the ensemble induces a

uniform mapping between the indices k′i = 1, . . . , pr
kr and the corresponding lattice points) and ỹ

(k′i)
i is obtained

by dithering ŷ
(k′i)
i over the Voronoi region VQ1,i in (23). As a result, ỹ(k′i)

i for i ∈ Ω are independent continuous

random variables uniformly distributed over VQ. Moreover, this is still the case conditioned on the events

Ai = {‖(
∑

j∈Ωl−1

hij(x
(kj)
j − x

(k′j)

j ) + zi − u′i) mod ΛQ‖2 ≤ nσ2
c}, i ∈ Ωc

Note that the event in the conditioning governs the set of random variables {x(ki)
i ,x

(k′i)
i , i ∈ Ω}, {zi,ui, i ∈ Ωc}.

Since for i ∈ Ω, k′i 6= ki, and therefore ỹ
(k′i)
i , i ∈ Ω, are independently, uniformly chosen over VQ1,i and are

independent from these random variables, therefore conditioned on Ai, i ∈ Ωc, ỹ(k′i)
i , i ∈ Ω are still independent

uniformly distributed over VQ. By the Crypto Lemma (see Lemma 4.1), the random variables

νi = ỹ
(k′i)
i −

∑
j∈Ωcl−1

hijx
(kj)
j −

∑
j∈Ωl−1

hijx
(k′j)

j mod ΛQ, i ∈ Ωc

are also uniformly distributed over VQ and is independent of∑
j∈Ωcl−1

hijx
(kj)
j +

∑
j∈Ωl−1

hijx
(k′j)

j .

This is due to the fact that ỹ(k′i)
i is independent of this term. Therefore (46) is upper bounded by∑

k′i,i∈Ω

k′i 6=ki

P (Bi, i ∈ Ω | Ai, i ∈ Ωc) = e|Ω|nRr
∏
i∈NΩ

P
(
‖νi‖2 ≤ nσ2

c

)

≤ e 1
2n|Ω| log σ2(ΛQ)e

− 1
2n|Ω|

(
log

(
σ2(ΛQ)

σ2
c

)
−1+

σ2
c

σ2(ΛQ)
−on(1)

)

≤ e 1
2n|Ω|n(log 2(1+ε)+1+on(1))

where used Lemma 5.4 and the fact that Rr = 1
2 log σ2(ΛQ) from (19). �

DRAFT


