
Reduced Energy Consumption and Improved

Accuracy for Distributed Speech Recognition in

Wireless Environments

A Thesis
Presented to

The Academic Faculty

by

Brian Delaney

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

September 2004

Copyright c© 2004 by Brian Delaney

Reduced Energy Consumption and Improved

Accuracy for Distributed Speech Recognition in

Wireless Environments

Approved by:

Nikil Jayant, Advisor

Mark Clements

Chin-Hui Lee

Mary Ann Ingram

Mat Hans

Date Approved: September 15, 2004

To my family

iii

ACKNOWLEDGEMENTS

Around twelve years ago my high school guidance counselor described Georgia Tech

as an up and coming school with a top-notch engineering program as well as the

host of the 1996 Summer Olympic village. I decided to apply, and after more than a

decade, I am receiving my third degree from Georgia Tech. This would not be possible

without the encouragement and support of my family. My parents, Barbara and Jim,

have been very supportive both financially and emotionally throughout the years.

My brother, Mike, and sister-in-law, Kris, have also helped me in countless ways with

encouragement when I needed it the most as well as plenty of free meals. My neice

and nephew, Morgan and Dylan, showed us all that play time is more important

than work. My girlfriend, Laura Lo, helped not only with her keen editing skills but,

more importantly, with her unconditional support of my goals and aspirations. My

fellow students provided many hours of interesting conversation as well as a sounding

board for my ideas. My lab mates, Jang-Hyun Yoon, Cagatay Candan, Roberto

Uzcategui, and Babak Firoozbakhsh were all friendly, outgoing, and sympathetic to

the trials and tribulations of graduate school. Jon Arrowood was always cheerful and

encouraging, even during those long Yamacraw poster presentations. Several people

at HP Labs were extremely helpful in developing my thesis work. Tajana Simunic was

a great source of ideas, and her constructive criticism was instrumental in getting my

publications accepted. Mat Hans and Mark Smith continually supported my work

through an HP funded assistantship as well as through useful professional advice.

Finally, my thesis advisor, Nikil Jayant, was a great mentor and set an example of

professionalism that his students will carry with them throughout their careers.

iv

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xii

I INTRODUCTION . 1

1.1 Mobile Wireless Devices . 2

1.1.1 Cellular Telephones . 2

1.1.2 Personal Digital Assistant . 3

1.1.3 Wearable Computers . 4

1.1.4 HP Labs Smartbadge . 5

1.2 Applications of Speech Recognition for Mobile Devices 7

1.2.1 Wearable Computing . 8

1.2.2 Information and Control in the Home 9

1.2.3 The Automobile Environment 10

1.2.4 Standardized Speech Application Markup Languages 10

1.2.5 Towards Multimodal Interaction 11

1.2.6 Natural Language Systems 12

1.3 Contributions, Outline, and Scope 13

II BACKGROUND . 16

2.1 Automatic Speech Recognition . 16

2.1.1 The Signal Processing Front-End 17

2.1.2 Acoustic Modeling . 21

2.1.3 Language Modeling . 25

2.1.4 Speech Recognition Decoding 26

2.1.5 Accuracy and Complexity . 28

v

2.2 Distributed Speech Recognition . 30

2.2.1 Software Issues . 30

2.2.2 DSR Over Existing Digital Cellular Telephone Networks . . . 31

2.2.3 DSR over Wireless Data Networks 33

2.3 IEEE 802.11 Wireless Data Networks 34

2.4 Bluetooth Personal Area Network 38

2.5 Battery Technology for Mobile Devices 40

2.5.1 Energy-Aware Design Principles 42

III VOICE USER INTERFACE PROTOTYPE 45

3.1 VoiceXML/HTML Browser . 45

3.1.1 Compaq iPAQ Implementation 48

3.1.2 Software Radio Integration 50

IV SPEECH RECOGNITION FOR EMBEDDED SYSTEMS 53

4.1 Low-Power Front-End Feature Extraction for a Distributed Speech
Recognition System . 54

4.1.1 Low-Power Optimization . 55

4.1.2 Vector Quantization . 64

4.1.3 Summary . 67

4.2 Small Vocabulary Connected Word ASR 68

4.2.1 System Overview . 68

4.2.2 Metrics of Complexity . 69

4.2.3 Summary . 75

4.3 Large Vocabulary ASR . 76

4.3.1 Computation . 77

4.3.2 Memory Heirarchy . 78

4.3.3 Parallelism . 80

4.3.4 A Model of Energy Used in Computation for Client-Side ASR 80

V REDUCED ENERGY CONSUMPTION FOR DSR IN WIRELESS

NETWORKS . 83

vi

5.1 Modeling the Energy Used in Communication 84

5.1.1 802.11b Wireless Networks 85

5.1.2 Bluetooth Personal Area Network 93

5.2 Summary of DSR Tradeoffs . 100

5.2.1 Bluetooth Data Packets and IEEE 802.11b 101

5.2.2 Comparison of Bluetooth, IEEE 802.11b, and Client-Side ASR 102

5.3 Conclusion . 108

VI IMPROVED SPEECH RECOGNITION ACCURACY IN BURST

ERROR CHANNELS . 110

6.1 Related Work . 111

6.2 Gilbert-Elliot Model . 111

6.3 Evaulation of the ETSI DSR Standard Under Burst-Like Error Con-
ditions . 112

6.4 Interleaving and Interpolation . 115

6.4.1 Sub-frame Interleaving . 118

6.4.2 Characterizing the Interpolation Error 121

6.5 Weighted Viterbi Recognition Algorithm 123

6.6 Results . 128

6.7 Reduced Energy Consumption with Bluetooth Voice Packets 133

6.8 Conclusion . 138

VII DISCUSSION AND CONCLUSION 139

7.1 Future Research . 142

REFERENCES . 143

vii

LIST OF TABLES

Table 1 Typical word error rates for speech recognition applications [82]. . . 29

Table 2 Memory and CPU requirements for the ISIP speech recognition sys-
tem. Baseline system is a Pentium 333MHz with 512MB RAM [24]. 30

Table 3 A summary of IEEE 802.11 networking standards. 35

Table 4 Summary of Bluetooth packet types. 39

Table 5 A comparison of battery technologies (AA size) [34, 87] 41

Table 6 Power dissipation for major subsystems of the HP Labs Smartbadge
IV. 43

Table 7 TIDIGITS test set results. 63

Table 8 Measured Power Consumption with DVS. 64

Table 9 Word error rate for several bit rates [25]. 65

Table 10 Table of parameters for front-end feature extraction. 70

Table 11 Number of operations to compute MFCC. 71

Table 12 Back-end speech recognition parameters. 72

Table 13 Cycle counts for the front-end, Gaussian evaluation, and Viterbi
search portions of speech recognition. 78

Table 14 Engery Consumption of the HP iPAQ. 84

Table 15 Total energy consumption for both computation and communication
vs. bit rate for Bluetooth and 802.11b. (T = 0.48s). 101

Table 16 Summary of energy consumption for ASR and DSR with high chan-
nel SNR. 106

Table 17 Split vector quantization codebook arrangement for the ETSI DSR
System [109], including group allocation for sub-frame interleaving. 119

Table 18 A summary of DSR systems tested. 129

Table 19 Results of DSR simulations for TIDIGITS and WSJ Tasks. Reported
WER reduction is relative to the INT-LFB system. 131

Table 20 Lower SNR bound for ETSI and SF-WVR and energy consumption
with Bluetooth voice packets. 137

viii

LIST OF FIGURES

Figure 1 The HP Labs Smartbadge IV . 6

Figure 2 Thesis outline. 14

Figure 3 Architecture of a typical automatic speech recognizer [82]. 17

Figure 4 The real cepstrum of a voiced segment of speech. 18

Figure 5 The algorithm used to compute the mel-cepstrum. 19

Figure 6 A left-to-right HMM showing transition probabilities. 24

Figure 7 A composite HMM used in Viterbi search [41]. 27

Figure 8 Fluency and accuracy vs. complexity for ASR. 28

Figure 9 Distributed speech recognition over digital cellular telephone networks. 31

Figure 10 Distributed speech recognition over wireless data networks using
compressed speech features. 33

Figure 11 Comparison of bit error rates for various 802.11b modulation tech-
niques in an AWGN channel. 36

Figure 12 The IEEE 802.11b framing format [28]. 37

Figure 13 The Bluetooth framing format [28]. 38

Figure 14 Progress in lithium ion battery technology [34]. 42

Figure 15 System architecture of the Yamacraw Voice User Interface. 48

Figure 16 A Voice User Interface Demonstration on a Compaq iPAQ PDA. . 49

Figure 17 Bit rate and range of the Yamacraw Wireless Prototype System. . . 50

Figure 18 A one-way wireless network showing research issues related to dis-
tributed speech recognition applications. 51

Figure 19 Software Radio Testbed Integration. 52

Figure 20 Estimate of the natural logarithm. 58

Figure 21 Frequency vs. Voltage for Smartbadge IV Strongarm CPU 60

Figure 22 Performance and energy consumption per frame of speech. 62

Figure 23 Energy consumption per DSR functional block. 66

Figure 24 Computational energy usage and measured average power for differ-
ent quantization bit allocation schemes. 66

ix

Figure 25 A block diagram of a typical HMM connected word speech recognizer. 69

Figure 26 Arithmetic complexity per frame of speech for connected word speech
recognition. (Y-axis is logarithmic). 75

Figure 27 Power consumption figures for various speech recognition hardware/-
software configurations. 81

Figure 28 WLAN power consumption in 802.11b PM mode in light and heavy
traffic conditions. 87

Figure 29 The timing of the 802.11b scheduling algorithm. 88

Figure 30 WaveLAN power on delay vs. energy consumption per packet. . . . 90

Figure 31 Average energy consumption per 10ms speech frame vs. DSR latency
for various 802.11b power save schemes. (WLAN power on delay is
fixed at 100ms.) . 91

Figure 32 Energy used to transmit one frame of speech with varying compres-
sion rates for Bluetooth radio. 95

Figure 33 Transition times and power measurements for Bluetooth energy sav-
ing modes. 96

Figure 34 Energy per frame of speech vs. DSR latency for a Bluetooth and
802.11b. 98

Figure 35 Delay, SNR, and energy tradeoffs with Bluetooth DM1 packets. . . 103

Figure 36 Delay, SNR, and energy tradeoffs with Bluetooth DH5 packets. . . 104

Figure 37 Delay, SNR, and energy tradeoffs with 802.11b data packets. 105

Figure 38 The energy consumption of client-side ASR and DSR under Blue-
tooth and 802.11b vs. SNR. 107

Figure 39 A two state Gilbert-Elliot channel model. 112

Figure 40 Average bit error rate vs. speech recognition accuracy using the
ETSI DSR standard and a 5,000 word speech recognition task. . . . 113

Figure 41 Repetition based error concealment in the ETSI DSR system. . . . 114

Figure 42 Interpolation of speech features in the log-filterbank domain. 116

Figure 43 The cepstrum of a speech segment vs. time. 117

Figure 44 The log mel-filterbank amplitude of a speech segment vs. time. . . 117

Figure 45 A 6 × 4 block interleaver. Input frames are numbered sequentially. 118

x

Figure 46 The output of a sub-frame interleaver with delay of 24 frames. Input
frame indices are indicated by the color of each square, where black
is the first input frame and white is the last input frame. 120

Figure 47 Interpolation in the log-filterbank domain with de-interleaved output.122

Figure 48 The distribution of the interpolation error for c(11) with a burst
length of one frame. 123

Figure 49 Selection of α for the WSJ recognition task. 130

Figure 50 Results of DSR simulations for TIDIGITS task. 132

Figure 51 Results of DSR simulations for WSJ task. 132

Figure 52 Accuracy vs. interleaver delay for the SF-WVR system on the WSJ
task with bit error probability of 5 × 10−2. 134

Figure 53 Energy vs. interleaver delay for Bluetooth voice packet types. . . . 135

Figure 54 The error correction performance of Bluetooth voice packet types.
The x-axis is signal to noise ratio per bit, and the y-axis is the bit
error probability after error correction. 136

xi

SUMMARY

The central theme of this dissertation is the study of a multimedia client for

pervasive wireless multimedia applications. Speech recognition is considered as one

such application, where the computational demands have hindered its use on wireless

mobile devices. Our analysis considers distributed speech recognition on hardware

platforms with PDA-like functionality (i.e. wireless LAN networking, high-quality au-

dio input/output, a low-power general-purpose processing core, and limited amounts

of flash and working memory.) We focus on quality of service for the end-user (i.e.

ASR accuracy and delay) and reduced energy consumption with increased battery

lifetimes. We investigate quality of service and energy trade-offs in this context. We

present software optimizations on a speech recognition front-end that can reduce the

energy consumption by over 80% compared to the original implementation. A power

on/off scheduling algorithm for the wireless interface is presented. This scheduling

of the wireless interface can increase the battery lifetime by an order of magnitude.

We study the effects of wireless networking and fading channel characteristics on

distributed speech recognition using Bluetooth and IEEE 802.11b networks. When

viewed as a whole, the optimized distributed speech recognition system can reduce

the total energy consumption by over 95% compared to a client-side ASR implemen-

tation. We present an interleaving and loss concealment algorithm to increase the

robustness of distributed speech recognition in a burst error channel. This improve-

ment allows a decreased reliance on error protection overhead, which can provide

reductions in transmit energy of up to 46% on a Bluetooth wireless network. The

findings presented in this dissertation stress the importance of energy-aware design

and optimization at all levels for battery-powered wireless devices.

xii

CHAPTER I

INTRODUCTION

Mobile wireless devices are a driving force in the computer and communications indus-

try. The demand for tetherless access to data will drive the industry toward smaller

but more capable devices. It has already begun with the widespread use of Per-

sonal Digital Assistants (PDAs) and cellular telephones. The trend continues toward

smaller devices which offer high quality wireless web browsing, multimedia e-mail

and messaging services, as well as personal data management (scheduling, contacts,

etc.) These pocket sized devices have small screens and little to no keyboard input,

so appropriate use of speech technology can allow users to interact with the system

in a natural manner. However, the problems of speech recognition, speech synthesis,

and wireless connectivity are far from solved, thus the currently fielded solutions have

many deficiencies. Integrating each of the technologies into a robust wireless voice

user interface is a difficult task given the problems associated with each of the enabling

technologies. The high computational demands of multimedia processing applications

on digital hardware further complicates the problem. Given that portable wireless

devices are limited in computation, memory size, wireless bandwidth, and battery

energy, distributing the speech recognition task across the network is an attractive

alternative. Speech recognition can be a computationally demanding application that

can easily use all available resources. An in-depth understanding of these issues in

the context of a distributed speech recognition system enables designers of future

systems to build more efficient devices and algorithms. This thesis involves the study

of a pervasive multimedia client specifically applied to distributed speech recognition.

1

In particular, we study the effects of wireless networking and fading channel char-

acteristics on distributed speech recognition. We investigate quality of service and

energy trade-offs in this context.

1.1 Mobile Wireless Devices

Mobile wireless devices are portable computers or communication devices with wire-

less networking support. They include cellular telephones, PDAs, wearable comput-

ers, and other embedded devices. They are meant to be easily transported, so they

are typically small and light with limited battery power. Portable information de-

vices are becoming smaller and more capable each year. However, due to cost factors,

small memory allocation, power limitations, slower processors, and software limita-

tions, a completely speech enabled device remains out of reach for the time being.

However, through thin client design, we can speech enable a device by offloading ASR

computation to a server.

1.1.1 Cellular Telephones

The cellular telephone is perhaps the most ubiquitous wireless device. Digital cell

phone manufacturers and service providers have phones available with limited wireless

Internet access and include more PDA-like functionality such as personal information

management applications (i.e. contacts, calendar, and e-mail access.) Cell phones

are characterized by very small displays, and little processing power for applications.

Their main function is for voice communication, although new phones will add more

features such as cameras and Internet access with data rates in the hundreds of kbps.

There is a lack of well defined operating systems for phones and adding software

requires the use of the Internet or data connection to a PC. The Java 2 Micro Edition

(J2ME) allows for portable software to be written for many cellular phone devices,

but it has limitations. J2ME applets run in a limited virtual machine that does not

allow full access to the hardware and network, and the interpreted Java byte-code can

2

be slow on many devices. The limitations make cellular phones, for the time being,

well suited to audio only interfaces. However, the close talking microphone is of great

benefit to the VUI since it will be less likely to pick up background noise.

1.1.2 Personal Digital Assistant

A Personal Digital Assistant (PDA) is a small hand-held computer with limited capa-

bility. A comprehensive discussion of emerging PDA standards is given in [12]. PDAs

have a higher quality display than a cell phone, 240-by-320 pixels is not uncommon,

with color displays in higher-end models. However, this resolution is still one sixth

the size and one fourth the resolution of the absolute minimal acceptable display on

a modern desktop PC.

PDAs are limited in memory (usually 64 Mbytes) as well as processing power.

The current top of the line PDA runs the 400 MHz Intel XScale processor. Other

models run a 200 MHz version of the same or a 206 MHz StrongARM processor. New

PDAs are being designed which will run the new low-power Crusoe processor from

Transmeta [32]. Unlike cellular phones, PDAs typically use a standard operating

system, although there are several to choose from (Windows CE, Palm OS, and

Embedded Linux). Current PDAs use a pointing device and a few buttons as the sole

medium for user interaction, although some have folding keyboards available. Many

PDAs have some form of handwriting recognition, but this can be slow and often

requires special glyphs for certain characters to improve accuracy. Through practice a

user can become quite proficient at handwriting input, but it still remains cumbersome

for many types of input. Due to their limited processing power and memory, PDAs

are minimally suitable for large vocabulary continuous speech recognition (LVCSR)

and lack the memory required for high-quality concactenative TTS without dedicated

hardware support. A microphone for a small PDA will most likely be small, cheap,

and mounted directly on the device itself. Using a far field microphone gives a noisy

3

signal, and therefore speech recognition accuracy will drop without environmental

robustness techniques.

Wireless connectivity options for PDAs have grown over the years. Early wireless

PDAs used a network such as BellSouth’s Mobitex or GoAmerica, which are char-

acterized by poor coverage, low data rates (9.6 kbps), and high cost compared to

cellular phones but with a range that covered most metropolitan areas. Currently

many PDAs are designed with builtin 802.11b or Bluetooth support. Bluetooth may

provide the solution for data rates less than 1 Mbps with low cost and short range,

while 802.11b offers increased range and data rates up to 11 Mbps. Many businesses,

schools, and public gathering places are being equipped with 802.11 hotspots that

allow wireless internet access either for free or a small subscriber fee.

Finally, due to the small display, several alternatives to HTML have been defined.

Among them are Hand-held Device Markup Language (HDML), Wireless Applica-

tion Protocol (WAP), Wireless Markup Language (WML), and i-MODE which uses

HTML tags. These standards are for visual content and have no provisions for audio

interfaces. There is an increasing amount of content available using these standards

as Internet capable phones and PDAs permeate the marketplace.

1.1.3 Wearable Computers

A wearable computer is more capable than a PDA, but it is more bulky and awkward.

They are typically worn around the waist. They typically have the processing power

of low-end laptop computers, although more capable models exist in the higher price

range. They can run popular operating systems such as Windows or Linux. CPUs,

disk drives, batteries, and other peripherals are often worn around the waist on a

belt. Input devices range from pointing sticks, touch screens, small keyboards worn

on the wrist, to voice input. Display devices can be head mounted displays or small

LCD panels worn on the arm or wrist. Wearable PCs are also expensive, ranging

4

anywhere from $5000 to $10,000.

Since they are much like PCs, they are able to run the software and peripherals

for desktop and notebook computers, therefore they offer greater flexibility in appli-

cations. They can have battery lifetimes that exceed laptops as several batteries can

be worn around the waist. They are often used for industrial applications such as

aircraft maintenance, nuclear power plant maintenance, manufacturing plants, etc.

These locations are generalized by high noise, so a voice interface is not a viable

option. However, other uses such as in the medical profession or inventory control,

where quiet office environments can be expected, are suitable for VUIs.

1.1.4 HP Labs Smartbadge

The HP Labs Smartbadge IV is a research prototype of a wearable smart identifica-

tion badge. It is a useful platform for biometric applications, diverse context sensors,

audio and speech processing, video streaming, and human-to-human communication.

It supports power optimization and measurement as well as core scaling and adaptive

power policy generation [38]. Figure 1 shows a photograph of both sides of an assem-

bled Smartbadge IV. The Smartbadge uses a 206 MHz Intel StrongARM (SA1110)

processor and SA1111 coprocessor with configurable Flash, SRAM, and SDRAM. It

can be equipped with a variety of I/O interfaces including PCMCIA, Compact Flash,

USB, Serial, and infrared. It supports CD-quality stereo audio input and output

through headphone and speaker jacks. It can be configured for a variety of additional

sensors including accelerometers, temperature sensors, humidity sensors, and photo

(light) sensors [99]. The lack of user keypads or displays make the Smartbadge an

ideal candidate for a speech-only interface. It runs the embedded Linux operating

system. The software/hardware is supported by a variety of power measurement tools

including a cycle accurate energy consumption simulator and prototype boards pre-

wired for power measurements. Many of the hardware measurements and simulations

5

(a) Side 1 (b) Side 2

Figure 1: The HP Labs Smartbadge IV

6

in this thesis are based on the Smartbadge hardware because of its ease of use as a

research platform. The StrongARM platform is still used in many high-end PDAs

on the market today, such as the HP iPAQ H3800. The SmartBadge IV uses the

same memory and CPU as this version of the iPAQ, but it offers a wider range of

hardware-based power measurements as well as software simulation tools, therefore

it is a better choice to investigate the issues discussed in this thesis. Newer PDAs

based on the XScale processor have a similar architecture to the StrongARM, and we

expect similar results with these processors.

1.2 Applications of Speech Recognition for Mo-

bile Devices

TTS and ASR technology are particularly well suited to task specific applications.

The constraints imposed by those tasks can allow for greater accuracy within ASR

and greater fluency with TTS. Rabiner suggests some guidelines for the use of speech

technology in [81] and [82]:

• The use of ASR and TTS should benefit the user.

• The system should be user friendly in the sense that little or no training is

required to use it.

• The speech interface should be accurate.

• The system should responde at or near real-time. Delays should be indicated

through auditory “earcons” or visual feedback.

• The system must be able to gracefully handle errors and allow the user to

backtrack through the system.

• The system must allow barge-in of audio prompts for expert users.

7

• The speech interface must coordinate with the graphical user interface where

applicable.

Sharman emphasizes the need for speech interfaces on miniature devices such as PDAs

and cell phones, but predicts that most applications of speech interfaces will settle

out to specific applications such as telephony applications, and database information

access [89]. Finally, Tanaka stresses the importance of synergies with the visual user

interface through multimodal interaction [103]. Tanaka believes that “the multimodal

system will become main-stream in human-machine interface.”

There are many systems being built in both industry and academia that address

many of the issues involved in VUI technology. Certain groups are working on hard-

ware solutions specific to ASR and TTS [6],[9]. Other groups are concerned with

wearable computing and other mobile devices. Standards groups are attempting to

provide common interfaces to speech technology. Finally, new application classes

involving natural language processing are becoming a reality.

1.2.1 Wearable Computing

The constraints of wearable computing were discussed earlier. There are several aca-

demic and industry groups working to speech enable wearable computers [86], [98],

[35], [26]. The most pervasive application seems to be inspection database access

for industrial technicians. The Portable Maintenance Terminal (PMT), as it is called

in [35], gives the technician hands free access to inspection checklists, schematics, trou-

bleshooting information, and data entry through a combination of a head mounted

display and speech input/output. The PMT can cut costs, decrease worker fatigue,

and increase the quality of work.

A distributed speech recognition system over a wireless link can alleviate the

processing requirements for the PMT while providing higher quality for the user.

8

Carnegie Mellon University’s ISAAC system uses this approach. A wireless micro-

phone/headphone system allows the user to issue voice commands to turn on devices,

access e-mail, browse the web, etc. The wireless link is a low cost infrared link using

RF extenders to go beyond line of sight communication. All ASR and TTS operations

take place on a server.

1.2.2 Information and Control in the Home

Home automation is an especially important application for the elderly and disabled.

The smart home of the future could look after its occupants who may otherwise need

constant care. An audio warning could alert the occupants of dangerous conditions

such as an unattended stove. Disabled persons could have access to lights, temper-

ature control, and appliances through voice commands. The X10 home automation

modules allow a variety of appliances, air conditioners, and lamps to be easily con-

nected to a PC with very low cost. The home PC acts at the nervous system of the

house. Hand-held web pads could give Internet access through wireless links to the

PC. The Open Services Gateway Initiative (OSGI) [108] seeks to standardize network

interaction throughout the home via a standard interface supported by multiple ven-

dors. Chowdhury and Chia from Intel discuss home automation, Internet telephony,

and personal assistant applications in [11]. They feel the the VUI when used properly

is a valuable tool to provide easy hands free interaction with devices in the home.

The smart intercom project in the Aware Home at Georgia Tech is another ex-

ample of VUI technology in the home [48]. Speech recognition will allow occupants

to locate a particular occupant of the house and open a two way audio connection

between them. The occupants themselves will be identified through speaker verifica-

tion and a positioning system within the home. This hands free intercom poses many

problems in speech processing including environmentally robust ASR, speech coding,

echo and noise cancellation, and robust speaker verification.

9

1.2.3 The Automobile Environment

The automobile is a harsh acoustic environment for speech recognition. Wind, en-

gine, and tire noise can vary drastically with speed and vehicle type. In general,

automobile environments are characterized by low and highly variable SNR. Close

talking microphones, small vocabulary speech recognition, or appropriate noise ro-

bustness techniques are required. Automobile applications should be hands/eyes free

with minimal displays if any. With many US states passing hands-free mobile phone

laws, the use of ear-mounted headsets is becoming more common. As Bluetooth en-

abled cellular phones hit the marketplace, we are seeing increasing numbers of wireless

headsets. Such headsets can be used for functions other than telephone communi-

cation such as hands-free voice command and control in the automobile, including

navigation and climate control. A Bluetooth enabled headset is a good candidate for

a low-power distributed speech recognition system.

Finally, in a system built by Muthusamy et al., a client server approach was

employed to perform speech recognition and synthesis in the car [71]. The Java Speech

API (JSAPI) [67] was used to provide a standard interface to recognition/synthesis

technology. Applications included voice dialing, voice e-mail, and navigation.

1.2.4 Standardized Speech Application Markup Languages

Standardized speech application markup languages provde a framework for the de-

velopment of voice-enabled applications. Until the advent these standards, building

applications, such as interactive voice response (IVR) systems, required a team of

skilled programmers familiar with telephony hardware, speech recognition, and text

to speech software. A standard markup language hides the speech application de-

signer from the details and software APIs of the underlying technologies. Speech

applications written for a particular standard can be executed on any conforming

hardware/software platform without modification.

10

Earlier work on voice browsing attempted to augment HTML with speech specific

tags since HTML does not naturally lend itself to speech interfaces [15]. The World

Wide Web Consortium continues this work with the XHTML+Voice profile, which

specifies speech tags that can be added to HTML documents [13]. A browser can

interpret or ignore these tags depending on its capability.

A standard was release in March, 2000 called the Voice eXtensible Markup Lan-

guage (VoiceXML) [111]. XML is the standard format for documents and data on the

Internet. VoiceXML uses the XML syntax to allow speech enabled applications to

be created and placed on centralized servers much like HTML pages. Voice browsers

can access the VoiceXML applications and interpret them in a platform independent

manner. Danielson and White give some overview of the language in [17] and [114]

respectively. Originally developed for telephony applications, VoiceXML has no sup-

port for a visual interface. It supports TTS and digitized audio output and DTMF

and speech input. The language shields application developers from the difficult issues

involved in speech interfaces. Finite state grammars are used to constrain the allowed

input phrases for better speech recognition accuracy. A new version of the standard

was released in February, 2002 and is rapdily gaining acceptance in the industry.

1.2.5 Towards Multimodal Interaction

The VoiceXML standard does not support any multimodal interaction. Multimodal

systems couple speech interaction with other input/output methods such as keyboard,

pointing device, or touch screen. A scalable multimodal system could provide a

common interface to data across a variety of different platforms from telephones and

PDAs to desktop computers. A multimodal interface can be a more efficient medium

than a voice only interface. For example, TTS is serial in nature while text is random

access and allows for greater bandwidth between the user and machine. In addition,

speech input is very efficient while text based menus can become cumbersome and

11

slow to use. A voice-in web-out type of user interface can capture the best of both

interaction methods on a small PDA-like device.

Multimodal input can be either redundant or complementary. An example of

complementary input is a user pointing to an icon of a product while saying, ”I

want two of these.” Redundant input is when the user uses multiple methods to

simultaneously to indicate the same action. For example, circling an icon of a green

shirt with a stylus while saying, ”I want the green shirt.” Complementary input can

increase the total bandwidth between the user and machine by allowing separate

tasks to be completed at the same time, while reduntant input can increase the total

accuracy of the system. Mills and Alty did a study on redundancy in multimodal

input systems in [66]. By using both speech and a pointing device, the machine can

disambiguate the input when one channel becomes noisy if redundant input is used.

For example, a user can say “I want to buy widget S” or “I want to buy widget

F”. Using telephone quality speech, a human would have difficulty disambiguating

the utterance. However, with the addition of a simple click or circling some icon

representing widget F, the system can easily tell which one the user meant.

Finally, the Speech Application Language Tags (SALT) is an emerging stan-

dard whereby visual and audio input/output are combined through a standard lan-

guage [105]. Unlike VoiceXML, SALT allows some multimodal interaction and is

targeted more towards PDA’s, high-end cellphones, or other mobile wireless devices

with visual display components.

1.2.6 Natural Language Systems

An ultimate goal of the VUI is to use natural language to interact with the system.

An example is the work done by Lee in [55] on natural language call routing. The

front end to the system was a speech recognizer with about 24% WER for telephone

quality speech. However, by training a system to route calls based on natural language

12

queries, the system only misrouted around 10% of the calls. Olive also suggests a

task driven recognition system, where the most probable task Ti is chosen from a

set of acoustic features [72]. This is a difficult problem and current systems need

to be trained for the specific task using large amounts of training data. Unlike the

standard markup languages, building and designing natural language applications

requires domain expertise on the part of the application developer.

1.3 Contributions, Outline, and Scope

The central theme of this thesis is the rigorous study of a multimedia client for per-

vasive wireless media applications. Speech recognition is considered as one such ap-

plication, where the computational demands have hindered its use on wireless mobile

devices. Our analysis considers distributed speech recognition on hardware platforms

with PDA-like functionality (i.e. wireless LAN networking, high-quality audio in-

put/output, a low-power general-purpose processing core, and limited amounts of

flash and working memory.) We focus on quality of service for the end-user (i.e.

ASR accuracy and delay) and reduced energy consumption with increased battery

lifetimes. We present the following technical contributions in this context:

• A software-based signal processing front-end optimized for low-power, general-

purpose processors present in many mobile multimedia devices [18, 19].

• A characterization of arithmetic requirements for small vocabulary ASR on

embedded systems.

• Power management of 802.11b and Bluetooth wireless interfaces to reduce en-

ergy consumption with distributed speech recognition traffic while maintaining

quality of service for the end-user [20].

• A discussion of tradeoffs and energy saving opportunities for client-side and dis-

tributed automatic speech recognition in wireless LAN environments including

13

Figure 2: Thesis outline.

channel quality, battery energy, and delay characteristics [21, 22].

• A novel algorithm for distributed speech recognition accuracy improvement in

burst error channels.

We consider energy consumption as applied to the HP Labs Smartbadge IV em-

bedded system. The Smartbadge has support for both hardware measurements and

software simulation to determine energy consumption. We consider local area wireless

networks such as IEEE 802.11b and Bluetooth networks. Single hop communication

is assumed with the typical mobile host/base station scenario. Simulations involv-

ing distributed speech recognition make use of portions of the ETSI DSR standard

where applicable [109]. Improved methods for quantization of speech features for dis-

tributed speech recognition exist, but our simulations deal mainly with loss protection

and energy consumption issues. Therefore, it is sufficient to use portions of the ETSI

standard without loss of generality.

Figure 2 shows a general outline for this thesis. The majority of the work fo-

cuses on the wireless multimedia client. In Chapter 2 we present a brief technol-

ogy overview, including automatic speech recognition, distributed speech recognition,

wireless networks, and battery technology. In Chapter 3, we introduce a prototype

implementation of a voice user interface for a multi-modal Web browsing application

14

on a PDA. Chapter 4 includes a low-power front-end feature extraction, a complex-

ity analysis of small vocabulary connected word recognition, and a literature review

of large vocabulary speech recognition performance on modern computers. Some

current issues hindering the implementation of high-quality large vocabulary speech

recognition on mobile devices are discussed. In Chapter 5, we present a power on/off

scheduling algorithm to reduce the energy consumption of the wireless interface and

discuss tradeoffs pertaining to energy consumption and quality of service for both

data and multimedia traffic types. We present a novel loss protection technique for

distributed speech recognition in burst error channels in Chapter 6. Portions of this

technique require operation at the ASR server, but the improvement in channel ro-

bustness can be translated to energy savings for the mobile client.

15

CHAPTER II

BACKGROUND

In this chapter, we give a brief overview of the technologies discussed in this thesis. In

section 2.1, we describe the current state-of-the-art speech recognition systems based

on the hidden Markov model. In section 2.2, we introduce distributed speech recog-

nition. In addition, we give a brief introduction to the IEEE 802.11 and Bluetooth

data networks used throughout this thesis in sections 2.3 and 2.4. Finally, we discuss

current limitations in battery technology in section 2.5.

2.1 Automatic Speech Recognition

Research on automatic speech recognition has spanned about forty years. It started

with recognition of isolated digits for a single speaker in 1952 at Bell Laboratories [80].

Despite this long history, the problem of automatic speech recognition by a machine

is far from being solved. Large vocabulary conversational speech recognition remains

a difficult task, and current systems have difficulty with high levels of background

noise even with small vocabularies. However, despite these imperfections, specific

applications of ASR are finding their way into the marketplace.

In ASR, we need to choose the most probable word sequence from some set of

acoustic observations. The following is the Bayesian approach to ASR discussed

in [80]:

Ŵ = arg max
W

P (W |O) = arg max
W

P (O|W)P (W) (1)

where O is some acoustic data, Ŵ is the estimated word sequence, and W represents

all possible word sequences. It is not convenient to estimate P (W |O) since the total

number of word sequences is effectively infinite. However, we can create stochastic

16

models of word sequences using training data and then estimate P (O|W), the proba-

bility that a particular set of acoustic observations comes from some model of a word

sequence. The probability of individual word sequences, P (W), can be estimated by

analyzing large amounts of text data or, for more constrained input, built by hand

through a series of grammar rules.

Front-End
 Back-End

Feature

Extraction

Sentence

Match
Word Match

Unit

Models
 Lexicon
 Syntax
Semantics

Acoustic Features

La
ng

ua
ge

 M
od

el
s

W
or

d
M

od
el

s

Recognized Text
Input Speech

Figure 3: Architecture of a typical automatic speech recognizer [82].

Figure 3 shows the fundamental blocks of a typical automatic speech recognizer.

Some digitized speech is analyzed using signal processing algorithms to produce a

vector of acoustic observations, O. These features are compared with some acoustic

models stored on disk. Individual words are concatenated from smaller units using

a lexicon. In addition to acoustic models, a language model which estimates P (W)

is used to provide context and increase accuracy. The next few sections will explain

each of the various parts in Figure 3 in some detail.

2.1.1 The Signal Processing Front-End

The purpose of the signal processing front-end is to produce acoustic features which

can be used to recognize speech. A good signal model will produce perceptually

meaningful, invariant, and uncorrelated parameters. They should be perceptually

meaningful in that they represent aspects of the speech signal used by the human

auditory system. Robustness to noise and variations in channels and speakers make

17

them invariant. Uncorrelated features are not redundant in the information they

convey. More features require more computation in both estimation and evaluation,

so it is essential to keep the feature set to a minimum while still providing sufficient

accuracy.

0 50 100 150 200 250 300 350
−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08
Time domain plot of a vowel

0 20 40 60 80 100 120 140 160
−0.4

−0.2

0

0.2

0.4

0.6
Cepstrum of the vowel

Figure 4: The real cepstrum of a voiced segment of speech.

A homomorphic signal processing technique known as the cepstrum is used by

many state-of-the-art speech recognition systems to date. The cepstrum is defined as

the inverse Fourier transform of the log spectrum:

cs(n) =
1

2π

∫ π

−π

log |S(ω)| ejωndω (2)

where S(ω) is the spectrum of the speech signal. The cepstrum effectively separates

the glottal excitation signal from the vocal tract parameters. In the frequency domain,

the slowly varying vocal tract and quickly varying excitation signal are multiplied to

produce the speech spectrum. However, if we take the logarithm of both spectra, then

18

they are linearly combined in the log-spectral domain. By taking the inverse DFT of

the log-spectrum, the first coefficients in the cepstrum represent the slowly varying

vocal tract parameters, and the remaining coefficients model the quickly varying

excitation signal and pitch (see Figure 4). The slowly varying parameters in the log

spectrum (i.e. the spectral shape) will occupy the first part of the cepstrum or lie at

the beginning of the quefrency scale. The quickly varying parameters (i.e. the glottal

excitation) will occur further down on the quefrency scale, with a large peak occurring

at the pitch frequency. In speech recognition, we are usually only interested in the

first 13 cepstral coefficients, which give information about the vocal tract shape. The

vocal tract parameters are influenced by the location of the articulators (lips, tongue,

etc.). By separating the effects of the glottal excitation, the cepstrum is less affected

by variations between and within speakers.

Pre-emphasis Hamming Window

DFTMel-Filter Bank

Natural Logarithm

25 ms samples
at 16kHz 16-bits Filtered Speech

W
indow

ed
Speech Fram

e

M
el -Spectrum

DCT
Weighted Log

Energy
13 Mel-Cepstral

Coefficients

Magnitude
Squared { }22][][nyDFTkX =

]1[][][−−= nxnxny α][][][nxnwny ×=

∑
=

=
2/

0

2][][][
N

k
i kHkXiY

])[ln(][
~

iYiY =
120 ≤≤ n

])[
~

(][iYDCTnc =

Figure 5: The algorithm used to compute the mel-cepstrum.

An extension to the cepstrum that is used with much success is the mel-frequency

cepstrum. The mel-frequency scale is used to model the perceived pitch of a tone. It

19

is a non-linear, empirically determined, frequency scale that gives more emphasis to

lower frequencies. It can be estimated by the following formula:

Fmel = 2595 log

[

1 +
FHz

700

]

(3)

In practice, the mel-frequency cepstral coefficients can be computed using the algo-

rithm in Figure 5. A pre-emphasis filter whitens the speech signal and overlapping

frames of 25ms are multiplied by a Hamming window. Next the magnitude squared

of the discrete Fourier transform (DFT) is computed. The magnitude squared is pro-

cessed by a set of mel-filter banks to produce an estimate of the mel-spectrum. The

mel-filter banks are implemented as a series of overlapping triangle filters, Hi[k], that

are centered on equally spaced frequencies in the mel-scale. The result is an estimate

of the total energy in the ith critical band:

Y [i] =

N/2
∑

k=0

|X[k]|2 Hi[k] (4)

where X[k] is the DFT of the windowed speech signal and Hi[k] contains the filter-

bank coefficients. Finally, the logarithm of the mel-spectrum is taken to produce a

weighted log energy, Ỹ [i]. The weighted log energy is real and even, so the inverse

Fourier transform can be implemented as a discrete cosine transform (DCT) with

equivalent results.

Most state-of-the-art speech recognizers currently use 13 mel-frequency cepstral

coefficients as a base feature set. Overlapping, windowed, frames of approximately

20-30ms are computed at a rate of one every 10ms. Secondary features, consisting

of first and second temporal derivatives of the cepstrum, are also used, resulting in a

39 dimensional feature set generated 100 times per second. These secondary features

account for spectral dynamics that the acoustic models may not be able to model

explicitly. A more in depth discussion of the theory and properties of the cepstrum

can be found in [23]. An account of other signal processing techniques used in speech

recognition can be found in [74] and [41].

20

2.1.2 Acoustic Modeling

In acoustic modeling, the goal is to produce models of the acoustic observations

from the signal processing front-end that are accurate, trainable, and generalizable.

In small vocabulary systems, accurate models of individual words can be trained

without difficulty. It is easy to obtain sufficient training data for whole word models

for such a small vocabulary. However, such a model is not generalizable because new

words cannot be added to the vocabulary without additional training. Also, as the

vocabulary size grows, it is difficult to get enough training data to accurately model

the acoustics of every single word. Since word models are no longer appropriate, the

recognition unit needs to be broken up into something smaller.

Individual phonemes do not work well in practice because there is too much vari-

ation due to articulatory effects from adjacent sounds. Context dependent units such

as the triphone are the standard recognition unit for most large vocabulary applica-

tions. A triphone is an acoustic unit which models the effects of the preceding and

following phoneme. However, the total number of triphones is about 80,000 compared

to around 50 base phonemes. In practice, the total number of triphones used in a

speech recognizer is smaller than this since many triphone combinations occur very

infrequently or never at all. Since many triphones share parts which are acousti-

cally indistinguishable, parameters are often shared between them. This aids both

in training and decoding. Cross-word triphones are used to model the articulatory

effects of adjacent words. Cross-word triphones give better accuracy, but they add

complexity to the system. There has been some research emphasis on using syllables

as the recognition unit since there are only around 11,000 syllables in the English

language [31]. Early results gave a marginal improvement in word error rate (WER).

A lexicon will list the phonetic representations of words using whichever phonetic unit

is chosen for the recognizer. Words not in the lexicon can be estimated using letter

to phoneme rules, so an acoustic model based on context dependent sub-word units

21

is generalizable. New words can be added by concatenating the sub-word models.

2.1.2.1 The Hidden Markov Model

Many acoustic modeling techniques have been proposed for automatic speech recog-

nition. Among these are Dynamic Time Warping, Artificial Neural Networks, and

Stochastic Segment Models [45]. Perhaps the most successful and widely used method

for acoustic modeling is the Hidden Markov Model (HMM). The HMMs popularity

can be attributed to its simple structure, straightforward implementation, and good

performance [44]. The HMM can best be described as a probabilistic state machine

for the study of time series. In speech recognition the time series is given by an

observation vector O = (O1,O2, . . .OT), where each Oi is some acoustically mean-

ingful vector of speech data for the ith frame. HMMs are Markov chains whose state

sequence is hidden by the output probabilities of each state.

A Markov chain models a class of random processes with a minimum of mem-

ory [41]. Such models are often represented as state machines where the transitions

between states are described by the random processes. A first-order Markov chain

is based on the assumption that the probability of the Markov chain being in a par-

ticular state is dependent only on the state of the chain at the previous time. Let

X = X1, X2, X3, ...Xn be a sequence of random variables from some finite alphabet

of observations, O. Under the first-order Markov assumption and the application of

Bayes’ rule:

P (X1, X2, X3, ..., Xn) = P (X1)
n

∏

i=2

P (Xi|Xi−1) (5)

The probability of a random variable at a given time depends only on the value

at the preceding time (P (Xi|Xi−1)). Associating each Xi with a state, we have

P (Xi = si|Xi−1 = si−1) = P (si|si−1), where si is the ith state of the system. A

stationary Markov chain models time-invariant events, where the time index, i, is

independent of the state sequence.

22

In the observable Markov model, each state outputs an event that can be directly

associated with that state. Therefore, the state sequence is always known with an

observable Markov model. However, the hidden Markov model outputs an event

according to another stochastic process, or output distribution, within each state. By

simply observing events, it may not be possible to determine the exact state sequence

since multiple states may output the same events. However, given the state output

distributions and transition probabilities, it is possible to determine the most probable

state sequence. HMMs can use either discrete or continuous output probabilities.

Consider a HMM with N states indexed as {s1, s2, . . . , sN}, a state, sk, contains an

output probability distribution, B, which describes the probability that a particular

observation is produced by that state (i.e. p(Oi|qt = sk), where qt represents the state

at time t.) B can be either discrete or continuous. Continuous probability density

functions add complexity but are more robust to parameter variations. Gaussian

mixture densities are used to approximate any finite, continuous density function,

which adds robustness to noise and speaker variation. A Gaussian mixture density

for a particular HMM state is a summation of scaled Gaussians:

b(o) =
M

∑

k=1

ckN (o, µk,Uk)

where o represents the observation vector being modeled, ck is the mixture weight,

N is the multi-variate Gaussian pdf with µk as the mean and Uk as the covariance

matrix. The parameters for the mean, covariance, and mixture weights for each of

the mixtures are estimated during training, and the number of mixtures, M , is a

design parameter. A discrete observation probability requires that observations be

chosen from some finite alphabet via vector quantization. Discrete HMMs can have

a speed advantage over continuous output density HMMs since a significant amount

of processing is involved in the Gaussian mixture evaluation.

Each model contains a transition matrix, A, which describes the transition prob-

abilities from one state to another based on the first-order Markov chain assumption

23

(i.e. aij = P (qt+1 = sj|qt = si)). For example,

A = {aij} =













0.4 0.3 0.3

0.2 0.6 0.2

0.1 0.1 0.8













(6)

could describe the state transition matrix for a three state HMM. The probability for

going from state 1 to state 2 would be 0.3. Figure 6 shows a typical HMM used in

speech recognition where the state transitions are limited such that only left to right

movement of no more than two states is permitted. Other topologies are possible,

and this is generally a design decision. In general, more non-zero probability state

transitions in a model topology will result in higher decoding costs. Finally, the

HMM has an initial state distribution, π, which describes the probability of starting

in any one of the N states. For convenience in notation, the HMM parameters can

be written as λ = (A,B, π).

S S SS1 2 4 5S

a a a a a11 22 33 44 55

a

a

12

13

a

a

23

24 a

aa34

35

45

3

Figure 6: A left-to-right HMM showing transition probabilities.

For speech recognition, we are primarily interested in the P (O|λ), the probability

that a speech observation, O, came from a given model, λ. If λ represents a string

of words, then we have P (O|W) as discussed earlier. These model parameters are

estimated through training with a set of labeled and transcribed speech data. The

24

training attempts to maximize P (O|λ) by manipulating the model parameters, λ.

Efficient techniques for model estimation include the Viterbi algorithm and Baum-

Welch estimation discussed in [80], [44], and [75].

2.1.3 Language Modeling

Using some fundamental acoustic unit (phonemes, triphones, syllables, etc.), we can

obtain a set of hypothesized words for a particular set of observations. However,

using acoustic models alone will yield poor recognition accuracy because there is too

much acoustic similarity between many words and phonemes. Language models are

used to estimate the probability of word sequences and thus provide better accuracy.

Language models are typically based on the N-gram model, which estimates the

probability of the next word on the previous N − 1 words. For an arbitrary N, the

probability is:

P (wi|wi−N−1, wi−N−2, ..., wi−1) (7)

In practice, trigrams, N = 3, and bigrams, N = 2, are most commonly used. Bi-

grams contain one word history, P (wi|wi−1), and trigrams contain a two word history,

P (wi|wi−2, wi−1). Unigrams contain no word history, P (wi). Bigrams and trigrams

for a particular task are difficult to estimate without large amounts of training data.

When combining acoustic and stochastic language models, it is desirable to in-

clude a weighting on the language model. The acoustic probabilities are typically

underestimated, and a direct multiplication of the two models, as in (1), often yields

a probability estimate that favors the language model too much. In practice, the

following weighting is applied:

P̂ (W) = P (W)LW · IPN(W) (8)

where P̂ (W) is the new N-gram probability, LW is the weighting applied to the lan-

guage model, IP is the word insertion penalty, and N(W) is the number of hypothe-

sized words in the current Viterbi search path. The weighting, LW , is typically > 1,

25

and this has the effect of reducing the overall contribution of the N-gram probability.

The IP is generally between zero and one, and it has the effect of reducing the ten-

dency of the recognizer to favor longer strings of short words. Both LW and IP can

be determined emperically for a given task.

For more constrained speech input, we can use finite-state grammars (FSG) which

compute phrase probability based on a set of grammar rules. These rules generally

give a set of choices useful for command and control applications. At the risk of

limiting what the user can say, we can achieve greater accuracy with lower complex-

ity. The VoiceXML standard is designed for use with this form of grammar. There

are a few standard representations for this format, including the Speech Recognition

Grammar Specification (SRGS), Backus-Naur format and the Java Speech Recogni-

tion Grammar Format (JSGF). These grammars are typically built by hand which is

a time consuming processes often requiring much tweaking and tuning for real-world

applications.

Certain tasks allow any word to follow any other word, such as digit recognition.

These tasks have no grammar and rely only on the quality of the acoustic model.

Words that are acoustically similar are difficult to recognize in this case because

there is no context information to discern them.

2.1.4 Speech Recognition Decoding

Given a set of acoustic observations, an acoustic model, and a language model, how

do you find the most likely word sequence? For each frame of input, all HMM states

for all words must be evaluated using the acoustic observations. Language model

probabilities must also be included when transitioning between words. An efficient

search algorithm is needed to carry out these calculations. Speech recognition search

is often called decoding, which is borrowed from information theory terminology for

choosing a likely set of output symbols over a noisy channel.

26

The most common decoding algorithm in speech recognition is the time-synchronous

Viterbi beam search. It is time-synchronous in that each frame of speech can be con-

sumed as soon as it becomes available. If the search can consume feature vectors at

a rate of 100 frames per second, then it can perform real-time recognition.

The Viterbi search is a dynamic programming technique used to find the optimal

path through a trellis. Figure 7 shows a typical trellis used in speech recognition.

It is a composite HMM where all states in all words are evaluated for each frame

of speech input. The solid lines show the non-zero state transitions for the acoustic

models. The HMM topology used in Figure 7 only allows left-to-right transitions

of one state or a self-transition. The dotted lines represent null transitions between

words. These transitions do not accumulate a frame of input, but they do have

probabilities associated with them from the language model. Null arcs only occur at

word ending states and only transition to word beginning states.

� � � � �
W1

W2

� � � � �

� � � � �� � � � �

� � � � �� � � � �

� � � � �� � � � �

� � � � �� � � � �

� � � � �

� � � � �� � � � �

0 1 2 3 t

� � � � �
W1

W2

	 	 	 	 	

� � � � �� � � � �

� � � � �� � � � �

� � � � �

� � � � �� � � � �

0 1 2 3 t

Figure 7: A composite HMM used in Viterbi search [41].

The beam pruning heuristic removes unpromising hypotheses from the search.

The cost of the best path is determined, and a threshold is set at some smaller cost

by subtracting the beam width from the best path cost. All paths that fall below this

27

threshold are removed from the search. Beam pruning can occur at different levels as

in the hierarchical search presented in [24].

2.1.5 Accuracy and Complexity

A block diagram of a complete continuous speech recognizer is shown in Figure 3. It

contains all of the components mentioned thus far (feature extraction, word matching,

and language modeling). What type of performance can we expect from this type of

recognizer in terms of memory, CPU time, and accuracy?

���
�

���
�

���
�

���
�

���
�

Fluency

Ideal ASR

Word
Isolated

Connected
Word

Large
Vocabulary
Conversational
SpeechRead Text

Vocabulary
Large

Low

Accuracy

Complexity

Figure 8: Fluency and accuracy vs. complexity for ASR.

Accuracy is largely a function of the task and environment under which the rec-

ognizer is running. Noise will certainly degrade performance. Small vocabulary tasks

perform better than large vocabulary tasks. Speaker independent systems generally

have higher error rates than speaker dependent systems. Figure 8 shows the tradeoffs

between accuracy, fluency and complexity. Fluency is a measure of the ability to

recognize speech from a variety of different vocabularies, speaking styles, and speak-

ers. The accuracy drops and complexity increases as we allow the system to be more

fluent.

28

Table 1 shows some basic word error rates for selected speech recognition applica-

tions. WER drops to worse than 10% as soon as the transition from large vocabulary

read speech to large vocabulary spontaneous speech is made. These measurements

are made under laboratory conditions with clean speech and little mismatch between

test and training sets. Significantly worse performance can be expected from fielded

systems. Sentence error rates are another measure of performance.

Table 1: Typical word error rates for speech recognition applications [82].

Speech Corpus Type Vocabulary Size WER
Connected Digit Strings Spontaneous 10 0.3%
Airline Travel Information Spontaneous 2,500 2.0%
Wall Street Journal Read Text 64,000 8.0%
Radio Mixed 64,000 27.0%
Switchboard Conversational Telephone 10,000 38.0%
Call Home Conversational Telephone 10,000 50.0%

Finally, what sort of requirements are needed to perform large vocabulary speech

recognition in terms of memory and CPU power? The answer is largely dependent

on the details of the recognition system and the accuracy desired. Rabiner suggests

that upwards of 1 gigaflops may be needed for real-time operation in certain complex

tasks [81]. Other authors estimate 200 MIPS for continuous speech recognition in

simpler tasks [11]. “WER and the maximum amount of memory used both vary

exponentially with real-time performance. For example, a 50% reduction in error rate

requires an increase in performance by a factor of three” [24, pg. 101]. Table 2 shows

the computational requirements for the ISIP speech recognizer. The ISIP system is a

research system, and as a result, the speed is lower than that of a commercial system.

However, significant improvements in speed have been made since [24] was published.

The authors believe they can transform the system into one which performs at ten

times real-time with a minimal reduction in WER. Regardless, it is easy to see that

the processing requirements for speech recognition are significant and that even small

29

increases in accuracy can require large increases in computation time.

Table 2: Memory and CPU requirements for the ISIP speech recognition system.
Baseline system is a Pentium 333MHz with 512MB RAM [24].

Connected alphanumeric
digits

Large Vocabulary Sponta-
neous Speech

Recognition Unit WER Mbytes xRT WER Mbytes xRT
Context-independent
phones

17.5% 18 3.3 N/A N/A N/A

Context-dependent
word-internal phones

13.6% 24 4.3 52.6% 220 240

Context-dependent
cross-word phones

9.4% 41 9.6 48.7% 300 470

2.2 Distributed Speech Recognition

Given that complex speech recognition tasks can be computationally intensive for

portable devices, the wireless network can be used to offload all or part of the speech

recognition task. This has become known in the literature as distributed speech

recognition (DSR). Recent research on DSR can be lumped into several categories:

software issues, DSR over existing cellular networks, direct quantization of speech

features, and error correction and concealment techniques.

2.2.1 Software Issues

A framework to enable speech recognition as a distributed service is presented in [63].

The authors propose an efficient server arhcitecture that can be built into the net-

work to handle speech recognition requests. The server runs on the QNX real-time

operating system and handles multiple speech recognition requests in an efficient

manner. Clients are guaranteed timely responses through the appropriate use of

multi-threading and parallelism. In [88], a CORBA based distributed computing

model is presented. CORBA, the Common Object Request Broker Architecture, is a

30

distributed computing standard for object oriented languages. In this work, multiple

sensors and media recognition applications are interconnected to provide robust ac-

cess to data and services. The use of CORBA allows for a common framework across

the various software to enable distributed computing in a simple and manageable

manner. Finally, in [122], another distributed speech recognition software system is

presented. It focuses on the archtecture design, implementation, and optimization of

DSR systems. Issues such as bandwidth and network protocols, scalability and load

balancing of servers, and paralellism of servers are discussed.

2.2.2 DSR Over Existing Digital Cellular Telephone Networks

Speech Recognit ion ServerPortable Device

Audio Feature
Extraction

Speech
Recognit ion

Search

A
co

us
tic

M
od

el
s

La
ng

ua
ge

M
od

el
s

User
Application Recognized Text

Standard
Speech Coder Compressed Speech

Figure 9: Distributed speech recognition over digital cellular telephone networks.

Digital cellular telephone networks use standard speech coding techniques to re-

duce the bit rate before transmission. In Figure 9, the speech is compressed on

the mobile device and sent to across the network where it eventually gets to a speech

recognition server. While this may seem like the ideal solution, speech coding schemes

(especially low bit-rate ones) alter the spectral content of the speech signal. While

this distortion is intended to be unnoticeable by a human, the added noise and dis-

tortion effects the speech recognition system [58]. One solution is to train the speech

31

recognizer using only coded speech, and this method is used with some success for

speech recognition over cellular telephones. Another solution is to compute the speech

features directly from the coded bit-stream without reconstructing the speech signal

as in [49], [50], and [76]. These techniques have been able to match the recognition

performance attainable with toll quality speech (i.e. land-based telephone systems.)

However, the bitstream contains a set of quantized spectral parameters and some

parametric representation of the residual signal (i.e. codebook index). Since the

spectral analysis is imperfect and the spectral components are aggressively quan-

tized, this residual signal helps recover some of the spectral distortion for a human

listener after reconstruction. However, since these bitstream-based front-ends discard

the residual signal, they work with an especially noisy set of parameters due to the

quantization.

Another consideration when using standard speech coders in a DSR scenario is

that the speech coders and the channels they typically operate over are intended for

real-time communication. Packets must be delivered with minimal delay, and losses

must be concealed to maintain continuity of the signal for a human listener. A speech

recognition system has different requirements than a human listener. Packet delay,

within limits, is tolerable as the speech recognizer can simply wait until error prone

packets are retransmitted. Incoming packets can be stored in a buffer until the ASR

system catches up. These issues regarding traffic types can be effectively handled

at the MAC layer. For networks supporting real-time traffic, errors in the coded

speech parameters can cause significant reductions in speech recognition accuracy [5].

Some techniques for dealing with packet loss over real-time wireless communication

channels are given in [112], [68], [46], [47] and [51].

32

Speech Recognit ion ServerPortable Device

Audio
Feature

Extraction/
Compression

Compressed Speech Data

Decompress /
Calculate

Secondary
Features

Speech
Recognit ion

Search

A
co

us
tic

M
od

el
s

La
ng

ua
ge

M
od

el
s

User
Application Recognized Text

Figure 10: Distributed speech recognition over wireless data networks using com-
pressed speech features.

2.2.3 DSR over Wireless Data Networks

Wireless data networks include the 802.11 family, the Bluetooth personal area net-

work, and others. There may be provisions for multimedia traffic, but these networks

are primarily intended for data traffic. We assume that there is no human listener in

this category, therefore the client will perform feature extraction for ASR and only

transmit coded feature vectors. This scenario is shown in Figure 10. Typically the

primary features are calculated and compressed and any additional features such as

first and second temporal derivatives are calculated at the server.

Many algorithms have been proposed for quantization of speech recoginition fea-

ture vectors. A multi-stage vector quantization technique was proposed in [84]. A one-

step predictor is coded along with the prediction error vector. A single 13-dimensional

tree-structured vector quantizer was used for each stage. The system operated at 4.0

kbps and provided minimal degradation in accuracy under a variety of large and small

vocabulary tasks. A product code vector quantization technique was used in [25],

where two or three adjacent cepstral coefficients were quantized together rather than

all 13 at once. This exploits the correllation between adjacent cepstral parameters.

33

The vector quantization search is greatly reduced because smaller codebooks of fewer

dimensions can be used. A range of bit allocations and bit rates were presented (from

10.4 kbps to 2.6 kbps), with lower accuracy resulting from lower bit rates.

A scalable coding algorithm was introduced in [100], where entropy constrained

scalar quantization was used followed by uniform scalar quantization on the residual

error. The result was then processed by a Huffman entropy coder to further remove

redundancy. A variety of bit rates can be obtained by this system by varying the

quantization levels. In [123], a two dimensional DCT is used to compress speech

feature vectors. A twelve by twelve block of speech vectors (twelve vectors by twelve

frames) is transformed via a DCT. The result is then quantized and entropy coded,

similar to the JPEG image compression standard. An attempt to standardize DSR

front-ends is presented in, [109], the ETSI Aurora speech processing, transmission

and quality aspects. The ETSI standard uses a product code vector quantizer, spec-

ifies the bitstream framing, and provides error detection through cyclic redundancy

checks (CRC) on frame pairs. It operates at 4.8 kbps. Perceptual linear prediction

coefficients were quantized as low as 400 bps with minimal reductions in accuracy on

a digit recognition task in [36]. It is not likely that this aggressive coding scheme

will hold up under more complex speech recognition tasks. In [7], the differences in

intra-frame vs. inter-frame quantization are discussed. By exploiting the corellation

between consecutive frames of speech inter-frame vector quantization can operate at

lower bit rates with less degradation in accuracy than intra-frame vector quantization.

2.3 IEEE 802.11 Wireless Data Networks

In 1997, the first wireless ethernet standard, IEEE 802.11, was adopted. It supported

a relatively modest data rate of 2 Mbps via a direct sequence spread sprectrum

(DSSS) or frequency hopping spread spectrum (FHSS) technology in the 2.4 GHz

frequency range. Because of its initially high price tag and low bit rates compared

34

to wired Ethernet, the 802.11 standard had limited success. Two years later, the

802.11b standard was released. It supported a significantly higher 11 Mbps data rate.

Currently, the 802.11b standard is inexpensive and widely deployed. The 802.11a

standard ventured into the 5 GHz frequency range with a maximum data rate of 54

Mbps through orthogonal frequency division multiplexing (OFDM). However, because

of the change in radio spectrum, the 802.11a standard is not backward compatible

with existing 802.11 or 802.11b networks. A more recent standard, 802.11g, employs

OFDM in the 2.4 GHz range with a maximum data rate of 54 Mbps. It maintains

backward compatability with existing standards. However, there is some concern over

the “pollution” of the 2.4 GHz frequency band from various emerging technologies

operating in these frequency ranges. Table 3 summarizes the IEEE 802.11 family

of wireless networks. The 802.11b standard is widely deployed, well studied in the

literature, and sufficient for low-bandwidth speech data, therefore we will consider

operation on 802.11b for most of this thesis.

Table 3: A summary of IEEE 802.11 networking standards.

Standard Freq. Selection Spectrum Max Data Rate
802.11 FHSS & DSSS 2.4 GHz 2 Mbps
802.11b DSSS 2.4 GHz 11 Mbps
802.11a OFDM 5 GHz 54 Mbps
802.11g OFDM 2.4 GHz 54 Mbps

All 802.11 standards will operate in either an ad-hoc or infrastructured topology.

In ad-hoc mode, two or more wireless stations will communicate with each other over

temporary peer-to-peer connections. Communication outside of this ad-hoc network

is not possible. In infrastructure mode, a wireless access point is used to provide

connectivity to a wired network such as a corporate network or the internet. The

range that 802.11b supports is in the range of one hundred meters and is intended

for in-building local area networks.

35

−20 −15 −10 −5 0 5 10 15

10−4

10−3

10−2

10−1

100
BER v Es/No

Es/No

B
E

R

11Mbps
5.5Mbps
2Mbps
1Mbps

Figure 11: Comparison of bit error rates for various 802.11b modulation techniques
in an AWGN channel.

.

As shown in Table 3, 802.11b uses direct sequence spread spectrum frequency

selection at 2.4 GHz. It supports a variety of different modulation techniques, which

dictate the supported bit rate. The 1 Mbps data rate is supported by the differential

binary phase shift keying DBPSK modulation. All control channels in 802.11b operate

using this robust but low data rate modulation scheme. IEEE 802.11b also supports a

2 Mbps using differential quadature phase shift keying (DQPSK). Finally, the 5.5 and

11 Mbps data rates use the complementary code keying (CCK) technique. Figure 11

shows the bit error rates for each of these modulation schemes under an additive white

Gaussian noise (AWGN) channel. The lower bit rates offer more robust operation in

lower SNR.

Medium access in 802.11b is handled by a distributed coordination function (DCF)

with both physical and virtual carrier sensing. The physical carrier sense is handled

36

Preamble
Synch.

Start Frame
Delimiter

Se
rv

ic
e

Fi
el

d

L
en

gt
h

Fi
el

d

C
R

C

MAC Frame

34−2346 bytes16 bits128 bits

16
 b

its

16
 b

its

Si
gn

al
 F

ie
ld

8
bi

ts

8
bi

ts

Figure 12: The IEEE 802.11b framing format [28].

via a carrier sense multiple access with collision avoidance (CSMA/CA) scheme with

a random back-off time in the event of a busy condition. The virtual carrier sense

mechanism uses a series of Request To Send (RTS) and Clear To Send (CTS) frames

sent between the sender and receiver. This helps to alleviate the hidden terminal

problem. The data frame format is shown in Figure 12. There is significant overhead

in this packet format, and we will show how this effects the throughput and energy

consumption. In addition to the frame overhead shown here, the MAC frame itself

contains more overhead bits, including 24 bytes for address information and additional

protocol information (i.e. TCP/IP).

The 802.11b also has a power saving mode which only works in the infrastructure

mode when an access point is present. An 802.11b station will first send information

to the access point indicating that it is entering the low power state. The station will

then wake up every 100ms to receive a traffic indication map packet that will tell the

wireless node when it should wake up to receive data. The duration of this traffic

indication beacon can be configured in some hardware implementations. The node

remains in the low power state, typically 1/10 the power dissipation of the always on

mode, until the next beacon or scheduled data reception. However, this technique is

not always robust as we shall see in section 5.1.1.

37

Access
Code Header Payload

Header and synchronization

72 bits 54 bits 0−2745 bits

Figure 13: The Bluetooth framing format [28].

2.4 Bluetooth Personal Area Network

The Bluetooth wireless technology is a specification for a small, low-cost personal

area network to connection various mobile computing devices such as laptops, cellular

phones, and PDAs. It has been used as a wire replacement medium for computer

peripherals such as keyboards and mice and headsets for mobile phones. It supports

low data rate, low range applications and hardware implementations have low power

requirements [110].

A basic Bluetooth network is called a piconet. A piconet consists of at most seven

active mobile stations operating under the control of a master device. A collection

of piconets is called a scatternet. A given spectrum allocation can support a fixed

number of piconets. An inquiry and paging process is used to set up a piconet,

and this process can take on the order of tens of seconds to complete. Bluetooth

supports time-sensitive multi-media traffic as well as general data traffic. The range

of a Bluetooth piconet is on the order of ten meters with a maximum data rate of

1 Mbps. The maximum throughput is 723 kbps in one direction or 433 kbps for a

symmetric data traffic link. Multimedia traffic throughput is considerably less at 64

kbps in each direction.

At the physical layer, the Bluetooth network operates in the 2.4 GHz spectrum,

which is divided into 79 channels each occupying 1 MHz. Not all countries have

38

Table 4: Summary of Bluetooth packet types.
Type Max. User TDD slots FEC Max. Symmetric Max. Asymmetric

Payload (bytes) Rate (kbps) Rate (kbps)
DM1 17 1 2/3 108.8 108.8
DH1 27 1 none 172.8 172.8
DM3 121 3 2/3 258.1 387.2
DH3 183 3 none 390.4 585.6
DM5 224 5 2/3 289.7 477.8
DH5 339 5 none 433.9 723.2
HV1 10 1 1/3 64 N/A
HV2 20 1 2/3 64 N/A
HV3 30 1 none 64 N/A

allocated this much bandwidth for Bluetooth, with Japan, Spain, and France only al-

locating 23 channels. Medium access is handled by a frequency hopping time division

duplexing (FH/TDD) technique. Each time slot lasts for 625µs, but a packet can

last for more than one slot. For a symmetric data link, the master and slave nodes

transmit in alternating time slots. The modulation scheme is a Gaussian-shaped bi-

nary frequency shift keying. The general packet format is shown in Figure 13. It has

considerably less overhead than 802.11b packets, but the payload size is significantly

smaller.

Bluetooth supports a variety of packet types for various traffic and channel condi-

tions. Table 4 summarizes these packet types. Packet types begining with the letter

‘D’ are data packets, while packet types begining with the letter ‘H’ are multimedia

or voice packets. For data packets, the number specifies the number of TDD slots

a packet occupies. Voice packets only occupy one TDD slot with varying payloads.

Data packets are divided into medium and high rate types, indicated by the middle

letter. Medium rate packets employ a 2/3 rate Hamming code for error correction.

High data rate packets do not use any error correcting codes, but both data packets

use a CRC error detection field to check for transmission errors. Voice packets use

either a 1/3 repetition code, a 2/3 Hamming code, or no error protection. Three

times as many HV1 packets must be sent for every single HV3 packet. The header

39

bits in Figure 13 are always encoded using the robust 1/3 rate repetition code.

Bluetooth supports a variety of different power saving modes. A node can be in

the active, sniff, hold, or park modes. In active mode, the node listens to the channel

to see if the packet is addressed to it. In sniff mode, the slave only listens during a

specified interval. This interval is configured between the master and slave nodes. In

hold mode, the slave sleeps for some period of time and then restarts data transfers as

soon as that time is over. Finally, in park mode the slave gives up its active piconet

membership to enter a low power state. While a piconet can have only seven active

members, it can handle up to 256 parked nodes. The node simply puts itself back

into the active node list when it is ready for data transfers. Park mode has the lowest

power consumption among the three power save modes.

2.5 Battery Technology for Mobile Devices

In the past 30 years, processor speeds and memory sizes have increased at a staggering

rate, while battery technology has only increase by a factor of two to three. New bat-

tery technologies are being developed to minimize this gap, but the fact remains that

battery technology has traditionally lagged behind advances processor and memory

technology. With the proliferation of portable electronic devices, this fact emphasizes

the need to use battery resources efficiently.

A battery technology can be rated according to several factors [34]:

Energy density The amount of energy stored per unit volume (Wh/l3)

Specific energy The energy per unit weight of a battery (Wh/kg)

Nominal Voltage The average rated voltage output throughout the discharge cycle

(V)

Rated Capacity The amount of current the battery can deliver over a specified

period of time (mAh, milli-amp-hours).

40

The energy density and specific energy are used to rate the amount of energy with

respect to the size and weight of the battery. A battery with a rated capacity of 1000

mAh will be able to deliver current of 1000 mA for one hour, 500 mA for two hours,

or 2000 mA for half an hour. Given the rated capacity and nominal voltage, one can

find the energy in the battery multiplying the two values.

Table 5: A comparison of battery technologies (AA size) [34, 87]
Technology NiCd NiMh Li-ion
Voltage 1.2 1.2 3.6
Capacity (mAh) 620 1100 830
Energy Density (Wh/l3) 90 158 270
Specific Energy (Wh/kg) 35 53 123
Total Energy (Joules) 2678 4752 10757
Cycle Lifetime 700 500 1200

In the area of recharageable battery technology, there have been three main types

over the years. The first, nickel-cadmium (NiCd) technology is virtually non-existent

in the marketplace today. This battery technology suffered from low energy densities

and a memory effect that reduced the capacity after relatively few charge/discharge

cycles. Nickel-metal hydride (NiMH) technology alleviates some of the memory ef-

fect of NiCd with increased energy densities, but the total lifetime of the battery is

reduced. The most common technology is lithium-ion (Li-ion). Li-ion batteries have

a much longer life cycle with increased energy densities, but the charging process

requires more sophisticated electronics, which drives up cost [8]. Table 5 shows a

comparison of battery technologies. For the time being, Li-ion is the predominant

battery technology, giving the most energy with the longest lifetime (but with in-

creased cost). Figure 14 shows the progress in lithium-ion technology specific energy

over the last decade. It is expected that the specific energy will plateau in the years

to come. While new technologies are being developed, such as lithium polymer or

fuel cells, there is an ever-increasing demand for improved battery technology.

41

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
0

50

100

150

200

250

Year

S
pe

ci
fic

 E
ne

rg
y

(W
h/

kg
)

Actual
Projected

Figure 14: Progress in lithium ion battery technology [34].

2.5.1 Energy-Aware Design Principles

Given a fixed amount of battery energy, there has been an emphasis on energy-aware

design principles in the literature. The goals of energy aware design are to put hooks

or knobs into the hardware, software, or applications that allow scalability in quality

vs. energy. This is different from low-power design, which often does not seek to allow

scalability. The result of energy-aware design is a system that can adapt to changing

conditions and modify it’s energy usage accordingly. For example, a hand-held video

streaming application might opt to send and decode video of decreased quality to

extend battery lifetime. In another situation, the user might demand high-quality

video, even if only for a short time.

Energy-aware design and scalability must take place at all levels, from the device

level to the application layer. Many CPUs already allow energy scalable operation

through techniques such as dynamic voltage and frequency scaling. Running a par-

ticular application at it’s lowest frequency and voltage setting that still provides

42

acceptable performance will save energy. Dynamic application of this technique can

be difficult since the operating system must have knowledge of the operating require-

ments of various applications running on the system. For applications such as speech

recognition, this information may be difficult to predict far in advance. Operating

systems are becoming increasingly aware of energy considerations, but fine grained

control requires the assistance from the application layer. Memory subsystems can be

designed such that entire banks of memory are shut off when not needed, but, once

again, the operating system must maintain control of these adaptations.

Software optimization techniques can also help to reduce energy consumption. By

writing software that will run efficiently on a particular platform, the program can use

less resources, including battery energy. Compiler optimizations only offer marginal

improvements in energy consumption. Any significant gains will require optimizations

that address bottlenecks with respect to the particular architecture studied. This may

include limiting the mathematical precision (i.e. fixed point arithmetic), efficient data

structure organization to reduce cache misses, and the use of approximate algorithms

when hardware accelerated versions are not available, such as square root, logarithmic,

or trigonometric functions. Finally, the wireless network can use significant amounts

of power in an embedded system. Table 6 shows the power dissipation of various

components of the HP Labs Smartbadge IV embedded system. These are average

power measurements during some moderate CPU processing and wireless network

activity. The 802.11b network interface used almost half of the power of the total

system, therefore wireless network optimization is an important consideration.

Table 6: Power dissipation for major subsystems of the HP Labs Smartbadge IV.
Subsystem Power (mW) Percentage

CPU 694 21%
Memory 1115 34%
802.11b 1500 45%
Total 3309 100%

43

The wireless network power optimization problem has been addressed at different

abstraction layers, starting from the semiconductor device level to the system and

application level. Energy efficient channel coding and traffic shaping to exploit battery

lifetime of portable devices were proposed in [10]. A physical layer aware scheduling

algorithm aimed at efficient management of sleep modes in sensor network nodes

is illustrated in [91]. Energy efficiency can be improved at the data link layer by

performing adaptive packet length and error control [57]. At the protocol level, there

have been attempts to improve the efficiency of the standard 802.11b, and proposals

for new protocols [43, 52, 97]. Packet scheduling strategies also can be used to reduce

the energy consumption of transmit power. In [83], authors propose the E2WFQ

scheduling policies based on Dynamic Modulation Scaling. A small price in packet

latency is traded for the reduced energy consumption. A server-driven scheduling

methodology aimed at reducing power consumption for streaming MPEG4 video was

introduced in [2]. Savings of as much as 50% in WLAN power consumption, relative

to just using 802.11b power management, were reported.

Traditional system-level power management techniques are divided into those

aimed at shutting down components and policies that dynamically scale down process-

ing voltage and frequency [95, 1]. Energy-performance tradeoffs based on application

needs have been recently addressed [53]. Several authors exploit the energy-QoS

tradeoff [69, 70, 101, 61]. A different approach is to perform transcoding and traf-

fic smoothing at the server side by exploiting estimation of energy budget at the

clients [90]. A new communication system, consisting of a server, clients and prox-

ies, that reduces the energy consumption of 802.11b compliant portable devices by

exploiting a secondary low-power channel is presented in [92]. Since multimedia ap-

plications are often most demanding of system resources, a few researchers studied

the cooperation between such applications and the OS to save energy [59, 4, 29, 60].

44

CHAPTER III

VOICE USER INTERFACE PROTOTYPE

As part of the Yamacraw Wireless Systems Prototyping effort, we have built a working

voice user interface for a portable wireless device The goal of project is to develop a

system prototype for a hand-held device capable of high-speed wireless networking.

The voice user interface will serve as the main method of interaction with the device.

The system was written using off-the-shelf speech technology components coupled

with a custom HTML/VoiceXML language to provide multi-modal input/output.

In this chapter, we outline the design and implementation of this system, including

integration with a software radio testbed and implementation on an actual PDA

device.

3.1 VoiceXML/HTML Browser

The goals of the voice user interface was to provide web browsing capability through

a multimodal interface. It must support the following objectives:

• Accurate, real-time speech recognition capability.

• High quality text-to-speech synthesis.

• Pre-recorded digital waveform output.

• Out-of-the box functionality with little or no training for a new user.

• Pen-based input as a fall back when audio input/output is not appropriate.

• Robustness to environmental noise.

• Web-browsing capability.

45

• Intregration with other applications such as streaming video.

When we started this project, a standard language for this kind of interaction did

not exist. The VoiceXML standard was recently released, but it did not support

the kind of multimodal interaction required for this application. The SALT and

XHTML+Voice standards had not been published.

Initially, we investigated a technique to parse standard HTML documents for

navigation information such as hyperlinks which could then be used to construct a

voice grammar for speech based navigation. This proved to be too difficult as most

HTML documents use ambiguous or repetitive text to indicate navigation points

within a document (i.e. [click here]). In addition, the use of more sophisticated

navigation techniques such as image maps and javascript would require significant

effort to extract a semantically meaningful phrase or word for use in voice navigation.

Since we required both visual and audio interfaces, we decided to augment HTML

pages with VoiceXML tags. This allows a ”click-or-say” input paradigm where the

user can select hyperlinks via the stylus or navigation items can be spoken. Form-

filling scenarios can be handled in a similar manner if there is some context to allowed

input (i.e. stock quotes, city names, dates and times, etc.) Listing 3.1 shows an

example of this hybrid VoiceXML/HTML input. The visual component can display

the HTML output, while the voice user interface can parse an interpret the VXML

portion of the input, including queueing of text to speech prompts, activation of

grammars, and turning the microphone on and off.

A block diagram of this system is shown in Figure 15. The device itself will sup-

port stylus and audio input and both video and audio output. Audio output can

be either text to speech or pre-recorded audio prompts. Documents are served from

standard web servers on the internet. Our architecture allows for a flexible approach

where speech recognition and text to speech synthesis can occur on the mobile de-

vice or elsewhere on the network, depending on the capabilities of the device. The

46

Listing 3.1: A hybrid VoiceXML/HTML Document

<?xml version=”1.0”?>
<html>

<body>

<center>

<h6>Enter stock ticker symbol or just say the company name: </h6>

<form method=”get” action=”/cgi−bin/demo/stock quote2.pl”>
<input name=”stock” type=”text” size=”5”/>
<input type=”submit” value=”Get Stock Quote”/>

</form>

<table width=”550” border=”0”>
<tr/>
<td align=”left” width=”50%”>

<h6>

Previous

</h6>

</td>

<tr/>
<td align=”left” width=”50%”>

</td>

</table>

</center>

</body>

<vxml version=”1.0”>
<link next=”/demo/main menu.vxml”>Main Menu</link>

<link next=”/demo/main menu.vxml”>Back</link>

<link next=”/demo/main menu.vxml”>Previous</link>

<form>

<field name=”stock”>
<prompt>Please say a company name.</prompt>

<grammar src=”sp500.bnf” type=”application/x−jsgf”/>
</field>

<filled mode=”all” namelist=”s”>
<submit next=”/cgi−bin/demo/stock quote2.pl” method=”get”/>

</filled>

</form>

</vxml>

</html>

47

VXML Server

(Internet)

PDA

HTML/

VXML

Browser

ASR

TTS

Wireless Network

Wireless Network

G
ra

m
m

ar
s

R
es

ul
ts

Touchpad Input

Video Output

Microphone Input

Speaker
 Te
xt

Digital Audio

Speech

Recognition

Server

(Remote ASR if

required)

Figure 15: System architecture of the Yamacraw Voice User Interface.

VoiceXML/HTML browser is the heart of the system, and it coordinates the nav-

igation aspects via voice or stylus input, the display component, and the queueing

of audio prompts for the user. Finite state speech grammars are fetched from the

network and activated or deactivated depending on the current state of the applica-

tion. Using this prototype framework, we were able to build a number of successful

applications, including real-time weather information and stock quotes.

3.1.1 Compaq iPAQ Implementation

We have ported this generic voice user interface system to a Compaq iPAQ PDA

running Linux. The iPAQ contains a 206 MHz StrongArm processor with 32 Mbytes

of memory. The PDA uses a WaveLAN wireless network PCMCIA card. Audio input

is from the integrated microphone that comes with the device. The iPAQ offers no

external microphone input. Although the system currently runs best from a headset

microphone, noise robustness techniques will allow for easier interaction using an

open air microphone mounted on the unit. Other solutions to increase the audio

quality could include adaptive microphone arrays capable of acoustic beam-forming.

However, the speech recognition accuracy is surprisingly good in rooms with light

office noise, but it fails in more noisy environments such as hallways or lecture rooms.

48

(a) Compaq iPAQ PDA (b) Screen Capture

Figure 16: A Voice User Interface Demonstration on a Compaq iPAQ PDA.

The entire VoiceXML/HTML browser was written in Java for portability. This

includes the VoiceXML parser and interpreter, the HTML viewing component, and

the various interfaces to the text to speech and speech recognition servers. The

demonstration system supported either local or remote text to speech synthesis via

the Festival TTS system, which is a public domain TTS system intended for academic

research. The system also supports the ViaVoice Outloud TTS system but it cannot

run on the iPAQ itself. Speech recognition takes place on a Linux server using the IBM

ViaVoice speech recognition engine. The server is capable of simultaneous connections

from multiple clients. Raw audio is sent over the network from an audio server running

on the client, and recognized text is sent back to the client from the speech recognition

server when a phrase or word is recognized.

The iPAQ runs a simple demonstration which allows for access to real-time stock

and weather data as well as providing some basic personal information management

tools (e.g. scheduling, contacts, etc.) Screen size is limited to 240-by-320 pixels.

49

This size is one sixth the size and one fourth the resolution of the absolute minimal

acceptable display on a modern desktop PC. Efficient use of on-screen real estate is

essential. Figure 16 shows a screen shot of the voice user interface prototype running

on the iPAQ device.

3.1.2 Software Radio Integration

Yamacraw Wireless SpaceYamacraw Wireless Space

Direct�Propagation
Microwave

dis tance

room

1m

10m

100m

1km

10km

100km

throughput�/�bits /s

building

campus

local�area

region

10k 100k 1M 10M 100M 1G 10G

Yamacraw Wireless Space & Existing Product Groups, v5

2M
3-G�Wireless

Direct�Propagation
Infrared

Wireless �PDAs
Sm artphones

Yamacraw
Prototype v.1:

Personal
Information

Terminal

Bluetooth

WLAN�
Internet�Pads

11M

Figure 17: Bit rate and range of the Yamacraw Wireless Prototype System.1

As part of the Yamacraw wireless system prototyping research group, we inte-

grated the voice-user interface with the software radio platform. The wireless proto-

type is a high-speed (100 Mbps to 1 Gbps) wireless network. Figure 17 shows the

bit rate and range space of this research effort. The software radio platform is a

collection of hardware for prototyping new wireless networking technologies from the

physical layer to the link layer. The software radio testbed handles the physical layer

1From the Yamacraw Prototyping Notes of Prof. Jayant.

50

interface, modulation, antennae, and channel coding. If Figure 18, we show the block

diagram of the wireless system. The MIMO transmitters and receivers are part of the

software radio cage, which contains various DSP boards and high speed interfaces.

Connected to the cage via a high speed interface are host workstations that run both

the MAC layer and network layers as well as the applications themselves.

Applications
 Applications

...

...

Network

(TCP, UDP,

RTP)

Network

(TCP, UDP,

RTP)

MAC
 MAC

...

...

MIMO

Transmitter

MIMO

Receiver

.

.

.

.

.

.

Data traffic type, QoS

Bit rate, Tx - Rx

distance, error

protection

Transport protocol,

connectionless,

connection oriented

CPU, memory, energy

consumption

Figure 18: A one-way wireless network showing research issues related to distributed
speech recognition applications.

The wireless infrastructure is designed in parallel with the voice user interface.

Therefore, the current version of the voice user interface uses and 802.11b wireless

interface, with a maximum supported bit rate of 11 Mbps. The 802.11b version of

the system currently runs on a hand-held device, while the integrated system will

run on a PC connected to a software radio system. The host PC communicates with

the software radio system via a high speed bi-directional FPDP interface. We were

able to perform generic TCP/IP networking across the software radio system in order

51

Host PC

VXML

Browser

VXML

Browser

VXML

Browser

Network

Transport

Layers

(TCP/IP,

UDP, etc.)

MAC
 FPDP

Software

Radio

Testbed

FPDP

Host PC

VXML Server

(Internet)

MAC

Network

Transport

Layers

(TCP/IP,

UDP, etc.)

ASR

Server

TTS Server

Figure 19: Software Radio Testbed Integration.

to demonstrate a working end-to-end system. Integration with a streaming video

application demonstrates the capability of the MAC layer to handle multiple traffic

connections and types. Figure 19 shows a block diagram of the integrated system.

52

CHAPTER IV

SPEECH RECOGNITION FOR EMBEDDED

SYSTEMS

As we have seen, implementing high quality speech recognition on an embedded

system, such as a cellular phone, PDA, or other device is a difficult challenge. In this

chapter, we discuss some of these challenges in detail and present some solutions. In

section 4.1 we present a software based front-end feature extraction for a distributed

speech recognition system that is designed for minimal power consumption. Through

algorithmic, architectural optimizations, and dynamic voltage scaling, we are able to

reduce the energy consumption of the signal processing algorithm on a general purpose

processor by 89%. In Section 4.2, we present a model for the arithmetic complexity

of a small vocabulary connected word speech recognizer. The model shows how

the various parts of speech recognition scale with increasing word count. Although

we do not consider search reduction techniques such as beam pruning, the model

still serves as a useful comparison between various parts of an ASR system for small

vocabulary applications. In section 4.3 we present some hardware based solutions that

will help enable large vocabulary speech recognition on a mobile device. In addition,

we discuss some profiling results of the Sphinx III speech recognition system, including

memory bandwidth requirements and computation required for back-end processing.

We also present a coarse level model of energy consumption for client-side ASR on

the Smartbadge IV embedded device. This will be used as a comparison for DSR

techniques in Chapter 5.

53

4.1 Low-Power Front-End Feature Extraction for

a Distributed Speech Recognition System

This section describes the optimization of a signal processing front-end feature ex-

traction for a distributed speech recognition system. The baseline system used in

the experiments is version 0.3 of the open-source Sphinx II speech recognizer from

Carnegie Mellon University [106]. The optimization methods used for the algorithm

substantially decrease the power usage while increasing speed (measured in processor

cycle counts). Estimates of total power usage are performed using a cycle-accurate

energy consumption simulator [96]. The architecture of the embedded system simu-

lated in the experiments mimics that of the Smartbadge IV system developed at the

Appliance Platform department of HP Labs [62]. In addition to performing energy

consumption simulations to evaluate the quality of source code optimizations, we

also implemented and ran the optimized version of the front-end on Smartbadge IV

hardware. We found that real-time signal processing of speech is possible at eleven

discrete CPU frequency and voltage settings, thus enabling further power savings.

A block diagram of a speech recognition system is shown in Figure 3. It can easily

be divided into two parts, a front-end and a back-end. The front-end produces a

set of acoustic observations which are useful in recognizing speech. The back-end is

where most of the computation and memory usage takes place. The back-end can

easily use hundreds of Mbytes of memory and hundreds of MIPS of computation.

Since the front-end feature extraction step is relatively low in complexity, it is

desirable to perform this step on the embedded device and to send compressed features

across the network. It has been shown that these features can be compressed with

little effect on the error rate of the speech recognizer [123]. The ETSI standard

for distributed speech recognition describes algorithms to compute, compress, and

transmit these speech features [109]. We consider several bit rates and quanitzation

levels, including one that is similar to the ETSI standard.

54

4.1.1 Low-Power Optimization

Implementing the front end feature extraction for a distributed speech recognition

system on an embedded platform requires not only speed, but also power optimization,

since the battery lifetime in such devices is very limited. This work discusses both

the source-code and the run-time optimizations.

The source code optimizations can be grouped into two categories. The first cate-

gory, architectural optimizations, aims to reduce power consumption while increasing

speed by using optimization methods targeted to a particular processor or platform

(e.g. an embedded system with no floating-point hardware). Ideally, many of these

optimizations should be done by a compiler. However, currently available compilers

for most embedded systems do not have these optimizations built-in. In addition,

measurements presented in [96] show that the improvements that can be gained us-

ing standard compiler optimizations are marginal compared to writing energy efficient

source code. The second category of source code optimizations is more general and

involves changes in the algorithmic implementation of the source code with the goal

of faster performance with less power consumption.

The final optimization presented in this work, dynamic voltage scaling (DVS), is

the most general since it can be applied at run-time without any changes to the source

code. Dynamic voltage scaling algorithms reduce energy consumption by changing

processor speed and voltage at run-time depending on the needs of the applications

running. The maximum power savings obtained with DVS are proportional to the

savings in frequency and to the square of voltage.

4.1.1.1 Architectural Optimization

Signal processing algorithms such as the one in Figure 5 are generally mathematically

intensive, therefore a significant amount of effort was spent in optimizing the arith-

metic. In addition, simple C code optimizations were employed to help the compiler

55

generate more efficient code [107].

Profiling of the source code on a StrongARM simulator revealed that over 90%

of the time was spent in floating-point emulation. The StrongARM has no on-chip

floating-point processor, so all floating-point operations must be emulated in software.

Simply changing from double- to single-precision floats improved the performance

considerably. However, profiling showed that 80% of the time was still being spent in

floating point emulation. Any further gains require fixed-point arithmetic.

Fixed-point arithmetic uses scaled integers to perform basic math functions using

the existing integer hardware. The scaling factor (or location of the decimal point)

is fixed at design time and is designated by Qn, where n is the number of bits to the

right of the decimal. For example, consider the following 8-bit number in Q4 format:

0101.0101b = 4 + 1 + 2−2 + 2−4 =
85

16
= 5.3125 (9)

The basic rules of arithmetic still hold; adding two numbers requires that the decimal

points must line up. Multiplying two numbers in Qn format yields a number in Q2n

format.

Implementing a pre-emphasis filter and Hamming window using fixed-point arith-

metic is straight-forward. Fixed-point FFTs are well studied and have often been

implemented on digital signal processor chips. There is an average of one bit of

growth in each FFT stage due to the multiply and accumulate operation. Therefore,

the appropriate number of upper bits must be zero to prevent overflow.

After passing the input frame through the FFT, the mel filter bank must be

applied. The filterbank amplitudes are calculated using the squared magnitude. This

presents some challenges since this squared number multiplied by the filter coefficients,

Hi[k], can easily overflow the 32-bit registers. A 64-bit result can be obtained from the

StrongARM multiplier using assembly language, but overflow can be avoided simply

56

by rewriting the filter bank equation (4) to use just the magnitude:

Y [i] =

N/2
∑

k=0

(

|X[k]|
√

Hi[k]
)2

(10)

This avoids overflow since Hi[k] � 1, therefore the result of each multiplication is

small. The coefficients,
√

Hi[k], are stored in a lookup table.

The one drawback to this method is that computing the magnitude requires a

square root operation. Fast integer square root algorithms exist, but they must be

used on each output from the FFT, which is costly. Fortunately, the magnitude can be

estimated as a linear combination of the real and imaginary parts using the following

equation [30]:

|x| ≈ α max(|<{x}|, |={x}|) + β min(|<{x}|, |={x}|) (11)

where α and β are chosen to minimize a particular kind of error, and <{x} and ={x}

represent the real and imaginary parts of the complex number x. Taking the absolute

value of the real and imaginary parts forces the result to lie within the first quadrant.

The min and max functions limit the angle further to between 0 and π
4

radians. A

linear combination of the real and imaginary portion in this range is a reasonable

approximation of the magnitude. The values of α and β are chosen to have an easy

fixed-point representation that minimizes the mean error.

Computing the first 13 coefficients of the DCT is relatively easy to do in fixed-

point arithmetic, but taking the natural logarithm is a more difficult task. One

possible option is to perform a floating-point logarithm, but profiling showed that the

logarithm itself as well as the transition to and from fixed-point is costly. A fixed-

point logarithm using a polynomial expansion requires some divides, which are slow

on the StrongARM. However, there is an interesting algorithm to estimate log2(x)

using simple bit manipulation, which is faster than other methods of calculating the

logarithm. This algorithm, described in [14], is very low in complexity and gives an

approximate fixed-point result. The leftmost non-zero bit position (starting with 0 as

57

10
−1

10
0

10
1

−4

−3

−2

−1

0

1

2

x

 ln
(x

)

Fixed Point
Floating Point

Figure 20: Estimate of the natural logarithm.

the low order bit) is the integer portion of the logarithm. Call this number b, which

is the exact answer for powers of 2. Mask off the next three bits and shift them all

the way to the right. Call this number n. Then 8b + n is the logarithm base 2 in

Q3 format (i.e. 3 bits of precision to the right of the decimal). Masking off the three

bits after the high order bit gives a crude interpolation of the logarithm to the next

power of two. The ln(x) can be determined by multiplying by a constant as follows:

ln(x) = log2(x) ln(2) (12)

One final adjustment must be made when x is itself a fixed-point number in Qn

format, which is just a scaled integer:

ln
(x

2n

)

= [log2(x) − log2(2
n)] ln(2) (13)

ln
(x

2n

)

= [log2(x) − n] ln(2) (14)

58

Equation (14) is the expression used to calculate the natural log of a fixed-point

number. Using precision of Q3, this estimate of the logarithm has a maximum error

of around 0.152 and an average error of around 0.0866. The results of Equation 14 as

well as the floating point logarithm are shown in Figure 20. The fixed-point estimation

of the natural logarithm is very close to the actual floating-point value.

4.1.1.2 Algorithmic Optimization

Profiling of the original source code under a StrongARM simulator revealed that most

of the execution time was spent in the computation of the DFT (which is implemented

as an FFT). Since speech is a real-valued signal, an N -point complex FFT can be

reduced to an N/2-point real FFT [77]. Some further processing of the output is

required to get the desired result, but this overhead is minimal compared to the

reduction in computation. Additional savings can be obtained when the trigonometric

functions used in the computation of the FFT are pre-computed and stored in a lookup

table, thus eliminating multiple function calls in the FFT loop.

4.1.1.3 Dynamic Voltage Scaling

Dynamic voltage scaling (DVS) algorithms reduce energy consumption by changing

processor speed and voltage at run-time depending on the needs of the applications

running. Processors can often operate over a range of frequencies. For each frequency

there is a minimum allowed voltage that still guarantees correct results. When the

processor is run at the minimum frequency and voltage required to sustain the perfor-

mance level required by the application, it is possible to obtain large power savings.

If only processor frequency is scaled, the total energy savings are small as power is

inversely proportional to cycle time and energy is proportional to the execution time

and power. When both frequency and voltage are scaled, the power savings are pro-

portional to frequency and to the voltage squared as shown in (15) where C is the

59

capacitance switched, f is the switching frequency, and V is the voltage.

P ∝ CfV 2 (15)

Early DVS algorithms set processor speed based on the processor utilization of

fixed intervals and did not consider the individual requirements of the tasks running.

There has been a number of voltage scaling techniques proposed for real-time systems.

The approaches presented in [39, 40, 42, 116] assume that all tasks run at their

worst case execution time (WCET). The workload variation slack times are exploited

on task-by-task basis in [93], and are fully utilized in [56]. Work presented in [73]

introduces a voltage scheduler that determines the operating voltage by analyzing

application requirements. The scheduling is done at task level, by setting processor

frequency to the minimum value needed to complete all tasks. The voltage scheduling

to adjust for variations within tasks, such as variation in MP3 audio frame arrivals

or MPEG video frame decoding times, has been considered in [94, 1].

60 80 100 120 140 160 180 200 220
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

Frequency (MHz)

V
ol

ta
ge

Figure 21: Frequency vs. Voltage for Smartbadge IV Strongarm CPU

60

Once the code is optimized for both power consumption and speed, we investigate

the energy savings from DVS. The StrongARM processor on Smartbadge IV can be

configured at run-time by a simple write to a hardware register to execute at one of

eleven different frequencies. Figure 21 shows the frequency-voltage tradeoff. Note

that the number of frequencies, eleven, is predefined by the design of the StrongARM

processor. We measured the transition time between two different frequency settings

at 150 microseconds. Since typical processing time for the front-end is much longer

than the transition time, it is possible to change the CPU frequency without perceiv-

able overhead. For each frequency, there is a minimum voltage the SA-1110 needs

in order to run correctly, but with lower energy consumption. The easiest way to

determine the lowest possible frequency and voltage for such stand alone application

is to run it at all possible frequency settings, with voltage set to minimum allowed,

and observe if the code still runs in real time. In our case, we obtained real time

performance at all possible frequency and voltage settings.

4.1.1.4 Results of MFCC Optimization

Three main criteria are considered in order to evaluate the effectiveness of a particular

optimization: performance (in terms of processor cycle count), energy consumption,

and accuracy or word error rate (WER). Simulation results for processing one frame

(25ms) of speech on the Smartbadge IV architecture running at 202.4 MHz are shown

in Figure 22. The x-axis shows the source code in various stages of optimization. The

“baseline” source code contains no software optimizations. The “optimized float” code

contains the set of optimizations described in section 4.1.1.2 as well as some of the

C source optimizations described in [107]. Double-precision floating-point numbers

were changed to single-precision 32-bit floats in the “32-bit float” version of the code.

Finally, the “fixed-point” implementation contains all of the source code optimizations

described in this paper. For each version of the code, we report the performance (in

61

CPU cycles) and the total battery energy consumed (in µJoules). The simulation

results are computed by the cycle-accurate energy simulator, and include processor

core and level 1 cache energy, interconnect and pin energy, energy used by the memory,

losses from the DC/DC converter, and battery inefficiency [96]. The reduction in

energy consumption is not as dramatic as the performance improvement for the fixed-

point version due to an increase in memory references per unit of time. In fixed-point

code, basic math operations are reduced to a few cycles as opposed to long iterations of

floating-point emulation which do not require as many memory references. However,

we have still achieved a reduction in the total battery energy required to process

one frame of speech data by 83.5%. The front-end was tested using the TIDIGITS

Figure 22: Performance and energy consumption per frame of speech.

speech database, and the results are shown in Table 7. A continuous digit speech

recognizer was trained using the TIDIGITS database of 8,623 utterances from both

male and female speakers. The original floating point front-end was used to generate

62

mel-frequency cepstral coefficients for the training set. No secondary features (first

and second time derivatives of the mel-frequency cepstrum) were used in the training

or test phases. The trained speech models were then used to recognize speech from the

TIDIGITS test set of 8,700 utterances. The WER was calculated using the various

front-end implementations and is shown in Table 7. There is no loss in accuracy

among the three floating-point implementations, but the fixed-point implementation

uses some approximate algorithms that can create a slight mismatch between the

training and test data. We were able to eliminate the slight 0.1% increase in WER by

using the fixed-point front-end during the training phase. In addition, Table 7 shows

a minimal increase in look-up table size and code size, so the memory requirements

for the fixed-point optimized code are about the same. Another performance metric

reported in Table 7 is how long it took for each code implementation to process 1

second of speech at the processor clock speed of 202.4 MHz (Time column). The

fixed-point version runs 34 times faster than the baseline system.

Table 7: TIDIGITS test set results.

Code size Lookup table Time WER Increase
(Bytes) (Bytes) (sec) % (absolute)

Baseline 29704 N/A 1.510 0.0%
Optimized Float 31960 88120 0.699 0.0%
32-bit Float 31272 88120 0.235 0.0%
Fixed-Point 33124 88136 0.043 0.1%

Because the fixed-point code runs much faster than real-time at 202.4MHz, it is

possible to get further reductions in power usage by using DVS as discussed in sec-

tion 4.1.1.3. The results from this experiment are shown in Table 8. These power

measurements are performed on the Smartbadge IV system running the eCos embed-

ded operating system and using the WaveLAN card to transmit the uncompressed

cepstral parameters. The Psys measurement is taken from the main power supply

63

output. At 59 MHz the algorithm still runs in real-time, and the system uses 34.7%

less power than at 206 MHz. Combining the DVS results with the source code op-

timizations, we calculate the overall reduction in power consumption to be 89.2%.

Table 8: Measured Power Consumption with DVS.

Frequency Voltage Psys

(MHz) (V) (mW)
59 0.78 1721
74 0.94 1807
89 1.09 1901

103 1.21 2029
118 1.33 2114
132 1.42 2234
147 1.51 2320
162 1.57 2432
176 1.63 2508
191 1.67 2568
206 1.69 2636
221 1.70 2748

4.1.2 Vector Quantization

Finally, we include the fixed-point vector quantization code in our profiling and con-

sider different bit rates and quantization levels. Although some differing techniques

have been proposed, the most common technique for compressing MFCCs is some

form of vector quantization. In vector quantization, we train a set of codebooks

against some speech data. These codebooks contain a set of centroids representing

the clusters that occur in the training data. We simply transmit the centroid index

for each codebook. Smaller codebooks will result in a noisy representation of the

original signal, and speech recognition accuracy will degrade.

For our system, we use an intra-frame product code vector quantization scheme

presented in [25]. We use the existing bit allocation in [25] to train a set of codebooks

64

using a K-means training algorithm with bit rates ranging from 1.2 kbps to 2.0 kbps.

We include an additional bit allocation that is similar to the ETSI standard that

will operate at 4.2kbps [109]. The actual bit rate needed for a speech recognition

task depends on many factors such as acoustic and speaker conditions as well as the

vocabulary size and complexity of the acoustic models used. In [25], the range of bit

rates was evaluated for a small vocabulary task under ideal acoustic conditions. We

can expect the word error rate (WER) to increase under less ideal conditions (i.e.

larger vocabulary, more acoustic background noise, etc.). Table 9 shows the resulting

bit rates and word error rates from [25] on the rows labelled VQ-XX, where XX is

the number of bits per 10 ms speech frame. The WER for full bandwidth speech at

16 kHz and 16 bits per sample (256 kbps) was 6.55%.

Table 9: Word error rate for several bit rates [25].
Description Bit rate (kbps) WER (%)

VQ-12 1.2 16.79
VQ-14 1.4 11.71
VQ-16 1.6 9.3
VQ-18 1.8 8.1
VQ-19 1.9 6.99
VQ-20 2.0 6.63
VQ-42 4.2 ≈ 6.55

Source code to perform the quantization of the MFCC data was written in fixed-

point for the StrongARM processor and profiled using the energy consumption sim-

ulator. The total energy consumption required to calculate MFFCs for one frame of

speech including vector quantization at 4.2 kbps is approximately 380 µJoules. Even

at the highest bit rate, the vector quantization is only 12% of the total energy budget

as shown in Figure 23. This suggests that speeding up the quantization process by

using smaller codebooks would produce minimal reductions in energy consumption

and would have a much greater impact on speech recognition accuracy.

65

Pre emphasis
28%

Hamming
Window

9%

Magnitude
Spectrum

28%

Filter banks
13%

Log and IDCT
10%

Quantization
(4.2 kbps)

12%

Figure 23: Energy consumption per DSR functional block.

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1.2 1.4 1.6 1.8 1.9 2.0 4.2

Bit rate (kbps)

uJ

700
720
740
760
780
800
820
840
860
880
900

m
W

CPU Energy Consumption (uJ) Avg. Measured CPU Power (mW)

Figure 24: Computational energy usage and measured average power for different
quantization bit allocation schemes.

Figure 24 shows a comparison of energy consumption for various vector quanti-

zation bit allocation schemes. The bars represent the total energy consumption per

66

frame of speech for the quantization step, and the line represents the measured CPU

power dissipation at each bit rate. The measured values closely match the results

from the energy consumption simulator. Those with the smaller bit rates (i.e. 1.2

kbps to 1.6 kbps) offer the poorest speech recognition performance and do not save

very much battery energy when compared with the overall computation. There is

approximately a 14% increase in CPU power consumption but a greater than 50%

reduction in WER between the highest and lowest bit rates. Therefore, we advocate

the use of higher and more robust bit rates since the reduction in energy consumption

is minimal.

4.1.3 Summary

In this section, we have outlined some optimization techniques to reduce the energy

consumption of a particular signal processing algorithm. On embedded systems with

no floating-point hardware, fixed-point arithmetic is an important step in lowering the

power consumption of a program. However, careful attention must be paid to basic

math functions (i.e. cosine, log, etc.) and overflow/underflow issues. Approximate

algorithms perform well for certain applications and can result in huge savings in

both time and power usage. By using software optimizations, we were able to achieve

a reduction in energy usage by 83.5% compared to the unoptimized source code. We

show that additional power savings are possible by scaling processor frequency and

voltage at run time, while still meeting the performance requirements. At the lowest

frequency/voltage setting, we calculate an overall reduction in power consumption by

89.2%. With the addition of vector quantization, the total energy required to process

one frame of speech data is approximately 380 µJoules.

67

4.2 Small Vocabulary Connected Word ASR

In this section, we develop a model of arithmetic computation for small vocabulary

connected word ASR. As we began to investigate the computation involved in au-

tomatic speech recognition (ASR), it became clear that there were many different

options and tradeoffs to consider. Although portable hand-held devices are becoming

more powerful, they are still limited by memory, computational ability, and battery

energy. Complicated ASR tasks along with other user-level applications can easily

consume all available resources. We intend to examine some ASR algorithms under

a range of tasks to determine which tasks are suitable for local vs. distributed pro-

cessing. In this section, we will develop a model of the computational complexity of

a connected word automatic speech recognizer using Hidden Markov Models (HMM)

with continuous Gaussian mixture densities. We will examine the number of arith-

metic operations in each block of a simple speech recognition system. We will also

estimate the storage required for the acoustic models. We will use these numbers

to characterize a continuum in a distributed (client-server) view of automatic speech

recognition.

4.2.1 System Overview

Figure 25 shows a block diagram of a typical connected word speech recognizer. This

type of speech recognizer is practical for small vocabulary systems. We will consider

the complexity of a HMM speech recognizer with continuous Gaussian mixture den-

sities. A more in-depth discussion of speech recognition systems can be found in [41]

and [80].

We assume that the speech signal is broken up into overlapping frames (typically

25ms) and each frame is processed by each block in the system. Frames are typically

processed at a rate of 100 frames per second. In this paper, we will consider the

computational complexity on a per frame basis.

68

text

Front-End

Feature

Extraction

State

Likelihood

Viterbi

Search
Speech

State

Transitions/

Language Model

Gaussian

Mixture

Densities

More

Data?
Yes

Backtrace

No

W
o

rd
 S

eq
u

en
ce

Model Storage

Signal Processing
 Decoding

Figure 25: A block diagram of a typical HMM connected word speech recognizer.

4.2.2 Metrics of Complexity

The arithmetic complexity is measured by counting adds, multiplies, and general

math functions in critical loops of the algorithms. A general math function is some

high-level mathematical function which generally requires some number of additions,

multiplies, or table look-ups to be computed (such as logarithmic functions). For

simplicity, we are assuming that these high-level math functions are equivalent to adds

and multiplies. These counts of arithmetic operations are intended to show a general

level of complexity for each module with respect to the various parameters available

such as vocabulary size and sampling rate. However, in actual implementation many

factors come into play such as register allocation, procedure call overhead, cache

misses, and loop overhead. These factors can make a particular algorithm run slower

than what would be predicted by these simplified computational models. Finally,

each module will use some memory for data storage. We will examine the specific

memory requirements for each module.

4.2.2.1 Front-End Feature Extraction

The purpose of the front-end feature extraction step is to get parameters from the

speech signal that give information about the speaker’s vocal tract. These speech

observations must be perceptually meaningful and invariant across different speakers.

69

Table 10: Table of parameters for front-end feature extraction.

Parameter Description Typical Values
fs Sampling rate (Hz) 8,11, or 16 kHz
Nfs Frames per second 100
Twindow Window length 0.025 seconds
Nframe Samples per frame fs × Twindow

NFFT FFT size 2blog2(Nframe)c

Nfb Number of filter-banks 24
Lavg Average filter-bank length 20
Ncep Number of cepstra 13

A vector of mel-frequency cepstral coefficients is the most common feature set used

in automatic speech recognition. Dynamic features consisting of first and second

temporal derivatives of the cepstrum are also used. A more in depth discussion of

the theory and properties of the cepstrum can be found in [23]. In practice, the

mel-frequency cepstral coefficients can be computed using the algorithm in Figure 5.

This is a basic algorithm that does not take into account more advanced techniques

such as cepstral mean normalization.

Arithmetic Complexity Some parameters used in the front-end feature extrac-

tion are listed in Table 10. The third column lists some approximate values for these

parameters. Based on the algorithm in Figure 5, we can estimate the number of oper-

ations required. The formulas to determine the total number of arithmetic operations

at each frame are listed in Table 11. The FFT is the dominant computational block for

this module, but since the input is real, an N/2-point FFT with some post-processing

can be used instead of an N -point FFT. Ignoring this post-processing overhead for

simplicity, the FFT size, NFFT , is 2blog2(NFrame)c instead of 2dlog2(NFrame)e.

Memory Usage The memory requirements for the signal processing front-end are

minimal. Some small buffers will be needed to store speech data as it is processed

70

Table 11: Number of operations to compute MFCC.

Module Adds Multiplies Log
Pre-emphasis Nframe Nframe 0
Window 0 Nframe 0
FFT 6NFFT log2 NFFT 4NFFT log2 NFFT 0
Magnitude NFFT 2NFFT 0
Mel-spectrum (Nfb)(Lavg) (Nfb)(Lavg) 0
Logarithm 0 0 Nfb

DCT (Ncep)(Nfb) (Ncep)(Nfb) 0
Dynamic feat. 2Ncep 0 0

through the pipeline in Figure 5. The bulk of the data storage will be in the form of

pre-computed sine and cosine tables for the FFT and filter-bank coefficients for the

mel-filter bank operation. This amount of data can typically be stored in less than

100 kilobytes.

4.2.2.2 State Likelihood Computation

A state-of-the-art speech recognizer uses multi-dimensional Gaussian mixture den-

sities to calculate output probabilities for each HMM state. For small vocabulary

systems, each state has its own unique mixture density, but large vocabulary sys-

tems tend to share parameters across HMM states that are acoustically similar. Each

Gaussian component is evaluated using the input speech vector for the current frame.

These results are combined with mixture weights from the individual states to produce

output probabilities for each HMM state.

The state likelihood step computes the output probability for state k of HMM n:

bn,k(xt) =
M

∑

i=1

λn,k,iN(xt, µn,k,i,Σn,k,i) (16)

where xt is the input speech vector at time t, λn,k,i is the ith mixture weight for state k

of HMM n, and µn,k,i and Σn,k,i are the means and covariances for the corresponding

mixture density.

71

Table 12: Back-end speech recognition parameters.

Parameter Description
M Number of Gaussian mixtures
D Dimension of feature vector
Nm Total number of HMM models (or words)
Bf Branching factor
Ns Numbers of states per model

The multi-dimensional Gaussian, N(xt, µn,k,i,Σn,k,i), can be calculated with the

following:

N(xt, µn,k,i,Σn,k,i) =

1

(2π)
D
2 |Σn,k,i|

1
2

exp
[

−1
2
(xt − µn,k,i)

TΣ−1
n,k,i(xt − µn,k,i)

]

(17)

In an actual implementation, this calculation takes place in the log domain with a

diagonal covariance matrix. It can be written as:

log(N(xt, µn,k,i,Σn,k,i)) = − log((2π)
D
2 |Σn,k,i|

1
2)

−1
2

∑D
j=1

[

(xt(j) − µn,k,i(j))
2Σ−1

n,k,i(j, j)
]

(18)

where D is the dimension of the input feature vector.

Finally, the mixture weights are used to scale each individual Gaussian component

and the result is summed to produce the output probability for state k of HMM n.

In the log domain, this is computed as:

bn,k(xt) = log sumM
i=1(log(λn,k,i) + log(N(xt, µn,k,i,Σn,k,i))) (19)

where log sum is the logarithm accumulator operation or the equivalent summation

in the log domain. It can be computed by either transforming the input data between

the log and linear domains or through a function that utilizes lookup tables and some

known log identities. For the purposes of this work, we will assume that this operation

is equivalent to a normal math operation.

72

Arithmetic Complexity The values of − log((2π)
D
2 |Σn,k,i|

1
2) and Σ−1

n,k,i(j, j), the

inverse of the variances, are fixed during the training phase and can be pre-computed

and stored. Assuming that there is no pruning of the search space, the log proba-

bility must be computed for each HMM state k and for each model n. This requires

NmNsM(2D+1) adds and multiplies each as well as NmNsM logarithm domain adds.

Memory Usage The means, covariances, and mixture weights for each state are

the bulk of the storage used in this step. We also need to store the pre-computed

value − log((2π)
D
2 |Σn,k,i|

1
2) from equation 18. Therefore, we will need to store:

MemSL = NmNsM(2D + 2) (20)

words for the means, inverse variances, mixture weights, and pre-computed values.

It was shown in [85] that some of these values can be stored with 8-bits of precision

without loss of accuracy.

4.2.2.3 Viterbi Search

The Viterbi search is a well known dynamic programming algorithm used to find the

best path through the set of possible HMM states. The general order of complexity is

O(N 2T), where N is the total number of states, and T is the total number of frames.

There are N 2 possible transitions for an HMM with N states. However, with HMMs

used in speech recognition, many state transitions have zero probability. Figure 6

shows a typical left-to-right HMM topology used in speech recognition systems. Such

an HMM has only 3(N − 1) non-zero state transitions.

In a connected word speech recognizer, a composite HMM is constructed from

all Nm models. Each state in each model is evaluated, but the total number of

allowed arcs is greatly reduced. There are two types of arcs to consider in this

composite HMM. There are intra- and inter-word transitions. Intra-word transitions

occur within a word and are indicated by solid black lines in Figure 7. The dashed

73

lines are inter-word transitions and do not consume a frame of input. The language

model probabilities (if any) can be used here to weight the cost of transitions between

words. There are Nm × 3(Ns − 1) intra-word transitions. There are N 2
m inter-word

transitions if we allow every word to follow every other word. At each frame, all arcs

must be evaluated and partial path scores must computed. A more formal discussion

of the Viterbi algorithm can be found in [41].

Arithmetic Complexity For brevity, we have omitted the update equations for

the Viterbi algorithm, but we consider both types of transition arcs, word insertion

penalties, and language model weights. There are Nm(9Ns + 2(Bf × Nm)) adds

and 2Nm(Bf × Nm) multiplies in the basic Viterbi search, where Bf represents the

branching factor of the language model. That is, what fraction of vocabulary words

can follow one another. In practice, medium to large vocabulary systems use a beam

pruning heuristic with the Viterbi algorithm to reduce the number of active states

at any given time frame. States whose partial path scores do not fall within some

threshold of the lowest cost path are eliminated from consideration. This will reduce

the overall size of the Viterbi search but will add some overhead due to the threshold

comparisons. We have not considered beam pruning heuristics in this paper.

Memory Usage The storage required in this stage is a combination of the language

model and the state transitions for the HMM acoustic models. In medium to large

vocabulary systems, the language model can use anywhere from several kilobytes

to tens of megabytes of storage depending on the complexity of the task and the

vocabulary size. For a simple bigram or finite state grammar that might be used in a

small vocabulary application such as this, the storage requirements for the langauge

model are usually minimal. The number of state transitions is dependent on the

model topology and total number of states available in the acoustic model. If the

transition probabilities are stored as 4 byte floats or 4 byte fixed-point numbers, then

74

0 50 100 150 200 250
102

103

104

105

106

107

Vocabulary Size

To
ta

l n
um

be
r o

f o
pe

ra
tio

ns
 p

er
 fr

am
e

of
 s

pe
ec

h
(L

og
 s

ca
le

)

Front End
State Likelihood
Viterbi Search

Front−End Viterbi Search (B
f
 = 0.25)

Viterbi Search (B
f
 = 1.0)

1 Gaussian mixture

8 Gaussian mixtures

Figure 26: Arithmetic complexity per frame of speech for connected word speech
recognition. (Y-axis is logarithmic).

the total amount of memory required to store them is:

MemV S = NNZ × Ns × Nm × 4 (21)

where NNZ is the total number of non-zero state transitions allowed by the HMM

topology. For the configuration in Figure 6, NNZ = 3(Ns−1). If we have 8 states per

HMM, then we need 672 bytes per model (or word). There will also be some amount

of working memory required to store all of the path scores and best paths from the

start state until the current state.

4.2.3 Summary

In this section, we have estimated the arithmetic complexity of a small vocabulary

connected word speech recognizer. We have assumed a simple language model with

a varying branching factor. The equations presented represent the general arithmetic

75

complexity to process one frame of speech data. Although they ignore much of the

overhead involved in implementation on a general purpose processor, they still show

how the problem scales with varying parameters. Figure 26 shows the complexity

of the modules with respect to vocabulary size with some typical speech recognition

parameters. The Y-axis is plotted on a logarithmic scale. The complexity of the

front-end is independent of vocabulary size. The Gaussian evaluation involved in

the ouptut probability computation (or state likelihood) requires the bulk of the

computation. The Viterbi search can scale quadratically with vocabulary size, but

the slope is determined by the language model branching factor, Bf , which determines

how many inter-word transitions must be considered per frame.

This model suggests that distributing the speech recognition across a network by

performing feature extraction/compression on the mobile device and HMM evalua-

tion/Viterbi search on the server is an attractive alternative for resource constrained

devices. We examined the energy consumption of the feature extraction algorithm

on a StrongARM based platform in [18]. Based on our findings, the energy consump-

tion for the feature extraction calculation plus compression and wireless transmission

will likely be less than the energy required for the remaining HMM evaluation and

Viterbi search to be compututed locally for all but the smallest vocabulary sizes.

That is, the entire system will use less battery energy in a distributed speech recogni-

tion configuration than simply performing the entire task locally. This suggests that

distributed speech recognition is the best solution when considering battery life as

the sole optimization criterion.

4.3 Large Vocabulary ASR

Large vocabulary continuous speech recognition (LVCSR) is a complex task requiring

large amounts of both memory and CPU usage. For the time being, high-quality large

vocabulary continuous speech recognition is not feasible on a wireless mobile device.

76

In this section, we discuss some of the requirements for LVCSR and how mobile

devices might be able to meet these requirements in the future. In section 4.3.4 we

introduce a simple model of energy consumption on StrongARM based systems for

client-side ASR of lesser quality.

There have been several studies of the performance of speech recognition systems

on modern processors in the literature. There are three main issues discussed in

the literature: computation, memory size, cache architecture, and instruction level

parallelism. On modern day processors capable of clock speeds in the gigahertz range,

computation is rarely an issue, but other factors such as cache architecuture and

parallelism are important.

4.3.1 Computation

A study of the Sphinx II ASR system in [3] reported that 100 MIPS is required for

real-time performance. However, the Sphinx II ASR system uses less accurate semi-

continuous HMMs for it’s acoustic modeling. We can expect that systems based on

fully continous HMMs would require more computation. In [54] it was shown that the

most frequently accessed computational kernels were of the form ((a−b)2)c and log(1+

exp(x)). The former is used in the kernel of the Gaussian probability evaluation,

where a is the input vector, b represents the mean, and c is the inverse of the variance.

This operation is the opposite of the fast multiply accumulate operation, which is

available on many DSP chips and embedded processors including the StrongARM.

The latter expression is used in the accumulation of mixture density probabilities,

and is typically calculated via a polynomial expansion in the floating point hardware.

This operation is very slow on systems without floating point hardware, but it can

be implemented via a series of lookup tables and other approximations. While many

of the Viterbi search computations can be carried out using fixed point arithmetic,

the Gaussian evaluation step requires simultaneous dynamic range and precision that

77

fixed point arithmetic cannot deliver. In [64], it was shown that light-weight floating

point routines requiring only a 12-bit mantissa and 8-bit exponent were sufficient for

Gaussian evaluation. (The IEEE 754 format requires a 23-bit mantissa.)

Table 13: Cycle counts for the front-end, Gaussian evaluation, and Viterbi search
portions of speech recognition.

Module Avg. Cycles/Frame % of total
Front-End 7.22 × 104 0.4%
Hidden Markov Model 1.21 × 107 32.63%
Search 5.88 × 106 66.97%

The breakdown of computation for the Sphinx III ASR system (based on fully

continuous HMMs) is shown in Table 13. The results were obtained on a 1.4 GHz

Pentium 4 workstation. The total processing for the front-end is less than one percent

of the overall computation, with the majority of time being spent in the hidden

Markov modeling step. These results are similar to those reported in [54] for the

commercial speech recognition system studied. However, depending on the input

data and ASR task, the percentage of cycles spent in Gaussian evaluation can be as

high as 80%. The search algorithm involves the Viterbi search, language modeling,

beam pruning, and lexical tree building, and most often involves a smaller portion of

the overall cycle time.

4.3.2 Memory Heirarchy

The total amount of memory used for the acoustic models in the Sphinx III ASR

system is approximately 26 Mbytes. This includes the means, variances, and mix-

ture weights of the HMM states as well as the transition probablilties and state

tying information. Systems based on semi-continuous HMMs, such as Sphinx II, have

few parameters and will typically use less memory for acoustic models. A typical

HMM state can use between 2-4 Kbytes for its various parameters. A large vocab-

ulary n-gram language model can easily use 100 Mbytes of memory. For example,

78

a trigram language model trained on broadcast news transcriptions contains 13 mil-

lion trigrams, 9 million bigrams, and 64,000 unigram probabilities, and occupies 125

Mbytes. Smaller language models based on bigrams will be less accurate but can be

significantly smaller in size. For example, a bigram language model for a Wall Street

Journal read text task contains approximately 800,000 bigrams and 5,000 unigrams

and occupiess less than 10 Mbytes. The size of the language model is dependent

on the complexity of the task, vocabulary size, and amount of training text. It also

effects the overall computational effort.

During the decoding phase, a speech LVCSR recognizer has three main memory

working sets: the acoustic models, the language models, and the search buffer. The

search buffer is reported to occupy tens of Mbytes of memory in [54]. These three

working sets often compete for cache space in the memory hierarchy of the computer.

A typical modern workstation has a three level memory hierarchy consisting of fast

but small, on-chip L1 cache, a larger and slower L2 cache, and main memory, which

is the slowest of the three. The hard-disk can also be used as a memory device, but it

is too slow to be used frequently. The authors in [54] report a speedup by a factor of

2 when doubling the main memory size from 128 Mbytes to 256 Mbytes, presumably

from not having to use the hard disk for memory access. The memory access patterns

of the HMM phase have some spatial locality but little temporal locality. That is,

memory accesses were frequently sequential across the entire HMM parameter space

but rarely used more than once before being flushed from the cache. The search phase

of the recognition has a more random data access pattern due to the beam pruning

heuristic. A study of the optimum cache architecture was performed in [64], [3],

and [54] for various speech recognition systems. The required memory bandwidth

was reported to be larger than 150 Mbytes/s for the Sphinx II system and almost

800 Mbytes/s for the Sphinx III system. Larger L2 cache sizes can help reduce this

requirement to the slower main memory, but all authors reported that L2 cache sizes

79

of at least 8 Mbytes were required to reduce the L2 cache miss rate to below 10%.

Many embedded devices typically do not even have an L2 cache, and a StrongARM

based system typically has peak memory bandwidth of around 64 Mbytes/s. Larger

cache line sizes were also beneficial as it allowed an entire HMM parameter set to be

loaded in one line.

4.3.3 Parallelism

Data dependencies will reduce the amount of parallelism that can be obtained from

a sequence of instructions. The tight coupling between the Viterbi search and HMM

evaulation makes it difficult to extract parallelism at a higher level. In [3], thread level

parallelism was used to produce a speedup of approximately 3.5. The iteration over

individual HMM states was parallelized, which allowed the hardware to effectively use

multiple data paths more efficiently. A high percentage of resource related stalls was

reported in the back-end search, indicating memory or register dependencies within

the algorithm. Larger cache sizes and an increased number of arithmetic units can

help reduce these stalls and increase the number of instructions per cycle. A Gaussian

evaluation accelerator was introduced in [64], where the Gaussian evalaution can be

carried out in parallel for a large number of states. This coprocessor is fed a set of

means, variances, and features from memory and can process them in parallel with

the Viterbi search from the previous frame.

4.3.4 A Model of Energy Used in Computation for Client-Side ASR

An overview of power consumption for various speech recognition implementations

is shown in Figure 27. Application specific integrated circuits (ASIC) can provide

the lowest levels of power consumption. Embedded processors and DSP chips use

more power, but the complexity of the speech recognition task is generally limited.

Desktop machines based on modern superscalar processors typically use several tens

of watts.

80

100 µW 1 mW 100 mW 1 W

ASIC

DSP
Chip

General
Purpose

CPU

VLSI FE
(Felici, et. al.)

Analog Signal
Processing FE+HMM
(GA Tech)

FE+HMM <50 Words
(DSP Factory)

< 50 MIPS
FE+HMM < 50 words

1000+ MIPS
FE+HMM
Medium-Large
Vocabulary

StrongARM/HP Labs
Smartbadge IV FE

FE = Signal processing front-end
HMM = Hidden Markov modeling

10 W

StrongARM/Itsy
Dragon’s Nat. Speaking
FE+HMM

Intel Pentium 4
CMU Sphinx 3 LVCSR
FE+HMM

Figure 27: Power consumption figures for various speech recognition hardware/soft-
ware configurations.

As we have seen, the computation of speech features is a small portion of the

overall speech recognition task in both computation and memory usage. Client-

side ASR requires more computation and memory bandwidth due to the back-end

search algorithm. Porting a full speech recognition sytem to a mobile device requires

more optimization than a simple conversion to fixed-point arithmetic. It involves

optimization at many levels, from search space reduction to fast arithmetic kernels

and techniques to reduce memory bandwidth. For these reasons, we concentrate our

software optimization on the signal processing front-end only, and estimate the full

client-side ASR energy usage by using some published results [37].

In the absence of a network connection it may be necessary to perform ASR on the

mobile device. Speech recognition engines have been optimized for the StrongARM

or other mobile processors by many industry players, but it has been shown that

they use most available resources and may run several times slower than real-time for

many tasks. Power measurements for an embedded dictation ASR system running

on a StrongARM based processor are given in [37]. The ASR system ran just over

81

2.5 times real-time, and the processor was almost never idle during the task.

For the purposes of this work, it is sufficient to describe the energy requirements

for local ASR as the product of the average power dissipation of the processor and

memory under load and the time required to perform the speech recognition task.

For the Smartbadge IV, we have measured the average CPU and memory power

dissipation as Pcpu = 694 mW and Pmem = 1115 mW when under load. Given

the real-time factor R for the speech recognition task, we can estimate the energy

consumption to recognize one frame of speech as:

Elocal = (Pcpu + Pmem) × R × 1

100
(22)

Therefore, for a speech recognition task that runs R = 2.5 times slower than real-

time, we can expect to use approximately 45 mJ of battery energy to process one

frame of speech. Compare this with just under 0.4 mJ for the front-end only, and we

have a difference in computation energy of several orders of magnitude for client side

ASR vs. the distributed system. By using smaller vocabularies and simpler acoustic

and language modeling techniques, it should be possible to lower the total run-time

and energy consumption at the cost of reduced performance. A reduced ASR task

running in real-time on a SmartBadge IV would use approximately 18 mJ of energy

per frame of speech, but the tradeoff is reduced utility for the end-user.

82

CHAPTER V

REDUCED ENERGY CONSUMPTION FOR

DSR IN WIRELESS NETWORKS

In this chapter we address the issue of energy consumption of the wireless interface

in a distributed speech recognition system. As we have discussed earlier, the wireless

interface can occupy almost half of the energy budget on many mobile wireless devices.

We introduce techniques to minimize the energy consumption required to transmit

speech parameters to an ASR server. In Section 5.1, we model the energy consumption

of a DSR system using both the IEEE 802.11b and Bluetooth wireless interfaces. By

employing synchronous bursty transmission of speech parameters, we can maximize

the amount of time spent in a low power state or off state while adding virtually

imperceptible delay to the application. Using this technique, we can significantly

reduce the energy consumption required for transmission. We explore these tradeoffs

with respect to latency, channel conditions, and energy consumption in Section 5.2.

These techniques can provide reductions in energy consumption of over 90% compared

to a software based client-side ASR system.

The embedded system used in the experiments is the SmartBadge IV developed

at the Mobile and Media Systems Lab at HP Labs [62]. The SmartBadge contains a

206 MHz StrongARM-1110 processor, StrongARM-1111 co-processor, Flash, SRAM,

PCMCIA interface, and various sensor inputs such as audio, temperature, and ac-

celerometers. It runs the Linux operating system. The SmartBadge has speech/audio

driven I/O, so speech recognition can provide some level of user interaction through

a voice-user interface. It supports a variety of different networking hardware options

83

including Bluetooth and 802.11b wireless interfaces. It has high-quality audio input

suitable for speech recognition. The StrongARM platform is still used in many high-

end PDAs on the market today, such as the HP iPAQ H3800. Table 14 shows the total

average power dissipation of the iPAQ with both 802.11b and Bluetooth transmitting

data as well as without the network. The SmartBadge IV uses the same memory and

Table 14: Engery Consumption of the HP iPAQ.

Operation Power Dissipation (mW)
iPAQ (no wireless) 929
iPAQ (802.11b, Tx) 1929
iPAQ (Bluetooth, Tx) 1109

CPU as this version of the iPAQ, but it offers a wider range of hardware-based power

measurements as well as software simulation tools, therefore it is a better choice to

investigate the issues discussed in this paper. Newer PDAs based on the XScale pro-

cessor have a similar architecture to the StrongARM, and we expect similar results

with these processors.

5.1 Modeling the Energy Used in Communica-

tion

The wireless network can use significant amounts of energy on a mobile device. Mea-

surements on the SmartBadge IV hardware show that an 802.11b interface card can

use up to 45% of the total power budget. Reducing the energy consumption is an

important consideration and has been well studied in general. Section 2.5.1 outlines

some of the techniques. We consider both 802.11b and Bluetooth wireless networks in

our analysis. We assume single hop communication with a speech recognition server

connected to a wired network via a wireless access point. Multi-hop communication

has limited utility for this application as it is a client-server scenario over limited

range wireless links. Distributing the computation across a set of equally constrained

84

mobile devices is not considered here.

Given the relatively low bit rates used in DSR, both of these networks will operate

well below their maxium throughput range. In this situation, more energy saving

opportunities will develop from exploiting moderate increases in application latency

by transmitting more data less often. This allows the network interface to either

be powered down or placed into a low-power state in between transmissions. Other

wireless networks with throughput in the low kbps range, such as many cellular

telephony networks, may require other techniques, such as better compression, to

minimize energy consumption. However, we do not consider such wireless networks

here.

In order to estimate the power consumption for wireless transmission, we directly

measure the average current into the network interface. These measurements are

performed under ideal conditions with no competing mobile hosts or excessive in-

terference. Using these measurements as a baseline, we are able to tailor a simple

energy consumption model to investigate the effects of increased application latency.

By buffering compressed speech features, we maximize the amount of time spent in

the low-power or off state. We introduce a power on/off scheduling algorithm for the

802.11b device that exploits this increased latency. Given the medium access con-

trol (MAC) scheme for both 802.11b and Bluetooth, we can incorporate the effects

of channel errors into the energy model. We use these results to investigate which

techniques should be used to maintain a minimum quality of service for the speech

recognition task with respect to channel conditions.

5.1.1 802.11b Wireless Networks

The 802.11b interface operates at a maximum bit rate of 11 Mbps with a maximum

range of 100 meters. The MAC protocol is based on a carrier sense multiple access/-

collision avoidance scheme, which includes a binary exponential backoff system to

85

avoid collision. It uses an automatic repeat request (ARQ) system with CRC error

detection to maintain data integrity. We used a PCMCIA 802.11b interface card and

measured the average current going into the interface to get the power dissipation.

Our measurements indicate there is only a difference of a few mW in power con-

sumption between the highest and lowest bit rates. This is expected since the bit

rates are low, and the transmit times are very short. Also, the use of UDP/IP proto-

col stacks and 802.11b MAC layer protocols both add significant overhead for small

packet sizes. The 11 Mbps WLAN interface is under-utilized with this type of low

bit rate traffic. However, we can obtain some improvement in power consumption

by increasing the number of frames per packet. This increases the total delay of

the system, but less battery energy is used since the various networking overhead is

amortized across a larger packet size. However, due to the relatively high data rates

provided by 802.11b, the WLAN interface spends most of its time waiting for the

next packet to transmit. The 802.11b PM mode can provide some savings in energy

consumption but this does not hold under heavy broadcast traffic conditions [2], de-

fined as a higher than average amount of broadcast packets. In addition, the PM

mode is not available in the adhoc (as opposed to infrastructured) topography. We

present an on/off scheduling algorithm to reduce the total energy consumption of the

802.11b device under these conditions. While operating in the 802.11b power man-

agement mode, a WLAN card goes into an idle state. Every 100ms it wakes up and

receives a traffic indication map, which is used to indicate when the base station will

be transmitting data to this particular mobile host. With heavy broadcast traffic, the

WLAN interface will rarely be in the idle state and it will consume power as if it were

in the always-on mode. This is because the time required to analyze the broadcast

packets is larger than the sleep interveral. This increase in power consumption will

happen even if there are no applications running on the mobile host. Figure 28 shows

the power consumption of the WLAN card in the 802.11b power management mode

86

(a) light traffic

(b) heavy traffic

Figure 28: WLAN power consumption in 802.11b PM mode in light and heavy
traffic conditions.

87

in both heavy and light traffic conditions. Notice that in the bottom graph, under

heavy traffic, the card is unable to transition to the low-power idle state very often.

The average power approaches the always-on mode. Measurements in [2] indicate

that even in less than average amounts of broadcast traffic, energy is wasted by the

extra processing.

Since the energy consumption of PM mode on 802.11b networks breaks down in

heavy traffic conditions, we consider an alternate algorithm. If we are only interested

in transmitting speech recognition related traffic and not any other broadcast traffic,

we can simply power off the WLAN card until we have buffered enough data to

transmit. However, powering the card on and off has an energy-related cost that

needs to be accounted for.

P
ow

er

Time

T

TtxPon

Psave

Tback_on

Figure 29: The timing of the 802.11b scheduling algorithm.

Figure 29 shows the timing of this scheduling algorithm. The period, T , is de-

termined by the number of speech frames sent in one packet. The transmission is

synchronous such that every T seconds we will send that amount of compressed

speech features and stay in the off state for the remainder of the time. With larger

values of T we can hope to amortize the cost of turning the WLAN card on and

off at the expense of longer delay. Assuming that a speech recognizer server is able

to process speech at or near real-time, the user will experience delay near the value

88

of T . For an interactive application the total delay seen by the user begins when

the user stops speaking and ends when some action is taken by the mobile device.

A server that is able to process speech faster than real-time will be able to reduce

this delay but not eliminate it completely. The amount of tolerable delay depends

on the application. For user interface applications, such as web browsing, a calen-

dar application, or a voice-driven MP3 player, it is important to reduce the delay to

maintain interactivity. Delays of around one second may hardly be noticed by the

user, whereas delays of around three seconds or more may hinder interactivity. For a

dictation application, such as e-mail, this delay is less important. In this case, the use

simply dictates a response, and corrections or edits can occur after the speech-to-text

process is complete.

Assuming the average power for the always-on WLAN mode is Pon, the total

energy required to transmit T seconds of speech frames can be estimated as:

Eon = Pon × T (23)

Similarly, the total amount of energy required to transmit in power management

mode is:

Esave = Psave × T (24)

where both Psave and Pon are the measured average power values at the particular

bit rates and number of speech frames per packet. These data values were measured

directly off the WLAN hardware.

Using the proposed scheduling algorithm, the WLAN card will be on only during

the shaded region in figure 29. The value, Tback on, is the amount of time required

to turn the WLAN card back on, during which time it uses power as if it were

transmitting. The value Ttx is the total amount of time required to transmit the

data, which is typically much smaller than Tback on for the low bit rates required

for speech traffic. The energy required to transmit under the proposed scheduling

89

algorithm is:

Esched = Pon × (Tback on + Ttx) (25)

50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

WLAN Power on Delay (ms)

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

pe
r p

ac
ke

t (
m

J) Power management (w/heavy traffic)
Power management (ideal)
Power down scheduling

Figure 30: WaveLAN power on delay vs. energy consumption per packet.

The two interesting parameters to consider are the power on time (Tback on) and

the number of speech frames transmitted at once, which dictates the total period T .

Figure 30 shows the power on delay on the x-axis and estimated energy consumption

on the y-axis. We fixed the value of T to 0.48 seconds, or 48 frames of speech data.

The PM mode configuration in light traffic almost always outperforms the proposed

scheduling algorithm except for very small values of Tback on. (Typical values may

range from 100ms to 300ms.) However, in heavy traffic conditions, the PM mode

approaches the always on power consumption (shown by the top line in the plot), so

the scheduling algorithm can give better performance under these conditions. With

Tback on at 100ms, the total energy consumption per packet is approximately 75 mJ

for the scheduling algorithm and approximately 390 mJ for PM mode in heavy traffic

90

conditions (from figure 30). This is a reduction in energy consumption by about 80%.

However, this only holds true for heavy broadcast traffic conditions, so the mobile

device will have to monitor the broadcast traffic and decide between the standard

802.11b PM mode or the scheduling algorithm.

0

1

2

3

4

5

6

7

8

9

10 20 40 60 80 100 200 300 400 600 800 1000 2000

Latency (ms)

E
n

er
g

y
(m

J)

Eon (mJ) Esave (mJ) Esched (mJ)

Figure 31: Average energy consumption per 10ms speech frame vs. DSR latency
for various 802.11b power save schemes. (WLAN power on delay is fixed at 100ms.)

Finally, we consider increased delay or latency, T , in Figure 31. with Tback on

fixed at 100ms. In this plot, the energy cost was determined using measured values

of power consumption. The energy cost has been normalized to show the average

energy required to transmit one frame of speech data. As the total number of frames

approaches 80 (T = 800ms), we can see that the scheduling algorithm (Esched) will be

able to outperform the PM mode configuration (Esave) regardless of traffic conditions.

This will result in less than one second of delay for a user interface application with

speech recognition. Shorter power on (Tback on) times can help move this crossover

point to shorter delays. Longer delays of two seconds or more can further reduce

energy consumption and are good candidates for applications requiring lower inter-

activity such as dictation.

91

Since the 802.11b MAC protocol uses an automatic-repeat-request (ARQ) protocol

with CRC error detection to maintain data integrity, the energy consumption will be

a function of channel signal to noise ratio (SNR). After the reception of a good packet,

an ACK is sent across a robust control channel. For a given bit error rate and packet

length, the probability of a packet error in the absence of any error correction coding

techniques is:

Pr = 1 − (1 − BER)L (26)

where L is the packet length, and BER is the bit error probability for the current

channel conditions. For our analysis, we used the BER probability for 256-QAM

modulation in a Rayleigh fading channel to approximate the 802.11b CCK modula-

tion. A Rayleigh fading channel models the effect of time-varying multipath fading of

the received signal by accounting for constructive and destructive interference of the

scattered carrier signal. The Rayleigh fading channel asssumption is widely used in

wireless communications literature as a more realistic alternative to an additive white

Gaussian noise channel [78]. The BER expression for the 256-QAM modulation is:

BER =
2k−1

2k − 1

M−1
∑

m=1

(−1)m+1
(

M−1
m

)

1 + m + 2mγ̄b

(27)

where γ̄b is the SNR per bit, M = 8, and k = 4.

Given the probability of retransmission (Pr), the expected number of retransmis-

sions (Tr) is given by [115]:

Tr =
1

1 − Pr

(28)

Using these equations, an energy model can be constructed that incorporates the

energy used in the MAC overhead as well as the energy required for repeated re-

transmissions, assuming the average SNR remains the same. Such an energy model

is presented in [27] and is summarized here:

Etx(BER,L) = Eaq + Tack × Prx + (Eaq + Ttx × Ptx) ×
1

(1 − BER)L
(29)

92

where Eaq is the average energy required to acquire the channel, Tack is the time

required to receive the ACK packet, and Prx is the receive power for the robust

control channel. Given this energy model, we can incorporate it into our scheduling

algorithm model in (25) as follows:

Esched = Etx(BER,L) + Pon × Tback on (30)

We use this expression in Section 5.2 to quantify the energy consumption of 802.11b

vs. channel SNR. In particular, we show how larger packet sizes and lack of error

correction techniques force 802.11b to operate in higher channel SNR. However, tech-

niques such as packet fragmentation and error correction can be used to extend the

lower SNR range of 802.11b.

5.1.2 Bluetooth Personal Area Network

The Bluetooth personal area network provides a maximum bit rate of 1 Mbps, and

a variety of different packet types are available to support different traffic require-

ments [110]. It supports a range that is considerably less than 802.11b, on the order

of 10 meters. Bluetooth supports both data and voice traffic packets as well as a

hybrid packet containing both voice and data. Media access is handled via a time-

division duplex (TDD) scheme where each time slot lasts 625 µseconds. Voice packets

are given priority over data packets in scheduling. In this work, we consider only pure

voice or pure data packets. Data packets are available in both high-rate and medium-

rate packets. These are DHn or DMn packets for both high and medium data rate

respectively, where n depicts the number of TDD slots the packet occupies: 1, 3, or

5. High-rate packets use a stop-and-wait automatic-repeat-request (ARQ) protocol

with CRC error detection within the packet. Medium-rate packets use a 2/3 rate

(15,10) shortened Hamming code in addition to the ARQ protocol. Voice packets,

due to their time-sensitive nature, do not use an ARQ protocol. Voice packets are

93

available in HV1, HV2, or HV3 types, where the number denotes the amount of er-

ror correction rather than slot length. All voice packets occupy one TDD slot with

varying data payloads. HV3 packets use no error correction. HV2 packets use the

(15,10) Hamming code, and HV1 packets use a 1/3 rate repetition code. Given the

soft time deadlines with speech data intended for a machine listener, we can easily

use either data packets or voice packets without consideration of packet jitter or delay

characteristics.

First we develop a simple model for the energy consumption of a single Bluetooth

voice or data packet. We then consider the use of Bluetooth power saving modes to

reduce the energy consumption during the idle time, similar to the 802.11b scheduling

algorithm. Finally, we investigate the implications of bit errors on both voice and

data packets.

Based on the packet types and various error correction overhead, we can construct

a simple energy model for Bluetooth packet transmissions. For voice packets, the

total energy used is the power used in transmission multiplied by the time required

to transmit.

EHV n = Ptx × Ttx = Ptx × 625µs (31)

where Ptx is the measured power consumption in the transmit state, and Ttx is the

total time required to transmit (625 µs for HVn packets). Because of the error

correction overhead, we need to transmit three times as many HV1 packets as HV3

packets for the same amount of user data.

For data packets, the energy consumption is dependent on the size of the data

packet being transmitted. Data packets occupy either 1, 3, or 5 TDD slots. An

estimate of the total energy required to transmit a data packet (Dxn) is:

EDxn = (Ptx × 625µs × n) (32)

where n is the slot length of the packet, either 1, 3, or 5.

94

Using power measurements of a USB Bluetooth device attached to the Smart-

Badge IV, we are able to estimate the energy usage for our system. Figure 32 shows

the energy required to transmit one frame of speech data at various DSR compression

rates over a Bluetooth link. We consider the use of both high-speed and medium-

speed data packets. We assume an error-free channel with no retransmissions. We

can see in figure 32 that there is a higher energy cost for medium-rate packets due

to the FEC overhead. However, these packets will be a better choice for lower SNR

conditions. Energy consumption approximately doubles between the 1.2 kbps and 4.2

kbps bit rates. However, these estimates do not consider idle time between packets

that will consume energy as well.

0

2

4

6

8

10

12

14

16

1.2 1.4 1.6 1.8 1.9 2 4.2

kbps

Tr
an

sm
it

E
n

er
gy

 (u
J)

Medium Rate Packets
High Rate Packets

Figure 32: Energy used to transmit one frame of speech with varying compression
rates for Bluetooth radio.

We can incorporate the Bluetooth power saving modes into our model to account

for the idle time in between packets. A node within a Bluetooth piconet can operate

in a variety of different power management modes [110]. In the default active mode,

the slave node listens to every master-slave slot to see if the packet is addressed

95

to it. In the sniff mode, the node only listens to slots at specified intervals. In

hold mode, the node goes into a low-power state until some specified interval, after

which it powers up to transmit. In park mode the Bluetooth node temporarily gives

up its membership to the piconet to join a list of parked nodes. The node’s only

activity in parked mode is to periodically listen for synchronization and broadcast

packets. Figure 33 shows the state transition times and power measurements for the

Bluetooth energy saving modes. The transition times are shown on the arcs, and the

power measurements are inside the states. During a transition, the Bluetooth device

consumes power according to the state it is leaving.

Connected/
Transmit
0.18 W

0.94 ms

7.36 ms4.12 ms

Park
0.068 W

Hold Sniff
0.08 W0.077 W

11
.6

2
m

s

1.
68

 m
s

2.16 ms

Figure 33: Transition times and power measurements for Bluetooth energy saving
modes.

In the case of an asymmetric client-server network application, the Bluetooth

network was shown to be most energy efficient when the node sending the most data

is configured as the slave [121]. This is due to the asymmetric behavior of the ARQ

96

scheme in Bluetooth. In this configuration, the slave node never retransmits packets

to the other host. In our case, the slave node will be the mobile device, which is

sending audio data to an automatic speech recognizer. This configuration also allows

the mobile device to enter a low-power state. For our analysis, we will use the park,

since it provides competitive transition times as well as the ability for a master node

performing multiple speech recognition requests to support more nodes.

A Bluetooth node in park mode will wake up upon activity to transmit some data

and then enter the park mode when finished. The energy consumption of this scenario

is as follows:

E = Ptx × Ttx + Etransition + Ppark × Tpark (33)

where Etransition is the total energy used to transition to/from the various operating

states, and Ppark and Tpark are the power dissapation and times in the park mode

respectively. The time spent in the deep sleep state is a function of the overall

latency of the system and the amount of data being transmitted. We measure 0.18

watts in the transmit mode, and 0.077 watts in the park mode. Transition times to

and from the park state are on the order of several milliseconds each.

By varying the amount of data transmitted at once, we can increase the amount of

time spent in the park state. Figure 34 shows the tradeoff between speech recognition

latency and energy consumption per frame of speech for both 802.11b and Bluetooth.

Once again, we assume a perfect channel with no bit errors. For smaller values of T ,

Bluetooth can offer better performance than 802.11b, but as T approaches 1.3 seconds,

802.11b will use less energy. This is because the 100 ms startup cost of 802.11b is

amortized across a larger number of frames, while the Bluetooth node remains in the

park state and still consumes power. Powering off a Bluetooth node between packet

transmissions is not an option since the paging/inquiry actions required to join a

piconet can easily take in excess of 10 seconds. However, since the transition time

from park to active and back is small, we see an initial drop in energy consumption

97

200 400 600 800 1000 1200 1400 1600 1800 2000

10
0

10
1

Latency (ms)

E
ne

rg
y

(m
J)

Bluetooth
802.11b

Figure 34: Energy per frame of speech vs. DSR latency for a Bluetooth and 802.11b.

with respect to increased latency in Bluetooth. However, with increased delay the

energy spent in park mode becomes the dominant factor.

Next, we investigate how the presence of bit errors on the wireless channel will af-

fect both the energy consumption and, in the case of voice packets, speech recognition

accuracy. We use this data to identify which types of packets can be used effectively

in various channel conditions. The main difference between the two types of packets

is that voice packets rely only on FEC and no ARQ, while data packets can use both

FEC and ARQ. The energy consumption of Bluetooth voice packets is independent

of channel conditions. Therefore, we can estimate the energy consumption using (32)

and (33). The main difference in energy consumption per frame of speech will come

from the reduced user payload due to FEC bits.

In the presence of bit errors, data packets will continue to be retransmitted until

they are received correctly or a timeout occurs. For the purposes of this analysis, we

98

assume BFSK modulation with coherent detection under a Rayleigh fading channel.

We also assume that the average SNR remains constant throughout the transmission.

The BER expression used is as follows:

BER =
1

2

(

1 −
√

γ̄b

¯2 + γb

)

(34)

where γ̄b is the average SNR per bit. The total energy used is also a function of the

probability of a packet retransmission. The expression is based on the probability

of packet synchronization failure, header failure, payload error, and both synchro-

nization and header failure in the ACK packet. Each of these items is a function of

the bit error rate (BER), which is, in turn, a function of the channel signal to noise

ratio (SNR). An expression for this probability (Pr) is derived in [104] and will be

summarized here. Packet retransmission will occur when any of the following events

occurs:

A: Synchronization failure of outbound packet.

B: Header corruption on outbound packet.

C: Payload error on outbound packet.

D: Synchronization failure on ACK packet.

E: Header corruption on ACK packet.

Therefore, the probability of a packet retransmission is as follows:

Pr(γ) = 1 − P [Ā]P [B̄]P [C̄]P [D̄]P [Ē] (35)

where γ is the instantaneous signal-to-noise ratio, Ā is the complement of event A,

and P [A] is the probability of event A. Expressions for the individual probabilities of

events A through E follow. The probability of successful synchronization, events A

and D, are identical and defined by:

P [Ā] = P [D̄] =
72−T
∑

k=0

(

72

k

)

ε(γ)k(1 − ε(γ))72−k (36)

99

where T is the threshold of bits that must be received correctly for successful synchro-

nization and ε(γ) is the probability of bit error for channel SNR, γ. The probability

of the header success, events B and E is:

P [B̄] = P [Ē] = (3ε(γ)(1 − ε(γ))2 + (1 − ε(γ))3)18 (37)

Finally, the event of a payload success for high rate packets it given by:

P [C̄] = (1 − ε(γ))m (38)

where m is the payload size in bits which varies depending on the packet size (DH1,

DH3, or DH5). For medium rate packets, the 2/3 Hamming code is capable of

correcting one error per 15 bit block. The probability of successful transmission for

medium rate packets is:

P [C̄] = (15ε(γ)(1 − ε(γ))14 + (1 − ε(γ))15)
m
15 (39)

If we ignore the overhead for receiving an ACK packet, an estimate of the energy

consumption for Bluetooth data packets in the presence of bit errors is:

EDxn = Ptx × 625µs × n × 1

1 − Pr

(40)

where Pr is the probability of a retransmit for the appropriate packet type. By

dividing the energy by the number of frames in a packet, which varies with packet

length and coding technique, we can get the energy required to send one frame of

speech.

5.2 Summary of DSR Tradeoffs

We have provided energy models for both 802.11b and Bluetooth wireless networks

for distributed speech recognition traffic. The two main variables of interest are the

total delay, T , and the average channel SNR. First, we analyze Bluetooth and 802.11b

energy consumption with respect to these variables individually, and then we compare

their performance with the addition of front-end processing and full client side ASR.

100

5.2.1 Bluetooth Data Packets and IEEE 802.11b

By using the client-side ASR energy model and the DSR energy model for both Blue-

tooth and 802.11b wireless networks, we can examine the energy tradeoffs with respect

to channel quality, delay, and ASR accuracy. Higher bit rates have small increases in

system level energy consumption due to the overhead of the power saving algorithms

on the wireless device. This tradeoff is shown in Table 15. For the remainder of this

analysis, we consider transmission at the highest available bit rate, which offers the

best WER.

Table 15: Total energy consumption for both computation and communication vs.
bit rate for Bluetooth and 802.11b. (T = 0.48s).

Computation + Communication
Bit rate (kbps) WER (%) Bluetooth (mJ) 802.11b (mJ)
1.2 16.79 1.1279 2.4661
1.4 11.71 1.1315 2.4688
1.6 9.3 1.1323 2.4698
1.8 8.1 1.1338 2.4717
1.9 6.99 1.1358 2.4719
2.0 6.63 1.1380 2.4749
4.2 6.55 1.1701 2.5044

In Figure 35 and Figure 36 we show the energy consumption of two kinds of

Bluetooth data packets, DM1 packets and DH5 packets respectively. In plot (a),

we show the energy consumption with respect to SNR and delay on the X and Y

axes, while the energy consumption is plotted on the Z axis. DM1 packets have the

smallest payload and are the most robust packet type due to the error correction

coding. Because each packet has such a small payload, the energy consumption is

almost entirely independent of the system delay. In plot (b), we show the contour

of the surface projected on to the delay-SNR axis. Darker lines represent areas of

lower energy consumption. In Figure 35a, the contour lines are nearly vertical. In

Figure 36a, we can see a slight effect of the total delay, T . The stair-stepping effect

101

is due to the DH5 packets, which have the largest usable payload, not being entirely

utilized. Except for small delays, which result in under-utilized packets, the energy

consumption per frame of DH5 packets is also independent of delay, but DH5 packets

require higher SNR due to the lack of error correction coding and the longer packet

size, which increases probability of a packet error.

In Figure 37 we show the same delay vs. SNR tradeoff with 802.11b packets.

802.11b packets are variable length, up to a maximum size. At 4.8 kbps, even 2

seconds of speech data can fit within one packet. However, this larger packet size

increases the chances of packet error. Therefore, the energy consumption per frame

of speech with 802.11b packets is dependent on both delay and SNR. Figure 37b shows

this relationship. Assuming a fixed delay (and packet size), a decrease in SNR will

cause an increase in expected energy consumption due to increased chances of packet

retransmission. Likewise, for a given average SNR, a decrease in delay will generally

lower the average energy cost per frame. However, this does not hold true when

the delay is too small and the 802.11b overhead dominates the energy consumption.

The other bit rates supported by 802.11b use a more robust modulation scheme and

will operate down to a lower SNR with some slight increases in energy consumption.

However, these additional modulation schemes are not represented on the graph in

Figure 38.

5.2.2 Comparison of Bluetooth, IEEE 802.11b, and Client-Side ASR

In Figure 38, we plot the energy consumption per frame of speech for client-side

ASR and DSR under both 802.11b and Bluetooth wireless networks with respect to

channel quality. For DSR, we include the both the communication and computation

(feature extraction/quantization) energy costs. For 802.11b, we consider the energy

consumption of the power on/off scheduling algorithm with a latency of 240ms, 480ms,

and 2 seconds and unlimited ARQ retransmissions. For the Bluetooth interface we

102

0

10

20

30

40

0
50

100
150

200

10−1

100

101

102

103

SNR (dB)

Delay (ms)

 L
og

−e
ne

rg
y

(m
J)

(a) Energy per frame of speech with respect to SNR and delay

5 10 15 20 25 30 35

20

40

60

80

100

120

140

160

180

SNR (dB)

D
el

ay
 (m

s)

0

0.5

1

1.5

2

2.5

(b) SNR vs. delay contour

Figure 35: Delay, SNR, and energy tradeoffs with Bluetooth DM1 packets.

103

0

10

20

30

40

0
50

100
150

200

10−1

100

101

102

103

104

SNR (dB)

Delay (ms)

 L
og

−e
ne

rg
y

(m
J)

(a) Energy per frame of speech with respect to SNR and delay

5 10 15 20 25 30 35

20

40

60

80

100

120

140

160

180

SNR (dB)

D
el

ay
 (m

s)

0

0.5

1

1.5

2

2.5

3

(b) SNR vs. delay contour

Figure 36: Delay, SNR, and energy tradeoffs with Bluetooth DH5 packets.

104

0

10

20

30

40

0
50

100
150

200

10−1

100

101

102

103

104

SNR (dB)

Delay (ms)

 L
og

−e
ne

rg
y

(m
J)

(a) Energy per frame of speech with respect to SNR and delay

5 10 15 20 25 30 35

20

40

60

80

100

120

140

160

180

SNR (dB)

D
el

ay
 (m

s)

0

0.5

1

1.5

2

2.5

3

(b) SNR vs. delay contour

Figure 37: Delay, SNR, and energy tradeoffs with 802.11b data packets.

105

show the energy consumption for both medium- and high-rate data packets as well as

the three types of voice packets with latency of 480ms. To the right of the Y-axis we

have the approximate energy savings over client-side ASR operating 2.5 times slower

than real-time. We can expect a scaled down speech recognition task (i.e. simpler

acoustic and language models or smaller vocabulary) running at real-time to give

60% energy savings. However, this will come at a cost of reduced functionality for the

user, perhaps going to a more constrained vocabulary and speaking style. We have not

quantified the cost of reduced utility for the user in this work. However, for the various

DSR scenarios in Figure 38 we assume little to no reduction in quality for the end-user

by maintaining sufficient data integrity through source coding techniques and/or ARQ

retransmissions. Table 16 shows the percentages of computation and communication

energy for a few different configurations as well as the expected battery lifetime with

a 1400mAh/3.6V lithium-ion cell. The 802.11b interface with long delays gives the

lowest overal energy consumption and an almost even division between energy spent

in computation and communication. DSR with Bluetooth uses a higher percentage of

communication energy, and this amount does not decrease significantly with increased

delay due to the overhead of the park mode. Expected battery lifetimes exceed that

of typical cellular telephones as we do not require real-time communication. Even

modest delays of less than half a second can yield significant battery lifetime with

constant streaming of DSR data.

Table 16: Summary of energy consumption for ASR and DSR with high channel
SNR.

Type Comp. (%) Comm. (%) Total/Frame
(mJ)

Battery
Lifetime
(h)

DSR w/Bluetooth (T=0.48s) 32% 68% 1.17 43.1
DSR w/802.11b (T=0.48s) 15% 85% 2.5 20.2
DSR w/802.11b (T=2s) 42% 58% 0.92 54.8
Local ASR (R=2.5) 100% 0% 45 1.12

106

0 5 10 15 20 25 30 35 40

100

101

SNR (dB)

E
ne

rg
y

(m
J)

BT Data
BT Voice
802.11b
Local ASRLocal ASR (R=2.5)

Local ASR (R=1)

802.11b (T=0.24s)

802.11b (T=0.48s)

802.11b (T=2s)

DH5
DH1

DM5 DM1

HV1 HV3 HV2

% Reduction
in Energy

60%

89%

94%

>97%

Figure 38: The energy consumption of client-side ASR and DSR under Bluetooth
and 802.11b vs. SNR.

In a good channel with high SNR, Bluetooth allows systemwide energy savings of

over 95% compared with full client-side ASR. DH5 packets offer the lowest overhead

and best energy savings, while DM1 packets offer the most robust operation down

to around 10 dB with some minimal energy cost. The ARQ retransmission protocol

causes rapid increases in energy consumption after some SNR threshold is reached.

It is possible to operate in lower SNR through packet fragmentation, which will lower

the probability of a packet being received in error. This is evident in Figure 38 by

comparing DH1 and DH5 data packets. The longer packet length in DH5 packets

causes a sharp increase in retransmits and energy consumption at around 25 dB,

whereas DH1 packets can operate down 15 dB before the number of retransmits

becomes excessive. In addition, FEC bits can be used to lower the probability of a

packet retransmit. The Hamming code in DM1 and DM5 packets allows operation

107

down to around 10 and 16 dB respectively.

IEEE 802.11b networks allow system wide energy savings of approximately 89-94%

with relatively small values of T . With larger values of T , such as one second or more,

we can use less energy than Bluetooth. However, due to the larger packet overhead,

larger maximum packet sizes, different modulation, techniques, and lack of error-

correcting codes, the 802.11b network does not operate as well in lower SNR ranges.

Packet fragmentation or a switch to a more robust modulation technique with lower

maximum bit rate can extend the lower SNR range at the cost of increased energy

consumption, but we have not considered these effects here. However, 802.11b does

offer increased range and may be more appropriate in certain scenarios.

5.3 Conclusion

In this chapter, we investigated the energy consumption of a distributed speech recog-

nition front-end with respect to the wireless interface. We considered energy usage

from both computation and communication in our final analysis. The advantages of

DSR from an energy consumption perspective are clear. Client-side speech recogni-

tion in software can consume several orders of magnitude more energy than a DSR

system. However, the use of low-power ASIC chips for speech recognition may help

reduce the energy consumption of client-side ASR in the future.

In our analysis of DSR, we have considered both 802.11b and Bluetooth wireless

networks. Given the relatively high bit rates these standards provide with respect to

DSR traffic, we investigated the use of synchronous bursty transmission of the data

to maximize the amount of time spent in a low-power or off state. While this adds

a small delay to the end-user, the energy savings can be significant. With 802.11b,

we can reduce the energy consumption of the wireless interface by around 80% with

modest application delays of just under half a second. Bluetooth offers lower energy

consumption for smaller values of delay, T , but as delay increases, the Bluetooth

108

energy consumption is dominated by the time spent in park mode. The 802.11b

interface with on/off scheduling can operate with a lower energy consumption than

Bluetooth when T exceeds 1.3 seconds.

109

CHAPTER VI

IMPROVED SPEECH RECOGNITION

ACCURACY IN BURST ERROR CHANNELS

The presence of bit errors in the quantized speech feature stream can cause a signif-

icant decrease in accuracy. It is essential that bit errors be detected and concealed

when possible. In [5], the relationship between packet erasure and packet errors with

respect to accuracy was demonstrated. A DSR system is more robust to channel

erasures than errors. Channel errors can cause significant changes in the most likely

state sequence through an a HMM, while channel erasures did not have such a sig-

nificant effect. This emphasizes the need for effective error detection, correction, or

concealment techniques. In this chapter, we attempt to alleviate the effects of bit

errors on the DSR bitstream through the use of interleaving, concealment through

interpolation, and a novel use of the stochastic weighted Viterbi algorithm.

In Section 6.1, we discuss some related work. The channel model used to simulate

burst-like bit errors is presented in Section 6.2. We overview the interpolation and

interleaving methods in Section 6.4, including a characterization of the interpolation

error and a sub-frame interleaving technique. This interpolation error is fed into a

stochastic weighted Viterbi algorithm that is explained in Section 6.5. Recognition

results are presented in Section 6.6, including a comparison to existing techniques. Fi-

nally, we analyze possible energy savings using Bluetooth voice packets in section 6.7.

Conclusions and observations are presented in Section 6.8.

110

6.1 Related Work

In [79], the performance of DSR over IP networks is investigated. Packet losses,

containing a single frame of speech, are simulated using random losses, a Gilbert-Elliot

model, and a network bottleneck simulation. Repetition based error concealment is

shown to be adequate for random isolated losses, but it breaks down under lengthy

burst-like packet loss. An interleaving technique is introduced in [65] that distributes

the speech features across multiple packets. This reduces the probability of the loss

of a complete frame at the cost of increased delay. Interleaving, coupled with linear

interpolation, minimized reductions in accuracy in moderate packet loss conditions.

In [68] an interpolation technique in the log-filterbank domain is shown to be more

robust to consecutive frame losses since log filterbank features exhibit a much higher

temporal correlation. Errors were concealed by repetition, and the HMM output

probability was weighted exponentially by the square root of the auto-correlation lag

of the repeated feature in [5]. Secondary features were weighted according to a binary

value (0 or 1) based on the length of the burst. The result was that longer bursts of

repeated features counted less toward the Viterbi search update. A stochastic version

of the weighted Viterbi algorithm was presented in [120] in the context of speaker

verification in noise. It is based on the expected value of the HMM output probability

for noisy speech vectors. The ETSI DSR standard provides a framework for MFCC

calculation, quantization, framing and error protection for DSR applications [109].

We use the split vector quantization codebooks supplied with the ETSI DSR system

for our simulations.

6.2 Gilbert-Elliot Model

The Gilbert-Elliot model is a two state Markov chain where the channel is either

in a good or bad state [33]. Figure 39 shows this two state model. The transition

probabilities, p and q, can be used to calculate the steady state probabilities of being

111

Good Bad

1−q

q

1−p

p

Figure 39: A two state Gilbert-Elliot channel model.

in the good or bad state as well as the mean length of a burst and mean time between

bursts. This model can be used to simulate burst packet losses on packet-based

networks or, in our case, burst-like bit errors over general wireless communication

channels. In a typical packet level simulation, the packets are always received in the

good state and never received in the bad state. In a typical bit level simulation, each

state has an associated probability of error, with the probability of error in the good

state being small or zero and the probability of a bit error in the bad state being

larger (i.e. Eg << Eb). By using the state transition probabilities and state error

probabilities, we can calculate the average bit error rate of the channel.

In our implementation, the codebook indices from the ETSI DSR system are

packed into 6 bytes, including 4-bit CRC, for each frame. A 4-byte header is added

to each 24 frame packet of speech data, for an overall bit rate of 5.0 kbps. After CRC

error detection, our algorithm sees bit errors as missing frames in the MFCC feature

stream.

6.3 Evaulation of the ETSI DSR Standard Under

Burst-Like Error Conditions

First, we evaluate the performance of the ETSI Aurora DSR standard under various

burst-like error channel conditions. The ETSI standard uses CRC error detection on

consecutive frame pairs to determine if there is a bit error [109]. A consistency check

112

is performed by comparing the difference of the two frames against a threshold, where

the threshold is determined emperically by studying clean speech. This exploits the

correlation between successive frames of speech, and if the algorithm finds that they

are highly uncorrelated, it assumes a bit error has occured. The consistency check

helps prevent the case when an error pattern is missed by the 4-bit CRC. Errors in the

quantized speech vectors are concealed simply by repeating previous or subsequent

speech vectors to fill in the gap.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0

10

20

30

40

50

60

70

80

90

Bit error rate

A
cc

ur
ac

y
(%

)

Accuracy vs. Bit error rate

Figure 40: Average bit error rate vs. speech recognition accuracy using the ETSI
DSR standard and a 5,000 word speech recognition task.

In networks that support multimedia traffic, such as Bluetooth, packets can be

delivered even if they contain errors. Concealment techniques can then be used to

minimize the effect of the errors at the speech recognizer (or human listener). We

simulated bursty bit errors using the Gilbert-Elliot channel model and used the error

113

mitigation technique supplied with the ETSI standard described above. We consid-

ered a range of burst lengths, time between bursts, and error probabilities in the

bad state. For each channel model, we simulated the errors on a test data set and

performed error concealment on the corrupted bitstream. For each channel model

considered, we calculate the average bit error probability according to the following

equation:

BER =
q

p + q
Eg +

p

q + p
Eb (41)

In Figure 40, we plot the average BER vs. accuracy on a 5,000-word vocabulary

Wall Street Journal speech recognition task. The accuracy of the system without bit

errors was 87.2%, and we used a set of 30 test utterances for each data point. We

can see that the system starts to lose accuracy significantly after an average bit error

probability of 10−3.

0 10 20 30 40 50 60 70 80 90 100
−20

−15

−10

−5

0

5

10

15

20

25
Repetition Based Error Concealment

Frame Index

 c
(1

)

Original Cepstral Coefficient
After Repetition Error Concealment

Figure 41: Repetition based error concealment in the ETSI DSR system.

114

One potential problem with the ETSI DSR system is the use of CRC error de-

tection bits on consecutive frame pairs. It was shown in [102] that this use of error

protection coupled with repetition can cause a single feature vector to be used for

many consecutive frames in the presence of bit errors. Since the delta and delta-delta

features are computed after error concealment, this could potentially result in many

zeros for these secondary features, depending on the window size used to calculate

them. For the remainder of this work, we will consider CRC protection bits applied

only to individual frames. This adds 2 bits to each frame of speech but helps to

increase robustness significantly.

6.4 Interleaving and Interpolation

Interpolation is used to conceal errors in the output feature vectors by filling the

gap with data based on the good frames at either side of the gap. A frame error

is defined as a failure of the 4-bit CRC in the received 48 bit frame. All codebook

indices are considered corrupted and concealment is required. In [68], it was shown

that interpolation in the quefrency domain is not optimal as there is little temporal

correlation in the cepstrum. This is particularly true for the cepstral parameters with

higher quefrency indices as they represent more quickly varying features. Instead, it

was proposed that interpolation take place in the log-filterbank domain, where there

is higher correlation in time among filterbank amplitudes. A block diagram of this

technique is shown in Figure 42. This exploits the fact that the log filberbank ampli-

tudes have much higher correlation in time. Figure 43 shows the cepstral coefficients

c(1) through c(12) vs. time. The jagged, rough, surface in the plot indicates that

interpolation would be difficult to perform accurately. However, in the log-filterbank

domain (Figure 44), we see a much smoother surface. This technique requires some

zero-padding, followed by an inverse DCT, interpolation, and finally a DCT to return

to the cepstral domain. We performed cubic spline interpolation in the log-filterbank

115

ID
C

T

ID
C

T

ID
C

T

��

��

D
C

T

�

�

D
C

T

 !

"#

D
C

T

$%

&'

D
C

T

D
C

T

ID
C

T

()(()(*)**)*

+)++)+,),,),

-)--)-
-)--)-
-)--)-
-)--)-
-)--)-

.)..).
.)..).
.)..).
.)..).
.)..).

/)//)/
/)//)/
/)//)/
/)//)/
/)//)/
/)//)/

0)00)0
0)00)0
0)00)0
0)00)0
0)00)0
0)00)0

1)11)1
1)11)1
1)11)1
1)11)1
1)11)1
1)11)1

2)22)2
2)22)2
2)22)2
2)22)2
2)22)2
2)22)2

3)33)3
3)33)3
3)33)3
3)33)3
3)33)3

4)44)4
4)44)4
4)44)4
4)44)4
4)44)4

Time

Q
ue

fr
en

cy
M

el
−F

ilt
er

ba
nk

Interpolate

Missing Data

Interpolated Data

Interpolated
Feature Vector

Good Data

Figure 42: Interpolation of speech features in the log-filterbank domain.

domain, which offers a better performance than linear interpolation. Linear inter-

polation fails to take into account the curvature of the log-filterbank amplitudes vs.

time. The result is that linear interpolation is not smooth in the first derivative and

not continuous in the second derivative. Cubic spline interpolation can result in a

much better representation of the missing data by requiring that the first and second

derivatives be smooth and continuous, respectively [77].

In the presence of burst-like errors, many consecutive frames of speech can be

116

0
5

10
15

20
25

30

0

2

4

6

8

10

12

−60

−40

−20

0

20

40

Quefrency Index
Time

C
ep

st
ra

l C
oe

ffi
ci

en
t V

al
ue

Figure 43: The cepstrum of a speech segment vs. time.

0
5

10
15

20
25

30

0

5

10

15

20

25

0

50

100

150

Mel−Filterbank Index
Time

Lo
g−

Fi
lte

rb
an

k
A

m
pl

itu
de

Figure 44: The log mel-filterbank amplitude of a speech segment vs. time.

117

corrupted. Interpolation techniques break down over longer burst lengths and can

produce significant errors in the output. Interleaving is a common technique to reduce

the chances of consecutive missing frames of data. By scrambling the order of the

dataframes, a burst-like error pattern will spread the loss across non-consecutive

packets, allowing interpolation to be performed across a smaller gap. An M × N

block interleaver re-arranges the order of data frames for M · N total frames. The

de-interleaving operation is the inverse of the interleaver, and the input frames are

restored to their original order.

1 3 4
5 7 8
9 10 11 12
13 14 15 16
17 19

23

2
6

18 20
21 22 24

Input Frame Indices 1 242 3 4 5 6 7 8 9 10 11 12 13 14 15 16 2317 18 19 20 21 22

Output Frame Indices 21 17 13 9 5 1 22 18 14 10 6 2 23 19 15 3711 24 20 16 12 8 4

Figure 45: A 6 × 4 block interleaver. Input frames are numbered sequentially.

For most of the simulations in this work, we use a 6×4 interleaver, which preserves

the 24 frame block size in the ETSI standard. This interleaver is shown in Figure 45.

The input sequence consists of sequentially numbered frames. The output sequence

is obtained by reading up each column. This interleaver separates sequential output

frames by 4 (i.e. an error burst covering two frames will be separated by 4 frames in

the de-interleaved sequence.) An error burst covering more than 6 output frames will

result in a loss of two sequential frames in the de-interleaved output.

6.4.1 Sub-frame Interleaving

We can further separate error bursts in the output feature stream by using sub-frame

interleaving. In sub-frame interleaving, we exploit the use of split vector quantization

118

in most DSR systems, including the ETSI system. In split-VQ, the cepstral coeffi-

cients are quantized using smaller dimensional codebooks within a frame. Typically,

pairs of sequentially occuring cepstral coefficients are quantized using 2-dimensional

codebooks of varying size. In the ETSI DSR system, the codebook arrangement is

shown in Table 17. There are seven codebooks, each consisting of two consecutive

cepstral coefficients. In the proposed sub-frame interleaving scheme, we consider each

individual codebook index as a separate data element for input to the interleaver, as

opposed to an entire frame block. This allows the input data sequence to be inter-

leaved both across and within speech frames.

Table 17: Split vector quantization codebook arrangement for the ETSI DSR Sys-
tem [109], including group allocation for sub-frame interleaving.

Codebook Size Element 1 Element 2 Group
Q0,1 64 c(1) c(2) 1
Q2,3 64 c(3) c(4) 2
Q4,5 64 c(5) c(6) 3
Q6,7 64 c(7) c(8) 4
Q8,9 64 c(9) c(10) 5
Q10,11 32 c(11) c(12) 6
Q12,13 256 c(0) log(E) 7

If we choose the interleaver dimensions properly, we can ensure that each group of

seven codebook indices contains one index from each codebook. In this way, the bit

allocation and CRC error protection can be applied to each group of seven codebook

indices as in the frame-based method. However, unlike the frame-based interleaving

technique, each CRC protected block contains codebook indices from seven different

frames of speech. This minimizes the chances of an entire speech frame being corrupt

by spreading the error across multiple frames.

A codebook index stream of 168 elements is fed into a 14 × 12 interleaver. This

configuration maintains a delay of 24 frames as in the frame-based interleaver. In

general, M 6= N and M must be a multiple of the number of codebooks. Both

119

conditions ensure that each consecutive group of seven indices forms a full speech

frame. The output of this interleaver is shown in Figure 46. The input frame index is

denoted by the color of each square, where black is the first input frame and white is

the last input frame. The X-axis denotes the output frame index, and the Y-axis is

the output feature group. Each output frame contains MFCC coefficients from seven

different speech frames. For example, the first column represents the first output

frame after interleaving. It contains features from input frames 12, 17, 22, 15, 20,

13, and 24. A burst length of 13 CRC protected blocks is required to lose an entire

frame of speech. The risk with this technique is that a single bit error is spread across

many frames of speech rather than isolated within a single frame. However, the use

of weighted Viterbi recognition can minimize this risk by indentifying which portions

of the speech vector may contain errors and giving those less weight in the overall

output computation.

Frame Index

Fe
at

ur
e

G
ro

up

5 10 15 20

2

4

6

0

5

10

15

20

Figure 46: The output of a sub-frame interleaver with delay of 24 frames. Input
frame indices are indicated by the color of each square, where black is the first input
frame and white is the last input frame.

Given this sub-frame interleaver structure, we still wish to exploit the use of

interpolation in the log-filterbank domain. However, given that we have the possibility

of incomplete speech vectors, the interpolation will require some extra work. We

can use the linearity and invertability properties of the discrete cosine transform to

120

accomplish this. In general,

DCT [IDCT (x) + IDCT (y)] = DCT [IDCT (x + y)] (42)

where x and y represent arbitrary vectors and DCT and IDCT represent the forward

and inverse discrete cosine transforms, respectively. We separate the feature vectors

into seven separate groups according to the split-VQ scheme, and insert zeros for

values not belonging to the correpsonding feature group. After zero padding the

input and performing the IDCT, we have the log-filterbank representation of the

respective feature group. Given the time indices of missing or bad data, we can

perform interpolation on the log-filterbank values on each feature group separately.

The final vectors for each feature group can be added and transformed back into the

quefrency domain via a DCT followed by truncation. The entire process is outlined

in Figure 47. For the purposes of the illustration, only two feature groups are shown.

6.4.2 Characterizing the Interpolation Error

In this section, we model the error due to interpolation of bad or missing feature

vectors. While the interpolation is reasonably accurate for gaps of one or two frames,

it breaks down with longer burst length. We consider various burst lengths in our

analysis.

The interpolation error for a given feature will be modeled as zero-mean white

Gaussian noise. For a given feature, n, at time, t, we have:

Ôt,n = Ot,n + vt,n (43)

where Ôt,n is the interpolated feature, Ot,n is the original speech feature (unknown

at the receiver), and vt,n is the white Gaussian noise process. In order to estimate

the mean and variance of this Gaussian process, we use a series of speech utterances

from a test data set. Feature vectors consisting of the first 13 cepstral coefficients

and the log energy are calculated for each speech utterance. Single frame errors are

121

ID
C

T

ID
C

T

ID
C

T

ID
C

T

ID
C

T
ID

C
T

ID
C

T

ID
C

T

ID
C

T

ID
C

T

D
C

T

D
C

T 556
678

D
C

T

D
C

T

D
C

T

9:99:9
9:9
;:;;:;
;:;
<:<<:<=:==:=

Missing Data

Interpolated Data

Good Data

Zeros

>:>:>:>:>:>:>

?:?:?:?:?:?:?

@:@:@@:@:@
@:@:@
A:AA:A
A:A

B:BB:BC:CC:C

D:DD:D
D:DD:D
D:DD:D
D:DD:D
D:DD:D
D:DD:D
D:D

E:EE:E
E:EE:E
E:EE:E
E:EE:E
E:EE:E
E:EE:E
E:E

F:F:F:F:F:F:FF:F:F:F:F:F:FF:F:F:F:F:F:FF:F:F:F:F:F:FF:F:F:F:F:F:FF:F:F:F:F:F:F

G:G:G:G:G:G:GG:G:G:G:G:G:GG:G:G:G:G:G:GG:G:G:G:G:G:GG:G:G:G:G:G:GG:G:G:G:G:G:G

H:HH:H
H:HH:H
H:HH:H
H:HH:H
H:HH:H
H:HH:H

I:II:I
I:II:I
I:II:I
I:II:I
I:II:I
I:II:I

J:JJ:J
J:J
K:KK:K
K:KL:L:LL:L:L
L:L:LL:L:L
M:M:MM:M:M
M:M:MM:M:M

N:N:NN:N:N
N:N:N
O:OO:O
O:O

P:PP:PQ:QQ:Q

R:RR:R
R:RR:R
R:RR:R
R:RR:R
R:RR:R
R:RR:R

S:SS:S
S:SS:S
S:SS:S
S:SS:S
S:SS:S
S:SS:S

T:TT:T
T:TT:T
T:TT:T
T:TT:T
T:TT:T
T:TT:T

U:UU:U
U:UU:U
U:UU:U
U:UU:U
U:UU:U
U:UU:U

V:VV:VW:WW:W
XX
XX
X
YY
YY
Y

Time

Q
ue

fr
en

cy

Interpolate

M
el

−F
ilt

er
ba

nk
M

el
−F

ilt
er

ba
nk

+

Interpolated Features

M
el

−F
ilt

er
ba

nk

Q
ue

fr
en

cy

Feature Group 2

Fe
at

ur
e

G
ro

up
 1

Interpolate

Figure 47: Interpolation in the log-filterbank domain with de-interleaved output.

periodically inserted into the speech vectors and interpolation is performed. The delta

and delta-delta features are then calculated based on the interpolated and original

speech vectors. Given both the interpolated, Ôt,n, and original, Ot,n, speech features,

the mean and variance of the interpolation error can be estimated from the sample

set, provided the test data set is large enough. The burst length is then increased by

one, and the process is repeated.

The result is a set of mean and variance vectors for each feature at varying burst

lengths. For bursts longer than 2 frames, the variance was significantly larger for

those frames in the middle of the burst. The mean was found to be very close to zero

122

−15 −10 −5 0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Figure 48: The distribution of the interpolation error for c(11) with a burst length
of one frame.

for all features and for all burst lengths tested. Figure 48 shows the distribution of

the interpolation error for the 11th MFCC coefficient during a burst of length one.

We will continue with the assumption that the noise process is Gaussian. However,

we did find that the distribution was not always a pure Gaussian, particularly for low-

time coefficients during short burst lengths. In these cases, the distribution exhibited

a Gaussian shape except for a spike very close to zero. However, our algorithm still

shows improvement even with the Gaussian assumption.

6.5 Weighted Viterbi Recognition Algorithm

Given a model of the additive noise for interpolated speech vectors, we can pass

this uncertainty information to the Gaussian mixture density calculation. Weighted

Viterbi recognition has been used to increase robustness in noise in [16], [118], and [117].

In each of these papers, the output probability was weighted exponentially according

to a confidence measure of the input feature vector, so the Viterbi search update

123

equation looks like [16]:

φj(t) = max
i

{φi(t − 1)aij}[bj(Ot)]
γt (44)

where aij is the state transition probability, bj(Ot) is the output probability of state

j, φj(t) is the best path score into state j at time t, and γt is the time-varying

exponential weighting between 0 and 1. This exponential weighted Viterbi algorithm

was first used in DSR in [5]:

φj(t) = max
i

{φi(t − 1)aij}
N
∏

k=1

[bj(Ok,t)]
γk,t (45)

where the output probability of each individual feature bj(Ok,t) is weighted accord-

ing to the square root of the time-autocorrelation of the feature. Therfore γk,t =
√

ρk(t − tc), where ρk(t − tc) is the autocorrelation of feature k at lag index tc. The

loss concealment method used in [5] was repetition, and secondary features were given

zero weight when the burst length was longer than two frames. While this weight-

ing scheme seems to work for repetition based concealment, it does not capture the

statistics of log-filterbank interpolated features. Our preliminary simulations using

this weighting scheme with log-filterbank interpolation showed little to no improve-

ment, and often the system performed worse than without the weighting.

A stochastic version of the weighted Viterbi recognition (WVR) is introduced

in [120] in the context of speaker indentification in noise. In [119], it is used to

combat additive noise and distortion due to coding. The stochastic weighted Viterbi

algorithm replaces the output probability calculation with its expected value. The

value b(Ot) is often referred to in the literature as the output probability, when in

reality it is a weighted distance measure between the input vector and the model

parameters. In the normal HMM computation, the output probability (or distance)

for state k is calculated as follows:

b(Ot) =
M−1
∑

m=0

Cm
1

(2π)
N
2 |Σm,k|

1
2

exp

[

−1

2
(Ot − µm,k)

TΣ−1
m,k(Ot − µm,k)

]

(46)

124

where M is the number of Gaussian mixture densities and µm,k and Σm,k are the

means and covariance matrix for state k, mixture m. Assuming diagonal covariance

matrices, this probability can be expressed at the product of the probabilities of each

individual feature:

b(Ot) =
M−1
∑

m=0

Cm

N−1
∏

n=1

1
√

(2π)σ2
m,k,n

exp

[

−1

2

(Ot,n − µm,k,n)2

σ2
m,k,n

]

(47)

where µm,k,n and σ2
m,k,n are the means and variances of the mixture m, state k, and

feature n. N is the total number of features. Finally, if we consider the input vector

Ôt as a random variable, the expected value of the distance for the interpolated

feature vector can be written as [120]:

E[b(Ôt)] =
M−1
∑

m=0

Cm

N−1
∏

n=1

1
√

(2π)σ̂2
m,k,n

exp

[

−1

2

(E[Ôt,n] − µm,k,n)2

σ̂2
m,k,n

]

(48)

where σ̂2
m,k,n and E[Ôt,n] are the total variance and expected value of the corrupted

feature, Ôt,n. Under the assumption of zero mean independent Gaussian noise, the

variance, σ̂2
m,k,n, is:

σ̂2
m,k,n = σ2

m,k,n + σ̃2
n,l (49)

where σ̃2
n,l is the interpolation error variance for feature n, at burst position l that

was found in Section 6.4.2. The secondary features consisting of the first and second

temporal derivatives are often esimatated as a linear combination of the neighboring

speech frames. Given that the errors are independent of one another, the values of

σ̃2
n,l for the secondary features can be determined as follows:

σ̃2
n+13,l =

Lw/2
∑

k=−Lw/2

α2
k · σ̃2

n,l (50)

σ̃2
n+26,l =

Lw/2
∑

k=−Lw/2

β2
k · σ̃2

n,l (51)

where Lw is the window length used for the derivative calculation and αk and βk

are the coefficients used to estimate the first and second derivates of the cepstral

125

coefficients. Finally, the value of E[Ôt,n] is:

E[Ôt,n] = E[Ot,n] + E[vt,n] = Ot,n (52)

since E[vt,n] = 0 and Ot,n is a constant for time instant t.

The expression in (48) can be derived in an alternate way as follows: Given that

the input vector, Ôt,n, is a random variable, the distance measure can be expressed

as a function of this random variable. Consider a random variable, X, representing

the distance measure for the HMM parameters in state k, mixture m. The additive

noise component, Y, represents the noise in this measurement due to interpolation.

We wish to find the actual distance, Z, with respect to the received input vector Ôt,n.

A random variable representing this distance after interpolation can be written as:

Z = X − Y (53)

since we wish to compensate for the increased distance from the noisy input vector

by subtracting the amount from the noise estimate.

Both X and Y are characterized by normally distributed probability density func-

tions, with X having mean and variance according to the HMM state and Y having

mean and variance according to the interpolation error found in Section 6.4.2.

In general, the pdf of the difference of two normally distributed random variables

with means and variances (µx, σ
2
x) and (µy, σ

2
y) can be written as [113]:

PX−Y(u) =

∫ ∞

−∞

∫ ∞

−∞

1
√

2πσ2
x

e
− x2

2σ2
x

1
√

2πσ2
y

e
− y2

2σ2
y δ((x − y) − u)dxdx (54)

=
1

√

2π(σ2
x + σ2

y)
e
−

(u−(µx−µy))2

2(σ2
x+σ2

y) (55)

Substituting the appropriate variables for the means and variances, we have:

PZ(Ôt,n) = PX−Y(Ot,n) = N (Ot,n, µm,k,n − E[vt,n], σ2
m,k,n + σ̃2

n,l) (56)

126

where N (x, µ, σ2) is the normal distribution with mean µ and variance σ2 for variable

x. And since E[Ôt,n] = E[Ot,n] + E[vt,n], this is equivallent to:

PZ(Ôt,n) =
1

√

(2π)σ̂2
m,k,n

exp

[

−1

2

(E[Ôt,n] − µm,k,n)2

σ̂2
m,k,n

]

(57)

where σ̂2
m,k,n = σ2

m,k,n+σ̃2
n,l. Substituting equation (57) back into the multidimensional

Gaussian mixture model calculation, we have:

PZ(Ôt,n) =
M−1
∑

m=0

Cm

N−1
∏

n=1

1
√

(2π)σ̂2
m,k,n

exp

[

−1

2

(E[Ôt,n] − µm,k,n)2

σ̂2
m,k,n

]

(58)

which is the same as equation (48).

The algorithm works as follows. In the absence of any bit errors, no interpolation

is performed, and the interpolation error variance, σ̃2
n,l, is set to zero. In this case,

the output probability is identical to (46). In the presence of bit errors, the burst

length, in frames, is determined by delaying until an un-errored frame is received.

Interpolation is performed, and the appropriate set of variances, σ̃2
n,l, for the burst

length and position within the burst for each feature are passed to the Gaussian

evaluation. When the variance of the interpolation error is high, the probability

densities of all states and all mixtures tend toward a uniform distribution, so the

output probability is given less weight in the overall Viterbi search update and the

classification ability of the model is decreased. This has the effect of minimizing both

beam pruning and the use of b(Ot) in the Viterbi state update equations for noisy

features. In the case of shorter error bursts, the lower time cepstral coefficients and

their derivatives will be given more weight as they have more correlation in quefrency

and can be interpolated over greater distances with less error.

There are several key differences between the use of the proposed stochastic

weighted Viterbi recognition and the exponential version discussed in [5]. The first

is that the amount of adaptation in the stochastic version is related to the HMM

variances. Distributions with large variances in relation to the error variance will

127

have little changes in their output probabilities, while distributions with small vari-

ances in relation to the error will have large changes in their output probablilities

due to the adaptation. In the exponential version, the weighting is the same regard-

less of the model variance. In the presence of long error bursts, the probabilities in

the exponential version tend toward one, while in the stochastic version, they tend

toward zero. This may impact the use of language modeling as the language model

weight is tuned to compensate for the under-estimation of the acoustic model prob-

ablities. In the exponential version, the acoustic model scores are over-estimated in

the presence of errors. In the stochastic version, the acoustic model scores are further

under-estimated in the presence of errors, which allows the language model to take

on a greater role during periods of errors.

6.6 Results

We tested various error concealment schemes, including the weighted Viterbi recog-

nition, using the TIDIGITS speech corpus. Word models with 16 Gaussian mixture

densities per state were trained using 941 utterances whose 39-dimensional MFCC

vectors were calculated using the ETSI DSR front-end. The test set consisted of 336

digit utterances of varying length and across different speakers. In addition to the

TIDIGITS test set, we also evaluated the performance on the Wall Street Journal

(WSJ) database under the same channel error conditions. Triphone acoustic models

with 16 Gaussian mixture densities were trained using 1,792 clean speech utterances.

The test set consisted of 166 utterances using a bigram language model with a 5,000

word vocabulary.

The burst-like error conditions were simulated using the two state Gilbert-Elliot

model discussed in Section 6.2. The bit error patterns for a particular speech utterance

were computed in advance and stored on disk. In this way, each concealment method

is tested against the same bit errors for a given set of channel model parameters. We

128

varied both the mean burst length in bits, Tb, and the mean time between bursts, Tg.

We also show the average bit error rate (BER) for the burst channel conditions. The

probability of bit error in the good state is fixed at 10−6, and the probability of bit

error in the bad state is fixed at 10−1.

Table 18: A summary of DSR systems tested.

System Parameter ETSI INT-LFB EXP-WVR STO-WVR SF-WVR

CRC Protection

Frame Pair
√

Single Frame
√ √ √ √

Concealment

Repetition
√ √

Interpolation
√ √ √

Interleaving

Frame Based
√ √ √

Sub-frame
√

Adaptation

Exponential WVR
√

Stochastic WVR
√ √

Table 18 summarizes the various DSR configurations that we tested. Each system

adds an increasing amount of error detection and concealment. The system labelled

ETSI is the ETSI DSR system with no modifications. The bit rate of ETSI is 4.8

kbps, while the bit rate of INT-LFB, EXP-WVR, STO-WVR, and SF-WVR is 5.0

kbps due to the single frame based CRC error detection. Each system uses the

same VQ codebooks provided with the ETSI DSR standard. System INT-LFB uses

a 6 × 4 block interleaver with interpolation in the log-filterbank domain. System

EXP-WVR uses the method described in [5] with exponential WVR and repetition

based concealment. (In order to provide a fair comparison, we have also added frame-

based interleaving to this system.) Finally, systems STO-WVR and SF-WVR both

use stochastic WVR and log-filterbank interpolation with frame-based and sub-frame

interleaving, respectively.

129

During the preliminary simulations, the STO-WVR system did not always offer

improvement in the more difficult WSJ task. This is likely due to the decrease in the

discrimative ability of the acoustic models in the presence of the weighting, coupled

with the larger number of parameters in the triphone acoustic models. In addition, the

variance may be overestimated due to the Gaussian assumption for the interpolation

noise. A scaling factor, α, was introduced to reduce the effect of the adaptation.

σ̂2
m,k,n = σ2

m,k,n + α · σ̃2
n,l (59)

where 0 ≤ α ≤ 1. Recognition results were then obtained using a small test set, and

the results are shown in Figure 49. There seems to be a peak in recognition accuracy

around α = 0.3. We use this scaling factor of 0.3 on the STO-WVR and SF-WVR

systems for the WSJ task.

Figure 49: Selection of α for the WSJ recognition task.

The results for a variety of error conditions are shown in Table 19 and Figures 50

and 51. Word accuracy, including substitutions, deletions, and insertions, is reported.

The baseline accuracy without bit errors is 99.5% for the TIDIGITS task and 85.7%

for the WSJ task. From the table, we can see that the ETSI system does not provide

130

Table 19: Results of DSR simulations for TIDIGITS and WSJ Tasks. Reported
WER reduction is relative to the INT-LFB system.

TIDIGITS Task

Tg/Tb Avg. BER ETSI INT-LFB EXP-WVR STO-WVR SF-WVR
500/200 2.86 × 10−2 91.00 98.30 98.90 99.20 98.90
200/100 3.33 × 10−2 89.70 99.00 98.40 98.80 98.60
200/200 5.00 × 10−2 72.50 95.10 95.90 96.80 97.60
500/500 5.00 × 10−2 71.00 91.90 94.20 94.60 95.20
200/500 7.14 × 10−2 45.30 80.20 83.90 86.00 86.60
Average Accuracy 73.90 92.90 94.26 95.08 95.38
WER reduction – – 19.15 30.70 34.93

WSJ Task

Tg/Tb Avg. BER ETSI INT-LFB EXP-WVR STO-WVR SF-WVR
500/200 2.86 × 10−2 50.50 81.90 81.20 82.70 82.90
200/100 3.33 × 10−2 41.10 80.90 78.90 82.20 82.90
200/200 5.00 × 10−2 16.80 69.40 68.00 70.30 73.00
500/500 5.00 × 10−2 18.20 64.30 66.50 68.10 68.00
200/500 7.14 × 10−2 5.10 38.30 41.50 41.30 45.20
Average Accuracy 26.34 66.96 67.22 68.92 70.40
WER reduction – – 0.79 5.93 10.41

adequate performance in the more severe error conditions that we have simulated.

Accuracy quickly drops below 90% in the digits task and starts at around 50% in the

WSJ task. The average accuracy for each system under all error conditions is also

listed in Table 19.

The simulataneous introduction of interleaving, log-filterbank interpolation, and

single frame based CRC error detection in system INT-LFB offer a large decrease in

WER over the ETSI system. The relative reductions in WER for the TIDIGITS and

WSJ task are 72.8% and 55.2%, respectively. The last line of each table shows the

decrease in average WER relative to the INT-LFB system. The EXP-WVR system

from [5] exhibits a 19.15% relative reduction in average WER for the TIDIGITS task

but only a 0.79% relative reduction in WER for the WSJ task. The proposed stochas-

tic WVR systems are able to perform significantly better in both the TIDIGITS and

131

Figure 50: Results of DSR simulations for TIDIGITS task.

Figure 51: Results of DSR simulations for WSJ task.

WSJ tasks. Using frame-based interleaving, the STO-WVR system offers a 30.7%

relative reduction in WER over INT-LFB on the TIDIGITS task and a 5.93% reduc-

tion on the WSJ task. Only a small amount of further improvement, 34.93%, is seen

with the introduction of sub-frame interleaving (SF-WVR) on the TIDIGITS task.

132

However, on the WSJ task, the use of sub-frame interleaving and stochastic WVR

can reduce the average WER by 10.41%. The SF-WVR system is able to provide

accuracy up to 97.6% and 73.0% in burst-like error conditions with an average BER

as high as 5.00× 10−2 for the TIDIGITS and WSJ task. This is 1 in every 20 bits in

error.

6.7 Reduced Energy Consumption with Bluetooth

Voice Packets

Bluetooth voice packets have energy consumption that is independent of SNR since

no ARQ protocol is used. We assume that the synchronization and header portions

of the transmission occur without error. The short header is protected by a 1/3 rate

repetition code, and the payload is sent using the error correction code appropriate

to the packet type. HV3 packets contain no error protection and have the lowest

overhead and, therefore, the lowest energy consumption per frame of speech. The

payload of HV2 packets is protected by a (15,10) Hamming code, and HV1 packets

are protected by a 1/3 rate repetition code. The packet payload is delivered even if

it contains bit errors.

By using increased delay, as with the data packets, we can minimize the energy

consumption by increasing the amount of time spent in the low-power park state.

However, since ARQ is not used, bit errors can have an impact on speech recognition

accuracy. In section 6.3, we investigated the performance of the ETSI DSR standard

in the presence of bit errors and introduced sub-frame interleaving and the use of

stochastic weighted Viterbi recognition to minimize the effect of bursty bit errors

on ASR accuracy. Using the combined interleaving and weighted Viterbi recognition

approach, we can show how increased interleaver delay can improve the ASR accuracy.

In Figure 52, we plot the accuracy vs. interleaver delay for two severe burst error

conditions with the same bit error rate, 5× 10−2, on a subset (166 utterances) of the

133

WSJ task. The 200/200 error condition represents a faster fading situation where the

state transition probabilities, p and q, between the good and bad states are larger, and

the mean time spent in both the good and bad states last for 200 bits. The fast fading

error condition has better performance with moderate interleaver delay. In general,

the interleaver delay increases quadratically with the separation between frames at

the interleaver output. The result is that the improvements from interleaving begin

to level off after 64 frames (0.64 seconds) of delay for both error conditions.

Figure 52: Accuracy vs. interleaver delay for the SF-WVR system on the WSJ task
with bit error probability of 5 × 10−2.

In Figure 53, the energy consumption per frame of speech is plotted vs. the

interleaver delay. This energy consumption includes the time between transmissions,

including the low-power park state. For a given packet type the reduction in energy

consumption with respect to increased delay levels off after 64 frames. This coincides

with the accuracy results, suggesting that delays beyond 0.64 seconds have little

benefit in terms of improved accuracy and decreased energy consumption. This is due

in part to the energy overhead of the park state (see Figure 34), where the amount of

134

time spent in the park state makes it a dominant portion of the energy consumption.

However, some modest energy savings are possible, coupled with the possibility of

improved accuracy in burst error conditions. In addition, several vendors now provide

an additional deep sleep mode with power consumption around 270 µWatts. There

is a longer delay (typically 250ms) to switch into this mode, but it can help reduce

the energy consumption for longer delays.

Figure 53: Energy vs. interleaver delay for Bluetooth voice packet types.

When discussing the use of data packets, we assumed a minimal quality of service

(ASR accuracy) for the user, maintained through the use of error protection and/or

retransmission of corrupt packets. While this offered a maximum of ASR accuracy,

the plots in Figure 38 show how the energy consumption can increase dramatically

for a given packet type/size when SNR drops below some threshold. A hard decision

must be made either between packet types/sizes or client-side vs. distributed ASR.

The use of Bluetooth voice packets (or multimedia packets in general) allow for con-

stant energy consumption with variable ASR accuracy, subject to channel conditions

135

and error protection. In practice, a threshold on the bit error rate or SNR can be de-

termined where the accuracy will drop below usable levels. In Chapter 6 we showed

how the performance of the ETSI DSR standard degrades rapidly when the error

rate exceeds 10−3 (see Figure 40). Through the use of sub-frame interleaving and

stochastic weighted Viterbi recognition (SF-WVR), we showed how the accuracy can

be improved in burst error channels with bit rates exceeding 10−2 (see Table 19 and

Figures 50 and 51). Given this data, we can infer that adequate quality of service can

be obtained with an upper bound on the BER, after error correction, of about 10−2.

Figure 54 shows the error correction performance for various types of Bluetooth voice

packets. The upper bounds on bit error probability for both the ETSI DSR system

and the SF-WVR are plotted as horizontal lines, 10−3 and 10−2 respectively.

0 5 10 15 20 25 30 35
10−10

10−8

10−6

10−4

10−2

100

SNR (dB)

B
E

R

HV1 (1/3 repetition)
HV2 (15,10) Hamming
HV3 (no coding)
Target BER

10−2
10−3

Figure 54: The error correction performance of Bluetooth voice packet types. The
x-axis is signal to noise ratio per bit, and the y-axis is the bit error probability after
error correction.

The approximate lower bounds for SNR based on these target bit error rates are

136

Table 20: Lower SNR bound for ETSI and SF-WVR and energy consumption with
Bluetooth voice packets.

SNR Lower Bound (dB)
Packet Type ETSI SF-WVR Energy (µJ)

HV3 27 17 23.4
HV2 17 10.5 37.5
HV1 12 5 70.3

given in Table 20 for various Bluetooth voice packet types. When using the ETSI

standard, HV3 packets (which contain no error correction) will only operate down

to an SNR of 27 dB. By increasing the allowed upper bound on BER through the

SF-WVR system, a gain of 10 dB is possible. Gains of about 6.5 to 7 dB of SNR are

possible for HV2 and HV3 packets, respectively. This gain can be translated to an

energy savings either through a decreased reliance on error correction or through a

reduction in transmit power. A 6 dB gain in performance would allow the node to

transmit at 25% of it’s original power output and still maintain adequate performance.

However, the Bluetooth standard does not currently support variable transmit power.

The energy required to transmit one frame of speech with Bluetooth voice packet

types (not including park mode overhead) is listed in the final column of Table 20.

By using SF-WVR, the following energy savings are possible: Between 27 and 17 dB

a 37% reduction in transmit energy is possible since HV3 packets can be used instead

of HV2 packets. A 46% reduction in transmit energy between 17 and 10.5 dB since

HV2 packets can be used instead of HV1 packets. DSR can still be used down to 5

dB SNR, so the much more expensive client-side ASR does not need to be used. As

shown in Figure 38, the ability to use DSR with adequate performance can provide

reductions in system wide energy consumption by over 90%.

137

6.8 Conclusion

In this chapter, we have investigated the effects of several well-known error conceal-

ment algorithms for DSR traffic over a burst error channel. We present a novel use of

the stochastic weighted Viterbi algorithm to further conceal the effects of interpolated

features as well as a new sub-frame interleaving technique. The systems were com-

pared under several simulated burst error conditions. The combined stochastic WVR

and sub-frame interleaving techniques can provide accuracy as high as 97.6% in burst

error conditions with an average BER of 1
20

on a digit recognition task. Under the

same error condition, a WSJ task maintained an accuracy of 73%. The improvement

in accuracy is shown to be better than existing techniques, particularly in a large

vocabulary task with an N-gram language model. We believe further improvement

may be possible through a more accurate modeling of the interpolation noise, perhaps

through a mixture of Gaussians or a Laplacian distribution.

In the presence of bit errors, we can estimate the energy consumption with respect

to SNR and identify the appropriate operating ranges for the various packet types.

For Bluetooth voice packets, we recommend a minimum bit error rate after error

correction of 10−3 with the ETSI standard and 10−2 after using interleaving and loss

protection techniques introduced in this chapter. Using these techniques, Bluetooth

voice packets can operate down to 5 dB SNR with small only reductions reduction in

accuracy. In addition, the decreased reliance on error correction code overhead can

yield energy savings in packet transmission of up to 46%.

138

CHAPTER VII

DISCUSSION AND CONCLUSION

This thesis presents an in-depth study of a pervasive distributed speech recognition

multimedia client. Optimization at many layers is considered from software to hard-

ware and networking layers. Quality of service metrics such as delay and accuracy

are incorporated into our analysis where applicable and minimization of energy con-

sumption is studied.

In Chapter 3, a voice user interface architecture was implemented based on an

open standard markup language for speech applications. Standard off-the-shelf speech

technology was used, and the system was integrated with a software radio testbed. In

addition, a working prototype on a Compaq iPAQ PDA with IEEE 802.11b network

access was demonstrated.

In Chapter 4, a software-based, low-power, fixed-point front-end is developed for

the HP Labs Smartbadge IV. Hand optimization of software for embedded devices

can greatly reduce the energy consumption. Through the use of architectural and al-

gorithmic enhancements, the energy consumption of the algorithm is greatly reduced.

The use of approximate algorithms such as fast complex magnitude calculation and a

logarithm through simple bit manipulation provide sufficient accuracy for the MFCC

front-end while reducing the energy consumption. In section 4.2 a simple model for

computation of a small vocabulary connected word speech recognizer is developed. In

section 4.3 a literature survey of the performance of large vocabulary speech recog-

nition systems on modern computer hardware is presented. LVCSR requires a large

amount of memory bandwidth to operate in real-time. Large L1 and L2 cache sizes

can help to minimize this bandwidth to main memory, but most current workstation

139

class computers do not contain such a large cache. In addition, the Gaussian evalua-

tion step requires floating point arithmetic to compensate for the large dynamic range.

A model of energy consumption for client-side ASR is presented in section 4.3.4. This

would likely be a system running slower than real-time with reduced accuracy over a

server based system.

Chapter 5 examines the energy consumption of wireless transmission of speech

recognition data across local area data networks, including IEEE 802.11b and Blue-

tooth. The bit-rates required for DSR traffic are generally an order of magnitude or

more less than the maximum throughput of the wireless network. The communica-

tion is therefore characterized by short bursts of transmission followed by idle periods

until the next amount of speech data is ready for transmission. Significant savings

can be obtained by increasing the delay to exploit energy saving modes of the wire-

less interface. We report battery lifetimes in excess of 40 hours using our distributed

speech recognition enhancements, while local ASR can only provide just over 1 hour

of operation.

In Chapter 6, an algorithm to improve the accuracy of distributed speech recog-

nition in error prone channels is developed. Bit errors are simulated using a Gilbert-

Elliot channel model, and frame errors are then seen as a failure of the CRC protection

scheme. Interleaving and interpolation in the log-filterbank domain is used to decrease

the effect of missing frames on the back-end ASR search. A novel use of stochastic

weighted Viterbi recognition is presented to minimize the effect of interpolation on

missing speech frames. By identifying those frames and features that may have large

error during interpolation, we can improve the accuracy of the speech recognition sys-

tem. In addition, the use of sub-frame interleaving can provide further improvement

in recognition accuracy by providing separation of errors without additional delay.

The weighted Viterbi algorithm can provide relative reductions of 34% on a digit

recognition task and 10% on a more complex large vocabulary task when compared

140

to only interleaving and interpolation. This technique is able to outperform previ-

ously proposed techniques, especially in the presence of N-gram language modeling.

This technique, including sub-frame interleaving and weighted Viterbi recognition,

allows further reductions in energy consumption by allowing Bluetooth voice packets

to operate in a lower SNR range. In particular, the usable lower bound with HV2

packets is decreased by almost 7 dB, which allows a savings in transmit energy of

46% over the more expensive HV1 packets.

Wireless networking has enabled the application of many different kinds of mul-

timedia technology on mobile devices through distributed computing. Applications

such as streaming audio and video, real-time voice and video communication, and me-

dia recognition are now possible on mobile devices. Even with distributed computing

the battery lifetimes of these small devices are limited. Optimization is important

at all levels of the application. At the software level, energy efficient source code

can be written that outperforms available compiler optimizations. Scalability can

be addressed through flexible algorithms that allow various quality of service points

(i.e. varying quantization levels, frame rates, video quality, etc.) By modifying the

computational ability of the hardware through techniques such as dynamic frequency

and voltage scaling and scalable memory heirarchies, the energy consumption can be

further reduced. The wireless optimization problem can also be addressed at many

layers. The application can tailor quality of service, which may map to a particu-

lar bit-rate, to vary the application performance and possibly reduce activity on the

wireless interface. Efficient protocols can be used to minimize retransmissions and

packet errors. Scalable error correction can be used to add redunancy only when

the channel conditions require it. At the physical layer, the transmit power can be

adapted to the noise and interference conditions. Simply powering off extraneous

peripherals and I/O devices when not needed can provide large reductions in energy

consumption. Each of these optimizations must in turn coordinate with the user or

141

operating system to provide a set of knobs or tuning parameters such that the desired

quality of service can be acheived while simultaneously increasing battery lifetime. As

particular applications have differing quality requirements, the energy optimization

techniques suitable for the application may differ as well.

7.1 Future Research

This thesis considers a distributed speech recognition application on a PDA-like device

with either 802.11b or Bluetooth wireless networking. This narrowed scope enabled a

detailed analysis across a smaller subset of available hardware and standards. Future

research directions may include a broader look at hardware, software, networking

options, and applications. The following topics are suggested:

• A more detailed analysis of the energy consumption profile of large vocabulary

continuous speech recognition search algorithms on future embedded proces-

sors. This may include incorporation of energy models from specialized ASIC

media processing components ranging from analog signal processing to Gaussian

evaluation coprocessors.

• Application of energy aware distributed speech recognition to other wireless

networks, such as CDMA 2000 or UMTS.

• Analysis of other multimedia applications such as real-time video communica-

tion or streaming video or audio.

• A more detailed modeling of the log-filterbank interpolation error (i.e. Gaussian

mixtures) for the weighted Viterbi algorithm.

• Combined acoustic and channel noise robustness using weighted Viterbi recog-

nition.

142

REFERENCES

[1] Acquaviva, A., Benini, L., and Riccó, B., “Software controlled proces-
sor speed setting for low-power streaming multimedia,” IEEE Transactions on
CAD, pp. 1283–1292, November 2001.

[2] Acquaviva, A., Simunic, T., Deolalikar, V., and Roy, S., “Remote
power control of wireless network interfaces,” Lecture Notes in Computer Sci-
ence, October 2003.

[3] Agaram, K., Keckler, S., and Burger, D., “A characterization of speech
recognition on modern computer systems,” in IEEE International Workshop on
Workload Characteriztion, 2001.

[4] Bellosa, F., “Endurix: Os-direct throttling of processor activity for dynamic
power management,” Tech. Rep. TR-I4-99-03, University of Erlangen, June
1999.

[5] Bernard, A. and Alwan, A., “Low-bitrate distributed speech recognition
for packet-based wireless communication,” IEEE Transactions on Speech and
Audio Processing, vol. 10, pp. 570–579, November 2002.

[6] Borgatti, M., Felici, M., Ferrari, A., and Guerrieri, R., “A low–
power integrated circuit for remote speech recogntion,” IEEE Journal of Solid
State Circuits, pp. 1082–1089, July 1998.

[7] Boulis, C., Ostendorf, M., Riskin, E. A., and Otterson, S., “Graceful
degradation of speech recognition over packet erasure networks,” IEEE Trans-
actions on Speech and Audio Processing, vol. 10, pp. 580–590, 2002.

[8] Brodd, R. J., “Into the crystal ball - dimly: Battery technology develop-
ments,” in WESCON ’94: Idea Microelectronics, 1994.

[9] Chang, C.-T., Chang, C.-T., Yang, H.-L., and Chang, H.-T., “Real–
time implementation of speech recognition using risc processor core,” in Pro-
ceedings of the 9th Annual IEEE International ASIC Conference and Exhibit,
pp. 231–234, 1996.

[10] Chiasserini, C., Nuggehalli, P., and Srinivasan, V., “Energy-efficient
communication protocols,” in DAC, 2002.

[11] Chowdhury, D. and Chia, S., “Distributed processing in the home using a pc
with a wireless speech interface,” in Proceedings of the International Conference
on Acoustics, Speech and Signal Processing (ICASSP), vol. 4, pp. 2363–2366,
1999.

143

[12] Comerford, R., “Handhelds duke it out for the internet,” IEEE Spectrum,
pp. 35–41, August 2000.

[13] Consortium, W. W. W., “Voice browser activity.” Work in Progress. http:
//www.w3.org/Voice.

[14] Crenshaw, J. W., Math Toolkit for Real-Time Programming. Lawrence,
Kansas: CMP Books, 2000.

[15] C.T. Hemphill, P.R. Thrift, J. L., “Speech–aware multimedia,” IEEE
Multimedia, vol. 3, pp. 74–78, 1996.

[16] Cui, X., Bernard, A., and Alwan, A., “A noise robust asr back-end tech-
nique based on weighted viterbi recognition,” in EuroSpeech 2003, 2003.

[17] Danielsen, P. J., “The promise of a voice–enabled web,” Computer, vol. 33,
pp. 104–106, August 2000.

[18] Delaney, B., Jayant, N., Hans, M., Simunic, T., and Acquaviva, A.,
“A low-power fixed-point front-end feature extraction for a distributed speech
recognition system,” in Proceedings of the International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), vol. 1, pp. 793–796, 2002.

[19] Delaney, B., Jayant, N., Hans, M., Simunic, T., and Acquaviva, A.,
“A low-power fixed-point front-end feature extraction for a distributed speech
recognition system,” Tech. Rep. HPL-2001-252, Hewlett-Packard Laboratories,
2002.

[20] Delaney, B., Jayant, N., and Simunic, T., “A wlan scheduling algorithm
to reduce the energy consumption of a distributed speech recognition system,”
in Proceedings of the First Workshop on Embedded Systems for Real-Time Mul-
timedia (ESTIMedia 2003), 2003.

[21] Delaney, B., Simunic, T., and Jayant, N., “Energy aware distributed
speech recognition for mobile wireless devices,” IEEE Design and Test of Com-
puters: Special Issue on Embedded Systems for Real-Time Multimedia, Septem-
ber 2004.

[22] Delaney, B., Simunic, T., and Jayant, N., “Energy aware distributed
speech recognition for wireless mobile devices,” tech. rep., Hewlett-Packard
Laboratories, 2004.

[23] Deller, Proakis, and Hansen, Discrete–Time Processing of Speech Signals.
Upper Saddle River, NJ: Prentice Hall, 1987.

[24] Deshmikh, N., Ganapathiraju, A., and Picone, J., “Hierarchical search
for large vocabulary conversational speech recognition,” IEEE Signal Processing
Magazine, pp. 84–105, September 1999.

144

[25] Digilakis, V., Neumeyer, L., and Perakakis, M., “Quantization of cep-
stral parameters for speech recognition over the world wide web,” IEEE Journal
on Selected Areas in Communications, vol. 17, pp. 82–90, 1999.

[26] Ditlea, S., “The pc goes ready to wear,” IEEE Spectrum, pp. 35–39, October
2000.

[27] Ebert, J.-P., Aier, S., Kofahl, G., Becker, A., Burns, B., and Wolisz,

A., “Measurement and simulation of the energy consumption of a wlan inter-
face,” Tech. Rep. TKN-02-010, Technical University of Berlin, Telecommunica-
tion Networks Group, June 2002.

[28] Fainberg, M., “A performance analysis of the ieee 802.11b local area network
in the presence of bluetooth personal area network,” Master’s thesis, Polytech-
nic University, 2001.

[29] Flinn, J. and Satyanarayanan, M., “Energy-aware adaptation for mobile
applications,” in SOSP, December 1999.

[30] Frerking, M. E., Digital Signal Processing in Communications Systems. Van
Nostrand Reinhold, 1994.

[31] Ganapathiraju, A., Goel, V., Corrada, J. P. A., Doddington, G.,
Kirchoff, K., Ordowski, M., and Wheatley, B., “Syllable – a promising
recognition unit for lvcsr,” in Proceedings of IEEE International Conference on
Acoustics Speech and Signal Processing, vol. 1, pp. 421–424, 1997.

[32] Geppert, L. and Perry, T. S., “Transmeta’s magic show,” IEEE Spectrum,
pp. 26–33, May 2000.

[33] Gilbert, E. N., “Capacity of a burst noise channel,” Bell Syst. Tech. Journal,
pp. 1253–1265, 1960.

[34] Green, K. and Wilson, J. C., “Future power sources for mobile communi-
cations,” Electronics and Communication Engineering Journal, 2001.

[35] Greene, S. R. and Fiske, C. F., “Wearable computers open a new era in
support resource management,” AUTOTESTCON: IEEE Systems Readiness
Technology Conference, pp. 99–101, 1999.

[36] Gunawan, W. and Hasegawa-Johnson, M., “Plp coefficients can be quan-
tized at 400 bps,” in ICASSP 2001, 2001.

[37] Hambergen, W., “Itsy: Stretching the bounds of mobile computing,” Com-
puter, vol. 34, pp. 28–36, April 2001.

[38] Hans, M., “Smartbadge/badgepad version 4.” http://www.hpl.hp.com/

personal/Mat_Hans/research/badge4/index.htm, January 2004. HP Labs.

145

[39] Hong, I., Kirovski, D., Qu, G., Potkonjak, M., and Srivastava, M.,
“Power optimization of variable voltage-core based systems,” in Design Au-
tomation Conference, 1998.

[40] Hong, I., Potkonjak, M., and Srivastava, M., “On-line scheduling of hard
real-time tasks on variable voltage processor,” in International Conference on
Computer-Aided Design, 1998.

[41] Huang, X., Acero, A., and Hon, H.-W., Spoken Language Processing. Up-
pser Saddle River, New Jersey: Prentice Hall, 2001.

[42] Ishihara, T. and Yasuura, H., “Voltage scheduling problem for dynamically
variable voltage processors,” in IEEE International Symposium on Low Power
Electronics and Design, 1998.

[43] Jones, C., Sivalingam, K., Agrawal, P., and Chen, J., “A survey of
energy efficient network protocols for wireless networks,” in DATE, pp. 77–81,
1999.

[44] Juang, B. H. and Rabiner, L. R., “Hidden markov models for speech recog-
nition,” Technometrics, vol. 33, pp. 251–272, August 1991.

[45] Kannan, A., “Robust estimation of stochastic segment models for word
recogntion,” Master’s thesis, Boston University, 1992.

[46] Karray, L., Jelloun, A. B., and Mokbel, C., “Solutions for robust recog-
nition over the gsm cellular network,” in Proceedings of the 1998 IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing, vol. 1, pp. 261–
264, 1998.

[47] Karray, L. and Mauuary, L., “Improving speech detection robustness for
wireless speech recognition,” in 1997 IEEE Workshop on Automatic Speech
Recognition and Understanding Proceedings, pp. 428–435, 1997.

[48] Kidd, C. D., O’Connell, T., Nagel, K., Patil, S., and Abowd, G. D.,
“Building a better intercom: Context-mediated communication within the
home.” Submitted for review to CHI 2001, 2000.

[49] Kim, H. K. and Cox, R. V., “Bitstream–based feature extraction for wireless
speech recognition,” in Proceedings of the International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), vol. 3, pp. 1607–1610, 2000.

[50] Kim, H. K. and Cox, R. V., “Feature enhancement for a bitstream-based
front-end in wireless speech recognition,” in ICASSP 2001, 2001.

[51] Kim, H. K., Cox, R. V., and Rose, R. C., “Performance improvement of
a bitstream-based front-end for wireless speech recognition in adverse environ-
ments,” IEEE Transactions on Speech and Audio Processing, 2002.

146

[52] Krashinsky, R. and Balakrishnan, H., “Minimizing energy for wireless
web access with bounded slowdown,” in MOBICOM, 2002.

[53] Kravets, R. and Krishnan, P., “Application-driven power management for
mobile communication,” Wireless Networks, vol. 6, no. 4, pp. 263–277, 2000.

[54] Lai, C., Lu, S.-L., and Zhao, Q., “Performance analysis of speech recognition
software,” in Eighth International Symposium on High Performance Computer
Architecture, 2002.

[55] Lee, C.-H., Carpenter, B., Chou, W., Chu-Carroll, J., Reichli, W.,
Saad, A., and Zhou, Q., “On natural language call routing,” Speech Com-
munications, vol. 31, pp. 309–320, 2000.

[56] Lee, S. and Sakurai, T., “Run-time voltage hopping for low-power real-time
systems,” in IEEE International Symposium on Low Power Electronics and
Design, 2000.

[57] Lettieri, P., Schurgers, C., and Srivastava, M., “Adaptive link layer
strategies for energy efficient wireless networking,” Wireless Networks, vol. 5,
pp. 339–355, 1999.

[58] Lilly, B. and Paliwal, K., “Effect of speech coders on speech recognition
performance,” in ICLSP 96, vol. 4, pp. 2344–2347, 1996.

[59] Lorch, J. and Smith, A. J., “Software strategies for portable computer en-
ergy management,” IEEE Personal Communications, pp. 60–73, June 1998.

[60] Lu, Y., Benini, L., and Micheli, G. D., “Operating system directed power
reduction,” in ISLPED, pp. 37–42, July 2000.

[61] Luna, C., Eisenberg, Y., Pappas, T., Berry, R., and Katsaggelos, A.,
“Transmission energy minimization in wireless video streaming applications,”
2001.

[62] Maguire, G. Q., Smith, M., and Beadle, H. W. P., “Smartbadges: A
wearable computer and communication system.” 6th International Workshop
on Hardware/Software Codesign, 1998. Invited Talk.

[63] Martin, J. D., Rodriguez, J. G., Zapata, J., and Vilda, P., “Robust
voice recognition as a distributed service,” in ETFA 2001: 8th International
Conference on Emerging Technologies and Factory Automation, vol. 2, pp. 571–
575, October 2001.

[64] Mathew, B., Davis, A., and Fang, Z., “A low-power accelerator for the
sphinx 3 speech recognition system,” in CASES, 2003.

[65] Mayorga, P., Lamy, R., and Besacier, L., “Recovering of packet loss for
distributed speech recognition,” in EUSIPCO 2002, 2002.

147

[66] McKenzie-Mills, K. and Alty, J. L., “Investigating the role of reduncancy
in multimodal input systems,” 1998.

[67] Microsystems, S., “The source for java technology.” http://java.sun.com,
2000.

[68] Milner, B., “Robust speech recognition in burst-like packet loss,” in ICASSP
2001, 2001.

[69] Min, R. and Chandrakasan, A., “A framework for energy-scalable commu-
nication in high-density wireless networks,” in The 2002 International Sympo-
sium on Low Power Electronics and Design, 2002.

[70] Min, R., Energy and Quality Scalable Wireless Communicaiton. PhD thesis,
M.I.T., June 2003.

[71] Muthusamy, Y., Agarwal, R., Gong, Y., and Viswanathan, V.,
“Speech–enabled information retrieval in the automobile environment,” in Pro-
ceedings of the International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), vol. 4, pp. 2256–2262, 1999.

[72] Olive, J. P., “The voice user interface,” Global Telecom Conference, vol. 4,
pp. 2051–2055, 1999.

[73] Pering, T., Burd, T., and Brodersen, R., “Voltage scheduling in the iparm
microprocessor system,” in IEEE International Symposium on Low Power Elec-
tronics and Design, 2000.

[74] Picone, J., “Signal modelling techniques in speech recogntion,” Proceedings
of the IEEE, vol. 81, pp. 1215–1247, September 1993.

[75] Poritz, A. B., “Hidden markov models: A guided tour,” IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 7–12, 1988.

[76] Potamianos, A. and Weerackody, V., “Soft-feature decoding for speech
recognition over wireless channels,” in ICASSP 2001, 2001.

[77] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery,

B. P., Numerical Recipes in C: The Art of Scientific Computing, Second Edi-
tion. Cambridge England: Cambridge University Press, 1992.

[78] Proakis, J. G., Digital Communications. McGraw-Hill, 3 ed., 1995.

[79] Quercia, D., Docio-Fernandez, L., Garcio-Mateo, C., Farinetti, L.,
and Martin, J. D., “Performance analysis of distributed speech recognition
over ip networks on the aurora database,” in ICASSP 2002, 2002.

[80] Rabiner, L. and Juang, B. H., Fundamentals of Speech Recognition. Engle-
wood Cliffs, New Jersey: Prentice Hall, 1993.

148

[81] Rabiner, L. R., “Applications of voice processing to telecommunications,”
Proceedings of the IEEE, vol. 82, pp. 199–228, Feb 1994.

[82] Rabiner, L. R., “Applications of speech recognition to the area of telecom-
munications,” in 1997 IEEE Workshop on Automatic Speech Recognition and
Understanding Proceedings, pp. 501–510, 1997.

[83] Raghunathan, V., Ganeriwal, S., C.Schurgers, and Srivastava, M.,
“e2wfq: An energy effiecient fair scheduling policy for wireless systems,” in
ISLPED, 2002.

[84] Ramaswamy, G. N. and Gopalakrishnan, P. S., “Compression of acoustic
features for speech recognition in network environments,” in Proceedings of the
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
vol. 2, pp. 977–980, 1998.

[85] Ravishankar, M. K., Efficient Algorithms for Speech Recognition. PhD the-
sis, Carnegie Mellon University, 1996.

[86] Rudnicky, A. I., Reed, S. D., and Thayer, E. H., “Speechwear: A mobile
speech system,” in Proceedings of the 4th International Conference on Spoken
Language, vol. 1, pp. 538–541, 1996.

[87] Scholey, N., “Rechargeable batteries for mobile communications,” in IEE
Colloquium on Radio Frequency Design in Mobile Radio Transceivers, 1994.

[88] Shan, M., Yanlei, Z., and Youwei, Z., “Corba based distributed computing
model for multimodal speech recognition,” in The International Symposium on
Intelligent Multimedia, Video and Speech Processing, 2001, pp. 417–420, 2001.

[89] Sharman, R., “Markets and prospects for speech and language,” IEEE Col-
loquium on State of the Art Speech and Language Engineering, pp. 12/1–12/3,
November 1998.

[90] Shenoy, P. and Radkov, P., “Proxy-assisted power-friendly streaming to
mobile devices,” in MMCN, 2003.

[91] Shih, E., Bahl, P., and Sinclair, M., “Dynamic power management for
non-stationary service requests,” in MOBICOM, 2002.

[92] Shih, E., Cho, S., Ickes, N., Min, R., Sinha, A., Wang, A., and Chan-

drakasan, A., “Physical layer driven protocol and algorithm design for energy
efficient wireless sensor networks,” in SIGMOBILE, 2001.

[93] Shin, Y. and Choi, K., “Power conscious fixed priority scheduling for hard
real-time systems,” in Design Automation Conference, 1999.

[94] Simunic, T., Benini, L., Acquaviva, A., Glynn, P., and Micheli, G. D.,
“Dynamic voltage scaling and power management for portable systems,” in
DAC, 2001.

149

[95] Simunic, T., Benini, L., Glynn, P., and Micheli, G. D., “Event-driven
power management,” IEEE Transactions on CAD, July 2001.

[96] Simunic, T., Benini, L., and Micheli, G. D., “Energy-efficient design of
battery-powered embedded systems,” Special Issue of IEEE TVLSI, pp. 18–28,
May 2001.

[97] Sivalingam, K., Chen, J., Agrawal, P., and Srivastava, M., “Design and
analysis of low-power access protocols for wireless and mobile atm networks,”
Wireless Networks, vol. 6, pp. 73–87, 2000.

[98] Smailagic, A., “Isaac: A voice activated speech response system for wearable
computers,” First International Symposium on Wearable Computers, pp. 183–
184, 1997.

[99] Smith, M. T. and Jr., G. Q. M., “Smartbadge/badgepad version 4.” http:

//www.it.kth.se/~maguire/badge4.html, January 2004. HP Labs and Royal
Institute of Technology (KTH).

[100] Srinivasamurthy, N., Ortega, A., Zhu, Q., and Alwan, A., “Towards
efficient and scalable speech compression schemes for robust speech recognition
applications,” IEEE International Confernce on Multimedia and Expo, vol. 1,
pp. 249–252, 2000.

[101] Takahashi, E., “Application aware scheduling for power management on ieee
802.11,” in IPCCC, 2000.

[102] Tan, Z.-H. and Dalsgaard, P., “Channel error protection scheme for dis-
tributed speech recognition,” in ICLSP ’02, 2002.

[103] Tanaka, K., “Next major application systems and key techniques in speech
recognition technology,” in Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), vol. 2, pp. 1057–1060, 1998.

[104] Valenti, M., Robert, M., and Reed, J., “On the throughput of bluetooth
data transmissions,” in IEEE Wireless Communications and Networking Con-
ference, vol. 1, pp. 119– 123, 2002.

[105] Various, “The salt form.” http://www.saltforum.org.

[106] Various, “Sphinx-2 open-source speech recognizer (version 0.3).” http://www.
speech.cs.cmu.edu/speech/.

[107] Various, “C source code optimizations for arm.” Application Note 33, 1996.
ARM Inc.

[108] Various, “Open services gateway initiative.” http://www.osgi.org, 2000.

150

[109] Various, “Speech processing, transmission and quality aspects (stq); dis-
tributed speech recognition; front-end feature extraction algorithm; compres-
sion algorithms.” ETSI Standard: ETSI ES 201 108 v1.1.2, 2000. http:

//www.etsi.org.

[110] Various, “Bluetooth specification (v1.1).” http://www.bluetooth.com, 2002.

[111] The VoiceXML Forum, The Voice eXtensible Markup Language, March 2000.
http://www.voicexml.org.

[112] Weerackody, V., Reichl, W., and Potamianos, A., “An error-protected
speech recognition system for wireless communications,” IEEE Transactions on
Wireless Communications, vol. 1, pp. 282–291, 2002.

[113] Weisstein, E. W., “Normal difference distribution.” MathWorld
- A Wolfram Web Resource: http://mathworld.wolfram.com/

NormalDifferenceDistribution.html.

[114] White, J., “Voice browsing,” IEEE Internet Computing, vol. 4, pp. 55–56,
Febuary 2000.

[115] Wicker, S. B., Error Control Systems for Digital Communication and Stor-
age. Simon and Schuster, 1995.

[116] Yao, F., Demers, A., and Shenker, S., “A scheduling model for reduced
cpu energy,” in IEEE Annual foundations of computer science, 1995.

[117] Yoma, N., McInnes, F., and Jack, M., “Improving performance of spec-
tral subtraction in speech recognition using a model for additive noise,” IEEE
Transactions on Speech and Audio Processing, vol. 6, pp. 579–582, November
1998.

[118] Yoma, N., McInnes, F., and Jack, M., “Weighted viterbi algorithm and
state duration modeling for speech recognition in noise,” in ICASSP 1998,
pp. 709–712, 1998.

[119] Yoma, N., Silva, J., Busso, C., and Brito, I., “Compensating additive
noise and cs-celp distortion in speech recognition using stochastic weighted
viterbi recognition,” Electronics Letters, vol. 39, pp. 409–411, February 2003.

[120] Yoma, N. and Villar, M., “Speaker verification in noise using a stochastic
version of the weighted viterbi algorithm,” IEEE Transactions on Speech and
Audio Processing, vol. 10, no. 3, pp. 158–166, 2002.

[121] Zanella, A., Miorandi, D., and Pupolin, S., “Mathematical analysis of
bluetooth energy efficiency,” in Proceedings of WPMC03, October 2003.

[122] Zhang, W., He, L., Chow, Y.-L., Yang, R., and Su, Y., “The study on
distributed speech recognition system,” in ICASSP 2000, pp. 1431–1434, 2000.

151

[123] Zhu, Q. and Alwan, A., “An efficient and scalable 2d dct-based feature cod-
ing scheme for remote speech recognition,” in Proceedings of the International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2001.

152

