
Adams operations on the Green ring of a cyclic

group of prime-power order

R. M. Bryant and Marianne Johnson

December 2009

MIMS EPrint: 2009.94

Manchester Institute for Mathematical Sciences

School of Mathematics

The University of Manchester

Reports available from: http://www.manchester.ac.uk/mims/eprints

And by contacting: The MIMS Secretary

School of Mathematics

The University of Manchester

Manchester, M13 9PL, UK

ISSN 1749-9097



Adams operations on the Green ring of a cyclic
group of prime-power orderF

R. M. Bryant, Marianne Johnson∗

School of Mathematics, University of Manchester, Manchester M13 9PL, UK

Abstract: We consider the Green ring RKC for a cyclic p-group C over a field

K of prime characteristic p and determine the Adams operations ψn in the case

where n is not divisible by p. This gives information on the decomposition into

indecomposables of exterior powers and symmetric powers of KC-modules.
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1. Introduction

Let C be a cyclic group of order pν , where p is a prime and ν > 1, and let K be a

field of characteristic p. It is well known that there are, up to isomorphism, exactly

pν indecomposable KC-modules, and these can be written as V1, V2, . . . , Vpν , where

Vr has dimension r, for r = 1, . . . , pν . The exterior powers Λn(Vr) and symmetric

powers Sn(Vr) have been studied intermittently for more than thirty years. Some of

the main contributions have been by Almkvist and Fossum [2], Kouwenhoven [10],

Hughes and Kemper [8], Gow and Laffey [6] and Symonds [19]. The main aim

has been to describe Λn(Vr) and Sn(Vr), up to isomorphism, as direct sums of

indecomposable modules. An explicit formula is probably not feasible, but one

can look for a recursive description, so that, for example, Λn(Vr) is described in

terms of exterior powers Λm(Vj) where m < n or j < r. The case ν = 1 was

settled in [2], although further information was provided by a number of people in

subsequent papers. However, for ν > 1, the problem remains open in general.

F Work supported by EPSRC Standard Research Grant EP/G024898/1.
∗ Corresponding author.

E-mail addresses: roger.bryant@manchester.ac.uk (R. M. Bryant),
marianne.johnson@maths.manchester.ac.uk (M. Johnson).
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It is helpful to work in the Green ring (or representation ring) RKC . This con-

sists of all formal Z-linear combinations of V1, V2, . . . , Vpν , with addition defined

in the obvious way and multiplication coming from the decomposition of tensor

products into indecomposables. Finite-dimensional KC-modules may be regarded,

up to isomorphism, as elements of RKC . This ring was first studied in detail by

Green [7] in 1962, and he gave recursive formulae that implicitly describe multi-

plication in RKC . Improved formulae and algorithms were subsequently given by

several other people: see, for example, [15, 16, 17, 18].

In this paper we study the Adams operations ψn
Λ and ψn

S, for n > 1, following

the treatment of these in [4]. Both ψn
Λ and ψn

S are Z-linear maps from RKC to RKC .

Furthermore, Λn(Vr) is given in Q⊗Z RKC as a polynomial in ψ1
Λ(Vr), . . . , ψ

n
Λ(Vr).

For example,

Λ2(Vr) = 1
2
(ψ1

Λ(Vr)
2 − ψ2

Λ(Vr)), (1.1)

where ψ1
Λ(Vr) = Vr. Similarly, Sn(Vr) is given as a polynomial in ψ1

S(Vr), . . . , ψ
n
S(Vr).

The main results of this paper determine ψn
Λ(Vr) and ψn

S(Vr) for n not divisible

by p. Thus our results could be used to determine Λn(Vr) and Sn(Vr) for n < p. For

n not divisible by p, it is known (see [4]) that ψn
Λ = ψn

S. Thus, in this case, we write

ψn, where ψn = ψn
Λ = ψn

S. In Section 3 we establish the periodicity of these Adams

operations (namely, ψn = ψn+2p) and a symmetry property (namely, ψn = ψ2p−n

for n = 1, . . . , p− 1). We also prove a result (Proposition 3.6) that generalises the

“reciprocity theorem” of Gow and Laffey [6, Theorem 1]. Most of the results of

Section 3 extend work for ν = 1 by Almkvist [1] and Kouwenhoven [10].

Our first main result (Theorem 4.7) describes ψn(Vr) recursively in terms of

the values ψn(Vj) for j < r. This is a simple recursion that enables ψn(Vr) to

be calculated in a straightforward way by elementary arithmetic, and (strangely

enough) the recursion does not require any ability to multiply within RKC .

One can apply this result to find Λ2(Vr) in the case where p is odd, by means

of (1.1). Given ψ2(Vr) it remains only to calculate V 2
r by the methods available

for multiplication in the Green ring. This settles a problem left open by Gow and

Laffey [6] who showed how to compute Λ2(Vr) when p = 2.
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Our second main result (Theorem 5.1) shows that ψn(Vr) has a strikingly

simple form (unlike the much more complicated form that one gets for Λn(Vr) or

Sn(Vr)). Indeed, it turns out that

ψn(Vr) = Vj1 − Vj2 + Vj3 − · · · ± Vjl
,

where pν > j1 > j2 > · · · > jl > 1. Thus the multiplicities of indecomposables in

ψn(Vr) are only 0, 1 and −1, and the non-zero multiplicities alternate in sign.

The importance of using Adams operations in the study of KC-modules was

recognised by Almkvist [1], who studied them in the case ν = 1. An extremely

useful contribution to the study of Λn(Vr) in the general case (ν > 1) was made

by Kouwenhoven [10, Theorem 3.5], and his theorem is a key ingredient of our

work. By this theorem it is possible to calculate the values of ψn
Λ (for all n) on a

generating set of RKC . However, for n not divisible by p, it is known (see [4]) that

ψn is an endomorphism of RKC . Thus, in this case, it becomes possible to calculate

ψn on an arbitrary element of RKC . Kouwenhoven studied Adams operations in

his paper [10], and they also figure in his subsequent papers [11, 12, 13, 14], but

his published results seem to be confined to the case where ν = 1.

Hughes and Kemper [8] exploited Kouwenhoven’s theorem and, indeed, the

results of [8, Section 4] provide, in principle, a method for calculating Λn(Vr) and

Sn(Vr) for n < p. However, we believe that our results on Adams operations give

a simpler and more attractive approach.

In a further paper we shall study ψn
Λ and ψn

S on RKC for the general case where

n may be divisible by p. We shall prove periodicity results and show that the work

of Symonds [19] may be attractively formulated in terms of Adams operations.

2. Preliminaries

Let G be a group and K a field. We consider KG-modules, by which we always

mean finite-dimensional right KG-modules, and we write RKG for the associated

Green ring (or representation ring). Thus RKG is spanned, over Z, by the isomor-

phism classes of KG-modules and has addition and multiplication coming from
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direct sums and tensor products, respectively. In fact, RKG has a Z-basis consist-

ing of the isomorphism classes of indecomposable KG-modules.

For any KG-module V , we also write V for the corresponding element of

RKG. Thus, for KG-modules V and W we have V = W in RKG if and only if

V ∼= W . The elements V +W and VW of RKG correspond to V ⊕W and V ⊗KW ,

respectively, and the identity element 1 of RKG is the 1-dimensional KG-module

on which G acts trivially. If V is a KG-module and n is a non-negative integer,

then we regard Λn(V ) and Sn(V ) as elements of RKG.

The Adams operations on RKG are certain Z-linear maps from RKG to RKG.

We follow the treatment in [4]. For this purpose we need to extend RKG to a ring

QRKG where we allow coefficients from Q: thus QRKG
∼= Q⊗Z RKG.

For any KG-module V , define elements of the power-series ring RKG[[t]] by

Λ(V, t) = 1 + Λ1(V )t+ Λ2(V )t2 + · · · ,

S(V, t) = 1 + S1(V )t+ S2(V )t2 + · · · .

(Since V is assumed to be finite-dimensional, Λ(V, t) actually belongs to the poly-

nomial ring RKG[t].) Using the formal expansion of log(1 + x), we have elements

log Λ(V, t) and logS(V, t) of QRKG[[t]]. Thus we define elements ψn
Λ(V ) and ψn

S(V )

of QRKG, for n = 1, 2, . . . , by the equations

ψ1
Λ(V )t− 1

2
ψ2

Λ(V )t2 + 1
3
ψ3

Λ(V )t3 − · · · = log Λ(V, t),

ψ1
S(V )t+ 1

2
ψ2

S(V )t2 + 1
3
ψ3

S(V )t3 + · · · = logS(V, t).
(2.1)

It is not difficult to prove (for more details see [4]) that ψn
Λ(V ), ψn

S(V ) ∈ RKG and

ψn
Λ(V +W ) = ψn

Λ(V ) + ψn
Λ(W ), ψn

S(V +W ) = ψn
S(V ) + ψn

S(W ),

for all n > 1 and all KG-modules V and W . It follows that the definitions of ψn
Λ

and ψn
S may be extended to give Z-linear functions

ψn
Λ : RKG → RKG, ψn

S : RKG → RKG,

called the nth Adams operations on RKG. It is easily verified that ψ1
Λ and ψ1

S are

equal to the identity map on RKG.
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For any element W of RKG we may now define elements Λ(W, t) and S(W, t)

of QRKG[[t]] by the equations

Λ(W, t) = exp(ψ1
Λ(W )t− 1

2
ψ2

Λ(W )t2 + 1
3
ψ3

Λ(W )t3 − · · ·),

S(W, t) = exp(ψ1
S(W )t+ 1

2
ψ2

S(W )t2 + 1
3
ψ3

S(W )t3 + · · ·).

Hence equations (2.1) hold if V is replaced by any element W of RKG.

The following result is part of [4, Theorem 5.4].

Proposition 2.1. For every positive integer n not divisible by the characteristic

of K, we have ψn
Λ = ψn

S and each of these maps is a ring endomorphism of RKG.

Furthermore, under composition of maps we have

ψn
Λ ◦ ψn′

Λ = ψnn′

Λ , ψn
S ◦ ψn′

S = ψnn′

S ,

for all positive integers n and n′ such that n is not divisible by charK.

We shall be mainly concerned with Adams operations ψn
Λ and ψn

S for n not

divisible by charK. For these operations we write ψn, where ψn = ψn
Λ = ψn

S.

We also write δ for the ‘dimension’ map δ : RKG → Z. This is the Z-linear map

satisfying δ(V ) = dimV for every KG-module V .

If G1 is a group of order 1 then any KG1-module V may be written as δ(V ) ·1
(where 1 is the identity element of RKG1) and it is easily verified that

Λ(V, t) = (1 + t)δ(V ), S(V, t) = (1− t)−δ(V ).

It follows that ψn
Λ(V ) = ψn

S(V ) = V for all n. Thus each ψn
Λ and each ψn

S is the

identity map on RKG1 .

For an arbitrary groupG we have homomorphismsG→ G1 andG1 → G giving

ring homomorphisms α : RKG1 → RKG and β : RKG → RKG1 , respectively. Here

α is an embedding, β is given by restriction of modules to the identity subgroup,

and α(β(W )) = δ(W ) ·1 for all W ∈ RKG (where 1 is the identity element of RKG).

The formation of exterior and symmetric powers commutes with restriction: hence

β ◦ ψn
Λ = ψn

Λ ◦ β and β ◦ ψn
S = ψn

S ◦ β, giving

β(ψn
Λ(W )) = β(ψn

S(W )) = β(W )
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for all W ∈ RKG. On applying α we obtain an equality of ‘dimensions’:

δ(ψn
Λ(W )) = δ(ψn

S(W )) = δ(W ), (2.2)

for all W ∈ RKG and all n > 1.

Now let p be a prime and K a field of characteristic p. Let ν be a non-

negative integer and let C(pν) denote a cyclic group of order pν . It is well known

that there are, up to isomorphism, precisely pν indecomposable KC(pν)-modules,

V1, V2, . . . , Vpν , where dimVr = r for r = 1, . . . , pν . (For a proof of this fact see [2,

Proposition I.1.1] or [8, Proposition 2.1].) Here V1 is the trivial 1-dimensional

KC(pν)-module and Vpν is the regular KC(pν)-module.

IfK ′ is an extension field ofK there is an embedding RKC(pν) → RK′C(pν) given

by extension of scalars, and the image of Vr is easily seen to be the indecomposable

K ′C(pν)-module of dimension r. Thus RKC(pν)
∼= RK′C(pν). Hence we regard

RKC(pν) as the same for all fields of characteristic p, and write it as Rpν . The

identity element of Rpν is sometimes written as 1 and sometimes V1.

For each non-negative integer m, let C(pm) be a cyclic group of order pm and

choose a surjective homomorphism C(pm+1) → C(pm). Thus, for j > m, the

group C(pm) may be regarded as a factor group of C(pj), and there is an injective

homomorphism Rpm → Rpj mapping the r-dimensional indecomposable KC(pm)-

module to the r-dimensional indecomposable KC(pj)-module, for r = 1, . . . , pm.

Consequently we may take Rp0 ⊂ Rp1 ⊂ · · · ⊂ Rpν , where Rpm has Z-basis

{V1, . . . , Vpm} for m = 0, . . . , ν. Throughout the paper we also write V0 = 0 and

V−r = −Vr for r = 1, . . . , pν .

Suppose that ν > 1. For m = 0, . . . , ν − 1 we define Xm ∈ Rpm+1 by

Xm = Vpm+1 − Vpm−1,

modifying slightly the notation of [2]. In particular X0 = V2. These elements were

earlier considered by Green [7] in a different notation.

Proposition 2.2. Let m ∈ {0, 1, . . . , ν − 1} and r ∈ {0, . . . , (p− 1)pm}. Then

XmVr = Vr+pm + Vr−pm .

6



Proof. For 0 < r < (p− 1)pm this is given directly by [7, (2.3a) and (2.3b)]. For

r = 0 it is trivial, and for r = (p− 1)pm it follows easily from [7, (2.3c)]. �

By the remark immediately after [7, Theorem 3] or by [2, Proposition I.1.6],

the Green ring Rpν is generated by the elements X0, . . . , Xν−1.

Let m ∈ {0, . . . , ν}. Because Vpm is the regular KC(pm)-module, we have

VpmVr = rVpm for r = 1, . . . , pm (by [9, VII.7.19 Theorem], for example). Hence

VpmW = δ(W )Vpm , (2.3)

for all W ∈ Rpm . It follows that ZVpm is an ideal of Rpm . For A,B ∈ Rpm we write

A ≡ B (mod Vpm) to denote that A−B ∈ ZVpm . In fact, such a congruence gives

an equation, by consideration of dimension, namely A = B + p−mδ(A−B)Vpm .

Note that Vpm is the only projective indecomposable KC(pm)-module. Also,

for r ∈ {1, . . . , pm}, it is well known and easy to see that Vpm−r is the Heller

translate of Vr as KC(pm)-module: we write

Ωpm(Vr) = Vpm−r. (2.4)

(For general properties of the Heller translate see [3], for example.) We extend

Ωpm to a Z-linear map Ωpm : Rpm → Rpm . Then, for all W ∈ Rpm , we have

Ωpm(Ωpm(W )) ≡ W (mod Vpm). (2.5)

For KC(pm)-modules U and V , consideration of tensor products gives

Ωpm(UV ) ≡ Ωpm(U)V (mod Vpm)

(see [3, Corollary 3.1.6]). Hence, for all A,B ∈ Rpm , we have

Ωpm(AB) ≡ Ωpm(A)B (mod Vpm). (2.6)

3. Periodicity and symmetry

For the remainder of the paper, p is a prime and ν is a positive integer. We consider

the Green ring Rpν for the cyclic group C(pν) and use the notation of Section 2.

In particular, Xm = Vpm+1 − Vpm−1 for m = 0, . . . , ν − 1.
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As in [2, Section I.1] and [8, Section 4.1], let Rpν be extended to a ring R̂pν

generated by Rpν and elements E0, . . . , Eν−1 satisfying E2
m − XmEm + 1 = 0 for

m = 0, . . . , ν − 1. Thus each Em is invertible in R̂pν and Xm = Em + E−1
m . (Note

that Em is written as µm in [2] and [8].)

By [10, Theorem 3.5], we have Λ(Xm, t) = 1 +Xmt+ t2. Thus

Λ(Xm, t) = 1 + (Em + E−1
m )t+ t2 = (1 + Emt)(1 + E−1

m t),

and so, in (Q⊗Z R̂pν )[[t]], we have

log Λ(Xm, t) = log(1 + Emt) + log(1 + E−1
m t)

= (Em + E−1
m )t− 1

2
(E2

m + E−2
m )t2 + 1

3
(E3

m + E−3
m )t3 − · · · .

Hence, by (2.1), we obtain

ψn
Λ(Xm) = En

m + E−n
m for all n > 1. (3.1)

For the moment we fix m in the range 0 6 m 6 ν − 1 and write E = Em and

E<n> = En + E−n for all n > 0. Note that, for n > 1,

E<n>E<1> = E<n+1> + E<n−1>. (3.2)

Write Z = Vpm − Vpm−1. Thus Z2 = 1, by [8, (4.4)], and, by [8, Theorem 4.2],

(ZE − 1)((ZE)2p−1 − (ZE)2p−2 + · · ·+ ZE − 1) = 0.

Since Z2 = 1, we obtain

E2p − 2ZE2p−1 + 2E2p−2 − · · · − 2ZE + 1 = 0. (3.3)

Lemma 3.1. We have E<p+1> = E<p−1>.

Proof. Assume first that p is odd. Multiplying (3.3) by E−p we obtain

Ep − 2ZEp−1 + · · ·+ 2E − 2Z + 2E−1 − · · · − 2ZE−(p−1) + E−p = 0.

Hence

E<p> = 2ZE<p−1> − 2E<p−2> + · · · − 2E<1> + 2Z. (3.4)
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Therefore, by (3.2),

E<p+1> + E<p−1> = 2ZE<p> − 2E<p−1> + 4ZE<p−2> − · · ·+ 4ZE<1> − 4.

Hence, by (3.4), E<p+1> + E<p−1> = 2E<p−1>. This gives E<p+1> = E<p−1>, as

required. The proof is similar for p = 2. �

Proposition 3.2. (i) For j = 0, . . . , p, we have E<2p−j> = E<j>.

(ii) For all c > 0, we have E<2p+c> = E<c>.

Proof. By Lemma 3.1, E<p+1> = E<p−1>. Multiplying by E<1> we get

E<p+2> + E<p> = E<p> + E<p−2>

and so E<p+2> = E<p−2>. Continuing in this way we obtain E<p+j> = E<p−j> for

j = 0, 1, . . . , p. This gives (i).

In particular we have E<2p> = E<0> = 2. This gives (ii) in the case c = 0.

Multiplying the equation E<2p> = 2 by E<1> we get E<2p+1> +E<2p−1> = 2E<1>.

Since E<2p−1> = E<1>, by (i), we have E<2p+1> = E<1>. This gives (ii) in the

case c = 1. Continuing in this way we get the result for all c. �

From now on we write ψn = ψn
Λ for all n not divisible by p. (Thus, in fact,

ψn = ψn
Λ = ψn

S.)

Theorem 3.3. For j = 1, . . . , p−1, we have ψ2p−j = ψj. Also, if c is any positive

integer not divisible by p, we have ψ2p+c = ψc.

Proof. As noted in Section 2, Rpν is generated by {Xm : 0 6 m 6 ν − 1}. Let

j and c be as stated. Then Proposition 3.2 and (3.1) give ψ2p−j(Xm) = ψj(Xm)

and ψ2p+c(Xm) = ψc(Xm) for all m ∈ {0, . . . , ν− 1}. However, by Proposition 2.1,

ψ2p−j, ψj, ψ2p+c and ψc are endomorphisms of Rpν . Thus the result follows. �

Let c be any positive integer not divisible by p. Then it is easy to see that

there is a unique integer γ(c) satisfying the conditions 1 6 γ(c) 6 p − 1 and

c ≡ ±γ(c) (mod 2p). Theorem 3.3 has the following immediate consequences.
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Corollary 3.4. For c a positive integer not divisible by p, we have ψc = ψγ(c).

Corollary 3.5. Suppose that p = 2. Then ψc is the identity map for every positive

integer c not divisible by p.

Let n be a positive integer not divisible by p, and let m ∈ {1, . . . , ν}. Then

V 2
pm−1 = (pm − 2)Vpm + V1,

by [7, (2.5b)]. Hence

V n
pm−1 ≡

{
Vpm−1 (mod Vpm) if n is odd,
V1 (mod Vpm) if n is even.

(3.5)

By [4, p. 362], there are KC(pν)-modules Yd, for each divisor d of n, such that

V n
pm−1 =

∑
d|n

φ(d)Yd, (3.6)

where φ is Euler’s function. Also, by [4, (4.4) and Theorem 5.4],

ψn(Vpm−1) =
∑
d|n

µ(d)Yd, (3.7)

where µ is the Möbius function.

Note that φ(d) = 1 only if d = 1 or d = 2. Suppose first that n is odd. Then

(3.5) and (3.6) give Y1 ≡ Vpm−1 (mod Vpm) and Yd ≡ 0 (mod Vpm) for all d > 1.

Thus, by (3.7),

ψn(Vpm−1) ≡ Vpm−1 (mod Vpm).

However, δ(ψn(Vpm−1)) = pm − 1 by (2.2). Hence ψn(Vpm−1) = Vpm−1.

Now suppose that n is even. By (3.5) and (3.6), there exists e ∈ {1, 2} such

that Ye ≡ V1 (mod Vpm) and Yd ≡ 0 (mod Vpm) for all d 6= e. Hence, by (3.7),

ψn(Vpm−1) ≡ ±V1 (mod Vpm).

Since n is even, p 6= 2. Thus, using (2.2), we get ψn(Vpm−1) = Vpm − V1.

Therefore, for all n not divisible by p,

ψn(Vpm−1) =

{
Vpm−1 if n is odd,
Vpm − V1 if n is even.

(3.8)

10



By similar, but much easier, arguments we obtain

ψn(Vpm) = Vpm for all n not divisible by p. (3.9)

By [7, (2.5b)], we have

Vpm−1Vr = (r − 1)Vpm + Vpm−r, (3.10)

for r = 1, . . . , pm. (Recall that V0 = 0.) Hence, by Proposition 2.1 and (3.9),

ψn(Vpm−1)ψ
n(Vr) = (r − 1)Vpm + ψn(Vpm−r), (3.11)

for all n not divisible by p. Note that (3.8)–(3.11) hold, trivially, for m = 0. Thus

they hold for all m ∈ {0, . . . , ν}.

Proposition 3.6. Let n be an even positive integer not divisible by p (thus p is

odd), and let m ∈ {0, . . . , ν}. Then, for r = 1, . . . , pm, we have

ψn(Vr) + ψn(Vpm−r) = Vpm .

Proof. By (3.8) and (3.11),

(Vpm − V1)ψ
n(Vr) = (r − 1)Vpm + ψn(Vpm−r).

However, Vpmψn(Vr) = rVpm by (2.2) and (2.3). This gives the required result. �

By (3.10) and (2.4) we have, for all W ∈ Rpm ,

Vpm−1W ≡ Ωpm(W ) (mod Vpm). (3.12)

Proposition 3.7. Let n be an odd positive integer not divisible by p, and let

m ∈ {0, . . . , ν}. Then, for r = 1, . . . , pm, we have

ψn(Vpm−r) ≡ Ωpm(ψn(Vr)) (mod Vpm).

Proof. By (3.8), ψn(Vpm−1) = Vpm−1. Hence, by (3.11),

Vpm−1ψ
n(Vr) = (r − 1)Vpm + ψn(Vpm−r).

Thus the result follows by (3.12). �
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Propositions 3.6 and 3.7 are partial generalisations of [1, Propositions 5.4(d)

and 5.4(e)]. Stronger results will be given below in Corollary 5.2.

We conclude this section by showing that, when n = 2, Proposition 3.6 implies

Gow and Laffey’s “reciprocity theorem” [6, Theorem 1]. This may be stated in the

Green ring as follows (after correction of the obvious misprint in [6]).

Corollary 3.8. Let p be odd and m ∈ {1, . . . , ν}. Then, for r = 1, . . . , pm,

(i) Λ2(Vr) = (r − 1
2
(pm + 1))Vpm + S2(Vpm−r),

(ii) S2(Vr) = (r − 1
2
(pm − 1))Vpm + Λ2(Vpm−r).

Proof. Since (i) and (ii) are essentially the same we prove only (i). It is well

known that S2(Vpm−r) + Λ2(Vpm−r) = V 2
pm−r. Thus

Λ2(Vr)− S2(Vpm−r) = Λ2(Vr) + Λ2(Vpm−r)− V 2
pm−r.

By (1.1) (which follows from (2.1)), we have Λ2(Vr) = 1
2
(V 2

r −ψ2(Vr)); and a similar

statement holds for Λ2(Vpm−r). Hence

Λ2(Vr)− S2(Vpm−r) = 1
2
(V 2

r − V 2
pm−r)− 1

2
(ψ2(Vr) + ψ2(Vpm−r)).

However, by (2.5), (2.6) and (2.4), we have

V 2
r ≡ Ωpm(Ωpm(V 2

r )) ≡ (Ωpm(Vr))
2 ≡ V 2

pm−r (mod Vpm),

so that V 2
r − V 2

pm−r = (2r − pm)Vpm . Also, we have ψ2(Vr) + ψ2(Vpm−r) = Vpm , by

Proposition 3.6. Thus

Λ2(Vr)− S2(Vpm−r) = 1
2
(2r − pm)Vpm − 1

2
Vpm ,

which gives the required result. �

4. Recursion

Define elements g0(t), g1(t), . . . of Z[t] by g0(t) = 2, g1(t) = t and, for n > 2,

gn(t) = tgn−1(t)− gn−2(t). (4.1)

The gn(t) can be seen to be Dickson polynomials of the first kind, and can be given

by an explicit formula, but we do not need this.
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Proposition 4.1. For n > 1 and m ∈ {0, . . . , ν − 1}, we have

ψn
Λ(Xm) = gn(Xm).

Proof. Clearly ψ1
Λ(Xm) = Xm and, by (3.1), ψ2

Λ(Xm) = X2
m− 2. Hence the result

holds for n 6 2. It is easy to check from (3.1) and (3.2) that, for n > 3,

ψn
Λ(Xm) = Xmψ

n−1
Λ (Xm)− ψn−2

Λ (Xm).

Thus the result follows by induction and (4.1). �

For n < p, Proposition 4.1 can be deduced from (3.1) and [2, (I.1.4) and

(I.1.5)]. Our next result is a reformulation of [5, Lemma 4.2], but we give a proof

for the convenience of the reader.

Proposition 4.2. Let m ∈ {0, . . . , ν−1}, r ∈ {1, . . . , pm}, and i ∈ {0, . . . , p−1}.
Then

gi(Xm)Vr = Vipm+r − Vipm−r.

Proof. The result is clear for i = 0 because, by convention, V−r denotes −Vr.

Since g1(Xm) = Xm, the result for i = 1 is given by Proposition 2.2. Now suppose

that 2 6 i 6 p− 1 and the result holds for i− 1 and i− 2. Then, by (4.1) and the

inductive hypothesis,

gi(Xm)Vr = Xmgi−1(Xm)Vr − gi−2(Xm)Vr

= Xm(V(i−1)pm+r − V(i−1)pm−r)− (V(i−2)pm+r − V(i−2)pm−r).

It is easy to verify that (i−1)pm +r and (i−1)pm−r belong to {0, . . . , (p−1)pm}.
Hence, by Proposition 2.2,

gi(Xm)Vr = (Vipm+r + V(i−2)pm+r)− (Vipm−r + V(i−2)pm−r)

− (V(i−2)pm+r − V(i−2)pm−r)

= Vipm+r − Vipm−r,

as required. �
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For a positive integer c not divisible by p, let γ(c) be as defined in Section 3.

Note that 1 6 γ(c) 6 p− 1.

Corollary 4.3. Let m ∈ {0, . . . , ν − 1}. For r ∈ {1, . . . , pm} and c any positive

integer not divisible by p, we have

ψc(Xm)Vr = Vγ(c)pm+r − Vγ(c)pm−r.

Proof. By Corollary 3.4, ψc(Xm) = ψγ(c)(Xm). Hence, by Proposition 4.1,

ψc(Xm) = gγ(c)(Xm). Thus the result follows by Proposition 4.2. �

For m ∈ {0, . . . , ν − 1} and i ∈ {1, . . . , p − 1} let θipm : Rpm → Rpm+1 be the

Z-linear map defined by

θipm(Vr) = Vipm+r − Vipm−r (4.2)

for r = 1, . . . , pm. Corollary 4.3 gives the following result.

Corollary 4.4. Let m ∈ {0, . . . , ν − 1}. Let c be any positive integer not divisible

by p and let W ∈ Rpm. Then

ψc(Xm)W = θγ(c)pm(W ).

Define elements f−1(t), f0(t), f1(t), . . . of Z[t] by f−1(t) = 0, f0(t) = 1, f1(t) = t

and, for n > 2,

fn(t) = tfn−1(t)− fn−2(t). (4.3)

The fn(t) can be seen to be Dickson polynomials of the second kind, and can

be given an explicit formula, but we do not need this. The following result is

straightforward to prove by induction.

Lemma 4.5. For all n > 0,

fn =

{
gn + gn−2 + · · ·+ g3 + g1 if n is odd,
gn + gn−2 + · · ·+ g2 + 1 if n is even.

Our next result is essentially the same as [15, Lemma 6], but we give a proof
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for the convenience of the reader.

Proposition 4.6. Let m ∈ {0, . . . , ν − 1}. Then, for r ∈ {1, . . . , pm} and

k ∈ {0, . . . , p− 1}, we have

Vkpm+r = fk(Xm)Vr + fk−1(Xm)Vpm−r.

Proof. We use induction on k. The result is clear for k = 0. It is true for k = 1

because Vpm+r = XmVr + Vpm−r by Proposition 2.2.

Now suppose that k ∈ {2, . . . , p− 1} and that the result is true for k − 1 and

k − 2. By (4.3), the inductive hypothesis, and Proposition 2.2, we obtain

fk(Xm)Vr + fk−1(Xm)Vpm−r = Xm(fk−1(Xm)Vr + fk−2(Xm)Vpm−r)

− (fk−2(Xm)Vr + fk−3(Xm)Vpm−r)

= XmV(k−1)pm+r − V(k−2)pm+r

= Vkpm+r,

as required. �

In the statement of the main result of this section it is convenient to extend

the definition of γ by setting γ(0) = 0. Recalling that θipm is defined by (4.2) for

i ∈ {1, . . . , p− 1}, we also define θ0 to be the identity map on Rpm .

Theorem 4.7. Let m ∈ {0, . . . , ν− 1} and let n be a positive integer not divisible

by p. Let s be a positive integer satisfying pm < s 6 pm+1 and write s = kpm + r,

where 1 6 r 6 pm and 1 6 k 6 p− 1. Then

ψn(Vs) =
∑

j∈{0,...,k}
j≡k (mod 2)

θγ(jn)pm(ψn(Vr)) +
∑

j∈{0,...,k}
j 6≡k (mod 2)

θγ(jn)pm(ψn(Vpm−r)).

Proof. By Proposition 4.6, we have Vs = fk(Xm)Vr + fk−1(Xm)Vpm−r. Suppose

first that k is odd. Then, by Lemma 4.5 and Proposition 4.1, we obtain

Vs = (ψk + ψk−2 + · · ·+ ψ1)(Xm)Vr

+ (ψk−1 + ψk−3 + · · ·+ ψ2)(Xm)Vpm−r + Vpm−r.
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By Proposition 2.1 it follows that

ψn(Vs) = (ψkn + ψ(k−2)n + · · ·+ ψn)(Xm)ψn(Vr)

+ (ψ(k−1)n + ψ(k−3)n + · · ·+ ψ2n)(Xm)ψn(Vpm−r) + ψn(Vpm−r).

Therefore, by Corollary 4.4,

ψn(Vs) = (θγ(kn)pm + θγ((k−2)n)pm + · · ·+ θγ(n)pm)(ψn(Vr))

+ (θγ((k−1)n)pm + θγ((k−3)n)pm + · · ·+ θγ(2n)pm + θ0)(ψ
n(Vpm−r)),

as required. The proof for even k is similar. �

Theorem 4.7 allows us to calculate ψn(Vs) for all s, and for all n not divisible

by p, by elementary arithmetic and without the need for multiplication in Rpν .

For example, take p = 7 and ν = 2. Let us calculate ψ4(V23). Thus n = 4 and

s = 23. In order to apply Theorem 4.7 we take m = 1 and write 23 = 3 · 7 + 2.

(Thus k = 3 and r = 2.) It is easy to check that γ(4) = 4, γ(2 · 4) = 6 and

γ(3 · 4) = 2. Thus, by Theorem 4.7,

ψ4(V23) = (θ28 + θ14)(ψ
4(V2)) + (θ0 + θ42)(ψ

4(V5)). (4.4)

We next calculate ψ4(V2), writing 2 = 1 · 1 + 1 in order to use Theorem 4.7. Thus

ψ4(V2) = θ4(ψ
4(V1)) + θ0(ψ

4(V0)) = θ4(V1) = V5 − V3.

We can calculate ψ4(V5) in a similar way, or by means of Proposition 3.6, to obtain

ψ4(V5) = V7 − V5 + V3. Thus, by (4.4),

ψ4(V23) = (θ28 + θ14)(V5 − V3) + (θ0 + θ42)(V7 − V5 + V3)

= (V33 − V23) + (V19 − V9)− (V31 − V25)− (V17 − V11)

+ V7 + (V49 − V35)− V5 − (V47 − V37) + V3 + (V45 − V39)

= V49 − V47 + V45 − V39 + V37 − V35 + V33 − V31 + V25

− V23 + V19 − V17 + V11 − V9 + V7 − V5 + V3.

We see that the indecomposables occurring have all subscripts of the same parity

and have multiplicities that alternate between +1 and −1, in decreasing order of
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subscript. It turns out that these statements hold in general. We shall prove them

in Theorem 5.1 in the next section.

5. The form of ψn(Vs)

Theorem 5.1. Let n be a positive integer not divisible by p, and let s ∈ {1, . . . , pν}.
Write λ(s) for the smallest non-negative integer such that s 6 pλ(s).

(i) There are integers j1, . . . , jl such that pλ(s) > j1 > j2 > · · · > jl > 1 and

ψn(Vs) = Vj1 − Vj2 + Vj3 − · · · ± Vjl
.

(ii) If n is even (so that p is odd) then j1, . . . , jl are odd. If n is odd then

j1, . . . , jl have the same parity as s.

Before giving the proof we derive an improvement of Propositions 3.6 and 3.7.

Corollary 5.2. Let n be a positive integer not divisible by p, and let s ∈ {1, . . . , pm},
where m ∈ {0, . . . , ν}.

(i) If n is even then one of ψn(Vs) and ψn(Vpm−s) has the form

Vj1 − Vj2 + · · · ± Vjl

and the other has the form

Vpm − Vj1 + Vj2 − · · · ∓ Vjl
,

where j1, . . . , jl are odd and pm > j1 > j2 > · · · > jl > 1.

(ii) If n is odd then ψn(Vs) and ψn(Vpm−s) have the forms

ψn(Vs) = Vj1 − Vj2 + Vj3 − · · ·+ Vjl
,

ψn(Vpm−s) = Vpm−jl
− · · ·+ Vpm−j3 − Vpm−j2 + Vpm−j1 ,

where l is odd, j1, . . . , jl have the parity of s, and pm > j1 > j2 > · · · > jl > 0.

Proof. (i) This is immediate from Theorem 5.1 and Proposition 3.6.
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(ii) If p = 2 then ψn is the identity map, by Corollary 3.5, and the result is

clear. Thus we may assume that p is odd. We argue according to the parity of s.

Suppose first that s is odd. By Theorem 5.1 we may write

ψn(Vs) = Vj1 − Vj2 + Vj3 − · · · ± Vjl
,

where j1, . . . , jl are odd and pm > j1 > j2 > · · · > jl > 1. By (2.2),

δ(Vj1 − Vj2 + · · · ± Vjl
) = s.

Since s is odd it follows that l must be odd, and so ψn(Vs) has the required form.

By Theorem 5.1, ψn(Vpm−s) is a linear combination of terms Vi where i has the

parity of pm − s; so ψn(Vpm−s) does not involve Vpm . Thus, by Proposition 3.7,

ψn(Vpm−s) = Vpm−jl
− · · ·+ Vpm−j3 − Vpm−j2 + Vpm−j1 .

(Note here that we may have pm− j1 = 0.) Thus the result holds for s odd. If s is

even then pm − s is odd and we may interchange the roles of Vs and Vpm−s in the

above argument. �

Proof of Theorem 5.1. For each integer a let [a] denote the congruence class

of a modulo 2 and let R[a] denote the additive subgroup of Rpν spanned by all

Vi with [i] = [a]. Thus R[a] = R[0] or R[a] = R[1]. Observe that (i) and (ii) of

Theorem 5.1 are equivalent to (i) and the statement that ψn(Vs) ∈ R[ns+ n+ 1].

To prove the theorem we use induction on m, where m = λ(s). Since

ψn(V1) = V1, statements (i) and (ii) are trivial for m = 0. Let m < ν and assume

that (i) and (ii) hold for all s with λ(s) 6 m. Now take s such that λ(s) = m+ 1.

We shall prove that (i) and (ii) hold for Vs. Write q = pm, so that pq = pm+1.

Also, write s = kq + r, where 1 6 r 6 q and 1 6 k 6 p − 1, as in Theorem 4.7.

Thus ψn(Vr) and ψn(Vq−r) are covered by the inductive hypothesis.

For each non-negative integer a define Ua by

Ua =

{
ψn(Vr) if [a] = [k],
ψn(Vq−r) if [a] 6= [k].
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Then, by Theorem 4.7,

ψn(Vs) =
k∑

j=0

θγ(jn)q(Uj). (5.1)

We have ψn(Vr) ∈ R[nr + n + 1] and ψn(Vq−r) ∈ R[n(q − r) + n + 1], by the

inductive hypothesis. It follows easily that Uj ∈ R[nr + n + 1 + (j + k)nq] for

j = 0, . . . , k. By the definition of θγ(jn)q (see (4.2)), we obtain

θγ(jn)q(Uj) ∈ R[nr + n+ 1 + (j + k)nq + γ(jn)q].

However, [γ(jn)] = [jn]. Thus

θγ(jn)q(Uj) ∈ R[n(kq + r) + n+ 1] = R[ns+ n+ 1].

Hence, by (5.1), we have ψn(Vs) ∈ R[ns + n + 1]. Thus it remains only to prove

that (i) holds. We deal separately with the cases where n is even and n is odd.

Suppose first that n is even, so that p is odd. Clearly λ(pq − s) 6 m + 1.

Also, by Proposition 3.6, ψn(Vs) + ψn(Vpq−s) = Vpq. It follows that if (i) holds for

Vpq−s then it holds for Vs. Thus, by the inductive hypothesis, we may assume that

λ(pq − s) = m + 1. Either s < 1
2
pq or pq − s < 1

2
pq. Therefore, without loss of

generality, we may assume that s < 1
2
pq.

Since s = kq+ r < 1
2
pq, we have k 6 1

2
(p− 1). Suppose that γ(s1n) = γ(s2n),

where s1, s2 ∈ {1, . . . , k}. Then s1n ≡ ±s2n (mod 2p). Since p - n we obtain

s1 ≡ ±s2 (mod p). Hence s1 ∓ s2 ≡ 0 (mod p). However, s1, s2 ∈ {1, . . . , 1
2
(p− 1)}

because k 6 1
2
(p−1). Therefore s1 = s2. Thus the numbers γ(n), γ(2n), . . . , γ(kn)

are distinct. They are even, since n is even. Hence we may write

{γ(n), γ(2n), . . . , γ(kn)} = {a1, a2, . . . , ak},

where the aj are even and p− 1 > a1 > a2 > · · · > ak > 2. Also, set ak+1 = 0.

By (5.1) we have

ψn(Vs) = θa1q(W1) + · · ·+ θakq(Wk) + θak+1q(Wk+1), (5.2)

where Wj ∈ {ψn(Vr), ψ
n(Vq−r)} for each j.
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For integers a and b with pq > a > b > 0, let M [a, b] denote the set of all

elements Y of Rpq that can be written in the form

Y = Vi1 − Vi2 + Vi3 − · · ·+ Vih−1
− Vih

where h is even and a > i1 > i2 > · · · > ih > b. To prove (i) it suffices to show

that ψn(Vs) ∈ M [pq, 0], for then we obtain the required expression for ψn(Vs) by

cancellation and by removal of terms V0.

Suppose that pq > c1 > c2 > · · · > cd+1 > 0 and Yj ∈ M [cj, cj+1] for

j = 1, . . . , d. Then, clearly, Y1 + Y2 + · · ·+ Yd ∈M [c1, cd+1].

By the inductive hypothesis, each Wj belongs to M [q, 0], since we may intro-

duce a term V0 if necessary to give even length to the expression for Wj. It follows

easily that θajq(Wj) belongs to M [(aj + 1)q, (aj − 1)q], for j = 1, . . . , k. Hence

θajq(Wj) ∈M [(aj + 1)q, (aj+1 + 1)q],

for j = 1, . . . , k, because aj > aj+1 + 2. Also,

θak+1q(Wk+1) = Wk+1 ∈M [q, 0] = M [(ak+1 + 1)q, 0].

Therefore, by (5.2), we have ψn(Vs) ∈M [(a1 + 1)q, 0] ⊆M [pq, 0], as required.

We now turn to the remaining case, and assume that n is odd.

Since Theorem 5.1 holds for Vr and Vq−r, by the inductive hypothesis, Corollary

5.2(ii) holds for Vr and Vq−r. Thus we may write

ψn(Vr) = Vj1 − Vj2 + Vj3 − · · ·+ Vjl
, (5.3)

ψn(Vq−r) = Vq−jl
− · · ·+ Vq−j3 − Vq−j2 + Vq−j1 , (5.4)

where l is odd and q > j1 > j2 > · · · > jl > 0.

Suppose that γ(s1n) = γ(s2n), where s1, s2 ∈ {1, . . . , k}. Then we have

s1n ≡ ±s2n (mod 2p). Since n is coprime to 2p we obtain s1 ≡ ±s2 (mod 2p).

Hence s1 ∓ s2 ≡ 0 (mod 2p). Since s1, s2 ∈ {1, . . . , p− 1}, it follows that s1 = s2.

Consequently, the numbers γ(n), γ(2n), . . . , γ(kn) are distinct and we may write

{γ(n), γ(2n), . . . , γ(kn)} = {a1, a2, . . . , ak},
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where p− 1 > a1 > a2 > · · · > ak > 1. Also, set ak+1 = 0.

Since n is odd, we have [γ(jn)] = [j], and (5.1) may be written

ψn(Vs) = θa1q(Ua1) + θa2q(Ua2) + · · ·+ θakq(Uak
) + θak+1q(Uak+1

). (5.5)

With j1, . . . , jl as in (5.3) and (5.4), define Taq, for each a ∈ {0, . . . , p−1}, by

Taq =

{
Vaq+j1 − Vaq+j2 + · · ·+ Vaq+jl

if [a] = [k],
Vaq+q−jl

− · · · − Vaq+q−j2 + Vaq+q−j1 if [a] 6= [k].

Then it can be checked that θaq(Ua) = Taq−T(a−1)q for all a ∈ {1, . . . , p−1}. Also,

θ0q(U0) = T0q. Thus, by (5.5),

ψn(Vs) = Ta1q − T(a1−1)q + Ta2q − T(a2−1)q + · · ·+ Takq − T(ak−1)q + Tak+1q.

If aj − 1 = aj+1 for some j ∈ {1, . . . , k} then we may cancel two adjacent terms in

this expression. After all such cancellations we obtain

ψn(Vs) = Tb1q − Tb2q + · · · − Tbd−1q + Tbdq, (5.6)

where d is odd and p− 1 > b1 > b2 > · · · > bd > 0.

For integers a and b where pq > a > b > 0, let N [a, b] denote the set of all

elements Y of Rpq that can be written in the form

Y = Vi1 − Vi2 + · · · − Vih−1
+ Vih

where h is odd and a > i1 > i2 > · · · > ih > b. To prove (i) it suffices to show

that ψn(Vs) ∈ N [pq, 0].

By the definition of Taq we see that Tbjq ∈ N [(bj + 1)q, bjq] for j = 1, . . . , d.

However, bjq > (bj+1 + 1)q, for j 6 d− 1. Therefore, by (5.6),

ψn(Vs) ∈ N [(b1 + 1)q, bdq] ⊆ N [pq, 0],

as required. �
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