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Abstract

It is shown that an algebra A can be lifted with nilpotent Jacobson radical
r = r(A) and has a generalized matrix unit {e;}; with each &; in the center of
A = A/r iff A is isomorphic to a generalized path algebra with weak relations.
Representations of the generalized path algebras are given. As a corollary, A is a
finite algebra with non-zero unity element over perfect field & (e.g. a field with
character zero or a finite field ) iff A is isomorphic to a generalized path algebra
k(D,,p) of finite directed graph with weak relations and dim Q < oo; A is a
generalized elementary algebra which can be lifted with nilpotent Jacobson radical
and has a complete set of pairwise orthogonal idempotents iff A is isomorphic to a

path algebra with relations.
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0 Introduction

It is well known that every elementary algebra is isomorphic to a path algebra of a finite
directed graph with relations (see [2]). In fact, every path algebra of a finite directed
graph with relations is also an elementary algebra. The results are very useful because all
representations of path algebras can be obtained easily. in [3] F.U. Coelho and S.X. Liu
introduced the concept of generalized path algebras to study other algebras. Recently,
it is proved in [4] that some finite-dimensional algebras over a field with character 0 are
isomorphic to generalized path algebras of finite directed graphs with weak relations.
However, to our knowledge, representations of the generalized path algebras and infinite-

dimensional generalized path algebras have been barely touched so far in the literature.


http://arXiv.org/abs/math/0402188v1

The aim of this paper is to give the structures and representations of generalized path
algebras of infinite directed graphs with weak relations. We study the infinite dimensional
algebras and generalized path algebras by using generalized matrix algebras introduced
in [7]. In fact, every generalized path algebra is a generalized matrix algebra. In section
1, we study the structure of generalized matrix rings. We find the relations among the
decomposition of a ring, the complete set of pairwise orthogonal idempotents (possibly
infinite many) and generalized matrix ring. This generalizes the theory about decomposi-
tion of rings. In section 2, we study the representations of the generalized path algebras.
In section 3, we characterize the generalized path algebras with weak relations by algebras
which can be lifted with nilpotent Jacobson radical.

We say that an algebra A can be lifted, if there exists a subalgebra A of A such that
A = A& r(A). By the famous Wedderburn-Malcev Theorem (see [6, Theorem 11.6 and
Corollary 11.6]), for every finite dimensional algebra A over field k with char £ = 0, A
can be lifted and r(A) is nilpotent. We shall see, in section 3, that every generalized path
algebra with weak relations can be also lifted and its Jacobson radical is nilpotent. In
that section we show that the converse also holds. That is, it is shown that an algebra
A is isomorphic to a generalized path algebra with weak relations iff A can be lifted
with nilpotent Jacobson radical 7(A) and has a complete set {e;; }; of pairwise orthogonal
idempotents with each &; in the center of A = A/r. As a corollary, A is a finite algebra
with non-zero unity element over field £ iff A is isomorphic to a generalized path algebra
k(D, €, p) of finite directed graph with weak relations and the dimension of €2 is finite; A
is a generalized elementary algebra which can be lifted with nilpotent Jacobson radical iff

A is isomorphic to a path algebra with relations.
Preliminaries

Let k be a field. We first recall the concepts of I';-systems, generalized matrix rings
(algebras ) and generalized path algebras. Let I be a non-empty set. If for any i, j,1, s €
I, A;; is an additive group and there exists a map p;;; from A;; x A to A, (written
piji(z,y) = xy) such that the following conditions hold:

(i) (x4+y)z=2z+yz, wlx+y)=wr+ wy;

(ii) w(zz) = (wx)z,
for any x,y € A;j, 2 € Aj,w € Ay, then the set {A;; | 4,7 € I} is al'; -system with index
I.

Let A be the external direct sum of {A;; | 7,j € I}. We define the multiplication in A

as

Ty = {Z %k%j}
k

for any x = {x;;},y = {y;;} € A. It is easy to check that A is a ring (possibly without



the unity element ). We call A a generalized matrix ring, or a gm ring in short, written as
A=Y {A,;|i,j € I}. For any non-empty subset S of A and i,j € I, set S;; = {a € A;; |
there exists © € S such that z;; = a}. If B is an ideal of A and B = Y {B;; | i,j € I},
then B is called a gm ideal. If for any 4, j € I, there exists 0 # e; € A;; such that z;;e;; =
eiiT;; = x;; for any z;; € A;;, then the set {e;; | ¢ € I} is called a generalized matrix unit of
I'/-system {A;; | 7,7 € I}, or a generalized matrix unit of gm ring A = > {A;; | i,j € I},
or a gm unit in short. It is easy to show that if A has a gm unit {e; | ¢ € I}, then
every ideal B of A is a gm ideal. Indeed, for any z = >, ;c; x5 € B and i, jo € I, since
CivioLCjojo = Tigjo € DB, we have B, ;, € B. Furthermore, if B is a gm ideal of A, then
{Ai;/Bij | i,7 € I} is a I'j-system and A/B = Y {A;;/B;; | i,j € 1} as rings.

If for any 4, 7,1, s € I, A;; is a vector space over field k and there exists a k-linear map
piji from A;; @ Ay into Ay (written py5(z,y) = wy) such that z(yz) = (vy)z for any
x € A,y € Aji,z € A, then the set {A;; | 4,5 € I} is a [';- system with index I over
field k. Similarly, we get an algebra A = > {A;; | i,j € I}, called a generalized matrix
algebra, or a gm algebra in short.

Assume that D is a directed (or oriented) graph (D is possibly an infinite directed
graph and also possibly not a simple graph) (or quiver ). Let [ = Dy denote the vertex
set of D and D; denote the set of arrows of D. Let €2 be a generalized matrix algebra over
field k& with gm unit {e;; | ¢ € I}, the Jacobson radical 7(€2;) of €; is zero and €;; = 0 for
any ¢ # j € I. The sequence T = @ Tiyi, @iy Tiy iy CiyTinis * * * Ti,_y1in i, 15 called a generalized
path (or Q-path) from ig to i, via arrows Ty, , Tiyis, Tigig, * * > Tin_rin, Where 0 # a;, € € ;.
for p = 0,1,2,---,n. In this case, n is called the length of x, written /(x). For two Q-
paths @ = @i, Tipi, Qi) Tiyio Qin Tigiy * ** Tipy_1in iy DA Y = 050 Y5051 051 Vi1 jobisVinis = * Yjm1im Vi

of D with i,, = jo, we define the multiplication of x and y as

TY = QigTigiy Oy Ty iy Qi Tigiy ** * Ty, (A, Do )Yjorjs Yinga 0n Yings =+ * Y 1dim O (*)

For any i, j € I, let Aj; denote the vector space over field k with basis being all Q2-paths

from 7 to j. B;; is the sub-space spanned by all elements of forms:

(1) (2) (m)
igTigiy Giy Tiyin @iy =+ Tiy_yi, (@) + a5, + o+ @ )iy iy i,y

m
0]
- Z Qg Tigiy Aiy Liqig QigLigiz = * Lig_1is Qi Ligigyr * " Lig_ 145 Gins
=1

. .. . l
where ig = 4,1, = j,a()

1s

€ Qi ai, € Qiiy, Tii,, 1S an arrow, p = 0,1,---,n, t =
0,1,---,n=1,1=0,1,---,m,0 < s <n,nand m are natural numbers. Let A;; = Aj;/Bj;,
written [a] = o+ B;; for any generalized path a from i to j. We can get a k-linear map
from A;; ® Aj to Aj; induced by (x). We write a instead of [a] when a € €. In fact,

€] =2 Q as algebras for any ¢ € I. Notice that we write e;z;; = z;5e;;, = x;; for
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any arrow z;; from i to j. It is clear that {A;; | i,j € I} is a I'/-system with gm unit
{esi | i € I}. The gm algebra Y-{A;; | i,7 € I} is called the generalized path algebra, or
()-path algebra, written as k(D, Q) (see, [2, Chapter 3] and [3]). Let J denote the ideal
generated by all arrows in D of k(D, ). If p is a non-empty subset of k(D,(2) and the
ideal (p) generated by p satisfies J* C (p) C J?, then k(D,Q)/(p) is called generalized
path algebra with relations. If J* C (p) C J, then k(D,)/(p) is called generalized path
algebra with weak relations. If ; = ke; for any ¢ € I, then k(D, () is called a path
algebra, written as kD. If Dy and D; are finite sets, then D is called a finite directed
graph.

Let r(A) denote the Jacobson radical of ring A. Let |S| denote the number of elements
in set S. Let 6;; denote the Kronecker ¢-function. Rings and algebras are possible without

unity elements.

1 Decomposition of generalized matrix rings

In this section, we study the structure of generalized matrix rings. We find the relations
among the decomposition of a ring, the complete set of pairwise orthogonal idempotents
(possible infinite many) and generalized matrix rings. This generalizes the theory of direct

sum decomposition of rings in [1].

Definition 1.1 If A is an algebra and {e; | i € I} C A such that the following
conditions are satisfied (i) e;ej; = 0ijeq for any i,j € I; (i) for any x € A, there exists
a finite subset F' of I such that (X ;cp ei)r = x(Xicp i) = x; (iii) e;; # 0 for any i € I,
then {e; | i € I} is called the complete set of pairwise orthogonal idempotents of A with
index I. Moreover, if each e;; is a primitive idempotent (i.e. it can not be written as a
sum of two non-zero orthogonal idempotents), then {e; | i € I} is called a complete set of

pairwise orthogonal primitive idempotents of A with index I

Remark : (i) Let {e;; | ¢ € I} be a complete set of pairwise orthogonal idempotents of
A. Assume that © € A and finite subset /' C I such that x = (X;cp ei)r = v(Xiep €ii) =
x. If F’ is a finite subset of I and F C F’, then x = (X,cp €i)r = x(Xicp €ii) = .
Indeed,

(Z eii)r = (Z e@((Z €ii)T)

i€ F’ ieF’ 1€l

= (( Z en-)(Z €ii))T

i€F’ i€F
iEF
= X.



Similarly, (> ;cp €:) = .

(ii) Let I be a non-empty set and A a ring with additive sub-groups A;; for any
ih,jel. It A=3%,,c
then {A;;,] 4,j € I} is a I'; -system. Let A’ denote the gm ring >{A;; | i,j € I} of

I'j-system {A;;,|4,j € I}. Moreover, if A;; has a non-zero unity element e;; for any ¢ € I,

1 A;j as additive groups and A;;A, C 0,54, for any 4,7,s,t € I,

then A is the inner direct sum of {A;;,|4,j € I} as additive groups and A’ is isomorphic
to A under canonical isomorphism ¢ by sending {z;;} to >, jc; xi; for any {z;;} € A"
In this case, A is called the inner gm ring of I'j-system {A;;,| i, € I}, also written
A=3%{A;,|ij € I}. If weview each element in A;; as one in Y {A4;; | i,j € I}, then
every gm ring can be viewed as an inner gm ring. Similarly, every inner gm ring can be

viewed as a gm ring.

Theorem 1.2 A has a complete set {e;; | i € I} of pairwise orthogonal idempotents
with index I iff A = Y {A;; | i,7 € I} is a gm ring with gm unit {e; | i € I} and
Aij = e Aejj for any i,j € 1.

Proof. The sufficiency is obvious. We now prove the necessity. Assume that A has a
complete set {e;; | ¢ € I} of pairwise orthogonal idempotents with index I. Let A;; =
ei;Aejj for any 7,5 € I. It is easy to check A;;Ag C d;,A; for any 4, j,s,t € I. Thus A is
an inner gm ring of {4;, | ¢,7 € I} with gm unit {e; | i € [}. O

This theorem implies that an algebra A has a complete set of pairwise orthogonal

idempotents iff A is a gm ring with gm unit.

Proposition 1.3 (i) If A has the non-zero unity element u then A has a complete set
{eii | 1 € I} of pairwise orthogonal idempotents with finite index I and > ;c; e = u.

(ii) If ring A has the non-zero unity element u and a complete set {e; | i € I} of
pairwise orthogonal idempotents with index I, then I is a finite set and Y ;cr e;; = u.

(iii) If A is a finite dimensional algebra over field k, then A has the non-zero unity

element iff A has gm unit.

Proof. (i) Let I = {1} and u = ey;.

(ii) Since A has a gm unit {e;;};, by Theorem 1.2, A =Y {A4;; | i,j € I} is a gm ring
with gm unit {e;}; and A;; = e Aej; for any i.j € I. Let u = 3, ;¢ us; with finite subset
F of I and u;; € A;j for any 4,j € F. Since u is the unity element of A, A;; = 0 for any
1€ ForjgF. Thus F = [ since e; # 0 for any ¢ € . For any s € [ and x,s € Ay, since
UTgs = Tgs and Ty = Xgg, We have UgXes = Tos and TosUgs = Tos. This implies ugs = €44
for any s € F. Next we show u;; = 0 when ¢ # j. On the one hand, w;u = ;. On the
other hand, u;u = Y, u;u;s. Consequently, u;; = 0 for any 7 # j.

(iii) If A has gm unit {e;}7, then I is finite since A is finite dimensional. It is clear

that u = Y, € is the unity element of A. The converse follows from (i). O
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Proposition 1.4 If A is a left (or right ) artinian or noetherian ring with gm unit
{ei}r, then I is finite and Y ;c; ey is the unity element of A.

Proof. By Theorem 1.2, A = > {A;; | i,j € I} with A;; = e;;Ae;; for any i,j € 1.
If I is infinite, then there exists a infinite sequence iy,io,--+,%,,--- in I. Let A; =
Aeii, Ay = Ay + Aeiyiy, o Anpr = An + A iy, Obviously Ay C Ay C -+ C
A, C .-+ is an ascending chain of left ideals of A. Let By = ;o7 4, Aejj, By =
Yjeljtinis A€y s Buist = el i i, mings A€y for any natural number n. Obviously,
B1 D By D---D B, D ---is an descending chain of left ideals of A. We get a contradic-
tion. Consequently, [ is finite. O

Let AI'; denote the category of all I'; -systems with gm unit, the morphism of two
objects from {A;; | i,j7 € I} with gm unit {e;}; to {B;; | i,j € I} with gm unit
{e;}1 is a set {f;;}1, where f;; is an additive group homomorphism from A;; to B;; with
fij(xy) = fis(z)fs;(y) and fii(e;) = e); for any 4,j,s € I,x € A,y € A Let GM;
denote the category of all generalized matrix algebras with index I and gm unit, the
morphism between the two objects is gm homomorphism. A gm homomorphism of two
objects from A = Y {A;; | 1,7 € I} with gm unit {e;;}; to B =>{B;; | i,j € I} with gm
unit {e;}; is a ring homomorphism f : A — B such that f(A4;;) C B;; and f(e;) = €,

for any 7,7 € I.
Proposition 1.5 AI'; and GM; are two equivalent categories.

Proof. Let H : AF[ — gM[ by H({Aw}j) = Z{AZJ | Z,j € I}, H({flj}l) = @i’jelfij
for any morphism {f;;}; from {A;; | 7,5 € I} to {B;; | i,j € I}. Let G : GM; — Al';
Obviously, HG = id and GH = id. O

2 Representations of generalized path algebras
In this section, we study representations of the generalized path algebras.

Definition 2.1 Let {A;; | i,j € I} be an I';-system with gm unit {e;};. For any
i,j € 1, M; is an additive group and there exists a map ¢;; from A;; x M; to M; (written
¢ij(a,x) = ax) such that the following conditions are satisfied:

(i) a(x +y) = ax + ay and (a + b)x = ax + bu.
(ii) (ca)x = c(ax).
(111) ejjx = x
For any xz,y € Mj,a,b € A;;,c € Ay, then {M; | i € I} is called an {A;;}r- module

system.



Let Rep {A;;}; denote the category of {A;;};-module systems. The morphism of two
objects {M;}; and {N;}; is a collection {f;}; such that f; is an additive group homomor-
phism from M; to N; with f;(a;;x;) = a;; fj(z;) for any a;; € A;j, x; € M;.

An A-module is called a local unitary A-module if for any z € M there exists u € A

such that ux = x.

Lemma 2.2 If A is a gm ring with gm unit {e;;};, then M is a local unitary A-module
iff M is an A-module with AM = M.

Proof. Assume AM = M. For any x € M, there exist a® € A, 2P € M such
that x = 37, a® @), There exists a finite subset F of I such that a® € >ijer Aij
for p = 1,2,---,n. Let u = Y,cpe;. We have that uz = u(Y,_y,..,a?2®) =
D op=12m a®z® = g Therefore, M is a local unitary A-module. Conversely, it is
clear that AM = M when M is a local unitary A-module. O

Lemma 2.3 Let A be a gm ring with gm unit {e;;};.

(i) If M is a local unitary A-module, then {M; | i € I} is an {A;;}r-module system
with e; M = M.

(11) If {M;}r is an {A;;}r-module system, then the external direct sum M of {M;};
becomes a local unitary A-module under module operation ax = {Y scya;sxs}r for any
a={a;}r €A v={z;}; € M.

Proof. (i) If M is a local unitary A-module. Set e;; M = M; for any i € I. It is clear
that {M,;}; is an {A;;};-module system. Indeed, for any x,y € M;,a,b € A;; and ¢ € Ay,
we have that a(z +y) = arv + ay, (a + b)x = ax + bz, (ca)r = c(ax) and ej;x = .

(ii) It is clear. Indeed, for any a = {a;;}1,b = {b;j}; € A and v = {z;}; € M, it is
easy to check (ab)z = a(bz). Since there exists finite subset I of I such that x = >,cp 2,
we have that (3 ;cr €i)x = x. Thus M is a local unitary A-module. O

Let 4MLU denote the category of local unitary A-modules. every morphism of two

objects M and N is a homomorphism of A- modules.

Theorem 2.4 Let A=Y {A;; | i,5 € I} be a gm ring with gm unit. Then Rep {A;;}1
and AMLU are equivalent.

Proof. Let H : Rep {A;;}1 — aMLU by H{M;};) = >{M; | i e I}, H{f:}1) =
@ier fi for any morphism {f;}; between two objects {M;}; and {V;};. Let G : AMLU —
Rep {A;;}r by G(M) = {M,}; with M; = e; M for any i € I. G(f) = {fi}; with f; = f|um,
for any morphism f between two objects M and N. It is clear HG = id and GH = id. O

If A=5{A;|ij € I}isagm algebra over field k£ with gm unit {e;};, we can

similarly define {A;;};-module systems as follows.
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Let {A4;; | 4,7 € I} be a I'; -system over field k£ with gm unit {e;};. If for any
i,7 € I,M; is a vector space and there exists k-linear map ¢;; from A;; ® M; to M,
(written ¢;;(a,x) = ax) such that the following conditions are satisfied:

(i) (ca)x = c(ax).

(ii) ejjx = x,
forany z € M;,a € A;j,c € Ay, then {M,; | i € I} is called an {A4;;};- module system. We
still use the two notations Rep {A;;}; and 4MLU to denote the corresponding categories.

Theorem 2.5 Let A = Y {A;; | i,j € I} be a gm algebra with gm unit. Then Rep
{A;;}1 and AMLU are equivalent.

For a generalized path algebra k(D, (2, p) with weak relations, let P = k(D, ), N =
(p) and @ = P/N. It is clear that the generalized path algebra k(D, (2, p) with weak
relations is a gm algebra, so its representation corresponds to {(;;};-module system.
That is, Rep {Q;;}r and g M LU are equivalent. However, we have a simpler category.

A representation of (D,Q) is a set (V, f) =: {V;, fo | Vi is an unitary €;;-module,
fo Vi = Vjis a k-linear map, i,j € I, a is an arrow from j to ¢}. A morphism
h:(V,f) — (V', f') between tow representations of (D, ) is the collection {h;}; such
that h; : V; — V/ is a k-linear map and h; f, = fLh; for any arrow o : i — j and 7,5 € 1.
Let Rep (D, 2) denote the category of representations of (D, (2).

Lemma 2.6 Let P = k(D,Q) and Q = k(D,Q, p).

(1) If (V, f) is an object in Rep (D,Q), then {V;}; is a {P;;};-module system un-
der operation « - vi, = @i, + fu,, (@i * (fay s, S (@i, - 03,))) for any Q-path o =
@iy Tigiy Wiy Tiviy * ** Tiyy_1inGi, from ig to i, and v;, €V .

(i1) If {Vi}1 is a {Pi;}r-module system, then (V, f) is an object in Rep (D, Q) under

operation fy,. (v;) = xij - v; for any arrow x;; € Py and v; € V.
Proof. (i) It is sufficient to show that

(ap) v, = - (B zj,) (*)
for two - paths O = @iy Tigiy Ciy Tiyig Vi Tigig * * * Tiyy iy iy, and
ﬂ = joyjojlbjl yjleijijjs e yjmfljmbjm of D with &, = Jo-
When af # 0, ie. a;,b;, # 0, of is an Q-path. By definition, (*) holds. When
af =0, ie. a;,b;, =0, af is not an Q-path. Obviously the left side of (*) =0.
The rlght Side Of (*) = Q- (bJO ' fyj()jl (bjl : fyj1j2 (. o fyym,1j7yl (bim ) ,Uim))))
= G- f:vioil (ail ’ fmiliQ ( o
Joo, i (@i bio) « Fysos Oy - Fyyy G Fypn i (i = 3))))))
= 0.



Consequently, (*) holds.
(ii) It is obvious. O

Combining Lemma 2.6 and Theorem 2.5, we have
Theorem 2.7 Rep (D,Q) and praMLU are equivalent.

For a representation (V, f) in Rep (D, {2) and any element o € k(D,)), by Lamma
2.6 and Theorem 2.5, (V, f) can be viewed as k(D, 2)-module, so for any o € k(D, ), we
write f, : V' — V by sending = to o - x for any x € V. Let Rep (D, 2, p) denote the full
subcategory of Rep (D, )) whose objects are (V, f) with f, = 0 for each o € p.

Lemma 2.8 Let P = k(D,Q) and Q = k(D,Q, p).
(1) If (V, f) is an object in Rep (D, S, p), then {V;}; is a {Qi;}r-module system under
operation induced by operation of {P,;}- module system in Lemma 2.6.
(1) If {Vi}1 is a {Qij }r-module system, then (V. f) is an object in Rep (D, (2, p) under

operation fy,. (v;) = xij - v; for any arrow x;; € Py and v; € Vj.

Theorem 2.9 (i) Rep (D, S, p) and 0, MLU are equivalent.

(i) If D is finite (i.e. I is finite and the number of arrows between any two ver-
tewes is finite ), then f.d.Rep (D,Q, p) and f.d.xw0,MLU are equivalent. Here, f.d.Rep
(D, p) and f.d.kr0,,)MLU denote the full subcategories of finite dimensional objects

in the corresponding categories, respectively.

3 Generalized path algebras

In this section, we characterize the generalized path algebras with weak relations by some
algebras which can be lifted with nilpotent Jacobson radical.
If V=U®W as vector spaces and x € V', then there exist a € U and b € W such

that © = a + b. For convenience, we denote a and b by xy and xyy, respectively.

Lemma 3.1 Let A be an algebra and N an ideal of A. Then the following conditions
are equivalent:

(i) There exists a subalgebra A of A such that A = A® N as vector spaces.

(ii) The canonical homomorphism m : A — A/N is split in the category of algebras,

i.e. there exists an algebra homomorphism & : A/N — A such that 7§ = idy .

Proof. (i) = (ii). Define £ : A/N — A by sending &(x + N) = x4 for any = =
xa+axy € A with xy € A,xy € N. It is clear that ¢ is an algebra homomorphism and
€ =1d.

(ii) = (i). Obviously A = A& N with A = Im¢. O

We say that an algebra A can be lifted if A = A @ r(A) with subalgebra A.
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Lemma 3.2 Let A be an algebra, N an ideal of A and A a subalgebra of A. If A =
A®N, then A\/B = (A+B)/B& (N + B)/B for any ideal B of A with BC A or B C N.

Proof. For any v = x4 + a2y € A with x4 € A and zy € N, 2 =+ B =
(xa+B)+(xny+B) € A/Bwith (x4+B) € (A+B)/B, (xy+B) € (N+B)/B. This implies
that A/B = (A+ B)/B+ (N + B)/B. Assume B C A. then (A/B)N((N + B)/B) =0
and A/B=A/B & (N + B)/B. Similarly, when BC N, A/B=(A+ B)/B®& N/B. O

Lemma 3.3 Let A be an algebra, N a nilpotent ideal of A and A a subalgebra of A.
Assume A = A@® N as vector spaces. If {e;}r is a complete set of pairwise orthogonal
idempotents of A, then {e;}; C A.

Proof. We first show that if e is idempotent in A with e =e4 +ey and ey € A,eny € N,
then e, is idempotent. Indeed, since ee = e and N is an ideal of A, we have ejey +
(eaen + enen + enea) = €4 + ey, which implies that eqeq = €a.

Next we show that if e and f are pairwise orthogonal idempotents of A, then so are e
and fa. Indeed, since ef =0, i.e. eafa+ (eafnv +enfa+enfn) =0, we have eqfa = 0.
Similarly, faeq = 0.

We now show that each e;; € A by induction for m, where N™ = 0.

When m =1, N = 0. In this case, (e;;)a = €;; € A for any i € I.

Assume now that the claim holds when m < [ and we show that the claim also holds
when m = [+ 1. Let A = A/N'. By Lemma 3.2, A = (4 + N')/N'® N/N'. 1t is clear
{€;;}1 is a complete set of pairwise orthogonal idempotents of A/N'. By the inductive
assumption, é; € A, i.e. (e;)y € N for any i € I.

For any x € A, there exists a finite subset F' of I such that

r= (D ey and za= (D ei)za. (1)

1eF i€F

0=0 (ei)n)za and x4 =D (e5)a)za. (2)

i€F i€F
Since (X;ep(es)n)ry € N =0, (Xier(es)n)ry = 0. By (1) and (2),
IN = (Z(%‘)A)IN- (3)
ieF

Combining (2) and ( 3), we have that © = (3 ;ep(ei)a)z. Similarly, z = x(Xcp(€i)a)-
Consequently, {(e;;)a}s is a complete set of pairwise orthogonal idempotents of A. Since
ei; and (e;;)4 are the unity element of Ay, e; = (e;;)4 € A for any i € [. O

By Lemma 3.3, we have immediately:
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Lemma 3.4 Let A be an algebra with non-zero unity element u, N a nilpotent ideal of
A and A a subalgebra of A. If A =A@ N as vector spaces, then u € A.

Lemma 3.5 Let A be a subalgebra of A and A = A& r with nilpotent Jacobson radical
r=7r(A). Let B={r,|ue U} Cr. If B= {7, |u € U} generates v/r* as A/r-modules,
then AU B generates A as algebras.

Proof. Since r nilpotent, there is m such that »™ = 0. We use induction on m. It
is obvious that » = 0 and A = A when m = 1. When m = 2, we have that > = 0 and
r =r/r?. Thus B = B generates r as A/r-modules. That is, r = ¥ ,cp ATy = Suer ATy
and A\=A+r=A+,cy Ar,. This proves our claim for m = 2.

Assume now that the claim holds when m < [ ( where [ > 2) and we show that the
claim also holds when m = [+ 1. Let W denote the subalgebra generated by AU B as
algebras in A. For A = A/r!, by Lemma 3.2, A = (A +7r!)/rt @ r/rl. It is clear r(A/r!) =
r/rl. Indeed, obviously r/rt C r(A/r!). Since (A/rY)/(r/rt) = A/r, r(A/rY) C r/rh.
Thus r(A/r!) = r/rl. Let ¢ : A/r? — (A/r!)/(r?/r!) be the canonical isomorphism, i.e.
Sz +1r?) = (z+ 1) + (r?/r!) for any x € A. See

(r/r))/ (/) = o(r/r?)
— ¢(Z (Ar,) +7%) by assumption

uel
= (D _(Ary+ Y + (2 /1.
wel

Therefore, {r, +7' | u € U} generates (r/r!)/(r?/r!) as (A/r!)/(r/r')-modules. By induc-
tion assumption, we have A/rl = (W + ) /rl.

Let © € A. There is y € W and z € r! such that # —y = z. Since [ > 2, there exist
a; €rt™l By erfori=1,2---,nsuch that 2 = 3 ;3. Again using A/r! = (W +7!) /7,
we have that there are a;,b; € W,u;,v; € r! such that a; = a; + u; and 5; = b; + v;, so
a; =a; —u; € v Vand b, = 3 —v; € r for any i = 1,2,---,n. By computation and
r*1 =0, we have x —y € W and x € W. We complete the proof. O

Recall that J is the ideal generated by all arrows in D of k(D, Q) and J is the ideal
J/(p) of k(D, 2, p).

Lemma 3.6 If J' C (p) for some t, then r(k(D,Q, p)) = J.

Proof. Let P = k(D,Q) and Q = k(D,Q, p). Obviously Q/J = P/J = S{P,;/J;; |
i,j € I}. It is clear that P;; = J;; when i # j and P;;/J; = Q. Thus r(k(D,, p)) C J.
Conversely, since J* C (p) for some ¢, J is nilpotent and J C r(k(D,, p)). O
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Lemma 3.7 Let A be an algebra.

(i) If f is an algebra homomorphism from k(D,Q) to A, then f|q is an algebra ho-
momorphism and f(z;;) = f(eu)f(xi;) = f(xi;) f(e;;) for any arrow z;; from i to j and
ijel.

(i) If f is a map from Q& Dy to A and f|q is an algebra homomorphism with
f(xi;) = flew)f(zij) = f(xi;)f(ej;) for any arrow x;; from i to j and i,j € I, then
there exists (unique) algebra homomorphism f : k(D,Q) — A such that floep,= f.

Proof. (i) It is obvious.

(ii) Let P denote the generalized path algebra k(D,(2). For any 4,7 € I and gener-
alized path a = a;,@igi, iy Tiyip =+ - Qi Tiyy 10, @i, from ig = i to i, = j, define f;;(a) =
faiy) f(@igiy) fai) f(@iyin) - - flai, ) f(zi, i) f(@i,). We get a k-linear map f;; from P;
to A. Now we show

fis(aB) = fij(a) f5(8) (%)
for two €)- paths O = @iy Tigiy Ciy Tiyig Vi Tigig * ** Tiyy iy Vi, and
B = 03oYojr0ir Y1203 Ysoss = Yim—rjm Ui OF D With iy = jo = j, 20 = ¢ and jp, = 5. When
af # 0, ie. a;,bj, # 0, af is an Q-path. By definition, (*) holds. When af = 0, i.e.
a;,b;, =0, af is not an 2-path. Obviously the left side of (*) =0.

The rlght side of (*) = f(aio)f(xioh)f(ah).f(xhiz) e f(a’in—l)f(zin—lin)f(ai7l)
f(bjo)f(yjojl)f(bjl)f(yj1j2)f(bj2>f(yj2j3) e f(:yjmfljm)f(bj )
=0

Consequently, holds. For any i,j € I, f;; naturally becomes a k-linear map from P;;
to A with fij(xisysj) = fis(xis>fsj(ysj> and j(xzs) = f(em>f(xzs_) = f(xis)f(ess) for any
x;s € Pis and ys; € Py and 4,s,5 € I. Let f = @; jerfi;- This f fulfills our requirement.
O

Now we give our main theorem.

Theorem 3.8 Algebra A can be lifted with nilpotent Jacobson radical v = r(A) and has
gm unit {e};}; with each €}, in the center of A = A/r iff A is isomorphic to a generalized

path algebra with weak relations.

Proof. Assume that A = A @ r with nilpotent Jacobson radical r = r(A) and
subalgebra A. By Lemma 3.3, ¢}, € A for any i € I. Let e;; = e, = e, + 7 in A/r
for any ¢« € I. By Lemma 3.1, we have that 7 = id, where 7 : A — A/r(A) is the
canonical homomorphism and & : A/r(A) — A is an algebra homomorphism by defining
E(x+71)=x4 forany x = x4 + 2, € A with x4 € A and z, € r. Let Qi = e;(A/7)ey;.
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Obviously {e;}; is gm unit of Q and r(Q2) = 0. For any i,j € I, let B;; C ejre}; = ry;
such that By; =: {Z =z +71? | x € B;;} Cr/r? is the k-basis of ef;(r/r?)e]; = e;(r/r?)e;;.

We now construct a generalized path algebra k(D, 2). Let I be the vertex set of D and
B;; all of arrows from i to j. Next we define an algebra homomorphism ¢ : k(D, ) — A
by ¢la= ¢ and ¢(z) = x for any arrow x from ¢ to j. Indeed, since {(e;;) = el;, we have
p(wi5) = 2y and @(e)p(xi5) = §(€i)p(Tij) = €;xi; = wi5, 50 ©(245) = p(ew)p(wi;) for any
arrow z;; from ¢ to j and 4, j € I. Similarly, p(z;;) = ¢(z;;)p(e;;) for any arrow z;; from i
tojandi,j € I. By Lemma 3.7, ¢ can become an algebra homomorphism from k(D, ) to
A. Since By; is a k-basis of e;(r/r?)e;; for any i,j € I and 7/r* = 3, jr eui(r/r%)ej;, v/1?
is generated by U; jerBij as A/r-modules. By Lemma 3.5, A is generated by AU(U; jerBij)
as algebras. This proves that ¢ is surjective.

We now consider N =: kerp. Assume 7' = 0. Since ¢(J) C r, ¢(J*) = 0. Thus
J! C N. For any x € keryp, obviously, there exist a € Q and a € J such that z = a + a.
Thus 0 = ¢(z) = ¢(a) + ¢(z) = £(a) + ¢(x). Considering ¢(J) Crand A = A r, we
have a = 0. J* C N C J has been proved.

Conversely, assume that A is a generalized path algebra k(D, 2, p) with weak relations.
Let P =k(D,Q),Q = k(D,Q,p) and N = (p). Since P = Q& J and (p) C J, by Lemma
3.2, we have that @ = P/(p) = Q/(p) ® J/(p). By Lemma 3.6, the Jacobson radical
r(Q) = J. Thus @ can be lifted. r(Q)! = J' = 0 since J® C N. Since {e;}; is a
complete set of pairwise orthogonal idempotents of P, {e; + N}; is a complete set of

1 ¢ _
pairwise orthogonal idempotents of Q). Obviously, Q = P/J = Q/J as algebras and
Ba¢1(ei;) = (e + N) + J for any i € I. Since e;; is in the center of Q, (e + N) + J is in
center of Q/.J for any i € I. O

Corollary 3.9 A can be lifted with nilpotent Jacobson radical and with non-zero unity
element iff A isomorphic to a generalized path algebra with one vertex and with weak

relations

Proof. The sufficiency follows from Theorem 3.8 and its proof. We now show the
necessity. Let u be the unity element of A. Obviously, {u} is a gm unit of A and @ is in
the center of A = A/r(A). By Theorem 3.8 and its proof, A isomorphic to a generalized
path algebra k(D, (2, p) with one vertex and with weak relations. O

Lemma 3.10 Let A = A & r with subalgebra A and with nilpotent Jacobson radical
r=r(A). If A has the non-zero unity element u and {€;}; is a complete set of pairwise
orthogonal idempotents of A = A/r, then {(ei;) a}1 is a complete set of pairwise orthogonal
idempotents of A.

Proof. Let £ : A/r — A by sending = + r to x4 for any z € A. Since ¢ is an algebra

homomorphism, we have that {(e;)a}s is a set of pairwise orthogonal idempotents. By
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Proposition 1.3 (ii), I is finite and @ = Y ;c;€;. By Lemma 3.4, v € A. Thus u =
Sicr(eii)a and {(e;)a}s is a complete set of pairwise orthogonal idempotents of A. O

It is well known that, for any algebra A, if A/r(A) is a left (or right) artinian algebra
with non-zero unity element, then, by Wedderburn-Artin Theorem, A/r(A) = B; & By &
-+-@ B, as algebras and B; is a simple subalgebra of A/r(A) forany i € I = {1,2,---,n}.
The number 7 is called the Wedderburn-Artin number of A, written as ny a(A). If A/r(A)

is not an artinian algebra with unity element, then we write ny 4(A) = occ.

Corollary 3.11 (i) If k(D,$, p) is a generalized path algebra with weak relations, then
Dol < mwa(k(D, 2, ).

(i) Let A can be lifted with nilpotent Jacobson radical r and with non-zero unity
element. If A\/r = Bi®By®- - -@® B, as algebras and B; is a non-zero subalgebra of A/r(A)
foriel={1,2--- n}, then A isomorphic to a generalized path algebra k(D,<, p) with
weak relations and Q; = B; fori € I = Dy.

(iii) Let A can be lifted with nilpotent Jacobson radical r and with non-zero unity
element. If A/r(A) is artinian, then for any natural number m < nya(A), A isomorphic

to a generalized path algebra k(D,Q, p) with weak relations and | Do|= m.

Proof. (i) Let P = k(D,Q), N = (p) and Q = P/N. If Q/r(Q) is artinian with unity
element, then, by Wedderburn-Artin Theorem, Q/r(Q) = B; ® By @ - - - @ B,, as algebras
and B; is a simple subalgebra of Q/r(Q) for any i € {1,2,---,n}. It is clear that

DiciQi E B ® By ®---® B, as algebras.
This implies that
@il =B ® By, ®---@® B, as algebras ,

where B is a simple subalgebra of Q for i = 1,2,---,n. Considering B}, B),---, B!, are
simple subalgebras, we have that each ; is a sum of some of {Bj, BS,---, B/ }. Thus
=Dyl n = nwa(Q).

If @/r(Q) is not an artinian algebra with the unity element, obviously |Dy|< ny a(Q)
since ny 4(Q) = oo.

(ii) Let A = A @ r with subalgebra A and e; be the unity element of B; for any i € I.
Obviously, {e;;}1 is a complete set of pairwise orthogonal central idempotents of A/r. Let
el; € A such that €, = e; for any i € I. By Lemma 3.10, {(e};)4}; is a complete set of
pairwise orthogonal idempotents of A. By Theorem 3.8 and its proof, A is isomorphic to
k(D,<Q, p) with weak relations and €; = B; for i € I = D,

(iii) By Wedderburn-Artin Theorem, A/r(A) = B1® By & - - - & B,, as algebras and B;
is a simple subalgebra of A/r(A) for any ¢ € {1,2,---,n} with n = nya(A). Let B! = B;
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fori=1,2,---;m—1and B, = B, +---+ B,,. Obviously, A/r(A) =B @& B,®---® B},
as algebras. By (ii), A is isomorphic to k(D, €, p) with weak relations and |Dy|= m. O

Corollary 3.12 A is isomorphic to a generalized path algebra with weak relations when
one of the following conditions holds:

(i) A is a finite dimensional algebra with non-zero unity element over a perfect field k
(e.g. the character of k is zero or k is a finite field ).

(i) A is a finite-dimensional separable algebra with non-zero unity element.

(iii) A is an algebra over a field k with non-zero unity element and nilpotent Jacobson
radical, and sup{n | H}(A, M) # 0 for some A-bimodule M} < 1 (see [6, Definition
11.4]).

Proof. It follows from the famous Wedderburn-Malcev Theorem (see [6, Theorem
11.6 and Corollary 11.6]) that A can be lifted. We complete the proof by Corollary 3.9.
O

Corollary 3.13 Let k be a perfect field.

(i) A is a finite dimensional algebra with non-zero unity element iff A is isomorphic to
a generalized path algebra k(D,Q, p) of finite directed graph with weak relations and with
dim ) < 0.

(ii) If A is a finite dimensional algebra with non-zero unity element over field k, then
A is isomorphic to a generalized path algebra k(D, €Y, p) of finite directed graph with weak
relations and Q;; = B; for anyi € I ={1,2,---,n}. Here A\/r = By ® By ®---® B, as
algebras and B; is a simple subalgebra of A/r for any i € I.

(i3i) If A is a finite dimensional algebra with non-zero unity element over field k, then
for any natural number m < nya(A), there exists a generalized path algebra k(D, 2, p)

with weak relations and |Dy|= m.

Proof. (i) A is a finite dimensional algebra with non-zero unity element over field
k, then A is isomorphic to a generalized path algebra of finite directed graph with weak
relations and dim 2 < oo by corollary 3.12 and the proof of Theorem 3.8. Conversely,
assume A = k(D, €, p) is a generalized path algebra of finite directed graph with weak
relations. Let P = k(D,Q), Q = k(D,Q, p) and N = (p). For any i,j € I, ();; is spanned
by {[a] + N | a is a generalized path from i to j with I(«) < t} since J* C (p). However,
{[e] | « is a generalized path from ¢ to j with I(«) < t} is spanned by finite elements
since () is finite dimensional. Consequently, @ is finite dimensional.

(ii) By [6, Corollary 11.6], A can be lifted. Obviously the Jacobson radical r is nilpo-
tent. By Wedderburn-Artin Theorem, A/r = B; @ By @ - - - & B, as algebras and B; is a
simple subalgebra of A for any i € I = {1,2,---,n}. Using Corollary 3.11(ii), we complete
the proof.
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(iii) It follows from Corollary 3.11(iii) and [6, Corollary 11.6]. O
An algebra A over field k is called a generalized elementary algebra if A/r(A) = @;c;Bj;
as algebras with B;; = k for any i € I. A finite dimensional generalized elementary algebra

with unity element is called an elementary algebra.

Corollary 3.14 A is a generalized elementary algebra which can be lifted with nilpotent
Jacobson radical r = r(A) and has a complete set of pairwise orthogonal idempotents iff

A is isomorphic to a path algebra with relations.

Proof. The sufficiency follows from Theorem 3.8. We now show the necessity. Assume
that A = A®r and A/r = @;crke;; as algebras, where A is a subalgebra of A and r is the
Jacobson radical of A. Obviously, {€;;}; is a complete set of pairwise orthogonal central
idempotents of A = A/r. Let £ : A/r — A by sending x + r to x4 for any x € A. Since
¢ is an algebra homomorphism by Lemma 3.1, we have that {(e;;)a}s is a set of pairwise
orthogonal idempotents. However, A = (3;c; k(ei;)a) + 7. For any x € (X,c; k(ei)a) N,
there exist a; € ksuch that x = Y,c; ai(e;)a. Since 0 =7 =Y ,; i(es) 4, we have o = 0
for any ¢ € I. This implies z = 0 and A = (X,c; k(ei)a) @ r. Since (X ,cr k(ei)a) C A,
Yierk(ei)a = A

Let {el;}; be a complete set of pairwise orthogonal idempotents of A. By Lemma 3.3,
{el;}1 CA=crk(ei)a. Since {e;}1 is a complete set then so is {(e;;) a}s. By Theorem
3.8, A is isomorphic to a path algebra with weak relations.

It remains to show kerp C J?, where @ is the same as in the proof of Theorem 3.8.
For any x € keryp, obviously, there exist y € J, y € J? and z € J? such that x = y + 2.
Thus 0 = p(x) = ©(y) + ©(z) and p(z) € r2. Thus p(y) € 7. Since y € J and y &€ J?,
there are mutually different arrows wy, s, - -, z, such that y = 327, a,x, with a;, € k

forp=1,2,--- n. Notice x1, 22, - -, 2, € U; je1B;j, where B;; is the same as in the proof

of Theorem 3.8. See that 0 = ¢(y) = >0, a,pT, in 7/r?. However, {Z1,Ta, -, Tn} is
independent, so o, = 0 for p = 1,2, -+, n. This implies y = 0. Consequently, kere C J2
O

There exist generalized elementary algebras whose Jacobson radicals are not nilpotent.

Example 3.15 Let D be a directed graph with vertexr set I = N of natural numbers
and only one arrow from i to i+1 for any i € I. Path algebra kD 1is an elementary algebra
since its Jacobson radical r(kD) is J. However, (kD) is not nilpotent.

It immediately follows from Corollary 3.14 that

Corollary 3.16 A is an elementary algebra which can be lifted iff A is isomorphic to
a path algebra of finite directed graph with relations.
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Remark: In the above corollary, we require the condition that A can be lifted, but
this was not mentioned explicitly in [2, Theorem 1.9]. Assume that A/r = ©;—15... . k€
as algebras. It is clear that there exists a complete set {el, | i = 1,2,---,m} of pairwise
orthogonal primitive idempotemts of A. In the proof of [2, Theorem 1.9], the condition
m = n was used without proof. However, this condition implies that A can be lifted.
Indeed, since €/, is non-zero idempotent, ¢}, & r for any i = 1,2,---,n. Thus {e}; |
i =1,2,---,n} is linear independent in A = A/r. Consequently, A/r = @1 ké; =
@izl,g,..,nkezi. It is easy to check A = (Bi—12.... nke};) Br and (Biz1 2. nke};) is a subalgebra
of A. That is, A can be lifted. O

Finally we give gradations of gm algebras and generalized path algebras.

Proposition 3.17 (see [8, Proposition 2.1]) Let A = > {A;; | i,j € I} be a gm algebra
and G an abelian group. If there exists a bijective map ¢ : I — G, then A is an algebra
graded by G with Ag = 3 4)=p(j)+g Aij for any g € G. In this case, the gradation is called

a generalized matriz gradation, or gm gradation in short.

Proof. For any g, h € G, see that

AAw = (). Ay Y. Ag)
)=t S(s)=g()+h

Yo Ao At (ot)h).e
o(i)=b(D) +htg
C Ag+h-

N

Thus A =Y {A;; |i,j € I} =Y ec Ay is a G-grading algebra. O

Proposition 3.18 (i) If A =Y {A;; | i,j € I} is a gm algebra, then there exists an
abelian group G with the same cardinality as I such that A has a gm gradation by G.

(i) Let Q@ = k(D,, p) be a generalized path algebra with weak relations. If Dq is
finite, then Q) has a gm gradation by Z,, when m < Dy.

(i11) Assume that A can be lifted with nilpotent Jacobson radical r and with non-zero
unity element. If A/r(A) is artinian, then for any natural number 0 # m < nwa(A), A
has a gm gradation by Z,,.

() If A is a finite dimensional algebra with non-zero unity element over perfect field

k, then for any natural number m < ny (A), A has a gm gradation by Z,,.

Proof. (i) Let G; = 0 for any i € I and G = @;¢;G;. Obviously, I and G have the

same cardinality. By Proposition 3.17, we complete the proof.
(ii) Assume Dy = {1,2,--- . n}. Let e}, = ¢;; fori =1,2,---m—1,€ =e€pm+---+

enn- It is clear that {e} is a complete set of pairwise orthogonal idempotents of @) with
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€,; in the center of Q)/r(Q) since €;; is in the center of QQ/r(Q) for any i = 1,2,---m and
j=1,2,---.n. By Theorem 3.8, ) can be lifted. It follows from Theorem 3.8 that @) is
isomorphic to a generalized path algebra with weak relations and with m vertexes. By
Proposition 3.17, () has a gm gradation by Z,,.

(iii) It follows from Proposition 3.17 and Corollary 3.11 (iii).

(iv) It follows Corollary 3.13 and Proposition 3.17. O
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