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Abstract

We introduce the notion of semi-tilting modules and show that the
class of basic semi-tilting modules is closed under mutation. Using this,
we provide a partial answer to the Wakamatsu tilting conjecture.

In this note, using the notion of mutation, we will provide a partial answer to
the Wakamatsu tilting conjecture. Let R be a commutative noetherian complete
local ring and A a noetherian R-algebra, i.e., A is a ring endowed with a ring
homomorphism ϕ : R → A whose image is contained in the center of A and A is
a finitely generated R-module. A module T ∈ mod-A is said to be a Wakamatsu
tilting module if the following conditions are satisfied: (1) ExtiA(T, T ) = 0 for
i 6= 0; (2) A admits a right resolution A → T • in mod-A with T • ∈ K+(add(T ))
and ExtjA(Z

i(T •), T ) = 0 for all i, j ≥ 1 (see [24]). The Wakamatsu tilting
conjecture states that proj dim EndA(T )T = proj dim TA for every Wakamatsu
tilting module T ∈ mod-A (see [7]). Note that if both proj dim EndA(T )T
and proj dim TA are finite then T is a tilting module (see Definition 2.7) and
proj dim EndA(T )T = proj dim TA. Some partial answers to the conjecture for
artinian algebras were provided in [14], [17] and [25]. Unfortunately, this con-
jecture does not hold true for artinian rings (see [22]). This conjecture is related
to the generalized Nakayama conjecture (see [3]) and a conjecture stating that
inj dim ΛΛ = inj dim ΛΛ for every left and right noetherian ring Λ. If both
inj dim ΛΛ and inj dim ΛΛ are finite then inj dim ΛΛ = inj dim ΛΛ (see [26]).
In [13] Hoshino and the author provided a partial answer to the latter conjecture.

Mutation is an operation to construct an object from another object by
replacing a direct summand, which has its origin in the study of exceptional
collections of vector bundles on Pn (see [9] and [10]). In [21] Riedtmann and
Schofield introduced the method of mutation for tilting modules. In [20] Rickard
introduced the notion of tilting complexes which generalizes that of tilting mod-
ules, and provided a necessary and sufficient condition for two rings to be derived
equivalent. In [16] the author provided a sufficient condition to mutate tilting
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complexes. In [11] Happel and Unger showed that mutation for tilting modules
is closely related to the partial order of tilting modules defined by Riedtmann
and Schofield. This is also the case for semi-tilting modules. The notion of
semi-tilting modules is introduced as follows.

A module T ∈ mod-A is said to be a semi-tilting module if the following
conditions are satisfied: (1) ExtiA(T, T ) = 0 for i 6= 0; (2) A admits a right
resolution A → T • in mod-A with T • ∈ Kb(add(T )). Note that EndA(T )T is
a Wakamatsu tilting module of finite projective dimension. We will show that
the class of basic semi-tilting modules is closed under mutation, i.e., for a basic
semi-tilting module T = U ⊕ X ∈ mod-A with X indecomposable, if X is
generated by U then there exists a non-split exact sequence 0 → Y → E →
X → 0 in mod-A with Y indecomposable, E ∈ add(U) and U ⊕Y a semi-tilting
module (see Theorems 3.3 and 3.4). Note that for a basic semi-tilting module
T ∈ mod-A there always exists a direct summand X of T such that T ∼= U ⊕X
and X is generated by U unless T is projective (see Proposition 2.12). If X is
generated by U , then we will denote by µX(T ) the module U ⊕ Y . Following
[21], we will define a quiver K as follows: The vertices of K are isomorphism
classes of basic semi-tilting modules and there is an arrow V → W if W and V
are represented by basic semi-tilting modules T ′ and µX′(T ′) with X ′ a non-
projective indecomposable direct summand of T ′, respectively. ThenK contains
no oriented cycles (see Proposition 3.10). We will show that if the connected
component of K including a semi-tilting module T contains a tilting module
then T itself is a tilting module (see Theorem 3.11), i.e., the Wakamatsu tilting
conjecture holds true for such a Wakamatsu tilting module.

This note is organized as follows. In Section 1, we will recall several basic
facts and definitions. In Section 2, we will introduce the notion of semi-tilting
modules and show that every non-projective semi-tilting module T ∈ mod-A
admits a decomposition T = U ⊕ X with X ∈ gen(U) indecomposable. In
Section 3, we will show that the class of semi-tilting modules is closed under
mutation and provide a partial answer to the Wakamatsu tilting conjecture.

We refer to [8], [12] and [23] for basic results in the theory of derived cate-
gories.

The author would like to thank M. Hoshino for his helpful advice. This work
was supported by Grant-in-Aid for JSPS Fellows.

1 Preliminaries

Let A be a ring. We denote by rad(A) the Jacobson radical of A. We denote by
Mod-A the category of right A-modules and by mod-A the full subcategory of
Mod-A consisting of finitely generated modules. We denote by Aop the opposite
ring of A and consider left A-modules as right Aop-modules. Sometimes, we use
the notation MA (resp., AM) to stress that the module M considered is a right
(resp., left) A-module. We denote by PA the full subcategory of mod-A con-
sisting of projective modules. For a cochain complex X• and an integer i ∈ Z,
we denote by Zi(X•), Z′i(X•), Bi(X•) and Hi(X•) the ith cycle, the ith cocy-
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cle, the ith boundary and the ith cohomology of X•, respectively. We denote
by D(Mod-A) the derived category of cochain complexes over Mod-A. For an
additive category A we denote by K(A) the homotopy category of cochain com-
plexes over A and by K+(A) (resp., Kb(A)) the full triangulated subcategory of
K(A) consisting of bounded below (resp., bounded) complexes. For an object
X in an additive category A we denote by add(X) the full subcategory of A
consisting of direct summands of finite direct sums of copies of X, by gen(X)
the full subcategory of A consisting of epimorphic images of objects in add(X)
and by cog(X) the full subcategory of A consisting of subobjects of objects in
add(X). We denote by Hom•(−,−) (resp., −⊗• −) the associated single com-
plex of the double hom (resp., tensor) complex. Finally, we consider modules
as complexes concentrated in degree zero.

Definition 1.1. An exact sequence 0 → M → E0 → E1 → · · · in Mod-A is
called a right resolution of M , which we denote by M → E•. A right resolution
M → E• is said to be finite if there exists n ≥ 0 such that Ei = 0 for i > n.
Dually, an exact sequence · · · → E−1 → E0 → X → 0 in Mod-A is called a left
resolution of X, which we denote by E• → X. A left resolution E• → X is said
to be finite if there exists n ≥ 0 such that E−i = 0 for i > n.

Lemma 1.2. Let T,U ∈ Mod-A with ExtiA(T, T ) = 0 for i 6= 0 and 0 → U →
V 0 → V 1 → · · · → V m → 0 a right resolution in Mod-A. Assume that each
V i admits a finite right resolution V i → T i• in Mod-A with T i• ∈ Kb(add(T )).
Then we have a finite right resolution U → W • in Mod-A such that Wn =
⊕i+j=n T ij for all n ≥ 0.

Lemma 1.3 (cf. [18]). Let T,U ∈ Mod-A with ExtiA(T, T ) = ExtiA(U, T ) = 0
for i 6= 0 and 0 → V −m → V −m+1 → · · · → V 0 → U → 0 a left resolution of U
in Mod-A. Assume that each V −i admits a finite right resolution V −i → T−i•

in Mod-A with T−i• ∈ Kb(add(T )). Then we have a finite right resolution
U → W • in Mod-A with W • ∈ Kb(add(T )).

Definition 1.4 ([1], [2]). A homomorphism f : E → X in Mod-A is said to be
right minimal if every h ∈ EndA(E) with fh = f is an isomorphism. Dually,
a homomorphism f : X → E in Mod-A is said to be left minimal if every
h ∈ EndA(E) with hf = f is an isomorphism.

Note that an epimorphism P → X in Mod-A with P projective is right
minimal if and only if it is a superfluous epimorphism and that a monomorphism
X → I in Mod-A with I injective is left minimal if and only if it is an essential
monomorphism.

Lemma 1.5 ([1]). Let 0 → Y
µ−→ E

ε−→ X → 0 be a non-split exact sequence in
Mod-A with EndA(X) local. Then µ is left minimal.

Lemma 1.6 ([1]). Let 0 → Y
µ−→ E

ε−→ X → 0 be a non-split exact sequence in
Mod-A with EndA(Y ) local. Then ε is right minimal.
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Definition 1.7. A left resolution E• → X in Mod-A is said to be minimal
if the epimorphism Ei → Z′i(E•) is right minimal for all i ≥ 0. Dually, a
right resolution X → E• in Mod-A is said to be minimal if the monomorphism
Zi(E•) → Ei is left minimal for all i ≥ 0.

Definition 1.8 ([4]). Let C be a full subcategory of Mod-A closed under iso-
morphisms and direct summands. A homomorphism f : E → X in Mod-A
with E ∈ C is said to be a right C-approximation of X if HomA(E

′, f) is an
epimorphism for all E′ ∈ C. A right C-approximation f : E → X is said to be a
minimal right C-approximation of X if f is right minimal. Dually, a homomor-
phism f : X → E in Mod-A with E ∈ C is said to be a left C-approximation
of X if HomA(f,E

′) is an epimorphism for all E′ ∈ C. A left C-approximation
f : X → E is said to be a minimal left C-approximation of X if f is left minimal.

The next lemma is due essentially to Auslander [2].

Lemma 1.9. Let 0 → Y
µ−→ E

ε−→ X → 0 be an exact sequence in Mod-A
with µ a minimal left add(E)-approximation of Y , ε a minimal right add(E)-
approximation of X. Then EndA(X) is a local ring if and only if so is EndA(Y ).

Lemma 1.10. Let 0 → Y
µ−→ E

ε−→ X → 0 and · · · → T i−1 di−1

−−−→ T i⊕(⊕nX) →
T i+1 → · · · be exact sequences in Mod-A. Assume that HomA(T

i−1, ε) is an
epimorphism. Then there exists an exact sequence · · · → T i−1 ⊕ (⊕nY ) →
T i ⊕ (⊕nE) → T i+1 → · · · in Mod-A.

Lemma 1.11. Let 0 → Y
µ−→ E → X → 0 and · · · → T i−1 → T i ⊕ (⊕nY ) →

T i+1 → · · · be exact sequences in Mod-A. Assume that HomA(µ, T
i+1) is an

epimorphism. Then there exists an exact sequence · · · → T i−1 → T i⊕(⊕nE) →
T i+1 ⊕ (⊕nX) → · · · in Mod-A.

Lemma 1.12 (cf. [5]). Let X,Y ∈ Mod-A with EndA(X) local, X finitely
generated over EndA(X)op and HomA(Y,X) finitely generated over EndA(Y ).
Assume that there exist fi : X → X for i = 1, · · · , n and f0 : Y → X such
that f = (f0, f1, · · · , fn) : Y ⊕ (⊕nX) → X is a non-split epimorphism. Then
X ∈ gen(Y ).

Let T ∈ Mod-A and set B = EndA(T ). We denote by RHom•
A(−, T ) (resp.,

RHom•
Bop(−, T )) the right derived functor of Hom•

A(−, T ) : K(Mod-A) →
K(Mod-Bop) (resp., Hom•

Bop(−, T ) : K(Mod-Bop) → K(Mod-A)).

Lemma 1.13 ([15]). We have

HomD(Mod-A)(X
•,RHomBop(Y •, T )) ∼= HomD(Mod-Bop)(Y

•,RHomA(X
•, T ))

for X• ∈ D(Mod-A) and Y • ∈ D(Mod-Bop).

Proof. See [15, Lemma 2.3] the proof of which remains to work in our setting.
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Lemma 1.14. Let U, V ∈ Mod-A. Assume that ExtiA(U, T ) = ExtiA(U, V ) = 0
for i 6= 0, and that ExtiBop(HomA(V, T ), T ) = 0 for i 6= 0 and the canoni-
cal homomorphism V → HomBop(HomA(V, T ), T ) is an isomorphism. Then
ExtiBop(HomA(V, T ),HomA(U, T )) = 0 for i 6= 0.

Definition 1.15 ([6]). A family of idempotents {eλ}λ∈Λ in a ring A is said to
be orthogonal if eλeµ = 0 unless λ = µ. An idempotent e ∈ A is said to be
primitive if eAA is indecomposable and to be local if eAe ∼= EndA(eA) is local.
A ring A is said to be semiperfect if 1 = e1+ · · ·+en in A with the ei orthogonal
local idempotents.

Let R be a commutative noetherian ring. In this note, a ring A is said to
be a noetherian R-algebra if A is a ring endowed with a ring homomorphism
ϕ : R → A whose image is contained in the center of A and A is a finitely
generated R-module.

Lemma 1.16. Assume that R is a complete local ring. Then every noetherian
R-algebra A is semiperfect, so that the Krull-Schmidt theorem holds in mod-A.

Proof. This is well known but for the benefit of the reader we include a proof.
Let m be the maximal ideal of R and I an injective envelope of R/m in Mod-R.
Since A is right noetherian, we have A = e1A ⊕ · · · ⊕ enA with the ei orthog-
onal primitive idempotents. Since eiA ∼= HomR(HomR(eiA, I), I) canonically,
HomR(eiA, I) ∈ Mod-Aop is indecomposable injective. Also, we have a ring iso-
morphism EndA(eiA) ∼= EndAop(HomR(eiA, I))op with EndAop(HomR(eiA, I))
local. Thus every ei is local, so that A is semiperfect. Since EndA(X) is
a noetherian R-algebra for X ∈ mod-A, the Krull-Schmidt theorem holds in
mod-A.

2 Semi-tilting modules

Throughout the rest of this note, R is a commutative complete local ring and
A is a noetherian R-algebra. Note that HomA(T,X) is finitely generated over
EndA(T ) for T,X ∈ mod-A and that by Lemma 1.16 every X ∈ mod-A admits
a minimal projective resolution.

In this section, we will introduce the notion of semi-tilting modules and show
that every non-projective semi-tilting module T ∈ mod-A admits a decomposi-
tion T = U ⊕X with X ∈ gen(U) indecomposable.

Lemma 2.1. For any T ∈ mod-A and X ∈ gen(T ) we have a epic minimal
right add(T )-approximation ε : E → X.

Lemma 2.2. For any T ∈ mod-A and Y ∈ cog(T ) we have a monic minimal
left add(T )-approximation µ : Y → E.

Definition 2.3 ([24]). A module T ∈ mod-A is said to be a Wakamatsu tilting
module if the following conditions are satisfied:
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(1) ExtiA(T, T ) = 0 for i 6= 0.

(2) A admits a right resolution A → T • in mod-A with T • ∈ K+(add(T )) and
ExtjA(Z

i(T •), T ) = 0 for i, j ≥ 1.

Definition 2.4. A module T ∈ mod-A is said to be a semi-tilting module if
the following conditions are satisfied:

(1) ExtiA(T, T ) = 0 for i 6= 0.

(2) A admits a right resolution A → T • in mod-A with T • ∈ Kb(add(T )).

Note that a semi-tilting module T ∈ mod-A is a Wakamatsu tilting module with
proj dim EndA(T )T < ∞ (see Lemma 2.5 below).

If T ∈ mod-A is a semi-tilting module, then any finite right resolution with
terms in add(T ) can be chosen to be minimal.

The following lemma is a slight generalization of [19, Proposition 1.4 (2)].

Lemma 2.5. Let T ∈ mod-A with ExtiA(T, T ) = 0 for i 6= 0 and B = EndA(T ).
Then for any M ∈ mod-A the following are equivalent.

(1) There exists a right resolution 0 → M → T 0 → T 1 → · · · → Tm → 0 in
mod-A with T i ∈ add(T ) for 0 ≤ i ≤ m.

(2) proj dim BHomA(M,T ) < ∞, ExtiBop(HomA(M,T ), T ) = 0 for i 6= 0 and
M

∼−→ HomBop(HomA(M,T ), T ) canonically.

Remark 2.6. Let T ∈ mod-A be a semi-tilting module and 0 → A → T 0 →
T 1 → · · · → Tm → 0 a minimal right resolution in mod-A with T i ∈ add(T ) for
0 ≤ i ≤ m. Then the following hold.

(1) ExtiA(T,A) = 0 for i > m and ExtmA (T,A) 6= 0.

(2) If P • → T is a projective resolution in mod-A, then ⊕m
i=0P

i ∈ PA is a
projective generator.

Definition 2.7 ([19]). A module T ∈ mod-A is said to be a tilting module if it
is a semi-tilting module and has finite projective dimension.

Lemma 2.8. Let P • ∈ Kb(PA) with P i = 0 unless 0 ≤ i ≤ l for some integer
l ≥ 1. Assume that HomK(Mod-A)(P

•, P •[l]) = 0 and that C(idP ) 6∈ add(P •)
for any P ∈ PA, where C(idP ) is the mapping cone of the identity map of P .
Then add(P 0) ∩ add(P l) = {0}.

Remark 2.9. Let M,T ∈ mod-A with ExtiA(M,M) = ExtiA(T, T ) = 0 for i 6= 0
and B = EndA(T ). If 0 → M → T 0 → T 1 → · · · → Tm → 0 is a minimal right
resolution in mod-A with T i ∈ add(T ) for 0 ≤ i ≤ m, then add(T 0)∩add(Tm) =
{0} unless m = 0.
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Lemma 2.10. Let T ∈ mod-A. Assume that there exists a non-split exact

sequence 0 → M
µ−→ E0 → E1 → 0 in mod-A with µ left minimal and Ei ∈

add(T ) for i = 0, 1. Then for any indecomposable X ∈ add(E1), letting T ∼=
U ⊕X, we have X ∈ gen(U).

Remark 2.11. Let T ∈ mod-A be a semi-tilting module such that T ∼= ⊕nX
with X ∈ mod-A indecomposable. Then T is projective.

Proposition 2.12. Every non-projective semi-tilting module T ∈ mod-A ad-
mits a decomposition T = U ⊕X with X ∈ gen(U) indecomposable.

Lemma 2.13. Let T = U ⊕X ∈ mod-A with X indecomposable, X 6∈ add(U)
and ExtiA(T, T ) = 0 for i 6= 0. Assume that there exists an exact sequence

0 → Y → E
ε−→ X → 0 in mod-A with ε a right add(U)-approximation. Set

B = EndA(T ). Then HomA(U ⊕ Y, T ) ∈ mod-Bop is a tilting module with
proj dim BHomA(U ⊕ Y, T ) = 1.

3 Mutation

Definition 3.1. A module M ∈ mod-A is said to be basic if M ∼= ⊕m
i=0Mi with

the Mi indecomposable and Mi 6∼= Mj unless i = j.

Throughout this section, T = U ⊕X ∈ mod-A is a basic semi-tilting module
with X indecomposable and B = EndA(T ). Note that X 6∈ add(U). We fix a
minimal right resolution 0 → A → T 0 → T 1 → · · · → Tm → 0 in mod-A with
T i ∈ add(T ) for 0 ≤ i ≤ m, where m = proj dim BT .

We will show that the class of semi-tilting modules is closed under mutation
and provide a partial answer to the Wakamatsu tilting conjecture.

Lemma 3.2. Assume that X ∈ add(T 0). Then X 6∈ gen(U).

Theorem 3.3. Assume that X ∈ gen(U). Then there exists a non-split exact

sequence 0 → Y
µ−→ E

ε−→ X → 0 in mod-A with Y indecomposable, E ∈ add(U)
and T ′ = U ⊕ Y a semi-tilting module.

Theorem 3.4. Assume that X ∈ cog(U). Then there exists a non-split exact
sequence 0 → X → E′ → Z → 0 in mod-A with Z indecomposable, E′ ∈ add(U)
and U ⊕ Z a semi-tilting module.

Remark 3.5. Assume thatm ≥ 1 and that there exists a non-split exact sequence
0 → Y → E → X → 0 in mod-A with Y indecomposable, E ∈ add(U) and
T ′ = U ⊕ Y a semi-tilting module. Take a minimal right resolution 0 → A →
T ′0 → T ′1 → · · · → T ′n → 0 in mod-A with T ′i ∈ add(T ′) for 0 ≤ i ≤ n.
Then for each 1 ≤ i ≤ m, letting T i ∼= Ei ⊕ (⊕liX) with X 6∈ add(Ei) and
T ′i−1 ∼= E′i−1 ⊕ (⊕l′iY ) with Y 6∈ add(E′i), we have li = l′i.

Definition 3.6. If X ∈ gen(U), then we will denote by µX(T ) the module
T ′ = U ⊕ Y in Theorem 3.3.
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Remark 3.7. Let T ∼= U ′ ⊕ X ′ with X ′ indecomposable. If X ∈ gen(U) and
X ′ ∈ gen(U ′) then X ∼= X ′ if and only if µX(T ) ∼= µX′(T ).

Lemma 3.8. Assume that X ∈ gen(U). Then µX(T ) is a tilting module if and
only if so is T .

Following [21], we will define a quiver K as follows: The vertices of K are
isomorphism classes of basic semi-tilting modules and there is an arrow V → W
if W and V are represented by basic semi-tilting modules T ′ and µX′(T ′) with
X ′ a non-projective indecomposable direct summand of T ′, respectively.

Definition 3.9. A vertex V in K is said to be a predecessor of T in K if there
exists a path V0 → V1 → · · · → Vn in K such that V0 = V and Vn is the
isomorphism class of T , and T is said to have only finitely many predecessors
in K if the number of predecessors of T in K is finite.

Proposition 3.10 ([21]). The quiver K contains no oriented cycles.

Proof. For the benefit of the reader we include a proof. Suppose to the contrary
that K contains an oriented cycle V0 → V1 → · · · → Vn → V0. By definition
there exists a non-split exact sequence 0 → Y0 → E0 → X0 → 0 in mod-A such
that X0 and Y0 are indecomposable, V0 and Vn are represented by basic semi
tilting modules U0⊕X0 and U0⊕Y0, respectively, and E0 ∈ add(U0). Also, there
exists a non-split exact sequence 0 → Y1 → E1 → X1 → 0 in mod-A such that
X1 and Y1 are indecomposable, V1 and V0 are represented by basic semi-tilting
modules U1⊕X1 and U1⊕Y1, respectively, and E1 ∈ add(U1). Since U0⊕X0

∼=
U1⊕Y1, applying HomA(X0,−) to the exact sequence 0 → Y1 → E1 → X1 → 0,
we have ExtiA(X0, X1) = 0 for i 6= 0 and hence ExtiA(X0, U1 ⊕ X1) = 0 for
i 6= 0. Similarly, we have ExtiA(X0, Uj ⊕ Xj) = 0 for i 6= 0 and 1 ≤ j ≤ n,
where Uj ⊕Xj is a representative of Vj with Xj indecomposable. Then, since
Un⊕Xn

∼= U0⊕Y0, we have Ext
i
A(X0, Y0) = 0 for i 6= 0, which contradicts that

the exact sequence 0 → Y0 → E0 → X0 → 0 does not split.

Theorem 3.11. If the connected component of K including T contains a tilting
module then T itself is a tilting module.

Corollary 3.12. If T has only finitely many predecessors in K, then T is a
tilting module.

Assume that R is a Cohen-Macaulay ring, A is a maximal Cohen-Macaulay
R-module and T is a maximal Cohen-Macaulay R-module. We will denote
by L(⊥T ) the full subcategory of mod-A consisting of modules M which are
maximal Cohen-Macaulay R-modules and ExtiA(M,T ) = 0 for i 6= 0.

Corollary 3.13. Assume that L(⊥T ) contains only a finite number of non-
isomorphic indecomposable modules. Then T is a tilting module.
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[23] J. L. Verdier, Catégories dérivées, état 0, in: Cohomologie étale, in:
Lecture Notes in Math., 569, Springer, Berlin, 1977, pp. 262–311.

[24] T. Wakamatsu, Stable equivalence for self-injective algebras and a gen-
eralization of tilting modules, J. Algebra 134 (1990), no. 2, 298–325.

[25] J. Wei, Finitistic dimension conjecture and relative hereditary algebras,
J. Algebra 322 (2009), no. 12, 4198–4204.

[26] A. Zaks, Injective dimension of semi-primary rings, J. Algebra 13 (1969),
73-86.

Institute of Mathematics, University of Tsukuba, Ibaraki, 305-8571, Japan
E-mail address: koga@math.tsukuba.ac.jp

10


