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ABSTRACT 

This work examines the relationship between 3-year pedestrian crash counts across Census tracts 

in Austin, Texas, and various land use, network, and demographic attributes, such as land use 

balance, residents’ access to commercial land uses, sidewalk density, lane-mile densities (by 

roadway class), and population and employment densities (by type). The model specification 

allows for region-specific heterogeneity, correlation across response types, and spatial 

autocorrelation via a Poisson-based multivariate conditional auto-regressive (CAR) framework 

and is estimated using Bayesian Markov chain Monte Carlo methods. Least-squares regression 

estimates of walk-miles traveled per zone serve as the exposure measure. Here, the Poisson-

lognormal multivariate CAR model outperforms an aspatial Poisson-lognormal multivariate 

model and a spatial model (without cross-severity correlation), both in terms of fit and inference.  

Positive spatial autocorrelation emerges across neighborhoods, as expected (due to latent 

heterogeneity or missing variables that trend in space, resulting in spatial clustering of crash 

counts). In comparison, the positive aspatial, bivariate cross correlation of severe (fatal or 

incapacitating) and non-severe crash rates reflects latent covariates that have impacts across 

severity levels but are more local in nature (like lighting conditions and local sight obstructions), 

along with spatially-lagged cross correlation. Results also suggest greater mixing of residences 

and commercial land uses is associated with greater pedestrian crash risk across different 

severity levels, ceteris paribus, presumably since such access produces more potential conflicts 

between pedestrian and vehicle movements. Interestingly, network densities show variable 

effects, and sidewalk provision is associated with lower severe-crash rates.  

Key Words: pedestrian crashes, crash modeling, count models, multivariate conditional 

autoregressive models, spatial data 

MOTIVATION 
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Pedestrian-vehicle crashes kill close to 5,000 Americans a year, accounting for over 10 percent 

of total roadway fatalities (NHTSA 2011). Motor vehicle data are regularly tabulated and their 

crashes receive significant research attention, including emphasis of data-modeling techniques 

(Abdel-Aty and Essam-Radwan 2000, Miaou et al. 2003, Lord 2006, Caliendo et al. 2007, Ma et 

al. 2008), as well as more straightforward studies (Davies et al. 2005). In contrast, relatively little 

analytical research has tackled the question of pedestrian-vehicle crash rates (especially area-

level count data), although pedestrians arguably represent the most vulnerable of road users. 

Focusing on zone-level pedestrian crash counts offers several benefits. This macro-level 

approach complements more focused pedestrian safety investigations, such as those emphasizing 

intersections (e.g., Weir et al. 2009, Naderan and Shahi 2009, Cottrill and Thakuriah 2010).  

Zone systems do not neglect any (reported) crashes: for example, almost two thirds of all U.S. 

pedestrian-related crashes and 76% of all pedestrian fatalities occur away from intersections 

(NHTSA 2011, FHWA 2007). So an intersection focus may miss over half the population of 

interest. Focused analyses also miss the spatial autocorrelation present in such data, due largely 

to missing variables (such as shoulder widths, use of planning strips, land use setting, and other 

variables typically uncontrolled for). Spatial models work well for zone-based data and seek to 

identify such patterns (Morency and Cloutier, 2006).  

 

To this end, this paper analyzes zone-based pedestrian crash count totals across two severity 

levels (severe [i.e., fatal and incapacitating injury] and non-severe [i.e., incapacitating, light 

injury, and no injury cases]) over a 3-year period in Austin, Texas, using a multivariate 

conditional autoregressive (CAR) count model, which accounts for correlations across severity 

levels, unobserved heterogeneity (in zones), and spatial autocorrelation (from  error terms). The 

capital of Texas, Austin is a medium-sized urban region (with a county population just over 1 

million), with a fair amount of pedestrian activity, thanks to generally sunny conditions, a large 

college student population, and walk-friendly culture.  The county’s 3-year pedestrian crash 

counts (by severity level, from year 2007 to 2009, as reported by police) were aggregated using 

ArcGIS’s spatial join function over Thiessen polygons built around each census tract’s centroid, 

as described later. The paper begins with an overview of related research and methodological 

details of the multivariate CAR approach, followed by results and conclusions. 

PEDESTRIAN CRASH STUDIES 

Recent years offer a rising number of research studies on pedestrian safety. For example, Weir et 

al. (2009) studied vehicle-pedestrian injury collisions across 176 San Francisco census tracts, 

while controlling for local traffic volumes, shares of arterial streets with and without transit 

service, some land use attributes, population, employment, and residents’ income levels. Their 

log-linear OLS results suggest that pedestrian injury/fatality counts rise with traffic volumes, 

shares of arterial streets lacking transit, share of land zoned for neighborhood commercial and 

mixed residential/neighborhood commercial uses, numbers of residents and (resident) workers, 

and share of persons living in poverty. They did not normalize crash counts by exposure, which 

is fundamental to count prediction, so many of their modeled effects are size effects (proxying 

for exposure). Miranda-Moreno et al. (2011) simultaneously modeled pedestrian activity (in log-

linear form, as an exposure variable) and crash counts (using a standard negative binomial 

specification) at signalized intersections in Montreal, Canada.  They concluded that many built 

environment, transport system, and traveler attributes (such as land use types, network intensity, 



transit supply, and demographic characteristics) in the vicinity of intersections are strong 

predictors of pedestrian activity but have rather small effects on collision frequency (after 

controlling for exposure). Using unsupervised learning methods, Prato et al. (2012) identified 

fatal pedestrian-crash hot spots or clusters in Israel, as a function of lighting conditions, local 

demographics, share of two-wheel vehicles in the traffic flow, and roadway attributes.  

 

Using Poisson regression (with heterogeneity and under-reporting components), Cottrill and 

Thakuriah (2010) evaluated the influence of transit accessibility, crime rates, and general 

demographics (like income and children population) on pedestrian crash rates in the Chicago 

area. Their results suggest that safety improvements targeting transit may moderate high 

pedestrian rates in various areas. Statistically significant spatial clustering of crash counts was 

reflected in model residuals, via local indicators of spatial association (LISA); however, such 

dependence was not captured by their model specification. 

 

Spatial dependence across observational units is prevalent in transportation data sets, including 

traffic volumes (e.g., Wang and Kockelman [2009]), land development decisions (Wang et al. 

2012), and crash prediction (e.g., Levine et al. 1995a, Levine et al. 1995b, Wang et al. 2009). 

Miaou et al. (2003) showed the existence of spatial autocorrelation among adjacent roadway 

segments in their analysis of vehicle crashes along rural two-lane highways in Texas, using 

several variations of a conditional autoregressive (CAR) count model. Wang et al. (2009) 

examined traffic congestion’s influence over vehicle crashes along 70 homogenous segments of 

a British expressway, while accounting for both heterogeneity and spatial autocorrelation using a 

series of Poisson-based CAR models. While they found that congestion did not play a significant 

role along their case corridor, other covariates’ roles were consistent with existing work (e.g., 

higher grades are associated with higher crash rates).  

 

Many studies have explored multivariate count models for aspatial settings and confirm that 

significant interactions across crash types (e.g., severity levels) exist, due to omitted variables 

and other unobserved (latent) factors (Park and Lord 2006, Ma et al. 2008, El-Basyouny and 

Sayed 2009, Valverde and Jovanis 2007). However, only Miaou and Song (2005) and Wang et 

al. (2011) appear to offer a multivariate approach to crash count modeling (producing site 

rankings for safety improvements) in a spatial setting. Wang et al. (2011) used a two-stage mixed 

multivariate framework, where the first stage uses an “intrinsic” spatial model for a total 

(univariate) crash count (with no spatial autocorrelation coefficient, which is restrictive 

[Spiegelhalter et al. 2003]), and the second stage is a multinomial logit model (for count splits, 

after conditioning on the total).  

 

This paper proposes and develops a multivariate Poisson log-normal CAR model to reveal 

spatial autocorrelation, zone-specific heterogeneity, and correlation across pedestrian crash 

counts and severity levels. The model is built upon the multivariate CAR model proposed by Jin 

et al. (2005) and estimated using Bayesian Markov chain Monte Carlo methods with a sampling 

scheme described in the Appendix. Spatial multivariate analysis of pedestrian crash counts is a 

novelty. Covariates include zone-level land use, transit access, network intensity, sidewalk 

density, and demographic attributes. The City of Austin’s map layers were used to derive land 

use covariates for neighborhoods across Travis County, offering more realistic land use 

information than zoning maps (as used in Weir et al.’s [2009] analysis).  



 

METHODOLOGY 

Two spatial model specifications are common for relating neighboring sites’ responses: the 

spatial autoregressive model (SAR), as discussed in Elhorst (2009) and Anselin (1988), and the 

conditional autoregressive model (CAR), as appears in Besag (1975). Cressie (1995) has shown 

that the SAR specification is a special type of CAR model, at least in a continuous-response 

setting. CAR models are more commonly used in spatial analysis of count data, thanks to faster 

computation (see, e.g., Czado et al. 2010, Song et al. 2006, Gelfand and Vounatsou 2003, Miaou 

et al. 2003, and Pettitt et al. 2002). The SAR approach tends to be difficult to employ for limited-

response frameworks, especially with large data sets (as discussed in Wang et al. [2012] and 

Wang et al. [2012]) and yields parameter estimates similar to those estimated from the CAR 

model (Miaou et al. 2003). For all these reasons, this work relies on the CAR specification for 

analyzing crash counts. 

 

Conditional autoregressive (CAR) specifications appear to begin with Besag (1975), and are 

mostly estimated using Bayesian methods. Conditional distributions of (univariate) CAR-model 

response variables are, in most cases, defined by a series of conditional distributions, as shown in 

Equation 1 (Cressie 1995). 

 

                          
 
      

        (1) 

 

where    indicates the spatially autocorrelated variable (typically a response variable, like mean 

crash rates, average traffic flows, or household incomes),     denotes such variables at 

neighboring locations,    is the expected response value (such that         ),   
  is the 

conditional variance, and     are known or unknown weights (with       , describing the 

proximity or closeness between locations i and j.  

 

These conditional distributions lead to a multivariate normal (MVN) joint distribution of the 

spatially correlated variables, based on the factorization theorem (Besag 1975, Wall 2004):  

 

                
            (2) 

 

where the column vector   is a stacked version of the n   ’s (as is the vector  ), I is an identity 

matrix, C is an n by n weight matrix defined by contiguity or distance and        , and   is a 

diagonal matrix with       
 . This joint distribution is used, along with the likelihood function 

of the data set, to implement the Gibbs sampler for estimating the posterior distributions of all 

unknown parameters. 

 

The validity of the MVN distribution (shown in Equation 2) requires its covariance matrix to be 

symmetric and positive definite, conditions that can be satisfied by imposing certain constraints 

on the forms of   and  . For example, one may let      and   
  

  

   
, where   is referred 

to as the spatial autocorrelation coefficient,   is a row-standardized weight matrix (i.e.,   

    
   and    

  
   

   
), and     is the i

th
 row sum of W. By construction, W’s diagonal elements 

are all zeros (Cressie 1995, Wall 2004). The CAR specifications permit contiguity and distance-



based weight matrices but preclude the K
th

-nearest neighbor weighting scheme because such 

weights violate the symmetry condition. First-order contiguity weights are defined such that 

      if i and j share a common border,       otherwise, and W’s diagonal elements 

(     are all zeros by construction (Cressie 1995). When   is fixed at 1, the CAR specification 

becomes an “intrinsic” CAR model (prevalent in empirical studies), and requires less computing 

time but presents theoretical and conceptual issues that undermine its validity. Specifically, when 

the precision parameter (  ) is unknown (as is always the case), the functional form of the joint 

distribution of the spatial random effects ( ), shown in Equation 2, and    are not identified 

under the “intrinsic” CAR specification (Cressie 1995, Gelfand and Vounatsou 2003). Thus, one 

cannot be as confident in his/her estimates, nor convergence of the parameter draws, due to 

potentially improper distributional assumptions. Conceptually, the spatial autocorrelation 

coefficient,  , measures the overall spatial relationship of the data, whereas the precision 

parameter    accounts for the variation of the spatial dependence. Omitting   blurs one’s 

estimates and can lead to counterintuitive interpretations (Spiegelhalter 2003). 

 

A Poisson Log-Normal Multivariate CAR Model 

 

To successfully specify a multivariate CAR (MCAR) structure, an important consideration is the 

validity of the joint covariance matrix. Rather than focusing on the covariance matrix, it is 

typical to start from its inverse, or the precision matrix, because the latter is faster to compute 

and the computation can be implemented using several full-blown methods, see, e.g., the 

decomposition methods employed by Carlin and Banerjee (2003) and Gelfand and Vounatsou 

(2003). However, working directly with the precision matrix, instead of the covariance matrix, 

often obscures interpretation of the correlation structure of the phenomenon under study. In 

contrast, a judiciously designed covariance matrix allows one to incorporate more behavioral 

realism, while ensuring the estimability of the resulting model.  

This work extends the multivariate CAR model proposed by Jin et al. (2005) to allow for region-

specific heterogeneity and a non-Gaussian first stage, leading to what we called a Poisson log-

normal MCAR model. Rather than having to transform the aggregated counts to continuous 

response (e.g., standardized mortality ratio [SMR], Jin et al. 2005), the proposed model allows 

one to directly analyze spatial count data, such as area-level pedestrian crash count data.   

 

The first stage is expressed as a Poisson process: 

                             (3) 

where     is the observed pedestrian crash counts by severity levels (k=1, 2) for the i
th

 polygon of 

Travis County, and the mean crash rates,    , in the second stage, are expressed as: 

         
         

                   (4) 

where     is an exposure measure of pedestrian crashes (e.g., Walk-Miles traveled for each zone) 

with the unknown parameter   describing any non-linear relationship between the risk and mean 

rates,    indicates a column vector of covariates including a constant term,    denotes a column 

vector of parameter coefficients specific to each observation type k, and     represents the 

spatial random effect defined by a MCAR structure discussed later in this section. The 



heterogeneity error term,   , captures zone-specific heterogeneity that is not explained by spatial 

effects and is assumed to follow a normal distribution,           
  , leading to the Poisson-

lognormal spatial model. Alternatively, its exponential term may take on a gamma distribution, 

                  , leading to a negative binomial model (Miaou et al. 2003). 

Spatial random effects,    , follow the multivariate conditional autoregressive model proposed 

by Jin et al. (2005): 

   
  
  
      

 
 
   

      
   
    

          (5) 

where    contains the spatial random effects across n locations for a given response type k, k =1, 

2, and     represents n×n covariance matrices (k, l =1, 2). Multivariate normal theory leads to the 

following conditional distributions that jointly determine Equation (5). 

                 
               

     
         

                       (6) 

For ease of presentation, let         
  ,                 

     
 . Therefore, the joint 

distribution of   is written as:                

 
  
  
      

 
 
   

                  
      

    
        (7) 

This joint distribution always exists as long as its covariance matrix is symmetric and positive-

definite. The conditions that ensure such property are that       and     are positive definite 

(Harville 1997 cited in Jin et al. 2005), as discussed later in this section.  

The crux of the problem is then to specify the matrices  ,      , and    , which will uniquely 

determine the functional form of the covariance matrix of the joint distribution, as shown in 

Equation (7). Assume that                             
   and             

           
  , with scalars    and    being the scale parameters. The remaining 

undetermined quantity (in order to uniquely identify the joint distribution’s covariance matrix in 

Equation [5]) is the transformation matrix  . One may consider           and thus 

                    . This parameterization suggests that the conditional mean of     at 

a given location i equals to a scaled     value (at the same location) plus a weighted average of 

neighboring     values.  

The MCAR model developed through Equations (5) to (7) implies that the covariance matrices 

of     and    are independent, following the CAR structure with different spatial autocorrelation 

coefficients respectively. Correlations across different response types are captured by the 

transformation matrix,  , with the parameter    representing aspatial cross correlation and    

describing spatially-lagged cross correlation. Jin et al. (2005) prove that this MCAR model is 

more general and encompasses the model proposed by Carlin and Banerjee (2003) and Gelfand 

and Vounatsou (2003).  



The spatial autocorrelation coefficients     and    describe the spatial dependence for the two 

crash types respectively and should lie within the range  
 

   
 
 

   
  for the covariance matrices 

           
   and            

   to be positive definite and thus invertible, where     
and     denote the maximum and minimum eigenvalues of the standardized weight matrix, 

    . Note that the matrix,     , is row-standardized by construction.  Negative spatial 

dependence is rare and thus the lower bound is often set to 0, while for the row-standardized 

weight matrix, its maximum eigenvalue is guaranteed to be 1 (Cressie 1995).   is a diagonal 

matrix with the i
th

 diagonal element representing the i
th

 row sum of W. The precision parameters 

   and    scale the covariance structures.  

Note that trivariate and higher-order specifications (for data sets involving four or more response 

types) can be derived using the above lines of reasoning, as described in this paper’s Appendix.  

DATA SETS 

The new multivariate CAR model developed here was estimated using a Bayesian sampling 

scheme coded in WinBUGS and is used here to analyze a three-year total of pedestrian crash 

counts in Travis County from 2007 to 2009. The model controls for transit stop density, land use 

balance (measured by entropy), residential access to commercial land, school access, network 

intensity (computed as lane-mile densities by roadway classes), and sidewalk densities.  

The study zones rely on Thiessen polygons, built around Austin’s census tracts, to ensure that 

high-crash locations, regularly along tract edges (important roadways) and often at tract corners 

(important intersections), are uniquely assigned to a polygon zone rather than missing or 

arbitrarily assigned to adjacent tracts. By default, ArcGIS creates Thiessen polygons based on a 

given set of polygons (or their centroids) within a rectangular area that covers the given 

geographic area, resulting in several unreasonably large polygons at the periphery of the county. 

Thus, Travis County’s boundary file was used to cut the “redundant” portion of the polygons to 

yield a new boundary that follows closely with the original Travis County’s shape, as shown in 

Figure 1. Table 1 summarizes the covariates for the 218 zones derived from census tracts in 

Travis County.   



 

Figure 1. Thiessen Polygons based on Travis County Census Tract Centroids 

 

Table 1. Summary Statistics of Covariates and Response Variables across Thiessen Polygons 

(n=218)  

 Mean Std Dev Min Max 

Transit Access     

% SFDU
a
 near Transit in zone (within 1/2 mi.) 0.628 0.433 0 1 

% APT
b
 near Transit (1/2 mi.) 0.655 0.432 0 1 

Transit Density (# of bus stops per sq. mile) 13.66 17.57 0 98.6 

Land Use     

Land Use Entropy 0.647 0.229 0.037 0.989 

% Resid. Parcels  near Commercial (1/2 mi.) 0.759 0.304 0 1 

Network Intensity     

LnMiDenFWY 4.228 6.435 0.000 44.43 

LnMiDenART 8.836 6.783 0.104 51.20 

LnMiDenLOC 2.435 3.770 0.000 18.93 



Sidewalk Density 6.718 6.076 0.000 28.85 

Vehicle Miles Traveled (per day in 2010)     

VMTFWY 1.59E+05 2.93E+05 0 1.52E+06 

VMTART 3.22E+05 3.32E+05 937 3.61E+06 

VMTLOC 1.37E+04 2.93E+04 0 2.45E+05 

Demographics & Employment (2007)
 c
     

Population Density 2,470 2,611 5 1.563E4 

Basic Emp. Density 356 653 0 5,137 

Retail Emp. Density 235 279 0 1,842 

Service Emp. Density 598 762 1 5,308 

Access to School     

% SFDU near school (within 1/2 mi.) 0.514 0.352 0 1 

% APT near school (within 1/2 mi.) 0.487 0.386 0 1 

Exposure Measure     

Walk-Miles Traveled (WMT
d
) (in miles over a 

two-weekday period) 
68.80 41.26 4.79 291.3 

Response Variable     

Severe Crash Counts (Fatal & Incapacitating 

Crashes, 2007–2009) 
0.89 1.53 0 15 

Non-Severe Crash Counts (Incapacitating, 

Possible Injury, & No Injury Crash Counts, 2007–

2009) 

3.23 7.4 0 100 

 
Notes: 

a.
SFDU stands for single-family dwelling units, including single family and large-lot single family dwelling 

units; 
b.

APT denotes apartments (e.g., group quarter, duplex, apartment/condo defined by City of Austin’s land use 

archive); 
c.
.population and employment densities are computed as the estimated counts (by overlaying traffic-

analysis-zone-level count information obtained from CAMPO) divided by polygon size; 
d
 WMT is the crash 

exposure measure, estimated using household travel survey data and least squares regression (with details provided 

in this paper’s Results section). 

 

The influence of land use and the built environment on pedestrian safety has been documented 

by Dumbaugh (2005) and Dumbaugh and Rae (2009). Land use attributes affect pedestrian crash 

counts, by influencing both walking frequency (and thus pedestrian exposure), traffic volumes or 

vehicle exposure, and situational complexity for travelers (which influences collision likelihood) 

(Clifton et al. 2008, Miranda-Moreno et al. 2011). Clifton et al. (2004) showed how areas with 

high transit access are associated with much higher pedestrian crash rates, and with crashes 

involving children. Hence, several land use variables are explored here for each zone, including 

land use entropy, the share residential dwelling units that are close to transit stops, and the share 

that are close to commercial activities, as summarized in Table 1.  

 



Land use information comes from the City of Austin’s 2006 land use maps. Year 2006 

immediately precedes the 2007-2009 crash-count period while covering all of Travis County. In 

contrast, the next available (year 2008) map covers only Austin and its extraterritorial 

jurisdiction. Few sites experienced development over the 2-year period (2006 to 2008), as 

described in Wang et al. (2012), and the 2006 map allows for more data points (approximately 

65,000 parcels) in this analysis. Land use entropy or balance is formulated using Cervero and 

Kockelman’s (1997) approach and has been used in a variety of settings (see, e.g., Frank and 

Pivo 1994 and Brown et al. 2009): 

                            

 

   

 

where    is the proportion of a particular land use k, representing residential, commercial, 

industry, and office uses. An evenly balanced situation (i.e., each of the four uses take up 25 

percent of land area, a situation that rarely exists in practice) delivers an entropy value of 1, 

whereas smaller entropy values imply less balanced land use patterns.  

 

Another relevant variable is the proximity of residential dwelling units to transit service, which is 

likely to correlate with pedestrian exposure and possibly the presence of more driver sight 

obstructions, as discussed in Clifton et al. (2008). This study controls for the number of dwelling 

units (both single-family and multi-family units) that are within one-half mile of transit stops.  

 

A positive association between the presence of children (under 14 years of age) and pedestrian 

crashes has been established in the literature (see, e.g., Clifton et al. 2004 and NHTSA 2011).  

Plausible causes include children’s shorter stature (making them harder for motorists to see), 

their (often) less-developed sense of motion, and an inexpert ability to judge traffic conditions 

and signal lights. This study computes the percentage of residential parcels (within each 

polygon) that are within one-half mile of schools, which may proxy this particularly vulnerable 

population. School information was obtained from. The only available data year for the Texas 

Education Agency’s school locator (http://wgisprd.tea.state.tx.us/sdl/) is 2010, so we assume that 

school locations remain the same over the 4-year period (from 2007 to 2010). Access to schools 

is represented as the share of residential units (including SFDUs and apartments) that lie within 

the half-mile buffers created around school points, using ArcGIS’s proximity routine. 

 

Lane-miles by functional classifications can reflect route availability and network connectivity, 

and thereby affect people’s propensity to walk. CAMPO’s coded 2005 network and Census 

Tigerline files were used to extract roadway information. The former provides numbers of lanes, 

operating speeds, and vehicle counts (imputed from travel demand model results, rather than 

from observed traffic counts, which are relatively few and far between [in space and time]) for 

most of the county’s roadways. As shown in Figure 2, local streets complement this CAMPO 

network, but they do not come with traffic-volume and number-of-lane attributes.  

http://wgisprd.tea.state.tx.us/sdl/


 

Figure 2. A Snapshot of Austin’s TigerLine Network (2008) Overlaid on Thiessen Polygons 

RESULTS AND ANALYSIS 

This section summarizes results for the Poisson log-normal MCAR model applied to the three-

year pedestrian-crash data set. Presented first are the estimation results of walk-miles traveled 

(WMT) per zone using the 2005/2006 Austin Travel Survey (ATS) data set, which provides a 

glimpse of traffic analysis zone- (TAZ-) level walk miles based on the 569 walking trips (out of 

a total of 14,113 trips surveyed over a 1-weekday period). These walking trips occur across 217 

TAZs, among which 154 zones lie within Travis County and can be linked to this county’s 2005 

map. The surveyed walk trips were scaled up by the ratio of zone population to zone sample size 

(to reflect the zone’s population share) and then used as the response variable in the TAZ-based 

WMT model, described below. Parameters estimated from the TAZ-level WMT model were then 

used to impute walk miles for each Thiessen polygon. 

A Model for Walk-Miles Traveled  

Covariates that may influence walk miles include zone size (in square miles), population, 

employment by types (i.e., basic, retail, and service), land use, and coded lane miles by road 

classes (freeway, arterial, and local streets). These covariates’ summary statistics are shown in 

Table 2. 

Table 2 Summary Statistics of Covariates for the Walk-Miles Traveled (WMT) Model (n=154 

zones)  

  Mean Std Dev Min Max 

Response-Related Variables 



WMT (miles per zone 

per two-weekday period) 
2,753 8,124 0 71,531 

WMT per capita (miles 

per zone per two-

weekday period divided 

by zone population) 

0.686 0.992 0 7.200 

Network 

LnMiDenFWY 4.228 6.435 0.000 44.430 

LnMiDenART 8.836 6.783 0.104 51.207 

LnMiDenLOC 2.435 3.770 0.000 18.932 

Sidewalk (total length, in 

miles) 13.511 12.328 0.000 67.397 

Land Use 

Entropy 0.399 0.243 0.000 0.918 

# Resid. parcels near Bus 

Stops 304 389 0 2,255 

Zone Size 

   Area (sq. mi) 1.67 7.53 0.04 87 

Demographics 

   Population (of zone) 2,652 2,473 5 12,532 

Employment 

Counts 

Base 377 851 0 7,084 

Retail 250 270 0 1,493 

Service 791 1,252 0 8,891 

Nobs = 154 TAZs   

Notes: WMT = total walk-miles traveled =     
               

                        
, where     indicates walk-

miles traveled by the ATS sample population. LnMile = lane-miles, FWY = Freeway, ART = Arterial 

streets, & LOCAL = Local streets.  

 

A weighted least squares (WLS) regression model was adopted for predicting total WMT in the 

zone yielded the best fit (R
2

adj = 0.51) and parameter estimates among the four model 

specifications attempted (ordinary least squares [OLS], WLS, Tobit, and Heckit). Table 3 

provides a summary of these WLS results (with statistically insignificant covariates removed). 

Weights were set at       
  to assure homoscedasticity of the error term, where    represents 

the number of respondents who were sampled for the i
th

 TAZ and    denotes the population 

counts for the corresponding TAZ. This weight was used because the total WMT (i.e., the 

response variable) is computed as the sample average times total population, with variance 

  
      . 



Table 3 Weighted Least Squares Regression Results for Walk-Miles Traveled (WMT) Model, 

with Y= ln(Total WMT per zone). 

Parameters Coef. Std. Error T-Statistic 

Constant 1.887 0.272 6.94 

LnMiLOC 0.068 0.027 2.51 

Area (sq. mi.) 0.344 0.123 2.80 

Population 1.61E-03 2.58E-4 6.25 

Sidewalk (mi.) 0.062 0.040 1.55 

R
2
 0.53 

Adj. R
2
 0.51 

nobs 154 zones 

Note: The weights are set at        for each zone.   

Lane-miles by road class are shown to be a significant factor in explaining walk distances per 

zone. So are zone size (in square miles), population counts, and sidewalk lengths. The response 

variable here is an estimate of zone-level WMT, imputed using the average WMT per ATS 

respondent from that zone, multiplied by zone’s population. A WLS scheme applies because 

WMT values are imputed using the population scaling factor described earlier, which introduces 

heteroskedasticity (in error term variances). The weights are set at       for each zone. 

Parameter estimates from Table 3 were then used to estimate WMT for each Thiessen zone, 

which served as the exposure measure in the MCAR model for pedestrian crash counts, as 

discussed in the next section. 

 A Poisson Log-Normal Multivariate CAR Model for Pedestrian Crashes 

Recall the model specification in the Methodology section of this paper. The parameter     is 

defined such that:                   
    and                         

   . 
Analogous to the spatial random effects    , which are zero-centered, the logarithmic mean 

crash rates         can also be expressed by a MCAR structure. The only difference between     

and         is that the latter variable’s mean value is no longer centered at zero, but rather 

       
            . Let column vectors    and    substitute for                 

                  
  and                                   

 . The conditional 

distributions for    and     are multivariate normal:  

                  
                           

             
            

    

           
                     

         (8) 

where   is an n by 1 vector of walk-miles traveled (with unknown parameter   helping explain 

any non-linear relationship between exposure levels and average rates),    and    are two 

column vectors specific to each of the two crash types (with 1 denoting severe crashes [including 

fatal and incapacitating injuries] and 2 denoting non-severe crashes [including non-



incapacitating, light, possible, and no injury crashes]),   is the covariance matrix with the i
th

 row 

being the observed explanatory variables (including a constant term) for region i, and   a vector 

of the n heterogeneity error terms,            
 .  

As noted earlier, the model was estimated using Bayesian Markov chain Monte Carlo techniques 

(with the sampling scheme as described in the Appendix). Convergence was checked using 

Geweke’s diagnostic tests, as coded in R’s “coda” package (Plummer et al. 2012). A bivariate 

specification is used here because it generated a better fit (DIC value) than the three trivariate 

models tested
1
. Table 4 summarizes parameter estimates and inference after removing several 

markedly insignificant covariates (defined as those with pseudo t statistics lower than 1). These 

variables include transit density and residential parcel shares near schools for severe crashes, and 

land use entropy for non-severe crashes, as shown as blank rows in Table 4.  

Table 4. Parameter Estimates and Inference of the Area-Level Pedestrian Crash Model.

                                                           
1
 The first of these two models had fatalities and incapacitating injury crashes in two separate classes, and non-

incapacitating injury, light-injury, and no-injury crashes in the third class, while the second had fatalities in a single 

class, incapacitating injury and non-incapacitating injury crashes in the second class, and light-injury and no injury 

crashes in the third class. The third model had fatalities and incapacitating injury crashes in a class, non-

incapacitating and light injury crashes in the second class, and no injury crashes in the third class. 



 
Severe 

or Not? 

Mean 

Estimate 

Std 

Dev 

Pseudo 

T-stat. 

MC 

error 

2.5% 

Estimate 
Median 

97.5% 

Estimate 
Elasticity 

Constant 

1 (yes) 
-0.652 

(2.31)
*
 

0.169 -3.87 0.002 -0.844 -0.570 -0.463 
 

2 (no) 
0.462 

(3.42) 
0.142 3.25 0.002 0.300 0.458 0.621 

 

Transit 

Density 

1         

2 
0.482 

(1.53) 
0.137 3.51 0.002 0.325 0.393 0.635 0.03 

Land Use 

Entropy 

1 
-0.595 

(1.98) 
0.278 -2.14 0.001 -0.912 -0.432 -0.284 -0.05 

2         

% Resi. Parcels 

near 

Commercial  

1 
1.158 

(1.86) 
0.480 2.41 0.003 0.611 0.689 1.696 0.04 

2 
0.950 

(2.02) 
0.497 1.91 0.002 0.383 0.581 1.507 0.06 

LnMileDen 

FWY 

1 
0.225 

(1.86) 
0.089 2.52 0.001 0.123 0.223 0.326 0.03 

2 
0.111 

(1.92) 
0.070 1.59 0.001 0.031 0.123 0.189 0.04 

LnMileDen 

ART 

1 
0.607 

(1.63) 
0.189 3.21 0.002 0.392 0.574 0.819 0.47 

2 
0.830 

(1.74) 
0.306 2.71 0.002 0.481 0.565 1.173 0.52 

LnMileDen 

LOC 

1 
-0.259 

(1.82) 
0.089 -2.91 0.003 -0.360 -0.092 -0.159 -0.41 

2 
-0.033 

(1.69) 
0.014 -2.31 0.000 -0.050 0.155 -0.017 -0.21 

Population 

Density 

1 
0.208 

(1.77) 
0.136 1.54 0.001 0.054 0.203 0.360 0.04 

2 
0.213 

(2.31) 
0.190 1.12 0.002 -0.004 0.234 0.425 0.08 

% Resi. 

Parcels near 

Schools 

1 
-0.323 

(1.42) 
0.107 -3.01 0.001 -0.445 -0.270 -0.203 -0.03 

2         

Sidewalk 

Density  

1 
-0.374 

(1.67) 
0.104 -3.61 0.003 -0.492 -0.238 -0.258 -0.13 

2 
-0.571 

(1.47) 
0.164 -3.48 0.003 -0.756 -0.569 -0.382 -0.22 

ln(VMTART) 

1 
0.008 

(2.14) 
0.004 1.87 0.006 0.003 1.010 0.013 0.01 

2 
0.024 

(1.73) 
0.010 2.51 0.008 0.013 1.515 0.035 0.05 

 
 
 

0.728 

(1.16) 

0.127 5.71 0.002 0.575 0.724 0.873 

 

 
 
 

0.612 

(1.21) 

0.102 5.99 0.002 0.496 0.612 0.728 

 

α 
0.131 

(1.85) 

0.057 2.31 0.001 0.051 0.123 0.196 

 

 
 
 

0.712 

(1.17) 

0.134 5.31 0.001 0.563 0.714 0.865 

 

 
 
 

0.312 

(1.48) 

0.076 4.13 0.002 0.226 0.312 0.398 

 



 Note: “1” rows denote values for fatal and incapacitating injury crash count prediction, and “2” rows denote 

parameter values for predicting other (non-severe) crash counts. Geweke’s diagnostic statistics are provided in the 

Mean Estimate column, in parentheses. 

Table 4’s elasticities were computed as the average (over the entire sample) percentage change in 

the mean crash rate (or expected value, λi) per one percent change in the kth covariate (for each 

zone, i). These mean crash rates incorporate Eq. 7’s unknown/latent error terms, as simulated for 

the region-specific errors, spatial autocorrelation, and correlations across various response types. 

Interpretation of Model Results  

Table 4’s results reveal noticeable spatial clustering patterns of zone-based crash counts. Severe 

(i.e., fatal and incapacitating) counts are estimated to have a statistically (and practically) 

significant spatial autocorrelation coefficient of 0.73, whereas non-severe (i.e., non-

incapacitating, light, possible, or no injury) counts yield a slightly lower, but still significant 

coefficient of 0.61. Apart from these within-category spatial autocorrelations, statistically (and 

practically) significant spatial dependence emerges across the two crash-type categories:    is 

estimated to be 0.31 and measures spatially lagged effects of cross-correlation across the two 

categories. 

Area-level crash counts also exhibit strong correlation between the two severity levels, as 

measured by a statistically (and practically) significant    value of 0.71. This value implies that 

severe and less severe pedestrian crash rates correlate in a very positive way, even after 

controlling for exposure and various other zone-level attributes. Such aspatial cross-correlation is 

expected, and attributable to omitted variables shared by crash types within a zone (but not 

across zones, as reflected via the    term estimate). Examples of such missing-variables 

correlation (across response types) include presence of unusual site conditions (like heavy 

industry or entertainment zones), distinctive local lighting conditions (affecting night-time crash 

rates), and sight obstructions (affecting pedestrian and motorist visibility at all times). In 

contrast, the spatially lagged effects of cross-correlation capture missing variables that are 

spatially clustered but wider spread, thus affecting many nearby zones, and are shared across 

crash-severity levels—such as terrain features, weather conditions, and various socio-economic 

variables. 

The relationship between crash exposure (WMT per zone) and crash rates is estimated to be 

highly non-linear (with an average exponent,  , of 0.131, rather than 1 [for the linear case]), 

    
1.352 

(1.69) 0.348 3.886 0.009 0.788 1.310 2.138  

    
2.677 

(1.85) 0.476 5.623 0.007 1.863 2.640 3.716 
 

   
1.653 

(1.14) 
0.495 3.342 0.007 0.852 1.615 

2.707  

   
2.113 

(1.42) 
0.261 8.083 0.004 1.635 2.115 

2.655  
DIC 3200.5 

Mean of 

LogLik 
-2568.1 

RMSE 2.41 

Run times = 59 mins;  # of Iteration=15,000;  Burn-in period=5,000; # of chains = 3; 



with rates (per mile walked) falling off dramatically as walk levels rise, presumably thanks to 

drivers expecting more pedestrians in high-WMT zones and responding accordingly and/or safer 

pedestrian environments encouraging more walking. This is a salient result: crash rates fall 

substantially (per WMT) as pedestrian exposure (WMT) rises, ceteris paribus, as shown in 

Figure 3. Also, this parameter was assumed to be identical across severity levels, based on DIC 

values not changing when distinctive exponents were permitted. ln(VMTs) for local streets and 

freeways failed to show significance and were removed from the model. 

 

Figure 3 Relationship between Pedestrian Crash Rates (# per WMT) and Walk-Miles Traveled 

over a Two-Workday Period 

After controlling for exposure (WMT), greater land use balance was estimated to lower severe 

crash rates, as reflected by a negative coefficient estimate on the entropy measure. But entropy’s 

effect on less-injurious crash rates was not statistically (nor practically) significant, so it was not 

included in that piece of the final specification (as reflected in Table 4). Shares of apartment and 

single-family parcels near commercial parcels showed very similar parameter estimates and so 

were merged to form a single covariate (the share of residential parcels within ½ mile of 

commercial parcels). In contrast, an increase in pedestrian crashes across both crash types is 

predicted (everything else constant) when a higher share of a zone’s residential parcels are near 

commercial land uses, as reflected by (modest) elasticities of +0.04 and +0.06 (for the two crash 

types, respectively). The variance term for the non-severe crash rates is estimated to be 2.7, 

surpassing the variance for the severe crash rates by 1.4, as expected, since non-severe crash 

rates are generally higher than the rates for severe crash rates and permit greater variation in the 

error term. 

Higher bus-stop density appears to contribute somewhat to less-injurious crash rates (after 

controlling for pedestrian exposure), but its effect on severe pedestrian crash rates was found to 
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be minimal (and so was removed from the final model for that crash type). Residents’ proximity 

to schools was found to have almost no practical effect on either crash rate (after controlling for 

WMT estimates in each zone), but its coefficient was statistically significant in the case of severe 

crash rates. 

Network intensity covariates yielded mixed effects: A higher density of arterial streets is 

predicted to notably contribute to both severe and less-severe crashes (with elasticities of +0.47 

and +0.52, respectively), whereas freeway intensity had little practical effect.  Interestingly, a 

higher local-street density is estimated to significantly lower severe crash rates, and, to a lesser 

extent, non-severe crash rates. It would be useful to be able to control for traffic levels, instead of 

simply centerline miles, to get a better sense of how these network-design effects (arterials vs. 

locals) play out, in order to better anticipate an optimal balance in serving all travelers while 

protecting pedestrians.  

Residual Spatial Autocorrelation  

Residuals were computed as the difference between estimated values and observed values for 

pedestrian crash counts by severity levels, as shown in Figures 4 and 5. Both maps show 

negligible, positive spatial dependence, as measured by Moran’s I value and a significant 

measure reflected by the p-value. Moran’s I is a spatial version of the common Pearson 

correlation coefficient: the closer this statistic is towards 1 or -1, the stronger the spatial 

autocorrelation (with positive values indicating spatial clustering and negative values denoting 

spatial dispersion). 

 

Figure 4 Spatial Distribution of Residuals for Severe Crash Counts. 

Note: Moran’s I = 0.013 (with p value = 0.70) 



 

 

Figure 5. Spatial Distribution of Residuals for Non-Severe Crash Counts. 

Note: Moran’s I = 0.028 (with p-value = 0.03) 

The Poisson log-normal MCAR model is also compared with an aspatial multivariate Poisson-

lognormal model and a spatial Poisson-lognormal model (without correlations across different 

severity levels), with results shown in Table 5. The Poisson log-normal MCAR model yields the 

lowest DIC value and Moran’s I of residuals among the three models tested. Including spatial 

autocorrelation effect has proved to greatly improve fit statistics, as reflected by the marked 

increase in the mean log-likelihood (and decrease in DIC values) after convergence in achieved. 

The Poisson log-normal CAR model (i.e., Model II, which incorporates spatial autocorrelation 

within each severity level but omit cross-severity correlation) reduces DIC value by 10% from a 

pure multivariate Poisson log-normal model (Model III). Another decrease of 34% in DIC value 

results from Model I’s incorporating aspatial and spatially-lagged cross-correlation into Model 

II. Similar observations can also be found for comparing the root mean squared errors (RMSE) 

across the three models. 

 

Table 5. Comparison of Full Model Results (I) to Aspatial Model (II) and Spatial Model without 

Cross Correlation (III) Results 

 

Poisson Log-Normal 

MCAR  

Poisson Log-Normal 

CAR 

Poisson Log-Normal 

Multivariate  

Model No. I II III 



Parameter Constraints  -             ,   , &      

DIC 3200.5 4852.31 5061.41 

Mean LogLik -2568.1 -3731.13 -3999.12 

RMSE 2.41 4.21 6.70 

Moran’s I of Residuals 

for Severe Crash 

Counts 

0.013 

(p-value = 0.70) 0.132 (0.06) 0.651 (0.04) 

Moran’s I of Residuals 

for Non-Severe 

Counts 

0.028 

(p-value = 0.03) 0.192 (0.09) 0.581 (0.01) 

 

CONCLUSIONS 

This paper proposed, calibrated, and applied a Poisson log-normal multivariate CAR model, 

which captures zone-specific heterogeneity, correlation across response types, and spatial 

dependence ascribed to the latent error term. The use of Thiessen polygons to aggregate area-

level crash count data is recommended, rather than using the natural tract boundaries, to ensure 

that high-crash locations can be uniquely assigned to a polygon zone (rather than arbitrarily 

assigned to or split across adjacent tracts).  

This new spatial multivariate model was applied to analyze the relationship between area-level 

pedestrian crash counts and various land use, network, and demographic factors, including 

residents’ proximity to schools, land use balance, transit access, network intensity, sidewalk 

density, and resident demographics. Walk-miles traveled were used as the exposure measure and 

imputed using 2005/2006 Austin Travel Survey’s walk trips. Parameter estimates suggest, for 

example, that roadway-provision (and no doubt roadway-use) decisions have very important 

roles to play, as these effectively proxy here for traffic levels.  

Pure, positive spatial autocorrelation (indicating clustering patterns) appears present across 

Austin neighborhoods, as expected (due to measurement errors that trend in space and the spatial 

clustering patterns of crash counts). The spatially lagged effects of cross-response correlation 

(estimated to be statistically and practically significant) capture missing variables that are both 

spatially clustered and shared across crash types, such as socio-economic variables (like ethnicity 

and poverty). In contrast, the model’s aspatial cross-correlation (η0 = 0.712) represents omitted 

variables that are meaningful for both crash-severity levels but apply within zones, more locally 

(like relatively poor lighting conditions and the presence of unusual sight obstructions). 

From a planning and policy perspective, this paper’s results reinforced the importance of 

advocating walking in order to reduce crash rates, as reflected by the drastic decrease in crash 

rates as walk miles traveled increase. Providing walking facilities (such as sidewalks and other 

pedestrian paths) and greater local street intensity for all road users may also reduce crash rates, 

per walk-mile traveled, as suggested by the conspicuous elasticity estimates for sidewalk and 

local-street provision in the pedestrian crash model’s results. In addition, balanced land 

development offers a mild, positive impact in reducing severe crashes and could serve as a 

countermeasure to curb pedestrian fatalities. Other countermeasures may include providing 



pedestrian signals that count down (to warn walkers of time remaining), pedestrian (and cyclist) 

overpasses/underpasses, walk beacons at popular mid-block crossings, pedestrian phases that 

turn on before the green signal for vehicles (crossing in the same direction), and more safety 

programs for vulnerable road users (like school children and disabled pedestrians), while 

restricting parking near intersections, as suggested in Zegeer and Bushell (2011).    

Incorporating spatial effects has proved to substantially improve inference and fit statistics in 

analyzing area-level pedestrian crash count data. The model developed here follows Jin et al.’s 

specification and presents a novel alternative to the Poisson multivariate CAR model proposed 

by Gelfand and Vounatsou (2003) and Song et al. (2006) thanks to a more intuitive 

parameterization of the spatial influence (by focusing on the covariance matrix rather than the 

precision matrix), the ability of teasing out aspatial cross correlation from its spatially lagged 

counterpart, and faster computation. However, several enhancements shall be pursued. For 

example, more network variables should be explored, such as at-grade intersection density and 

link-level traffic flow (which is currently missing for all local streets and many segments with 

higher functional classifications). Again, from a planning and policy perspective, it is crucial to 

investigate what types of variables tend to generate what kind of spatial autocorrelation: a pure 

within-severity-level dependence, a spatially-lagged cross-severity correlation, or an aspatial 

cross correlation. This opens door to a new chapter of spatial count data analysis, by exploring 

models with spatially lagged covariate terms (e.g., the spatial Durbin model [LeSage and Pace 

2009] and possibly a CAR variation with spatially lagged covariates). A temporal extension shall 

also be pursued to identify any time trend in the occurrence of pedestrian crash count across 

neighborhoods. 
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APPENDIX 

Sampling Scheme for the Bivariate Setting 

Having specified the conditional distributions of the mean crash rates,          , the focus 

now is the posterior distribution:                                                  

              , as detailed below. 

The posterior distribution                 : 
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where                 and                .  

Here, type-specific covariates           are assumed to follow a flat normal prior, reflected as 

being centered around zero with a large variance term, e.g.,          
    and          

   . 

The precision parameters            are assumed to follow a rather diffused Gamma 

distribution, e.g.,              with mean 10 and variance 100. Spatial autocorrelation 

coefficients,          , are assigned a uniform prior over the interval (0, 1), denoted by  

         . The two “bridging” parameters    and    follow a diffused normal prior,         .   

Conditional distributions of    and    

             
  
 
                                            

   

                                                   

            
 

 
  

     
 

        
 

 
  

       (Using completing the squares 

technique) 
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Conditional distributions of   ,   , …,    

            
  

 
                                            

    

                                                 
  

 
         

                                    
    . 

It is difficult to draw     ,   , …,    simultaneously. Alternatively, one may draw these n 

heterogeneity error terms sequentially, as described below.  



             
  

 
                                            

    

                                                 
  

 
         

                                    
      (i=1, 2, …, n) 

The conditional posterior of    does not follow any known distribution and thus cannot be 

sampled using Gibbs method. Metropolis-Hastings algorithm (Metropolis et al. 1953, Carlin and 

Louis 2009) and a more recent development, the generalized direct sampling method (Walker et 

al. 2011), can be utilized in drawing these quantities.  

Conditional distribution of     

             
         

 

   
 

       
  
 
                        

 

                                   

where                 and                . Due to a non-Gaussian first stage, 

the conditional posterior of    does not follow a known form.  

Conditional distribution of     

             
         

 

   
 

       
  
 
                        

 

                                

 
  
 
       

                  



Similar to the conditional posterior for   , the conditional posterior         does not follow a 

standard distribution either.  

Conditional distribution of     

          
   
     

  

 
           

 

 
   

  

 
   

where                            
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Conditional distribution of     
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Conditional distributin of     

               
 
 

       
  
 
                        

 

                                   

Conditional distribution of     

               
 
       

  
 
       

                 

Conditional distribution of     



              
  
 
        

          
                        

         
                            

Assume     ,         is then written as:  

              
  
 
   

        
               

           
                   

      
  
 
       

                   
       

               

                      
 

 

  

   
       

               

                      
           

                
    

An aspatial model (with cross-type correlations) assumes     ,     , and     . 

The Trivariate Poisson-Lognormal CAR Model  

A trivariate MCAR model assumes that the spatial random effects are represented as   

   
 
    

 
   

 
  , where    is an n by 1 vector of spatial random effects for the latent rates of 

crash type 1 (or fatal and incapacitating injury), as is the case for crash type 2 (or non-

incapacitating injury) and type 3 (possible and no injury). A question emerges as to the sequence 

of these conditional distributions. A way to determine such question is to try all possible 6 

combinations and choose the model with best goodness-of-fit.  

For ease of exposition, assume the sequence of conditional distributions as such:      
                              . Based on multivariate normal theory, the joint distribution 

of   takes the form:  

  
  
  

      

  
  
  
   

         
          
           

   , where the n by 1 vector    

indicates the mean for response type p (p=1, 2,3),     is an n by n matrix describing the 

covariance structure between response type p and l. The marginal distribution of    can be 

written as:                 , with      and                
  . The marginal 

distribution of         can be obtained by removing irrelevant elements (with respect to    and 



    from the full distribution, leading to a multivariate normal distribution:   
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   , where     describes the aspatial correlation between 

response types 2 and 3, as well as the spatially-lagged correlation between the two response 

types, formally:                  . 

                                   
   , where     and     capture the aspatial 

and spatially-lagged correlation across response types 1 and 3, and response types 1 and 2, 

formally:                    and                   

 


