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Abstract 1

Bayesian tomographic reconstruction algorithms generally require the efficient optimization of a
functional of many variables. In this setting as well as in many other optimization tasks, functional
substitution (FS) has been widely applied to simplify each step of the iterative process. The function
to be minimized is replaced locally by an approximation having a more easily manipulated form, e.g.
quadratic, but which maintains sufficient similarity to descend the true functional while computing
only the substitute. In this paper, we provide two new applications of FS methods in iterative
coordinate descent for Bayesian tomography. The first is a modification of our coordinate descent
algorithm with 1-D Newton-Raphson approximations to an alternative quadratic which allows
convergence to be proven easily. In simulations we find essentially no difference in convergence
speed between the two techniques. We also present a new algorithm which exploits the FS method
to allow parallel updates of arbitrary sets of pixels using computations similar to iterative coordinate
descent. The theoretical potential speed up of parallel implementations is nearly linear with the
number of processors if communication costs are neglected.
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1 Introduction

With the choice of convex potential functions for Markov random field (MRF) style a priori image

models, both maximum likelihood (ML) and maximum a posteriori probability (MAP) tomographic

image reconstructions may be formulated as large scale convex optimization problems. Many

approaches to this optimization have been proposed, among which popular alternatives have been

variants of expectation-maximization (EM) [1], an approach derived from indirect optimization

through the introduction of the notion of an unobservable complete data set whose expectation

forms the algorithmic basis for ML. Unfortunately, for most common image models, EM has no

simple, closed form for the MAP problem, though several modifications have been proposed which

allow inclusion of the a priori density term[2, 3, 4]. Probably a more serious limitation of EM is

its slow convergence for typical tomographic problems.

It is perhaps more natural to look at the numerical side of statistical tomographic estimation as a

problem of direct optimization in the pixel domain, which brings to mind gradient-based techniques.

The similarity of EM to gradient descent has often been noted [5, 6], and helps explain their common

poor performance for tomographic reconstruction. Improvements such as preconditioned gradient

or preconditioned conjugate gradient may have significantly more promise in terms of speed. But

realistic positivity constraints remain more difficult to incorporate effectively than in, for example,

EM.

This high-dimensional optimization can be greatly simplified by viewing the problem as a se-

quence of low-dimensional problems. Many previous techniques such as the algebraic reconstruction

technique (ART) are known as “row-action,” since they attempt to solve a sequence of problems,

each corresponding to a subset of the data and therefore rows of the projection matrix. Much has

been published of late concerning the ordered-subsets version of EM (OS-EM) [7], which rotates

among subsets of projection data, resolving the EM-type problem for each subset in a fashion

reminiscent of ART. But while OS-EM improves the speed of initial descent toward the functional

minimum, it does not in general converge without the addition of temporally varying auxiliary pa-

rameters whose schedule apparently cancels gains in convergence speed [8]. The difference between

the true MAP estimate and the results achieved with common implementations of OS-EM may be

substantial [9].

ML or MAP optimization may also be solved sequentially among pixels, via methods known as
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“column-action,” due to the correspondence between a pixel and a single column of the transform

matrix. Among the conceptually simplest is a technique we call iterative coordinate descent (ICD)

[10, 11], which views the ML or MAP estimation problem, be it transmission or emission tomog-

raphy or any other convex formulation, as a direct optimization task. ICD solves these problems

by sequentially minimizing the objective functions posed by ML or MAP estimation, using greedy

pixel-wise updates in the style of iterated conditional modes (ICM) [12] and Gauss-Seidel iterations

[13]. Because ICD has fast convergence at high spatial frequencies, it performs very well in standard

tomographic problems where the filtered backprojection (FBP) image serves as a good initial con-

dition [14]. A variant using local Newton-Raphson style approximations of the likelihood function,

called ICD/Newton-Raphson (ICD/NR), simplifies update computation with convergence speed in

iteration counts which is very similar to direct ICD[10]. One may also solve the EM formulation

pixel-sequentially, preserving the provable convergence of EM while substantially improving its

speed, as in the space-alternating EM algorithm (SAGE) of Fessler and Hero [15]. Column-action

methods can easily be made to converge reliably to the unique global minimum of the ML or MAP

functional.

Here we present two improvements to current forms of ICD: (1) global convergence of the

approximate greedy descent algorithm follows from the introduction of a new local quadratic ap-

proximation of the log-likelihood and (2) we derive a scheme for parallel updates of arbitrary sets

of pixels while maintaining convergence properties. We approach these developments by discussing

a technique exploited by many proposed algorithms in this field, which we call functional substitu-

tion (FS). The term FS is here understood to include the many choices for simplifying potentially

expensive minimization by temporarily replacing the true convex function to be optimized by a

simpler one which maintains its most important local properties, such as low-order derivatives.

ICD/NR is a simple example of these for tomographic estimation, using a local one-dimensional

quadratic [11]. EM also can be viewed as an FS method which solves the ML estimation by replac-

ing the likelihood function with its expectation over the realizations of the “complete” data set.

De Pierro [4] used the functional substitution idea in his extension of the EM framework directly

to the MAP emission problem. For transmission tomography, EM has no simple closed form even

for ML, leading Lange to apply a substitution similar in form to that of De Pierro to solve the

transmission problem, again with decoupled parallel updates [16].

The ICD/NR algorithm has been experimentally demonstrated to converge very rapidly com-

3



pared to EM algorithms, but is thus far not guaranteed theoretically to converge to the unique global

MAP solution. We therefore first present a modified ICD algorithm which we call ICD functional

substitution (ICD/FS). The new algorithm locally approximates the exact log-likelihood function

with an alternative quadratic function to the Newton-Raphson choice. Like ICD/NR, ICD/FS

easily incorporates non-negativity constraints and non-Gaussian prior distributions for the MAP

reconstruction problem. However, ICD/FS is guaranteed theoretically globally convergent for both

the emission and transmission reconstruction problem when the log-prior distribution is strictly

convex. The experimental convergence speeds of the two are identical.

Many low-cost high-speed computational engines are parallel configurations of medium speed

processors. In clinical application of statistical reconstruction, it may be of benefit to implement

algorithms specifically tailored for such parallel architectures. As a second example of the utility of

the FS idea in optimization for tomographic reconstruction, we present a FS method which allows

us to update arbitrary subsets of pixels in parallel, while maintaining any provable convergence

possessed by the form of ICD algorithm chosen. We apply the parallel updates here using ICD/FS

at each pixel. For practical numbers of parallel processors, the algorithm maintains the convergence

advantages of ICD and yields linear speed-up with the number of processors in terms of iteration

counts.

2 Functional Substitution in Tomographic Reconstruction

For the emission problem, the log-likelihood may be computed as

logP(Y = y|X = x) =
M∑

i=1

(−Ai∗x− ri + yi log{Ai∗x+ ri} − log(yi!)) (1)

where x is the unknown image, y is the projection data, M is the number of projections, Ai∗ is

the ith row of the projection matrix A, yi are the observed photon counts for projection i, and ri

are additive terms usually due to background noise or random coincidences in the case of positron

emission tomography (PET). In the transmission case, we have

logP(Y = y|X = x) =
M∑

i=1

(

−yT exp
−Ai∗x+yi(log yT −Ai∗x)− log(yi!)

)

(2)

where yT is the photon dosage per ray [11].

Both log-likelihood functions have the form

− logP(Y = y|X = x) =
M∑

i=1

Gi(Ai∗x), (3)
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in which the {Gi} and therefore their sum are convex. The common form leads to similar methods

of solving these two problems. In Bayesian formulations, we denote the a priori density function

for X as P(X = x), with MAP tomographic reconstruction resulting in the numerical optimization

problem of

x̂MAP = argmin
x
{− logP(Y = y|X = x)− logP(X = x)}.

In this paper we deal only with those models for which logP(X = x) is a concave function of x,

making the entire optimization problem convex.

Several researchers have resorted to the direct optimization of the Poisson-modeled problem.

Gradient ascent methods may be applied directly to the log-likelihood function, with several of

these techniques having been derived from the similarity of EM to gradient ascent [17, 6, 18]. The

improved preconditioned conjugated gradient approach of Mumcuoǧlu et al. has been explicitly for-

mulated for the MAP problem [19] as well. The ICD method [11] is a direct pixel-wise optimization

of the MAP functional, typically allowing more rapid convergence than at least the unaccelerated

gradient-type algorithms.

Though direct optimization is tractable for this problem, the celebrated EM algorithm [20] has

become very widely known and applied to its solution. Based on the notion of indirect optimization

through a set of unobservable “complete” data, it relies on a concept which is generally important

to this problem, that of a tractable substitute function in place of the true log-likelihood. The EM

algorithm replaces the log-likelihood function logP(Y = y|X = x) with the substitute function Q

in [1],

Q(x;xm) = E[log p(z|x)|xm, y]

where z are the emission counts for each pixel/detector combination. As is the case with all FS

methods, the substitute functional form is determined by the most recent estimate xm. In EM, m

indexes iterations, each of which updates all pixels in parallel. The substitute function matches

the actual concave objective in its first derivatives at xm, but has second derivatives of larger

magnitude. Solving the optimization with Q(x;xm) at iteration m in place of logP(Y = y|X = x)

guarantees that at each step, the log-likelihood increases, since any increase in the former must

result in an equal or greater increase in the latter. Most importantly operationally, it allows all pixel

updates to be computed independently. The EM strategy does not result in a simple maximization

step in transmission tomography, but Lange derived an alternative substitute functional resulting
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in an approach called the Convex algorithm which similarly decouples parallel pixel updates [16].

The linkage of pixels through the prior generally makes the maximization step for Bayesian

EM algorithms non-trivial, though several modifications have adapted EM to the MAP estimator

[3, 2]. De Pierro proposed a modified EM algorithm for the MAP problem [4], observing that

a substitution could be made for logP(X = x) just as EM does for the log-likelihood, with the

substitute functional having decoupled dependencies on pixel update values. The algorithm consists

of replacing the log-prior function logP(X = x) by an alternative cost function C(x;xm) at the

(m+ 1)th update, having the properties

C(x;x) = logP(X = x)

C(x;xm) ≤ logP(X = x),

and independent optimization at each pixel. This allows a more direct extension of EM to MAP

estimation than previously known methods. This FS-method based EM algorithm has the advan-

tage of guaranteed monotonic descent of the objective with simple computation, but retains the

limited convergence speed of EM.

3 Provably Convergent Coordinate Descent by FS

3.1 ICD/FS Algorithm Description

The ICD method directly, sequentially optimizes the MAP cost function with respect to each pixel

(i.e. coordinate of xj) of the image with the remainder of x fixed. Previous results have shown

that its convergence in tomographic problems is significantly faster than EM and gradient descent

[14, 11]. Let xn be the image at the nth update. The ICD update of the pixel xj is computed by

solving the MAP equation

xn+1j = arg min
xj≥0
{Fj(xj) + Pj(xj)} (4)

where Fj(xj) and Pj(xj) represent the contribution of the likelihood and prior terms, respectively, to

the objective function expressed in terms of only xj . Fj and Pj are functions also of all other pixels

in xn, but since we deal primarily with optimization in one variable with all others fixed, we have

suppressed xn as an argument in the interest of economy of notation. For the present discussion, we

let the index n increase with each pixel visit, making j, the index of the updated pixel, implicitly a

function of n. The particular form of Fj(xj) varies for the emission and transmission tomography
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cases of equations (1) and (2). But in both cases Fj(xj) is a convex function on IR
+ and its

derivative fj(xj) =
dFj(xj)
dxj

is strictly concave on IR+.

Since (4) updates with respect to a single xj at each step, the N-dimensional optimization

problem changes to 1-dimensional. This simplifies the MAP problem, making enforcement of

positivity constraints trivial, but requires fast implementations of the sequential 1-D problems.

Unfortunately, exact optimization of (4), requiring repeated evaluation of the derivatives of Fj(xj),

may be computationally expensive.

An FS method can solve this problem simply by replacing the true log-likelihood function in 1-D

at each iteration with a quadratic functional form. This kind of quadratic approximation is easy

to optimize with any of several numerical methods. The most common quadratic form is Newton-

Raphson type, which was proposed as the ICD/NR algorithm in [10]. It locally approximates the

function with its second order Taylor series, replacing Fj(xj) with

F̃j(xj) = θ1(xj − x
n
j ) +

1

2
θ2(xj − x

n
j )
2,

where

θ1 = fj(x
n
j ), (5)

θ2 = f ′j(x
n
j ) ≡

dfj(xj)

dxj

∣
∣
∣
∣
∣
xj=xnj

. (6)

Pj(xj) remains unchanged, which may create a nonlinear problem. Still, since the log-likelihood

term typically dominates the computation, the quadratic approximation greatly simplifies the up-

date. This NR-type approximation in the ICD algorithm has demonstrated quite good experimental

convergence and easily incorporates non-negativity constraints. However, since in general Newton-

Raphson steps are not guaranteed to monotonically approach a fixed point, a theoretical proof of

convergence for the resulting iterations may be difficult.

Quadratic approximation algorithms may be made monotonically convergent in convex problems

by locally replacing the Hessian matrix, or θ2 from the 1-D version in (6), by certain estimates

more liberal in their magnitude, causing a more conservative update. The quadratic lower bound

algorithm in one dimension, for example, uses the lower bound on the second derivative of a concave

function over an interval of interest [21]. The algorithm we shall call ICD/FS consists of replacing

θ2 with its average on the interval between 0 and x
n
j . The update equations for ICD/FS are given
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as follows.

θ̆2 =







fj(xnj )−fj(0)

xn
j

if xnj > 0

f ′j(0) if xnj = 0
(7)

F̆j(xj) = θ1(xj − x
n
j ) +

1

2
θ̆2(xj − x

n
j )
2 (8)

xn+1j = arg min
xj≥0

{

F̆j(xj) + Pj(xj)
}

(9)

Figure 1 illustrates the difference between ICD/NR and ICD/FS. The plots are the first deriva-

tives of NR-type and FS-type approximations of the original log-likelihood. As mentioned earlier,

both use the same first derivative for the substitute functional at xnj but ICD/FS takes as its

second derivative the average rate of change in the first derivative over the interval from 0 to xnj .

Since the second derivative is monotonic decreasing, θ̆2 is greater than or equal to θ2, making the

ICD/FS update more conservative. The updated optimal pixels are the zeros through root-finding

operations, given the current state of all other pixels in xn.

The ICD/FS algorithm can be applied in both emission and transmission tomography problems.

The only difference between these two cases is the specific computation of the values for fj(x
n
j ),

fj(0), and f
′
j(0) in (5) and (7). For the emission case, these values are given by

fj(x
n
j ) =

M∑

i=1

Aij

(

1−
yi
pni

)

(10)

fj(0) =
M∑

i=1

Aij

(

1−
yi

pni −Aijx
n
j

)

(11)

f ′j(0)
∣
∣
∣
xn
j
=0
=

M∑

i=1

yi

(

Aij
pni

)2

(12)

where Aij is the contribution of the j
th pixel to the ith projection, and pni = Ai∗x

n + ri is the

ith projection of the reconstruction at iteration n. Note that pni may be efficiently updated by

pn+1i = pni +Aij(x
n+1
j − xnj ), with computation reduced by the sparse structure of A.

For the transmission case, the update values are given by

fj(x
n
j ) =

M∑

i=1

Aij
(

yi − yT e
−pn
i

)

(13)

fj(0) =
M∑

i=1

Aij
(

yi − yT e
−pn
i eAijx

n
j

)

(14)

f ′j(0)
∣
∣
∣
xn
j
=0
=

M∑

i=1

A2ijyTe
−pn
i (15)
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where pni = Ai∗x
n, i.e. ri is assumed zero.

ICD/FS has nearly the same computational requirements as ICD/NR since it generally requires

the computation of two first derivatives in place of the first and second derivatives required for

ICD/NR. This computational cost includes approximately twice the number of multiplies and adds

per iteration as gradient descent [11], but approximately equal numbers of additions and accesses

to entries of the transform matrix A. The exponentiations required for the transmission problem

can be efficiently implemented via table look-ups.

3.2 Global Convergence of ICD/FS

In order to prove the global convergence of this new ICD/FS algorithm, we simply verify that

it meets the assumptions and necessary conditions of the global convergence proof presented by

Fessler and Hero in [15] for convergence of SAGE under positivity constraints. Since this proof

requires continuity of the log-likelihood on IRN+, we must assume that the background noise is

greater than zero, i.e. ri > 0 in emission case (1). We discuss alternative methods for the case

ri = 0 later in this section.

Most of these conditions are either the same as for [15], or may be simply verified2. We will

demonstrate the critical Condition 1, which states that the change in the substitute function is

an upper bound on the change in the true functional to be minimized. By the construction of

the function f̆j(xj) =
dF̆j(xj)
dxj

, we know that f̆j(0) = fj(0), and f̆j(x
n
j ) = fj(x

n
j ). Since for both

the emission and transmission case, fj(xj) is a concave function and f̆j(xj) is a linear function, it

follows that

fj(xj)

{

≥ f̆j(xj) 0 ≤ xj < x
n
j

≤ f̆j(xj) xj > x
n
j

Integration of fj(xj) and f̆j(xj) results in the inequality

Fj(x
n
j )− Fj(xj) ≥ F̆j(x

n
j )− F̆j(xj) .

Defining the functions Φj(xj) = Fj(xj) + Pj(xj) and Φ̆j(xj) = F̆j(xj) + Pj(xj), both implicitly

functions of xn, then results in the following lemma.

Lemma: Let Fj(xj) + Pj(xj) be convex, and Fj(xj) be continuously differentiable on IR
+.

Furthermore, let fj(xj) =
dFj(xj)
dxj

be concave and continuous on IR+. Then for all xj ∈ IR
+

Φj(x
n
j )− Φj(xj) ≥ Φ̆j(x

n
j )− Φ̆j(xj) . (16)

2Using Φ̆j(t;x
n) to make explicit the dependence of Φ̆ in (16) on the current state, xn, continuous differentiability

of Φ̆j(t;x) as a function of (t;x) on IR
(N+1)+ is also necessary in Condition 2 of [15].
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This guarantees that the decrease in the substitute function will result in an equal or greater

decrease in the exact function. Based on this lemma and the conditions proved in [15], the global

convergence of the ICD/FS algorithm follows.

3.3 ICD/FS with Zero Background Emission Noise

As mentioned previously, the emission case when ri = 0 is special, since in this case the log-

likelihood term may tend to −∞ on IR+. This occurs in the unusual case in which xj is the only

nonzero pixel on a projection which has a nonzero photon count. In this case, Ai∗x = Aijxj and

the log-likelihood functions have terms of the form log xj which tend to −∞ as xj → 0. There are

a number of possible strategies for handling this case numerically.

Strategy 1: A very simple method is to set ri to a small number such as ri =
1

100M . This

guarantees that the expected number of additional photons due to this adjustment summed over

all projections is much less than 1. In practice, such a small perturbation to the model should not

have a significant effect on the resulting reconstruction. This strategy also has the added benefit

of making the algorithm more robust to floating point round-off error.

Strategy 2: Modify the algorithm so that in the case when fj(0) = −∞, the function is

computed at fj(ǫ) where ǫ is chosen to assure that fj(ǫ) < 0. One such choice is ǫ = min(γ,
xn
j

2 ),

where γ = minj

{(

p−1σ−p +
∑M
i=1Aij

)−1
}

. In this case, θ̆2 is given by

θ̆2 =
fj(x

n
j )− fj(ǫ)

xnj − ǫ

=
M∑

i=1

A2ijyi

(pni )
2 − pni Aij(x

n
j − ǫ)

and the update equation is still given by

xn+1j = arg min
xj≥0
{F̆j(xj) + P (xj)}

3.4 ICD/FS Numerical Results

Numerical results include three data sets, two from emission and one from industrial transmission

tomography. The synthetic phantom emission data used for Fig. 2 are 128 × 128 projections

with approximately 3 million total counts, while the single photon emission computed tomography

(SPECT) sestamibi heart perfusion data of Figure 3 form a single slice of dimension 120×128 from

a 3D set. Both reconstructions are computed at a resolution of 128× 128 pixels. The transmission

data used in Fig. 4 are a 192×256 subset of a high-resolution industrial CT scan, with reconstruction
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at 256 × 256. We solve MAP reconstructions using for comparison several other methods relying

on functional substitution for the design of updates, all with guaranteed convergence. We include

iterations of the Lange’s convex method [16] for the transmission reconstruction, and both Fessler

and Hero’s SAGE-3 [15] and De Pierro’s method [4] in the emission problems. In trials with

Gaussian priors, plots show also results from the preconditioned conjugate gradient (PCG) approach

[19] with a line search for optimal step size at each iteration. As discussed in [11], all the algorithms

compared require the equivalent of a forward and backprojection at each iteration and thus have the

same order of computational cost. The ICD techniques require approximately the same number

of additions and twice as many multiplies and divides per iteration as EM. All the sequential

algorithms typically include a root-finding step at each pixel, which may raise cost somewhat for

non-Gaussian prior models.

The a priori image model here consists of two choices of p for the generalized Gaussian Markov

random field (GGMRF) [22] prior model with the prior log density function of P (x) =
∑

j,k
bjk
pσp
|xk − xj |

p,

where bjk is the coefficient linking pixels j and k, σ is a scale (temperature) parameter, and 1 ≤ p ≤ 2

is a parameter which controls the smoothness of the reconstruction. The parameter σ for all six

cases and the dosage parameter yT for the transmission data were estimated directly from the noisy

projection data via the maximum-likelihood methods described in [23]. For 1 < p < 2, P (x) has

unbounded positive second derivatives at points where neighboring pixels are equal, violating the

twice-differentiability called for in Condition 2 in the convergence proof of [15], but as shown in the

Appendix, this case still carries through the convergence proof without modification.

Except for one case noted below, all iterative reconstructions begin with a filtered backprojection

image with negative-valued pixels set to zero or, for the generalized EM algorithm, a small positive

value to avoid potential problems with multiplicative corrections. Since our goal is minimization

of the MAP objective for a convex problem, the final image is independent of this initial condition

and no “stopping rule” for early termination is considered. The ICD algorithms are normally run

until the objective function’s value is converged in, e.g., the first 8-10 decimal places and beyond

visible changes in the image, though our plots do not necessarily show values all the way to the

termination point.

Plots in Figs. 5, 6 show the convergence of the ICD/NR and ICD/FS in the emission cases

described above. These trials employ sequential pixel updates in raster ordering for the ICD

methods and SAGE-3, not necessarily the fastest converging scan pattern. The plots show that the
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convergence properties of ICD/NR and ICD/FS are virtually identical, in spite of the potentially

more conservative updates of ICD/FS. But this is not surprising, since the log-likelihood function

is generally close to quadratic and the values of θ2 and θ̆2 are therefore generally very close. In

fact, we have previously found there to be little difference in pixel values between ICD/NR updates

and exact greedy pixel-wise minimization of Fj(xj) + Pj(xj) [10]. Although a proof for the global

convergence of ICD/NR has not yet been found, its convergence appears consistently rapid. In

practical applications, the greater conceptual simplicity of ICD/NR may in fact still make it the

more desirable of the two. The performance of SAGE-3 is close to that of ICD in all cases, though

in the head phantom plots we see somewhat slower asymptotic convergence, presumably due to

the fact that the substitute function of SAGE, based on the expectation derived from EM, is more

conservative than those of the ICD quadratic approximations. DePierro’s method, using the EM

substitute functional for all pixels simultaneously, is significantly slower to converge.

The PCG results for p = 2, which are intermediate in convergence speed, require additional

comment. The algorithm in [19] uses a one-sided quadratic penalty for pixels violating the positivity

constraint, with parameters governing behavior at the boundary to be set heuristically. We found

the convergence behavior of PCG to be potentially sensitive to both these parameters’ values and

the initial condition chosen for optimization. In each featured result, we experimented with a wide

range of values for each of the parameters, including those suggested in [19], and both the FBP

and uniform images as initial conditions. In each case we present the best results achieved with

(1) violation of the positivity constraint limited to a magnitude of 0.01 of the maximum in the

reconstruction, and (2) PCG objective function value close to that of the other, strictly constrained

methods. For the SPECT phantom, PCG converged fastest with the uniform initial image and the

heuristic parameters set to values similar to those in [19]. The plot reaches a value higher than the

other methods due only to the better fit in likelihood achievable with the slightly negative-valued

pixels. (The added penalty is not included in the computation of the objective function in the

plot.) The non-negativity penalty proved more problematic with the head phantom, where it is

active for nearly all the area outside the phantom. The penalty is encountered in the first iterations

regardless of which initial condition is chosen, and a weighting of the penalty adequate to satisfy

our two requirements above leads to very slow convergence. To achieve a reasonable result here,

we initialized with the FBP image and used a weighting of the penalty which increased by a factor

of 2.5 to its final value over the first 20 iterations. The asymptotic value in the plot again exceeds
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that of the other methods due to the permitted negativity.

In Figure 7 we decompose the information for ICD/FS in Figure 6 concerning the gain in the log

a posteriori density into the gain in the log-likelihood and the log prior terms. With the standard

FBP as the initial condition, we see contribution of both terms in the same range, though far larger

change in log-likelihood than in log prior. This difference is exaggerated when we use a second,

much poorer initial condition, in this example a uniform image equal to the average of the FBP.

This initiation leaves the likelihood much farther from its (MAP) optimal value; on the other hand,

the zero-penalty uniform image represents the most likely (a priori) choice under the MRF model,

and is significantly closer to the MAP image than is the FBP. Its log prior term, of course, decreases

toward the MAP estimate’s value.

Similar overall convergence comparisons for transmission data are visible in Figure 8, where

ICD/FS and ICD/NR are indistinguishable. The plots for the two a priori models are very similar,

due to the dominance of the log-likelihood term in the functional of this high signal-to-noise ratio

reconstruction. The pattern in which pixels should be scanned in the sequential methods is not

always clear. The analyis in [14] showed potential advantage in alternating raster scans between two

orthogonal spatial directions, but we have not found experimentally that this holds consistently.

A random ordering of the scan was recently reported in [24] to improve speed. We have applied a

pseudo-random scan which visits each pixel once in each sweep, similarly to the choice of Bowsher,

et al. and found that in the transmission reconstruction its convergence is significantly faster than

the regular scan, as shown in Figure 8. Later in the paper we find that a regular, decimated pattern

for parallel updates may achieve similar speed-up. As in the emission head phantom data, we found

that PCG performed best with a gradually increasing weighting for the non-negativity enforcing

function for the transmission reconstruction, The weighting was increased five-fold over the first

20 iterations to the value recommended in [19], with the image after 40 iterations again having

negative pixels which raised its asymptotic objective value slightly above that of the others. In this

case its performance was competitive with that of ICD with a regular scan but still significantly

slower than the random scan ICD. Lange’s Convex algorithm is slower to converge to the MAP

reconstructions, similarly to De Pierro’s generalized EM for emission. Here again, the use of a

substitute functional for all pixels simultaneously appears to limit the rate of convergence.

These results represent solution of the exact Poisson-modeled transmission likelihood. In prac-

tice, with photon counts in the range present in this data, it is unlikely we would see appreciable
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benefit from solving the exact problem, and would more likely use a single global quadratic approx-

imation, to be optimized sequentially as in [14].

4 Parallel Computation of Pixel Updates via FS

In spite of the rapid convergence of sequential optimization techniques in statistical tomography,

the computation of the same sort of greedy updates in parallel is an important generalization, due

to the greater economy of parallel computation using multiple processors of modest cost. Parallel

implementation of these algorithms in future systems seems likely, and one would hope for the

flexibility to assign a segment of the image to each processor [25]. Alternatively, whether or not

computation is in parallel, updates of groups of pixels may be advantageous in terms of certain

numerical operation counts, as Fessler argued in a derivation of a transmission algorithm similar to

the one below which was done concurrently with ours [26]. Parallelism is automatic with gradient-

type algorithms. However, accelerated techniques such as conjugate gradient make incorporation

of nonnegativity constraints more complicated. We will see that the FS approach can also be

applied to allow computation similar to that of the ICD sequential framework for parallel updates

of arbitrary sets of pixels in either emission or transmission reconstructions.

In real applications, parallel computation based on shared memory involves issues of communi-

cations and timing which may have appreciable effects on the overall speed of the parallel iterations.

The results below yield the algorithm to be applied at each pixel involved in the parallel updates,

but do not address such architecture-dependent implementation factors, which we leave for future

research.

4.1 FS Method Applied in Parallel MAP

De Pierro’s substitute function C(x;xm), discussed in Section 2, allows complete parallel updates

for Bayesian tomographic emission reconstructions by replacing the log-prior in the cost function

with a sum of terms each involving only one pixel update value. The following result amounts to

applying the same idea to the more complex log-likelihood function.

In the MAP reconstruction problem, with degrees of parallelism which are likely to be practical

in our applications, and Markov random field (MRF) a priori image models, it is easy to choose

parallel updates which are not coupled through logP(X = x). We seek a substitute to only the

log-likelihood function, logP(Y = y|X = x), since through this function large numbers of pixel

pairs are coupled.
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Suppose that we consider the parallel update of a collection of pixels whose indices form the set

S during update n + 1, with the remainder of the image fixed at xn. This is conceptually similar

to the potential EM update of collections of pixels under SAGE [27]. The set S may be chosen

arbitrarily, but here it is intended to be any collection of pixels to be updated in parallel, possibly

by separate computing elements. As the analysis below indicates, they would likely be chosen to

maximize the feasible distances among pixels in S. A complete iteration consists of a sequence of

such sets covering the entire image. We may view the log-likelihood form shown in (3) at one step

as a function of only {xj ; j ∈ S}. If we define

WS,i =
∑

j∈S

Aij ,

then we may express the dependence on {xj ; j ∈ S} by using the convex function Gi(·), showing

dependence on changes in the values of pixels in S. Let

∆Sj =

{

xj − x
n
j j ∈ S

0 otherwise.

Then

− logP(Y = y|X = xn +∆S) =
∑

i

Gi
(

Ai∗(x
n +∆S)

)

(17)

=
∑

i

Gi



Ai∗x
n +

∑

j∈S

AijWS,i
WS,i

(xj − x
n
j )





=
∑

i

Gi




∑

j∈S

Aij
WS,i

[

Ai∗x
n +WS,i(xj − x

n
j )
]



 .

From the definition of WS,i above, it is apparent that
∑

j∈S
Aij
WS,i

= 1 also in the limit as WS,i → 0.

Applying Jensen’s inequality results in the expression

− logP(Y = y|X = xn +∆S) ≤
∑

j∈S

∑

i

Aij
WS,i

Gi
(

Ai∗x
n +WS,i(xj − x

n
j )
)

.

︸ ︷︷ ︸

FS
j
(xj)

(18)

This applies to common likelihood functions for tomographic problems. As in the previous section,

we will suppress the argument showing the dependence of functions such as FSj on x
n. Note that

(18) is a summation over S, each term involving only one xj, which allows for simple optimization.

We define

pS,i(xj) = Ai∗x
n +WS,i(xj − x

n
j ) + ri,
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letting ri = 0 for the transmission case. Substituting into (18) for the standard Poisson models for

transmission and emission tomography, the right-hand side of the inequality, which we refer to as

the substitute function FSj (xj), takes the form

FSj (xj) =
∑

i

Aij
WS,i

[pS,i(xj)− yi log(pS,i(xj))] (19)

for the emission case and

FSj (xj) =
∑

i

Aij
WS,i

[yT exp{−pS,i(xj)}+ yipS,i(xj)] (20)

for the transmission case.

The substitute log-likelihood function satisfies

− logP(Y = y|X = xn) =
∑

j∈S

FSj (x
n
j )

and

− logP(Y = y|X = xn +∆S) ≤
∑

j∈S

FSj (xj),

similarly to De Pierro’s C(x;xm), and the MAP reconstruction problem with parallel computation

is converted into the following optimization problem with respect to the single pixel xj

xn+1j = arg min
xj≥0
{FSj (xj) + Pj(xj)}.

Any numerical method may then be applied to minimization of the substitute functional. Pro-

vided it preserves the monotonicity discussed above and satisfies the Kuhn-Tucker conditions for

constrained optimization, guaranteed global convergence is preserved by virtue of the inequality of

(18).

Since all pixel updates are decoupled by the substitute functional, ICD methods already de-

veloped are natural for this parallel MAP reconstruction problem, locally approximating the FSj

terms in the fashion of ICD/NR or ICD/FS. Given the similarity in performance of the two, and the

results for ICD/NR published in [25], we limit our numerical results here to the provably conver-

gent optimization by parallel ICD/FS. This maintains guaranteed global convergence in the results

which follow. The parallel algorithm can still be expressed as in (8-9), but the algorithm is applied

to the substitute function for parallel optimization. This leaves θ1 unchanged from (5) and θ̆2 cal-

culated as in (7), except that derivatives calculated at xj = 0 are those of the substitute functional
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with scaling of the second derivative. With “f” once again corresponding to first derivatives of the

substitute log-likelihood functions, the resulting forms are

fSj (xj) = fj(xj) =
∑

i

Aij

(

1−
yi
pni

)

(21)

fSj (0) =
∑

i

Aij

(

1−
yi

pni −WS,ix
n
j

)

(22)

dfSj (xj)

dxj

∣
∣
∣
∣
∣
xn
j
,xj=0

=
∑

i

(

AijWS,i
(pni )

2

)

(23)

for the emission case and

fSj (xj) = fj(xj) =
∑

i

Aij (yi − yT exp[−p
n
i ]) (24)

fSj (0) =
∑

i

Aij
(

yi − yT exp[−p
n
i +WS,ix

n
j ]
)

(25)

dfSj (xj)

dxj

∣
∣
∣
∣
∣
xn
j
,xj=0

=
∑

i

AijWS,iyT exp[−p
n
i ] (26)

for transmission.

The approximate degree of local conservatism resulting from parallel update computation may

be seen through a global quadratic approximation of the log-likelihood. The log-likelihood functions

in both emission and transmission cases can be approximated by a second-order Taylor series

expansion in x

logP(Y = y|X = x) ≈ −1/2(p−Ax)tD(p−Ax) + c(y), (27)

with pi = yi − ri (emission) or pi = log(yT /yi) (transmission), c(y) a constant relative to x, and D

a diagonal matrix with entries being the photon counts {yi} (transmission) or {y
−1
i } (emission)[10].

This approximation is quite accurate for most common transmission problems, and in both cases

allows better understanding of optimization techniques and their convergence behavior.

Under this approximation, we may apply the result of (18) to obtain the following.

∑

i

Gi (Ai∗x) ≤
∑

j∈S

∑

i

AijDii
WS,i

(eni −WS,i∆
n+1
j )2. (28)

where

eni = pi −
∑

j

Aijx
n
j

∆n+1j = xj − x
n
j
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Here eni is the error state vector in the projection data after update n, and ∆
n+1
j is the current

change in pixel j. Minimization as a function of ∆n+1j yields

∆n+1j =

∑

iDiiAije
n
i

∑

iDiiAijWS,i
(29)

This is the same form as the updates derived for ML estimation by ICD under a global quadratic

approximation in [14], except that this formulation calls for under-relaxation of the greedy updates

by the factor
∑

iDiiA
2
ij

∑

iDiiAijWS,i
,

which reduces to the local update of [14] when S contains only one pixel. A plot of this factor as a

function of the number of pixels updated in parallel from 128 × 128 uniformly spaced projections

is shown in Figure 9 for the center pixel of a 128× 128 reconstruction. Computations for this plot

assume the set S is a uniform rectangular sampling of the entire image. The ratio Aij/WS,i is a

measure of the linkage of pixel j to others in S through common intersection with projection i.

The degree of under-relaxation therefore increases as pixel j moves closer to other members of S,

so the set would normally be chosen in a uniform pattern spaced as widely as possible.

The prescribed computation of θ1 and θ̆2 can always be made in the transmission problem, but a

condition, discussed in Section 3, must be considered for the emission case. For any measurements

having yi > 0, the log-likelihood is not defined for projection values less than −ri. With scaling of

the change in xj for each i by WS,i/Aij as required by the parallel update algorithm, we are not

guaranteed that the derivative of the substitute function can be evaluated at xj = 0 as directed in

the default version of ICD/FS, even if the {ri} are all positive. This case is illustrated in Figure

10. If this occurs, we follow a procedure similar to Strategy 2 in Section 3.3. If the derivative is

not evaluable at zero, we need only find a value for xj between 0 and x
n
j at which the derivative

of FSj (x) is defined and negative. Reference to Figures 10 and 1 verifies graphically that use of the

derivative at this point will maintain monotonicity in descent of the substitute functional for the

two possible cases illustrated. Therefore we define

Ξj = max
i
{[xj : pS,i(xj) = −ri]}

= max
i

[

xnj −
pni
WS,i

]

(30)

the point at which the substitute log-likelihood “blows up” as we approach from the right. (Provided

the algorithm has been properly initialized and monotonic descent has been followed, this must
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always be a value less than xnj .) The second value of the first derivative can then be computed at

Ξnj + ǫ, with 0 < ǫ < x
n
j − Ξ

n
j and f

S
j (ǫ) < 0. One may compute ǫ off-line as in Section 3.3 for the

substitute functional, and use it or (Ξnj +x
n
j )/2, whichever is smaller. For high degrees of parallelism

and consequent large values of WS,i, we find the pre-computed ǫ to be excessively conservative and

simply use (Ξnj + x
n
j )/2. Should the derivative be positive at the chosen point, we repeat by

recursively halving the distance to Ξnj , which has substantial worst-case computational cost due

to re-evaluation of the derivative, but does not arise often enough in practice to substantially

affect cost. This procedure preserves guaranteed monotonicity of descent and therefore provable

convergence. The projections may be scanned in advance of the computation of the derivatives,

or the condition may be checked projection-by-projection. The relative efficiency of the two will

depend on the degree of parallelism. In our simulations, this case rarely arose with fewer than 256

parallel updates.

4.2 Parallel Computation Numerical Results

In this section, we solve the same MAP tomography reconstruction problems presented in Section

3 but by parallel computation with the ICD/FS method. The GGMRF prior model again features

two choices of the parameter p.

The parallel computation assumes that after each processor has updated its respective pixel,

the state of the projection error vector en can be updated and shared among all processors. Our

results do not include consideration of the costs of inter-processor communication and management

of joint access to common memory. We show results for a number of processors (N) ranging from

1 to 212 for the emission trials and up to 214 for transmission. The members of each set S form a

uniform rectangular sub-sampling of the image, with successive choices of S shifted in a raster scan

to cover the entire image without repetition. This pattern allocates a square block of pixels to each

processor. The largest number of parallel updates corresponds in each case to 2 × 2 pixel blocks.

The plots of Figures 11, 12 and 13 show that in terms of iteration counts, there is little change in

convergence rates as the degree of parallelism increases. Thus for at least up to 256 pixel updates

in parallel in most cases, we achieve essentially linear speed-up in terms of iteration count. The

fraction of this gain which is realizable under constraints of hardware implementation remains to

be investigated.

The purely sequential updates follow a raster scan of the image in the simulations of Figure 11,

12 and 13, while the parallel updates are spatially distributed in a uniform pattern, corresponding
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to a square block of pixels for each processor. Among these decimated patterns, the scan is again

regular. The plots suggest a dependence on the order in which pixels are visited as well as the

degree of parallelism in computation, just as randomization of the scan pattern showed improved

performance in the results of Section 3.4. For modest degrees of parallelism, there is supra-linear

speed-up due to the decimated pattern, which shows a potentially useful distribution of updates for

sequential optimization as well. The factors WS,i are minimized by maximizing distances among

members of S, suggesting that the best pattern of parallel updates would be the one maximizing the

mean distance among S, similarly to the decoupling of pixels through spatial pattern selection in

[28]. Thus alternatives such as approximately hexagonal patterns may improve on our rectangular

placement when the number of processors is large. But the optimal pattern remains an open issue,

just as in the purely sequential case.

5 Conclusion

Bayesian tomography can be viewed as optimization of a functional, whether by sequential or par-

allel update methods. It is natural to use functional substitution with an approximation allowing

simpler optimization of each pixel value individually. This paper shows that a newly modified ICD

algorithm and its parallel implementation, derived by FS methods using local quadratic approxi-

mations, yield provable global convergence and attractive experimental convergence results. The

simple coordinate descent methods using quadratic approximations have convergence at least as

fast as any other known method, with comparable per-iteration computational cost. It also appears

that there is no fundamental barrier to applying ICD techniques to tomographic reconstruction with

parallel updates in which blocks of pixels are assigned to each processor, and that high degrees of

parallelism are possible with no loss of convergence speed per iteration. Though ICD/FS allows us

to guarantee convergence, its performance in iteration counts is nearly identical to that of ICD/NR.

This observation, plus the fact that neither an experimental nor a theoretic counter-example to the

global convergence of ICD/NR for convex tomographic problems has appeared, make the greater

conceptual simplicity of ICD/NR and its slight computational advantage still quite attractive.

6 Appendix: Convergence under Non-Gaussian GGMRF Model

Among the conditions assumed for the functionals to be optimized in [15] is that each Φ̆j(xj) be

twice differentiable on IR+. When neighboring pixels have the same value under the GGMRF

model with p < 2, this condition is violated in our example, since the second derivative of the
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negative log-prior, while always positive, is not bounded. However, the key property of the Hessian

subsequently used in the convergence proof is a lower bound on its eigenvalues. The positivity of

this lower bound, required by Condition 5 of the proof, is guaranteed in our case as in that of [15]

by the strict convexity of the functions F̆j(xj) and of the log prior term Pj(xj) in addition to the

closedness of the set composed of all possible interim states occupied by x between the initial and

final estimates.

These properties are applied in Lemma 2 of [15], where one needs to show, in our problem’s

notation, that there exists a constant C > 0 such that for every n,

C(xnj − x
n+1
j )2 ≤ Φ̆j(x

n
j )− Φ̆j(x

n+1
j ).

This guarantees that as Φ̆j(x
n
j )− Φ̆j(x

n+1
j )→ 0, we also have |xnj − x

n+1
j | → 0. The proof relies on

there being a lower bound on the remainder term from a Taylor series expansion of the functional

at xn+1, with the expansion evaluated at xn. Let Hj(xj) =
d2xj
dx2
j

Φ̆j(xj) . We need only that

∫ 1

0
(1− t)Hj((1 − t)x

n+1
j + txnj )dt ≥ C.

The log-likelihood portion of this integral is non-negative. Substituting the actual form of the log

prior for pixel j, this part of the integral becomes

∑

k

bjk
(p− 1)

σp

∫ 1

0
(1− t)|xk − (1− t)x

n+1
j − txnj |

p−2dt.

The integrand has a strictly positive lower bound on any bounded set with p > 1 for the GGMRF,

satisfying the inequality, and the integral is well-behaved with the exception of the case xk = x
n+1
j =

xnj , when it goes to +∞. But even in this case the product of the integral and (x
n
j −x

n+1
j )2 goes to

zero, allowing the first equation above to be used as required. Thus the proof of [15] may be applied

here with no modification save relaxation of the stated requirement from twice-differentiability to

continuous differentiability.
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Figure 1: Comparison of ICD/NR and ICD/FS in two possible relations between xnj and the
currently optimal xj, marked as x

∗
j . Upper sketch shows the derivative of the log-likelihood (fj(xj))

and the two linear approximations to it for the two techniques when xnj > x
∗
j , and the lower

shows xnj < x
∗
j . The function f̃j is the approximation of ICD/NR and f̆j that of ICD/FS. The

areas of the regions between fj(xj) and f̆j(xj) from x
n
j to the zero crossing of f̆j(xj) are equal to

(Fj(x
n
j )− Fj(x

n+1
j )) −(F̆j(x

n
j )− F̆j(x

n+1
j )).
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a b

c d

Figure 2: Emission tomographic simulation with synthetic head phantom in 200×200mm field and
display range is (0.0,4.0). Total photon counts ≈ 3 × 106. (a) Original head phantom; (b) FBP
reconstruction at 128× 128 pixels from 128× 128 projections; (c) MAP estimate, GGMRF with p
= 2.0; (d) MAP estimate, GGMRF with p = 1.1. ML parameter estimates were σ̂ = 0.584 in (c)
and σ̂ = 0.307 in (d).
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a

b c

Figure 3: Reconstructions of human thorax from T99 sestamibi heart perfusion SPECT data.
Reconstruction covers approximately 320× 256mm, with range of display of (0.0,0.4) for gamma-
corrected (γ = 0.6) emission intensities. Total photon counts ≈ 1.5 × 105. (a) Filtered back
projection; (b) MAP estimate with GGMRF prior and p = 2.0; (c) MAP estimate with GGMRF
and p = 1.1. ML parameter estimates were σ̂ = 0.0283 in (b) and σ̂ = 0.0175 in (c). (Data courtesy
of Tin-Su Pan and Michael King, Univ. of Mass.)
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a b c

Figure 4: Reconstructions of flashlight cross section from transmission data. Region of reconstruc-
tion shown measures 120 × 260mm, with range of display (0.0,0.1) for gamma-corrected (γ = 0.6)
attenuation values. (a) Filtered backprojection; (b) MAP estimate with GGMRF prior and p = 2.0;
(c) MAP estimate with GGMRF and p = 1.1. ML dosage estimate (yT ) is 2350, σ̂ = 0.00866 in
(b) and σ̂ = 0.00410 in (c). (Data courtesy of Trent Neel, Wright-Patterson Air Force Base, and
Nicolas Dussausoy, Aracor.)
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Figure 5: Convergence of objective function vs. iterations for the synthetic head phantom emission
case with p = 2.0 (left) and p = 1.1 (right) GGMRF prior models, employing ICD/FS, ICD/NR,
SAGE-3, PCG (for p = 2.0) and DePierro algorithms. All initialized with FBP image. Larger
values of a posteriori probability density for PCG are due to violation of non-negativity constraint.
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Figure 6: Convergence of objective function vs. iterations for the SPECT cardiac perfusion data
with p = 2.0 (left) and p = 1.1 (right) GGMRF prior models, and ICD/FS, ICD/NR, SAGE-3,
PCG (for p = 2.0) and DePierro algorithms. All were initialized with FBP image except PCG, for
which a uniform initialization yielded faster convergence. Higher asymptotic value of objective for
PCG is due to violation of non-negativity constraint.
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Figure 7: Gain in log a posteriori probability for SPECT case, separated into log-likelihood and
log-prior terms of objective function, negatives of which are denoted F and P in text. A single
iteration includes a sweep across the entire image. Left: filtered backprojection image as initial
condition. Right: uniform image, with total mass equal to that of FBP, as initial condition.
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Figure 8: Convergence of objective function vs. iterations for the transmission case with p = 2.0 and
p = 1.1 GGMRF prior model, and ICD/FS, ICD/NR, Convex, and (for p = 2.0) preconditioned
conjugate gradient (PCG) algorithms. ICD/FS is included with both regular and random scan
patterns.
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Figure 9: Value of the under-relaxation factor for the quadratic approximation of the log-likelihood.
Pixels updated in parallel in all cases form a regular, rectangular sampling of the entire reconstruc-
tion. The number of processors ranges from one for the entire image on the left, to one for each
2× 2 block of pixels on the right.
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Figure 10: Illustration of an occurrence of Ξj > 0 under parallel updates. The transformation due
to WS,i/Aij is similar to a scaling of the log-likelihood’s derivative fj(xj) about the point xj = x

n
j .
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Figure 11: Convergence of objective function vs. iterations for the emission head phantom with
p = 2.0 (left) and p = 1.1 (right) GGMRF prior model, employing ICD/FS algorithm in sequential
form and varying degrees of parallelism. In this and subsequent plots, N is the number of pixels
updated in parallel.
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Figure 12: Convergence of objective function vs. iterations for the SPECT heart perfusion data
with p = 2.0 (left) and p = 1.1 (right) GGMRF prior model, employing ICD/FS algorithm in
sequential form and varying degrees of parallelism.
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Figure 13: Convergence of objective function vs. iterations for the transmission reconstruction with
p = 2.0 and p = 1.1 in GGMRF prior model, employing ICD/FS algorithm in sequential form and
varying degrees of parallelism.
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