
Dynamically Scheduled VLIW Processors

B. Ramakrishna Rau

Hewlett-Packard Laboratories, 1501 Page Mill Road, Palo Alto, CA 94304

Abstract
VLIW processors are viewed as an attractive way of

achieving instruction-level parallelism because of their
ability to issue multiple operations per cycle with
relatively simple control logic. They are also perceived as
being of limited interest as products because of the
problem of object code compatibility across processors
having different hardware latencies and varying levels of
parallelism. In this paper, we introduce the concept of
delayed split-issue and the dynamic scheduling hardware
which, together, solve the compatibility problem for VLIW
processors and, in fact, make it possible for such
processors to use all of the interlocking and scoreboarding
techniques that are known for superscalar processors.

Keywords: VLIW processors, multiple operation
issue, scoreboarding, dynamic scheduling, out-of-order
execution

1 Introduction

Traditionally, VLIW processors have been defined by
the following set of attributes.

l The ability to specify multiple, independent
Merations in each instruction. (We shall refer to such
an instruction as a MultiOp instruction. An
instruction that has only one operation is a UniOp
instruction.)

l Programs that assume specific non-unit latencies for
the operations and which, in fact, are only correct
when those assumptions are true.

l The requirement for static, compile-time operation
scheduling taking into account operation latencies and
resource availability.

l Consequently, the requirement that the hardware
conform exactly to the assumptions built into the
program with regards to the number of functional
units and the operation latencies.

l The absence of any interlock hardware, despite the fact
that multiple, pipelined operations are being issued
every cycle.

The original attraction of this style of architecture is its
ability to exploit large amounts of instruction-level
parallelism (ILP) with relatively simple and inexpensive
control hardware. Whereas a number of VLIW products
have been built which are capable of issuing six or more
operations per cycle [4, 5, 31, it has just not proven
feasible to build superscalar products with this level of
ILP [18, 2, 14, 8, 7, 61. Furthermore, the complete
exposure to the compiler of the available hardware
resources and the exact operation latencies permits highly
optimized schedules.

These very same properties have also led to the
perception that VLIW processors are of limited interest as
products. The rigid assumptions built into the program
about the hardware are viewed as precluding object code
compatibility between processors built at different times
with different technologies and, therefore, having different
latencies. Even in the context of a single processor, the
need for the compiler to schedule to a latency, that is fixed
at compile-time, is problematic with operations such as
loads which can have high variability in their latency
depending on whether a cache hit or miss occurs. Because
of this latter problem, VLIW products have rarely adhered
to the ideal of no interlock hardware, whatsoever.
Interlocking and stalling of the processor is common when
a load takes longer than expected.

Superscalar processors and other dynamically
scheduled processors are better equipped, at least in
principal, to deal with variable latencies. In fact, when the
variability is low, such processors are quite successful in
dynamically scheduling around the misestimated latencies.
A broad range of instruction issuing techniques, developed
over the past three decades, can be brought to bear on this
task. Examples include the CDC 6600 scoreboard [18, 191,
the register renaming scheme, known as Tomasulo’s
algorithm, incorporated in the IBM 360/91 [2, 201, the
history file, reorder buffer and future file [15], the register
update unit [16] and checkpoint-repair [9].

The conventional wisdom is that dynamic scheduling
using such techniques is inapplicable to VLIW processors.
The primary objective of this paper is to show that this
view is wrong, that dynamic scheduling is just as viable

80
1072-4451193 $3.00 Q 1993 IEEE

with VLIW processors as it is with more conventional
ones. A fust step towards understanding how to perform
dynamic scheduling on VLIW processors is to recognize
the distinction between traditional VLIW processors and
the concept of a VLIW architecture.

A VLIW processor is defined by a specific set of
resources (functional units, buses, etc.) and specific
execution latencies with which the various operations are
executed. If a program for a VLIW processor is compiled
and scheduled assuming precisely those resources and
latencies, it can be executed on that processor in an
instruction-level parallel fashion without any special
control logic. Conversely, a VLIW processor that has no
special control logic can only correctly execute those
programs that are compiled with the correct resource and
latency assumptions. VLIW processors have traditionally
been built with no special control logic and this has led to
the conclusion that VLIW processors must necessarily be
designed in this fashion.

A different view of VLIW is as an architecture, i.e., a
contractual interface between the class of programs that are
written for the architecture and the set of processor
implementations of that architecture. The usual view is
that this contract is concerned with the instruction format
and the interpretation of the bits that constitute an
instruction. But the contract goes further and it is these
aspects of the contract that are of primary importance in
this paper. First, via its MultiOp capability, a VLIW
architecture specifies a set of operations that are guaranteed
to be mutually independent (and which, therefore, may be
issued simultaneously without any checks being made by
the issue hardware).

Second, via assertions about the operation latencies,
an architecture specifies how a program is to be interpreted
if one is to correctly understand the dependences between
operations. In the case of a sequential architecture, all
latencies are assumed to be a single cycle. So, the input
operands for an operation are determined by all the
operations that were issued (and, therefore, completed)
before the operation in question.

In the case of programs for VLIW architectures, with
operations having non-unit latencies, the input operands
for an operation are not determined by all the operations
that were issued before the operation in question. What
matters is the operations that are supposed to have
completed before the issuance of the operation in question.
Operations that were issued earlier, but which are not
supposed to have completed as yet, do not impose a flow
dependence upon the operation in question.

We introduce the following terminology to facilitate
our discussion. A program has unit assumed latencies

(UAL) if the semantics of the program are correctly
understood by assuming that all operations in one

instruction complete before the next instruction is issued.
A program has non-unit assumed latencies (NUAL) if at
least one operation has a non-unit assumed latency, L,
which is greater than one, i.e., the semantics of the program
are correctly understood if exactly the next L-l
instructions are understood to have been issued before this
operation completes. An architecture is UAL (NUAL) if
the class of programs that it is supposed to execute are
UAL (NUAL). We shall use the terms NUAL program and
latency-cognizant program interchangeably.

This paper addresses the following questions:

How does one determine the dependence semantics of
latency-cognizant programs?

How does one do dynamic scheduling for a latency-
cognizant progmm?

How do the unique aspects of VLIW architectures,
namely, NUAL and MultiOp, affect the mechanisms
used to effect scoreboarding and out-of-order
execution?

Due to space considerations, this paper will not discuss
the issue of how one provides precise interrupts for VLIW
architectures. The mechanism developed in this paper, i.e.,
split-issue, supports precise interrupts. However, the issues
involved are too numerous and subtle to be dealt with
summarily. The hardware support needed for speculative
execution is very closely related to that for providing
precise interrupts. In both cases, it must be possible to
back up instruction issue to an earlier point and then
resume execution from there correctly. Since we are not
addressing precise interrupts, we shall also ignore the topic
of speculative execution. Lastly, we shall simplify our
discussion by ignoring predicated execution [13, 31.
Predicated execution poses some difficult problems for
out-of-order execution which are unrelated to whether the
architecture in question is VLIW.

In Section 2 we review dynamic scheduling and out-
of-order execution for UAL programs. In Section 3 we
examine the manner in which the semantics of a NUAL
program are to be interpreted and we introduce the concept
of split-issue. Section 4 extends UAL dynamic scheduling
techniques and mechanisms to the NUAL domain and
evolves the structure of the delay buffer--the minimal
additional hardware structure required to support
scoreboarding and out-of-order execution of NUAL
programs. Section 5 attempts to place these new ideas in
perspective.

2 Dynamic scheduling of UAL programs

The semantics of a conventional, sequential program
are understood by assuming that each instruction is
completed before the next one is begun. If program time is

81

measured in units of instructions issued, the execution
latency of every operation is one cycle. If the actual latency
of all operations is in fact a single cycle, then an
instruction may be issued every cycle for a UAL program
without the need for any interlock hardware and without
any danger of violating the semantics of the program.

If some or all of the actual execution latencies are
greater than one cycle, or if one wishes to issue more than
one instruction per cycle, then it is necessary to provide
instruction issue logic to ensure that the semantics of the
program are not violated. In particular, it is important for
the issue logic to understand when an instruction is
dependent upon another one as a result of their accessing
the same register. The determination of such dependences
relies upon the knowledge that a UAL program is being
executed; the semantics of a given operation, and the data
that it uses as its input, assume that every sequentially
preceding operation has completed before it begins
execution.

Since instruction issue policies for NUAL programs
build upon those for UAL programs, we shall briefly
review the latter. An instruction issue policy is defined by
the types of dependences whose occurrence it precludes
and by its actions when a particular type of dependence is
encountered. All correct issue policies must honor the
partially ordered dependence graph that exists between the
reads and the writes to a particular register. A large amount
of work has been done in this area, and it has been pulled
together and analyzed admirably by Johnson [lo]. We
shall review these policies from a somewhat unusual
viewpoint, one that is better suited to the extension of
these policies to NUAL programs.

Instruction issue policies may be broadly divided
into two approaches.

A The contents of a register can either be an actual
datum or a symbolic value, i.e., a surrogate for or
the name of the as yet uncomputed datum.

B. The contents of a register may only be a datum.

In the first case, even though the result of an operation
will not be available for some time, a tag can be allocated
to represent its symbolic value and this tag can be
“written” to the destination register immediately or, in
other words, associated with that destination register.
Since this happens in the same cycle that the operation
was issued, the operation appears to have unit latency
when viewed at the level of symbolic values. Furthermore,
when an operation is issued, there is always a value
available in the source registers, either an actual value or a
symbolic one. Consequently, instruction issue need never
be interrupted unless the pool of tags runs out.

Of course, with the exception of copy operations,
operations cannot proceed until the actual values of their

source operands are available’. In the meantime, they wait
in reservation stations [20]. Each time an operation
completes, the tag corresponding to the symbolic value for
the result is broadcast along with the actual value. Every
register or reservation station containing this symbolic
value replaces it with the actual value. Also, at this time,
the tag for the result is returned to the pool of tags
available for reallocation. When the actual values for both
source operands are available, the reservation station
contends for the functional unit on which the operation
will be executed.

This approach can be sub-divided into two policies
of interest based on the number of tags that are available to
serve as the symbolic value of a given register.

Al.

A2.

Multiple tags can be allocated to represent
multiple, distinct symbolic values associated with
a given register.

Only a single tag is available to represent the
multiple, distinct symbolic values associated with
a given register. For convenience, and without loss
of generality, we shall assume that this pre-
allocated tag is identical to the address of the
register.

Policy Al, with minor and insignificant differences, is
what is commonly known as the Tomasulo algorithm [2Ol.
This entails the use of reservation stations and register
renaming.

Policy A2 corresponds to the use of reservation
stations (without renaming) to enable the issuance and
setting aside of operations, the actual values of whose
source operands are not as yet available, or operations for
which a functional unit is not immediately available.
However, since there is only a single tag available to use
as a symbolic value, there cannot be more than one
outstanding update of a register at any one time. Thus,
instruction issue must block on an output dependence.

In the case of approach B, since one deals only with
actual values, the illusion of single cycle execution cannot
be sustained. Two instruction issue policies can be defined
for this approach

Bl. Stall instruction issue if a dependence is
encountered, i.e., if either the source or the
destination register, for the operation that is about
to be issued, has a pending write.

B2. Continue instruction issue even when dependences
are encountered, but provide mechanisms that
enforce the partial ordering of accesses to each
register.

’ This is not strictly true. For instance, an integer multiply

operation can proceed even if one of its source operands is a symbolic

value, if the actual value of the other source operand is known to be

zero. However, the practical benefits of so doing are quite doubtful.

82

The second policy leads one to mechanisms such as the
dispatch buffer [l] or partial renaming [lo]. Johnson has
argued persuasively that the second policy is not worth
pursuing since it leads to implementations that are more
expensive but less effective than those for Al and A2.
Consequently, we shall limit ourselves to considering only
policies Al, A2 and Bl.

Our discussion, thus far, has been in the context of a
single register file. Since all operations source and sink the
same register file, no distinction need be made between the
register access policy and the instruction issue policy.
When there are multiple register files and operations which
source one register file but sink a different one, the
instruction issue policy depends upon the register access
policies of both register tiles. We need a way to talk about
instruction issue policies and register access policies as
distinct entities. The view that we shall adopt is that the
policies Al, A2 and Bl are register access policies which
describe the manner in which a register file and its
contents can be manipulated. Each register access policy
specifies certain actions and constraints that apply when
that register file is a source or a destination of an
operation.

Table 1 codifies the actions and constraints of each
register access policy (column 1) when that register file is
the source (column 2) and when it is the destination
(column 3). As a source there are two possibilities: SF
and RS. SF states that instruction issue stalls when a flow
dependence is encountered. RS specifies the use of
feservation stations to set the operation aside when a flow
dependence is encountered. As a destination, too, there are
two possibilities: SO and RR. SO states that instruction
issue stalls when an autput dependence is encountered. RR
specifies the use of register fenaming to eliminate all
output dependences.

Table 1. The three instruction issue policies of interest
for a UAL program.

Register File

Policy

Al

A2

Bl

Instruction Issue Policy

Source Operands Destination

Operand

RS RR

RS so

SF so

When the source and destination register files are the
same, register access policies Al, A2 and B 1 correspond to
the instruction access policies RSRR, RSSO and SFSO,
respectively. (The first two and last two letters indicate the
policies for the source operands and the destination
operands, respectively.)

3 Semantics of NUAL programs

The semantics of a sequential program are understood
by viewing each instruction as occurring atomically,
within a single cycle, and concurrent with no other
instruction. In contrast, the semantics of a NUAL program
must recognize that each operation has two distinct events,
in general, at two distinct points in time. These are the
start of the operation, when the source registers are
accessed, and the end of the operation, when the
destination register is written’. Each of the pair of events
for one operation may have a precedence relationship with
either one of the pair of events for another operation.
Correct execution of a NUAL program demands that all of
these precedence relationships be honored. The time at
which these events occur in a NUAL program is measured
in units of instructions issued. Since an instruction is a set
of operations that is intended to be issued in a single
cycle, this is equivalent to measuring time in cycles if one
instruction is issued every cycle. When there is the
potential for confusion, we shall refer to this as the virtual
time of the program to distinguish it from the real, elapsed
time during execution.

3.1 Dependence semantics of a NUAL program

Consider the fragment of a NUAL program shown in
Figure la. Since it is a UniOp program, we shall refer to
each operation by the number of the instruction that it is
in. If this is interpreted as a UAL program, the first load,
operation #1, is irrelevant since rl is immediately
overwritten by the operation #2. Operations #ll and #12
are both flow dependent upon the operation #2, operation
#ll is irrelevant, operation #14 is flow dependent upon
operation #12 and operation #15 is flow dependent upon
operation #14.

Figure lb illustrates how this NUAL program
fragment should be interpreted correctly to understand the
actual semantics and dependence structure, assuming the
latencies as specified. Each operation in Figure la has been
split into two operations in Figure lb. The Phase1
operation consists of the source register reads and the
actual computation. The Phase2 operation consists of the
destination register write and is understood to execute in a
single cycle. Anonymous temporary registers (vl, v5)
convey the results of the Phase1 operations to the
correspouding Phase2 operations. These temporary values,
by their very nature, are written and read exactly once each.
In Figure lb, a Phase2 operation is interpreted as being

1 This can be generalized to more than two events if, for

instance, different inputs are sampled at different times or if different

outputs are written at different times by an operation.

a3

issued later than the corresponding Phase1 operation by an
interval equal to the assumed latency less one cycle.

1

3”
4
5
6
7
8
9

10
11
12
13
14
15
16
11

::
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

rl = load(r2)
rl = load(r3)

r4 = fmul(r1, r5)
r4 = faddtrl, r6)

r7 = fmul(r4, r9)
r7 = fadd(r7, r8)

(a)

vl = load(r2)
v2 = load(r3)

v3 = fmullrl, r5)
v4 = fadd(r1, r6)

v5 = fmul(r4, r9)
v6 = fadd(r7, r8)

rl = vl
rl = v2

r4 = v4
r4 = v3

r7 = v6
r7 = v5

Figure 1. (a) A NUAL code segment and (b) its UAL
code equivalent after splitting. The assumed
operation latencies are 10 cycles for load, 4 cycles for
floating-point multiply and 2 cycles for floating-point
add. The empty instructions are understood to
contain no-op operations.

From an inspection of Figure lb, it is now clear that
operation #ll is flow dependent upon operation #l,
operation #12 upon operation #2, operation #14 upon
operation #12, and operation #15 is not flow dependent
upon any of the other five operations. Operation #15 is
also irrelevant unless there is a Phase1 operation that reads
r7 in instruction 17. Thereafter, the value in r7 is that
deposited by operation #14. Furthermore, there is an anti-
dependence from operation #I4 to operation #II!
Operation #ll may not write r4 before operation #14 reads
it, otherwise operation #14 gets that value rather than the
result of operation #12.

What Figure lb illustrates is that we can interpret
NUAL programs as if they are UAL programs once the

operations have been split into their Phase1 and Phase2
components and the Phase2 component is understood to
issue with a delay corresponding to the assumed latency.
One might suspect that if a program can be interpreted as if
it is a UAL program that it can also be dynamically
scheduled using all the mechanisms and techniques that
have been developed for UAL programs. This is, in fact,
the case. The concept of splitting a NUAL operation and
delaying the issuance of the Phase2 operation we shall
refer to as split-issue. Also, we shall use the term
augmented (MultiOp) instruction to refer to the set of
Phase1 operations from a single MultiOp insrruction along
with all of the Phase2 operations (from earlier MultiOp
instructions) that are supposed to issue concurrently with
these Phase1 operations.

3.2 Split-issue

Split-issue is the mechanism which permits correct
execution of a NUAL program even when the actual
latencies do not agree with the assumed latencies.
Furthermore, it enables well understood out-of-order-
execution techniques to be employed with NUAL
programs. We shall describe the concept here in its most
general form. The general hardware model is described in
Section 4.1. In certain special cases of interest, it simplifies
to a rather inexpensive implementation.

With UAL programs, instruction interpretation
comprises three steps (given that we are ignoring the
precise interrupt issue). These are

1. decode and issue,

2. initiate, and

3. complete and retire

With NUAL programs we add one more action which is
that of splitting. Once an instruction is in the instruction
register, each operation is decoded and split into its
Phase1 and Phase2 components. An anonymous register is
assigned to be the destination of the Phase1 operation and
the source for the Phase2 operation. The Phase1 operation
is issued immediately (in virtual time) in accordance with
the instruction issue policy that is being employed
(Figure 2a). Either immediately or eventually, it is
initiated, i.e., begins execution, then completes and is
retired. The Phase2 operation is inserted into a list which
is ordered by the virtual time at which the Phase2
operations should be issued’ (Figure 2b). For each Phase2
operation this is computed as the virtual time at which the
Phase1 operation is issued plus the assumed latency less
one cycle. After the appropriate delay (measured in units of
MultiOp instructions issued), the Phase2 operation is

1 This is the conceptual view. There are any number of ways of
actually implementing this.

84

issued. It executes, i.e., performs the copy from the
anonymous register to the architectural register, either
immediately or when appmpriate, and is retired.

I
Decode, Split. Issue

and Rsnanm Phasl
Dscode, Split

and Delay Phase2

Bpy and Retirement

64

load and, perhaps, store the contents of the ELR’s. This
second option provides the capability to keep changing the
assumed latency of an opcode albeit not as flexibly as with
the latency-field-per-operation approach. (Such a capability
was provided in the Cydra 5 for specifying the assumed
latency of load operations [121.)

With the third approach, there is no explicit
specification of the assumed latencies. Instead, they are
specified in the architecture specification and are fixed
across all programs and across all processors within the
architectural family. Only in this last case is it appropriate
to use the term “architectural latencies” for the assumed
latencies. This is the approach commonly used in the past
by VLIW processors [4,5,3].

It is worth noting that there are a number of
situations, having to do with the robustness of
performance with respect to varying actual latencies, in
which it is advisable for the program to assume latencies
that are quite different from the actual hardware latencies
r111.

Figure 2: (a) Execution phases for a Phase1
operation. (b) Execution phases for a Phase2
operation

4 Dynamic scheduling techniques for NUAL
programs

3.3 Specification of the assumed latency
4.1 A machine model

The latency assumed by each operation may be
specified in a number of ways. In decreasing order of
generality and flexibility, these are:

l a field in each operation specifying the assumed
latency,

l an execution latency register (ELR) per opcode or
per set of opcodes which contains the assumed latency
of that opcode or opcode set, and

l an architecturally specified latency for each opcode.

The first approach permits the specification of distinct
assumed latencies for different occurrences of the same
opcode. Although this can be quite useful, it is rather
extravagant in its use of instruction bits. The Horizon
architecture provides for such a latency specification per
MultiOp instruction [17]. Presumably, the value specified
is the minimum of the assumed latencies across all
operations within a single instruction.

The second approach has two sub-cases depending on
how the assumed latency is deposited into the ELR. One
option is to provide all the assumed latencies in the
program header. Prior to launching the program, the
runtime system transfers this information into the ELR’s
which are part of the processor state, but inaccessible to
user code. The second, more dynamic option is to make the
ELR’s visible to the program and to provide opcodes that

The general machine model assumed in this paper is
shown in Figure 3. Instructions are fetched or prefetched
into the instruction buffer as in any other processor. These
instructions are assumed to be MultiOp (which includes
UniOp instructions as a special case). An additional, post-
decoding step, which we have termed splitting, exists.
During this step, each operation in the instruction that is
about to be issued is split into its Phase1 and Phase2
components by the splitter. The Phase2 operations are
placed in the delayed-issue instruction buffer,
appropriately far back, so as to be issued with a delay that
is one less than the assumed latency’. The Phase1
operations are placed in the instruction register
immediately along with any Phase2 operations which are
at the front of the delayed-issue instruction buffer. The set
of Phase1 and Phase2 operations that are placed in the
instruction register during the same cycle constitute an
augmented (MultiOp) instruction.

The instruction issue unit performs one of three
actions upon each operation in the instruction register
depending on the current situation. If the operation has no

1 The assumption here is that the code has been scheduled such

that two operations on the same functional unit never complete at the
same time since this would constitute an over-subscription of the result
bus. This also implies that there will never be the need to schedule two
Phase2 operations on the same functional unit at the same time.

85

hStNCtiOll

I
1

Instruction Register

V
I

w

Delayed-hue
ImtNction

BUffer

I rstruction Issue Unit

Phase1 I ’ 0 I ’ I Phase2
Wservation m n

Stations 0 0 yi”,“,”

IO on

Architectud
Register

File

Pipeline Delay
Registx

File

Figure 3. Processor organization for supporting split-issue with out-of-order execution.

dependence conflict with any previously issued operation,
and if the appropriate functional unit is available, the
operation goes directly into execution. If either, a
dependence conflict exists or if the required functional unit
is not available, the operation is placed in a reservation
station to await the condition under which it can go into
execution. If no reservation station is available (including
the case in which reservation stations are not provided in
the hardware) the operation cannot be issued. All of the
operations in a single augmented instruction are decoded
and issued simultaneously from the instruction register. If
even one operation cannot be issued, then none of them are
issued. In this case, we shall say that instruction issue has
stalled.

Phase1 and Phase2 operations are issued to distinct
types of reservation stations, the structure of which we
shall examine shortly. The functional units corresponding

to the Phase1 operations are those that implement the
functionality of the opcode repertoire, e.g., integer ALUs,
floating-point adders and load-store units. In genera& these
functional units have latencies of one or more cycles and
they may be pipelined. The implicit opcode for a Phase2
operation corresponds to a copy operation. This operation
is assumed to complete in a single cycle. The “functional
unit” that implements this is shown in Figure 3 as the
copyback unit. Phase1 operations access the architectural
register file, (ARF) for their source operands and access
the anonymous delay register file (DRF) for writing the
destination operand. Conversely, Phase2 operations access
the DRF for their source operand and the ARF for writing
the destination operand.

Figure 3 displays a single ARF, a single execution
pipeline, a single DRF and a single copyback unit. In
general, a processor might possess multiple AWs (e.g.,

86

integer and floating-point). There may be multiple
functional units that access a given ARF. Furthermore,
certain operations may access one ARF as the source and
another one as the destination. Without loss of generality,
we shall focus on a single ARF. We shall assume that
there is a unique DRF and copyback unit per functional
unit. Thus, each DRF is written to only by one specific
functional unit and is read by a single copyback unit. In
comparison to the ARF, the DRP can be implemented less
expensively since it has but a single read port and a single
write port

4.2 Instruction issue policies for NUAL programs

If we assume that all ARF’s have the same register
access policy and, likewise, that all DRF’s have the same
register access policy, then the instruction issue policies
for the Phase1 and Phase2 operations are completely
specified by the two register access policies (Table 2). For
each pair of ARF access policy (row) and DRP access
policy (column), the table entry specifies the
corresponding Phase1 and Phase2 instruction issue
policies. Given that we have restricted our discussion to
three register access policies, there am nine possible NUAL
instruction issue policies. We shall also find it useful to
consider, for the ARF, the null access policy of having no
interlocks whatsoever on accesses to the architectural
registers’. This increases the number of possible
instruction issue policies to twelve.

Consider ftrst the four instruction issue policies that
correspond to the use of B 1 for the DRF. Since instruction
issue stalls if the actual value of a Phase2 source operand
is not available, and since Phase2 operations complete in a
single cycle, a Phase2 operation can never complete late
with reference to the program’s virtual time. Consequently,
at the beginning of every cycle in which instruction issue
is not stalled due to a Phase2 flow dependence, every
Phase1 operation will find that its (ARF) source operands
are available and that there are no outstanding writes
against its (DRF) destination. Therefore, it is unnecessary
to do any dependence checking at all when accessing the
ARF.

The instruction issue policy for which the DRF
policy is Bl and the ARF is not interlocked is termed
latency stalling. The nature of this policy is that
instruction issue stalls when the assumed latency of an
operation has elapsed, but the actual latency has not. In the
program’s virtual time, the assumed latency is never
exceeded and so no dependence checking hardware is

1 We ignore the case in which the DRF is not interlocked. This is

feasible only if all actual latencies are guaranteed to be less than or

equal to the assumed ones. In this case the ARF, too, would have no

interlocks.

needed. This policy is of particular interest since it
eliminates the requirement for interlock hardware on the
ARF which, in an ILP processor, may be expected to be
highly multiported.

The other three policies involving the use of Bl for
the DRF degenerate to latency stalling and are not of
interest as distinct policies. Also, if the ARF is not
interlocked, the only acceptable policy for the delay
registers is Bl. Correctness requires that results never be
written late, relative to the program’s virtual time, into the
ARF, which precludes Al and A2. Since the DRP is an
anonymous register file, it makes little sense to provide
additional affiliated anonymous registers via register
renaming of the DRF, one might as well have provided a
larger DRP in the first place. Consequently, Al is of little
interest for the DRF. This leaves four policies of possible
intereSt.

Table 2. Instruction issue policies of potential interest
for NUAL programs. Entries specify the policies for
Phase1 and Phase2 operations, respectively. The
lightly shaded entries are of no interest. The heavily
shaded entries are not feasible.

The operations that we have been considering thus
far have been register-register operations. By generalizing
from registers to all types of processor state, such as the
program counter and the program status word, operations
such as delayed branches can be included in this same
framework. As far as their register-based dependences are
concerned, loads and stores can also be viewed within the
same framework. A load can be viewed as a register-register
NUAL operation which takes an address from a source
register and deposits the contents of the addressed memory
location in the destination register. Likewise, a store has
two source operands but no destination register. On the
other hand, loads and stores also have dependences
between one another via their accesses to the memory
space. Conceptually, these too, can be treated by viewing
the entire memory space as a register file. In practice, given
the size of the memory space, different scoreboarding and
out-of-order mechanisms (e.g., associative store buffers

Reservation Stations for
Phase1 Operations

Reservation Stations for
Phase2 Operations

Register
Access

Input Section for Output Section for
Architectural Register File Delay Register File

I

I Input Section for Output Section for
Delay Register File Architectural Register File

Architectural Register
File Input Section

Architectural Register
File Output Section

Policy
ArchReg Source1 ArchPeg Source2

A2 In %.
Use Inv.; Address ; Datum 1nv.l Address ; Datum

Bit 1 I Bitt I

ArchReg Source1 ArchReg Source2
Al In 93.

use Inv.; Tag Tag
Bit fi

; Datum Inv.; ; Datum
I Bit, I

Register
Access
Policy

A2

Delay Register File Delay Register File
Input Section Output Section

Figure 4. (a) The structure of reservation stations for Phase1 and Phase2 operations. (b) The detailed structure of
the reservation station input and output sections that are associated with the ARF’s. (c) The detailed structure of
the reservation station input and output sections that are associated with the DRF’s.

[lo]) must be employed than those that are used for
register-register operations.

4.3 General structure of the reservation stations
for NUAL

file to which it corresponds. For a Phase1 operation, the
input section is that for an ARF and the output section is
that for a DRF. For a Phase2 operation, it is just the
opposite. Figures 4b and 4c display the detailed structure
of the input and output sections corresponding to the ARF
and the DRF, respectively.

Figure 4 shows the structure of the reservation
stations. A reservation station consists of two parts: the
input section which relates to the source operands of the
operation, along with the opcode and the output section
which pertains to the result operand (Figure 4a). The
detailed structure of each section depends upon the
instruction issue policy as well as on the type of register

With access policy Al, each architectural register
consists of either the datum itself or the tag for its
symbolic value and an invalid bit. The invalid bit is set if
the register contains a tag. That portion of the input
section corresponding to each source operand has rhe same
structure as an architectural register. Additionally, the
input section contains the opcode and a bit to indicate that

this reservation station is in use. The output section for
the ARF under policy Al consists of the tag that
represents the symbolic value of the result (so that it can
be broadcast along with the actual value once it is
available). (In the case of UAL and the absence of split-
issue, the reservation station under policy Al would
consist of this pair of input and output sections.)

Under policy A2, the tag is identical with the address
of the architectural register on both the source and
destination sides. Other than this, the structures of the
input and output sections are identical. The register
structure is simplified; since the tag is identical to the
register’s address, it need not be explicitly represented and
no storage is required. Only space for the datum and the
invalid bit are needed. With policy Bl, no reservation
stations are needed and the register structure is the same as
that under policy A2.

In principle, the input and output sections associated
with the DRF are similar to those for the ARF, except for
a couple of differences First, since there is only one
possible opcode for a Phase2 operation (copy), it need not
be explicit in the input section. Second, a Phase2
operation has a single source operand. Together, these
simplifications yield the input and output sections shown
in Figure 4c for policies Al and A2.

4.4 The delay buffer: simplified hardware
support for NUAL

Certain simplifications result from the stylized
manner in which the delay registers and the Phase2
reservation stations are used and the fact that register
access policy Al is of little interest for the DRF. Through
a series of simplifications, that are discussed in detail in an
expanded version of this paper [ll], three structures--the
delayed-issue buffer, the DRF and the Phase2 reservation
stations--are combined into one hardware structure which
we shall refer to as the delay buffer. This results in a
number of redundant fields that can be optimized away.
Each element of the delay buffer has the resulting structure
shown in Figure 5.

Delay RegisterlArchReg Result

Back IAddress

Figure 5. Structure of an element of the delay buffer.

The delay buffer is organized as a circular buffer. The
Phase2 Issue Pointer (PIP) points to an element of the
delay buffer and, each time an augmented instruction is

issued, the PIP moves forward by one element. On each
instruction issue cycle, the Phase2 operation that has just
been split off is allocated the delay buffer element that is
ahead of the PIP by the assumed latency less one. The
address of this element is used by the Phase1 operation to
specify its destination. The invalid bit in this element is
set at this time (to be reset when the Phase1 operation
completes and the result is written into that delay buffer
element). At this time, the copyback bit in this element
should be in the reset state. The Phase2 operation is issued
when the PIP arrives at this element.

If the result is computed sooner than the assumed
latency, it is written into the delay buffer element, the
invalid bit is reset but, since the copyback bit is not set, it
is not written to the destination architectural register.
When the PIP reaches this delay buffer element, the invalid
bit is not set and, so, the datum is written to the
destination architectural register.

If the result is computed later than the assumed
latency, then the invalid bit is still set when the PIP
arrives at this element. Two actions are taken. Fist, if
access policy Al is being employed for the ARF, the
address of the destination architectural register in the delay
buffer element is replaced by the tag for the symbolic value
that is placed in the destination architectural registe.-.
Second, the copyback bit is set to indicate to the hardware
that the result should be written to the destination
architectural register as soon as it is available. As a result,
the copyback bit will be set at the time that the result is
eventually written into the delay buffer element.
Accordingly, the result will also be written to the
destination architectural register and both the invalid and
the copyback bits will be reset. When both the invalid and
the copyback bits are reset, the delay buffer element is no
longer in use and may be reallocated.

If the access policy for the ARF is Al, the copyback
can be performed immediately upon the PIP reaching a
delay buffer element. Since the Phase2 operation is a copy,
it can be executed immediately even though its source
datum is not available. This is done by copying the
symbolic value in the delay buffer element (i.e., the address
of that element’) into the destination architectural register
and resetting the copyback bit. When the corresponding
Phase1 operation completes, it broadcasts the delay buffer
address (as the tag) along with the datum. The
architectural register and any Phase1 reservation stations
that contain that tag replace their tags with the datum. At
the same time, the invalid bit in the &lay buffer element is
reset. The copyback bit can be eliminated since it would be
reset the very cycle it is set. Thus, the delay buffer element

1 More precisely, the tag should consist of the delay element

address prefixed by the functional unit identifier so that the tags

corresponding to different functional units are distinct.

89

is no longer in use as soon as the PIP has passed over it
and the invalid bit is reset. Also, note that the allocation
of a tag for the destination architectural register is no
longer needed since the address of the delay buffer element
serves that function.

Instruction issue must stall either if the delay buffer
element that is about to be allocated is still in use or if, in
a wraparound sense, it is more than one lap ahead of the
PIP. The latter constraint implies that there must be at
least as many delay buffer elements as the longest assumed
latency, else deadlock will occur. Thus, the maximum
possible assumed latency, for the operations that execute
on each functional unit, is an architectural parameter.

With latency stalling, instruction issue must stall
when the PIP points to an element whose invalid bit is
still set and can only resume once that bit is reset. In this
case, too, the copyback bit is redundant (it will never be
set) and may be eliminated from the structure of the delay
buffer element. A delay buffer element is in use from the
time that its invalid bit is set until the PIP passes over it.
Interestingly, this is almost exactly what the collating
buffers associated with the Cydra 5’s memory pipelines
were [12]. In the Cydra 5, this capability was motivated
by the variability of the load latency due to interference in
the interleaved main memory. The assumed latency for
loads was specified by writing the assumed latency into
the memory latency register (MLR). It is of obvious value
to extend this concept to all the functional units in order
to address the variability of hardware latencies across
multiple implementations of a NUAL architecture. An
attractive property of latency stalling is that it scales well
to large numbers of functional units since each functional
unit independently decides whether instruction issue
should be stalled.

The delay buffer has only a single read port, a single
write port, no associative hardware and a very simple
allocation/deallocation process. All of these contribute to
its being relatively inexpensive. Furthermore, most of this
hardware is already present in some other form. The normal
staging of pipelined operations in UAL architectures
requires that the destination address be buffered from the
time of issue until the result is written to the architectural
register. This hardware is subsumed by the delay buffer
structure that we have developed. The delay registers
provided in the delay buffer to hold data until it is time to
write them to the ARF would show up as additional
architectural registers in a UAL architecture. It would
appear to be a poor trade-off to replace delay registers
which have one port each for reads and writes with
architectural registers which must necessarily be highly
multiported.

4.5 Multiple instruction issue

Multiple instruction issue is important either if the
hardware has the ability to issue more operations in
parallel or if the hardware latencies are shorter than those
assumed by the compiler. In the latter case, the opportunity
to execute operations earlier in real time than in the
program’s virtual time can only be realized if instructions
are scanned (and issued) faster than one per cycle. (Note
that by multiple instruction issue we mean the issuance,
each cycle, of more than one MultiOp instruction, each one
containing multiple operations.) The program’s virtual time
must advance by multiple cycles on each unstalled real
cycle. There is a variety of ways to accomplish this, but in
each case the net effect must be identical to that obtained
by issuing one MultiOp instruction at a time while
running the instruction issue logic with a cycle time that
is a sub-multiple of the actual instruction issue cycle time.

Each of the above instruction issue policies may be
combined with multiple instruction issue. If policy A2 is
used for the delay buffer, the implementation issues are
very similar (other than the additional requirement of
performing split-issue) to those for a multiple-issue
superscalar processor using the same policy as that used
for the ARF [lo]. Although dependence checking is
unnecessary between the multiple operations within any
one of the instructions being issued, every operation must
be checked against every operation from a preceding
instruction. Data path complexities to support multiple
instruction issue are common to both VLIW and
superscalar. One example is the need for register
forwarding between operations that are writing to the ARF
and flow dependent successor operations that are being
issued in the same cycle.

If latency stalling is employed, the determination of
which instructions may be issued together is greatly
simplified. The only condition that can prevent the issue
of the next instruction on a given cycle is if the invalid bit
pointed to by the PIP is set in one or other of the
functional units. By extension, the only condition that can
prevent the issue of the next n instructions is if the invalid
bit is set in any functional unit for the element pointed to
by the PIP or in any of the next n-l elements. Thus, the
equivalent of a priority encoder determines the maximum
number of instructions that may be issued simultaneously.
This would appear to be considerably less complicated
than what is entailed with a superscalar processor. In
particular, no dependence checking is required when
accessing the ARF. However, the data path complexity
alluded to above is unchanged. The PIP is advanced by n
on each non-stalled cycle in which n augmented
instructions are issued.

90

5 Discussion

The purpose of this paper was to establish that VLIW
and dynamic scheduling are not contradictory concepts.
This we have done. Whereas latency stalling is a simple
and eminently practical scheme for use with VLIW, the
delay buffer in conjunction with split-issue can support
arbitrarily sophisticated access policies for the ARF,
leveraging off all the dynamic scheduling techniques
that have been, or will be, developed for superscalar

processors.
Although possible, there is still the question of how

desirable it is to perform dynamic scheduling that is more
complex than latency stalling. The author is not a
proponent of using dynamic scheduling to effect large-
scale code re-ordering at runtime, whether for VLIW or
superscalar processors. The hardware penalties are just too
high. This function is best performed by a latency-
cognizant compiler. Nevertheless, it is clear that small-scale
re-ordering or, at the very least, some form of interlocking
is unavoidable in the face of variable delays and the need
for object code compatibility across a family of machines.
Let us consider the complexity of dynamic scheduling as
we escalate it in three steps.

The simplest scenario is when the hardware has
exactly the same latencies and functional units as were
assumed by the compiler. In this case, neither from a
correctness viewpoint nor from a performance viewpoint is
it necessary to have any dynamic scheduling logic. This, of
course, was the original attraction of VLIW. However, it
suffers from the problem of object code compatibility,
which was the motivation for this paper.

The next step is to ensure correctness in the face of
actual latencies that could be longer (or shorter) than those
assumed. This is the minimum one must do to guarantee
object code compatibility. This is provided by the delay
buffer which, as pointed out in Section 4.4, requires little
additional harware. The simplest mechanism available for
VLIW is latency stalling which entails no interlocks on
ARF access. The delay buffer can support arbitrarily
complex access policies for the ARF, but we claim below
that this is impractical.

The last step is to realize the performance benefits
that result from taking advantage of shorter than assumed
latencies or of greater hardware parallelism than expected.
This requires multiple (MultiOp) instruction issue. To be
effective, this most likely implies out-of-order execution of
Phase1 operations, i.e., either policy Al or A2 for the
ARF.

The practicality of each tier of complexity hinges on
the practicality of two capabilities: multiple instruction
issue and ARF access policies Bl, A2 and Al. Practicality
must be evaluated in the context of the level of ILP

desired. Of interest to proponents of ILP are processors
capable of issuing eight or more operations per cycle. (It
might help the reader to view the following discussion in
light of a more concrete processor. For instance, one that
has separate integer and floating-point register files and
permits the issue of two load/store operations, three integer
operations, two floating-point operations and a branch
operation per cycle.)

Johnson [lo] has shown that multiple instruction
issue for superscalar requires a number of comparators that
is proportional to N(N-1). The source and destination
registers for each instruction that is a candidate for issue
must be compared with those for all the sequentially
preceding instructions which also are candidates for issue.
This is required so that one can determine, in parallel,
which of those instructions may, in fact, be issued without
violating any depeudences.

In contrast, the issuance of a single MultiOp
instruction with N operations incurs little complexity
since the compiler guarantees their independence. This is
one of the original attractions of VLIW. However, if N
operations from multiple MultiOp instructions are to be
issued simultaneously, similar dependence checking logic
is required. Since it still is unnecessary to compare
operations that are from the same instruction, the number
of comparators is reduced, but only by a factor of at most
two. In either case, multiple instruction issue involving
large numbers of operations is impractical. (As shown in
Section 4.5, these comparators are unnecessary if latency
stalling is used. However, the benefits derived from
multiple instruction issue, when latency stalling is used,
are unclear.)

On the basis of such considerations, the author is led
to the conclusion that multiple instruction issue is
unrealistic when the number of operations per cycle is
large. This, regardless of whether the underlying
architecture is VLIW or sequential. VLIW does have the
advantage via its MultiOp capability to issue multiple
operations per cycle without issuing multiple instructions
(i.e., a single MultiOp instruction) whereas with
superscalar processors multiple operation issue must
always involve multiple instruction issue.

If one retreats to the objective merely of ensuring
correctness in the face of longer actual latencies, one enters
the realm of the feasible. VLIW, via its NUAL attribute,
can employ latency stalling which involves low
complexity and is quite scalable to the high levels of ILP
that are made practical by MultiOp. If the use of policies
Bl, A2 and Al are practical for the ARP at high levels of
ILP, then they can be employed by VLIW just as well as
they could by superscalar. (In addition, superscalar must
take on the full complexity of multiple instruction issue,
even if the only possible error in the compiler’s

91

assumptions have to do with latency and not with the
number of functional units.)

Unfortunately, there is little hard data to support or
refute the position taken by the author other than at the
“existence proof’ level; although there have been a number
of VLIW products built that were able to issue eight or
more operations per cycle [4, 5, 31, there are no similar
examples for superscalar products at the same levels of
ILP. This is not to suggest that igenuity will never lead to
a breakthrough in the area of dynamic scheduling. If, in
fact, multiple instruction issue and ARF interlocking turn
out to be practical at high levels of ILP superscalar may
become a viable alternative at high levels of ILP. By the
same token, these breakthroughs could just as well be
exploited by VLIW.

6 Conclusions

We have demonstrated that VLIW processors are as
capable of out-of-order execution and multiple instruction
issue as are superscalar architectures. The attributes of
VLIW that are central to successfully achieving high levels
of instruction-level parallel execution along with
object code compatibility are MultiOp and NUAL. The
key mechanism for enabling the dynamic scheduling of
NUAL programs is split-issue, and the preferred hardware
support for it is the delay buffer. Latency stalling is a
particularly simple interlock technique that can be used
with NUAL programs.

Acknowledgments

The distinction between VLIW as a processor
implementation and VLIW as an architecture developed in
the course of discussions with Josh Fisher, as did the
understanding of the fact that program semantics with
NUAL are defined by the assumed latencies. The
recognition, that the memory latency register concept from
the Cydra 5 could be extended to all functional units and
applied to solve the problem of code compatibility, is due
to Mike Schlansker. This paper has benefited greatly from
discussions with Mike, Vinod Kathail, Phil Kuekes and
Dennis Brzezinski.

References

I. Acosta, R.D., Kjelstrup, J., and Tomg, H.C. An instruction
issuing approach to enhancing performance in multiple
function unit processors. IEEE Transactions on
Computers C-35, 9 (September 1986), 815828.

2. Anderson, D.W.. Sparacio, F.J., and Tomasulo, R.M. The
System/360 Model 91: machine philosophy and
instruction handling. IBM Journal of Research and
Development 11, 1 (January 1967), 8-24.

3. Beck, G.R., Yen, D.W.L., and Anderson, T.L. The Cydra5
mini-supercomputer: architecture and implementation.
The Journal of Supercomputing 7, 112 (May 1993), 143-
180.

4. Charlesworth, A.E. An approach to scientific array
processing: the architectural design of the AP-120BiFPS
164 Family. Computer 14, 9 (September 1981), 18-27.

5. Colwell, R.P., Nix, R.P., O’Donnell, J.J., Papworth, D.B.,
and Rodman, P.K. A VLIW architecture for a trace
scheduling compiler. IEEE Transactions on Computers
C-37, 8 (August 1988), 967-979.

6. DeLano, E., Walker, W., Yetter, J., and Forsyth, M. A high
speed superscalar PA-RISC processor. In Proc.
COMPCON ‘92, (February 1992), 116-121.

7. Diefendorff, K., and Allen, M. Organization of the
Motorola 88110 superscalar RISC microprocessor. IEEE
Micro 12, 2 (April 1992), 40-63.

8. Groves, R.D., and Oehler, R. An IBM second generation
RISC processor architecture. In Proc. 1989 IEEE
International Conference on Computer Design: VLSI in
Computers and Processors, (October 1989), 134-137.

9. Hwu, W.W., and Patt, Y.N. Checkpoint repair for out-of-
order execution machines. IEEE Transactions on
Computers C-36, 12 (December 1987), 1496-1514.

10. Johnson, M. Superscalar Microprocessor Design.
Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

11. Rau, B.R. Dynamic scheduling techniques for VLIW
processors. Technical Report HPL-93-52. Hewlett-
Packard Laboratories, 1993.

12. Rau, B.R., Schlansker, M.S., and Yen, D.W.L. The Cydra 5
stride-insensitive memory system. In Proc. 1989
international Conference on Parallel Processing,
(August 1989), 242-246.

13. Rau, B.R., Yen, D.W.L., Yen, W., and Towle, R.A. The Cydra
5 departmental supercomputer: design philosophies,
decisions and trade-offs. Computer 22, 1 (January 1989),
12-35.

14. Smith, J.E., Dermer, G.E., Vanderwarn, B.D., Klinger,
S.D., Roszewski, C.M., Fowler, D.L., Scidmore, K.R., and
Laudon, J.P. The ZS-1 central processor. In Proc. Second
International Conference on Architectural SUDDOH for
Programming languages and Operating Systems, (Palo
Alto. California, October 1987), 199-204. __

15. Smith, J.E., and Pleszkun, A:R. Implementing precise
interrupts in pipelined processors. IEEE Transactions on
Computers C-37, 5 (May 1988), 562-573.

16. Sohi, G.S., and Vajapayem, S. Instruction issue logic for
high-performance, interruptable pipelined processors. In
Proc. 14th Annual Symposium on Computer
Architecture, (Pittsburgh, Pennsylvania, June 1987), 27-
36.

17. Thistle, M.R., and Smith, B.J. A processor architecture for
Horizon. In Proc. Supercomputing ‘88, (Orlando,
Florida, November 1988), 35-41.

18. Thornton, J.E. Parallel operation in the Control Data
6600. In Proc. AFIPS Fall Joint Computer Conference,
(1964), 33-40.

19. Thornton, J.E. Design of a Computer - The Control Data
6600. Scott, Foresman and Co., Glenview, Illinois, 1970.

20. Tomasulo, R.M. An efficient algorithm for exploiting
multiple arithmetic units. IBM Journal of Research and
Development 11, 1 (January 1967), 25-33.

92

