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Abstract 
VLIW processors are viewed as an attractive way of 

achieving instruction-level parallelism because of their 
ability to issue multiple operations per cycle with 
relatively simple control logic. They are also perceived as 
being of limited interest as products because of the 
problem of object code compatibility across processors 
having different hardware latencies and varying levels of 
parallelism. In this paper, we introduce the concept of 
delayed split-issue and the dynamic scheduling hardware 
which, together, solve the compatibility problem for VLIW 
processors and, in fact, make it possible for such 
processors to use all of the interlocking and scoreboarding 
techniques that are known for superscalar processors. 

Keywords: VLIW processors, multiple operation 
issue, scoreboarding, dynamic scheduling, out-of-order 
execution 

1 Introduction 

Traditionally, VLIW processors have been defined by 
the following set of attributes. 

l The ability to specify multiple, independent 
Merations in each instruction. (We shall refer to such 
an instruction as a MultiOp instruction. An 
instruction that has only one operation is a UniOp 
instruction.) 

l Programs that assume specific non-unit latencies for 
the operations and which, in fact, are only correct 
when those assumptions are true. 

l The requirement for static, compile-time operation 
scheduling taking into account operation latencies and 
resource availability. 

l Consequently, the requirement that the hardware 
conform exactly to the assumptions built into the 
program with regards to the number of functional 
units and the operation latencies. 

l The absence of any interlock hardware, despite the fact 
that multiple, pipelined operations are being issued 
every cycle. 

The original attraction of this style of architecture is its 
ability to exploit large amounts of instruction-level 
parallelism (ILP) with relatively simple and inexpensive 
control hardware. Whereas a number of VLIW products 
have been built which are capable of issuing six or more 
operations per cycle [4, 5, 31, it has just not proven 
feasible to build superscalar products with this level of 
ILP [18, 2, 14, 8, 7, 61. Furthermore, the complete 
exposure to the compiler of the available hardware 
resources and the exact operation latencies permits highly 
optimized schedules. 

These very same properties have also led to the 
perception that VLIW processors are of limited interest as 
products. The rigid assumptions built into the program 
about the hardware are viewed as precluding object code 
compatibility between processors built at different times 
with different technologies and, therefore, having different 
latencies. Even in the context of a single processor, the 
need for the compiler to schedule to a latency, that is fixed 
at compile-time, is problematic with operations such as 
loads which can have high variability in their latency 
depending on whether a cache hit or miss occurs. Because 
of this latter problem, VLIW products have rarely adhered 
to the ideal of no interlock hardware, whatsoever. 
Interlocking and stalling of the processor is common when 
a load takes longer than expected. 

Superscalar processors and other dynamically 
scheduled processors are better equipped, at least in 
principal, to deal with variable latencies. In fact, when the 
variability is low, such processors are quite successful in 
dynamically scheduling around the misestimated latencies. 
A broad range of instruction issuing techniques, developed 
over the past three decades, can be brought to bear on this 
task. Examples include the CDC 6600 scoreboard [18, 191, 
the register renaming scheme, known as Tomasulo’s 
algorithm, incorporated in the IBM 360/91 [2, 201, the 
history file, reorder buffer and future file [15], the register 
update unit [16] and checkpoint-repair [9]. 

The conventional wisdom is that dynamic scheduling 
using such techniques is inapplicable to VLIW processors. 
The primary objective of this paper is to show that this 
view is wrong, that dynamic scheduling is just as viable 
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with VLIW processors as it is with more conventional 
ones. A fust step towards understanding how to perform 
dynamic scheduling on VLIW processors is to recognize 
the distinction between traditional VLIW processors and 
the concept of a VLIW architecture. 

A VLIW processor is defined by a specific set of 
resources (functional units, buses, etc.) and specific 
execution latencies with which the various operations are 
executed. If a program for a VLIW processor is compiled 
and scheduled assuming precisely those resources and 
latencies, it can be executed on that processor in an 
instruction-level parallel fashion without any special 
control logic. Conversely, a VLIW processor that has no 
special control logic can only correctly execute those 
programs that are compiled with the correct resource and 
latency assumptions. VLIW processors have traditionally 
been built with no special control logic and this has led to 
the conclusion that VLIW processors must necessarily be 
designed in this fashion. 

A different view of VLIW is as an architecture, i.e., a 
contractual interface between the class of programs that are 
written for the architecture and the set of processor 
implementations of that architecture. The usual view is 
that this contract is concerned with the instruction format 
and the interpretation of the bits that constitute an 
instruction. But the contract goes further and it is these 
aspects of the contract that are of primary importance in 
this paper. First, via its MultiOp capability, a VLIW 
architecture specifies a set of operations that are guaranteed 
to be mutually independent (and which, therefore, may be 
issued simultaneously without any checks being made by 
the issue hardware). 

Second, via assertions about the operation latencies, 
an architecture specifies how a program is to be interpreted 
if one is to correctly understand the dependences between 
operations. In the case of a sequential architecture, all 
latencies are assumed to be a single cycle. So, the input 
operands for an operation are determined by all the 
operations that were issued (and, therefore, completed) 
before the operation in question. 

In the case of programs for VLIW architectures, with 
operations having non-unit latencies, the input operands 
for an operation are not determined by all the operations 
that were issued before the operation in question. What 
matters is the operations that are supposed to have 
completed before the issuance of the operation in question. 
Operations that were issued earlier, but which are not 
supposed to have completed as yet, do not impose a flow 
dependence upon the operation in question. 

We introduce the following terminology to facilitate 
our discussion. A program has unit assumed latencies 

(UAL) if the semantics of the program are correctly 
understood by assuming that all operations in one 

instruction complete before the next instruction is issued. 
A program has non-unit assumed latencies (NUAL) if at 
least one operation has a non-unit assumed latency, L, 
which is greater than one, i.e., the semantics of the program 
are correctly understood if exactly the next L-l 
instructions are understood to have been issued before this 
operation completes. An architecture is UAL (NUAL) if 
the class of programs that it is supposed to execute are 
UAL (NUAL). We shall use the terms NUAL program and 
latency-cognizant program interchangeably. 

This paper addresses the following questions: 

How does one determine the dependence semantics of 
latency-cognizant programs? 

How does one do dynamic scheduling for a latency- 
cognizant progmm? 

How do the unique aspects of VLIW architectures, 
namely, NUAL and MultiOp, affect the mechanisms 
used to effect scoreboarding and out-of-order 
execution? 

Due to space considerations, this paper will not discuss 
the issue of how one provides precise interrupts for VLIW 
architectures. The mechanism developed in this paper, i.e., 
split-issue, supports precise interrupts. However, the issues 
involved are too numerous and subtle to be dealt with 
summarily. The hardware support needed for speculative 
execution is very closely related to that for providing 
precise interrupts. In both cases, it must be possible to 
back up instruction issue to an earlier point and then 
resume execution from there correctly. Since we are not 
addressing precise interrupts, we shall also ignore the topic 
of speculative execution. Lastly, we shall simplify our 
discussion by ignoring predicated execution [13, 31. 
Predicated execution poses some difficult problems for 
out-of-order execution which are unrelated to whether the 
architecture in question is VLIW. 

In Section 2 we review dynamic scheduling and out- 
of-order execution for UAL programs. In Section 3 we 
examine the manner in which the semantics of a NUAL 
program are to be interpreted and we introduce the concept 
of split-issue. Section 4 extends UAL dynamic scheduling 
techniques and mechanisms to the NUAL domain and 
evolves the structure of the delay buffer--the minimal 
additional hardware structure required to support 
scoreboarding and out-of-order execution of NUAL 
programs. Section 5 attempts to place these new ideas in 
perspective. 

2 Dynamic scheduling of UAL programs 

The semantics of a conventional, sequential program 
are understood by assuming that each instruction is 
completed before the next one is begun. If program time is 
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measured in units of instructions issued, the execution 
latency of every operation is one cycle. If the actual latency 
of all operations is in fact a single cycle, then an 
instruction may be issued every cycle for a UAL program 
without the need for any interlock hardware and without 
any danger of violating the semantics of the program. 

If some or all of the actual execution latencies are 
greater than one cycle, or if one wishes to issue more than 
one instruction per cycle, then it is necessary to provide 
instruction issue logic to ensure that the semantics of the 
program are not violated. In particular, it is important for 
the issue logic to understand when an instruction is 
dependent upon another one as a result of their accessing 
the same register. The determination of such dependences 
relies upon the knowledge that a UAL program is being 
executed; the semantics of a given operation, and the data 
that it uses as its input, assume that every sequentially 
preceding operation has completed before it begins 
execution. 

Since instruction issue policies for NUAL programs 
build upon those for UAL programs, we shall briefly 
review the latter. An instruction issue policy is defined by 
the types of dependences whose occurrence it precludes 
and by its actions when a particular type of dependence is 
encountered. All correct issue policies must honor the 
partially ordered dependence graph that exists between the 
reads and the writes to a particular register. A large amount 
of work has been done in this area, and it has been pulled 
together and analyzed admirably by Johnson [lo]. We 
shall review these policies from a somewhat unusual 
viewpoint, one that is better suited to the extension of 
these policies to NUAL programs. 

Instruction issue policies may be broadly divided 
into two approaches. 

A The contents of a register can either be an actual 
datum or a symbolic value, i.e., a surrogate for or 
the name of the as yet uncomputed datum. 

B. The contents of a register may only be a datum. 

In the first case, even though the result of an operation 
will not be available for some time, a tag can be allocated 
to represent its symbolic value and this tag can be 
“written” to the destination register immediately or, in 
other words, associated with that destination register. 
Since this happens in the same cycle that the operation 
was issued, the operation appears to have unit latency 
when viewed at the level of symbolic values. Furthermore, 
when an operation is issued, there is always a value 
available in the source registers, either an actual value or a 
symbolic one. Consequently, instruction issue need never 
be interrupted unless the pool of tags runs out. 

Of course, with the exception of copy operations, 
operations cannot proceed until the actual values of their 

source operands are available’. In the meantime, they wait 
in reservation stations [20]. Each time an operation 
completes, the tag corresponding to the symbolic value for 
the result is broadcast along with the actual value. Every 
register or reservation station containing this symbolic 
value replaces it with the actual value. Also, at this time, 
the tag for the result is returned to the pool of tags 
available for reallocation. When the actual values for both 
source operands are available, the reservation station 
contends for the functional unit on which the operation 
will be executed. 

This approach can be sub-divided into two policies 
of interest based on the number of tags that are available to 
serve as the symbolic value of a given register. 

Al. 

A2. 

Multiple tags can be allocated to represent 
multiple, distinct symbolic values associated with 
a given register. 

Only a single tag is available to represent the 
multiple, distinct symbolic values associated with 
a given register. For convenience, and without loss 
of generality, we shall assume that this pre- 
allocated tag is identical to the address of the 
register. 

Policy Al, with minor and insignificant differences, is 
what is commonly known as the Tomasulo algorithm [2Ol. 
This entails the use of reservation stations and register 
renaming. 

Policy A2 corresponds to the use of reservation 
stations (without renaming) to enable the issuance and 
setting aside of operations, the actual values of whose 
source operands are not as yet available, or operations for 
which a functional unit is not immediately available. 
However, since there is only a single tag available to use 
as a symbolic value, there cannot be more than one 
outstanding update of a register at any one time. Thus, 
instruction issue must block on an output dependence. 

In the case of approach B, since one deals only with 
actual values, the illusion of single cycle execution cannot 
be sustained. Two instruction issue policies can be defined 
for this approach 

Bl. Stall instruction issue if a dependence is 
encountered, i.e., if either the source or the 
destination register, for the operation that is about 
to be issued, has a pending write. 

B2. Continue instruction issue even when dependences 
are encountered, but provide mechanisms that 
enforce the partial ordering of accesses to each 
register. 

’ This is not strictly true. For instance, an integer multiply 

operation can proceed even if one of its source operands is a symbolic 

value, if the actual value of the other source operand is known to be 

zero. However, the practical benefits of so doing are quite doubtful. 
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The second policy leads one to mechanisms such as the 
dispatch buffer [l] or partial renaming [lo]. Johnson has 
argued persuasively that the second policy is not worth 
pursuing since it leads to implementations that are more 
expensive but less effective than those for Al and A2. 
Consequently, we shall limit ourselves to considering only 
policies Al, A2 and Bl. 

Our discussion, thus far, has been in the context of a 
single register file. Since all operations source and sink the 
same register file, no distinction need be made between the 
register access policy and the instruction issue policy. 
When there are multiple register files and operations which 
source one register file but sink a different one, the 
instruction issue policy depends upon the register access 
policies of both register tiles. We need a way to talk about 
instruction issue policies and register access policies as 
distinct entities. The view that we shall adopt is that the 
policies Al, A2 and Bl are register access policies which 
describe the manner in which a register file and its 
contents can be manipulated. Each register access policy 
specifies certain actions and constraints that apply when 
that register file is a source or a destination of an 
operation. 

Table 1 codifies the actions and constraints of each 
register access policy (column 1) when that register file is 
the source (column 2) and when it is the destination 
(column 3). As a source there are two possibilities: SF 
and RS. SF states that instruction issue stalls when a flow 
dependence is encountered. RS specifies the use of 
feservation stations to set the operation aside when a flow 
dependence is encountered. As a destination, too, there are 
two possibilities: SO and RR. SO states that instruction 
issue stalls when an autput dependence is encountered. RR 
specifies the use of register fenaming to eliminate all 
output dependences. 

Table 1. The three instruction issue policies of interest 
for a UAL program. 

Register File 

Policy 

Al 

A2 

Bl 

Instruction Issue Policy 

Source Operands Destination 

Operand 

RS RR 

RS so 

SF so 

When the source and destination register files are the 
same, register access policies Al, A2 and B 1 correspond to 
the instruction access policies RSRR, RSSO and SFSO, 
respectively. (The first two and last two letters indicate the 
policies for the source operands and the destination 
operands, respectively.) 

3 Semantics of NUAL programs 

The semantics of a sequential program are understood 
by viewing each instruction as occurring atomically, 
within a single cycle, and concurrent with no other 
instruction. In contrast, the semantics of a NUAL program 
must recognize that each operation has two distinct events, 
in general, at two distinct points in time. These are the 
start of the operation, when the source registers are 
accessed, and the end of the operation, when the 
destination register is written’. Each of the pair of events 
for one operation may have a precedence relationship with 
either one of the pair of events for another operation. 
Correct execution of a NUAL program demands that all of 
these precedence relationships be honored. The time at 
which these events occur in a NUAL program is measured 
in units of instructions issued. Since an instruction is a set 
of operations that is intended to be issued in a single 
cycle, this is equivalent to measuring time in cycles if one 
instruction is issued every cycle. When there is the 
potential for confusion, we shall refer to this as the virtual 
time of the program to distinguish it from the real, elapsed 
time during execution. 

3.1 Dependence semantics of a NUAL program 

Consider the fragment of a NUAL program shown in 
Figure la. Since it is a UniOp program, we shall refer to 
each operation by the number of the instruction that it is 
in. If this is interpreted as a UAL program, the first load, 
operation #1, is irrelevant since rl is immediately 
overwritten by the operation #2. Operations #ll and #12 
are both flow dependent upon the operation #2, operation 
#ll is irrelevant, operation #14 is flow dependent upon 
operation #12 and operation #15 is flow dependent upon 
operation #14. 

Figure lb illustrates how this NUAL program 
fragment should be interpreted correctly to understand the 
actual semantics and dependence structure, assuming the 
latencies as specified. Each operation in Figure la has been 
split into two operations in Figure lb. The Phase1 
operation consists of the source register reads and the 
actual computation. The Phase2 operation consists of the 
destination register write and is understood to execute in a 
single cycle. Anonymous temporary registers (vl, . . . . v5) 
convey the results of the Phase1 operations to the 
correspouding Phase2 operations. These temporary values, 
by their very nature, are written and read exactly once each. 
In Figure lb, a Phase2 operation is interpreted as being 

1 This can be generalized to more than two events if, for 

instance, different inputs are sampled at different times or if different 

outputs are written at different times by an operation. 
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issued later than the corresponding Phase1 operation by an 
interval equal to the assumed latency less one cycle. 

1 

3” 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
11 

:: 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

rl = load(r2) 
rl = load(r3) 

r4 = fmul(r1, r5) 
r4 = faddtrl, r6) 

r7 = fmul(r4, r9) 
r7 = fadd(r7, r8) 

(a) 

vl = load(r2) 
v2 = load(r3) 

v3 = fmullrl, r5) 
v4 = fadd(r1, r6) 

v5 = fmul(r4, r9) 
v6 = fadd(r7, r8) 

rl = vl 
rl = v2 

r4 = v4 
r4 = v3 

r7 = v6 
r7 = v5 

Figure 1. (a) A NUAL code segment and (b) its UAL 
code equivalent after splitting. The assumed 
operation latencies are 10 cycles for load, 4 cycles for 
floating-point multiply and 2 cycles for floating-point 
add. The empty instructions are understood to 
contain no-op operations. 

From an inspection of Figure lb, it is now clear that 
operation #ll is flow dependent upon operation #l, 
operation #12 upon operation #2, operation #14 upon 
operation #12, and operation #15 is not flow dependent 
upon any of the other five operations. Operation #15 is 
also irrelevant unless there is a Phase1 operation that reads 
r7 in instruction 17. Thereafter, the value in r7 is that 
deposited by operation #14. Furthermore, there is an anti- 
dependence from operation #I4 to operation #II! 
Operation #ll may not write r4 before operation #14 reads 
it, otherwise operation #14 gets that value rather than the 
result of operation #12. 

What Figure lb illustrates is that we can interpret 
NUAL programs as if they are UAL programs once the 

operations have been split into their Phase1 and Phase2 
components and the Phase2 component is understood to 
issue with a delay corresponding to the assumed latency. 
One might suspect that if a program can be interpreted as if 
it is a UAL program that it can also be dynamically 
scheduled using all the mechanisms and techniques that 
have been developed for UAL programs. This is, in fact, 
the case. The concept of splitting a NUAL operation and 
delaying the issuance of the Phase2 operation we shall 
refer to as split-issue. Also, we shall use the term 
augmented (MultiOp) instruction to refer to the set of 
Phase1 operations from a single MultiOp insrruction along 
with all of the Phase2 operations (from earlier MultiOp 
instructions) that are supposed to issue concurrently with 
these Phase1 operations. 

3.2 Split-issue 

Split-issue is the mechanism which permits correct 
execution of a NUAL program even when the actual 
latencies do not agree with the assumed latencies. 
Furthermore, it enables well understood out-of-order- 
execution techniques to be employed with NUAL 
programs. We shall describe the concept here in its most 
general form. The general hardware model is described in 
Section 4.1. In certain special cases of interest, it simplifies 
to a rather inexpensive implementation. 

With UAL programs, instruction interpretation 
comprises three steps (given that we are ignoring the 
precise interrupt issue). These are 

1. decode and issue, 

2. initiate, and 

3. complete and retire 

With NUAL programs we add one more action which is 
that of splitting. Once an instruction is in the instruction 
register, each operation is decoded and split into its 
Phase1 and Phase2 components. An anonymous register is 
assigned to be the destination of the Phase1 operation and 
the source for the Phase2 operation. The Phase1 operation 
is issued immediately (in virtual time) in accordance with 
the instruction issue policy that is being employed 
(Figure 2a). Either immediately or eventually, it is 
initiated, i.e., begins execution, then completes and is 
retired. The Phase2 operation is inserted into a list which 
is ordered by the virtual time at which the Phase2 
operations should be issued’ (Figure 2b). For each Phase2 
operation this is computed as the virtual time at which the 
Phase1 operation is issued plus the assumed latency less 
one cycle. After the appropriate delay (measured in units of 
MultiOp instructions issued), the Phase2 operation is 

1 This is the conceptual view. There are any number of ways of 
actually implementing this. 
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issued. It executes, i.e., performs the copy from the 
anonymous register to the architectural register, either 
immediately or when appmpriate, and is retired. 

I 
Decode, Split. Issue 

and Rsnanm Phasl 
Dscode, Split 

and Delay Phase2 

Bpy and Retirement 

64 

load and, perhaps, store the contents of the ELR’s. This 
second option provides the capability to keep changing the 
assumed latency of an opcode albeit not as flexibly as with 
the latency-field-per-operation approach. (Such a capability 
was provided in the Cydra 5 for specifying the assumed 
latency of load operations [ 121.) 

With the third approach, there is no explicit 
specification of the assumed latencies. Instead, they are 
specified in the architecture specification and are fixed 
across all programs and across all processors within the 
architectural family. Only in this last case is it appropriate 
to use the term “architectural latencies” for the assumed 
latencies. This is the approach commonly used in the past 
by VLIW processors [4,5,3]. 

It is worth noting that there are a number of 
situations, having to do with the robustness of 
performance with respect to varying actual latencies, in 
which it is advisable for the program to assume latencies 
that are quite different from the actual hardware latencies 
r111. 

Figure 2: (a) Execution phases for a Phase1 
operation. (b) Execution phases for a Phase2 
operation 

4 Dynamic scheduling techniques for NUAL 
programs 

3.3 Specification of the assumed latency 
4.1 A machine model 

The latency assumed by each operation may be 
specified in a number of ways. In decreasing order of 
generality and flexibility, these are: 

l a field in each operation specifying the assumed 
latency, 

l an execution latency register (ELR) per opcode or 
per set of opcodes which contains the assumed latency 
of that opcode or opcode set, and 

l an architecturally specified latency for each opcode. 

The first approach permits the specification of distinct 
assumed latencies for different occurrences of the same 
opcode. Although this can be quite useful, it is rather 
extravagant in its use of instruction bits. The Horizon 
architecture provides for such a latency specification per 
MultiOp instruction [17]. Presumably, the value specified 
is the minimum of the assumed latencies across all 
operations within a single instruction. 

The second approach has two sub-cases depending on 
how the assumed latency is deposited into the ELR. One 
option is to provide all the assumed latencies in the 
program header. Prior to launching the program, the 
runtime system transfers this information into the ELR’s 
which are part of the processor state, but inaccessible to 
user code. The second, more dynamic option is to make the 
ELR’s visible to the program and to provide opcodes that 

The general machine model assumed in this paper is 
shown in Figure 3. Instructions are fetched or prefetched 
into the instruction buffer as in any other processor. These 
instructions are assumed to be MultiOp (which includes 
UniOp instructions as a special case). An additional, post- 
decoding step, which we have termed splitting, exists. 
During this step, each operation in the instruction that is 
about to be issued is split into its Phase1 and Phase2 
components by the splitter. The Phase2 operations are 
placed in the delayed-issue instruction buffer, 
appropriately far back, so as to be issued with a delay that 
is one less than the assumed latency’. The Phase1 
operations are placed in the instruction register 
immediately along with any Phase2 operations which are 
at the front of the delayed-issue instruction buffer. The set 
of Phase1 and Phase2 operations that are placed in the 
instruction register during the same cycle constitute an 
augmented (MultiOp) instruction. 

The instruction issue unit performs one of three 
actions upon each operation in the instruction register 
depending on the current situation. If the operation has no 

1 The assumption here is that the code has been scheduled such 

that two operations on the same functional unit never complete at the 
same time since this would constitute an over-subscription of the result 
bus. This also implies that there will never be the need to schedule two 
Phase2 operations on the same functional unit at the same time. 
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Figure 3. Processor organization for supporting split-issue with out-of-order execution. 

dependence conflict with any previously issued operation, 
and if the appropriate functional unit is available, the 
operation goes directly into execution. If either, a 
dependence conflict exists or if the required functional unit 
is not available, the operation is placed in a reservation 
station to await the condition under which it can go into 
execution. If no reservation station is available (including 
the case in which reservation stations are not provided in 
the hardware) the operation cannot be issued. All of the 
operations in a single augmented instruction are decoded 
and issued simultaneously from the instruction register. If 
even one operation cannot be issued, then none of them are 
issued. In this case, we shall say that instruction issue has 
stalled. 

Phase1 and Phase2 operations are issued to distinct 
types of reservation stations, the structure of which we 
shall examine shortly. The functional units corresponding 

to the Phase1 operations are those that implement the 
functionality of the opcode repertoire, e.g., integer ALUs, 
floating-point adders and load-store units. In genera& these 
functional units have latencies of one or more cycles and 
they may be pipelined. The implicit opcode for a Phase2 
operation corresponds to a copy operation. This operation 
is assumed to complete in a single cycle. The “functional 
unit” that implements this is shown in Figure 3 as the 
copyback unit. Phase1 operations access the architectural 
register file, (ARF) for their source operands and access 
the anonymous delay register file (DRF) for writing the 
destination operand. Conversely, Phase2 operations access 
the DRF for their source operand and the ARF for writing 
the destination operand. 

Figure 3 displays a single ARF, a single execution 
pipeline, a single DRF and a single copyback unit. In 
general, a processor might possess multiple AWs (e.g., 
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integer and floating-point). There may be multiple 
functional units that access a given ARF. Furthermore, 
certain operations may access one ARF as the source and 
another one as the destination. Without loss of generality, 
we shall focus on a single ARF. We shall assume that 
there is a unique DRF and copyback unit per functional 
unit. Thus, each DRF is written to only by one specific 
functional unit and is read by a single copyback unit. In 
comparison to the ARF, the DRP can be implemented less 
expensively since it has but a single read port and a single 
write port 

4.2 Instruction issue policies for NUAL programs 

If we assume that all ARF’s have the same register 
access policy and, likewise, that all DRF’s have the same 
register access policy, then the instruction issue policies 
for the Phase1 and Phase2 operations are completely 
specified by the two register access policies (Table 2). For 
each pair of ARF access policy (row) and DRP access 
policy (column), the table entry specifies the 
corresponding Phase1 and Phase2 instruction issue 
policies. Given that we have restricted our discussion to 
three register access policies, there am nine possible NUAL 
instruction issue policies. We shall also find it useful to 
consider, for the ARF, the null access policy of having no 
interlocks whatsoever on accesses to the architectural 
registers’. This increases the number of possible 
instruction issue policies to twelve. 

Consider ftrst the four instruction issue policies that 
correspond to the use of B 1 for the DRF. Since instruction 
issue stalls if the actual value of a Phase2 source operand 
is not available, and since Phase2 operations complete in a 
single cycle, a Phase2 operation can never complete late 
with reference to the program’s virtual time. Consequently, 
at the beginning of every cycle in which instruction issue 
is not stalled due to a Phase2 flow dependence, every 
Phase1 operation will find that its (ARF) source operands 
are available and that there are no outstanding writes 
against its (DRF) destination. Therefore, it is unnecessary 
to do any dependence checking at all when accessing the 
ARF. 

The instruction issue policy for which the DRF 
policy is Bl and the ARF is not interlocked is termed 
latency stalling. The nature of this policy is that 
instruction issue stalls when the assumed latency of an 
operation has elapsed, but the actual latency has not. In the 
program’s virtual time, the assumed latency is never 
exceeded and so no dependence checking hardware is 

1 We ignore the case in which the DRF is not interlocked. This is 

feasible only if all actual latencies are guaranteed to be less than or 

equal to the assumed ones. In this case the ARF, too, would have no 

interlocks. 

needed. This policy is of particular interest since it 
eliminates the requirement for interlock hardware on the 
ARF which, in an ILP processor, may be expected to be 
highly multiported. 

The other three policies involving the use of Bl for 
the DRF degenerate to latency stalling and are not of 
interest as distinct policies. Also, if the ARF is not 
interlocked, the only acceptable policy for the delay 
registers is Bl. Correctness requires that results never be 
written late, relative to the program’s virtual time, into the 
ARF, which precludes Al and A2. Since the DRP is an 
anonymous register file, it makes little sense to provide 
additional affiliated anonymous registers via register 
renaming of the DRF, one might as well have provided a 
larger DRP in the first place. Consequently, Al is of little 
interest for the DRF. This leaves four policies of possible 
intereSt. 

Table 2. Instruction issue policies of potential interest 
for NUAL programs. Entries specify the policies for 
Phase1 and Phase2 operations, respectively. The 
lightly shaded entries are of no interest. The heavily 
shaded entries are not feasible. 

The operations that we have been considering thus 
far have been register-register operations. By generalizing 
from registers to all types of processor state, such as the 
program counter and the program status word, operations 
such as delayed branches can be included in this same 
framework. As far as their register-based dependences are 
concerned, loads and stores can also be viewed within the 
same framework. A load can be viewed as a register-register 
NUAL operation which takes an address from a source 
register and deposits the contents of the addressed memory 
location in the destination register. Likewise, a store has 
two source operands but no destination register. On the 
other hand, loads and stores also have dependences 
between one another via their accesses to the memory 
space. Conceptually, these too, can be treated by viewing 
the entire memory space as a register file. In practice, given 
the size of the memory space, different scoreboarding and 
out-of-order mechanisms (e.g., associative store buffers 
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[lo]) must be employed than those that are used for 
register-register operations. 

4.3 General structure of the reservation stations 
for NUAL 

file to which it corresponds. For a Phase1 operation, the 
input section is that for an ARF and the output section is 
that for a DRF. For a Phase2 operation, it is just the 
opposite. Figures 4b and 4c display the detailed structure 
of the input and output sections corresponding to the ARF 
and the DRF, respectively. 

Figure 4 shows the structure of the reservation 
stations. A reservation station consists of two parts: the 
input section which relates to the source operands of the 
operation, along with the opcode and the output section 
which pertains to the result operand (Figure 4a). The 
detailed structure of each section depends upon the 
instruction issue policy as well as on the type of register 

With access policy Al, each architectural register 
consists of either the datum itself or the tag for its 
symbolic value and an invalid bit. The invalid bit is set if 
the register contains a tag. That portion of the input 
section corresponding to each source operand has rhe same 
structure as an architectural register. Additionally, the 
input section contains the opcode and a bit to indicate that 



this reservation station is in use. The output section for 
the ARF under policy Al consists of the tag that 
represents the symbolic value of the result (so that it can 
be broadcast along with the actual value once it is 
available). (In the case of UAL and the absence of split- 
issue, the reservation station under policy Al would 
consist of this pair of input and output sections.) 

Under policy A2, the tag is identical with the address 
of the architectural register on both the source and 
destination sides. Other than this, the structures of the 
input and output sections are identical. The register 
structure is simplified; since the tag is identical to the 
register’s address, it need not be explicitly represented and 
no storage is required. Only space for the datum and the 
invalid bit are needed. With policy Bl, no reservation 
stations are needed and the register structure is the same as 
that under policy A2. 

In principle, the input and output sections associated 
with the DRF are similar to those for the ARF, except for 
a couple of differences First, since there is only one 
possible opcode for a Phase2 operation (copy), it need not 
be explicit in the input section. Second, a Phase2 
operation has a single source operand. Together, these 
simplifications yield the input and output sections shown 
in Figure 4c for policies Al and A2. 

4.4 The delay buffer: simplified hardware 
support for NUAL 

Certain simplifications result from the stylized 
manner in which the delay registers and the Phase2 
reservation stations are used and the fact that register 
access policy Al is of little interest for the DRF. Through 
a series of simplifications, that are discussed in detail in an 
expanded version of this paper [ll], three structures--the 
delayed-issue buffer, the DRF and the Phase2 reservation 
stations--are combined into one hardware structure which 
we shall refer to as the delay buffer. This results in a 
number of redundant fields that can be optimized away. 
Each element of the delay buffer has the resulting structure 
shown in Figure 5. 

Delay RegisterlArchReg Result 

Back IAddress 

Figure 5. Structure of an element of the delay buffer. 

The delay buffer is organized as a circular buffer. The 
Phase2 Issue Pointer (PIP) points to an element of the 
delay buffer and, each time an augmented instruction is 

issued, the PIP moves forward by one element. On each 
instruction issue cycle, the Phase2 operation that has just 
been split off is allocated the delay buffer element that is 
ahead of the PIP by the assumed latency less one. The 
address of this element is used by the Phase1 operation to 
specify its destination. The invalid bit in this element is 
set at this time (to be reset when the Phase1 operation 
completes and the result is written into that delay buffer 
element). At this time, the copyback bit in this element 
should be in the reset state. The Phase2 operation is issued 
when the PIP arrives at this element. 

If the result is computed sooner than the assumed 
latency, it is written into the delay buffer element, the 
invalid bit is reset but, since the copyback bit is not set, it 
is not written to the destination architectural register. 
When the PIP reaches this delay buffer element, the invalid 
bit is not set and, so, the datum is written to the 
destination architectural register. 

If the result is computed later than the assumed 
latency, then the invalid bit is still set when the PIP 
arrives at this element. Two actions are taken. Fist, if 
access policy Al is being employed for the ARF, the 
address of the destination architectural register in the delay 
buffer element is replaced by the tag for the symbolic value 
that is placed in the destination architectural registe.-. 
Second, the copyback bit is set to indicate to the hardware 
that the result should be written to the destination 
architectural register as soon as it is available. As a result, 
the copyback bit will be set at the time that the result is 
eventually written into the delay buffer element. 
Accordingly, the result will also be written to the 
destination architectural register and both the invalid and 
the copyback bits will be reset. When both the invalid and 
the copyback bits are reset, the delay buffer element is no 
longer in use and may be reallocated. 

If the access policy for the ARF is Al, the copyback 
can be performed immediately upon the PIP reaching a 
delay buffer element. Since the Phase2 operation is a copy, 
it can be executed immediately even though its source 
datum is not available. This is done by copying the 
symbolic value in the delay buffer element (i.e., the address 
of that element’) into the destination architectural register 
and resetting the copyback bit. When the corresponding 
Phase1 operation completes, it broadcasts the delay buffer 
address (as the tag) along with the datum. The 
architectural register and any Phase1 reservation stations 
that contain that tag replace their tags with the datum. At 
the same time, the invalid bit in the &lay buffer element is 
reset. The copyback bit can be eliminated since it would be 
reset the very cycle it is set. Thus, the delay buffer element 

1 More precisely, the tag should consist of the delay element 

address prefixed by the functional unit identifier so that the tags 

corresponding to different functional units are distinct. 
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is no longer in use as soon as the PIP has passed over it 
and the invalid bit is reset. Also, note that the allocation 
of a tag for the destination architectural register is no 
longer needed since the address of the delay buffer element 
serves that function. 

Instruction issue must stall either if the delay buffer 
element that is about to be allocated is still in use or if, in 
a wraparound sense, it is more than one lap ahead of the 
PIP. The latter constraint implies that there must be at 
least as many delay buffer elements as the longest assumed 
latency, else deadlock will occur. Thus, the maximum 
possible assumed latency, for the operations that execute 
on each functional unit, is an architectural parameter. 

With latency stalling, instruction issue must stall 
when the PIP points to an element whose invalid bit is 
still set and can only resume once that bit is reset. In this 
case, too, the copyback bit is redundant (it will never be 
set) and may be eliminated from the structure of the delay 
buffer element. A delay buffer element is in use from the 
time that its invalid bit is set until the PIP passes over it. 
Interestingly, this is almost exactly what the collating 
buffers associated with the Cydra 5’s memory pipelines 
were [12]. In the Cydra 5, this capability was motivated 
by the variability of the load latency due to interference in 
the interleaved main memory. The assumed latency for 
loads was specified by writing the assumed latency into 
the memory latency register (MLR). It is of obvious value 
to extend this concept to all the functional units in order 
to address the variability of hardware latencies across 
multiple implementations of a NUAL architecture. An 
attractive property of latency stalling is that it scales well 
to large numbers of functional units since each functional 
unit independently decides whether instruction issue 
should be stalled. 

The delay buffer has only a single read port, a single 
write port, no associative hardware and a very simple 
allocation/deallocation process. All of these contribute to 
its being relatively inexpensive. Furthermore, most of this 
hardware is already present in some other form. The normal 
staging of pipelined operations in UAL architectures 
requires that the destination address be buffered from the 
time of issue until the result is written to the architectural 
register. This hardware is subsumed by the delay buffer 
structure that we have developed. The delay registers 
provided in the delay buffer to hold data until it is time to 
write them to the ARF would show up as additional 
architectural registers in a UAL architecture. It would 
appear to be a poor trade-off to replace delay registers 
which have one port each for reads and writes with 
architectural registers which must necessarily be highly 
multiported. 

4.5 Multiple instruction issue 

Multiple instruction issue is important either if the 
hardware has the ability to issue more operations in 
parallel or if the hardware latencies are shorter than those 
assumed by the compiler. In the latter case, the opportunity 
to execute operations earlier in real time than in the 
program’s virtual time can only be realized if instructions 
are scanned (and issued) faster than one per cycle. (Note 
that by multiple instruction issue we mean the issuance, 
each cycle, of more than one MultiOp instruction, each one 
containing multiple operations.) The program’s virtual time 
must advance by multiple cycles on each unstalled real 
cycle. There is a variety of ways to accomplish this, but in 
each case the net effect must be identical to that obtained 
by issuing one MultiOp instruction at a time while 
running the instruction issue logic with a cycle time that 
is a sub-multiple of the actual instruction issue cycle time. 

Each of the above instruction issue policies may be 
combined with multiple instruction issue. If policy A2 is 
used for the delay buffer, the implementation issues are 
very similar (other than the additional requirement of 
performing split-issue) to those for a multiple-issue 
superscalar processor using the same policy as that used 
for the ARF [lo]. Although dependence checking is 
unnecessary between the multiple operations within any 
one of the instructions being issued, every operation must 
be checked against every operation from a preceding 
instruction. Data path complexities to support multiple 
instruction issue are common to both VLIW and 
superscalar. One example is the need for register 
forwarding between operations that are writing to the ARF 
and flow dependent successor operations that are being 
issued in the same cycle. 

If latency stalling is employed, the determination of 
which instructions may be issued together is greatly 
simplified. The only condition that can prevent the issue 
of the next instruction on a given cycle is if the invalid bit 
pointed to by the PIP is set in one or other of the 
functional units. By extension, the only condition that can 
prevent the issue of the next n instructions is if the invalid 
bit is set in any functional unit for the element pointed to 
by the PIP or in any of the next n-l elements. Thus, the 
equivalent of a priority encoder determines the maximum 
number of instructions that may be issued simultaneously. 
This would appear to be considerably less complicated 
than what is entailed with a superscalar processor. In 
particular, no dependence checking is required when 
accessing the ARF. However, the data path complexity 
alluded to above is unchanged. The PIP is advanced by n 
on each non-stalled cycle in which n augmented 
instructions are issued. 
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5 Discussion 

The purpose of this paper was to establish that VLIW 
and dynamic scheduling are not contradictory concepts. 
This we have done. Whereas latency stalling is a simple 
and eminently practical scheme for use with VLIW, the 
delay buffer in conjunction with split-issue can support 
arbitrarily sophisticated access policies for the ARF, 
leveraging off all the dynamic scheduling techniques 
that have been, or will be, developed for superscalar 

processors. 
Although possible, there is still the question of how 

desirable it is to perform dynamic scheduling that is more 
complex than latency stalling. The author is not a 
proponent of using dynamic scheduling to effect large- 
scale code re-ordering at runtime, whether for VLIW or 
superscalar processors. The hardware penalties are just too 
high. This function is best performed by a latency- 
cognizant compiler. Nevertheless, it is clear that small-scale 
re-ordering or, at the very least, some form of interlocking 
is unavoidable in the face of variable delays and the need 
for object code compatibility across a family of machines. 
Let us consider the complexity of dynamic scheduling as 
we escalate it in three steps. 

The simplest scenario is when the hardware has 
exactly the same latencies and functional units as were 
assumed by the compiler. In this case, neither from a 
correctness viewpoint nor from a performance viewpoint is 
it necessary to have any dynamic scheduling logic. This, of 
course, was the original attraction of VLIW. However, it 
suffers from the problem of object code compatibility, 
which was the motivation for this paper. 

The next step is to ensure correctness in the face of 
actual latencies that could be longer (or shorter) than those 
assumed. This is the minimum one must do to guarantee 
object code compatibility. This is provided by the delay 
buffer which, as pointed out in Section 4.4, requires little 
additional harware. The simplest mechanism available for 
VLIW is latency stalling which entails no interlocks on 
ARF access. The delay buffer can support arbitrarily 
complex access policies for the ARF, but we claim below 
that this is impractical. 

The last step is to realize the performance benefits 
that result from taking advantage of shorter than assumed 
latencies or of greater hardware parallelism than expected. 
This requires multiple (MultiOp) instruction issue. To be 
effective, this most likely implies out-of-order execution of 
Phase1 operations, i.e., either policy Al or A2 for the 
ARF. 

The practicality of each tier of complexity hinges on 
the practicality of two capabilities: multiple instruction 
issue and ARF access policies Bl, A2 and Al. Practicality 
must be evaluated in the context of the level of ILP 

desired. Of interest to proponents of ILP are processors 
capable of issuing eight or more operations per cycle. (It 
might help the reader to view the following discussion in 
light of a more concrete processor. For instance, one that 
has separate integer and floating-point register files and 
permits the issue of two load/store operations, three integer 
operations, two floating-point operations and a branch 
operation per cycle.) 

Johnson [lo] has shown that multiple instruction 
issue for superscalar requires a number of comparators that 
is proportional to N(N-1). The source and destination 
registers for each instruction that is a candidate for issue 
must be compared with those for all the sequentially 
preceding instructions which also are candidates for issue. 
This is required so that one can determine, in parallel, 
which of those instructions may, in fact, be issued without 
violating any depeudences. 

In contrast, the issuance of a single MultiOp 
instruction with N operations incurs little complexity 
since the compiler guarantees their independence. This is 
one of the original attractions of VLIW. However, if N 
operations from multiple MultiOp instructions are to be 
issued simultaneously, similar dependence checking logic 
is required. Since it still is unnecessary to compare 
operations that are from the same instruction, the number 
of comparators is reduced, but only by a factor of at most 
two. In either case, multiple instruction issue involving 
large numbers of operations is impractical. (As shown in 
Section 4.5, these comparators are unnecessary if latency 
stalling is used. However, the benefits derived from 
multiple instruction issue, when latency stalling is used, 
are unclear.) 

On the basis of such considerations, the author is led 
to the conclusion that multiple instruction issue is 
unrealistic when the number of operations per cycle is 
large. This, regardless of whether the underlying 
architecture is VLIW or sequential. VLIW does have the 
advantage via its MultiOp capability to issue multiple 
operations per cycle without issuing multiple instructions 
(i.e., a single MultiOp instruction) whereas with 
superscalar processors multiple operation issue must 
always involve multiple instruction issue. 

If one retreats to the objective merely of ensuring 
correctness in the face of longer actual latencies, one enters 
the realm of the feasible. VLIW, via its NUAL attribute, 
can employ latency stalling which involves low 
complexity and is quite scalable to the high levels of ILP 
that are made practical by MultiOp. If the use of policies 
Bl, A2 and Al are practical for the ARP at high levels of 
ILP, then they can be employed by VLIW just as well as 
they could by superscalar. (In addition, superscalar must 
take on the full complexity of multiple instruction issue, 
even if the only possible error in the compiler’s 
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assumptions have to do with latency and not with the 
number of functional units.) 

Unfortunately, there is little hard data to support or 
refute the position taken by the author other than at the 
“existence proof’ level; although there have been a number 
of VLIW products built that were able to issue eight or 
more operations per cycle [4, 5, 31, there are no similar 
examples for superscalar products at the same levels of 
ILP. This is not to suggest that igenuity will never lead to 
a breakthrough in the area of dynamic scheduling. If, in 
fact, multiple instruction issue and ARF interlocking turn 
out to be practical at high levels of ILP superscalar may 
become a viable alternative at high levels of ILP. By the 
same token, these breakthroughs could just as well be 
exploited by VLIW. 

6 Conclusions 

We have demonstrated that VLIW processors are as 
capable of out-of-order execution and multiple instruction 
issue as are superscalar architectures. The attributes of 
VLIW that are central to successfully achieving high levels 
of instruction-level parallel execution along with 
object code compatibility are MultiOp and NUAL. The 
key mechanism for enabling the dynamic scheduling of 
NUAL programs is split-issue, and the preferred hardware 
support for it is the delay buffer. Latency stalling is a 
particularly simple interlock technique that can be used 
with NUAL programs. 
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