
Characterization of a global germplasm collection
and its potential utilization for analysis of complex
quantitative traits in maize

Xiaohong Yang • Shibin Gao • Shutu Xu •

Zuxin Zhang • Boddupalli M. Prasanna •

Lin Li • Jiansheng Li • Jianbing Yan

Received: 2 April 2010 / Accepted: 21 August 2010 / Published online: 24 September 2010

� Springer Science+Business Media B.V. 2010

Abstract Association mapping is a powerful

approach for exploring the molecular basis of pheno-

typic variations in plants. A maize (Zea mays L.)

association mapping panel including 527 inbred lines

with tropical, subtropical and temperate backgrounds,

representing the global maize diversity, was genotyped

using 1,536 single nucleotide polymorphisms (SNPs).

In total, 926 SNPs with minor allele frequencies of

C0.1 were used to estimate the pattern of genetic

diversity and relatedness among individuals. The

analysis revealed broad phenotypic diversity and

complex genetic relatedness in the maize panel. Two

different Bayesian approaches identified three spe-

cific subpopulations, which were then reconfirmed by

principal component analysis (PCA) and tree-based

analyses. Marker–trait associations were performed to

assess the suitability of different models for false-

positive correction by population structure (Q matrix/

PCA) and familial kinship (K matrix) alone or

in combination in this panel. The K, Q ? K and

PCA ? K models could reduce the false positives, and

the Q ? K model performed slightly better for flow-

ering time, ear height and ear diameter. Our findings

suggest that this maize panel is suitable for associa-

tion mapping in order to understand the relationship

between genotypic and phenotypic variations for

agriculturally complex quantitative traits using opti-

mal statistical methods.
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Introduction

Maize (Zea mays L.) is one of the most important

crops in the world, serving as a source of food, feed

and fuel. To address global demands due mainly to
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continuing population growth and energy insufficien-

cies, improvement of maize productivity and quality

through breeding is vital (Tester and Langridge 2010).

The availability of the maize genome sequence

(Schnable et al. 2009; Vielle-Calzada et al. 2009)

and advanced high-throughput genotyping techniques

(Gupta et al. 2008; Varshney et al. 2009) will provide

new insights into complex quantitative traits for maize

improvement. Linkage mapping is a powerful and

popular approach for identifying the genes or loci

which affect the natural phenotypic variations. Gen-

erally, the resolution provided by linkage mapping is

low (10–30 cM) unless huge mapping populations are

used (Salvi et al. 2007; Ducrocq et al. 2009), whereas

association mapping provides a complementary

approach with higher resolution due to advances in

rapid and cost-effective genotyping technologies and

the development of statistical methods (Yu and

Buckler 2006; Zhu et al. 2008; Myles et al. 2009).

Since first successfully applied in maize (Thornsberry

et al. 2001), a series of association mapping studies has

been performed to investigate the causal variants

associated with flowering time (Camus-Kulandaivelu

et al. 2006; Salvi et al. 2007; Ducrocq et al. 2009;

Pressoir et al. 2009), kernel starch related traits

(Wilson et al. 2004), maysin synthesis (Szalma et al.

2005), forage quality related traits (Andersen et al.

2007), carotenoid content (Harjes et al. 2008; Yan

et al. 2010a), kernel oil related traits (Belo et al. 2008)

and kernel size (Li et al. 2010a, b), and the details have

been summarized in a recent review (Yan et al.

2010b). Maize is an ideal crop for association mapping

due to its great genetic diversity and rapid linkage

disequilibrium (LD) decay (Yan et al. 2010b).

Successful association mapping of a species

requires firstly the creation of a desirable germplasm

collection that reflects genetic diversity, extent of LD

decay and genetic relatedness in a population, which

determine the mapping resolution and power (Zhu et al.

2008). Generally, germplasm collections need to

encompass adequate genetic diversity to cover most

variations for the traits of interest. Maize exhibits

extensive genetic variation, so much so that the

average diversity at the nucleotide level between any

two maize lines is higher than that between humans and

chimps (Buckler and Stevens 2005). Furthermore, the

LD decays rapidly in diverse maize genotypes, to the

extent of 2–5 kb in the elite inbred lines (Yan et al.

2009). These observations imply that the association

mapping panel involving advanced breeding lines

could provide adequate diversity and resolution for

quantitative trait loci (QTL) analysis in maize. In

choosing lines to construct an association mapping

panel, one should consider the balance between genetic

diversity and germplasm adaptation. Since maize

originated from the tropical center of Mexico and then

dispersed to other temperate regions worldwide,

adaptation should be an important factor that must be

considered for precise phenotyping in a given envi-

ronment. Thus, developing an association mapping

panel from elite lines chosen from breeding programs

will have two obvious advantages: (1) partial avoid-

ance of the adaptation issue with good field perfor-

mance; (2) the ability to conveniently introgress the

identified genes or QTL into elite genotypes used in

breeding programs. Recent studies demonstrated that

complex quantitative traits in maize, such as flowering

time (Buckler et al. 2009) and oil content (Laurie et al.

2004), are controlled by a large number of genes/QTL

with minor effects. For statistical significance, a

reasonable sample size may be required to obtain

enough power to identify such genes/QTL with subtle

effects. However, in the reported analyses of maize

association, 100–300 genotypes were usually used,

which might only be adequate to identify genes with

strong effects (Thornsberry et al. 2001; Wilson et al.

2004; Szalma et al. 2005; Harjes et al. 2008; Pressoir

et al. 2009; Yan et al. 2010a; Li et al. 2010a, b).

Due to domestication and selection by breeders,

complex patterns of genetic relatedness are common in

maize association panels, generating numerous spuri-

ous associations (Yu and Buckler 2006; Zhu et al.

2008; Myles et al. 2009), which makes correcting

spurious associations a major challenge for association

mapping. Random molecular markers throughout the

genome are generally used to estimate the genetic

relatedness among individuals. Genome control (GC)

(Devlin and Roeder 1999; Zheng et al. 2005) and the

structured association (SA) (Pritchard et al. 2000b) are

two major methods first used to control false-positive

associations. The SA method, often used by the

program STRUCTURE to estimate population struc-

ture (Q matrix) (Pritchard et al. 2000a; Falush et al.

2003), was further refined by incorporating the relative

kinship into the mixed-liner model (MLM), thereby

efficiently reducing spurious associations when

genetic relatedness among individuals is complex

(Yu et al. 2006; Kang et al. 2008; Stich et al. 2008; Zhu
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and Yu 2009). Recently, it was suggested that principal

component analysis (PCA) is a fast and effective way

to infer population structure (Patterson et al. 2006;

Price et al. 2006), and it showed some promise in

replacing the Q matrix in the mixed model (Zhao et al.

2007; Zhu and Yu 2009). The development of statis-

tical methods makes association mapping appealing

for exploring the genetic architecture of quantitative

traits, but additional research is required to improve the

statistical methods for association mapping, especially

for genome-wide association studies (GWAS).

We have assembled a global germplasm collection

with more than 1,000 maize elite inbreds representing

the major temperate and tropical/subtropical breed-

ing programs of China, CIMMYT and Germplasm

Enhancement of Maize (GEM). Some of the lines in the

collection have been described in previous studies

(Yang et al. 2010). All the lines were genotyped using

the 1,536-SNP GoldenGate assay and phenotyped in

Beijing and Sanya, China from 2005 to 2008 (Yang

et al. 2010), and Ya’an, China in 2009. Finally, based

on the genetic diversity information provided by single

nucleotide polymorphism (SNP) markers and adapta-

tion data obtained from the field experiments, 527 lines

were chosen for the present study. Our objectives were:

(1) to estimate the phenotypic and genetic diversity of

the elite maize inbred collection; (2) to examine the

population structure and familial relatedness of the

elite maize inbreds collection; and (3) to evaluate

the power and the appropriate statistical models of this

panel for association analysis.

Materials and methods

Plant germplasm, phenotyping and genotyping

A set of 527 global diverse lines, representative of

tropical, subtropical and temperate germplasm, was

collected to construct a large association panel in

maize. This collection included 54 lines from the

GEM project, 235 lines from the CIMMYT maize

breeding programs and 238 lines from China. The

latter contained a small association panel of 143 elite

lines of the parents of commercial hybrids widely

used in China, lines derived from Chinese landraces,

high-oil lines and high provitamin A lines (Yang

et al. 2010). Pedigree details are summarized in

Electronic Supplementary Material Table S1.

All 527 lines (excepted the 54 GEM lines) were

divided into two groups (temperate and tropical/

subtropical) based on pedigree information and

planted in one-row plots in an incompletely random-

ized block design within the group with two replicates

at the agronomy farm of Sichuan Agricultural Uni-

versity, Ya’an, Sichuan in the summer of 2009. Five

plants and five self-pollinated mature ears per line

were used to score plant and ear traits, respectively.

The measured traits included the following: days to

pollen shedding, days to silk, plant height, ear height,

leaf width, leaf length, tassel length, number of tassel

branches, ear length, ear diameter, cob diameter and

number of kernel rows.

Leaf tissue samples for the whole association panel

were obtained from the bulk of at least six individuals

for each line. DNA was extracted by a modified CTAB

procedure according to Murray and Thompson (1980).

All 527 lines were genotyped using GoldenGate assays

(Illumina, San Diego, CA, USA) containing 1,536

SNPs (Yan et al. 2010c). The SNP genotyping was

performed on an Illumina BeadStation 500G at Cornell

University Life Sciences Core Laboratories Center

using the protocol supported by Illumina Company

(Fan et al. 2006). The details of the SNP genotyping

procedure and allele scoring have been described in

previous studies (Yan et al. 2010c). Of the 1,536 SNPs

genotyped, 1,067 SNPs having missing data less than

20% and of good quality were used for subsequent

analysis, among which 926 SNPs with minor allelic

frequencies (MAFs) C0.1 were used for genotypic data

analyses.

Genotypic data analyses

The number of alleles, MAFs, gene diversity,

observed heterozygosity and polymorphic informa-

tion content (PIC) were calculated using Powermar-

ker version 3.25 (Liu and Muse 2005). The statistical

significance of differences in all estimators, except

the number of alleles, was assessed across loci using

the Wilcoxon paired test.

Two Bayesian Markov chain Monte Carlo pro-

grams, STRUCTURE (Pritchard et al. 2000a; Falush

et al. 2003) and INSTRUCT (Gao et al. 2007), were

used to infer population structure and to assign

genotypes to subpopulations. In both analyses, three

independent simulations having 150,000 MCMC

(Markov chain Monte Carlo) replications and
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100,000 burn-ins were performed with the number

of subpopulations (k) ranging from 1 to 15. For

STRUCTURE, the ancestry model allowed for pop-

ulation mixture and correlated allele frequencies;

the k value was determined by the log likelihood of

the data (LnP(D)) in the STRUCTURE output and an

ad hoc statistic Dk based on the second-order rate of

change in LnP(D) between successive k (Evanno

et al. 2005). INSTRUCT runs allowed inference of

population structure and selfing rates at individual

levels. Optimal k was inferred using the log likeli-

hood of the data and deviance information criterion

(DIC). Results of replicate simulations from both

programs were integrated by using the CLUMPP

software (Jakobsson and Rosenberg 2007). The

correlation coefficients of membership probabilities

estimated from STRUCTURE and INSTRUCT were

calculated for each k using PROC CORR in SAS 8.02

(SAS Institute 1999). To compare the results from

STRUCTURE/INSTRUCT with the pedigree knowl-

edge, lines with membership probabilities C0.60

were assigned to corresponding clusters; lines with

membership probabilities \0.60 were assigned to a

mixed group. Structure results of individual assign-

ments to corresponding groups were graphically

displayed using the DISTRUCT software (Rosenberg

2004).

An analysis of molecular variance (AMOVA)

(Excoffier et al. 1992) and F-statistics (Fst) across all

subpopulations and between pairwise subpopulations

were performed using Arlequin V3.11 (Excoffier

et al. 2005) to investigate population differentiations

among the subpopulations clustered by STRUC-

TURE. Additionally, Nei’s genetic distances (Nei

1972) among these given subpopulations and indi-

viduals were calculated using Powermarker version

3.25 (Liu and Muse 2005). The Nei’s genetic distance

(Nei 1972) among individuals was then used to

construct a neighbor-joining (NJ) phylogenetic tree

with 1000 runs of bootstrapping using Powermarker

version 3.25 (Liu and Muse 2005). Furthermore, the

Nei’s genetic matrices created were double-centered,

and used to obtain eigenvectors by the modules

DCENTER and EIGEN implemented in NTSYSpc

2.1 (Rohlf 2000). Finally, the relative kinship coef-

ficients were calculated using the SPAGeDi software

package (Hardy and Vekemans 2002). All negative

values between individuals were set to 0 (Yu et al.

2006).

Phenotypic data analyses

Descriptive statistical analyses were carried out using

SAS 8.02 (SAS Institute 1999). The trait means of all

lines were used in subsequent analyses. The Shan-

non–Weaver indices (Poole 1974), measuring genetic

diversity in categorical data, were calculated to

investigate the phenotypic diversity in this maize

panel. The details have been described in a previous

study (Yang et al. 2010). Briefly, the phenotypic

values were subdivided into ten classes with an

interval of 0.5 SD using the means and SD of each

trait in the maize panel; the number and frequency of

phenotypic classes were used to calculate the Shan-

non–Weaver indices as defined by Poole (1974). The

effects of population structure on all traits were tested

using PROC GLM in SAS 8.02 (SAS Institute 1999).

When the population structure was estimated by

STRUCTURE, the model statement included two of

the three components of the k = 3 Q matrix from the

STRUCTURE analysis, while the top 10 axes of

variations from NTSYSpc analysis were included for

PCA. The principal components with the top axis

numbers ranging from 1 to 9 were additionally used

to evaluate the effects of population structure on

flowering time (represented by days to pollen shed-

ding), ear height and ear diameter.

Evaluation of the maize association panel

The statistical power of this maize panel for identi-

fying genetic factors associated with quantitative

traits was evaluated using various population size and

genetic effects without considering population struc-

ture and relative kinship. We assumed that the

population size was 100, 200, 300, 400, 500, 600,

700, 800, 900 and 1,000, and that the genetic effect

(the ratio of explained total phenotypic variance) was

0.01, 0.02, 0.03, 0.04 and 0.05. All evaluations were

performed using the Genetic Power Calculator (GPC,

Purcell et al. 2003). The LD coefficient, r2, was

assumed to be 0.8 as GWAS for numerous small

genetic effects required high LD in maize (r2 [ 0.8)

(Gore et al. 2009). The power of detecting the causal

genetic factors was given at a type I error rate of 0.05.

To assess the effect of genetic relatedness on

association mapping on various quantitative traits and

to identify the perfect model to correct for genetic

relatedness in this maize panel, data for three traits,
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including flowering time (represented by days to

pollen shedding), ear height and ear diameter, were

collected to conduct marker–trait associations using

1067 SNPs. These SNPs were not expected to have

significant effects on related traits as they were

randomly selected and had low marker coverage

across the whole genome. Six models were used to

evaluate the effects of population structure (Q, PC)

and relative kinship (K) on three traits for marker–

trait associations: (1) the GLM model, without

controlling for population structure and relative

kinship; (2) the Q model, controlling for Q; (3) the

PCA model, controlling for PC; (4) the K model,

controlling for K; (5) the Q ? K model, controlling

for both Q and K; and (6) the PCA ? K model,

controlling for both PC and K. The GLM, Q and PCA

models were performed using a general linear model

(GLM) in TASSEL V2.1; the K, Q ? K and

PCA ? K models were performed using mixed linear

model (MLM) in TASSEL V2.1 (Yu et al. 2006;

Zhang et al. 2009). The quantile–quantile plots of

estimated –log10(p) were displayed using the

observed P values from marker–trait associations,

and deviations from the expectation demonstrated

that the statistical analysis may cause spurious

associations. Before carrying out model comparisons,

we first determined the optimal dimension for PCA

and PCA ? K models by testing the PCA models

with various numbers of dimensions using these three

traits and the 1067 SNPs measured above. The top 10

axes of variations from the NTSYSpc analysis were

used.

Results

Phenotypic variations of measured quantitative

traits

Extensive phenotypic variations were observed for all

the measured quantitative traits in this maize panel,

as shown by the descriptive statistics in Table 1. The

number of tassel branches, which varied from 1.7 to

27.7 with an average of 10.8, had the highest

maximum change of 16.3-fold, while days to pollen

shedding, which varied from 60.5 to 97.5 days with

an average of 79.6 days, had the lowest change (1.6-

fold). The Shannon–Weaver index (H0) across all

traits further confirmed that this panel encompassed

abundant phenotypic diversity. An average of 2.06

(±0.01) for H0 was investigated with a range from

2.04 (number of kernel rows) to 2.08 (plant height).

Summary of SNPs

An even distribution of MAFs was observed (Fig. S1)

with 50 continued classes from 0.01 to 0.50 with a

similar number of SNPs in each MAF class. Only

Table 1 Phenotypic variations for 12 traits and the effects of population structure on each trait in this maize panel

Traits Min ± SD Max ± SD Mean ± SD H
0a RQ

2b RPCA
2c

Days to pollen (days) 60.5 ± 0.7 97.5 ± 3.5 79.6 ± 6.1 2.06 37.3 40.0

Days to silk (days) 60.5 ± 0.7 102.0 ± 1.4 82.3 ± 6.6 2.06 30.3 34.6

Plant height (cm) 105.2 ± 0.9 235.2 ± 17.3 172.6 ± 25.9 2.08 7.9 22.6

Ear height (cm) 14.9 ± 4.4 125.4 ± 1.4 65.8 ± 19.0 2.07 15.9 24.1

Leaf width (cm) 5.5 ± 0.7 12.4 ± 0.0 9.0 ± 1.2 2.07 0.6 5.3

Leaf length (cm) 49.7 ± 0.7 109.4 ± 0.3 76.0 ± 10.1 2.07 19.3 26.3

Tassel length (cm) 16.1 ± 2.2 50.3 ± 6.2 29.4 ± 4.7 2.06 17.1 21.7

Number of tassel branches 1.7 ± 0.4 27.7 ± 5.0 10.8 ± 4.8 2.05 5.7 12.4

Ear length (cm) 5.0 ± 0.0 18.2 ± 0.0 11.0 ± 2.1 2.07 1.1 9.4

Ear diameter (cm) 1.9 ± 0.6 4.8 ± 0.0 3.3 ± 0.5 2.06 6.9 16.1

Cob diameter (cm) 1.0 ± 0.0 3.1 ± 0.1 2.1 ± 0.3 2.06 1.9 9.9

Number of kernel rows 8.0 ± 0.0 19.7 ± 0.5 12.7 ± 1.8 2.04 3.7 12.6

a Shannon–Weaver index
b Percentage of phenotypic variation explained by population structure estimated by STRUCTURE
c Percentage of phenotypic variation explained by population structure estimated by PCA
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13.3% (142/1067) of the SNPs had a MAF of less

than 0.1. Most of the SNPs were mapped in silico

and/or genetically in maize chromosomes, and were

well distributed in the 10 chromosomes (Yan et al.

2010c). For any two given lines, the polymorphism

ratio varied from 0.3 to 76.6%, with an average of

40.3%. The highest level of polymorphism occurred

between the lines CIMBL153 and GEMS53, and the

lowest occurred between CY72 and 4F1. The average

polymorphism ratio for any given line to the other

526 lines ranged from 34.9% for CML474 to 72.0%

for GEMS53. The 926 SNPs with MAFs of C0.1

were used to estimate the genetic diversity of the

maize panel (Fig. 1). In total, 1,852 alleles were

detected with an expected average of 2.0 alleles per

loci. The MAFs of 926 SNPs averaged 0.30, and

about 50% of the SNPs had an MAF greater than

0.30. For all these SNPs, heterozygosity, gene

diversity and PIC varied from 0.01 to 0.21, 0.18 to

0.50 and 0.16 to 0.38, with an average of 0.04, 0.39

and 0.31, respectively.

Population structure and genetic clustering

To examine the relatedness among 527 lines, the data

for 926 SNPs were first analyzed using STRUC-

TURE. The LnP(D) value for each given k (the

number of subpopulations based on the model)

increased with the increase in k but did not show

evidence of a maximum (Fig. 2a). The second-order

likelihood, Dk, was then calculated: k = 2 showed a

much higher likelihood than k = 3–15 among all runs

of the program (Fig. 2a). Furthermore, the Dk also

decreased sharply when k increased from 3 to 5, and

that at k = 3 was significantly higher than at k = 4.

Accordingly, k = 2 and k = 3 were considered as the

two best possible numbers of subpopulations. This

was further supported by INSTRUCT analysis as

there appeared a inflection point at k = 2, 3 for the

log P(D) and DIC (Fig. 2b). The membership prob-

abilities for all lines from INSTRUCT were highly

correlated with those from STRUCTURE (R2 [ 0.99,

all P \ 0.001) when k ranged from 2 to 4, indicating

ancestry assignments to corresponding subpopula-

tions were similar between the two methods. Conse-

quently, only the STRUCTURE results are shown.

The individual assignments by varying the presumed

number of subpopulations suggested k to be 3

(Fig. 2c), similar to the known pedigree and germ-

plasm. The first level of clustering (k = 2) reflects the

primary division of a subpopulation from all lines,

representative of B73 and termed SS. At k = 3,

another subpopulation, consisting of mostly tropical

or subtropical lines, separated following SS and was

termed TST. The third subpopulation, termed NSS,

contained most temperate lines except the lines

within the SS subpopulation. From the NSS subpop-

ulation, smaller subpopulations were further sepa-

rated when k increased to 4, and consequently, more

lines indicated mixed ancestry. In summary, this

Fig. 1 Box and Whisker
box of summary statistics

for 926 SNPs in all inbreds

and each subpopulation in

527 lines. a MAF;

b heterozygosity; c gene

diversity; d polymorphic

information content (PIC)

516 Mol Breeding (2011) 28:511–526
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maize panel was clustered into three clear subpopu-

lations with 33 SS lines, 143 NSS lines and 232 TST

lines; the remaining 119 lines were thus classified

into a mixed subpopulation as they had membership

probabilities lower than 0.60 in any given subpopu-

lation (Table S2).

Furthermore, the NJ phylogenetic tree based on

Nei’s genetic distances displayed a similar pattern of

relationships among the 527 lines estimated by

STRUCTURE, with minor difference (Fig. 3a). The

tree had three clear clades with the lines within mixed

subpopulation distributing across the whole tree.

Except for the lines from the mixed subpopulation,

the smallest clade of 58 lines corresponded to SS with

27 lines from SS, 3 lines from NSS, and 18 lines from

TST; the largest clade of 214 lines corresponded to

TST with all lines from TST; the remaining clade of

147 lines corresponded to NSS with 140 lines from

NSS and 7 lines from SS. No clearly distinct clusters

were further identified within these three clades.

Similarly, PCA based on Nei’s genetic distances

presented a picture with all lines separating into SS,

NSS and TST subpopulations, with the mixed sub-

population being in the middle of these three defined

subpopulations (Fig. 3b). The top two principal com-

ponents clearly separated these subpopulations. The

first principal component (PC1) accounted for 18.2%

of the genetic variation in this maize panel and

reflected the differentiation between SS and NSS or

TST, whereas the second (PC2) accounted for 6.9% of

the genetic variation and reflected the differentiation

between NSS and TST. It appeared that SS was

relatively distant from NSS and TST, while NSS and

TST were close to each other in this collection.

Population divergence and genetic diversity

The results for detecting the three subpopulations by

using different statistical methods such as STRUC-

TURE/INSTRUCT, NJ tree-based, and PCA were quite

consistent. Fst values across the three subpopulations

averaged 0.11 (P \ 0.001), which was confirmed by

AMOVA analysis, and we found that only 10.7%

(P \ 0.001)of the totalgenetic variation was partitioned

among subpopulations and 89.3% (P \ 0.001) within

subpopulations. The pairwise Fst between the three

subpopulations was 0.25 (P \0.001) for SS versus NSS,

0.31 (P \ 0.001) for SS versus TST and 0.09

(P \ 0.001) for NSS versus TST. This result demon-

strates that there was much higher differentiation

between SS and NSS or TST, while it was significantly

lower between NSS and TST. A similar pattern of

differentiation among subpopulations was supported by

Nei’s minimum genetic distance (Table S3).

Fig. 2 Analysis of the population structure of 527 maize

inbred lines. a Estimated LnP(D) and Dk over three repeats of

STRUCTURE analysis; b Estimated Log P(D) and DIC over

three repeats of INSTRUCT analysis; c Population structure

assessed by STRUCTURE. Each individual is represented by a

vertical bar, partitioned into colored segments with the length

of each segment representing the proportion of the individual’s

genome from k = 2, 3 and 4 groups. For all classes, a given

group is represented: Green, SS; Blue, NSS; Red, TST; Yellow ,

a small group separated from NSS. (Color figure online)
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MAF, heterozygosity, gene diversity and PIC for

926 SNPs were also estimated within inferred

subpopulations and compared (Fig. 1). Compared to

the entire panel, all three subpopulations including

SS, NSS and TST had significantly lower MAFs

(z = -15.2 to -4.2, all P \ 0.01) (Fig. 1a). Among

subpopulations, MAFs within SS (0.27) and TST

(0.26) were similar but lower than within NSS (0.29).

A similar picture was also obtained for genetic

diversity within subpopulations estimated by gene

diversity and PIC (Fig. 1c, d). For heterozygosity of

SNPs, SS had the highest level of heterozygosity

among all subpopulations, followed by TST and NSS

in that order (Fig. 1b).

Relative kinship

The distribution of kinship coefficients between 0 and

0.50 (Fig. S2) represents 99.7% of the data. A total of

56.1% of kinship coefficients were 0, suggesting that

there was no relatedness between these pairs of lines.

A significant fraction (38.0%) indicated weak simi-

larity, with kinship coefficients varying from 0

(excluding 0) to 0.10. Only 5.6% showed various

degrees of relatedness, with kinship coefficients

ranging from 0.10 (excluding 0.10) to 0.50. For the

remaining 0.3% of the data, the kinship coefficients

varied from 0.50 to 1.26 with an average of 0.68. This

pattern of genetic relatedness demonstrated that few

lines showed strong similarities, and most lines were

weakly or modestly related in this complex maize

panel.

Effects of sample size on association power

The statistical power for detecting the significant

variants in an association panel was assessed with

various sample sizes and effect sizes (Fig. S3). When

the sample size of an association panel was less than

100, less than 33% of the significant variants were

captured even when they had moderate effects

(effect = 0.05). As expected, a significant increase

of power was observed when the sample size or

genetic effects increased. When the sample size

reached 500, the association panel was large enough

to capture most of the significant variants ([78%)

accounting for over 3% of the phenotypic variation.

For this panel with 527 individuals, over 81% of the

significant variants explaining C3% of phenotypic

variations were captured, 62% for 2%, and 35%

for 1%.

Correction of spurious associations

Various levels were observed for effects of popula-

tion structure on phenotype in this maize panel

(Table 1). For all measured traits, the percentage of

phenotypic variations explained by the Q matrix from

STRUCTURE analysis (RQ
2 ) averaged 12.1%, with a

range from 0.6 (leaf width) to 37.3% (days to pollen

shedding). Half of the traits were influenced weakly

by population structure as the RQ
2 values were lower

than 10%. The phenotypic variations explained by the

top 10 axes of variations from PCA analysis (RPCA
2 )

showed similar difference levels among various

Fig. 3 Neighbor-joining

phylogenetic tree based on

Nei’s genetic distance

(a) and PCA plot (b) for

527 maize inbred lines. For

NJ-tree, SS green, NSS blue,

TST red, Mixed pink. (Color

figure online)
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traits for effects of population structure. However, the

RPCA
2 values were higher than the RQ

2 values, espe-

cially for plant height with the values increasing from

7.9% for RQ
2 to 22.6% for RPCA

2 . Subsequently, three

traits, representing three levels of the effects of pop-

ulation structure on phenotype, were used to deter-

mine the optimal dimension of PCA for associations,

and to evaluate the performance of various statistical

models in controlling spurious associations. Popula-

tion structure, estimated by STRUCTURE and PCA,

accounted for 37.3% (40.0%) of phenotypic varia-

tions for flowering time (represented by days to

pollen shedding), 15.9% (24.1%) for ear height, and

6.9% (16.1%) for ear diameter in this maize panel.

The P value distributions seen in Fig. 4 show that

association analysis with principal components

resulted in the reduction of false positives for all

traits. The portion of corrected false-positive associ-

ations increased significantly when the axes of

variation increased from 1 to 4 (flowering time and

ear height) or 3 (ear diameter), but were virtually

identical when the axes were greater. With the axes

of variations varying from 1 to 4, the number of

significant SNPs identified at P \ 0.001 reduced

from 157 to 25 for flowering time, 79–11 for ear

height, and 34 to around 20 for ear diameter.

Furthermore, the significant SNPs identified at

P \ 0.001 were almost the same when axes of

variations varied between 4 and 10 (Table S4).

According to these tests, the false-positive

corrections performed the best using the variations

with number of axes greater than 4 when only using

principal components to account for genetic structure.

This was further supported by the percentage of

phenotypic variation explained by the axes of vari-

ations (Fig. S4). As the association analysis using

principal components was sensitive to the number of

axes of variations (when the number is small) as well

as traits, we finally choose the top 10 axes of

variations to account for genetic structure.

With the optimal number of dimensions for

principal components, we evaluated the performance

of six statistical models for controlling false posi-

tives in this maize panel (Fig. 5). For all three traits,

any model controlling population structure or rela-

tive kinship performed significantly better than the

GLM model. For flowering time, the PCA ? K and

Q ? K models were a little better than the K model;

but for the other two traits, the three models were

similar with the Q ? K model having the greatest

success in reducing the type I errors. Without

considering the relative kinship, the PCA model

showed better type I control than the Q model.

Comparing Fig. 5a, c, it is obvious that the type I

error control was sensitive to traits, consistent with

the different percentage of phenotypic variations

explained by the population structure. For flowering

time, the number of significant SNPs identified at

P \ 0.001 was reduced from 304 (GLM) to 2

(Q ? K or PCA ? K); 153 (GLM) to 1 (Q ? K) for

Fig. 4 Quantile–quantile plots of estimated –log10(p) from

association analysis using the PCA model with various

dimensions of three traits: a flowering time; b ear height;

c ear diameter. The black line is the expected line under the null

distribution. Under the assumption that there are few true

marker associations, the observed P values are expected to

nearly follow the expected P values. The deviations from the

expectation demonstrate that the statistical analysis may cause

spurious associations. (Color figure online)
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ear height; and 76 (GLM) to 2 (Q ? K) for ear

diameter (Table S5).

Discussion

Genetic diversity and population structure

SNPs are biallelic and less informative compared to

multiallelic simple sequence repeats (SSRs). Never-

theless, the high-throughput and cost-effective SNP

genotyping system can achieve a large number of

markers (i.e. thousands to millions) that may over-

come the disadvantages of the SNPs. The utility of

SSRs and SNPs in assessment of population structure

was compared using 89 SSRs and 847 SNPs, showing

that SSRs performed better at clustering individuals

into populations than SNPs, but that the population

structure assessed by both marker systems was

consistent (Hamblin et al. 2007). More recently, SNP

markers have been used successfully for maize genetic

diversity and population structure analysis with fairly

consistent results (Lu et al. 2009; Yan et al. 2009;

Inghelandt et al. 2010; Yang et al. 2010). Inghelandt

et al. (2010) and Yu et al. (2009) further pointed out

that between 7 and 11 times more SNPs than SSRs

should be used for analyzing population structure and

genetic diversity, while 10 times more should be used

for estimating relative kinship. Therefore, the genetic

diversity and relatedness presented here should be

similar to those assessed by about 100 SSRs with 10

SSRs per chromosome on average.

The 527 maize lines had a higher gene diversity

value (0.39) when compared to the gene diversity of

around 0.32 across three sets of maize inbred lines: a

set of 259 lines from the USA representative of

global diversity (Hamblin et al. 2007), a set of 770

global maize lines from six countries (Lu et al. 2009)

and a set of 1537 elite lines representing European

and North-American diversity (Inghelandt et al.

2010). The comparably abundant genetic diversity

in this panel was primarily due to the broad range of

the germplasm, as all maize collections were esti-

mated using similar numbers of SNP markers (except

the European and North-American collection which

were estimated using many more markers than the

others).

Our study identified three separate subpopulations

within the global maize germplasm. This result was

confirmed by STRUCTURE, INSTRUCT, PCA and

phylogenetic tree-based analyses. Despite the wide

application of the STRUCTURE program for iden-

tifying population structure, spurious inference of

population structure often occurred for partially

selfed populations because of the algorithm assump-

tions (Falush et al. 2003). The panel of inbred maize

Fig. 5 Quantile–quantile plots of estimated –log10(p) from

association analysis using six methods in three traits: a flow-

ering time; b ear height; c ear diameter. The black line is the

expected line under the null distribution. Under the assumption

that there are few true marker associations, the observed

P values are expected to nearly follow the expected P values.

The deviations from expectation demonstrate that the statistical

analysis may cause spurious associations. (Color figure online)
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lines did not conform to the assumption of Hardy–

Weinberg equilibrium, and low genetic divergence

occurred among some individuals because of similar

pedigree. Based on STRUCTURE, Gao et al. (2007)

developed another approach, INSTRUCT, to assign

individuals within partially selfing populations into

more appropriate subpopulations without the assump-

tion of Hardy–Weinberg equilibrium. However, the

inferred population structure was consistent for both

methods, although individual assignments tended to

show low correlation when k was set above 7 (data

not shown). Although consistent subpopulations were

inferred by STRUCTURE, INSTRUCT, PCA and

tree-based analyses, the assessment of individual

relationships was different: membership probabilities

or values are given by STRUCTURE/INSTRUCT or

PCA, whereas tree-based analysis only classifies

individuals to a fixed position on a tree. This

demonstrates that a phylogenetic tree does not

represent well the relationships among individuals

with complex genetic relatedness, although it may

generate similar results. This phenomenon also

explained why individuals within mixed subpopula-

tions inferred by STRUCTURE/INSTRUCT clus-

tered into one of the three clades.

Historically, two maize groups, temperate and

tropical/subtropical, were formed during the distribu-

tion of maize from the tropical center of origin in

Mexico to northern climates. The population subdivi-

sion in this panel, like that by Liu et al. (2003) and

Flint-Garcia et al. (2005), supported maize adaptation

and separated temperate and tropical/subtropical lines

into independent subpopulations, SS ? NSS and TST,

as described by Yan et al. (2009). However, investi-

gations by Vigouroux et al. (2008) and Camus-

Kulandaivelu et al. (2006) suggested that the Northern

Flint subpopulation played a unique role in the

adaptation of maize to temperate climates and was

the first to split from the maize population. The

difference is probably caused by few Northern Flint

lines in this association panel. Further, the temperate

population in this panel was divided into two subpop-

ulations, SS and NSS. The pairwise Fst of 0.25

(P \ 0.001) also indicated the existence of significant

population differentiation between the SS and NSS

subpopulations. Additionally, a few small subpopula-

tions separated from NSS with the increase of

k presumed in STRUCTURE analysis, consistent with

previous studies in which three to seven

subpopulations still existed apart from the SS subpop-

ulation, namely the Reid subpopulation in the studies

of Wang et al. (2008) and Yang et al. (2010) and the

BSSS subpopulation in Xie et al. (2008) and Lu et al.

(2009). Contrary to NSS, SS and TST did not show any

separation except for a few lines clustering with the

mixed subpopulation. This may be due to the limited

lines used for SS and the CIMMYT maize breeding

history for TST, as discussed previously (Dhliwayo

et al. 2009).

The fact that maize originated from tropical

environments suggests that there should be much

more diversity in the tropical lines, which is well

supported by previous estimation using molecular

markers (Liu et al. 2003; Yan et al. 2009). Although

most of the lines were of the tropical/subtropical

group in this study, the genetic diversity of this group

was not the richest. A similar finding was also

reported in a previous study using the same set of

SNP markers in 770 maize inbred lines representing

tropical, subtropical and temperate maize germplasm

(Lu et al. 2009). This may be partially due to the fact

that the SNPs used in this study were originally

developed from 27 founder lines between a common

temperate line B73 and 26 other diverse (temperate

and tropical) lines (McMullen et al. 2009), potentially

causing bias estimation of the diversity, especially

within the tropical and subtropical germplasm (Ham-

blin et al. 2007; Lu et al. 2009; Yan et al. 2010c).

However, Lu et al. (2009) also demonstrated that

these types of markers had no or very few effects on

the inferences of population structure. With the

development of next-generation sequencing tech-

niques, the inexpensive cost of sequencing a genome

(Varshney et al. 2009) may allow further detailed

studies to achieve the final solution to this problem.

Power and statistical models

When using an association panel to uncover a variant

for quantitative traits of interest, a primary consider-

ation should be the power of this panel, namely the

probability of detecting the causal variant. Studies of

power evaluations have suggested that population size

is one of the most fundamental decisions when

identifying associations (Long and Langley 1999;

Spencer et al. 2009). It is reasonable that as the

population size increases, the probability of identifying

presumed causal alleles present in a panel will
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consequently increase. Long and Langley (1999)

found that a panel with 500 individuals was sufficient

to detect the presence of causal variants even with

small effects, consistent with our results. Our panel

with 527 individuals achieved over 81% of the variants

explaining C3% of phenotypic variations based on the

assumption of an LD coefficient of 0.8. This indicated

that the population size of our panel is suitable for most

quantitative traits with modest effects.

Marker density is another determinant for increas-

ing the power of association analysis (Mackay et al.

2009), especially for GWAS. It is often related to the

LD pattern of a maize association panel at the

genome-wide level. The number of SNPs genotyped

in this panel is too small to precisely estimate LD

between linked SNPs. Nevertheless, the LD pattern in

a maize panel of 632 diverse breeding lines was

roughly estimated within 2–5 kb at the genome-wide

level when the LD coefficient was set to 0.1

(r2 = 0.1) using 1536 SNPs from 582 genes (Yan

et al. 2009). We supposed that a similar LD pattern

occurred in our association panel based on a similar

genetic diversity. Therefore, 240,000–480,000 mark-

ers will be required to perform GWAS when the LD

coefficient is set to 0.1. The cutoff of r2 = 0.1 may be

too low to achieve enough power, and we would need

to add more markers to increase the LD level to

r2 = 0.8. However, r2 did not increase significantly

when the LD distance decreased tenfold to between

0.2 and 0.5 kb in the study by Yan et al. (2009). This

result implied that the power may not be increased

significantly even if the number of markers is

increased tenfold to between 2.4 and 4.8 million.

Myles et al. (2009) roughly estimated that more than

10 million markers may ideally be needed to perform

GWAS in maize, and this would be a significant

challenge. Since less than 10% of the maize genome

encodes over 32,000 genes (Schnable et al. 2009), an

alternative should be to develop markers only from

gene-rich regions using the exome resequencing

strategy (Ng et al. 2009) similar to that developed

and applied in human studies with the rapid devel-

opment of next-generation sequencing technology.

This approach may allow us to use the most

informative markers for GWAS in maize to achieve

the highest power (Yan et al. 2010b).

An ideal association panel is a population with

uniform genetic background, which will not signifi-

cantly influence the expression of traits. Most

cultivated plants, such as maize, which have experi-

enced domestication and breeding, show complex

patterns of genetic relatedness among individuals. In

such a situation, association analysis often generates a

large number of false-positive associations, especially

for the traits associated with adaptation (Yu and

Buckler 2006; Zhu et al. 2008; Myles et al. 2009). As

expected, the integration of genetic relatedness into

statistical methods greatly reduced spurious associa-

tions in our study, as well as in others (Yu et al. 2006;

Zhu and Yu 2009; Stich et al. 2008; Yang et al. 2010).

The Q model performed well for correcting false-

positive associations, although it did not completely

control the population structure. This is because the

STRUCTURE program divides the maize panel into a

few discrete populations, and the Q matrix only gives a

rough dissection of population differentiation. Conse-

quently, it was suggested that the PCA model dissects

the phenotypic variation from population structure

along continuous axes (Patterson et al. 2006; Price et al.

2006). Indeed, the PCA model performed better

compared to the Q model; however, a few residual

false-positive associations still existed.

It was reported that association analysis using the

PCA model was not sensitive to the dimension

numbers of principal components (Patterson et al.

2006; Price et al. 2006). In the present study, we

found that the type I error control was sensitive to the

number of PCs when the axes ranged from 1 to 4, but

the results were consistent when they were C4. The

dimension numbers of principal components for type

I error control were also trait-dependent (Fig. 4;

Table S4). This is not surprising, as the effects of

population structure vary among complex quantita-

tive traits in maize (Flint-Garcia et al. 2005; Yang

et al. 2010). The PCA models with the first top

component reduced nearly half of the false-positive

associations for all traits. All these results suggest

that it is appropriate to evaluate the correlation

between PCA models and the dimension number of

principal components for various traits in a given

newly constructed association panel.

The K model and two mixed models (Q ? K and

PCA ? K) performed well for all traits in this maize

model. It seems that a K matrix incorporated into the

K model was sufficient to minimize false-positive

associations, consistent with other model simulations

and comparisons (Yu et al. 2006; Zhu and Yu 2009;

Stich et al. 2008; Yang et al. 2010). However, both
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the Q ? K and PCA ? K models performed slightly

better than the K model for all three traits. As the

estimation of the Q matrix is computationally intense,

the PCA ? K model may be an ideal choice for

association analysis, especially for most large,

genome-wide data sets.

Potential utilization of this maize panel

and further perspectives

An adequate understanding of genetic variation,

pattern of complex genetic relatedness and the

performance of statistical methods in the maize panel

allowed us to uncover the actual variants affecting

quantitative traits. A subset of this panel with 155 lines

has been successfully applied using a candidate-gene

association approach in the validation of several genes

controlling relatively simple traits, such as crtRB1

(Yan et al. 2010a), ZmGW2 (Li et al. 2010a), and

ZmGS3 (Li et al. 2010b). The detected variants can be

converted into functional markers (Andersen and

Lübberstedt 2003) and then used for maize improve-

ment by marker-assisted selection. For example, the

action of two genes, lcyE and crtRB1, encoding the

key enzyme of the carotenoid pathway, was confirmed

using association analysis and the functional sequence

polymorphisms were used to develop functional

markers related to b-carotenoid content (Harjes et al.

2008; Yan et al. 2010a). Using these functional

markers, the favorable alleles from these two genes

were jointly introgressed through marker-assisted

selection into adapted elite tropical breeding lines

(provitamin A ranging 8–10 lg g-1) in HarvestPlus/

CIMMYT breeding programs which target developing

countries (Yan et al. 2010a). All the high provitamin A

lines selected via marker-assisted selection in these

programs are lines from, or derived from, one of the

association mapping panels used to identify the

favorable alleles. Thus, the natural variation of

quantitative traits hidden in the maize panel will

greatly assist targeted efforts to improve traits of

interest.

Although an association mapping panel with about

500 genotypes can help to capture most of the

variations that are C3%, it may still not be large

enough to obtain sufficient power for some important

complex quantitative traits in maize controlled by a

great number of genes with small effects. For

example, only a few QTL with effects greater than

3% in the approximately 50 QTL identified affected

flowering time in the Nested Association Mapping

(NAM) population (Buckler et al. 2009). Therefore,

sample size should be one of the most important

factors to be carefully considered in future maize

GWAS, especially for the complex traits. In GWAS

for human diseases, genes or SNPs with effects

\0.5% were also identified when combining large

numbers of individuals from different groups. For

example, more than 50 variants (each of which can

only explain 0.3–0.5% of variation) affecting human

height were identified when about 63,000 individuals

were combined (Visscher 2008). It would be very

difficult for any single researcher or institution to

handle such a large phenotyping maize trial. How-

ever, many maize association mapping panels with

different sizes and genetic backgrounds have already

been developed and phenotyped for the same or

similar traits (Flint-Garcia et al. 2005; Yang et al.

2010) and could be genotyped using common and

high-density markers (i.e. a commercial maize 50 K

array) by different maize researchers worldwide. It

will be extremely useful to exploit the genetic

architecture of complex traits by combining the

information from all the possible panels and traits

using appropriate statistical methods in the future.
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