
Lecture Notes in Artificial Intelligence 1720
Subseries of Lecture Notes in Computer Science
Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science
Edited by G. Goos, J. Hartmanis and J. van Leeuwen



3
Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
Tokyo



OsamuWatanabe TakashiYokomori (Eds.)

Algorithmic
Learning Theory

10th International Conference, ALT’99
Tokyo, Japan, December 6-8, 1999
Proceedings

1 3



Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

OsamuWatanabe
Tokyo Institute of Technology
Department of Mathematical and Computing Sciences
Tokyo 152-8552, Japan
E-mail: watanabe@is.titech.ac.jp

TakashiYokomori
Waseda University
Department of Mathematics, School of Education
1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan
E-mail: yokomori@mn.waseda.ac.jp

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Algorithmic learning theory : 10th international conference ;
proceedings / ALT ’99, Tokyo, Japan, December 6 - 8, 1999. Osamu
Watanabe ; TakashiYokomori (ed.). - Berlin ; Heidelberg ; NewYork
; Barcelona ; Hong Kong ; London ; Milan ; Paris ; Singapore ;
Tokyo : Springer, 1999
(Lecture notes in computer science ; Vol. 1720 : Lecture notes in
artificial intelligence)
ISBN 3-540-66748-2

CR Subject Classification (1998): I.2.6, I.2.3, F.4.1, I.7

ISBN 3-540-66748-2 Springer-Verlag Berlin Heidelberg NewYork

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN: 10705377 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper



Preface

This volume contains all the papers presented at the International Conference on
Algorithmic Learning Theory 1999 (ALT’99), held at Waseda University Inter-
national Conference Center, Tokyo, Japan, December 6−8, 1999. The conference
was sponsored by the Japanese Society for Artificial Intelligence (JSAI).

In response to the call for papers, 51 papers on all aspects of algorithmic
learning theory and related areas were submitted, of which 26 papers were se-
lected for presentation by the program committee based on their originality,
quality, and relevance to the theory of machine learning. In addition to these
regular papers, this volume contains three papers of invited lectures presented
by Katharina Morik of the University of Dortmund, Robert E. Schapire of AT&T
Labs, Shannon Lab., and Kenji Yamanishi of NEC, C&C Media Research Lab.

ALT’99 is not just one of the ALT conference series, but this conference
marks the tenth anniversary in the series that was launched in Tokyo, in Octo-
ber 1990, for the discussion of research topics on all areas related to algorithmic
learning theory. The ALT series was renamed last year from “ALT workshop” to
“ALT conference”, expressing its wider goal of providing an ideal forum to bring
together researchers from both theoretical and practical learning communities,
producing novel concepts and criteria that would benefit both. This movement
was reflected in the papers presented at ALT’99, where there were several papers
motivated by application oriented problems such as noise, data precision, etc.
Furthermore, ALT’99 benefited from being held jointly with the 2nd Interna-
tional Conference on Discovery Science (DS’99), the conference for discussing,
among other things, more applied aspects of machine learning. Also, we could
celebrate the tenth anniversary of the ALT series with researchers from both
theoretical and practical communities.

This year we started the E Mark Gold Award for the most outstanding
paper by a student author, selected by the program committee of the conference.
This year’s award was given to Yuri Kalnishkan for his paper “General Linear
Relations among Different Types of Predictive Complexity”.

We wish to thank all who made this conference possible, first of all, the
authors for submitting papers and the three invited speakers for their excellent
presentations and their contributions of papers to this volume.

We are indebted to all members of the program committee: Nader Bshouty
(Technion, Israel), Satoshi Kobayashi (Tokyo Denki Univ., Japan), Gabor Lu-
gosi (Pompeu Fabra Univ., Spain), Masayuki Numao (Tokyo Inst. of Tech.,
Japan), Robert Schapire (ATT Shannon Lab., USA), Arun Sharma (New South
Wales, Australia), John Shawe-Taylor (Univ. of London, UK), Ayumi Shino-
hara (Kyushu Univ., Japan), Prasad Tadepalli (Oregon State Univ., USA), Jun-
ichi Takeuchi (NEC C&C Media Research Lab., Japan), Akihiro Yamamoto
(Hokkaido Univ., Japan), Rolf Wiehagen (Univ. Kaiserslautern, Germany), and
Thomas Zeugmann (Kyushu Univ., Japan). They and the subreferees (listed sep-



VI Preface

arately) put a huge amount of work into reviewing the submissions and judging
their importance and significance.

We also gratefully acknowledge the work of all those who did important
jobs behind the scenes to make this volume as well as the conference possible.
We thank Akira Maruoka for providing valuable suggestions, Shigeki Goto for
the initial arrangement of a conference place, Naoki Abe for arranging an in-
vited speaker, Shinichi Shimozono for producing the ALT99 logo, Isao Saito for
drawing the ALT99 posters, and Springer-Verlag for their excellent support in
preparing this volume.

Last but not least, we are very grateful to all the members of the local ar-
rangement committee: Taisuke Sato (chair), Satoru Miyano, Ayumi Shinohara,
without whose efforts this conference would not have been successful.

Tokyo, August 1999 Osamu Watanabe
Takashi Yokomori



Hiroki Arimura
Sanghamitra Bandyopadhyay
Jonathan Baxter
Nicolo Cesa-Bianchi
Nello Cristianini
Stuart Flockton
Ryutaro Ichise
Kimihito Ito
Michael Kearns
Pascal Koiran
Eric Martin
Llew Mason
Ujjwal Maulik

Eric McCreath
Andrew Mitchell
Koichi Moriyama
Atsuyoshi Nakamura
Thomas R. Amoth
Mark Reid
Yasubumi Sakakibara
Hiroshi Sakamoto
Bernhard Schoelkopf
Rich Sutton
Noriyuki Tanida
Chris Watkins
Kenji Yamanishi
Takashi Yokomori

List of Referees



Table of Contents

INVITED LECTURES

Tailoring Representations to Different Requirements . . . . . . . . . . . . . . . . . . . . 1
Katharina Morik

Theoretical Views of Boosting and Applications . . . . . . . . . . . . . . . . . . . . . . . . 13
Robert E. Schapire

Extended Stochastic Complexity and Minimax Relative Loss Analysis . . . . 26
Kenji Yamanishi

REGULAR CONTRIBUTIONS

Neural Networks

Algebraic Analysis for Singular Statistical Estimation . . . . . . . . . . . . . . . . . . . 39
Sumio Watanabe

Generalization Error of Linear Neural Networks in Unidentifiable Cases . . . 51
Kenji Fukumizu

The Computational Limits to the Cognitive Power of the Neuroidal Tabula
Rasa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Jǐŕı Wiedermann

Learning Dimension

The Consistency Dimension and Distribution-Dependent Learning from
Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

José L. Balcázar, Jorge Castro, David Guijarro, and
Hans-Ulrich Simon

The VC-Dimension of Subclasses of Pattern Languages . . . . . . . . . . . . . . . . . 93
Andrew Mitchell, Tobias Scheffer, Arun Sharma, and Frank Stephan

On the Vγ Dimension for Regression in Reproducing Kernel Hilbert
Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Theodoros Evgeniou and Massimiliano Pontil



X Table of Contents

Inductive Inference

On the Strength of Incremental Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Steffen Lange and Gunter Grieser

Learning from Random Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Peter Rossmanith

Inductive Learning with Corroboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Phil Watson

Inductive Logic Programming

Flattening and Implication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Kouichi Hirata

Induction of Logic Programs Based on ψ-Terms . . . . . . . . . . . . . . . . . . . . . . . . 169
Yutaka Sasaki

Complexity in the Case Against Accuracy: When Building One
Function-Free Horn Clause Is as Hard as Any . . . . . . . . . . . . . . . . . . . . . . . . . 182

Richard Nock

A Method of Similarity-Driven Knowledge Revision for Type
Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Nobuhiro Morita, Makoto Haraguchi, and Yoshiaki Okubo

PAC Learning

PAC Learning with Nasty Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Nader H. Bshouty, Nadav Eiron, and Eyal Kushilevitz

Positive and Unlabeled Examples Help Learning . . . . . . . . . . . . . . . . . . . . . . . 219
Francesco De Comité, François Denis, Rémi Gilleron, and
Fabien Letouzey

Learning Real Polynomials with a Turing Machine . . . . . . . . . . . . . . . . . . . . . 231
Dennis Cheung

Mathematical Tools for Learning

Faster Near-Optimal Reinforcement Learning: Adding Adaptiveness to
the E3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Carlos Domingo

A Note on Support Vector Machine Degeneracy . . . . . . . . . . . . . . . . . . . . . . . . 252
Ryan Rifkin, Massimiliano Pontil, and Alessandro Verri



Table of Contents XI

Learning Recursive Functions

Learnability of Enumerable Classes of Recursive Functions from “Typical”
Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Jochen Nessel

On the Uniform Learnability of Approximations to Non-recursive
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

Frank Stephan and Thomas Zeugmann

Query Learning

Learning Minimal Covers of Functional Dependencies with Queries . . . . . . . 291
Montserrat Hermo and Vı́ctor Lav́ın

Boolean Formulas Are Hard to Learn for Most Gate Bases . . . . . . . . . . . . . . 301
Vı́ctor Dalmau

Finding Relevant Variables in PAC Model with Membership Queries . . . . . 313
David Guijarro, Jun Tarui, and Tatsuie Tsukiji

On-Line Learning

General Linear Relations among Different Types of Predictive
Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

Yuri Kalnishkan

Predicting Nearly as Well as the Best Pruning of a Planar Decision
Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335

Eiji Takimoto and Manfred K. Warmuth

On Learning Unions of Pattern Languages and Tree Patterns . . . . . . . . . . . . 347
Sally A. Goldman and Stephen S. Kwek

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365



Tailoring Representations to Different

Requirements

Katharina Morik

Univ. Dortmund, Computer Science VIII,
D-44221 Dortmund, Germany

morik@ls8.cs.uni-dortmund.de

http://www-ai.cs.uni-dortmund.de

Abstract. Designing the representation languages for the input and
output of a learning algorithm is the hardest task within machine learn-
ing applications. Transforming the given representation of observations
into a well-suited language LE may ease learning such that a simple and
efficient learning algorithm can solve the learning problem. Learnability
is defined with respect to the representation of the output of learning,
LH . If the predictive accuracy is the only criterion for the success of
learning, the choice of LH means to find the hypothesis space with most
easily learnable concepts, which contains the solution. Additional criteria
for the success of learning such as comprehensibility and embeddedness
may ask for transformations of LH such that users can easily interpret
and other systems can easily exploit the learning results. Designing a lan-
guage LH that is optimal with respect to all the criteria is too difficult
a task. Instead, we design families of representations, where each family
member is well suited for a particular set of requirements, and implement
transformations between the representations. In this paper, we discuss a
representation family of Horn logic. Work on tailoring representations is
illustrated by a robot application.

1 Introduction

Machine learning has focused on the particular learning task of concept learning.
Investigating this task has led to sound theoretical results as well as to efficient
learning systems. However, some aspects of learning have not yet received the
attention they deserve. Theoretical results are missing where they are urgently
needed for successful applications of machine learning. If we contrast the theo-
retically analyzed setting of concept learning with the one found in real-world
applications, we encounter quite a number of open research questions. Let me
draw your attention to those questions that are related with tailoring represen-
tations.

The setting of concept learning that has been well investigated can be sum-
marized as follows.

Concept learning: Given a set of examples in a representation language LE ,
drawn according to some distribution, and background knowledge in a rep-
resentation language LB,

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 1–12, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



2 Katharina Morik

learn a hypothesis in a representation language LH that classifies further
examples properly according to a given criterion.

Different paradigms vary assumptions about the distribution and about the ex-
istence of background knowledge. In the paradigm of probably approximately
correct (PAC) learning, for instance, an unknown but fixed distribution is as-
sumed and background knowledge is ignored. In the paradigm of inductive logic
programming (ILP), the distribution is ignored, but background knowledge is
taken into account. Different approaches vary the particular success criterion.
For instance, information gain, minimal description length, or Bayes-oriented
criteria are discussed. Structural risk minimization balances the error rate and
the complexity of hypotheses. The variety of criteria can be subsumed under
that of accuracy of predictions (i.e. correctness of classifications of new observa-
tions). In contrast, applications of machine learning are evaluated with respect
to additional criteria:

comprehensibility: How easily can the learning results be interpreted by hu-
man decision makers?

embeddedness: Most learning results are produced in order to enhance the ca-
pabilities of another system (e.g., problem solving system, natural language
system, robot), the so-called performance system. The criterion is here: How
easily can learning results be used by the performance system?

These criteria are most often ignored in theoretical studies. Comprehensibility
and embeddedness further constrain the choice of an appropriate hypothesis
language LH . The problem is that they frequently do so in a contradictory
manner. A representation that is well-suited for a human user may be hard
to handle by a performance system. A representation that is well-suited for a
system to perform a certain task may be hard to be understood by a human
user. To make things even worse, we also consider the input of the learning
algorithm. A learning algorithm Ai can be characterized by its input (i.e. LEi,
LBi) and output (i.e. LHi) formats. Those pairs of input and output languages,
for which an efficient and effective learning algorithm exists, are called admissible
languages. In this way, LH is further constrained by the given data in LE . It is
hard or even impossible to design a representation LH which is

– efficiently learnable
– from data in a given format,
– easily understood by users,
– and can be put to direct use by a performance system.

Instead of searching for one representation that fulfills at the same time the
requirements of the learning algorithm, the given data, the users, and the per-
formance system, we may want to follow a more stepwise procedure. We divide
the overall representation problem into several subproblems. Each subproblem
consists of two parts, namely determining an appropriate representation and de-
veloping a transformation from a given representation into it. In order to not
trade in a simple representation language for a complex transformation process,



Tailoring Representations to Different Requirements 3

we design families of representations, where each family member is well suited
for a particular set of requirements, and efficient transformations between the
family members are possible. The subproblems are:

Learnability: The majority of theoretical analyses shows the learnability of
concept classes under certain restrictions of the learning task, the represen-
tation languages, and the criterion for accuracy. Hence, this subject does not
require justification. However, the transformation from a given representa-
tion into the desired one raises questions that have not yet been addressed
frequently. The transformation here converts LHi into LHj , where LHj is
better suited for learning.

Optimizing input data: The hardest task of machine learning applications
is the design of a well-suited representation LEj. On one hand, the given
representation formalism LEi must be converted into the one accepted by the
learning algorithm as input. On the other hand, the representation language
(signature) can be optimized. The formalism remaining the same, the set
of features (predicates) is changed. The standard procedure is to run the
algorithm on diverse feature sets until one is found that leads to an acceptable
accuracy of learning. Most feature construction or selection methods aim at
overcoming this trial-and-error approach.

Comprehensibility: Although stated as a primary goal of machine learning
from the very beginning on, the criterion of comprehensibility never became
a hot topic of learning theory.

Embeddedness or program optimization: Learning results are supposed to
enhance a procedure. Most often, the procedure is already implemented as
a particular performance system. The learning result in LHi must be trans-
formed into the representation LHj of the performance system. Quite often,
the performance system offers restrictions that are not presupposed by the
learning algorithm. In this case, the transformation may be turned into an
optimization, exploiting the application’s restrictions.

In this paper, a family of subsets of Horn logic is discussed and illustrated
by a robot application.

2 Learnability of Restricted Horn Logic

The learnability subject does not need any justification here. However, the trans-
formation of one representation LHi into another one LHj which is better suited
for learning, does. An important question is, how to recognize those parts in a
given representation (or concept class) automatically, that cause negative learn-
ability results. The user may then be asked, whether the learning task could be
weakened, or at least be warned that it may take exponential time to compute
a result. For instance, detecting variables that occur in the head of a clause but
not in its body prohibit the clause being generative. This can easily be checked
automatically. Even suggestions for fixing the clause can be computed on the
basis of the predicates defined so far [27] Alternatively, the learning algorithm



4 Katharina Morik

may start with a simple representation and increase the complexity of the hy-
pothesis space. Of course, this alternative is easier than the recognition of the
complexity class.

Desired are learnability proofs that can be made operational in the sense
that indicators for (non-)learnability are defined that can be recognized auto-
matically. One example for an operational complexity criterion is the one used
by the support vector machine [31]. The width of the margin separating positive
and negative examples corresponds to the VC dimension of the hypothesis space,
but can be calculated much easier.1 According to this operational criterion hy-
pothesis spaces of increasing complexity are tried by the learning algorithm. A
rough indication of the complexity of hypotheses from the ILP paradigm is the
number of literals in a clause. According to this criterion, the RDT algorithm
searches fo increasingly complex hypotheses [8] and a similar procedure is fol-
lowed in [5]. However, the number of literals is merely a heuristic measure of
complexity.

Let me now illustrate operational proofs by [9]. The difficulty of first-order
logic induction originates in first-order logic deduction. Hypothesis testing, sat-
uration of examples with background knowledge, the comparison of competing
hypotheses, and the reduction of hypotheses under equivalence all use the deduc-
tive inference. Since θ−subsumption [25] is a correct and for not self-resolving,
non tautological clauses a complete inference, most ILP systems use it.

θ−subsumption: A clause D θ−subsumes a clause C iff there exists a substi-
tution θ such that Dθ ⊆ C.

θ−subsumption is NP-complete because of the indeterminism of choosing θ
in the general case. Hence, the clauses need to be restricted. Restricting Horn
clauses to k-llocal clauses allows for polynomial learning [3]. William Cohen’s
proof maps k-llocal clauses on monomials for which learnability proofs exist.
However, the proof is not operational. It just shows where it is worth to look
for theoretically well-based algorithms. What we need is an operational proof
of polynomial complexity of θ−subsumption of k-llocal clauses in order to solve
the deductive problem within induction. We then need a learning algorithm
exploiting the restriction so that learning k-llocal clauses is polynomial. Desired
is an automatic check, whether a clause is k-llocal, or not.

k-llocal Horn clause: Let D = D0 ← DDET , DNONDET be a Horn clause,
where DDET is the deterministic and DNONDET is the indeterministic part
of its body. Let vars be a function computing the set of variables of a clause.
LOCi ⊆ DNONDET is a local part of D, iff
(vars(LOCi) \ vars({D0, DDET })) ∩ vars(DNONDET \ LOCi) = ∅ and
there does not exist LOCj ⊂ LOCi which is also a local part of D.
A local part LOCi is k-llocal, iff
there exists a constant k such that k ≥| LOCi |.
A Horn clause is k-llocal, iff each local part of it is k-llocal.

1 Determining the VC dimension is a problem in O(nO(logn)) where n is the size of a
matrix representing the concept class [26].



Tailoring Representations to Different Requirements 5

Jörg-Uwe Kietz presents a fast subsumption algorithm for D = D0 ←
DDET , LOC1, ..., LOCn and any Horn clause C [9]. For the deterministic part of
D, there exists exactly one substitution θ. An efficient subsumption algorithm
for deterministic Horn clauses is presented in [11]. In the indeterministic part
of D, it is looked for local parts, i.e. for sets of literals which do not share an
indeterministic variable. This is done by merging sets of literals which have a
variable in common. In this way, the algorithm checks a given clause D, whether
it is k-local, or not. This can be done polynomially. If the local part is bounded
by some k, its subsumption is in O(n · (kk· | C |)). If, however, DBody consists
of one large local part, the subsumption is exponential. The proof of polyno-
mial complexity in the number of literals of the clauses D and C corresponds
directly to the fast subsumption algorithm. The algorithm guarantees efficient
subsumption for k-local D, but can be applied to any Horn clause.

The least general generalization, LGG, of Gordon Plotkin [21] is then ad-
justed to k-llocal clauses and it is shown that the size of the LGG of k-llocal
clauses does not increase exponentially (as does the LGG of unrestricted Horn
clauses) and reduction of k-llocal clauses is polynomial, too [9]. Together with the
negtive learnability results in [10], k-llocal clauses can be considered the border-
line between learnable and not learnable indeterministic clauses. This concludes
the illustration of what I mean by operational proofs.

3 Optimizing Input Data

The transformation of the given data within the same representation formalism
is called feature construction/extraction, if new features are built on the basis
of the given ones, and feature selection, if the most relevant subset of features
is selected. An explicit construction is the invention and definition of new pred-
icates as presented by [20], [29], and [32]. Including the transformation into the
learning algorithm is called constructive induction [17], [2]. An implicit adding
of new features is performed by the support vector machine [31]. Using a kernel
function, the feature space is transformed such that the observations become
linearly separable. A more complex input representation allows the algorithm
to remain simple. Only because the enriched feature space need not be used
for computation– the kernel functions are used instead –, transformation plus
learning algorithm remain efficient. It is an open question how to make explicit,
which of the added features contributed most to a good learning result.

Let me now turn to the transformation from one representation formalism
to another one. A learning algorithm is selected because of both, its input and
output formalisms (plus other properties). It may turn out, however, that there
does not exist an algorithm with the desired input–output pair of languages. In
this case, one of the options is to transform the data from the formalism in which
they are available into the input format of the selected algorithm. The current
interest in feature construction may stem from knowledge discovery in databases
(KDD) [15]. The given database representation has to be transformed into one
which is accepted by the learning algorithm. Of course, for an ILP learning



6 Katharina Morik

algorithm there exists a 1:1 mapping from a database table to a predicate[7].
However, this simple transformation most often is not one that eases learning.
Since the arity of predicates cannot be changed through learning, a huge number
of irrelevant database attributes is carried along. Therefore, the transformation
from database tables into predicates should map parts of the tables to predicates,
where the database key is one of the arguments of the predicate. A tool that
gives an ILP learner direct access to a relational database, provides different
types of mappings from tables to predicates, and constructs SQL queries for
hypothesis testing automatically has been developed [18]. However, the open
question remains whether there are theoretically well-based indicators of the
optimal mapping for a particular learning task. This is an essential question,
since the number of possible mappings is only bounded by the size of the universal
database relation. Therefore, it does not help that we may well compute the size
of the hypothesis space for each mapping. What is required is a structure in the
space of mappings that allows for efficient search.

A frequent task when applying an ILP algorithm is to transform numerical
measurements into qualitative Horn logic clauses (facts). A mobile robot, for in-
stance, reports its action and perception by multivariate time series. Each sensor
and the moving engine deliver a measurement per moment. The ILP learner re-
quires a description of a path and what has been sensed in terms of time intervals
during which some assertions are true. Hence, the signal-to-symbol transforma-
tion needs to find adequate time intervals and assertions that summarize the
measurements within the time interval. This task is different from time series
analysis, where the curves of measurement are approximated. It corresponds
to the analysis of event sequences, where events have to be automatically rec-
ognized. As opposed to current approaches which learn about event sequences
(e.g., [33],[16]), the robot application asks for a representation that can be pro-
duced incrementally on-line [14]. For our robot application we have implemented
a simple algorithm which constructs predicates of the form
increasing(MissionID, Angle, Sensor, FromTime, ToTime, RelToMove)

from measurements [19]. During the time interval FromTime, ToTime, the
sensor preceives increasing distance while being oriented in a particular angle
with respect to the global coordinates. The relation between measured distance
and moved distance is expressed by the last argument. The algorithm reads in
a measurement and compares it with the current summarizing assertion (i.e., a
predicate with all arguments bound except for ToTime). Either ToTime is bound,
the event has ended and a new one starts, or the next measurement is read
in. This procedure has some parameters (e.g., tolerated variance). These are
adjusted on the data so that the transformation itself is adaptive.

The language LE constructed has the nice property of fitting to general chain
rules. Given an appropriate substitution σ, a literal Bi of a chain rule can be
unified with a ground fact f ∈ LE, i.e. Biσ = f .

General chain rule: Let S be a literal or a set of literals. Let args(S) be a
function that returns the Datalog arguments of S. A normal clause is a
general chain rule, iff its body literals can be arranged in a sequence



Tailoring Representations to Different Requirements 7

B0 ← B1, B2,, ...,Bk, Bk+1

such that there exist Datalog terms X, Z ∈ args(B0), X, Y1 ∈ args(B1),
Y1, Y2 ∈ args(B2), ...,Yk−1, Yk ∈ args(Bk), and Yk, Z ∈ args(Bk+1).

Obviously, chain rules are well-suited for the representation of event sequences,
using the time points as chaining arguments. LE is constructed such that chain
rules can be learned from them. In other words, having chain rules in mind for
LH we transform the given data into facts that correspond to literals of LH .
Note, that this transformation is not motivated by the learning algorithm in
order to make learning simpler. The aim is to design LE such that a LH can be
learned which can easily embedded in the robot application.

4 Comprehensibility

It is often claimed that learning results are easier to understand than statisti-
cal results which demand a human interpreter who translates the results into
conclusions for the customer of the statistical study. In particular, decision trees
and rules were found to be easily undertandable. However, these statements lack
justification.

In a user-independent way, proposed criteria for comprehensibility most of-
ten refer to the length of a description (the minimal description length (MDL)
principle [24]). For decision trees, the number of nodes was used as a guideline
for comprehensibility. For logic programs, the number of literals of a clause or
the number of variables was used as an operational criterion for the ease of un-
derstanding [1] 2, [4]. Irene Stahl corrected the MDL for ILP by restricting the
description length of examples to that of positive examples only [28]. Although
presented as an operationalisation of comprehensibility, compression may lead
to almost incomprehensible descriptions3. Its value for hypothesis testing and
structuring the hypothesis space not neglected, as a means to achieve compre-
hensible learning results it is questionable.

Ryszard Michalski has proposed to use natural language for communicating
learning results. The ease of transforming LH into natural language can then be
used as a criterion for the naturalness of the representation.

Edgar Sommer introduced the notion of extensional redundancy. Removing
extensional redundancy compresses a theory, but compressions are not restricted
to that. It is known from psychology that some redundancy eases understanding.
Extensional redundancy aims at characterizing superfluous parts of a theory [27].

Extensional redundancy: Let G be the set of goal concepts in a theory T .
Let Q be the set of instances of goal concepts that are derivable from T . Let
C be a clause in T and L be a literal in C.

2 The reconstruction of the examples and background knowldge from the logic theory
and the example encoding by a reference Turing machine leads to a measure of
compression: the length of the output tape minus the length of the input tape.

3 Think of compressed text files!



8 Katharina Morik

A literal L is extensionally redundant in C with respect to g ∈ G, iff C is in
the derivation of g and C \ {L}.
A clause C is extensionally redundant in T with respect to Q, iff T ` Q and
T \ {C} ` Q.

Structure is a key to comprehensibility. Structure is achieved by the folding
operations which leaves the minimal Herbrand model of a theory unchanged [30].

fold: Let C, D ∈ Ti be ordered clauses of the form
C = C0 ← C1, · · · , Cm, Cm+1, · · · , Cm+n and
D = D0 ← D1, · · · , Dm.
Let σ be a substitution satisfying the following conditions
1. Ci = Diσ, i = 1, ..., m
2. let X1, ..., Xl be variables that occur in DBody but not in DHead; each

Xjσ, j = 1, ..., l does not occur in CHead nor in Cm+1, · · · , Cm+n; if i 6= i,
then Xiσ 6= Xjσ.

3. D is the only clause in Ti whose head is unifiable with D0σ.
If such a substitution exists, then
C′ = C0 ← D0σ, Cm+1, · · · , Cm+n and
Ti+1 = fold(Ti, C, D) = Ti \ {C} ∪ {C′}.
Otherwise, Ti remains unchanged.

Several stratification operators have been developed that structure a theory.
The FENDER program folds clauses that define a target concept with an in-
termediate concept [27]. The intermediate concept is made of common partial
premises. A common partial premise is a set of literals which most frequently
occur together in the given theory. The literals must share a variable. This will
be omitted in the folded clause. However, not all logically unnecessary variables
are omitted. This is meant to not hide relevant information from the user, but
only encapsulate internal details.

An alternative stratification method named prefix elimination has been de-
veloped particularly for chain programs [23], i.e. for better communicating event
sequences. As opposed to FENDER which gathers common partial premises re-
gardless of an ordering of literals, the prefix elimination method only replaces
common prefixes of chained literals in a clause’s body. Hence, applying prefix
elimination to a chain program outputs a chain program. The prefix elimination
method looks for common literal sequences in all clauses, not only ones that are
used to define the same concept. It suppresses all unnecessary variables. This is
meant to exhibit the time relations more clearly. An abstracted example from
our robot application may illustrate the method.

Example: Let the theory Ti be
C1 = alongWall(S, X, Z)
← stand(V, O, X, Y1), stable(V, O, Y1, Y2), decrPeak(S, O, Y2, Z)
C2 = alongDoor(S, X, Z)
← stand(V, O, X, Y1), stable(V, O, Y1, Y2), incrPeak(S, V, Y2, Z)
Prefix elimination returns Ti+1:



Tailoring Representations to Different Requirements 9

C′
1 = alongWall(S, X, Z)← standstable(V, O, X, Y2), decrPeak(S, O, Y2, Z)

C′
2 = alongDoor(S, X, Z)← standstable(V, O, X, Y2), incrPeak(S, V, Y2, Z)

D = standstable(V, O, X, Y2)← stand(V, O, X, Y1), stable(V, O, Y1, Y2)

Two time intervals are summarized, but no information is abstracted away.
Compression and stratification are two operational criteria for the compre-

hensibility of logical theories. Whether they correspond to true needs of users
should be studied empirically. Since the representation is to be understood by
human users, the answer depends on general cognitive capabilities as well as on
user-specific preferences which, in turn, depend on prior knowledge and training.
Adjusting a representation to particular preferences is a learning task in its own
right. A number of answer set equivalent representations could be presented to
the user who selects his favorite one. The selections serve as positive examples
and a profile of the user is learned which guides further presentations. Theoret-
ical analysis of the user profiles could well lead to a refinement of compression
which excludes incrompehensibly compact theories.

5 Embeddedness or Program Optimization

Optimizing learning results for their use by a performance system is easier than
optimizing them for human understanding, since the requirements of the system
are known. In many cases the requirements by users and performance system
are conflicting. However, they can both start from the same learning result,
if LH has been chosen carefully. In our robotics application, we used the fact
that chain programs correspond to definite finite automata (DFA). Since general
chain programs – as opposed to elementary chain rules – are not equivalent to
context free grammars, we cannot apply the transformation presented by [6].
The general chain rules can be translated into a context-free grammar, but a
transformed grammar cannot be uniquely translated back into general chain
rules. Hence, we may theoretically describe the learning results with reference
to context-free grammars, but this analysis cannot be put to use. It is possible,
however, to transform general chain rules into a DFA. Starting from a theory
which has been stratified by prefix elimination, the mapping is as follows [23]:

– A clause head becomes a state of the DFA.
– A clause defining a prefix becomes a transition of the DFA.
– The clause head of an overall goal with its substitutions becomes an output.

The DFA is restricted to successful derivations. Compilation of learned theories
consisting of 250 to 470 clauses took between 1 and 5 minutes CPU time [23].
A system using the learned and optimized knowledge was developed by Volker
Klingspor [13], [22]. His system SHARC performs object-recognition, planning,
and plan execution. The low-level steps of object recognition are performed in
parallel, each sensor having its own process. Object recognition is performed by
forward inference on optimized clauses using a marker passing strategy. Planning
and plan execution is performed by backward inference on optimized clauses. The



10 Katharina Morik

general chain rules are learned by GRDT, an ILP learner with declarative bias
[12]. GRDT is not restricted to LH being general chain rules. The top goals to
be learned were moving along a door and moving through a door. Guiding the
mobile robot by a joy stick through and along doors in one environment resulted
in the training data. The test was that the robot actually moved along or through
other doors in a different but similar environment (i.e. the university building).
No map was used. Many more experiments have been made using the simulation
component of the PIONEER mobile robot. We were told before the project, that
real-time behavior is impossible on the basis of logic programs, neuro-computing
or other numerical processing would be mandatory. However, the real time from
sending sensor measurements to SHARC until robot’s reaction in almost all cases
was below 0.005 seconds and at most 0.006 seconds [13]. This shows that learned
clauses can navigate a robot in real time, if they are parallelized and optimized
with respect to their use. In contrast, applying the learned clauses in their most
comprehensible from is not fast enough for a robot application.

6 Conclusion

This paper tries to show that theory need not be restricted to the central learn-
ing step, leaving practicians alone with the design and optimization of LE and
LH . In contrast, developing operational indicators for the quality of a repre-
sentation asks for theoretical analysis. Concerning the criteria of learnability,
comprehensibility, and embeddedness, a brief overview of approaches towards
well-based guidelines for the development and transformation of LE and LH is
given. The question of how to design an appropriate LEj from given data in
LEi is particularly stressed. On one hand, the design of LEj is oriented towards
making learning easier. On the other hand, the design of LEj is oriented towards
an admissible LH which can be optimized with respect to embeddedness.

The tailoring of representations is illustrated by a robot application.

– A general ILP learner with declarative bias, GRDT, outputs general chain
clauses, because LE was made of ground chain facts.

– The original numerical data from the robot were transformed into ground
chain facts by a simple procedure which uses parameter adjustment as its
learning method.

– A theory can be optimized concerning comprehensibility by introducing in-
termediate predicates, which are then used for folding.

– A theory made of general chain rules can be optimized for real-time deductive
inference using the prefix elimination method and the transformation into
DFAs.

References

[1] A.Srinivasan, S. Muggleton, and M. Bain. The justification of logical theories
based on data compression. Machine Intelligence, 13, 1993.



Tailoring Representations to Different Requirements 11

[2] Eric Bloedorn and Ryszard Michalski. Data-driven constructive induction:
Metodology and applications. In Huan Liu and Hiroshi Motoda, editors, Feature
Extraction, Construction, and Selection – A Data Mining Perpective, chapter 4,
pages 51 – 68. Kluwer, 1998.

[3] William W. Cohen. Learnability of restricted logic programs. In ILP’93 Workshop,
Bled, 1993.

[4] D. Conklin and I. Witten. Complexity-based induction. Machine Learning, 16:203
– 225, 1994.

[5] Luc DeRaedt. Interactive Theory Revision: an Inductive Logic Programming Ap-
proach. Acad. Press, London [u.a.], 1992.

[6] G. Dong and S. Ginsburg. On the decomposition of chain datalog programs into
p (left-)linear l-rule components. Logic Programming, 23:203 – 236, 1995.

[7] Saso Dzeroski. Inductive logic programming and knowledge discovery in
databases. In Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth,
and Ramasamy Uthurusamy, editors, Advances in Knowledge Discovery and Data
Mining, chapter 1, pages 117–152. AAAI Press/The MIT Press, Menlo Park, Cal-
ifornia, 1996.

[8] J.-U. Kietz and S. Wrobel. Controlling the complexity of learning in logic through
syntactic and task–oriented models. In Stephen Muggleton, editor, Inductive Logic
Programming., number 38 in The A.P.I.C. Series, chapter 16, pages 335–360. Aca-
demic Press, London [u.a.], 1992.

[9] Jörg Uwe Kietz. Induktive Analyse relationaler Daten. PhD thesis, Technische
Universität Berlin, Berlin, oct 1996.

[10] Jörg-Uwe Kietz and Saso Dzeroski. Inductive logic programming and learnability.
SIGART–Bulletin, 5(1):22–32, 1994.

[11] Jörg-Uwe Kietz and Marcus Lübbe. An effecient subsumption algorithm for in-
ductive logic programming. In W. Cohen and H. Hirsh, editors, Proceedings of
the 11th International Conference on Machine Learning IML–94, San Francisco,
CA, 1994. Morgan Kaufmann.

[12] Volker Klingspor. GRDT: Enhancing model-based learning for its application in
robot navigation. In S. Wrobel, editor, Proc. of the Fourth Intern. Workshop
on Inductive Logic Programming, GMD-Studien Nr. 237, pages 107–122, St. Au-
gustin, Germany, 1994. GMD.

[13] Volker Klingspor. Reaktives Planen mit gelernten Begriffen. PhD thesis, Univ.
Dortmund, 1998.

[14] P. Laird. Identifying and using patterns in sequential data. In K.Jantke,
S. Kobayashi, E. Tomita, and T. Yokomori, editors, Procs. of 4th Workshop on
Algorithmic Learning Theory, pages 1 – 18. Springer, 1993.

[15] H. Liu and H. Motoda. Feature Extraction, Construction, and Selection: A Data
Mining Perspective. Kluwer, 1998.

[16] H. Mannila, H. Toivonen, and A. Verkamo. Discovering frequent episode in se-
quences. In Procs. of the 1st Int. Conf. on Knowledge Discovery in Databases and
Data Mining. AAAI Press, 1995.

[17] Ryszard S. Michalski and Yves Kodratoff. Research in machine learning and re-
cent progress, classification of methods, and future directions. In Yves Kodratoff
and Ryszard Michalski, editors, Machine Learning – an Artificial Intelligence Ap-
proach, volume III, chapter I, pages 3–30. Morgan Kaufmann, Los Altos, CA,
1990.

[18] Katharina Morik and Peter Brockhausen. A multistrategy approach to relational
knowledge discovery in databases. Machine Learning Journal, 27(3):287–312, jun
1997.



12 Katharina Morik

[19] Katharina Morik and Stephanie Wessel. Incremental signal to symbol process-
ing. In K.Morik, M. Kaiser, and V. Klingspor, editors, Making Robots Smarter
– Combining Sensing and Action through Robot Learning, chapter 11, pages 185
–198. Kluwer Academic Publ., 1999.

[20] Stephen Muggleton and Wray Buntine. Machine invention of first-order predicates
by inverting resolution. In Proc. Fifth Intern. Conf. on Machine Learning, Los
Altos, CA, 1988. Morgan Kaufman.

[21] Gordon D. Plotkin. A note on inductive generalization. In B. Meltzer and
D. Michie, editors, Machine Intelligence, chapter 8, pages 153–163. American El-
sevier, 1970.

[22] Anke Rieger and Volker Klingspor. Program optimization for real-time perfor-
mance. In K. Morik, V. Klingspor, and M. Kaiser, editors, Making Robots Smarter
– Combining Sensing and Action through Robot Learning. Kluwer Academic Press,
1999.

[23] Anke D. Rieger. Program Optimization for Temporal Reasoning within a Logic
Programming Framework. PhD thesis, Universit”at Dortmund, Germany, Dort-
mund, FRG, 1998.

[24] J. Rissanen. Modeling by shortest data description. Automatica, 14:465 – 471,
1978.

[25] J. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, 1965.

[26] A. Shinohara. Complexity of computing vapnik-chervonenski dimension. In
K.Jantke, S. Kobayashi, E. Tomita, and T. Yokomori, editors, Procs. of 4th Work-
shop on Algorithmic Learning Theory, pages 279 – 287. Springer, 1993.

[27] Edgar Sommer. Theory Restructering: A Perspective on Design & Maintenance
of Knowledge Based Systems. PhD thesis, University of Dortmund, 1996.

[28] Irene Stahl. Compression measures in ILP. In Luc De Raedt, editor, Advances in
Inductive Logic Programming, pages 295–307. IOS Press, 1996.

[29] Irene Stahl. Predicate invention in inductive logic programming. In Luc DeRaedt,
editor, Advances in Inductive Logic Programming, pages 34 – 47. IOS Press, 1996.

[30] H. Tamaki and T. Sato. Unfold and fold transformation of logic programs. In
Procs. of 2nd Int. Conf. Logic Programming, pages 127 – 138, 1984.

[31] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, New
York, 1995.

[32] Stefan Wrobel. Concept Formation and Knowledge Revision. Kluwer Academic
Publishers, Dordrecht, 1994.

[33] Wei Zhang. A region-based approah to discovering temporal structures in data.
In Ivan Bratko and Saso Dzeroski, editors, Proc. of 16th Int. Conf. on Machine
Learning, pages 484 – 492. Morgan Kaufmann, 1999.



Theoretical Views of Boosting and Applications

Robert E. Schapire

AT&T Labs − Research, Shannon Laboratory
180 Park Avenue, Room A279, Florham Park, NJ 07932, USA

www.research.att.com/∼schapire

Abstract. Boosting is a general method for improving the accuracy of
any given learning algorithm. Focusing primarily on the AdaBoost algo-
rithm, we briefly survey theoretical work on boosting including analyses
of AdaBoost’s training error and generalization error, connections be-
tween boosting and game theory, methods of estimating probabilities
using boosting, and extensions of AdaBoost for multiclass classification
problems. Some empirical work and applications are also described.

Background

Boosting is a general method which attempts to “boost” the accuracy of any
given learning algorithm. Kearns and Valiant [29, 30] were the first to pose the
question of whether a “weak” learning algorithm which performs just slightly
better than random guessing in Valiant’s PAC model [44] can be “boosted”
into an arbitrarily accurate “strong” learning algorithm. Schapire [36] came up
with the first provable polynomial-time boosting algorithm in 1989. A year later,
Freund [16] developed a much more efficient boosting algorithm which, although
optimal in a certain sense, nevertheless suffered from certain practical drawbacks.
The first experiments with these early boosting algorithms were carried out by
Drucker, Schapire and Simard [15] on an OCR task.

AdaBoost

The AdaBoost algorithm, introduced in 1995 by Freund and Schapire [22], solved
many of the practical difficulties of the earlier boosting algorithms, and is the
focus of this paper. Pseudocode for AdaBoost is given in Fig. 1 in the slightly
generalized form given by Schapire and Singer [40]. The algorithm takes as input
a training set (x1, y1), . . . , (xm, ym) where each xi belongs to some domain or
instance space X , and each label yi is in some label set Y . For most of this
paper, we assume Y = {−1, +1}; later, we discuss extensions to the multiclass
case. AdaBoost calls a given weak or base learning algorithm repeatedly in a
series of rounds t = 1, . . . , T . One of the main ideas of the algorithm is to
maintain a distribution or set of weights over the training set. The weight of
this distribution on training example i on round t is denoted Dt(i). Initially, all
weights are set equally, but on each round, the weights of incorrectly classified

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 13–25, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



14 Robert E. Schapire

Given: (x1, y1), . . . , (xm, ym) where xi ∈ X , yi ∈ Y = {−1, +1}
Initialize D1(i) = 1/m.
For t = 1, . . . , T :

– Train weak learner using distribution Dt.
– Get weak hypothesis ht : X → R.
– Choose αt ∈ R.
– Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalization factor (chosen so that Dt+1 will be a distribu-
tion).

Output the final hypothesis:

H(x) = sign

(
T∑

t=1

αtht(x)

)
.

Fig. 1. The boosting algorithm AdaBoost.

examples are increased so that the weak learner is forced to focus on the hard
examples in the training set.

The weak learner’s job is to find a weak hypothesis ht : X → R appropriate
for the distribution Dt. In the simplest case, the range of each ht is binary, i.e.,
restricted to {−1, +1}; the weak learner’s job then is to minimize the error

εt = Pri∼Dt [ht(xi) 6= yi] .

Once the weak hypothesis ht has been received, AdaBoost chooses a param-
eter αt ∈ R which intuitively measures the importance that it assigns to ht. In
the figure, we have deliberately left the choice of αt unspecified. For binary ht,
we typically set

αt = 1
2 ln

(
1− εt

εt

)
. (1)

More on choosing αt follows below. The distribution Dt is then updated using
the rule shown in the figure. The final hypothesis H is a weighted majority vote
of the T weak hypotheses where αt is the weight assigned to ht.

Analyzing the Training Error

The most basic theoretical property of AdaBoost concerns its ability to reduce
the training error. Specifically, Schapire and Singer [40], in generalizing a theorem



Theoretical Views of Boosting and Applications 15

of Freund and Schapire [22], show that the training error of the final hypothesis
is bounded as follows:

1
m
|{i : H(xi) 6= yi}| ≤ 1

m

∑
i

exp(−yif(xi)) =
∏

t

Zt (2)

where f(x) =
∑

t αtht(x) so that H(x) = sign(f(x)). The inequality follows
from the fact that e−yif(xi) ≥ 1 if yi 6= H(xi). The equality can be proved
straightforwardly by unraveling the recursive definition of Dt.

Eq. (2) suggests that the training error can be reduced most rapidly (in a
greedy way) by choosing αt and ht on each round to minimize

Zt =
∑

i

Dt(i) exp(−αtyiht(xi)).

In the case of binary hypotheses, this leads to the choice of αt given in Eq. (1)
and gives a bound on the training error of

∏
t

[
2
√

εt(1− εt)
]

=
∏

t

√
1− 4γ2

t ≤ exp

(
−2
∑

t

γ2
t

)

where εt = 1/2− γt. This bound was first proved by Freund and Schapire [22].
Thus, if each weak hypothesis is slightly better than random so that γt is bounded
away from zero, then the training error drops exponentially fast. This bound,
combined with the bounds on generalization error given below prove that Ada-
Boost is indeed a boosting algorithm in the sense that it can efficiently convert
a weak learning algorithm (which can always generate a hypothesis with a weak
edge for any distribution) into a strong learning algorithm (which can generate
a hypothesis with an arbitrarily low error rate, given sufficient data).

Eq. (2) points to the fact that, at heart, AdaBoost is a procedure for finding
a linear combination f of weak hypotheses which attempts to minimize

∑
i

exp(−yif(xi)) =
∑

i

exp

(
−yi

∑
t

αtht(xi)

)
. (3)

Essentially, on each round, AdaBoost chooses ht (by calling the weak learner)
and then sets αt to add one more term to the accumulating weighted sum of weak
hypotheses in such a way that the sum of exponentials above will be maximally
reduced. In other words, AdaBoost is doing a kind of steepest descent search to
minimize Eq. (3) where the search is constrained at each step to follow coordinate
directions (where we identify coordinates with the weights assigned to weak
hypotheses).

Schapire and Singer [40] discuss the choice of αt and ht in the case that ht

is real-valued (rather than binary). In this case, ht(x) can be interpreted as a
“confidence-rated prediction” in which the sign of ht(x) is the predicted label,
while the magnitude |ht(x)| gives a measure of confidence.



16 Robert E. Schapire

Generalization Error

Freund and Schapire [22] showed how to bound the generalization error of the
final hypothesis in terms of its training error, the size m of the sample, the
VC-dimension d of the weak hypothesis space and the number of rounds T of
boosting. Specifically, they used techniques from Baum and Haussler [4] to show
that the generalization error, with high probability, is at most

P̂r [H(x) 6= y] + Õ

(√
Td

m

)

where P̂r [·] denotes empirical probability on the training sample. This bound
suggests that boosting will overfit if run for too many rounds, i.e., as T becomes
large. In fact, this sometimes does happen. However, in early experiments, several
authors [8, 14, 34] observed empirically that boosting often does not overfit, even
when run for thousands of rounds. Moreover, it was observed that AdaBoost
would sometimes continue to drive down the generalization error long after the
training error had reached zero, clearly contradicting the spirit of the bound
above. For instance, the left side of Fig. 2 shows the training and test curves of
running boosting on top of Quinlan’s C4.5 decision-tree learning algorithm [35]
on the “letter” dataset.

In response to these empirical findings, Schapire et al. [39], following the
work of Bartlett [2], gave an alternative analysis in terms of the margins of the
training examples. The margin of example (x, y) is defined to be

y
∑

t

αtht(x)

∑
t

|αt|
.

It is a number in [−1, +1] which is positive if and only if H correctly classifies
the example. Moreover, as before, the magnitude of the margin can be inter-
preted as a measure of confidence in the prediction. Schapire et al. proved that
larger margins on the training set translate into a superior upper bound on the
generalization error. Specifically, the generalization error is at most

P̂r
[
marginf (x, y) ≤ θ

]
+ Õ

(√
d

mθ2

)

for any θ > 0 with high probability. Note that this bound is entirely independent
of T , the number of rounds of boosting. In addition, Schapire et al. proved that
boosting is particularly aggressive at reducing the margin (in a quantifiable
sense) since it concentrates on the examples with the smallest margins (whether
positive or negative). Boosting’s effect on the margins can be seen empirically,
for instance, on the right side of Fig. 2 which shows the cumulative distribution
of margins of the training examples on the “letter” dataset. In this case, even



Theoretical Views of Boosting and Applications 17

er
ro

r

10 100 1000
0

5

10

15

20

cu
m

u
la

ti
v
e

d
is
tr

ib
u
ti
o
n

-1 -0.5 0.5 1

0.5

1.0

# rounds margin

Fig. 2. Error curves and the margin distribution graph for boosting C4.5 on
the letter dataset as reported by Schapire et al. [39]. Left: the training and test
error curves (lower and upper curves, respectively) of the combined classifier as
a function of the number of rounds of boosting. The horizontal lines indicate the
test error rate of the base classifier as well as the test error of the final combined
classifier. Right: The cumulative distribution of margins of the training examples
after 5, 100 and 1000 iterations, indicated by short-dashed, long-dashed (mostly
hidden) and solid curves, respectively.

after the training error reaches zero, boosting continues to increase the margins
of the training examples effecting a corresponding drop in the test error.

Attempts (not always successful) to use the insights gleaned from the theory
of margins have been made by several authors [6, 26, 32]. In addition, the margin
theory points to a strong connection between boosting and the support-vector
machines of Vapnik and others [5, 11, 45] which explicitly attempt to maximize
the minimum margin.

A Connection to Game Theory

The behavior of AdaBoost can also be understood in a game-theoretic setting as
explored by Freund and Schapire [21, 23] (see also Grove and Schuurmans [26]
and Breiman [7]). In classical game theory, it is possible to put any two-person,
zero-sum game in the form of a matrix M. To play the game, one player chooses
a row i and the other player chooses a column j. The loss to the row player
(which is the same as the payoff to the column player) is Mij . More generally,
the two sides may play randomly, choosing distributions P and Q over rows or
columns, respectively. The expected loss then is PTMQ.

Boosting can be viewed as repeated play of a particular game matrix. Assume
that the weak hypotheses are binary, and let H = {h1, ...hn} be the entire weak
hypothesis space (which we assume for now to be finite). For a fixed training set
(x1, y1), . . . , (xm, ym), the game matrix M has m rows and n columns where

Mij =
{

1 if hj(xi) = yi

0 otherwise.



18 Robert E. Schapire

The row player now is the boosting algorithm, and the column player is the
weak learner. The boosting algorithm’s choice of a distribution Dt over training
examples becomes a distribution P over rows of M, while the weak learner’s
choice of a weak hypothesis ht becomes the choice of a column j of M.

As an example of the connection between boosting and game theory, consider
von Neumann’s famous minmax theorem which states that

max
Q

min
P

PTMQ = min
P

max
Q

PTMQ

for any matrix M. When applied to the matrix just defined and reinterpreted
in the boosting setting, this can be shown to have the following meaning: If,
for any distribution over examples, there exists a weak hypothesis with error
at most 1/2 − γ, then there exists a convex combination of weak hypotheses
with a margin of at least 2γ on all training examples. AdaBoost seeks to find
such a final hypothesis with high margin on all examples by combining many
weak hypotheses; so in a sense, the minmax theorem tells us that AdaBoost
at least has the potential for success since, given a “good” weak learner, there
must exist a good combination of weak hypotheses. Going much further, Ada-
Boost can be shown to be a special case of a more general algorithm for playing
repeated games, or for approximately solving matrix games. This shows that,
asymptotically, the distribution over training examples as well as the weights
over weak hypotheses in the final hypothesis have game-theoretic intepretations
as approximate minmax or maxmin strategies.

Estimating Probabilities

Classification generally is the problem of predicting the label y of an example x
with the intention of minimizing the probability of an incorrect prediction. How-
ever, it is often useful to estimate the probability of a particular label. Recently,
Friedman, Hastie and Tibshirani [24] suggested a method for using the output of
AdaBoost to make reasonable estimates of such probabilities. Specifically, they
suggest using a logistic function, and estimating

Prf [y = +1 | x] =
ef(x)

ef(x) + e−f(x)
(4)

where, as usual, f(x) is the weighted average of weak hypotheses produced by
AdaBoost. The rationale for this choice is the close connection between the log
loss (negative log likelihood) of such a model, namely,∑

i

ln
(
1 + e−2yif(xi)

)
(5)

and the function which, we have already noted, AdaBoost attempts to minimize:∑
i

e−yif(xi). (6)



Theoretical Views of Boosting and Applications 19

Specifically, it can be verified that Eq. (5) is upper bounded by Eq. (6). In
addition, if we add the constant 1 − ln 2 to Eq. (5) (which does not affect its
minimization), then it can be verified that the resulting function and the one in
Eq. (6) have identical Taylor expansions around zero up to second order; thus,
their behavior near zero is very similar. Finally, it can be shown that, for any
distribution over pairs (x, y), the expectations

E
[
ln
(
1 + e−2yf(x)

)]
and

E
[
e−yf(x)

]
are minimized by the same function f , namely,

f(x) = 1
2 ln

(
Pr [y = +1 | x]
Pr [y = −1 | x]

)
.

Thus, for all these reasons, minimizing Eq. (6), as is done by AdaBoost, can
be viewed as a method of approximately minimizing the negative log likelihood
given in Eq. (5). Therefore, we may expect Eq. (4) to give a reasonable proba-
bility estimate.

Friedman, Hastie and Tibshirani also make other connnections between Ada-
Boost, logistic regression and additive models.

Multiclass Classification

There are several methods of extending AdaBoost to the multiclass case. The
most straightforward generalization [22], called AdaBoost.M1, is adequate when
the weak learner is strong enough to achieve reasonably high accuracy, even
on the hard distributions created by AdaBoost. However, this method fails if
the weak learner cannot achieve at least 50% accuracy when run on these hard
distributions.

For the latter case, several more sophisticated methods have been developed.
These generally work by reducing the multiclass problem to a larger binary
problem. Schapire and Singer’s [40] algorithm AdaBoost.MH works by creating a
set of binary problems, for each example x and each possible label y, of the form:
“For example x, is the correct label y or is it one of the other labels?” Freund
and Schapire’s [22] algorithm AdaBoost.M2 (which is a special case of Schapire
and Singer’s [40] AdaBoost.MR algorithm) instead creates binary problems, for
each example x with correct label y and each incorrect label y′ of the form: “For
example x, is the correct label y or y′?”

These methods require additional effort in the design of the weak learn-
ing algorithm. A different technique [37], which incorporates Dietterich and
Bakiri’s [13] method of error-correcting output codes, achieves similar provable
bounds to those of AdaBoost.MH and AdaBoost.M2, but can be used with
any weak learner which can handle simple, binary labeled data. Schapire and
Singer [40] give yet another method of combining boosting with error-correcting
output codes.



20 Robert E. Schapire

0 5 10 15 20 25 30
0

5

10

15

20

25

30

C
4.

5

0 5 10 15 20 25 30

boosting stumps boosting C4.5

Fig. 3. Comparison of C4.5 versus boosting stumps and boosting C4.5 on a set
of 27 benchmark problems as reported by Freund and Schapire [20]. Each point
in each scatterplot shows the test error rate of the two competing algorithms on
a single benchmark. The y-coordinate of each point gives the test error rate (in
percent) of C4.5 on the given benchmark, and the x-coordinate gives the error
rate of boosting stumps (left plot) or boosting C4.5 (right plot). All error rates
have been averaged over multiple runs.

Experiments and Applications

Practically, AdaBoost has many advantages. It is fast, simple and easy to pro-
gram. It has no parameters to tune (except for the number of round T ). It
requires no prior knowledge about the weak learner and so can be flexibly com-
bined with any method for finding weak hypotheses. Finally, it comes with a
set of theoretical guarantees given sufficient data and a weak learner that can
reliably provide only moderately accurate weak hypotheses. This is a shift in
mind set for the learning-system designer: instead of trying to design a learning
algorithm that is accurate over the entire space, we can instead focus on finding
weak learning algorithms that only need to be better than random.

On the other hand, some caveats are certainly in order. The actual perfor-
mance of boosting on a particular problem is clearly dependent on the data and
the weak learner. Consistent with theory, boosting can fail to perform well given
insufficient data, overly complex weak hypotheses or weak hypotheses which are
too weak. Boosting seems to be especially susceptible to noise [12] (more on this
later).

AdaBoost has been tested empirically by many researchers, including [3, 12,
14, 28, 31, 34, 43]. For instance, Freund and Schapire [20] tested AdaBoost
on a set of UCI benchmark datasets [33] using C4.5 [35] as a weak learning
algorithm, as well as an algorithm which finds the best “decision stump” or



Theoretical Views of Boosting and Applications 21

0

2

4

6

8

10

12

14

16

3 4 5 6

%
 E

rr
or

Number of Classes

AdaBoost
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF
5

10

15

20

25

30

35

4 6 8 10 12 14 16 18 20

%
 E

rr
or

Number of Classes

AdaBoost
Sleeping-experts

Rocchio
Naive-Bayes

PrTFIDF

Fig. 4. Comparison of error rates for AdaBoost and four other text categoriza-
tion methods (naive Bayes, probabilistic TF-IDF, Rocchio and sleeping experts)
as reported by Schapire and Singer [41]. The algorithms were tested on two text
corpora — Reuters newswire articles (left) and AP newswire headlines (right)
— and with varying numbers of class labels as indicated on the x-axis of each
figure.

single-test decision tree. Some of the results of these experiments are shown in
Fig. 3. As can be seen from this figure, even boosting the weak decision stumps
can usually give as good results as C4.5, while boosting C4.5 generally gives the
decision-tree algorithm a significant improvement in performance.

In another set of experiments, Schapire and Singer [41] used boosting for text
categorization tasks. For this work, weak hypotheses were used which test on the
presence or absence of a word or phrase. Some results of these experiments com-
paring AdaBoost to four other methods are shown in Fig. 4. In nearly all of these
experiments and for all of the performance measures tested, boosting performed
as well or significantly better than the other methods tested. Boosting has also
been applied to text filtering [42], “ranking” problems [18] and classification
problems arising in natural language processing [1, 27].

The final hypothesis produced by AdaBoost when used, for instance, with a
decision-tree weak learning algorithm, can be extremely complex and difficult to
comprehend. With greater care, a more human-understandable final hypothesis
can be obtained using boosting. Cohen and Singer [10] showed how to design
a weak learning algorithm which, when combined with AdaBoost, results in
a final hypothesis consisting of a relatively small set of rules similar to those
generated by systems like RIPPER [9], IREP [25] and C4.5rules [35]. Cohen and
Singer’s system, called SLIPPER, is fast, accurate and produces quite compact
rule sets. In other work, Freund and Mason [19] showed how to apply boosting to
learn a generalization of decision trees called “alternating trees.” Their algorithm
produces a single alternating tree rather than an ensemble of trees as would be
obtained by running AdaBoost on top of a decision-tree learning algorithm. On
the other hand, their learning algorithm achieves error rates comparable to those
of a whole ensemble of trees.



22 Robert E. Schapire

4:1/0.27,4/0.17 5:0/0.26,5/0.17 7:4/0.25,9/0.18 1:9/0.15,7/0.15 2:0/0.29,2/0.19 9:7/0.25,9/0.17

3:5/0.28,3/0.28 9:7/0.19,9/0.19 4:1/0.23,4/0.23 4:1/0.21,4/0.20 4:9/0.16,4/0.16 9:9/0.17,4/0.17

4:4/0.18,9/0.16 4:4/0.21,1/0.18 7:7/0.24,9/0.21 9:9/0.25,7/0.22 4:4/0.19,9/0.16 9:9/0.20,7/0.17

Fig. 5. A sample of the examples that have the largest weight on an OCR
task as reported by Freund and Schapire [20]. These examples were chosen after
4 rounds of boosting (top line), 12 rounds (middle) and 25 rounds (bottom).
Underneath each image is a line of the form d:`1/w1,`2/w2, where d is the label
of the example, `1 and `2 are the labels that get the highest and second highest
vote from the combined hypothesis at that point in the run of the algorithm,
and w1, w2 are the corresponding normalized scores.

A nice property of AdaBoost is its ability to identify outliers, i.e., examples
that are either mislabeled in the training data, or which are inherently ambiguous
and hard to categorize. Because AdaBoost focuses its weight on the hardest
examples, the examples with the highest weight often turn out to be outliers.
An example of this phenomenon can be seen in Fig. 5 taken from an OCR
experiment conducted by Freund and Schapire [20].

When the number of outliers is very large, the emphasis placed on the hard
examples can become detrimental to the performance of AdaBoost. This was
demonstrated very convincingly by Dietterich [12]. Friedman et al. [24] suggested
a variant of AdaBoost, called “Gentle AdaBoost” which puts less emphasis on
outliers. In recent work, Freund [17] suggested another algorithm, called “Brown-
Boost,” which takes a more radical approach that de-emphasizes outliers when
it seems clear that they are “too hard” to classify correctly. This algorithm is
an adaptive version of Freund’s [16] “boost-by-majority” algorithm. This work,
together with Schapire’s [38] work on “drifting games,” reveal some interest-
ing new relationships between boosting, Brownian motion, and repeated games
while raising many new open problems and directions for future research.



Theoretical Views of Boosting and Applications 23

References

[1] Steven Abney, Robert E. Schapire, and Yoram Singer. Boosting applied to tagging
and PP attachment. In Proceedings of the Joint SIGDAT Conference on Empirical
Methods in Natural Language Processing and Very Large Corpora, 1999.

[2] Peter L. Bartlett. The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size of the network.
IEEE Transactions on Information Theory, 44(2):525–536, March 1998.

[3] Eric Bauer and Ron Kohavi. An empirical comparison of voting classification
algorithms: Bagging, boosting, and variants. Machine Learning, to appear.

[4] Eric B. Baum and David Haussler. What size net gives valid generalization?
Neural Computation, 1(1):151–160, 1989.

[5] Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual ACM
Workshop on Computational Learning Theory, pages 144–152, 1992.

[6] Leo Breiman. Arcing the edge. Technical Report 486, Statistics Department,
University of California at Berkeley, 1997.

[7] Leo Breiman. Prediction games and arcing classifiers. Technical Report 504,
Statistics Department, University of California at Berkeley, 1997.

[8] Leo Breiman. Arcing classifiers. The Annals of Statistics, 26(3):801–849, 1998.
[9] William Cohen. Fast effective rule induction. In Proceedings of the Twelfth Inter-

national Conference on Machine Learning, pages 115–123, 1995.
[10] William W. Cohen and Yoram Singer. A simple, fast, and effective rule learner. In

Proceedings of the Sixteenth National Conference on Artificial Intelligence, 1999.
[11] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learn-

ing, 20(3):273–297, September 1995.
[12] Thomas G. Dietterich. An experimental comparison of three methods for con-

structing ensembles of decision trees: Bagging, boosting, and randomization. Ma-
chine Learning, to appear.

[13] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning prob-
lems via error-correcting output codes. Journal of Artificial Intelligence Research,
2:263–286, January 1995.

[14] Harris Drucker and Corinna Cortes. Boosting decision trees. In Advances in
Neural Information Processing Systems 8, pages 479–485, 1996.

[15] Harris Drucker, Robert Schapire, and Patrice Simard. Boosting performance in
neural networks. International Journal of Pattern Recognition and Artificial In-
telligence, 7(4):705–719, 1993.

[16] Yoav Freund. Boosting a weak learning algorithm by majority. Information and
Computation, 121(2):256–285, 1995.

[17] Yoav Freund. An adaptive version of the boost by majority algorithm. In Pro-
ceedings of the Twelfth Annual Conference on Computational Learning Theory,
1999.

[18] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient boost-
ing algorithm for combining preferences. In Machine Learning: Proceedings of the
Fifteenth International Conference, 1998.

[19] Yoav Freund and Llew Mason. The alternating decision tree learning algorithm.
In Machine Learning: Proceedings of the Sixteenth International Conference, 1999.
to appear.

[20] Yoav Freund and Robert E. Schapire. Experiments with a new boosting algo-
rithm. In Machine Learning: Proceedings of the Thirteenth International Confer-
ence, pages 148–156, 1996.



24 Robert E. Schapire

[21] Yoav Freund and Robert E. Schapire. Game theory, on-line prediction and boost-
ing. In Proceedings of the Ninth Annual Conference on Computational Learning
Theory, pages 325–332, 1996.

[22] Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of on-
line learning and an application to boosting. Journal of Computer and System
Sciences, 55(1):119–139, August 1997.

[23] Yoav Freund and Robert E. Schapire. Adaptive game playing using multiplicative
weights. Games and Economic Behavior, to appear.

[24] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Additive logistic regres-
sion: a statistical view of boosting. Technical Report, 1998.

[25] Johannes Fürnkranz and Gerhard Widmer. Incremental reduced error pruning.
In Machine Learning: Proceedings of the Eleventh International Conference, pages
70–77, 1994.

[26] Adam J. Grove and Dale Schuurmans. Boosting in the limit: Maximizing the
margin of learned ensembles. In Proceedings of the Fifteenth National Conference
on Artificial Intelligence, 1998.

[27] Masahiko Haruno, Satoshi Shirai, and Yoshifumi Ooyama. Using decision trees
to construct a practical parser. Machine Learning, 34:131–149, 1999.

[28] Jeffrey C. Jackson and Mark W. Craven. Learning sparse perceptrons. In Advances
in Neural Information Processing Systems 8, pages 654–660, 1996.

[29] Michael Kearns and Leslie G. Valiant. Learning Boolean formulae or finite au-
tomata is as hard as factoring. Technical Report TR-14-88, Harvard University
Aiken Computation Laboratory, August 1988.

[30] Michael Kearns and Leslie G. Valiant. Cryptographic limitations on learning
Boolean formulae and finite automata. Journal of the Association for Computing
Machinery, 41(1):67–95, January 1994.

[31] Richard Maclin and David Opitz. An empirical evaluation of bagging and boost-
ing. In Proceedings of the Fourteenth National Conference on Artificial Intelli-
gence, pages 546–551, 1997.

[32] Llew Mason, Peter Bartlett, and Jonathan Baxter. Direct optimization of margins
improves generalization in combined classifiers. Technical report, Deparment of
Systems Engineering, Australian National University, 1998.

[33] C. J. Merz and P. M. Murphy. UCI repository of machine learning databases,
1999. www.ics.uci.edu/∼mlearn/MLRepository.html.

[34] J. R. Quinlan. Bagging, boosting, and C4.5. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, pages 725–730, 1996.

[35] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.
[36] Robert E. Schapire. The strength of weak learnability. Machine Learning,

5(2):197–227, 1990.
[37] Robert E. Schapire. Using output codes to boost multiclass learning problems. In

Machine Learning: Proceedings of the Fourteenth International Conference, pages
313–321, 1997.

[38] Robert E. Schapire. Drifting games. In Proceedings of the Twelfth Annual Con-
ference on Computational Learning Theory, 1999.

[39] Robert E. Schapire, Yoav Freund, Peter Bartlett, and Wee Sun Lee. Boosting the
margin: A new explanation for the effectiveness of voting methods. The Annals
of Statistics, 26(5):1651–1686, October 1998.

[40] Robert E. Schapire and Yoram Singer. Improved boosting algorithms using
confidence-rated predictions. In Proceedings of the Eleventh Annual Conference on
Computational Learning Theory, pages 80–91, 1998. To appear, Machine Learn-
ing.



Theoretical Views of Boosting and Applications 25

[41] Robert E. Schapire and Yoram Singer. BoosTexter: A boosting-based system for
text categorization. Machine Learning, to appear.

[42] Robert E. Schapire, Yoram Singer, and Amit Singhal. Boosting and Rocchio ap-
plied to text filtering. In SIGIR ’98: Proceedings of the 21st Annual International
Conference on Research and Development in Information Retrieval, 1998.

[43] Holger Schwenk and Yoshua Bengio. Training methods for adaptive boosting of
neural networks. In Advances in Neural Information Processing Systems 10, pages
647–653, 1998.

[44] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, November 1984.

[45] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer, 1995.



Extended Stochastic Complexity and

Minimax Relative Loss Analysis

Kenji Yamanishi

Theory NEC Laboratory, Real World Computing Partnership,
C&C Media Research Laboratories, NEC Corporation,

4-1-1 Miyazaki, Miyamae-ku, Kawasaki, Kanagawa 216-8555, Japan,
yamanisi@ccm.cl.nec.co.jp

Abstract. We are concerned with the problem of sequential prediction
using a given hypothesis class of continuously-many prediction strategies.
An effective performance measure is the minimax relative cumulative loss
(RCL), which is the minimum of the worst-case difference between the
cumulative loss for any prediction algorithm and that for the best as-
signment in a given hypothesis class. The purpose of this paper is to
evaluate the minimax RCL for general continuous hypothesis classes un-
der general losses. We first derive asymptotical upper and lower bounds
on the minimax RCL to show that they match (k/2c) ln m within error of
o(ln m) where k is the dimension of parameters for the hypothesis class,
m is the sample size, and c is the constant depending on the loss function.
We thereby show that the cumulative loss attaining the minimax RCL
asymptotically coincides with the extended stochastic complexity (ESC),
which is an extension of Rissanen’s stochastic complexity (SC) into the
decision-theoretic scenario. We further derive non-asymptotical upper
bounds on the minimax RCL both for parametric and nonparametric
hypothesis classes. We apply the analysis into the regression problem to
derive the least worst-case cumulative loss bounds to date.

1 Introduction

1.1 Minimax Regret

We start with the minimax regret analysis for the sequential stochastic prediction
problem. Let Y be an alphabet, which can be either discrete or continuous. We
first consider the simplest case where Y is finite. Observe a sequence y1, y2, · · ·
where each yt(t = 1, 2, · · ·) takes a value in Y. A stochastic prediction algorithm
A performs as follows: At each round t = 1, 2, ..., n, A assigns a probability mass
function over Y based on the past sequence yt−1 = y1 · · · yt−1. The probability
mass function can be written as a conditional probability P (·|yt−1). After the
assignment, A receives an outcome yt and suffers a logarithmic loss defined by
− lnP (yt|yt−1). This process goes on sequentially. Note that A is specified by
a sequence of conditional probabilities: {P (·|yt−1) : t = 1, 2, ..}. After observing
a sequence ym = y1 · · · ym of length m, A suffers a cumulative logarithmic loss∑m

t=1

(− lnP (yt|yt−1)
)

where P (·|y0) = P0(·) is given.

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 26–38, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Extended Stochastic Complexity and Minimax Relative Loss Analysis 27

The goal of stochastic prediction is to make the cumulative loss as small as
possible. We introduce a reference set of prediction algorithms, which we call
a hypothesis class, then evaluate the cumulative loss for any algorithm relative
to it. For sample size m, we define the worst-case regret for A relative to a
hypothesis class H by

Rm(A : H) def= sup
ym

(
m∑

t=1

(− lnP (yt|yt−1)
)− inf

f∈H

m∑
t=1

(− ln f(yt|yt−1)
))

,

which means that the worst-case difference between the cumulative logarithmic
loss for A and that for the best assignment of a single hypothesis in H. Further
we define the minimax regret for sample size m by

Rm(H) = inf
A

Rm(A : H),

where the infimum is taken over all stochastic prediction algorithms. Note that
in the minimax regret analysis we require no statistical assumption for data-
generation mechanism, but consider the worst-case with respect to sequences.

Notice here that for any m, a stochastic prediction algorithm specifies a joint
probability mass function by

P (ym) =
m∏

t=1

P (yt|yt−1). (1)

Thus the minimax regret is rewritten as

Rm(H) = inf
P

sup
ym

ln
supf∈H f(ym)

P (ym)
.

Shtarkov [9] showed that the minimax regret is attained by the joint probability
mass function under the normalized maximum likelihood, defined as follows:

P (ym) =
supf∈H f(ym)∑
ym supf∈H f(ym)

and then the minimax regret amounts to be

Rm(H) =
∑
ym

sup
f∈H

f(ym). (2)

Specifically consider the case where the joint distribution is given by a prod-
uct of probability mass function belonging to a parametric hypothesis class
given by Hk = {Pθ(·) : θ ∈ Θ} where Θ is a k-dimensional compact set in
IRk. Let θ̂ be the maximum likelihood estimator (m.l.e.) of θ from ym (i.e.,
θ̂ = arg maxθ∈Θ Pθ(ym) where Pθ(ym) =

∏m
t=1 Pθ(yt)). Rissanen [8] proved that

under the condition that the central limit theorem holds for m.l.e. uniformly
over Θ, Rm(Hk) is asymptotically expanded as follows:

Rm(Hk) =
k

2
ln

m

2π
+ ln

∫ √
|I(θ)|dθ + o(1), (3)



28 Kenji Yamanishi

where I(θ) def= (Eθ[−∂2 lnPθ(y)/∂θi∂θj])i,j denotes the Fisher information ma-
trix and o(1) goes to zero uniformly with respect to ym as m goes to infinity.

For a given sequence ym and Hk, the negative log-likelihood for ym under
the joint probability mass function that attains the minimax regret is called the
stochastic complexity (SC) of ym (relative to Hk) [6],[7],[8], which we denote as
SC(ym). That is,

SC(ym) = − lnPθ̂(y
m) +

k

2
ln

m

2π
+ ln

∫ √
|I(θ)|dθ + o(1). (4)

The SC of ym can be thought of as an extension of Shannon’s information in the
sense that the latter measures the information of a data sequence relative to a
single hypothesis while the former does so relative to a class of hypotheses.

1.2 Purpose of This Paper and Overview of Results

We extend the minimax regret analysis in two ways. One is to extend it into
a general decision-theoretic scenario in which the hypothesis class is a class
of real-valued functions rather than a class of probability mass functions, and
the prediction loss is measured in terms of general loss functions (e.g., square
loss,Hellinger loss) rather than the logarithmic loss. It is motivated by the fact
that in real problems such as on-line regression and pattern-recognition, predic-
tion should be made deterministically and a variety of loss functions should be
used as a distortion measure for prediction.

We analyze the minimax relative cumulative loss (RCL), which is an exten-
sion of the minimax regret, under general losses. The minimax RCL has been
investigated in the community of computational learning theory, but most of
work are restricted to specific cases: 1) the case where general loss functions
are used but a hypothesis class is finite (e.g., [10], [3]) and 2) the case where a
hypothesis class is continuous but only specific loss functions such as the square
loss and the logarithmic loss are used (e.g., [1], [4],[5],[2],[11]), or only specific hy-
pothesis classes such as the Bernoulli model and the linear regression model (e.g.,
[2],[11]) are used. This paper offers a universal method of minimax RCL analysis
relative to general continuous hypothesis classes under general loss functions.

We first derive asymptotical upper and lower bounds on the minimax RCL
to show that they match (k/2c) lnm within error of o(ln m) where k is the
dimension of parameters for the hypothesis class, m is the sample size, and c is
the constant depending on the loss function. According to [12], we introduce the
extended stochastic complexity (ESC) to show that the ESC is an approximation
to the minimax solution to RCL. The relation between ESC and the minimax
RCL is an analogue of that between SC and the minimax regret. This gives a
unifying view of the minimax RCL/the minimax regret analysis.

The other way of extension is to introduce a method of non-asymptotical
analysis, while (3) is an asymptotical result, that is, it is effective only when the
sample size is sufficiently large. Since sample size is not necessarily large enough
in real situations, theoretical bounds that hold for any sample size would be
practically useful.



Extended Stochastic Complexity and Minimax Relative Loss Analysis 29

Non-asymptotical bounds on the minimax regret and RCL were derived in
[1],[5],[2],[11] for continuous hypothesis classes under specific losses. We take a
new approach to derive non-asymptotical bounds on the minimax RCL both for
parametric and non-parametric hypothesis classes under general losses.

The rest of this paper is organized as follows: Section 2 gives a formal defini-
tion of the minimax RCL. Section 3 overviews results on asymptotical analysis
of the minimax RCL. Section 4 gives non-asymptotical analysis of the minimax
RCL. Section 5 shows an application of our analysis to the regression problem.

2 Minimax RCL

For a positive integer n, let X be a subset of IRn, which we call the domain.
Let Y = {0, 1} or Y = [0, 1], which we call the range. Let Z = [0, 1] or Z be a
set of probability mass functions over Y. We call Z the decision space. We set
D = X ×Y. We write an element in D as D = (x, y). Let L : Y ×Z → IR+ ∪{0}
be a loss function.

A sequential prediction algorithm A performs as follows: At each round t =
1, 2, · · · , A receives xt ∈ X then outputs a predicted result zt ∈ Z on the basis
of Dt−1 = D1 · · ·Dt−1 where Di = (xi, yi) (i = 1, · · · , t−1). Then A receives the
correct outcome yt ∈ Y and suffers a loss L(yt, zt). Hence A defines a sequence
of maps: {ft : t = 1, 2, · · ·} where ft(xt) = zt. A hypothesis class H is a set of
sequential prediction algorithms.

Definition 1. For sample size m, for a hypothesis class H, let Dm(H) be a
subset of Dm depending on H. For any sequential prediction algorithm A, we
define the worst-case relative cumulative loss (RCL) by

Rm(A : H) def= sup
Dm∈Dm(H)

(
m∑

t=1

L(yt, zt)−min
f∈H

m∑
t=1

L(yt, ft(xt))

)
,

where zt is the output of A at the tth round. We define the minimax RCL by

Rm(H) = inf
A
Rm(A : H), (5)

where the infimum is taken over all sequential prediction algorithms. We assume
here that any prediction algorithm knows the sample size m in advance.

Consider the special case where X = ∅,Y = {0, 1}, Z =the set of probability
mass functions over Y, and the loss function is the logarithmic loss: L(y, P ) =
− lnP (y). (Throughout this paper we call this case the probabilistic case.) We
can easily check that in the probabilistic case the minimax RCL (5) is equivalent
with the minimax regret (3).

Hereafter, we consider only the case where Z = [0, 1], that is, the prediction
is made deterministically. Below we give examples of loss functions for this case.



30 Kenji Yamanishi

L(y, z) = (y − z)2 (square loss),

L(y, z) = y ln
y

z
+ (1 − y) ln

1− y

1− z
(entropic loss),

L(y, z) =
1
2

((√
y −√z

)2 +
(√

1− y −√1− z
)2
)

(Hellinger loss),

L(y, z) =
1
2
(−(2y − 1)(2z − 1) + ln(e2z−1 + e−2z+1) + B) (logistic loss),

where B = ln(1 + e−2).
For a loss function L, we define L0(z) and L1(z) by L0(z) def= L(0, z) and

L1(z) def= L(1, z), respectively. We make the following assumption for L.

Assumption 1 The loss function L satisfies:
1) L0(z) and L1(z) are twice continuously differentiable with respect to z. L0(0) =
L1(1) = 0. For any 0 < z < 1, L′0(z) > 0 and L′1(z) < 0.
2) Define λ∗ by

λ∗ def=
(

sup
0<z<1

L′0(z)L′1(z)2 − L′1(z)L′0(z)2

L′0(z)L′′1(z)− L′1(z)L′′0(z)

)−1

. (6)

Then 0 < λ∗ < ∞.
3) Let G(y, z, w) = λ∗(L(y, z)− L(y, w)). For any y, z, w ∈ [0, 1], ∂2G(y, z, w)/
∂y2 + (∂G(y, z, w)/∂y)2 ≥ 0.

For example, λ∗ = 1 for the entropic loss, λ∗ = 2 for the square loss, and
λ∗ =

√
2 for the Hellinger loss. In the case of Y = {0, 1} instead of Y = [0, 1],

Condition 3) is not necessarily required.

3 Asymptotical Results

According to [12], we introduce the notion of ESC in order to derive upper
bounds on the minimax RCL.

Definition 2. Let µ be a probability measure on a hypothesis class H. For a
given loss function L, for a sequence Dm ∈ Dm, we define the extended stochas-
tic complexity (ESC) of Dm relative to H by

I(Dm : H) def= − 1
λ∗

ln
∫

e−λ∗∑m

t=1
L(yy,ft(xt))µ(df). (7)

While SC was defined as the cumulative logarithmic loss that attains the min-
imax regret, ESC is not defined as the cumulative loss that attains the minimax
RCL. This is because it is not possible to get an explicit form of the minimax
solution to RCL for general losses. It will turn out in this section, however, that
the ESC is a tight upper bound on the cumulative loss that attains the minimax
RCL within error of o(lnm).



Extended Stochastic Complexity and Minimax Relative Loss Analysis 31

Lemma 1. Under Assumption 1, there exists a sequential prediction algorithm
such that for any Dm, its cumulative loss is upper-bounded by I(Dm : H).

Lemma 1 can be proven using Vovk’s aggregating algorithm [10] with its
analysis in [3].

In order to make a connection between ESC and the minimax RCL, we focus
on the specific case where H is a parametric class such that any prediction
algorithm in H is written as a sequence of functions each of which belongs to a
parametric class Hk = {fθ(·) : θ ∈ Θ} where Θ is a k-dimensional compact set
in IRk. In this case the ESC of Dm relative to Hk is written as

I(Dm : Hk) = − 1
λ∗

ln
∫

dθπ(θ)e−λ∗∑m

t=1
L(yy,fθ(xt)), (8)

where π(θ) is a prior probability density over Θ.
We make the following assumption for L,Hk, and π.

Assumption 2 The following conditions hold for L,Hk, and π:
1) Define a matrix Ĵ(θ) by

Ĵ(θ) def=
1
m

(
∂2
∑m

t=1 L(yt, fθ(xt))
∂θi∂θj

∣∣∣
θ

)
i,j=1,···k

and let µ(Dm : θ) be the largest eigenvalue of Ĵ(θ). Let d = dm be a sequence
such that dm > k, limm→∞ dm = ∞, and limm→∞(dm/m) = 0. Let θ̂ be the
minimum loss estimator of θ defined by θ̂ = argminθ∈Θ

∑m
t=1 L(yt, fθ(xt)) Then

for some 0 < µ < ∞,

sup
Dm

sup
θ:|θ−θ̂|<(dm/m)1/2

µ(Dm : θ) ≤ µ.

2) Let Nm
def= {θ ∈ Θ : |θ − θ̂| ≤ √

dm/m} and N ′
m

def= {θ ∈ IRk : |θ − θ̂| ≤√
dm/m}. Then for some 0 < r < 1, for all sufficiently large m, vol(Nm) ≥

r × vol(N ′
m) where vol(S) is Lebesgue volume of S.

3) For some c > 0, for any θ ∈ Θ, π(θ) ≥ c.

The following lemma gives an asymptotical upper bound on the worst-case
ESC.

Lemma 2. [12] Let Dm(Θ) be a subset of Dm such that ∂
∑m

t=1 L(yt, fθ(xt))/
∂θ|θ=θ̂ = 0. Under Assumption 2, for all Dm ∈ Dm(Θ), we have

I(Dm : Hk) ≤ min
θ∈Θ

m∑
t=1

L(yt, fθ(xt)) +
k

2λ∗
ln

mλ∗µ
2π

+
1
λ∗

ln
1
rc

+ o(1), (9)

where limm→∞ o(1) = 0 uniformly over Dm(Θ).



32 Kenji Yamanishi

Note that in the probabilistic case, λ∗ = 1 hence the righthand side of (9)
coincides the SC of (4) within error of O(1).

The main technique to prove (9) is Laplace’s method, which approximates
an integral using a Gaussian integral in the neighborhood of the minimum loss
estimator. The proof is sketched as follows:

Proof. For sample size m, let δm =
√

dm/m for dm as in Assumption 2. For a
minimum loss estimator θ̂ of θ from Dm, let Nδm = {θ ∈ Θ : |θ − θ̂| ≤ δm} be
a neighborhood of θ̂. We denote

∑m
t=1 L(yt, fθ(xt)) as L(Dm : fθ). Then for all

Dm ∈ Dm(Θ), letting η ∈ Nδm , we have

I(Dm : Hk)

≤ − 1
λ∗

ln
∫

Nδm

dθπ(θ) exp (−λ∗L(Dm : fθ))

≤ − 1
λ∗

ln
∫

Nδm

dθπ(θ) exp
(
−λ∗L(Dm : fθ̂)−

λ∗m
2

(θ − θ̂)T Ĵ(η)(θ − θ̂)
)

≤ − 1
λ∗

ln
∫

Nδm

dθπ(θ) exp

(
−λ∗L(Dm : fθ̂)−

λ∗µm

2

k∑
i=1

(θi − θ̂i)2
)

≤ L(Dm : fθ̂)−
1
λ∗

lnπ(θ∗) + ln
∫

Nδm

dθ exp

(
−λ∗µm

2

k∑
i=1

(θi − θ̂i)2
)

, (10)

where θ∗ is the point in Nδm that attains the minimum of π(θ). The notations
of Ĵ(η) and µ follow Assumption 2.

Let N ′
δm

= {θ ∈ IRk : |θ − θ̂| ≤ δm}. Then

∫
Nδm

exp

(
−λ∗µm

2

k∑
i=1

(θi − θ̂i)2
)

dθ ≥ r

∫
N ′

δm

exp

(
−λ∗µm

2

k∑
i=1

(θi − θ̂i)2
)

dθ

≥ r

(
1− k

dm

)(
2π

m

)k/2 (√
(λ∗µ)k

)−1

.

(11)

See [12] for the last inequality. Plugging (11) into (10) and letting dm go to
infinity yield (9). ut

Combining Lemmas 1 with 2 leads the following asymptotical upper bound
on the minimax RCL.

Theorem 1. Under Assumptions 1 and 2,

Rm(Hk) ≤ k

2λ∗
ln

mλ∗µ
2π

+
1
λ∗

ln
1
rc

+ o(1), (12)

where Dm(H) as in Definition 1 is set to Dm(Θ).



Extended Stochastic Complexity and Minimax Relative Loss Analysis 33

In order to investigate how tight (12) is, we derive an asymptotical lower
bound on the minimax RCL.

Theorem 2. [13]. When L is the entropic loss or the square loss, for some
regularity condition for H,

Rm(Hk) ≥
(

k

2λ∗
− o(1)

)
lnm. (13)

Furthermore, under some regularity conditions for Hk and a general L in addi-
tion to Assumptions 1 and 2, (13) holds.

(Note: The current forms of the regularity conditions required for general
losses are very complicated [13] and remain to be simplified. )

By Theorems 1 and 2, we have the following corollary relating the ESC to
the minimax regret. It is formally summarized as follows:

Corollary 1. Let

Im(Hk) def= sup
Dm∈Dm(Θ)

(
I(Dm : Hk)−min

θ

m∑
t=1

L(yt, fθ(xt))

)
.

Then under the conditions as in Theorems 1 and 2,

lim
m→∞

|Im(H)−Rm(Hk)|
lnm

= 0.

Corollary 1 shows that the ESC can be thought of as the cumulative loss
that attains the minimax RCL within error of o(ln m). It corresponds to the fact
that SC is the cumulative logarithmic loss that attains the minimax regret. This
gives a rationale that ESC is a natural extension of SC.

4 Non-asymptotical Results

4.1 Log-Loss Case

Bounds (4), (12) and (13) is asymptotical in the sense that they are effective
only when the sample size m is sufficiently large. This section derives non-
asymptotical upper bounds on the minimax RCL, which might not be tight,
but hold for any sample size. First, we overview the results by Cesa-Bianchi and
Lugosi [1] for the probabilistic case under the logarithmic loss.

Let (S, d) be a metric space where S is a class of joint probability mass
functions each of which is decomposed as in (1) and d is the metric such that

d(f, g) =

(
m∑

t=1

d2
t (f, g)

)1/2

,

where dt(f, g) = supyt

∣∣ln f(yt|yt−1)− ln g(yt|yt−1)
∣∣ .



34 Kenji Yamanishi

For T ⊂ S, for ε > 0, let N(T, ε) be the cardinality of the smallest subset
T ′ ⊂ S such that for all f ∈ T, for some g ∈ T ′, d(f, g) ≥ ε.

The following theorem shows a non-asymptotical upper bound on the mini-
max regret.

Theorem 3. [1] For any class H,

Rm(H) ≤ inf
ε>0

(
lnN(H, ε) + 12

∫ ε

0

√
lnN(H, δ)dδ

)
.

In deriving the above bound we don’t require regularity condition for H such
as the central limit theorem condition required for (3) to be satisfied. It actually
holds regardless H is parametric or no-parametric.

Theorem 3 leads as a special case the following non-asymptotical upper bound
on the minimax regret for parametric hypothesis classes.

Corollary 2. [1] Consider a class H such that for some positive constants k
and c, for all ε > 0,

lnN(H, ε) ≤ k ln
(
c
√

m/ε
)
. (14)

Then for m ≥ (288 ln(c
√

m))/kc2, we have

Rm(H) ≤ k

2
lnm +

k

2
ln

c2 ln(c
√

m)
k

+ 5k. (15)

Note that Condition (14) holds for most classes parametrized smoothly by a
bounded subset of IRk.

4.2 General-Loss Cases

Next for a decision-theoretic case under general losses other than the logarith-
mic loss, we derive non-asymptotical upper bounds on the minimax RCL in a
different manner from Cesa-Bianchi and Lugosi’s. First we investigate the case
where the hypothesis class is parametric.

Theorem 4. [13] Under Assumptions 1 and 2,

Rm(Hk) ≤ k

2λ∗
lnm +

k

2λ∗
ln
(
λ∗µeF 2V 2/k

)
, (16)

where Dm(H) as in Definition 1 is set to Dm(Θ).

Proof. The main technique to prove (16) is to discretize the hypothesis class
with an appropriate size and then to apply the aggregating algorithm over the
discretized hypothesis class. The most important issue is how to choose the
number of discrete points.

For F ≥ 1, let ∆ be a subset of Θ whose size is N and for which the dis-
cretization scale is at most F

√
k(V/N)1/k. That is, supθ∈Θ minθ′∈∆ |θ − θ′| ≤



Extended Stochastic Complexity and Minimax Relative Loss Analysis 35

F
√

k(V/N)1/k. This means that the discretization scale for each component in
∆ is roughly uniform within a constant factor. It is a quite natural requirement
for the discretization.

Let θ̂=argminθ∈Θ

∑m
t=1 L(yt, fθ(xt)) and θ̄=arg minθ∈∆

∑m
t=1 L(yt, fθ(xt)).

We write the relative cumulative loss for any algorithm A as R(A : Dm). Letting
ŷt be the output of A at the tth round, we see

R(A : Dm) =

(
m∑

t=1

L(yt, ŷt)−
m∑

t=1

L(yt, fθ̄(xt))

)
(17)

+

(
m∑

t=1

L(yt, fθ̄(xt))−
m∑

t=1

L(yt, fθ̂(xt))

)
.

Letting H̃k = {fθ(·) : θ ∈ ∆} and A be the aggregating algorithm AG using
H̃k, by Lemma 1, we see

m∑
t=1

L(yt, ŷt) ≤ I(Dm : H̃k)

= − 1
λ∗

ln
1
N

∑
θ∈∆

e−λ∗∑m

t=1
L(yt,fθ(xt))

≤
m∑

t=1

L(yt, fθ̄(xt)) +
1
λ∗

lnN.

This leads:

sup
Dm∈Dm(Θ)

(
m∑

t=1

L(yt, ŷt)−
m∑

t=1

L(yt, fθ̄(xt))

)
≤ 1

λ∗
lnN. (18)

By Taylor expansion argument, for all Dm ∈ Dm(Θ),

m∑
t=1

L(yt, fθ̄(xt))−
m∑

t=1

L(yt, fθ̂(xt)) ≤ µm

2
|θ̂ − θ̄|2 ≤ µmF 2k

2

(
V

N

)2/k

. (19)

Plugging (18) and (19) into (17) yields

sup
Dm∈Dm(Θ)

R(AG : Dm) ≤ 1
λ∗

lnN +
µmF 2k

2

(
V

N

)2/k

. (20)

The minimum of (20) w.r.t. N is attained by N = d(λ∗µmF 2)k/2V e. Plugging
this optimal size into (20) and choosing ∆ so that F is smallest yield (16). ut

Next we investigate the case where the hypothesis class is nonparametric,
but can be approximated by a sequence of parametric hypothesis classes.



36 Kenji Yamanishi

Theorem 5. Let {Hk : k = 1, 2, ..} be a sequence of classes such that H1 ⊂
H2 ⊂ · · · where Hk is a k-dimensional parametric hypothesis class. Let F be a
hypothesis class such that for some C, α > 0,

sup
f∈F

inf
h∈Hk

sup
Dm

|L(Dm : f)− L(Dm : h)|/m ≤ C/kα, (21)

where L(Dm : f) =
∑m

t=1 L(yt, f(xt)). Then under Assumption 1 and 2, for
some A, B > 0 depending on λ∗, C, and α,

Rm(F) ≤ Am
1

α+1 ln
α

α+1 m + B
( m

lnm

) 1
α+1

ln
(
λ∗µeF 2V 2/k

)
.

Proof. Fix k. By (16) and (21), we have

Rm(F) ≤ Rm(Hk) + sup
f∈F

inf
h∈Hk

sup
Dm

|L(Dm : f)− L(Dm : h)|

≤ k

2λ∗
lnm +

k

2λ∗
ln
(
λ∗µeF 2V 2/k

)
+

mC

kα
.

Setting k = (2λ∗αCm/ lnm)
1

α+1 in the last inequality yields (22). ut
Condition (21) means that the worst-case approximation error for Hk to F

is O(1/kα). Eq. (16) is regarded as a special case of (22) where α is infinite.

5 Minimax RCL for Regression

We apply the results in Sections 3 and 4 into the regression problem. We consider
the case where the hypothesis class is a class of linear functions of a feature vector
and the distortion measure is the square loss. Such a case has entensively been
investigated in the linear regression (LR) scenario in statistics. Our analysis is
different from conventional ones in the following regards:
1) Although it is assumed in the classical LR that a noise is additive and is
generated according to a Gaussian distribution, we don’t make any probabilistic
assumption either for a target distribution or a hypothesis class, but instead
perform worst-case analysis in terms of the worst-case RCL. Additionally, we
emphasize that we consider the regression problem in the on-line prediction
scenario rather than in the batch-learning scenario as in the classical LR.
2) While most algorithms investigated in the classical LR take linear forms of
a feature vector, we don’t restrict ourselves into them, but rather consider non-
linear prediction algorithms using a hypothesis class of linear functions.

Let X = {x = (x(1), · · · , x(k)) ∈ [0, 1]k : (x(1))2 + · · · + (x(k))2 ≤ 1} and
Y = Z = [0, 1]. Let Θ = {θ = (θ1, · · · , θk) ∈ [0, 1]k : θ2

1 + · · · + θ2
k ≤ 1}. Let a

hypothesis class be

Hk = {fθ(X) = θT x : x ∈ X , θ ∈ Θ}.
This is known as a class of linear predictors. Let L be the square loss function.
Then λ∗ = 2. For α > 0, let π(θ) = e−αθT θ/V (Θ) where V (Θ) =

∫
Θ

e−αθT θdθ.



Extended Stochastic Complexity and Minimax Relative Loss Analysis 37

Below we describe the aggregating algorithm [10],[12] using Hk, denoted as
AG. At the tth round, AG takes as input Dt−1 and xt, then outputs ŷt s.t.

ŷt =
1

2

((
−1

2
ln

∫
p(θ|Dt−1)e−2(θx)2dθ

) 1
2

+1−
(
−1

2
ln

∫
p(θ|Dt−1)e−2(1−θx)2dθ

) 1
2
)

,

where

p(θ|Dt−1) =
e−2(θ−µt)

T Σt(θ−µt)∫
e−2(θ−µt)T Σt(θ−µt)dθ

,

Σ
(p,q)
t = αδp,q +

t−1∑
j=1

x
(p)
j x

(q)
j , µt = Σ−1

t At, A
(p)
t =

t−1∑
j=1

yjx
(p)
j ,

where Σ(p,q), x
(p)
j and A

(p)
t denote the (p, q)th component of Σ, the pth compo-

nent of xj , and the pth component of At, respectively (p, q = 1, · · · , k), δp,q = 1
if p = q and δp,q = 0 if p 6= q.

We can set µ = 2k, r = 1/2k, c = e−α/V (Θ). By (1) we have the following
upper bound on the worst-case RCL for AG:

Rm(AG : Hk) ≤ k

4
ln

2mk

π
+

1
2

ln 2keαV (Θ) + o(1). (22)

Note that the parameters in Theorem 4 are: V = πk/2/2kΓ (1 + k/2) and
F = 1. By (16), we have

Rm(Hk) ≤ k

4
lnm +

k

4
ln
(

keπ

Γ (1 + k/2)2/k

)
. (23)

Vovk [11] derived a similar non-asymptotic upper bound on the worst-case
RCL for the aggregating algorithm using linear predictors. His bound matches
(23) up to the k

4 lnm term.
Kivinen and Warmuth [4] proposed the gradient descent algorithm (GD) and

the exponentiated gradient algorithm (EG) as sequential prediction algorithms
using the linear predictors. Notice here that the outputs of both EG and GD are
linear in x, whereas that of AG is not linear in x. They showed

sup
Dm

R(GD : Dm) = O(
√

m),

sup
Dm

R(EG : Dm) = O
(
k
√

m ln k
)

.

Eq.(22) shows that the upper bound on the worst-case RCL for AG is O(k lnm),
which is smaller than those for GD and EG when m is sufficiently large and the
parameter size k is fixed.



38 Kenji Yamanishi

References

1. Cesa-Bianchi,N., and Lugosi, G., Minimax regret under log loss for general classes
of experts, in Proc. of COLT’99, (1999).

2. Freund,Y., Predicting a binary sequence almost as well as the optimal biased coin,”
in Proc. of COLT’96, 89-98 (1996).

3. Haussler, D., Kivinen, J., and Warmuth, M., Tight worst-case loss bounds for pre-
dicting with expert advice, Computational Learning Theory: EuroCOLT’95, Springer,
69-83 (1995).

4. Kivinen,J., and Warmuth,M., “Exponentiated gradient versus gradient descent for
linear predictors,” UCSC-CRL-94-16, 1994.

5. Opper,M., and Haussler,D., Worst case prediction over sequence under log loss, in
Proc. of IMA Workshop in Information, Coding, and Distribution, Springer, 1997.

6. Rissanen, J., Stochastic complexity, J. R. Statist. Soc. B, vol.49, 3, 223-239(1987).
7. Rissanen, J., Stochastic Complexity in Statistical Inquiry, World Scientific, Singa-

pore, 1989.
8. Rissanen, J., Fisher information and stochastic complexity, IEEE Trans. on Inf.

Theory, vol.IT-42, 1, 40-47 (1996).
9. Shtarkov, Y.M., Universal sequential coding of single messages, Probl. Inf. Trans-

mission., 23(3):3-17 (1987).
10. Vovk, V.G., Aggregating strategies, in Proc. of COLT’90, Morgan Kaufmann, 371-

386(1990).
11. Vovk, V.G., Competitive on-line linear regression, in Proc. of Advances in NIPS’98,

MIT Press, 364-370(1998).
12. Yamanishi, K., A decision-theoretic extension of stochastic complexity and its ap-

plications to learning, IEEE Tran. on Inf. Theory, IT-44, 1424-1439(1998).
13. Yamanishi, K., Minimax relative loss analysis for sequential prediction algorithms

using parametric hypotheses, in Proc. of COLT’98, ACM Press, pp:32-43(1998).



Algebraic Analysis for Singular Statistical

Estimation

Sumio Watanabe

P&I Lab., Tokyo Institute of Technology,
4259 Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan

swatanab@pi.titech.ac.jp

http://watanabe-www.pi.titech.ac.jp/index.html

Abstract. This paper clarifies learning efficiency of a non-regular para-
metric model such as a neural network whose true parameter set is an
analytic variety with singular points. By using Sato’s b-function we rig-
orously prove that the free energy or the Bayesian stochastic complexity
is asymptotically equal to λ1 log n− (m1 − 1) log log n+constant, where
λ1 is a rational number, m1 is a natural number, and n is the number
of training samples. Also we show an algorithm to calculate λ1 and m1

based on the resolution of singularity. In regular models, 2λ1 is equal to
the number of parameters and m1 = 1, whereas in non-regular models
such as neural networks, 2λ1 is smaller than the number of parameters
and m1 ≥ 1.

1 Introduction

From the statistical point of view, layered learning machines such as neural
networks are not regular models. In a regular statistical model, the set of true
parameters consists of only one point and identifiable even if the learning model
is larger than necessary to attain the true distribution (over-realizable case). On
the other hand, if a neural network is in the over-realizable case, the set of true
parameters is not one point or not a manifold, but an analytic variety with sin-
gular points. For such non-regular and non-identifiable learning machines, the
maximum likelihood estimator does not exist or is not subject to the asymp-
totically normal distribution, resulting that their learning efficiency is not yet
clarified [1] [2] [3][4][5]. However, analysis for the over-realizable case is necessary
for selecting the optimal model which balances the function approximation error
with the statistical estimation error [3].

In this paper, by employing algebraic analysis, we prove that the free energy
F (n) ( or called the Bayesian stochastic complexity or the average Bayesian
factor) has the asymptotic form

F (n) = λ1 logn− (m1 − 1) log logn+O(1),

where n is the number of empirical samples. We also show that an algorithm
to calculate the positive rational number λ1 and the natural number m1 using

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 39–50, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



40 Sumio Watanabe

Hironaka’s resolution of singularities, and that 2λ1 is smaller than the number
of parameters. Since the increase of the free energy F (n + 1) − F (n) is equal
to the generalization error defined by the average Kullback distance of the esti-
mated probability density from the true one, our result claims that non-regular
statistical models such as neural networks are the better learning machines than
the regular models if the Bayesian estimation is applied in learning.

2 Main Results

Let p(y|x,w) be a conditional probability density from an input vector x ∈
RM to an output vector y ∈ RN with a parameter w ∈ Rd, which represents
probabilistic inference of a learning machine. Let ϕ(w) be a probability density
function on the parameter space Rd, whose support is denoted byW = supp ϕ ⊂
Rd. We assume that training or empirical sample pairs {(xi, yi); i = 1, 2, ..., n}
are independently taken from q(y|x)q(x), where q(x) and q(y|x) represent the
true input probability and the true inference probability, respectively. In the
Bayesian estimation, the estimated inference pn(y|x) is the average of the a
posteriori ensemble,

pn(y|x) =
∫
p(y|x,w)ρn(w)dw,

ρn(w) =
1
Zn

ϕ(w)
n∏

i=1

p(yi|xi, w),

where Zn is a constant which ensures
∫
ρn(w)dw = 1. The learning efficiency

or the generalization error is defined by the average Kullback distance of the
estimated probability density pn(y|x) from the true one q(y|x),

K(n) = En{
∫

log
q(y|x)
pn(y|x)q(x, y)dxdy}

where En{·} shows the expectation value over all sets of training sample pairs.
In this paper we mainly consider the statistical estimation error and assume

that the model can attain the true inference, in other words, there exists a
parameter w0 ∈W such that p(y|x,w0) = q(y|x). Let us define the average and
empirical loss functions.

f(w) =
∫

log
p(y|x,w0)
p(y|x,w)

q(y|x)q(x)dxdy,

fn(w) =
1
n

n∑
i=1

log
p(yi|xi, w0)
p(yi|xi, w)

.

Note that f(w) ≥ 0. By the assumption, the set of the true parameters W0 =
{w ∈ W ; f(w) = 0} is not an empty set. W0 is called an analytic set or analytic
variety of the analytic function f(w). Note that W0 is not a manifold in general,
since it has singular points.



Algebraic Analysis for Singular Statistical Estimation 41

From these definitions, it is immediately proven [4] that the average Kullback
distance K(n) is equal to the increase of the free energy F (n).

K(n) = F (n+ 1)− F (n),

F (n) = −En{log
∫

exp(−nfn(w))ϕ(w)dw},

where F (n) is sometimes called Bayesian stochastic complexity or Bayesian fac-
tor. Theorem 1 and 2 are the main results of this paper. Let C∞0 be a set of all
compact support and C∞-class functions on Rd.

Theorem 1 Assume that f(w) is an analytic function and ϕ(w) is a probability
density function on Rd. Then, there exists a real constant C1 such that for any
natural number n

F (n) ≤ λ1 logn− (m1 − 1) log logn+ C1, (1)

where the rational number −λ1 (λ1 > 0) and a natural number m1 is the largest
pole and its multiplicity of the meromorphic function that is analytically contin-
ued from

J(λ) =
∫

f(w)<ε

f(w)λϕ(w)dw (Re(λ) > 0).

where ε > 0 is a sufficiently small constant, and ϕ(w) is an arbitrary nonzero
C∞0 -class function that satisfies 0 ≤ ϕ(w) ≤ ϕ(w).

Theorem 2 Let σ > 0 be a constant value. Assume that

p(y|x,w) =
1

2σ2
exp(−‖y − ψ(x,w)‖2

2σ2
),

where ψ(x,w) is an analytic function for w ∈ Rd and a continuous function
for x ∈ RM . Also assume that ϕ(w) is a C∞0 -class probability density function.
Then, there exists a constant C2 > 0 such that for any natural number n

|F (n)− λ1 logn+ (m1 − 1) log logn| ≤ C2,

where the rational number −λ1 (λ1 > 0) and a natural number m1 is the largest
pole and its multiplicity of the meromorphic function that is analytically contin-
ued from

J(λ) =
∫

f(w)<ε

f(w)λϕ(w)dw (Re(λ) > 0).

where ε > 0 is a sufficiently small constant.

From Theorem 2, if the average Kullback distance K(n) has an asymptotic
expansion, then

K(n) =
λ1

n
− m1 − 1
n logn

+ o(
1

n log n
).

As is well known, regular statistical models have λ1 = d/2 and m1 = 1. However,
non-regular models such as neural networks have smaller λ1 and larger m1 in
general [3].



42 Sumio Watanabe

3 Proof of Theorem 1

Lemma 1 The upper bounds of the free energy is given by

F (n) ≤ − log
∫

exp(−nf(w))ϕ(w)dw.

[Proof of Lemma 1] From Jensen’s inequality and En(fn − f) = 0, lemma 1 is
obtained. (Q.E.D.)

For a given ε > 0, a set of parameters is defined by

Wε = {w ∈W ≡ supp ϕ; f(w) < ε}.

Theorem 3 (Sato, Bernstein, Björk, Kashiwara) Assume that there exists ε0 >
0 such that f(w) is an analytic function in Wε0 . Then there exists a set (ε, P, b),
where
(1) ε < ε0 is a positive constant,
(2) P = P (λ,w, ∂w) is a differential operator which is a polynomial for λ, and
(3) b(λ) is a polynomial, such that

P (λ,w, ∂w)f(w)λ+1 = b(λ)f(w)λ (∀w ∈Wε,
∀ λ ∈ C).

The zeros of the equation b(λ) = 0 are real, rational, and negative numbers.

[Explanation of Theorem] This theorem is proven based on the algebraic property
of the ring of partial differential operators. See references [6][7][8]. The rationality
of the zeros of b(λ) = 0 is shown based on the resolution of singularity [9][13].
The smallest order polynomial b(λ) that satisfies the above relation is called a
Sato-Bernstein polynomial or a b-function.

Hereafter ε > 0 is taken smaller than that in this theorem. We can assume that
ε < 1 without loss of generality. For a given analytic function f(w), let us define
a complex function J(λ) of λ ∈ C by

J(λ) =
∫

Wε

f(w)λϕ(w)dw.

Lemma 2 Assume that ϕ(w) is a C∞0 -class function. Then, J(λ) can be ana-
lytically continued to the meromorphic function on the entire complex plane, in
other words, J(λ) has only poles in |λ| <∞. Moreover J(λ) satisfies the follow-
ing conditions.
(1) The poles of J(λ) are rational, real, and negative numbers.
(2) For an arbitrary a ∈ R, J(∞+ a

√−1) = 0, and J(a±∞ · √−1) = 0.



Algebraic Analysis for Singular Statistical Estimation 43

[Proof of Lemma 2] J(λ) is an analytic function in the region Re(λ) > 0. J(∞+
a
√−1) = 0 is shown by the Lebesgue’s convergence theorem. For a > 0, J(a+
∞√−1) = 0 is shown by the the Riemann-Lebesgue theorem. Let P ∗ be the
adjoint operator of P = P (λ,w, ∂w). Then, by Theorem 3,

J(λ) =
1
b(λ)

∫
Wε

Pf(w)λ+1ϕ(w)dw =
1
b(λ)

∫
Wε

f(w)λ+1P ∗ϕ(w)dw

Because P ∗ϕ ∈ C∞, J(λ) can be analytically continued to J(λ− 1) if b(λ) 6= 0.
By analytic continuation, then even for a < 0, J(a+∞√−1) = 0. For b(λ) = 0,
then such λ is a pole which is on the negative part of real axis. (Q.E.D.)

Definition Poles of the function J(λ) are on the negative part of the real axis
and contained in the set {m+ ν;m = 0,−1,−2, ..., b(ν) = 0}. They are ordered
from the bigger to the smaller by −λ1,−λ2,−λ3, · · · , (λk > 0 is a rational
number.) and the multiplicity of −λk is defined by mk.

We define a function I(t) from R to R by

I(t) =
∫

Wε

δ(t− f(w))ϕ(w)dw, (2)

where ε > 0 is taken as above. By definition, if t > ε or t < 0 then I(t) = 0.

Lemma 3 Assume that ϕ(w) is a C∞0 -class function. Then I(t) has an asymp-
totic expansion for t → 0. (The notation ∼= shows that the term can be asymp-
totically expanded.j

I(t) ∼=
∞∑

k=1

mk−1∑
m=0

ck,m+1 t
λk−1(− log t)m (3)

where m! · ck,m+1 is the coefficient of the (m + 1)-th order in the Laurent
expansion of J(λ) at λ = −λk.

[Proof of Lemma 3] The special case of this lemma is shown in [10]. Let IK(t)
be the restricted sum in I(t) from k = 1 to k = K. It is sufficient to show that,
for an arbitrary fixed K,

lim
t→0

(I(t)− IK(t))tλ = 0 (∀λ > −λK+1 + 1). (4)

From the definition of J(λ), J(λ) =
∫ 1

0

I(t)tλdt. The simple calculation shows
∫ 1

0

tλ+λk−1(− log t)mdt =
m!

(λ+ λk)m+1
. Therefore,

∫ 1

0

(I(t)− IK(t))tλdt = J(λ)−
K∑

k=1

mk−1∑
m=0

ck,m+1

(λ+ λk)m+1
.



44 Sumio Watanabe

By putting t = e−x and by using the inverse Laplace transform and the previous
Lemma 2, the complex integral path can be moved by regularity, which leads
eq.(4). (Q.E.D.)

[Proof of Theorem 1] By combining the above results, we have

F (n) ≤ − log
∫

W

exp(−nf(w))ϕ(w)dw ≤ − log
∫

Wε

exp(−nf(w))ϕ(w)dw

= − log
∫ 1

0

e−ntI(t)dt = − log
∫ n

0

e−tI(
t

n
)
dt

n

∼= − log{
∞∑

k=1

mk−1∑
m=0

m∑
j=0

ck,m+1(logn)j(mCj)
nλk

∫ n

0

e−ttλk−1(− log t)m−jdt}

= λ1 logn− (m1 − 1) log logn+O(1)

where I(t) is defined by eq.(2) with ϕ(w) instead of ϕ(w). (Q.E.D.)

4 Proof of Theorem 2

Hereafter, we assume that the model is given by

p(y|x,w) =
1√
2π

exp(−1
2
(y − ψ(x,w))2)).

It is easy to generalize the result to a general standard deviation (σ > 0) case
and a general output dimension (N > 1) case. For this model,

f(w) =
1
2

∫
(ψ(x,w) − ψ(x,w0))2q(x)dx

fn(w) =
1
2n

n∑
i=1

(ψ(xi, w)− ψ(xi, w0))2 − 1
n

n∑
i=1

ηi(ψ(xi, w) − ψ(xi, w0))

where {ηi ≡ yi − ψ(xi, w0)} are independent samples from the standard normal
distribution.

Lemma 4 Let {xi, ηi}n
i=1 be a set of independent samples taken from q(x)q0(y),

where q(x) is a compact support and continuous probability density and q0(y) is
the standard normal distribution. Assume that the function ξ(x,w) is analytic
for w and continuous for x, and that the Taylor expansion of ξ(x,w) among w
absolutely converges in the region T = {w; |wj −wj | < rj}. For a given constant
0 < a < 1, we define the region Ta ≡ {w; |wj −wj | < arj}. Then, the followings
hold.
(1) If

∫
ξ(x,w)q(x)dx = 0, there exists a constant c′ such that for an arbitrary

n,

An ≡ En{ sup
w∈Ta

| 1√
n

n∑
i=1

ξ(xi, w)|2} < c′ <∞



Algebraic Analysis for Singular Statistical Estimation 45

(2) There exists a constant c′′ such that for an arbitrary n,

Bn ≡ En{ sup
w∈Ta

| 1√
n

n∑
i=1

ηiξ(xi, w)|2} < c′′ <∞

[Proof of Lemma 4] We show (1). The statement (2) can be proven by the same
method. This lemma needs proof because supw∈Ta

is in the expectation. We
denote k = (k1, k2, ..., kd) and

ξ(x,w) =
∞∑

k=0

ak(x)(w − w)k =
∞∑

k1,...,kd=0

ak1···kd
(x)(w1 − w1)k1 · · · (wd − wd)kd .

Let K = supp q(x) be a compact set. Since ξ(x,w) is analytic for w, by Cauchy’s
integral formula for several complex functions, there exists δ > 0 such that

|ak(x)| ≤M/
d∏

j=1

|rj − δ|kj , M ≡ max
x∈K,w∈Ta

|ξ(x,w)|,

and that
∫
ak(x)q(x)dx = 0. Thus

En{| 1√
n

n∑
i=1

ak(xi)|2} 1
2 = {

∫
|ak(x)|2q(x)dx} 1

2 ≤ M∏
j |rj − δ|kj

.

Therefore,

A
1
2
n = En{ sup

w∈Ta

| 1√
n

n∑
i=1

ξ(xi, w)|2} 1
2 = En{ sup

w∈Ta

| 1√
n

n∑
i=1

∞∑
k=0

ak(xi)(w − w)k|2} 1
2

≤
∞∑

k=0

En{ sup
w∈Ta

| 1√
n

n∑
i=1

ak(xi)(w − w)k|2} 1
2 <∞

where δ is taken so that arj < rj − δ (j = 1, 2, ..., d). (Q.E.D.)

The function ζn(w) is defined as follows.

ζn(w) =
√
n(f(w)− fn(w))√

f(w)

Note that ζn(w) is holomorphic function of w except W0.

Theorem 4 Assume that ψ(x,w) is analytic for w ∈ Rd and continuous for
x ∈ RM . Also assume that q(x) is a compact support and continuous function.
Then, there exists a constant C3 such that for arbitrary n

En{ sup
w∈W\W0

|ζn(w)|2} < C3.

where W ⊂ Rd is a compact set.



46 Sumio Watanabe

[Proof of Theorem 4] Outside of the neighborhood of W0, this theorem can be
proven by the previous lemma. We assume that W = Wε. By compactness of W ,
W is covered by a union of finite small open sets. Thus we can assume w ∈ W
is in the neighborhood of w0 ∈ W . By inductively applying the Weierstrass’
preparation theorem [14] to the holomorphic function ψ(x,w) − ψ(x,w0), there
exists a finite set of functions {gj, hj}J

j=1, where gj(w) is a holomorphic function
and hj(x,w) is a continuous function for x and a holomorphic function for w,
such that

ψ(x,w) − ψ(x,w0) =
J∑

j=1

gj(w)hj(x,w). (5)

where the matrix

Mjk ≡
∫
hj(x,w0)hk(x,w0)q(x)dx

is positive definite. Let α > 0 be taken smaller than the minimum eigen value
of the matrix Mjk. By the definition,

f(w) =
1
2

J∑
j,k=1

gj(w)gk(w)
∫
hj(x,w)hk(x,w)q(x)dx,

is bounded by f(w) ≥ α

2

J∑
j=1

|gj(w)|2. by taking small ε > 0. We define

A(w) =
1
2

J∑
j,k=1

gj(w)gk(w)
1
n

n∑
i=1

ajk(xi, w)

ajk(xi, w) =
∫
hj(x,w)hk(x,w)q(x)dx − hj(xi, w)hk(xi, w),

B(w) =
J∑

j=1

gj(w){ 1
n

n∑
i=1

ηihj(xi, w)}.

Then A(w) +B(w) = f(w)− fn(w). By the Cauchy-Schwarz inequality,

En{|ζn(w)|2} = En{n|f(w)− fn(w)|2
f(w)

}

≤ En{ 2n
f(w)

(|A(w)|2 + |B(w)|2)} ≤ Const.

For the last inequalities, we applied the previous lemma 4. (Q.E.D.)

[Proof of Theorem 2] We define

αn = sup
w∈W\W0

|ζn(w)|.



Algebraic Analysis for Singular Statistical Estimation 47

Then, by Theorem 4, En{α2
n} <∞. The free energy or the Bayesian stochastic

complexity satisfies

F (n) = −En{log
∫

W

exp(−nfn(w))ϕ(w)dw}

= −En{log
∫

W

exp(−nf(w)−
√
nf(w)ζn(w))ϕ(w)dw}

≥ −En{log
∫

W

exp(−nf(w) + αn

√
nf(w))ϕ(w)dw}.

Let us define Zi(n) (i = 1, 2) by

Zi(n) =
∫

W (i)

exp(−nf(w) + αn

√
nf(w))ϕ(w)dw

where W (1) = Wε and W (2) = W \Wε. Then

F (n) ≥ −En{log(Z1(n) + Z2(n))}
= −En{logZ1(n)} − En{log(1 +

Z2(n)
Z1(n)

)}. (6)

Let F1(n) and F2(n) be the first and the second terms of eq.(6), respectively.
For F1(n), the same procedure as the upper bound can be applied,

F1(n) ∼= −En[ log{
∑

k,m,j

ck,m+1 ·m Cj(log n)j

nλk

∫ n

0

e−t+αn

√
ttλk−1(− log t)m−jdt} ]

= λ1 logn− (m1 − 1) log logn− En{log
∫ n

0

e−t+αn

√
t tλ1−1dt}+O(1)

= λ1 logn− (m1 − 1) log logn+O(1)

where we used αn

√
t ≤ (1/2)(t+ α2

n). The term F2(n) is evaluated by using

Z1 ≥
∫

Wε

exp(−nf(w))ϕ(w)dw ≥ c1,m1

(log n)m1−1

nλ1
,

and

Z2 ≤
∫

W\Wε

exp(−nf(w)− α2
n

2
)ϕ(w)dw ≤ (1 − ϕ(Wε)) exp(−nε− α2

n

2
),

we obtain Z2/Z1 ≤ exp(α2
n/2) for sufficiently large n. Hence

F2(n) ≥ −En{log(1 + exp(
α2

n

2
))} ≥ −En{α

2
n

2
} − En{log

1 + exp(α2
n

2 )

exp(α2
n

2 )
} > −∞.

In the last inequality, we used Theorem 4. (Q.E.D.)



48 Sumio Watanabe

5 Algorithm to Calculate the Learning Efficiency

The important values λ1 and m1 can be calculated by resolution of singularities.
Atiyah showed [13] that the following theorem is directly proven from Hironaka’s
theorem.

Theorem 5 (Hironaka) Let f(w) be a real analytic function defined in a neigh-
borhood of 0 ∈ Rd. Then there exist an open set U ⊃ 0, a real analytic manifold
U ′ and a proper analytic map g : U ′ → U such that
(1) g : U ′ \A′ → U \A is an isomorphism, where A = f−1(0) and A′ = g−1(A),
(2) for each P ∈ U ′ there are local analytic coordinates (u1, ..., ud) centered at
P so that, locally near P , we have

f(g(u1, ..., ud)) = h(u1, .., ud)uk1
1 u

k2
2 · · ·ukd

d

where h is an invertive analytic function and ki ≥ 0.

This theorem shows that the singularity of f can be locally resolved. The
following is an algorithm to calculate λ1 and m1.

Algorithm to calculate the singular learning efficiency
(1) Cover the analytic variety W0 = {w ∈ suppϕ; f(w) = 0} by the finite union
of open neighborhoods Uα.
(2) For each neighborhood Uα, find the analytic map g by using blowing up.
(3) For each neighborhood, the function Jα(λ) is calculated.

Jα(λ) ≡
∫

Uα

f(w)λϕ(w)dw

=
∫

g−1(Uα)

f(g(w))λϕ(g(u))|g′|du

=
∫

g−1(Uα)

h(u)λ
d∏

i=1

uλki

i ϕ(g(u))|g′|du,

where |g′| is Jacobian. The last integration can be done for each variable ui, and
poles and their multiplicities. of Jα(z) are obtained.
(4) By J(λ) =

∑
α Jα(λ), poles and their multiplicities can be calculated.

Example.1 (Regular Models) For the regular statistical models, by using the
appropriate coordinate (w1, ..., wd) the average loss function f(w) can be locally
written by

f(w) =
d∑

i=1

w2
i .

The blowing up of the singularity, we find a map g : (u1, ..., ud) 7→ (w1, ..., wd),

w1 = u1, wi = u1ui (2 ≤ i ≤ d)



Algebraic Analysis for Singular Statistical Estimation 49

Then the function J(λ) is

J(λ) =
∫
u2λ

1 (1 +
d∑

i=2

u2
i )

λ|u1|d−1ϕ(u1, u1u2, u1u3, ..., u1ud)du1du2 · · ·dud

This function has the pole at λ = −d/2 with the multiplicity m1 = 1. Therefore,
the free energy is

F (n) ∼= d

2
logn+O(1).

In this case, we also calculate the Sato’s b-function [11].

Example.2 If the model

p(y|x, a, b) =
1√
2π

exp(−1
2
(y − a tanh(bx))2)

is trained using samples from p(y|x, 0, 0), then

f(a, b) = a2

∫
tanh(bx)2q(x)dx.

In this case, the deepest singularity is the origin, and in the neighborhood of
the origin, f(a, b) = a2b2. From this fact, it immediately follows that λ1 = 1/2,
m1 = 2, resulting that

F (n) ∼= 1
2

logn− log logn+O(1).

Example.3 Let us consider a neural network

p(y|x, a, b, c, d) =
1√
2π

exp(−1
2
(y − ψ(x, a, b, c, d))2),

ψ(x, a, b, c, d) = a tanh(bx) + c tanh(dx).

Assume that the true regression function be ψ(x, 0, 0, 0, 0). Then, the deepest
singularity of f(a, b, c, d) is (0, 0, 0, 0) and in the neighborhood of the origin,

f(a, b, c, d) = (ab+ cd)2 + (ab3 + cd3)2

since the higher order term can be bounded by the above two terms (see [12]).
By using blowing-up twice, we can find a map g : (x, y, z, w) 7→ (a, b, c, d)

a = x, b = y3w − yz, c = zx, d = y.

By using this transform, we obtain

f(g(x, y, z, w)) = x2y6[w2 + {(y2w − z)3 + z}2],
|g′(x, y, z, w)| = |xy3|,

resulting that λ1 = 2/3, and m1 = 1, and F (n) ∼= (2/3) logn+O(1).

For the more general cases, some inequalities were obtained [3][12]. It is shown
in [11] that, for all cases, 2λ1 ≤ d.



50 Sumio Watanabe

6 Conclusion

Mathematical foundation for singular learning machines such as neural networks
is established based on the algebraic analysis. The free energy or the stochastic
complexity is asymptotically given by λ1 logn−(m1−1) log logn+const., where
λ1 and m1 are calculated by resolution of singularities.

Analysis for the maximum likelihood case or the zero temperature limit is an
important problem for the future. We expect that algebraic analysis also plays
an important role for such analysis.

References

1. Hagiwara, K., Toda, N., Usui, S.,: On the problem of applying AIC to determine the
structure of a layered feed-forward neural network. Proc. of IJCNN Nagoya Japan.
3 (1993) 2263–2266

2. Fukumizu,K.:Generalization error of linear neural networks in unidentifiable cases.
In this issue.

3. Watanabe,S.: Inequalities of generalization errors for layered neural networks in
Bayesian learning. Proc. of ICONIP 98 (1998) 59–62

4. Levin, E., Tishby, N., Solla, S.A.: A statistical approaches to learning and general-
ization in layered neural networks. Proc. of IEEE 78(10) (1990) 1568–1674

5. Amari,S., Fujita,N., Shinomoto,S.: Four Types of Learning Curves. Neural Compu-
tation 4 (4) (1992) 608–618

6. Sato, M.,Shintani,T.: On zeta functions associated with prehomogeneous vector
space. Anals. of Math., 100 (1974) 131–170

7. Bernstein, I.N.: The analytic continuation of generalized functions with respect to
a parameter. Functional Anal. Appl.6 (1972) 26–40.

8. Björk, J.E.: Rings of differential operators. Northholand (1979)
9. Kashiwara, M.: B-functions and holonomic systems. Inventions Math. 38 (1976)

33–53.
10. Gel’fand, I.M., Shilov, G.E.: Generalized functions. Academic Press, (1964).
11. Watanabe, S.:Algebraic analysis for neural network learning. Proc. of IEEE SMC

Symp., 1999, to appear.
12. Watanabe,S.:On the generalization error by a layered statistical model with

Bayesian estimation. IEICE Trans. J81-A (1998) 1442-1452. (The English version is
to appear in Elect. and Comm. in Japan. John Wiley and Sons)

13. Atiyah, M.F.: Resolution of Singularities and Division of Distributions. Comm.
Pure and Appl. Math. 13 (1970) 145–150

14. Hörmander,L.:An introduction to complex analysis in several variables. Van Nos-
trand. (1966)



Generalization Error of Linear Neural Networks

in Unidentifiable Cases

Kenji Fukumizu

RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
fuku@brain.riken.go.jp

http://www.islab.brain.riken.go.jp/∼fuku

Abstract. The statistical asymptotic theory is often used in theoreti-
cal results in computational and statistical learning theory. It describes
the limiting distribution of the maximum likelihood estimator (MLE)
as an normal distribution. However, in layered models such as neural
networks, the regularity condition of the asymptotic theory is not nec-
essarily satisfied. The true parameter is not identifiable, if the target
function can be realized by a network of smaller size than the size of the
model. There has been little known on the behavior of the MLE in these
cases of neural networks. In this paper, we analyze the expectation of the
generalization error of three-layer linear neural networks, and elucidate
a strange behavior in unidentifiable cases. We show that the expectation
of the generalization error in the unidentifiable cases is larger than what
is given by the usual asymptotic theory, and dependent on the rank of
the target function.

1 Introduction

This paper discusses a non-regular property of multilayer network models, caused
by its structural characteristics. It is well-known that learning in neural networks
can be described as the parametric estimation from the viewpoint of statistics.
Under the assumption of Gaussian noise in the output, the least square error
estimator is equal to the maximal likelihood estimator (MLE), whose statistical
behavior is known in detail. Therefore, many researchers have believed that
the behavior of neural networks is perfectly described within the framework of
the well-known statistical theory, and have applied theoretical methodologies to
neural networks.

It has been clarified recently that the usual statistical asymptotic theory
on the MLE does not necessarily hold in neural networks ([1],[2]). This always
happens if we consider the model selection problem in neural networks. Assume
that we have a neural network model with H hidden units as a hypothesis
space, and that the target function can be realized by a network with a smaller
number of hidden units than H . In this case, as we explain in Section 2, the true
parameter in the hypothesis class, which realizes the target function, is high-
dimensional and not identifiable. The distribution of the MLE is not subject to

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 51–62, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



52 Kenji Fukumizu

the ordinary asymptotic theory in this case. We cannot apply any methods such
as AIC and MDL, which are based on the asymptotic theory.

In this paper, we discuss the MLE of linear neural networks, as the simplest
multilayer model. Also in this simple model, the true parameter loses identifia-
bility if and only if the target is realized by a network with a smaller number of
hidden units. As the first step to investigate the behavior of a learning machine
in unidentifiable cases, we calculate the expectation of the generalization error
of linear neural networks in asymptotic situations, and derive an approximate
formula for large-scale networks. From these results, we see that the generaliza-
tion error in unidentifiable cases is larger than what is derived from the usual
asymptotic theory. While the ordinary asymptotic theory asserts that the ex-
pectation of the generalization error depends only on the number of parameters,
the generalization error in linear neural networks depends on the rank of target
function.

2 Neural Networks and Identifiability

2.1 Neural Networks and Identifiability of Parameter

A neural network model can be described as a parametric family of functions
{f(·; θ) : RL → R

M }, where θ is a parameter vector. A three-layer neural
network with H hidden units is defined by

f i(x; θ) =
H∑

j=1

wij ϕ

(
L∑

k=1

ujkxk + ζj

)
+ ηi, (1 ≤ i ≤ M) (1)

where θ = (wij , ηi, , ujk, ζj) summarizes all the parameters. The function ϕ(t) is
called an activation function. In the case of a multilayer perceptron, a bounded
and non-decreasing function like tanh(t) is often used.

We consider regression problems, assuming that an output of the target sys-
tem is observed with a noise. An observed sample (x, y) ∈ RL × R

M satisfies

y = f(x) + z, (2)

where f(x) is the target function, which is unknown to a learner, and z ∼
N(0, σ2IM ) is a random vector representing noise, where N(µ, Σ) is a normal
distribution with mean µ and variance-covariance matrix Σ. We use IM for the
M×M unit matrix. An input vector x is generated randomly with its probability
q(x)dx. A set of N training data, {(x(ν), y(ν))}N

ν=1, is an independent sample
from the joint probability p(y|x)q(x)dxdy, where p(y|x) is defined by eq.(2).

We discuss the maximum likelihood estimator (MLE), denoted by θ̂, assum-
ing the statistical model

p(y|x; θ) =
1

(2πσ2)M/2
exp
(− 1

2σ2
‖y − f(x; θ)‖2), (3)



Generalization Error of Linear Neural Networks in Unidentifiable Cases 53

0

A
j

0

B
j

Target

Fig. 1. Unidentifiable cases in neural networks

which has the same noise model as the target. Under these assumptions, it is
easy to see that the MLE is equivalent to the least square error estimator, which
minimizes the following empirical error:

Eemp =
N∑

ν=1

‖y(ν) − f(x(ν); θ)‖2. (4)

We evaluate the accuracy of the estimation using the expectation of generaliza-
tion error:

Egen ≡ E{(x(ν),y(ν))}
[∫

‖f(x; θ̂)− f(x)‖2q(x)dx
]
. (5)

We sometimes call it simply generalization error if not confusing. It is easy to
see that the expected log likelihood is directly related to Egen as

E{(x(ν),y(ν))}
[∫ ∫

p(y|x)q(x)(− log p(y|x; θ))dydx
]

=
1

2σ2
Egen + const. (6)

Throughout this paper, we assume that the target function is realized by the
model; that is, there exists a true parameter θ0 such that f(x; θ0) = f(x). One
of the special properties of neural networks is that, if the target can be realized
by a network with a smaller number of hidden units than the model, the set
of true parameters that realize the target function is not a point but a union
of high-dimensional manifolds (Fig.1). Indeed, the target can be realized in the
parameter set where wi1 = 0 (∀i) holds and u1k takes an arbitrary value, and
also in the set where u1k = 0 (∀i) and wi1 takes an arbitrary value, assuming
ϕ(0) = 0. We say that the true parameter is unidentifiable if the set of true
parameters is a union of manifolds whose dimensionality is more than one. The
usual asymptotic theory cannot be applied if the true parameter is unidentifiable.
The Fisher information matrix is singular in such a case ([3]). In the presence
of noise in the output data, the MLE is located a little apart from the high-
dimensional set.



54 Kenji Fukumizu

2.2 Linear Neural Networks

We focus on linear neural networks hereafter, as the simplest multilayer model.
A linear neural network (LNN) with H hidden units is defined by

f(x; A, B) = BAx, (7)

where A is a H × L matrix and B is a M ×H matrix. We assume that

H ≤ M ≤ L

throughout this paper. Although f(x; A, B) is just a linear map, the model is
not equal to the set of all linear maps from R

L to RM , but is the set of linear
maps of rank not greater than H . Then, the model is not equivalent to the linear
regression model {Cx | C : M × L matrix}. This model is known as reduced
rank regression in statistics ([4]).

The parameterization in eq.(7) has trivial redundancy. The transform
(A, B) 7→ (GA, BG−1) does not change the map for any non-singular matrix
G. Given a linear map of rank H , the set of parameters that realize the map
consists of an H×H-dimensional manifold. However, we can easily eliminate this
redundancy if we restrict the parameterization so that the first H rows of A make
the unit matrix. Therefore, the essential number of parameters is H(L+M−H).
In other words, we can regard BA as a point in an H(L + M −H)-dimensional
space.

More essential redundancy arises when the rank of a map is less than H .
Even if we use the above restriction, the set of parameters that realize such a
map is still high-dimensional. Then, in LNN, the parameter BA is identifiable if
and only if the rank of the target is equal to H . In this sense, we can regard linear
neural networks as a multilayer model, because it preserves the unidentifiability
explained in Section 2.1.

If the rank of the target is H , the usual asymptotic theory holds. It is well
known that Egen is given by

Egen =
σ2

N
×H(L + M −H) + O(N−3/2), (8)

using the number of parameters.

3 Generalization Error of Linear Neural Networks

3.1 Exact Results

It is known that the MLE of a LNN is exactly solved. We introduce the following
notations;

X = (x(1), . . .x(N))T , Y = (y(1), . . . y(N))T , and Z = (z(1), . . .z(N))T .
(9)



Generalization Error of Linear Neural Networks in Unidentifiable Cases 55

Proposition 1 ([5]). Let VH be an M × H matrix whose i-th column is the
eigenvector corresponding to the i-th largest eigenvalue of Y T X(XT X)−1XT Y .
Then, the MLE of a linear neural network is given by

B̂Â = VHV T
H Y T X

(
XT X

)−1
. (10)

Note that the MLE is unique even when the target is not identifiable, because
the statistical data include noise. It distributes along the set of true parameters.

The expectation of the generalization error is given by the following

Theorem 1. Assume that the rank of the target is r (≤ H), and the variance-
covariance matrix of the input x is positive definite. Then, the expectation of the
generalization error of a linear neural network is

Egen =
σ2

N
{r(L + M − r) + φ(M − r, L− r, H − r)} + O(N−3/2), (11)

where φ(p, n, q) is the expectation of the sum of the q largest eigenvalues of a
random matrix following the Wishart distribution Wp(n; Ip).

(The proof is given in Appendix.)
The density function of the eigenvalues µ1 ≥ . . . ≥ µp ≥ 0 of Wp(n; Ip) is

known as

1
Zn

exp
(−1

2
∑p

1=1µi

) p∏
i=1

µ
n−p−1

2
i

∏
1≤i≤j≤p

(µi − µj), (12)

where Zn is a normalizing constant. However, the explicit formula of φ(p, n, q)
is not known in general. In the following, we derive an exact formula in a simple
case and an approximation for large-scale networks.

We can exactly calculate φ(2, n, 1) as follows. Since the expectation of the
trace of a matrix from the distribution W2(n; I2) is equal to 2, we have only
to calculate E[µ1 − µ2]. By transforming the variable as r = µ1+µ2

2 and ω =
cos−1√µ1µ2), we can derive

E [µ1 − µ2] =
1

4Γ (n− 1)

∫ ∞

0

∫ π
2

0

e−rrn−3 sinn−3 ω(2r cosω)22r sinωdωdr

= 2
√

π
Γ (n+1

2 )
Γ (n

2 )
. (13)

Then, we obtain

E[µ1] = n +
√

π
Γ (n+1

2 )
Γ (n

2 )
. (14)

From this fact, we can calculate the expectation of the generalization error in
the case H = M − 1 and r = H − 1.



56 Kenji Fukumizu

Theorem 2. Assume H = M − 1, Then, the expectation of the generalization
error in the case r = H − 1 and r = H is give by

Egen =




σ2

N

(
(M − 1)(L + 1)− 1 +

√
πΓ ( L−M+3

2 )

Γ ( L−M+2
2 )

)
if r=H−1 (unidentifiable),

σ2

N (M − 1)(L + 1) if r=H (identifiable).
(15)

The interesting point is that the generalization error changes depending on
the identifiability of the true parameter. Since

√
πΓ (n+1

2 )/Γ (n
2 ) > 1 for n ≥ 2,

Egen in the unidentifiable case is larger than Egen in the identifiable case. If the
number of input units is very large, from the Stirling’s formula, the difference
between these errors is approximated by σ2

N

√
πL/2, which reveals much worse

generalization in unidentifiable cases.

3.2 Generalization Error of Large Scale Networks

We analyze the generalization error of a large scale network in the limit when
L, M , and H go to infinity in the same order. Let S ∼ Wp(n; Ip) be a random
matrix, and ν1 ≥ ν2 ≥ · · · ≥ νp ≥ 0 be the the eigenvalues of n−1S. The
empirical eigenvalue distribution of n−1S is defined by

Pn :=
1
p
(δ(ν1) + δ(ν2) + · · ·+ δ(νp)), (16)

where δ(ν) is the Dirac measure at ν. The strong limit of Pn is given by

Proposition 2 ([6]). Let 0 < α ≤ 1. If n →∞, p →∞ and p/n → α, then Pn

converges almost everywhere to

ρα(u) =
1

2πα

√
(u − um)(uM − u)

u
χ(u)du, (17)

where um = (
√

α − 1)2, uM = (
√

α + 1)2, and χ(u) denotes the characteristic
function of [um, uM ].

Figure 2 shows the graph of ρα(u) for α = 0.5.
We define uβ as the β-percentile point of ρα(u); that is

∫ uM

uβ
ρα(u)du = β. If

we transform the variable as t =
(
u− um+uM

2

)
/(2

√
α), the density of t is

να(t) =
2
π

√
1− t2

2
√

α t + 1 + α
, (18)

and the β-percentile point tβ is given by
∫ 1

tβ
να(t)dt = β. Then, we can calculate

lim
n,p→∞
p/n→α

1
np

φ(p, n, βp) =
∫ uM

uβ
uρ(u)du =

1
π

{
cos−1(tβ)− tβ

√
1− t2β

}
. (19)

Combining this result with Theorem 1, we obtain



Generalization Error of Linear Neural Networks in Unidentifiable Cases 57

0.5 1 1.5 2 2.5

0.2

0.4

0.6

0.8

Fig. 2. Density of eigenvalues ρ0.5(u)

Theorem 3. Let r (r ≤ H) be the rank of the target. Then, we have

Egen ∼ σ2

N

{
r(L + M − r) + (L− r)(M − r)

1
π

(
cos−1(tβ)− tβ

√
1− t2β

)}
+ O(N−3/2), (20)

when L, M, H, r →∞ with M−r
L−r → α and H−r

M−r → β.

From elementary calculus, we can prove 1
π{cos−1(tβ) − tβ

√
1− t2β} ≥ β(1 +

α(1 − β)) for 0 ≤ α ≤ 1 and 0 ≤ β ≤ 1. Therefore, we see that in unidentifiable
cases (i.e. r < H), Egen is greater than σ2

N H(L + M −H). Also in these results,
Egen depends on the rank of the target. This shows clear difference from usual
discussion on identifiable cases, in which Egen does not depend even on the model
but only depends on the number of parameters (eq.(8)).

3.3 Numerical Simulations

First, we make experiments using LNN with 50 input, 20 hidden, and 30 output
units. We prepare target functions of rank from 0 to 20. The generalization error
of the MLE with respect to 10000 training data is calculated. The left graph
of Fig.3 shows the average of the generalization errors over 100 data sets and
the theoretical results given in Theorem 3. We see that the experimental and
theoretical results coincide very much.

Next, we investigate the generalization error in an almost unidentifiable case,
where the true parameter is identifiable but has very small singular values. We
prepare a LNN with 2 input, 1 hidden, and 2 output units. The target function
is f(x; θ0) =

(
ε
0

)
(ε 0)x, where ε is a small positive number. The target is

identifiable for a non-zero ε. The right graph of Fig.3 shows the average of
the generalization errors for 1000 training data. Surprisingly, while using 1000
training data for only 3 parameters, the result shows that the generalization
errors for small ε are much larger than what is given by the usual asymptotic
theory. They are rather close to Egen of the unidentifiable case marked by ×.



58 Kenji Fukumizu

0 5 10 15 20
Rank of the target

0.00060

0.00065

0.00070

G
en

er
al

iz
at

io
n 

er
ro

r

L=50, M=30, H=20, N=20000.

Experimetal 
Theoretical 

0.01 0.1 1

Epsilon

0.00000

0.00001

0.00002

0.00003

0.00004

G
en

er
al

iz
at

io
n 

er
ro

r

 Experimental results

Asymptotic theory in identifiable cases

Theoretical result in the unidentifiable case

Fig. 3. Experimental results

4 Conclusion

This paper discussed the behavior of the MLE in unidentifiable cases of multi-
layer neural networks. The ordinary methods based on the asymptotic theory
cannot be applied to neural networks, if the target is realized by a smaller num-
ber of hidden units than the model. As the first step to clarifying the correct
behavior of multilayer models, we elucidated the theoretical expression of the
expectation of the generalization error for linear neural networks, and derived
an approximate formula for large scale networks. From these results, we see that
the generalization error in unidentifiable cases is larger than the generalization
error in identifiable cases, and dependent on the rank of the target. This shows
clear difference from ordinary models which always give a unique true parameter.

Appendix

A Proof of Theorem 1

Let C0 = B0A0 be the coefficient of the target function, and Σ be the variance-
covariance matrix of the input vector x. From the assumption of the theorem,
Σ is positive definite. The expectation of the generalization error is given by

Egen = EX,Y [Tr[(B̂Â− C0)Σ(B̂Â− C0)T ]]. (21)

We define an M × L random matrix W by

W = ZT X(XT X)−1/2. (22)

Note that all the elements of W are subject to the normal distribution N(0, σ2),
mutually independent, and independent of X . From Proposition 1, we have

B̂Â− C0 = (VHV T
H − IM )C0 + VHV T

H W (XT X)−1/2. (23)



Generalization Error of Linear Neural Networks in Unidentifiable Cases 59

This leads the following decomposition;

Egen = EX,W [Tr[C0ΣCT
0 (IM − VHV T

H )]]

+ EX,W [Tr[VHV T
H W (XT X)−

1
2 Σ(XT X)−

1
2 WT ]]. (24)

We expand (XT X)1/2 and XT X as

(XT X)1/2 =
√

NΣ1/2 + F,

XT X = NΣ +
√

NK. (25)

Then, the matrices F and K are of the order O(1) as N goes to infinity. We
write ε = 1√

N
hereafter for notational simplicity, and obtain the expansion of

1
N Y T X(XT X)−1XT Y as

T (ε) ≡ 1
N

Y T X(XT X)−1XT Y = T (0) + εT (1) + ε2T (2), (26)

where

T (0) = C0ΣCT
0 ,

T (1) = C0KCT
0 + C0Σ

1/2WT + WΣ1/2CT
0 ,

T (2) = WWT + WFCT
0 + C0FWT . (27)

Since the column vectors of VH are the eigenvectors of T (ε), they are obtained
by the perturbation of the eigenvectors of T (0). Following the method of Kato
([7], Section II), we will calculate the projection Pj(ε) onto the eigenspace cor-
responding to the eigenvalue λj(ε) of T (ε), We call Pj(ε) an eigenprojection.

Let λ1 ≥ . . . ≥ λr > 0 be the positive eigenvalues of T (0) = C0ΣCT
0 , Pi

(1 ≤ i ≤ r) be the corresponding eigenprojections, and P0 be the eigenprojec-
tions corresponding to the eigenvalue 0 of T (0). Then, from the singular value
decomposition of C0Σ

1/2, we see that there exist projections Qi (1 ≤ i ≤ r) of
R

L such that their images are mutually orthogonal 1-dimensional subspaces and
the equalities

Σ1/2CT
0 PiC0Σ

1/2 = λiQi (28)

hold for all i. We define the total projection Q̃ by

Q̃ =
∑r

i=1Qi. (29)

First, let λi(ε) (1 ≤ i ≤ r) be the eigenvalue obtained by the perturbation of
λi, and Pi(ε) be the eigenprojection corresponding to λi(ε). Clearly, the equality

Pi(ε) = Pi + O(ε) (30)

holds.



60 Kenji Fukumizu

Next, we consider the perturbation of P0. Generally, by the perturbation of
eq.(26), the eigenvalue 0 of T (0) splits into several eigenvalues. Since the pertur-
bation is caused by a positive definite random matrix, these eigenvalues are pos-
itive and different from each other almost surely. Let λr+1(ε) > · · · > λM (ε) > 0
be the eigenvalues, and Pr+j(ε) be the corresponding eigenprojections. We define
the total projection of the eigenvalues λr+j by

P0(ε) =
∑M−r

j=1 Pr+j(ε). (31)

The non-zero eigenvalues of T (ε)P0(ε) are λr+j(ε) (1 ≤ j ≤ M − r). To obtain
the expansion of Pr+j(ε), we expand T (ε)P0(ε) as

T (ε)P0(ε) =
∑∞

n=1ε
nT̃ (n) (32)

Then, from Kato ([7],(2.20)), we see that the coefficient matrices of eq.(32) are
in general given by

T̃ (1) = P0T
(1)P0,

T̃ (2) = P0T
(2)P0 − P0T

(1)P0T
(1)S − P0T

(1)ST (1)P0 − ST (1)P0T
(1)P0,

T̃ (3) = −P0T
(1)P0T

(2)S − P0T
(2)P0T

(1)S − P0T
(1)ST (2)P0 − P0T

(2)ST (1)P0

− ST (1)P0T
(2)P0 − ST (2)P0T

(1)P0 + P0T
(1)P0T

(1)ST (1)S

+ P0T
(1)ST (1)P0T

(1)S + P0T
(1)ST (1)ST (1)P0 + ST (1)P0T

(1)P0T
(1)S

+ ST (1)P0T
(1)ST (1)P0 + ST (1)ST (1)P0T

(1)P0 − P0T
(1)P0T

(1)P0T
(1)S2

− P0T
(1)P0S

2T (1)P0 − P0T
(1)S2T (1)P0T

(1)P0 − S2T (1)P0T
(1)P0T

(1)P0,
(33)

where S is defined by

S =
∑r

i=1

1
λi

Pi, (34)

which is the inverse of T (0) in the image of I−P0. Note that from eqs (28), (29),
and (34), the equality

Σ1/2CT
0 SC0Σ

1/2 = Q̃ (35)

holds.
From the fact T (0)P0 = 0, we have

C0P0 = 0. (36)

Using eq.(35) and eq.(36), we can derive

T̃ (1) = 0, T̃ (2) = P0(WWT −WQ̃WT )P0. (37)

In particular, Pr+j(ε) is the eigenprojection of

1
ε2

T (ε)P0(ε) = T̃ (2) + εT̃ (3) + ε2T̃ (4) + · · · . (38)



Generalization Error of Linear Neural Networks in Unidentifiable Cases 61

In the leading term T̃ (2), P0W (IL−Q̃) is the orthogonal projection of W onto an
M−r dimensional subspace in the range and onto an L−r dimensional subspace
in the domain respectively. Thus, the distribution of the random matrix T̃ (2) is
equal to the Wishart distribution WM−r(L− r; σ2IM−r).

We expand Pr+j(ε) as

Pr+j(ε) = Pr+j + εP
(1)
r+j + ε2P

(2)
r+j + O(ε3). (39)

From Kato ([7], (2.14)), the coefficients are in general given by

P
(1)
r+j =− Pr+j T̃

(3)Sj − Sj T̃
(3)Pr+j ,

P
(2)
r+j =− Pr+j T̃

(4)Sj − Sj T̃
(4)Pr+j + Pr+j T̃

(3)Sj T̃
(3)Sj + SjT̃

(3)Pr+j T̃
(3)Sj

+ Sj T̃
(3)Sj T̃

(3)Pr+j − Pr+j T̃
(3)Pr+j T̃

(3)S2
j − Pr+j T̃

(3)S2
j Pr+j

− S2
j T̃ (3)Pr+j T̃

(3)Pr+j , (40)

where Sj is defined by

Sj = −
∑

1≤k≤M−r
k 6=j

1
ηj − ηk

Pr+j − 1
ηj

(I − P0). (41)

Here η1 ≥ . . . ≥ ηM−r are the non-zero eigenvalues of T̃ (2). The matrix Sj is
equal to the inverse of T̃ (2) − ηjIM in the image of I − Pr+j .

Using the expansions obtained above, we will calculate the generalization
error. The first term of eq.(24) can be rewritten as

∑M
j=H+1−rEX,W [Tr[C0ΣCT

0 Pr+j(ε)]]. (42)

Having Pr+jC0 = 0 in mind, we obtain

Tr[C0ΣCT
0 P

(1)
r+j ] = 0,

Tr[C0ΣCT
0 P

(2)
r+j ] =

1
η2

j

Tr[C0ΣCT
0 (I − P0)T̃ (3)Pr+j T̃

(3)(I − P0)]. (43)

Using eq.(36), eq.(37), and the fact that C0ΣCT
0 (I − P0)S = I − P0, we can

derive from eq.(33)

Tr[C0ΣCT
0 P

(2)
r+j ] = Tr[(T (1)P0T

(2) − T (1)P0T
(1)ST (1))

Pr+j(T (2)P0T
(1) − T (1)ST (1)P0T

(1))S]. (44)

Furthermore, eq.(27) leads

T (1)P0T
(2)Pr+j − T (1)P0T

(1)ST (1)Pr+j = C0Σ
1
2 WT P0(WWT −WQ̃WT )Pr+j

= ηjC0Σ
1
2 WT Pr+j . (45)



62 Kenji Fukumizu

Finally, we obtain

Tr[C0ΣCT
0 P

(2)
r+j ] = Tr[C0Σ

1/2WT Pr+jWΣ1/2CT
0 S] = Tr[Pr+jWQ̃WT ]. (46)

The random matrices Pr+j and WQ̃WT are independent, because WQ̃ and
W (IL − Q̃) are independent. Therefore,

EX,W [Tr[C0ΣCT
0 (IM − VHV T

H )]] = ε2∑M−r
j=H−r+1EX,W [Tr[Pr+jWQ̃WT ]]

= σ2ε2r(M −H) + O(ε3) (47)

is obtained.
Using eqs.(25) and (30), the second term of eq.(24) is rewritten as

EX,W [Tr[VHV T
H W (XT X)−

1
2 Σ(XT X)−

1
2 WT ]]

= ε2EX,W

[∑r
i=1Tr[PiWWT ] +

∑H−r
j=1 Tr[Pr+jWWT ]

]
. (48)

Because
∑r

i=1 Pi is a non-random orthogonal projection onto an r-dimensional
subspace and the distribution of each element of W is N(0, σ2), we have

EX,W

[
Tr
[∑r

i=1PiWWT
]]

= σ2rL. (49)

We can calculate the second part of the right hand side of eq.(48) as

Tr[Pr+jWWT ] = Tr[Pr+jWQ̃WT ] + Tr[Pr+j(WWT −WQ̃WT )]

= Tr[Pr+jWQ̃WT ] + ηj . (50)

Because ηj is the j-th largest eigenvalues of a random matrix from the Wishart
distribution WM−r(L − r, σ2IM−r), we obtain

EX,W [
∑H−r

j=1 Tr[Pr+jWWT ]] = σ2{r(H − r) + φ(M − r, L− r, H − r)}. (51)

From eqs.(47), (49), and (51), we prove the the theorem. ut

References

1. Hagiwara, K., Toda, N., Usui, S.: On the problem of applying AIC to determine
the structure of a layered feed-forward neural network. Proc. 1993 Intern. Joint
Conf. Neural Networks (1993) 2263–2266

2. Fukumizu, K.: Special statistical properties of neural network learning. Proc. 1997
Intern. Symp. Nonlinear Theory and its Applications (NOLTA’97) (1997) 747–750

3. Fukumizu, K.: A Regularity condition of the information matrix of a multilayer
perceptron network. Neural Networks 9 (1996) 871–879

4. Reinsel, G.C., Velu, R.P.: Multivariate Reduced Rank Regression. Springer-Verlag,
Berlin Heidelberg New York (1998)

5. Baldi, P. F., Hornik, K.: Learning in linear neural networks: a survey. IEEE Trans.
Neural Networks 6 (1995) 837–858

6. Watcher, K.W.: The strong limits of random matrix spectra for sample matrices
of independent elements. Ann. Prob. 6 (1978) 1–18

7. Kato, T.: Perturbation Theory for Linear Operators (2nd ed). Springer-Verlag,
Berlin Heidelberg New York (1976)



The Computational Limits to the Cognitive

Power of the Neuroidal Tabula Rasa

Jǐŕı Wiedermann?

Institute of Computer Science
Academy of Sciences of the Czech Republic

Pod vodárenskou věž́ı 2
182 07 Prague 8
Czech Republic

wieder@uivt.cas.cz

Abstract. The neuroidal tabula rasa (NTR) as a hypothetical device
which is capable of performing tasks related to cognitive processes in the
brain was introduced by L.G. Valiant in 1994. Neuroidal nets represent a
computational model of the NTR. Their basic computational element is
a kind of a programmable neuron called neuroid. Essentially it is a com-
bination of a standard threshold element with a mechanism that allows
modification of the neuroid’s computational behaviour. This is done by
changing its state and the settings of its weights and of threshold in the
course of computation. The computational power of an NTR crucially de-
pends both on the functional properties of the underlying update mech-
anism that allows changing of neuroidal parameters and on the universe
of allowable weights. We will define instances of neuroids for which the
computational power of the respective finite-size NTR ranges from that
of finite automata, through Turing machines, upto that of a certain re-
stricted type of BSS machines that possess super–Turing computational
power. The latter two results are surprising since similar results were
known to hold only for certain kinds of analog neural networks.

1 Introduction

Nowadays, we are witnessing a steadily increasing interest towards understand-
ing the algorithmic principles of cognition. The respective branch of computer
science has been recently appropriately named as cognitive computing. This no-
tion, coined by L.G. Valiant [8], denotes any computation whose computational
mechanism is based on our ideas about brain computational mechanisms and
whose goal is to model cognitive abilities of living organisms. There is no sur-
prise that most of the corresponding computational models are based on formal
models of neural nets.

Numerous variants of neural nets have been proposed and studied. They differ
in the computational properties of their basic building elements, viz. neurons.
Usually, two basic kinds of neurons are distinguished: discrete ones that compute
? This research was supported by GA ČR Grant No. 201/98/0717

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 63–76, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



64 Jǐŕı Wiedermann

with Boolean values, and analog (or continuous) ones that compute with any real
or rational number between 0 and 1.

As far as the computational power of the respective neural nets is concerned,
it is known that the finite nets consisting of discrete neurons are computationally
equivalent to finite automata (cf. [5]). On the other hand, finite nets of analog
neurons with rational weights, computing in discrete steps with rational values,
are computationally equivalent to Turing machines (cf. [3]). If weights and com-
putations with real values are allowed then the respective analog nets possess
even super–Turing computational abilities [4]. No types of finite discrete neural
nets are known that would be more powerful than the finite automata.

An important aspect of all interesting cognitive computations is learning.
Neural nets learn by adjusting the weights on neural interconnections according
to a certain learning algorithm. This algorithm and the corresponding mechanism
of weight adjustment are not considered as part of the network.

Inspired by real biological neurons, Valiant suggested in 1988 [6] a special
kind of programmable discrete neurons, called neuroids, in order to make the
learning mechanism a part of neural nets. Based on its current state and current
excitation from firings of the neighboring neuroids, a neuroid can change in the
next step all its computational parameters (i.e., can change its state, threshold,
and weights). In his monograph [7] Valiant introduced the notion of a neuroidal
tabula rasa (NTR). It is a hypothetical device which is capable of performing
tasks related to cognitive processes. Neuroidal nets serve as a computational
model of the NTR. Valiant described a number of neuroidal learning algorithms
demonstrating a viability of neuroidal nets to model the NTR. Nevertheless,
insufficient attention has been paid to the computational power of the respective
nets. Without pursuing this idea any further Valiant merely mentioned that
the computational power of neuroids depends on the restriction put upon their
possibilities to self–modify their computational parameters.

It is clear that by identifying a computational power of any learning device
we get an upper qualitative limit on its learning or cognitive abilities. Depending
on this limit, we can make conclusions concerning the efficiency of the device at
hand and those related to its appropriateness to serve as a realistic model of its
real, biological counterpart.

In this paper we will study the computational power of the neuroidal tabula
rasa which is represented by neuroidal nets. The computational limits will be
studied w.r.t the various restrictions on the update abilities of neuroidal com-
putational parameters.

In Section 2 we will describe a broad class of neuroidal networks as introduced
by Valiant in [7].

Next, in Section 3, three restricted classes of neuroidal nets will be intro-
duced. They will include nets with a finite, infinite countable (i.e, integer), and
uncountable (i.e., real) universe of weights, respectively.

Section 4 will briefly sketch the equivalence of the most restricted version of
finite neuroidal nets — namely those with a finite set of parameters, with the
finite automata.



The Computational Limits to the Cognitive Power 65

In Section 5 we further show the computational equivalence of the latter
neuroidal nets with the standard neural nets.

The next variant of neuroidal nets, viz. those with integer weights, will be
considered in Section 6. We will prove that finite neuroidal nets with weights
of size S(n), which allow a simple arithmetic over their weights (i.e., adding or
subtracting of the weights), are computationally equivalent to computations of
any S(n)–space bounded Turing machine.

In Section 7 we will increase the computational power of the previously con-
sidered model of neuroidal nets by allowing their weights to be real numbers.
The resulting model will turn to be computationally equivalent to the so–called
additive BSS machine ([1]). This machine model is known for its ability to solve
some undecidable problems.

Finally, in the conclusions we will discuss the merits of the results presented.

2 Neuroidal Nets

In what follows we will define neuroidal nets making use of the original Valiant’s
proposal [7], essentially including his notation.

Definition 2.1 A neuroidal net N is a quintuple N = (G, W, X, δ, λ), where
• G = (V, E) is the directed graph describing the topology of the network; V

is a finite set of N nodes called neuroids labeled by distinct integers 1, 2, . . . , N ,
and E is a set of M directed edges between the nodes. The edge (i, j) for i, j ∈
{1, . . . , N} is an edge directed from node i to node j.

• W is the set of numbers called weights. To each edge (i, j) ∈ E there is a
value wi,j ∈ W assigned at each instant of time.

• X is the finite set of the modes of neuroids which a neuroid can be in each
instant. Each mode is specified as a pair (q, p) of values where q is the member
of a finite set Q of states, and p is an integer from a finite set T called the set
of thresholds of the neuroid.

Q consists of two kinds of states called firing and quiescent states.
To each node i there is also a Boolean variable fi having value one or zero

depending on whether the node i is in a firing state or not.
• δ is the recursive mode update function of form δ : X ×W → X.

Let wi ∈ W be the sum of those weights wki of neuroid i that are on
edges (k, i) coming from neuroids which are currently firing, i.e., formally wi =∑

k firing
(k,i)∈E

wki =
∑

j
(j,i)∈E

fjwji. The value of wi is called the excitation of i at
that time.

The mode update function δ defines for each combination (si, wi) holding at
time t the mode s′ ∈ X that neuroid i will transit to at time t+1: δ(si, wi) = s′.

• λ is the recursive weight update function of form λ : X×W×W×{0, 1} →
W . It defines for each weight wji at time t the weight w′

ji to which it will transit
at time t+1, where the new weight can depend on the values of each si, wi, wji,
and fj at time t: λ(si, wi, wji, fj) = w′

ji



66 Jǐŕı Wiedermann

The elements of sets Q, T , W , and fi’s are called parameters of net N .

A configuration of N at time t is a list of modes of all neurons followed by a
list of weights of all edges in N at that time. The respective lists of parameters
are pertinent to neuroids ordered by their labels and to edges ordered lexico-
graphically w.r.t. the pair of labels (of neuroids) that identify the edge at hand.
Thus at any time a configuration is an element from XN ×WM .

The computation of a neuroidal network is determined by the initial condi-
tions and the input sequence. The initial conditions specify the initial values of
weights and modes of the neuroids. These are represented by the initial config-
uration. The input sequence is an infinite sequence of inputs or stimuli which
specifies for each t = 0, 1, 2, . . . a set of neuroids along with the states into which
these neuroids are forced to enter (and hence forced to fire or prevented from
firing) at that time by mechanisms outside the net (by peripherals).

Formally, each stimulus is an N–tuple from the set {Q ∪ ∗}N . If there is a
symbol q at i–th position in the t–th N–tuple st, then this denotes the fact that
the neuroid i is forced to enter state q at time t. The special symbol ∗ is used as
don’t–care symbol at positions which are not influenced by peripherals at that
time.

A computational step of neuroidal net N , which finds itself in a configuration
ct and receives its input st at time t, is performed as follows. First, neuroids are
forced to enter into states as dictated by the current stimuli. Neurons not influ-
enced by peripherals at that time retain their original state as in configuration
ct. In this way a new configuration c′t is obtained. Excitation wi is computed for
this configuration now and the mode and weight updates are realized for each
neuroid i in parallel, in accordance with the respective function δ and λ. In this
way a new configuration ct+1 is entered.

The result of the computation after the t–th step is the N–tuple of states of
all neuroids in ct+1. This N–tuple is called the action at time t. Obviously, any
action is an element in QN . Then the next computational step can begin.

The output of the whole computation can be seen as an infinite sequence of
actions.

From the computational point of view any neuroidal net can be seen as a
transducer which reads an infinite sequence of inputs (stimuli) and produces an
infinite sequence of outputs (actions).

For more details about the model see [7].

3 Variants of Neuroidal Nets

In the previous definition of neuroidal nets we allowed set W to be any set of
numbers and the weight and mode update functions to be arbitrary recursive
functions. Intuitively it is clear that by restricting these conditions we will get
variants of neural nets differing in their expressiveness as well as in their com-
puting power. In his monograph Valiant [7] discusses this problem and suggests
two extreme possibilities.



The Computational Limits to the Cognitive Power 67

The first one considers such neuroidal nets where the set of weights of in-
dividual neuroids is finite. This is called a “simple complexity-theoretic model”
in Valiant’s terminology. We will also call the respective model of a neuroid as
a “finite weight” neuroid. Note that in this case functions δ and λ can both be
described by finite tables.

The next possibility we will study are neuroidal nets where the universe of
allowable weights and thresholds is represented by the infinite set of all integers.
In this case it is no longer possible to describe the weight update function by a
finite table. What we rather need is a simple recursive function that will allow ef-
ficient weight modifications. Therefore we will consider a weight update function
which allows setting a weight to some constant value, adding or subtracting the
weights, and assigning existing weights to other inputs edges. Such a weight up-
date function will be called a simple–arithmetic update function. The respective
neuroid will be called an “integer weight” neuroid. The size of each weight will
be given by the number of bits needed to specify the respective weight value.
This is essentially a model that is considered in [7] as the counterpart of the
previous model.

The final variant of neuroidal nets which we will investigate is the variant of
the previously mentioned model with real weights. The resulting model will be
called an additive real neuroidal net.

4 Finite Weight Neuroidal Nets and Finite Automata

It is obvious that in the case of neuroidal nets with finite weights there is but
a final number of different configurations a single neuroid can enter. Hence its
computational activities like those of any finite neuroidal net, can be described
by a single finite automaton (or more precisely: by a finite transducer). In order
to get some insight into the relation between the sizes of the respective devices
we will describe the construction of the respective transducer in more detail in
the next theorem. In fact this transducer will be a Moore machine (i.e., the type
of a finite automaton producing an output after each transition) since there is
an output (action) produced by N after each computational move.

Theorem 4.1 Let N be a finite neuroidal net consisting of N neuroids with a
finite set of weights. Then there is a constant c > 0 and a finite Moore automaton
A of size Θ(cN ) that simulates N .

Sketch of the proof: We will describe the construction of the Moore automaton
A = (I, S, q0, O, ∆). Here I denotes the input alphabet whose elements are N-tuples
of the stimuli: I = {Q ∪ ∗}N . Set S is a set of states consisting of all configurations
of N , i.e., S = XN × W M . State q0 is the initial state and it is equal to the initial
configuration of N . Set O denotes a set of outputs of A. It will consist of all possible
actions of N : O = QN .

The transition function ∆ : I×S → S×O is defined as follows: ∆(i, s1) = (s2, o) if
and only if the neuroid N in configuration s1 and with input i will enter configuration
s2 and produce output o in one computational move. It is clear that the input–output
behaviour of both N and A is equivalent. 2



68 Jǐŕı Wiedermann

Note that the size of the automaton is exponential w.r.t the size of the neu-
roidal net. In some cases such a size explosion seems to be unavoidable. For in-
stance, a neuroidal net consisting of N neuroids can implement a binary counter
that can count up to cN , where c ≥ 2 is a constant which depends on the number
of states of the respective neuroids. The equivalent finite automaton would then
require at least Ω(cN ) states. Thus the advantage of using neuroidal nets instead
of finite automata seems to lie in the description economy of the former devices.

The reverse simulation of a finite automaton by a finite neuroidal net is
trivial. In fact, a single neuroid, with a single input, is enough. During the
simulation, this neuroid transits to the same states as the simulated automaton
would. There is no need for a neuroid to make use of its threshold mechanism.

5 Simulating Neuroidal Nets by Neural Nets

Neural nets are a restricted kind of neuroidal networks in which the neuroids can
modify neither their weights nor their thresholds. The respective set of neuroidal
states consists of only two states — of a firing and quiescent state. Moreover,
the neurons are forced to fire if and only if the excitation reaches the threshold
value. The computational behaviour of neural networks is defined similarly as
that of the neuroidal ones.

It has been observed by several authors that neural nets are also computa-
tionally equivalent to the finite automata (cf. [5]). Thus, we get the following
consequence of the previous theorem:

Corollary 5.1 The computational power of neuroidal nets with a finite set of
weights is equivalent to that of standard non-programmable neural nets.

In order to better appreciate the relationship between the sizes of the respec-
tive neuroidal and neural nets, we will investigate the direct simulation of finite
neuroidal nets with finite weights by finite neural nets.

Theorem 5.1 Let N = (G, W, X, δ, λ) be a finite neuroidal net consisting of N
neuroids and M edges. Let the set of weights of N be finite. Let |L|, and |D|,
respectively, be the number of all different sets of arguments of the corresponding
weight and mode update function. Let |S| be the set of all possible excitation
values, |S| ≤ 2|W |.

Then N can be simulated by a neural network N ′ consisting of O((|X |+ |S|+
|L|+ |D|)N + |W |M) neurons.

Proof: It is enough to show that to any neuroid i of N an equivalent neural network Ci

can be constructed. At any time the neuroid i is described by its “instantaneous de-
scription”, viz. its mode and the corresponding set of weights. The idea of simulation
is to construct a neural net for all combinations of parameters that represent a possible
instantaneous description of i. The instantaneous value of each parameter will be rep-
resented by a special module. There will also be two extra modules to realize the mode
and weight update functions. Instead of changing the parameters the simulating neural



The Computational Limits to the Cognitive Power 69

Ci

Æ{module �{module

Mode module Excit. Weight mod.

6

6
�

? -
6

6

6
�
6
6

-6

-

6
�
6

66
-
6

6

6

6
-

?�
6

Ck Cj

6
-6

6

6

-

?

6
-

6

6

�6

Input

Output

Fig. 1. Data flow in module Ci simulating a single neuroid

net will merely “switch” among the appropriate values representing the parameters of
the instantaneous description of the simulated neuroid. The details are as follows.

Ci will consist of five different modules.

First, there are three modules called mode module, excitation module, and weight
module. The purpose of each of these modules is to represent a set of possible values of
the respective quantity that represents, in order of their above enumeration, a possible
mode of a neuroid, a possible value of the total excitation coming from the firings of
adjacent neurons, and possible weights for all incoming edges.

Thus the mode module Mi consists of |X| neurons. For each pair of form (q, p) ∈ X,
with q ∈ Q and p ∈ T, there is a corresponding neuron in Mi. Moreover, the neuron
corresponding to the current mode of neuroid i is firing, while all the remaining neurons
in Mi are in a quiescent state.

The weight module Wi consists of a two–dimensional array of neurons. To each
incoming edge to i there is a row of |W | neurons. Each row contains neurons corre-
sponding to each possible value from the set W . If (i, j) ∈ E is an incoming edge to i
carrying the weight wij ∈ W , then the corresponding neuron in the corresponding row
of Wi is firing.

The excitation module Ei consists of O(|S|) neurons. Among them, at each time
only one neuron is firing, namely the one that corresponds to the current excitation
wi of i. Let wi =

∑
k firing
(k,i)∈E

wk,i =
∑

j
(j,i)∈E

fjwji at that time. In order to compute

wi, we have to add only those weights that occur at the connections from currently
firing neuroids. Therefore we shall first check all pairs of form {fj ; wji} to see which
weight value wji should participate in the computation of the total excitation. This



70 Jǐŕı Wiedermann

will be done by dedicating special neurons tijk to this task, with k ranging over all
weights in W. Each neuron tijk will receive 2 inputs. The first one from a neuron from
the j-th row and k-th column in the weight module, which corresponds to some weight
w ∈ W. This connection will carry weight w. The other connection will come from Cj

and will carry the weight 1. Neuron tijk will fire iff j is firing and the current weight
of connection {j, i} is equal to w. In other words, tijk will fire iff its excitation equals
exactly w + 1. This calls for implementing an equality test which requires the presence
of some additional neurons, but we will skip the respective details. The outcomes from
all tijk are then again summed and tested for equality against all possible excitation
values. In this way the current value of wi is determined eventually and the respective
neurons serve as output neurons of the excitation module.

Besides these three modules there are two more modules that represent, and realize
the transition functions δ and λ, respectively.

The δ–module contains one neuron for each set of arguments of the mode update
function δ. Neuron d, responsible for the realization of the transition of form δ(si, wi) =
s′

i, has its threshold equal to 2. Its incoming edges from each output neuron in Mi and
from each output neuron from Ei carry the weight equal to 1. Clearly, d fires iff neurons
corresponding to both quantities si and wi fire. Firing of e will subsequently inhibit the
firing of a neuron corresponding to si and excite the firing of a neuron corresponding
to s′

i. Moreover, if the state corresponding to s′
i is a firing state of i then also a special

neuron out in Ci is made to fire.

The λ–module is constructed n a similar way. It also contains one neuron per each
set of arguments of the weight update function λ. The neuron ` responsible for the
realization of the transition of form λ(si, wi, wji, fj) = w′

ji has the threshold 4. Its
incoming edges of weight 1 connect to it each output neuron in Mi, to each output
neuron in Wi, to each neuron from the row corresponding to the j–th incoming edge
of i, in Ei, and to the output from Cj . Clearly, ` fires iff neurons corresponding to all
four quantities si, wi, wji, and fj fire. Firing of ` will subsequently inhibit the firing
of a neuron corresponding to wji in Wi and excite the firing of a neuron corresponding
to w′

ji, also in Wi.

Schematically, the topology of network Ci is sketched in Fig.1. For simplicity rea-
sons only the flow of data is depicted by arrows.

The size of Ci is given by the sum of all sizes of all its modules. The whole net
N ′ thus contains N mode–, excitation–, δ– and λ–modules, of size |X|, |S|, |D|, and
|L|, respectively. Moreover, for each of M edges of N there is a complete row of |W |
neurons. This altogether leads to the size estimation as stated in the statement of the
theorem. 2

From the previous theorem we can see that the size of a simulating neural
network is larger than that of the original neuroidal network. It is linear in both
the number of neuroids and edges of the neuroidal network. The constant of
proportionality depends linearly on the size of “program” of individual neuroids,
and exponentially on the size of the universe of weights. However, note that the
neural net constructed in the latter theorem is much smaller than that obtained
via the direct simulation of the finite automaton corresponding to the simulated
neuroidal net. A neural net, simulating the automaton from the proof of theorem
4.1, would be of size Θ(cN ) for some constant c > 0.

To summarize the respective results, we see that when comparing finite neu-
roidal nets to standard, non-programmable neural nets, the programmability of



The Computational Limits to the Cognitive Power 71

the former does not increase their computational power; it merely contributes
to their greater descriptive expressiveness.

6 Integer Weight Neuroidal Nets and Turing Machines

Now we will show that in the case of integer weights there exist neuroidal nets
of the finite size that can simulate any Turing machine.

Since we will be interested in space–bounded machines w.l.o.g. we will first
consider a single–tape Turing machine in place of a simulated machine. In order
to extend our results also for sublinear space complexities we will later also
consider single–tape machines with separate input tapes.

First we show that even a single neuroid is enough for simulation of a single
tape Turing machine.

Theorem 6.1 Any single tape Turing machine1 of time complexity T (n) and of
space complexity S(n) can be simulated in time O(T (n)S2(n)) by a single neuroid
making use of integer weights of size O(S(n)) and of a simple arithmetic weight
update function.

Sketch of the proof: Since we are dealing with space–bounded Turing machines
(TMs), w.l.o.g. we can consider only single–tape machines. Thus in what follows we
will describe simulation of one computational step of a single–tape Turing machine M
of space complexity S(n) with tape alphabet {0, 1}. It is known (cf. [2]) that the tape
of such a machine can be replaced by two stacks, SL and SR, respectively. The first
stack holds the contents of M’s tape to the left from the current head position while
the second stack represents the rest of the tape. The left or the right end of the tape,
respectively, find themselves at the bottoms of the respective stacks. Thus we assume
that M’s head always scans the top of the right stack. For technical reasons we will
add an extra symbol 1 to the bottom of each stack. During its computation M updates
merely the top, or pushes the symbols to, or pops the symbols from the top of these
stacks.

With the help of a neuroid n we will represent machine M in a configuration
described by the contents of its two stacks and by the state of the machine’s finite
state control in the following way. The contents of both stacks will be represented by
two integers vL and vR, respectively. Note that both vL, vR ≥ 1 thanks to 1’s at the
bottoms of the respective stacks. The instantaneous state of M is stored in the states
of n.

To simulate M we merely have to manipulate the above mentioned two stacks in
a way that corresponds to the actions of the simulated machine. Thus, the net has to
be able to read the top element of a stack, to delete it (to pop the stack), and to add
(to push) a new element onto the top of the stack. W.r.t. our representation of a stack
by an integer v, say, reading the top of a stack asks for determining the parity of v.
Popping an element from or pushing it to a stack means computing of bv/2c and 2v,
respectively. All this must be done with the help of additions and subtractions.

The idea of the respective algorithm that computes the parity of any v > 0 is
as follows. From v we will successively subtract the largest possible power of 2, not

1 Note that in the case of single tape machines the input size is counted into the space
complexity and therefore we have S(n)) ≥ n.



72 Jǐŕı Wiedermann

greater than v, until the value of v drops to either 0 or 1. Clearly, in the former case,
the original value of v was even while in the latter case, it was odd.

More formally, the resulting algorithm looks as follows:

while v > 1 do p1 := 1; p2 := 2;
while p2 ≤ v do p1 := p1 + p1; p2 := p2 + p2 od;
v := v − p1

od;
if v = 1 then return(odd) else return(even) fi;

By a similar algorithm we can also compute the value of bv/2c (i.e., the value of v
shifted by one position to the right, losing thus its rightmost digit). This value is equal
to the sum of the halves of the respective powers (as long as they are greater than 1)
computed in the course of previous algorithm.

The time complexity of both algorithms is O(S2(n)).
The “neuroidal” implementation of previous algorithms looks as follows. The al-

gorithms will have to make use of the values representing both stacks, vL and vR,
respectively. Furthermore, they will need access to the auxiliary values p1, p2, v, and
to the constant 1. All the previously mentioned values will be “stored” as weights of
n. For technical reasons imposed by functionality restrictions of neuroids, which will
become clearer later, we will need to store also the inverse values of all previously
mentioned variables. These will be also stored in the weights of n.

Hencefore, the neuroid n will have 12 inputs. These inputs are connected to n via
12 connections. Making use of the previously introduced notation, the first six will hold
the weights w1 = vL, w2 = vR, w3 = v, w4 = p1, w5 = p2, and w6 = 1. The remaining
six will carry the same but inverse values.

The output of n is connected to all 12 inputs.
The neuroid simulates each move of M in a series of steps. Each series perform one

run of the previously mentioned (or of a similar) algorithm and therefore consists of
O(S2(n) steps.

At the beginning of the series that will simulate the (t + 1)-st move of M, the
following invariant is preserved by n for any t > 0. Weights w1 and w2 represent the
contents of the stacks after the t-th move and w7 = −w1 and w8 = −w2. The remaining
weights are set to zero.

At the beginning of computation, the left stack is empty and the right stack con-
tains the input word of M. We will assume that n will accept its input by entering a
designated state. Also, the threshold of n will be set to 0 all the time.

Assume that at time t the finite control of M is in state q. Until its change, this
state is stored in all forthcoming neuroidal states that n will enter.

In order to read the symbol from the top of the right stack the neuroid has to
determine the last binary digit of w2 or, in other words, it has to determine the parity
of w2. To do so, we first perform all the necessary initialization assignments to auxiliary
variables, and to their “counterparts” holding the negative values. In order to perform
the necessary tests (comparisons), the neuroid must enter a firing state. Due to the
neuroidal computational mechanism and thanks to the connection among the output
of n and all its inputs, all its non–zero weights will participate in the subsequent
comparison of the total excitation against n’s threshold. It is here that we will make a
proper use of weights with the opposite sign: the weights (i.e., variables) that should
not be compared, and should not be forgotten, will participate in a comparison with
opposite signs.



The Computational Limits to the Cognitive Power 73

For instance, to perform the comparison p2 ≤ v, we merely “switch off” the positive
value of p2 and the negative value of v from the comparison by temporarily setting
the respective weights w5 and w9 to zero. All the other weight values remain as they
were. As a result, after the firing step, n will compare v−p2 against its threshold value
(which is permanently set to 0) and will enter a state corresponding to the result of this
comparison. After the comparison, the weights set temporarily to zero can be restored
to their previous values (by assignments w5 := −w11 and w9 := −w3).

The transition of M into a state as dictated by its transition function is realized
by N after updating the stacks appropriately, by storing the respective machine state
into the state of n. The simulation ends by entering into the final state.

It is clear that the simulation runs in time as stated in the theorem. The size of
any stack, and hence of any variable, never exceeds the value S(n) + 1. Hence the size
of the weights of n will be bounded by the same value. 2

Note that a similar construction, still using only one neuroid, would also
work in case a multiple tape Turing machine should be simulated. In order to
simulate a k–tape machine, the resulting neuroid will represent each tape by 12
weights as it did before. This will lead to a neuroid with 12k incoming edges.

Next we will also show that a simulation of an off–line Turing machine by a
finite neuroidal network with unbounded weights is possible. This will enable us
to prove a similar theorem as before which holds for arbitrary space complexities:

Theorem 6.2 Let M be an off–line multiple tape Turing machine of space com-
plexity S(n) ≥ 0. Then M can be simulated in a cubic time by a finite neuroidal
net that makes use of integer weights of size O(S(n)) and of a simple arithmetic
weight update function.

Sketch of the proof: In order to read the respective inputs the neuroidal net will
be equipped with the same input tape as the simulated Turing machine. Except the
neuroid n that takes care of a proper update of stacks that represent the respective
machine tapes, the simulating net will contain also two extra neuroids that implement
the control mechanism of the input head movement. For each move direction (left or
right) there will be a special — so–called move neuroid — which will fire if and only
if the input head has to move in a respective direction. The symbol read by the input
head will represent an additional input to neuroid n simulating the moves of M.

The information about the move direction will be inferred by neuroid n. As can be
seen from the description of the simulation in the previous theorem, n keeps track on
that particular transition of M that should be realized during each series of its steps
simulating one move of M.

Since s can transmit this information to the respective move neuroids only via firing
and cannot distinguish between the two target neuroids, we will have to implement a
(finite) counter in each move neuroid. The counter will count the number of firings of s
occurring in an uninterrupted sequence. Thus at the end of the last step of M’s move
simulation (see the proof of the previous theorem) s will send two successive firings to
denote the left move and three firings for the right move. The respective signals will
reach both move neuroids, but with the help of counting they will find which of them
is in charge for moving the head. Some care over synchronization of all three neuroids
must be taken. 2



74 Jǐŕı Wiedermann

It is clear that the computations of finite neuroidal nets with integer weights
can be simulated by Turing machines. Therefore the computational power of
both devices is the same.

In 1995, Siegelmann and Sonntag [4] proved that the computational power
of certain analog neural nets is equivalent to that of Turing machines. They
considered finite neural nets with fixed rational weights. At time t, the output
of their analog neuron i is a value between 0 and 1 which is determined by
applying a so-called piecewise linear activation function φ to the excitation wi

of i at that time (see definition 2.1): φ : wi → 〈0, 1〉. For negative excitation,
φ takes the value 0, for excitation greater than 1 value 1, and for excitations
between 0 and 1, φ(wi) = wi. The respective net computes synchronously, in
discrete time steps.

We will call the respective nets as synchronous analog neural nets.
Siegelmann and Sonntag’s analog neural networks simulating a universal Tur-

ing machine consisted of 883 neurons. This can be compared with the simple
construction from Theorem 5.1 requiring but a single neuroid. Nevertheless, the
equivalency of both types of networks with Turing machines proves the following
corollary:

Corollary 6.1 Finite synchronous analog neural nets are computationally equiv-
alent to finite neuroidal nets with integer weights.

7 Real Weight Neuroidal Nets and the Additive BSS
Model

Now we will characterize the computational power of neuroidal nets with real
parameters. We will compare their efficiency towards a restricted variant of the
BSS model. The BSS model (cf. [1]) is a model that is similar to RAM which
computes with real numbers under the unit cost model. In doing so, all four ba-
sic arithmetic operations of additions, subtractions, multiplication and division
are allowed. The additive BSS model allows only for the former two arithmetic
operations.

Theorem 7.1 The additive real model of neuroidal nets is computationally equiv-
alent to the additive BSS model working over binary inputs.

Sketch of the proof: The simulation of a finite additive real model of neuroidal net
N on the additive BSS model B is a straightforward matter.

For the reverse simulation, assume that the binary input to N is provided to B by
a mechanism similar to that from Theorem 6.2. One must first refer to the theorem
(Theorem 1 in Chapter 21 in [1]) that shows that by a suitable encoding a computation
of any additive machine can be done using a fixed finite amount of memory (in a finite
number of “registers”, each holding a real number) without exponential increase in
the running time. The resulting machine F is then simulated by N in the following
way: The contents of finitely many registers of F are represented as (real) weights of a
single neuroid r. Addition or subtraction of weights, as necessary, is done directly by



The Computational Limits to the Cognitive Power 75

weight update function. A comparison of weights is done with the help of r’s threshold
mechanism in a similar way to that in the proof of Theorem 6.1. To single out from
the comparison the weights that should not be compared one can use a similar trick as
in Theorem 6.1: to each such a weight a weight with the opposite sign is maintained.

The power of finite additive neuroidal nets with real weights comes from their
ability to simulate oracular or nonuniform computations. For instance, in [1] it is
shown that the additive real BSS machines decide all binary sets in exponential
time. Their polynomial time coincides with the nonuniform complexity class
P/poly.

8 Conclusions

The paper brings a relatively surprising result showing computational equiva-
lence between certain kinds of discrete programmable and analog finite neural
nets. This result offers new insights into the nature of computations of neural
nets.

First, it points to the fact that the ability of changing weights is not a con-
dition sine qua non for learning. A similar effect can be achieved by making use
of reasonably restricted kinds of analog neural nets.

Second, the result showing computational equivalency of the respective nets
supports the idea that all reasonable computational models of the brain are
equivalent (cf. [9]).

Third, for modeling of cognitive or learning phenomena, the neuroidal nets
seem to be preferred over the analog ones, due to the transparency of their
computational or learning mechanism. As far as their appropriateness for the
task at hand is concerned, neuroidal nets with a finite set of weights seem to
present the maximal functionality that can be achieved by living organisms. As
mathematical models also more powerful variants are of interest.

References

1. Blum, M. — Cucker, F. — Shub, M. — Smale, M.: Complexity and Real Compu-
tation. Springer, New York, 1997, 453 p.

2. Hopcroft, J.E. — Ullman, J. D.: Formal Languages and their Relation to Au-
tomata. Addison–Wesley, Reading, Mass., 1969

3. Indyk, P.: Optimal Simulation of Automata by Neural Nets. Proc. of the 12th
Annual Symp. on Theoretical Aspects of Computer Science STACS’95, LNCS Vol.
900, pp. 337–348, 1995

4. Siegelmann, H. T. — Sonntag, E.D.: On Computational Power of Neural Networks.
J. Comput. Syst. Sci., Vol. 50, No. 1, 1995, pp. 132–150

5. Š́ıma, J. — Wiedermann, J.: Theory of Neuromata. Journal of the ACM, Vol. 45,
No. 1, 1998, pp. 155–178

6. Valiant, L.: Functionality in Neural Nets. Proc. of the 7th Nat. Conf. on Art.
Intelligence, AAAI, Morgan Kaufmann, San Mateo, CA, 1988, pp. 629–634

7. Valiant, L.G.: Circuits of the Mind. Oxford University Press, New York, Oxford,
1994, 237 p., ISBN 0–19–508936–X



76 Jǐŕı Wiedermann

8. Valiant, L.G.: Cognitive Computation (Extended Abstract). In: Proc. of the 38th
IEEE Symp. on Fond. of Comp. Sci., IEEE Press, 1995, p. 2–3

9. Wiedermann, J.: Simulated Cognition: A Gauntlet Thrown to Computer Science.
To appear in ACM Computing Surveys, 1999



The Consistency Dimension and

Distribution-Dependent Learning from Queries

(Extended Abstract)?

José L. Balcázar1, Jorge Castro1, David Guijarro1, and Hans-Ulrich Simon2

1 Dept. LSI, Universitat Politècnica de Catalunya, Campus Nord,
08034 Barcelona, Spain,

{balqui,castro,david}@lsi.upc.es
2 Fakultät für Informatik, Lehrstuhl Mathematik und Informatik,

Ruhr-Universitaet Bochum, D-44780 Bochum,
simon@lmi.ruhr-uni-bochum.de

Abstract. We prove a new combinatorial characterization of polyno-
mial learnability from equivalence queries, and state some of its con-
sequences relating the learnability of a class with the learnability via
equivalence and membership queries of its subclasses obtained by re-
stricting the instance space. Then we propose and study two models of
query learning in which there is a probability distribution on the instance
space, both as an application of the tools developed from the combina-
torial characterization and as models of independent interest.

1 Introduction

The main models of learning via queries were introduced by Angluin [2, 3].
In these models, the learning algorithm obtains information about the target
concept asking queries to a teacher or expert. The algorithm has to output an
exact representation of the target concept in polynomial time. Target concepts
are formalized as languages over an alphabet. Frequently, it is assumed that the
teacher can answer correctly two kinds of questions from the learner: membership
queries and equivalence queries1. Unless otherwise specified, all our discussions
are in the “proper learning” framework where the hypotheses come from the
same class as the target concept. A combinatorial notion, called approximate
fingerprints, turned out to characterize precisely those concept classes that can
be learned from polynomially many equivalence queries of polynomial size [4, 6].

The essential intuition behind that fact is that the existence of queries that
shrink the number of possibilities for the target concept by a polynomial factor
is not only clearly sufficient, but also necessary to learn: if no such queries are
available then adversaries can be designed that force any learner to spend too
? Work supported in part by the EC through the Esprit Program EU BRA program

under project 20244 (ALCOM-IT) and the EC Working Group EP27150 (NeuroColt
II) and by the spanish DGES PB95-0787 (Koala).

1 Such a teacher is called sometimes “minimally adequate”.

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 77–92, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



78 José L. Balcázar et al.

many queries in order to identify the target. This intuition can be fully formalized
along the lines of the cited works; the formalization can be found in [7].

Hellerstein et al. gave a beautiful characterization of polynomially (EQ,MQ)-
learnable representation classes [8]. They introduced the notion of polynomial
certificates for a representation class R and proved that R is polynomially learn-
able from equivalence and membership queries iff it has polynomial certificates.

The first main contribution of this paper is to propose a new combinatorial
characterization of learnability from equivalence queries, surprisingly close to
certificates, and quite different (and also simpler to handle) than the approximate
fingerprints: the strong consistency dimension, that one can see as the analog of
the VC dimension for query models.

Angluin [2, 3] showed that, when only approximate identification is required,
equivalence queries can be substituted by a random sample. Thus, a PAC learn-
ing algorithm can be obtained from an exact learning algorithm that makes
equivalence queries. In PAC learning, introduced by Valiant [11], one has to
learn a target concept with high probability, in polynomial time (and, a for-
tiori, from a polynomial number of examples), within a certain error, under
all probability distributions on the examples. Because of this last requirement,
to learn under all distributions, PAC learning is also called distribution-free, or
distribution-independent, learning. Distribution-independent learning is a strong
requirement, but it can be relaxed to define PAC learning under specific distri-
butions, or families of distributions. Indeed, several concept classes that are not
known to be polynomially learnable, or known not to be polynomially learnable
if RP 6= NP, turn out to be polynomially learnable under some fixed distribution
or families of distributions.

In comparison to PAC learning, one drawback of the query models is that they
do not have this added flexibility of relaxing the “distribution-free” condition.
The standard transformation sets them automatically at the “distribution-free”
level. The second main contribution of this paper is the proposal of two learning
models in which counterexamples are not adaptatively provided by a (helpful
or treacherous) teacher, but instead are nonadaptatively sampled according to
a probability distribution.

We prove that the distribution-free form of one of these models exactly co-
incides with standard learning from equivalence queries, while the other model
is captured by the randomized version of the standard model. This allows us to
extend, in a natural way, the query learning model to an explicit “distribution-
free” setting where this restrictive condition can be naturally relaxed. Some of
the facts that we prove of these new models make use of the consistency dimen-
sion characterization proved earlier as the first contribution of the paper.

Our notation and terminology is standard. We assume familiarity with the
query-learning model. Most definitions will be given in the same section where
they are needed. Generally, let X be a set, called instance space or domain in
the sequel. A concept is a subset of X , where we prefer sometimes to regard C
as a function from X to {0, 1}. A concept class is a set C ⊆ 2X of concepts. An
element of X is called an instance. A pair (x, b), where b ∈ {0, 1} is a binary



The Consistency Dimension and Distribution-Dependent Learning 79

label, is called example for concept C if C(x) = b. A sample is a collection of
labeled instances. Concept C is said to be consistent with sample S if C(x) = b
for all (x, b) ∈ S.

A representation class is a four-tuple R = (R, ∆, Φ, Σ). Σ and ∆ are finite
alphabets. Strings of characters in Σ are used to describe elements of the domain
X , and strings of characters in ∆ are used to encode concepts. R ⊆ ∆∗ is the
set of strings that are concept encodings or representations. Let Φ : R −→ 2Σ∗

be a function that maps these representations into concepts over Σ. For ease of
technical exposition, we assume that, for each r ∈ R there exists some n ≥ 1 such
that Φ(r) ⊆ Σn. Thus each concept with a representation in R has a domain of
the form Σn (as opposed to domain Σ∗).2 The set C = {Φ(r) : r ∈ R} is the
concept class associated with R.

We define the define the size of concept C : Σn → {0, 1} w.r.t. representation
class R as the length of the shortest string r ∈ R such that C = Φ(r), or as
∞ if C is not representable within R. This quantity is denoted by |C|R. With
these definitions, C is a “doubly parameterized class”, that is, it is partitioned
into sets Cn,m containing all concepts from C with domain Σn and size at most
m. The kind of query-learning considered in this paper is proper in the sense
that concepts and hypotheses are picked from the same class C. We will however
allow that the size of an hypothesis exceeds the size of the target concept. The
number of queries needed in the worst case to obtain an affirmative answer from
the teacher, or “learning complexity”, given that the target concept belongs
to Cn,m and that the hypotheses of the learner may be picked from Cn,M , is
denoted by LCOR(n, m, M), where O specifies the allowed query types. In this
paper, either O = EQ orO = (EQ, MQ). We speak of polynomialO-learnability
if LCOR(n, m, M) is polynomially bounded in n, m, M .

We close this section with the definition of a version space. At any interme-
diate stage of a query-learning process, the learner knows (from the teacher’s
answers received so far) a sample S for the target concept. The current version
space V is the set of all concepts from Cn,m which are consistent with S. These
are all concepts being still conceivable as target concepts.

2 The Strong Consistency Dimension and Its
Applications

The proof, as it was given in [8], of the characterization of (EQ,MQ)-learning
in terms of polynomial certificates implicitly contains concrete lower and upper
bounds on the number of queries needed to learn R. In Subsection 2.1, we make
these bounds more explicit by introducing the so-called consistency dimension
of R and writing the bounds in terms of this dimension (and some other param-
eters associated with R). In Subsection 2.2, we define the notions of a “strong

2 This is a purely technical restriction that allows us to present the main ideas in the
most convincing way. It is easy to generalize the results in this paper to the case of
domains with strings of varying length.



80 José L. Balcázar et al.

certificate” and of the “strong consistency dimension” and show that they fit the
same purpose for EQ-learning as the former notions did for (EQ,MQ)-learning:
we derive lower and upper bounds on the number of EQs needed to learn R in
terms of the strong consistency dimension and conclude that R is polynomially
EQ-learnable iff it has a polynomial strong certificate. In Subsection 2.3, we
prove that the strong consistency dimension of a class equals the maximum of
the consistency dimensions taken over all subclasses (induced by a restriction
of the domain). This implies that the number of EQs needed to learn a con-
cept class roughly equals the total number of EQs and MQs needed to learn the
hardest subclass.

For ease of technical exposition, we need the following definitions. A partially
defined concept C on domain Σn is a function from Σn to {0, 1, ∗}, where “∗”
stands for “undefined”. Since partially defined concepts and samples can be
identified in the obvious manner, we use the terms “partially defined concept”
and “sample” interchangeably in the sequel. The support of C is defined as
supp(C) = {x ∈ Σn : C(x) ∈ {0, 1}}. The breadth of C is defined as the
cardinality of its support and denoted as |C|. The size of C is defined as the
smallest size of a concept that is consistent with C. It is denoted as |C|R. Note
that this definition coincides with the previous definition of size when C has full
support Σn. Sample Q is called subsample of sample C (denoted as Q v C)
if supp(Q) ⊆ supp(C) and Q, C coincide on supp(Q). Throughout this section,
R = (Σ, ∆, R, µ) denotes a representation class defining a doubly parameterized
concept class C.

2.1 Certificates and Consistency Dimension

R has polynomial certificates if there exist two-variable polynomials p and q,
such that for all m, n > 0, and for all C : Σn → {0, 1} the following condition is
valid:

|C|R > p(n, m) ⇒ (∃Q v C : |Q| ≤ q(m, n) ∧ |Q|R > m) (1)

The consistency dimension of R is the following three-variable function:
cdimR(n, m, M), where M ≥ m > 0 and n > 0, is the smallest number d
such that for all C : Σn → {0, 1} the following condition is valid:

|C|R > M ⇒ (∃Q v C : |Q| ≤ d ∧ |Q|R > m) (2)

An obviously equivalent but quite useful reformulation of Condition (2) is

(∀Q v C : |Q| ≤ d ⇒ |Q|R ≤ m) ⇒ |C|R ≤ M. (3)

In words: if each subsample of C : Σn → {0, 1} of breadth at most d has a con-
sistent representation of size at most m, then C has a consistent representation
of size at most M .

The following result is (more or less) implicit in [8].

Theorem 1
cdimR(n, m, M) ≤ LCEQ,MQ

R (n, m, M) ≤ dcdimR(n, m, M) · log |Cn,m|e



The Consistency Dimension and Distribution-Dependent Learning 81

Note that the lower and the upper bound are polynomially related because

log |Cn,m| ≤ m · log(1 + |∆|). (4)

Clearly, Theorem 1 implies that R is polynomially (EQ,MQ)-learnable iff it has
polynomial certificates. We omit the proof of Theorem 1.

2.2 Strong Certificates and Strong Consistency Dimension

We want to adapt the notions “certificate” and “consistency dimension” to the
framework of EQ-learning. Surprisingly, we can use syntactically almost the
same notions, except for a subtle but striking difference: the universe of C will
be extended from the set of all concepts over domain Σn to the corresponding
set of partially defined concepts. This leads to the following definitions.

R has polynomial strong certificates if there exist two-variable polynomials
p and q, such that for all m, n > 0, and for all C : Σn → {0, 1, ∗} Condition (1)
is valid.

The strong consistency dimension of R is the following three-variable func-
tion: scdimR(n, m, M), where M ≥ m > 0 and n > 0, is the smallest number d
such that for all C : Σn → {0, 1, ∗} Condition (2) is valid. Again, instead of Con-
dition (2), we can use the equivalent Condition (3). In words: if each subsample
of C : Σn → {0, 1, ∗} of breadth at most d has a consistent representation of
size at most m, then C has a consistent representation of size at most M .

Theorem 2 scdimR(n, m, M)≤LCEQ
R (n, m, M)≤dscdimR(n, m, M) · ln |Cn,m|e

Proof. For brevity reasons, let q = LCEQ
R (n, m, M) and d = scdimR(n, m, M).

We prove the first inequality by exhibiting an adversary that forces any
learner to spend as many queries as given by the strong consistency dimension.
The minimality of d implies that there is a sample C such that still |C|R > M
but (∀Q v C : |Q| ≤ d− 1 ⇒ |Q|R ≤ m). Thus, any learner, issuing up to d− 1
equivalence queries with hypotheses of size at most M , fails to be consistent
with C, and a counterexample from C can be provided such that there is still
at least one consistent concept of size at most m (a potential target concept).
Hence, at least d queries go by until an affirmative answer is obtained.

In order to prove q ≤ dd ln |Cn,m|e, we describe an appropriate EQ-learner
A. A keeps track of the current version space V (which is Cn,m initially). For
i = 0, 1, let Si

V be the set

{x ∈ Σn : the fraction of concepts C ∈ V with C(x) = 1− i is less than 1/d}.
In other words, a very large fraction (at least 1 − 1/d) of the concepts in V
votes for output label i on instances from Si

V . Let CV be the sample assigning
label i ∈ {0, 1} to all instances from Si

V and label “∗” to all remaining instances
(those without a so clear majority). Let Q be an arbitrary but fixed subsample
of CV such that |Q| ≤ d. The definition of Si

V implies (through some easy-to-
check counting) that there exists a concept C ∈ V ⊆ Cn,m that is consistent with



82 José L. Balcázar et al.

Q. Applying Condition (3), we conclude that |CV |R ≤ M , i.e., there exists an
H ∈ Cn,M that is consistent with CV . The punchline of this discussion is: if A
issues the EQ with hypothesis H , then the next counterexample will shrink the
current version space by a factor 1−1/d (or by a smaller factor). Since the initial
version space contains |Cn,m| concepts and since A is done as soon as |V| ≤ 1, a
sufficiently large number of EQs is obtained by solving

(1− 1/d)q|Cn,m| < e−q/d|Cn,m| ≤ 1

for q. Clearly, q = dd ln |Cn,m|e is sufficiently large. •

Since the lower and the upper bound in Theorem 2 are polynomially related
according to Inequality (4), we obtain

Corollary 3 R is polynomially EQ-learnable iff it has a polynomial strong cer-
tificate.

2.3 EQs Alone versus EQs and MQs

The goal of this subsection is to show that the number of EQs needed to learn
a concept class is closely related to the total number of EQs and MQs needed
to learn the hardest subclass. The formal statement of the main results requires
the following definitions.

Let S = (Sn)n≥1 with Sn ⊆ Σn be a family of subdomains. The restriction
of a concept C : Σn → {0, 1} to Sn is the partially defined concept (sample)
with support Sn which coincides with C on its support. The class containing all
restrictions of concepts from C to the corresponding subdomain from S is called
the subclass of C induced by S and denoted as C|S.

The notions polynomial certificate, consistency dimension, and learning com-
plexity are adapted to the subclass of C induced by S in the obvious way.R|S (in
words: R restricted to S) has polynomial certificates if there exist two-variable
polynomials p and q, such that for all m, n > 0, and for all C : Σn → {0, 1, ∗}
such that supp(C) = Sn, Condition (1) is valid. The consistency dimension of
R|S is the following three-variable function: cdimR(Sn, m, M) is the smallest
number d such that for all M ≥ m > 0, n > 0, and for all C : Σn → {0, 1, ∗}
such that supp(C) = Sn, Condition (2) is valid. Again, instead of Condition (2),
we can use the equivalent Condition (3).

Quantity LCEQ,MQ
R (Sn, m, M) is defined as the smallest total number of EQs

and MQs needed to learn the class of concepts from Cn,m restricted to Sn with
hypotheses from Cn,M restricted to Sn. Quantity LCEQ

R (Sn, m, M) is understood
analogously. Note that

LCEQ
R (Sn, m, M) ≤ LCEQ

R (n, m, M) (5)

is valid in general, because EQs become more powerful (as opposed to MQs which
become less powerful) when we pass from the full domain to a subdomain (for the
obvious reasons). We have the analogous inequality for the strong consistency



The Consistency Dimension and Distribution-Dependent Learning 83

dimension, but no such statement can be made for LCEQ,MQ
R or the consistency

dimension.
The following result is a straightforward generalization of Theorem 1.

Theorem 4 cdimR(Sn, m, M) ≤ LCEQ,MQ
R (Sn, m, M) ≤ dcdimR(Sn, m, M) ·

log |(C|S)n,m|e.
We now turn to the main results of this section. The first one states that

the strong consistency dimension of a class is the maximum of the consistency
dimensions taken over all induced subclasses:

Theorem 5 scdimR(n, m, M) = maxS⊆Σn cdimR(S, m, M).

Proof. Let d∗ be the smallest d which makes Condition (2) valid for all
C : Σn → {0, 1, ∗}. Let d∗(S) be the corresponding quantity when C ranges
only over all samples with support S. It is evident that d∗ = maxS⊆Σn d∗(S).
The theorem now follows, because by definition d∗ = scdimR(n, m, M) and
d∗(S) = cdimR(S, m, M). •

Corollary 6 1. A representation class R has a polynomial strong certificate
iff all its induced subclasses have a polynomial certificate.

2. A representation class is polynomially EQ-learnable iff all its induced sub-
classes are polynomially (EQ,MQ)-learnable.

The third result states that the number of EQs needed to learn a class equals
roughly the total number of EQs and MQs needed to learn the hardest induced
subclass.

Corollary 7 maxS⊆Σn LCEQ,MQ
R (S, m, M) ≤ LCEQ

R (n, m, M) and

LCEQ
R (n, m, M) ≤

⌈
ln |Cn,m| ·maxS⊆Σn LCEQ,MQ

R (S, m, M)
⌉
.

Remember that the gap ln |Cn,m| is bounded above by m · ln(1 + |∆|).

3 Equivalence Queries with a Probability Distribution

Let now D denote a class of probability distributions on X , the instance space
for a computational learning framework. The two subsections of this section
introduce respective variants of equivalence query learning that somehow take
such distributions into account.

We briefly describe now the first one. In the ordinary model of EQ-learning
C, with hypotheses from H, the counterexamples for incorrect hypotheses are
arbitrarily chosen, and we can think of an intelligent adversary making these
choices. EQ-learning C from D-teachers (still with hypotheses from H) proceeds
as ordinary EQ-learning, except for the following important differences:

1. Each run of the learning algorithm refers to an arbitrary but fixed pair (C, D)
such that C ∈ C and D ∈ D, and to a given confidence parameter 0 < δ < 1.



84 José L. Balcázar et al.

2. The goal is to learn C from the D-teacher, i.e., C is considered as target
concept (as usual), and the counterexample to an incorrect hypothesis H
is randomly chosen according to the conditional distribution D(·/C ⊕ H),
where ⊕ denotes the symmetric difference of sets. Success is defined when
this symmetric difference has zero probability. The learner must achieve a
success probability of at least 1− δ.

Clearly, the more restricted the class D of probability distributions, the easier
the task for the learner. In this extended abstract, we focus on the following
three choices of D.

– Dall denotes the class of all probability distributions on X . This is the most
general case.

– Dunif denotes the class of distributions that are uniform on a subdomain
S ⊆ X and assign zero probability to instances from X \ S. This case will
be relevant in a later section.

– D = {D} is the most specific case, whereD constains only a single probability
distribution D. We use it only briefly in the last section.

Loosely speaking, the main results of this section are as follows:

– The next subsection proves that, for D = Dall, EQ-learning from D-teachers
is exactly as hard (same number of queries) as the standard model. (This
result is only established for deterministic learners.) Thus, we are not actu-
ally introducing yet one more learning model, but characterizing an existing,
widely accepted, one in a manner that provides the additional flexibility of
the probability distribution parameter. Thus we obtain a sensible definition
of distribution-dependent equivalence-query learning.

– In the next section, we introduce a combinatorial quantity, called the sphere
number, and show that it represents an information-theoretic barrier in the
model of EQ-learning from Dunif -teachers (even for randomized learning
algorithms). However, this barrier is overcome for each fixed distribution D
in the model of EQ-learning from the D-teacher.

3.1 Random versus Arbitrary Counterexamples

We use upper index EQ[D] to indicate that the D-teacher for some D ∈ D plays
the role of the EQ-oracle.

Theorem 8 LCEQ[Dall](C,H) = LCEQ(C,H).

Proof. Let A be an algorithm which EQ-learns C from D-teachers with hy-
potheses fromH. Let l ≥ LCEQ(C,H) be the largest number of EQs needed by A
when we allow an adversary to return arbitrary counterexamples to hypotheses.3

3 For the time being, there is no guarantee that A succeeds at all, because it expects
the counterexamples to be given from a D-teacher. We will however see subsequently
that there exists a distribution which sort of simulates the adversary.



The Consistency Dimension and Distribution-Dependent Learning 85

Since LCEQ(C) is defined taking all algorithms into account, we lose no generality
in assuming that A always queries hypotheses that are consistent with previous
counterexamples, so that all the counterexamples received along any run are
different. There must exist a concept C ∈ C, hypotheses H0, . . . , Hl−2 ∈ C and
instances x0, . . . , xl−2 ∈ X , such that the learner issues the l − 1 incorrect hy-
potheses Hi when learning target concept C, and the xi are the counterexamples
returned to these hypotheses by the adversary, respectively. We claim that there
exists a distribution D such that, with probability 1−δ, the D-teacher returns the
same counterexamples. This is technically achieved by setting D(xi) = (1−α)αi,
for i = 0, . . . , l − 3, and D(xl−2) = αl−2. An easy computation shows that the
probability that the D-teacher presents another sequence of counterexamples as
the adversary is at most (l− 2)α. Setting α = δ/(l− 2), the proof is complete. •

Therefore, the distribution-free case of our model coincides with standard
EQ-learning.

Corollary 9 Let R = (Σ, ∆, R, µ) be a representation class defining a doubly
parameterized concept class C. Then LCEQ[Dall]

R (n, m, M) = LCEQ
R (n, m, M) for

all M ≥ m > 0, n > 0.

This obviously implies that learners for the distribution-free equivalence
model can be transformed, through the standard EQ model, into distribution-
free PAC learners. We note in passing that, applying the standard techniques
directly on our model, we can prove the somewhat stronger fact that, for each
individual distribution D, a learner from D-teachers can be transformed into an
algorithm that PAC-learns over D. We also can assume knowledge of a bound
on the size of the target concept, by applying the usual trick of guessing it and
increasing the guess whenever necessary.

3.2 EQ-Learning from Random Samples

In this subsection, we discuss another variant of the ordinary EQ-learning model.
Given a representation class C, EQ-learning from D-samples of size p and with
hypotheses from H proceeds as ordinary EQ-learning, except for the following
differences:

1. Each run of the learning algorithm refers to an arbitrary but fixed pair (C, D)
such that C ∈ C and D ∈ D, and to a given confidence parameter 0 < δ < 1.

2. The goal of the learner is to learn C from (ordinary) EQs and a sample P
consisting of p examples drawn independently at random according to D
and labeled correctly according to C. In other words, instead of EQ-learning
C from scratch, the learner gets P as additional input. The learner must
obtain an affirmative answer with a probability at least 1− δ of success.

Again the goal is to output a hypothesis for which the probability of disagreement
with the target concept is zero; this time, the information about the distribution
does not come from the counterexamples, but rather from the initial additional



86 José L. Balcázar et al.

sample. We will show in this section that, for certain distributions, this model is
strictly weaker than the model of EQ-learning from D-teachers. However, in the
distribution-free sense, it corresponds to the randomized version of the model
described previously.

We first state (without proof) that each algorithm for EQ-learning from D-
samples can be converted into a randomized algorithm for EQ-learning from
D-teachers, such as those of the previous section, at the cost of a moderate
overhead in the number of queries.

Theorem 10 Let q be the number of EQs needed to learn C from D-samples of
size p and with hypothesis from H. It holds, LCEQ[D](C,H) ≤ (p + 1)(p + q).

We show next an example that has an identification learning algorithm in
the EQ from D-teachers learning model, but does not have such algorithm in
the EQ learning from D-samples model.

A DNFn formula is any sum t1 + t2 + · · · + tk of monomials, where each
monomial ti is the product of some literals chosen from {x1, . . . , xn, x1, . . . , xn}.
Let DNF = ∪n DNFn be the representation class of disjunctive normal form
formulas.

Let us consider the class D of distributions D defined in the following way.
Assume that two different words xn and yn have been chosen for each n ≥ 1.
Consider the associated distribution D defined by:

D(xn) = 6/π2(1/n2 − 1/2n)
D(yn) = 6/(π22n)
D(zn) = 0 for any word zn of length n different from xn and yn.

D is obtained by letting xn and yn run over all pairs of different words of
length n.

Let C be now any class able to represent concepts consisting of pairs {xn, yn}
within a reasonable size; for concreteness, pick DNF formulas consisting of com-
plete minterms. A very easy algorithm learns them in our model of EQ from
D-teachers. The algorithm has to do at most two equivalence queries to know
the value of the target formula f on xn and yn. First, it asks whether f is iden-
tically zero. If a counterexample e is given —e must be xn or yn— it will make
a second query f = te?, where te is the monomial that only evaluates to one on
e (the minterm). Thus we find whether either or both of f(xn) and f(yn) are
1, and if so we also know xn and/or yn themselves. Now the target formula is
identified: the value of the formula on other points does not matter because they
have zero probability.

However, it is not difficult to see that there is a distribution D ∈ D such
that DNF formulas are not identifiable in the model of learning from EQ and
D-samples. Here we refer to learning DNF’s of size polynomial in n from poly-
nomially many equivalence queries of polynomial size, and with an extra initial
sample of polynomial breadth. First we note that sampling according to D ∈ D



The Consistency Dimension and Distribution-Dependent Learning 87

there is a non-negligible probability of obtaining a sample that only contains
copies of xn.

Lemma 11 For any polynomial q and 0 < δ < 1, there exists an integer k0 such
that for all n ≥ k0 the probability that a D-sample S of size q(n, 1/δ) does not
contain yn is greater than δ.

Then, the following negative result follows:

Theorem 12 There exist a distribution D in D such that DNF is not EQ learn-
able from D-samples.

The essential idea of the proof is that, after an initial sample revealing a
single word, the algorithm is left with a task close enough to that of learning
DNFs in the standard model with equivalence queries, which is impossible [4].

4 The Sphere Number and Its Applications

The remainder of the paper uses the machinery developed in Section 2 to obtain
stronger results relating the models of the previous section, under one more
technical condition: that the learning algorithm knows the size of the target
concept, and never queries hypotheses longer than that. Some important learning
algorithms do not have this property, but there are still quite a few (among the
exact learners from equivalence queries only) that work in sort of an incremental
fashion that leads to this property. The results become interesting because they
lead to a precise characterization of randomized learners from D-teachers.

We first rewrite our combinatorial material of the previous section in an
extremely useful, geometrically intuitive form (1-spheres), and prove that for
m = M these structures capture clearly the strong consistency dimension. Ap-
plications follow in the next subsection.

4.1 Strong Consistency Dimension and 1-Spheres

A popular method for getting lower bounds on the number of queries is to show
that the class of target concepts contains a basic “hard-to-learn” combinatorial
structure. For instance, if the empty set is not representable but N singletons
are, then the number of EQs, needed to identify a particular singleton, is at least
N . In this Subsection, we consider a conceptually similarly simple structure: the
so-called 1-spheres. They are actually a disguised (read isomorphic) version of
sets of singletons, with the empty set simultaneously forbidden. Then we show
that the strong consistency dimension is lower bounded by the size of the largest
1-sphere that can be represented by C. Moreover, for M = m both quantities
coincide.

To make the last statements precise, we need several definitions. Let S be a
finite set, and S0 ⊆ S. The 1-sphere with support S around center S0, denoted
as H1

S(S0) in the sequel, is the collection of sets S1 ⊆ S such that |S0 ⊕S1| = 1,



88 José L. Balcázar et al.

where ⊕ denotes the symmetric difference of sets. In other words, S1 ⊆ S belongs
to H1

S(S0) if the Hamming distance between S0 and S1 is 1. Thus, it is formed
by all the points at distance (radius) 1 from the center in Hamming space.

Let us now assume that S ⊆ Σn. Let S′ be an arbitrary subset of S. The
sample C′ : Σn → {0, 1, ∗} which represents S′ (as a subset of S) is the sample
with support S that assigns label 1 to all instances from S′, and label 0 to all
instances from S \ S′. We say that H1

S(S0) is representable by Cn,[m:M ] if the
following two conditions are valid:

(A) Let C0 be the sample with support S which represents S0. Then, |C0|R >
M .

(B) Each sample C1 with support S, which represents a set S1 ∈ H1
S(S0),

satisfies |C1|R ≤ m.

Thus, for the particular case of M = m, all points in Hamming space on the
surface of the sphere are representable within size m but the center is not; just
as the above-mentioned use of singletons, which form the 1-sphere centered on
the empty set. The size of H1

S(S0) is defined as |S|. We define the three-variable
function sphR(n, m, M), called sphere number of R in the sequel, as the size of
the largest 1-sphere which is representable by Cn,[m:M ].

We now turn to the main result of this subsection, which implies that the
sphere number is another lower bound on LCEQ

R (n, m, M).

Theorem 13 sphR(n, m, M) ≤ scdimR(n, m, M) with equality for M = m.

Proof. For the sake of brevity, let d = scdimR(n, m, M) and s = sphR(n, m, M).
Let H1

S(S0) be a largest 1-sphere that is representable by Cn,[m:M ]. Thus,
|S| = s. In order to prove d ≥ s, we assume for sake of contradiction d < s.
Consider the sample C0 with support S that represents S0. By Condition (A),
|C0|R > M . According to Condition (2) applied to C0, there exists a subsample
Q v C0 such that |Q| ≤ d < s and |Q|R > m. Let SQ = supp(Q) ⊂ S. Let Q1 be
a sample with support S that totally coincides with Q (and thus with C0) on SQ,
and coincides with C0 on S \SQ except for one instance. Clearly, Q1 represents a
set S1 ∈ H1

S(S0). By Condition (B), |Q1|R ≤ m. Since |Q|R ≤ |Q1|R, we arrived
at a contradiction.

Finally, we prove s ≥ d for the special case that M = m. It follows from the
minimality of d and Condition (2) that there exists a sample C : Σn → {0, 1, ∗}
such that the following holds:

1. |C|R > m.
2. ∃Q0 v C : |Q0| ≤ d ∧ |Q0|R > m
3. ∀Q v C : (|Q| ≤ d− 1 ⇒ |Q|R ≤ m).

Let S denote the support of Q0. Note that |S| = d (because otherwise the last
two conditions become contradictory). Let S0 ⊆ S be the set represented by
Q0. We claim that H1

S(S0) is representable by Cn,[m:m] (which would conclude
the proof). Condition (A) is obvious because |Q0|R > m. Condition (B) can be



The Consistency Dimension and Distribution-Dependent Learning 89

seen as follows. For each x ∈ S, define Qx as the subsample of C with support
S \ {x}, and Q′x as the sample with support S that coincides with C on S \ {x},
but disagrees on x. Because each Qx is a subsample of C of breadth d − 1, it
follows that |Qx|R ≤ m for all x ∈ S. We conclude that the same remark applies
to samples Q′x, since a concept that is consistent with Qx, but inconsistent with
Q0, must be consistent with Q′x. Finally note that the samples Q′x, x ∈ S, are
exactly the representations of the sets in H1

S(S0), respectively. •

4.2 Applications of the Sphere Number

In this subsection, C denotes a concept class. The main results of this section are
derived without referring to a representation classR. We will however sometimes
apply a general theorem to the special case where the concept class consists of
concepts with a representation of size at most m.

It will be convenient to adapt some of our notations accordingly. For instance,
we say that 1-sphere H1

S(S0) is representable by C if S ⊆ X and the following
two conditions are valid:

(A) C does not contain a hypothesis H that assigns label 1 to all instances in
S0 and label 0 to all instances in S \ S0.

(B) For each S′ ∈ H1
S(S0), there exists a concept C′ ∈ C that assigns label 1 to

all instances in S′ and label 0 to all instances in S \ S′.

The following notation will be used in the sequel. If S = {x1, . . . , xs}, then
Si = S0 ⊕ {xi} for i = 1, . . . , s. Thus, S1, . . . , Ss are the sets belonging to
H1

S(S0). The concept from C which represents Si in the sense of Condition (B)
is denoted as Ci.

The sphere number associated with C, denoted as sph(C), is the size of the
largest 1-sphere that is representable by C. Similar conventions are made for the
learning complexity measure LC.

Theorem 14 Let C = H1
S(S0) be a 1-sphere and D an arbitrary but fixed dis-

tribution on S. Then, LCEQ[D](C) ≤ 1 + dlog(1/δ)e.

Proof. Let S = {x1, . . . , xs}, and let C1, . . . , Cs be the concepts from C used
to represent S1, . . . , Ss ∈ H1

S(S0), respectively. Let H1, . . . , Hs be a permutation
of C1, . . . , Cs sorted according to increasing values of D(xi). Consider the EQ-
learner which issues its hypotheses in this order. It follows that as long as there
exist counterexamples of a strictly positive probability, the probability that the
teacher returns the counterexample xj associated with the target concept Cj is
at least 1/2 per query. Thus, the probability that the target is not known after
dlog(1/δ)e EQs is at most δ. Thus, with probability at least 1 − δ, one more
query suffices to receive answer YES. •

As the number of EQs needed to learn 1-spheres from arbitrary counterex-
amples equals the size s of the 1-sphere, and the upper bound in Theorem 14



90 José L. Balcázar et al.

does not depend on s at all, the model of EQ-learning from the D-teacher for a
fixed distribution D is, in general, more powerful than the ordinary model. The
gap between the number of EQs needed in both models can be made arbitrarily
large.

Recall that Dunif denotes the class of distributions that are uniform on a
subdomain S ⊆ X and assign zero probability to instances from X \ S.

Theorem 15 The following lower bound even holds for randomized learners:

LCEQ(C) ≥ LCEQ[Dunif ](C) ≥ (1− δ)sph(C).

Proof. The first inequality is trivial. We prove the second one.
Let S = {x1, . . . , xs}, and let C1, . . . , Cs be the concepts from C used to

represent S1, . . . , Ss ∈ H1
S(S0), respectively. For j = 1, . . . , s, let Dj be the

probability distribution that assigns zero probability to xj and is uniform on the
remaining instances from S. Clearly, Dj ∈ Dunif .

A learner must receive answer YES with probability at least 1− δ of success
for each pair (C, D), where C ∈ C is the target concept, and counterexamples are
returned randomly according to D ∈ D. It follows that, if target concept Cj is
drawn uniformly at random from {C1, . . . , Cs}, and counterexamples are subse-
quently returned according to Dj, answer YES is still obtained with probability
at least 1− δ of success. Note that we randomize over the uniform distribution
on the 1-sphere (random selection of the target concept), over the drawings of
distribution Dj conditioned to the current sets of counterexamples, respectively,
and over the internal coin tosses of the learner.

Assume w.l.o.g. that all hypotheses are consistent with the counterexamples
received so far. Let C′ be the next hypothesis, and S′ ⊆ S the subset of instances
from S being labeled 1 by C′. Because H1

S(S0) is representable by C, S′ must
differ from S0 on at least one element of S. If S′ = Sj , then the learner receives
answer YES. Otherwise, the set U = (S′ ⊕ Sj) \ {xj} is not empty. Note that
the counterexample xi to C′ is picked from U uniformly at random. This leads
to the removal of only Ci from the current version space V .

The punchline of this discussion is that the following holds after the returnal
of q counterexamples:

1. The current version space V contains s−q candidate concepts from C1, . . . , Cs.
They are (by symmetry) statistically indistinguishable to the learner.

2. The next hypothesis is essentially a random guess in V , that is, the chance to
receive answer YES is exactly 1/|V|. The reason is that, from the perspective
of the learner, all candidate target concepts in V are equally likely.4

4 This might look unintuitive at first glance, because the learner does not necessarily
draw the next hypothesis at random from V according to the uniform distribution.
But notice that a random bit cannot be guessed with a probability of success larger
than 1/2 no matter which procedure for “guessing” is applied. This is the kind of
argument that we used.



The Consistency Dimension and Distribution-Dependent Learning 91

If answer YES is received before s EQs were issued, then only because it was
guessed within V by chance. We can illustrate this by thinking of two players.
Player 1 determines at random a number between 1 and s (the hidden target
concept). Player 2 starts random guesses. The probability that the target number
was determined after q guesses is exactly q/s. Thus, at least (1− δ)s guesses are
required to achieve probability 1− δ of success. •

Corollary 16 Let R = (Σ, ∆, R, µ) be a representation class defining a doubly
parameterized concept class C. The following lower bound holds for all m and n,
even for randomized learners:

LCEQ
R (n, m, m) ≥ LCEQ[Dunif ]

R (n, m, m) ≥ (1− δ)sphR(n, m, m)

This means that, considering learning algorithms that do not make queries longer
than the size of the target concept, the information-theoretic barrier for EQ-
learning from arbitrary counterexamples is still a barrier for EQ-learning from
Dunif -teachers. This negative result even holds when the learner is randomized,
so that this implies that it applies as well to the model of EQ-learning from D-
samples, which has been proved earlier to be subsumed by randomized learners
from D-teachers.

On the other hand, note that the results of this section generalize readily to
the case in which the hypotheses queried come from a different class H larger
than C, or in particular to learners which query hypothesis of size up to M > m
when the target is known to have size at most m. The point is that, for this
case, the last corollary does not have anymore the interpretation that we have
described, since the sphere number no longer is guaranteed to coincide with the
strong consistency dimension, so the lower bound for the learning complexity
that we would obtain is no longer, in principle, the same information-theoretic
barrier as for EQ-learning.

References

[1] D. Angluin. Inference of reversible languages. J. Assoc. Comput. Mach., 29:741–
765, 1982.

[2] D. Angluin. Learning regular sets from queries and counterexamples. Information
and Computation, 75:87–106, 1987.

[3] D. Angluin. Queries and concept learning. Machine Learning, 2:319–342, 1988.
[4] D. Angluin. Negative results for equivalence queries. Machine Learning, 5:121–

150, 1990.
[5] J. Castro and J. L. Balcázar. Simple pac learning of simple decision lists. In Sixth

Internatinal Workshop, ALT’95, pages 239–248, Fukuoka, Japan, 1995. LNAI.
Springer.

[6] R. Gavaldà. On the power of equivalence queries. In EUROCOLT’93, pages
193–203. LNAI. Springer, 1993.

[7] Y. Hayashi, S. Matsumoto, A. Shinoara, and M. Takeda. Uniform characteriza-
tion of polynomial-query learnabilities. In First International Conference, DS’98,
pages 84–92, Fukuoka, Japan, 1998. LNAI. Springer.



92 José L. Balcázar et al.

[8] L. Hellerstein, K. Pillaipakkamnatt, V. Raghavan, and D. Wilkins. How many
queries are needed to learn? Journal of the ACM, 43(5):840–862, 1996.

[9] M. Li and P. Vitányi. Learning simple concepts under simple distributions. SIAM
Journal on Computing, 20(5):911–935, 1991.

[10] H. Simon. Learning decision lists an trees with equivalence queries. In Second
European Conference, EuroCOLT’95, pages 322–336, Barcelona, Spain, 1995. Lec-
ture Notes in Artificial Intelligence.

[11] L. Valiant. A theory of the learnable. Comm. ACM, 27:1134–1142, 1984.



The VC-Dimension of Subclasses of Pattern

Languages

Andrew Mitchell1, Tobias Scheffer2, Arun Sharma1, and Frank Stephan3

1 University of New South Wales, School of Computer Science and Engineering,
Sydney, 2052 NSW, Australia,
andrewm,arun@cse.unsw.edu.au

2 Otto-von-Guericke-Universität Magdeburg, FIN/IWS, Universitätsplatz 2,
39106 Magdeburg, Germany,

scheffer@iws.cs.uni-magdeburg.de
3 Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 294,

69120 Heidelberg, Germany,
fstephan@math.uni-heidelberg.de

Abstract. This paper derives the Vapnik Chervonenkis dimension of
several natural subclasses of pattern languages. For classes with un-
bounded VC-dimension, an attempt is made to quantify the “rate of
growth” of VC-dimension for these classes. This is achieved by comput-
ing, for each n, size of the “smallest” witness set of n elements that is
shattered by the class. The paper considers both erasing (empty substitu-
tions allowed) and nonerasing (empty substitutions not allowed) pattern
languages. For erasing pattern languages, optimal bounds for this size
— within polynomial order — are derived for the case of 1 variable oc-
currence and unary alphabet, for the case where the number of variable
occurrences is bounded by a constant, and the general case of all pattern
languages. The extent to which these results hold for nonerasing pattern
languages is also investigated. Some results that shed light on efficient
learning of subclasses of pattern languages are also given.

1 Introduction

The simple and intuitive notion of pattern languages was formally introduced
by Angluin [1] and has been studied extensively, both in the context of formal
language theory and computational learning theory. We give a brief overview of
the work on learnability of pattern languages to provide a context for the results
in this paper. We refer the reader to Salomaa [20, 21] for a review of the work
on pattern languages in formal language theory.

In the present paper, we consider both kinds of pattern languages: erasing
(when empty substitutions are allowed) and nonerasing (when empty substitu-
tions are not allowed). Angluin [2] showed that the class of nonerasing pattern
languages is identifiable in the limit from only positive data in Gold’s model [8].
Since its introduction, pattern languages and their variants have been a subject
of intense study in identification in the limit framework (for a review, see Shino-
hara and Arikawa [24]). Learnability of the class of erasing pattern languages was

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 93–105, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



94 Andrew Mitchell et al.

first considered by Shinohara [23] in the identification in the limit framework.
This class turns out to be very complex and it is still open whether for finite
alphabet of size > 1, the class of erasing pattern languages can be identified in
the limit from only positive data1.

Since the class of nonerasing pattern languages is identifiable in the limit from
only positive data, a natural question is if there is any gain to be had if negative
data is also present. Lange and Zeugmann [14] observed that in the presence
of both positive and negative data, the class of nonerasing pattern languages is
identifiable with 0 mind changes; that is, there is a learner that after looking at
a sufficient number of positive and negative examples comes up with the correct
pattern for the language. This restricted “one-shot” version of identification in
the limit is referred to as finite identification.

Since finite identification is a batch model, finite learning from both positive
and negative data may be viewed as an idealized version of Valiant’s [25] PAC
model. In this paper, we show that even the VC-dimension of patterns with one
single variable and an alphabet size of 1 is unbounded. This implies that even
this restricted class of pattern languages is not learnable in Valiant’s sense, even
if we omit all polynomial time constraints from Valiant’s definition of learning.
This result (which holds for both the nonerasing and erasing cases) may appear
to be at odds with the observation of Lange and Zeugmann [14] that the class
of nonerasing pattern languages can be finitely learned from both positive and
negative data. The apparent discrepancy between the two results is due to a
subtle difference on the manner in which the two models treat data. In finite
identification, the learner has the luxury of waiting for a finite, but unbounded,
sample of positive and negative examples before making its conjecture. On the
other hand, the learner in the PAC model is required to perform on any fixed
sample of an “adequate” size. So, clearly the conditions in the PAC setting with
respect to data presentation are more strict.

Since this restricted class and several other subclasses of pattern languages
considered in this paper have unbounded VC-dimension, we make an attempt to
quantify the rate of growth of VC-dimension for these classes. This is achieved
by computing, for each n, size of the “smallest” witness set of n elements
that is shattered by the class. The motivation for computing such a Vapnik
Chervonenkis Witness Size is as follows. Although classes with unbounded VC-
dimension are not PAC-learnable in general, they may become learnable under
certain constraints on the distribution. An often used constraint is that the dis-
tribution favors short strings. Therefore, an interesting question is: How large is
the VC-dimension if only strings of a certain length are considered? Mathemat-
ically, it is perhaps more elegant to pose the question: What is the least length
m such that n strings of size up to m are shattered? We refer to this value of
m as the Vapnik Chervonenkis Dimension Witness Size for n and express it as
a function of n, vcdws(n). Hence, higher the growth rate of the function vcdws,

1 See Mitchell [17] where a subclass of erasing pattern languages is shown to be iden-
tifiable in the limit from only positive data. This paper also shows that the class of
erasing pattern languages is learnable if the alphabet size is 1 or ∞.



The VC-Dimension of Subclasses of Pattern Languages 95

smaller is the “local” VC-dimension for strings up to a fixed length and “easier”
it may be to learn the class under a suitably constrained variant of the PAC
model.

Although the VC-dimension of 1-variable pattern languages is unbounded,
we note that if at least one positive example is present, the VC-dimension of
nonerasing pattern languages becomes bounded (this can be formally expressed
in the terminology of version-spaces). Unfortunately, this does not help in the
case of erasing pattern languages, as we are able to show that the VC-dimension
of 1-variable erasing pattern languages is unbounded even in the presence of a
positive example.

In k-variable patterns, the bound k is on the number of distinct variables in
the pattern and not on the total number of occurrences of all variables. We also
consider the case where the number of occurrences of all the variables in a pattern
is bounded. We show that the VC-dimension of the class of languages generated
by patterns with at most 1 variable occurrence is 2. For variable occurrence count
≥ 2, the VC dimension turns out to be unbounded provided the alphabet size is
at least 2 and the pattern has at least two distinct variables. We also consider
the case where the only requirement is that each variable occur exactly n times
in the pattern (so, there is neither any bound on the number of distinct variables
nor any bound on the total number of variable occurrences). We show that the
VC dimension of languages generated by patterns in which each variable occurs
exactly once is unbounded. We note that this result also holds for any general n.

Having established several VC-dimension results, we turn our attention to
issues involved in efficient learning of pattern language subclasses. One prob-
lem with efficient learning of pattern languages is the NP-completeness of the
membership decision [1].2 This NP-completeness result already implies that pat-
tern languages cannot be learned polynomially in Valiant’s sense when the hy-
potheses are patterns (because Valiant requires that, for a given instance, the
output of the hypothesis must be computable in polynomial time). Schapire [22]
strengthened this result by showing that pattern languages cannot be polynomi-
ally PAC-learned independent of the representation chosen for the hypotheses.
Computing the output of a hypothesis cannot be done in polynomial time using
any coding scheme which is powerful enough for learning pattern languages. Also,
Ko, Marron and Tzeng [13] have shown that the problem of finding any pattern
consistent with a set of positive and negative examples is NP-hard. Marron and
Ko [16] considered necessary and sufficient conditions on a finite positive initial
sample that allows exact identification of a target k-variable pattern from the
initial sample and from polynomially many membership queries. Later, Marron
[15] considered the exact learnability of k-variable patterns with polynomially

2 Angluin [1] showed that the class of nonerasing pattern languages is not learnable
with polynomially many queries if only equivalence, membership, and subset queries
are allowed and as long as any hypothesis space with the same expressive power as
the class being learned is considered. However, she gave an algorithm for exactly
learning the class with a polynomial number of superset queries.



96 Andrew Mitchell et al.

many membership queries, but where the initial sample consists of only a single
positive example.

In the PAC setting, Kearns and Pitt [11] showed that k-variable pattern
languages can be PAC-learned under product distributions3 from polynomially
many strings. At first blush, their result appears to contradict our claim that k-
variable patterns have an unbounded VC-dimension. A closer look at their result
reveals that they assume an upper bound on the length of substitution strings
— which essentially bounds the VC-dimension of the class. When the substi-
tutions of all variables are governed by independent and identical distributions,
then k-variable pattern languages can (under a mild additional distributional
assumption) even be learned linearly in the length of the target pattern and
singly exponentially in k [19].

In this paper we show that in the case of nonerasing pattern languages, the
first positive example string contains enough information to bound the necessary
sample size without any assumptions on the underlying distribution. (This result
holds even for infinite alphabets.) Unfortunately, as already noted this result
does not translate to the case of k-variable erasing pattern languages, as even in
the presence of a positive example, the VC-dimension of single-variable erasing
pattern languages is unbounded.

We finally consider some results in the framework of agnostic learning [9,
12]. Here no prior knowledge about the actual concept class being learned is
assumed. The learner is required to approximate the observed distribution on
classified instances almost as well as possible in the given hypothesis language
(with high probability) in polynomial time. Agnostic learning may be viewed
as the branch of learning theory closest to practical applications. Unfortunately,
not even conjunctive concepts [12] and half-spaces [10] are agnostically learnable.
Shallow decision trees, however, have been shown to be agnostically learnable
[3, 6].

2 Preliminaries

The symbol ε denotes the empty string. Let s be a string, word, or pattern.
Then the length of s, denoted |s|, is the number of symbols in s. A pattern
σ is a string over elements from the basic language Σ and variables from a
variable alphabet; we use lower case Latin letters for elements of Σ and upper
case Latin letters for variables. The number of variables is the number of distinct
variable symbols occurring in a pattern, the number of occurrences of variables
is the total number of occurrences of variable symbols in a pattern. An erasing
pattern language contains all words x generated by the pattern in the sense
that every variable occurrence A is substituted within the whole word by the
same string αA ∈ Σ∗, a non-erasing pattern language contains the words where

3 More precisely, they require the positive examples in the sample to be generated
according to a product distribution, but allow any arbitrary distribution for the
negative examples.



The VC-Dimension of Subclasses of Pattern Languages 97

the variables are substituted by non-empty strings only. Thus, in non-erasing
pattern languages every word is at least as large as the pattern generating it.

For example, if σ = aAbbBabAba, then the length is 10, the number of
variables 2 and the number of variable occurrences is 3. In an erasing pattern
language, σ generates the words abbabba (by A = ε and B = ε) and abbaabba
(by A = ε and B = a) which it does not generate in the nonerasing case. In both
cases, erasing and nonerasing, σ generates the word aabbabaababa (by A = a and
B = aba). This allows us to define subclasses of pattern languages generated by
a pattern with up to k variables or up to l variable occurrences.

Quantifying Unbounded VC-Dimension. The VC-dimension of a class L
of languages is the size of the largest set of words S such that L shatters S.
The VC-dimension of a class L is unbounded iff, for every n, there are n words
x1, x2, . . . , xn such that L shatters them. As motivated in the introduction, we
introduce the function

vcdws(n) = min{max{|x1|, |x2|, . . . , |xn|} : L shatters {x1, x2, . . . , xn} }
where vcdws stands for Vapnik Chervonenkis Dimension Witness Size and re-
turns the size of the smallest witness for the fact that the VC-dimension is at
least n. Determining vcdws for several natural classes is one of the main results
of the present work.

Version Spaces. Given a set of languages L and a set of positive and negative
example strings S, the version space V S(L, S) consists of all languages in L
that generate all the positive but none of the negative strings in S. It follows
from Theorem 2.1 of Blumer et al. [5] that L can be PAC-learned with the
sample S and a finite number of additional examples if V S(L, S) has a finite VC-
dimension. In Section 3 we will show that, for certain classes, the VC dimension
of the version space remains infinite after a sample S has been read while in
Section 5 we show that, for other classes, the VC-dimension of the version space
can turn from infinite to finite when the first positive example arrives.

3 VC-Dimension of Erasing Pattern Languages

Our first result shows that even the very restrictive class of 1-variable erasing
pattern languages over the unary alphabet has an unbounded VC-dimension.
This special case is the only one for which the exact value of vcdws is known.

Theorem 1. The VC-dimension of the class of erasing 1-variable pattern lan-
guages is unbounded. If the size of the alphabet is 1, then one can determine the
exact size of the smallest witness by the formula vcdws(n) = p2 · p3 · . . . · pn−1

where pm is the m-th prime number (p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . .).

Proof: Let Σ = {a}. For the direction vcdws(n) ≤ p2 ·p3 ·. . .·pn−1, let xk = amk

where mk = p1 · p2 · . . . · pn−1/pk, that is, mk is the product of the first n − 1
primes except the k-th one. Let xn = ε. For every subset E ⊆ {x1, x2, . . . , xn},



98 Andrew Mitchell et al.

let pE be the product of those pk where k < n and xk /∈ E and where pE = 1 if
E ⊆ {xn}. Now the patterns ApE and apEApE generate a word am with m > 0 iff
pE divides m. Furthermore, the word ε is generated by ApE but not by apEApE .
So the language generated by ApE contains exactly the xk ∈ E in the case
xn ∈ E; the language generated by apE ApE contains exactly the xk ∈ E in the
case xn /∈ E. Since the longest xk is x1 whose length is p2 · p3 · . . . · pn−1 one has
that vcdws(n) ≤ p2 · p3 · . . . · pn−1.

For the converse direction assume that the erasing 1-variable pattern lan-
guages shatter E = {am1, am2 , . . . , amn} where m1 < m2 < . . . < mn.
Let adkAek generate all elements in E except amk . Now one has, for k′ ∈
{2, 3, . . . , n} − {k}, that am1 = adk+c1·ek and amk′ = adk+ck′ ·ek , so mk′ −m1 =
(ck′ − c1)ek. On the other hand, mk −m1 is not a multiple of ek and mk −m1

has a prime factor qk which does not divide any difference mk′ −m1. It follows
that for every difference mk−m1 there is one prime number qk dividing all other
differences mk′ −m1 and therefore, any product of n− 2 of such different prime
numbers must divide some difference mk −m1. The product q2 · q3 · . . . · qn/qk is
a lower bound for mk and, for the k with the smallest number qk, mk is at least
the product of the primes p2 · p3 · . . . · pn−1. So vcdws(n) ≥ p2 · p3 · . . . · pn−1.

As noted, this is the only case where vcdws has been determined exactly. It
will be shown that more variables enable smaller values for vcdws(n) while it is
unknown whether larger alphabets give smaller values for vcdws(n) in the case of
erasing 1-variable pattern languages. The above proof even shows the following:
Given any positive example w, there is still no bound on the VC-dimension of
the version space of the class with respect to the example set {w}. Since the
given w takes the place of xn in the proof above, one now gets the upper bound
|w|+p2 ·p3 · . . . ·pn−1 instead of p2 ·p3 · . . . ·pn−1 and uses for xk the words wamk

with mk = p1 · p2 · . . . · pn−1/pk in the case k < n and xk = w in the case k = n.

Theorem 2. For any positive example w, the VC-dimension of the version
space of the class of all erasing 1-variable pattern languages is unbounded and
vcdws(n) ≤ |w|+ p2 · p3 · . . . · pn.

However, if two positive examples are present, then in some rare cases it may
be possible to bound the number of patterns. For example, let the alphabet be
Σ = {a, b}. Then if both strings a and b are in the language and are presented as
positive examples, it is immediate that the only pattern language that satisfies
this case is Σ∗.

An alternative to limiting the number of variables is limiting the number of
variable occurrences. If the bound is 1, then the class is quite restrictive and has
VC-dimension 2. However, as soon as the bound becomes 2, one has unbounded
VC-dimension.

Theorem 3. The VC-dimension of the class of erasing pattern languages gen-
erated by patterns with at most 1 variable occurrence is 2.

One can generalize the result and show that every 1-variable erasing pattern
language with up to k occurrences of this variable has bounded Vapnik Chervo-



The VC-Dimension of Subclasses of Pattern Languages 99

nenkis dimension. This is no longer true for 2-variable erasing pattern languages
with up to 2 occurrences.

Theorem 4. The VC-dimension of the class of all erasing pattern languages
generated by patterns with at most 2 variable occurrences is unbounded. Further-
more, vcdws(n) ≤ (3n + 2) · 2n.

Proof: For each k, let xk be the concatenation of all strings anbσban where
σ ∈ {a, b}n and the k-th character of σ is a b. Now, for every subset E of
{x1, x2, . . . , xn} let σE be a strings of length n such that σE(k) = a if xk /∈ E
and σE(k) = b if xk ∈ E. Now the language generated by AbσEbB contains xk

iff bσEb is a substring of xk iff the k-th character in σE is a b which by definition
is equivalent to xk ∈ E. So, the set {x1, x2, . . . , xn} is shattered.

The corresponding theorem holds also for nonerasing pattern languages since A
and B take at least the string an or even something longer. A natural question
is whether the lower bound is also exponential in n. The next theorem answers
this question affirmatively.

Theorem 5. For given k, the class of all pattern languages with up to k variable
occurrences satisfies vcdws(n) ≥ 2(n−1)/(2k+1).

Proof: Given x1, x2, . . . , xn, one needs 2n−1 patterns which contain x1 and
shatter x2, x3, . . . , xn. Let m = |x1| which is a lower bound for the size if
x1, x2, . . . , xn are the shortest words shattered by the considered class. A pat-
tern generating x1 has h ≤ k variable occurrences and, for the l-th variable
occurrence in this word, one has a beginning entry al ≤ |x1| ≤ m, and the
length bl of the variable in x1. Knowing x1, each pattern generating x1 has
a unique description with the given parameters. So one gets the upper bound
1 + m2 + m4 + . . . + m2k ≤ m2k+1 for the number of patterns generating x1 and
has m2k+1 ≥ 2n−1, that is, m ≥ 2(n−1)/(2k+1).

The next theorem is about the general case of the class of all erasing pattern
languages. Strict lower bounds are vcdws(n) ≥ log(n)/ log(|Σ|) for the case of
alphabet size 2 or more and vcdws(n) ≥ n − 1 for the case of alphabet size 1.
These lower bounds are given by the size of the largest string within a set of n
strings. These straightforward bounds are modulo a linear factor optimal for the
unary and binary alphabets.

Theorem 6. For arbitrary erasing pattern languages:
(a) If Σ = {a} then vcdws(n) ≤ 2n.
(b) If Σ = {a, b} then vcdws(n) ≤ 4 + 2 · log(n).

Proof (a) In this case Σ = {a}. Let x1 = an+1, x2 = an+2, . . . , xn = an+n and
E be a subset of x1, x2, . . . , xn. Now let σE be the concatenation of those An+k

k

with xk ∈ E: Taking Ak = {a} and all other variables to ε, the word generated
by σE is xk. If at least two variables are not empty or one takes a string strictly



100 Andrew Mitchell et al.

longer than 1 then the overall length is at least 2n + 2 and the word generated
outside {x1, x2, . . . , xn}. So, σE generates exactly those words xk which are in
E and the erasing pattern languages shatter {x1, x2, . . . , xn}.
Proof (b) In this case Σ = {a, b}. Let m be the first integer such that the set
Um contains at least n strings where Um consists of all words w ∈ {a, b}m such
that a, b occur similar often in w, the first character of w is a and aa, bb, ab and
ba are subwords of w. One can show that m ≤ 4 + 2 · log(n). Let x1, x2, . . . , xn

be different words in Um. Now, for every k, let σk be the pattern obtained from
xk by replacing a by Ak and b by Bk, and let σE be the concatenation of those
σk where xk ∈ E. Since every variable occurs in σE m/2 times, one has that
either one variable is assigned to some fixed u ∈ {a, b}2 and the generated word
is um/2 or there are two variables such that one of them is assigned to a and
the other one to b. Since xk 6= um/2 — the word um/2 does not contain all
subwords aa, ab, ba, bb — and since xk /∈ {am/2bm/2, bm/2am/2} and since the
first character of xk is a one can conclude that Al = a and Bl = b for some
l. Now the word generated by σE is xl and xl = xk only for l = k. Thus σE

generates exactly those xk with xk ∈ E.

The trivial lower bound is constant 1 for infinite alphabet Σ. But it is impossible
to have constant upper bound for the size of the smallest witness, indeed there
is, for every k, an n with vcwds(n) > k.

4 VC-Dimension of Nonerasing Pattern Languages

Many of the theorems for erasing pattern languages can be adapted to the case
of nonerasing pattern languages. In many theorems the upper bound increases
by a sublinear factor (measured in the size of the previous value of the function
vcdws). Furthermore one gets the following lower bound:

Theorem 7. For any class of nonerasing pattern languages, vcdws(n) ≥
n−1

2·log(n+2) .

Proof: Given x1, x2, . . . , xn, one needs 2n−1 patterns which contain x1 and
shatter x2, x3, . . . , xn. Let m = |x1| which is a lower bound for the size if
x1, x2, . . . , xn are the shortest words shattered by the considered class. A pattern
generating x1 can be described as follows: To each position one assigns either
the value 0 if this position is covered by a constant from the pattern generating
it, the value h if it is the first character of some occurrence of the h-th variable
(h ≤ m) and m + 1 if it is some subsequent character of the occurrence of some
variable. Together with x1 itself, this string either describes uniquely the pat-
tern generating x1 or is invalid if, for example, some variable occurring twice
has at each occurrence a different length. So one gets at most (m+2)m patterns
which generate x1. It follows that (m + 2)m ≥ 2n−1. This condition only holds
if m ≥ n−1

2·log(n+2) .



The VC-Dimension of Subclasses of Pattern Languages 101

Furthermore, all lower bounds on vcdws carry over from erasing pattern lan-
guages to nonerasing pattern languages. For upper bounds, the following bounds
can be obtained by adapting the corresponding results for erasing pattern lan-
guages. In these three cases, the upper bounds are only slightly larger than those
for the erasing pattern languages, but in the general case with an alphabet of size
2 or more, the above lower bound is n−1

2·log(n+2) for nonerasing pattern languages
while 4 + 2 · log(n) is an upper bound for the erasing pattern languages.

Theorem 8. For 1-variable pattern languages, vcdws(n) ≤ p1 ·p2 ·. . . ·pn, where
p1, p2, . . . , pn are the first n prime numbers.
For patterns with exactly two variable occurrences, vcdws(n) ≤ (3n + 2) · 2n.
If the alphabet size is 1, then vcdws(n) ≤ 1

2 · (3n2 + 5n) for the class of all
nonerasing pattern languages.

Note that in the case the alphabet size is two, one can — using the well-known
fact that nonerasing pattern languages shatter the set of the xk = ak−1ban−k —
obtain that vcdws(n) ≤ n.

5 Learning k-Variable Nonerasing Patterns

Having established several VC-dimension results in the previous section, we now
present some PAC-learnability results. The fact that the VC dimension of k-
variable pattern languages is infinite suggests that this class is not learnable.
However, we will show that the version space becomes finite after the first positive
example has been seen.

Theorem 9. Let ε and δ be given. Let L be a k-variable pattern language and D
be an arbitrary distribution on Σ∗. Let S be an initial set of positive sentences of
size at least one and let lmin = min{|w| | w ∈ S}. Regarding the version space,
we can claim that |V S(k-variable pattern languages, S)| ≤ (lmin + k)lmin . Let h
be any pattern consistent with a sample of size at most m ≥ lmin

ε log 1
δ·log(lmin+k) .

Then P (ErrL,D[h] > ε) ≤ δ.

An exhaustive learner can find a consistent hypothesis (if one exists) after enu-
merating all possible (lmin+k)lmin patterns. In order to decide whether a pattern
is consistent with a sample the learner has to check if x ∈ L(h) for each example
x and pattern h. While this problem is NP-complete for general patterns, it can
be solved polynomially for any fixed number of variables k.

Theorem 10. Given a sample S of positive and negative strings, a consistent
nonerasing k-variable pattern h can be found in O((lmin + k)lmin ·max{|x| | x ∈
S}k) – that is, learning is – as in the case of PAC – polynomial in parameters
1
δ and 1

ε but depends exponentially on the parameters lmin and k.

An algorithm that learns a k-variable pattern still has a run time which grows
exponentially in lmin. Under an additional assumption on D and on the length
of substitution strings, they become efficiently learnable for fixed k [11].



102 Andrew Mitchell et al.

Patterns with k variable occurrences. If we restrict the patterns to have at
most k occurrences of any variables, they become even more easily learnable. The
number of k-occurrence patterns which are consistent with an initial example x
is at most as large as the number of k-variable patterns – that is, the logarithm
of the hypothesis space size is polynomial which makes the required sample size
polynomial, too. However, the learner can find a consistent hypothesis much
more quickly.

Theorem 11. Pattern languages with up to k occurrences of variables can be
learned from a sample in O(l2k−2

min · kk) – that is, polynomially for fixed k.

The idea of the proof is that up to k substrings in the shortest example can be
substituted by variables. Hence, we only need to try all “start and end positions”
of the variables and to enumerate all possible identifications of some variables.

6 Length-Bounded Pattern Languages

In this section we show that length-bounded pattern languages are efficiently
learnable – even in the agnostic framework. Due to lack of space our treatment
here is informal.

We assume the alphabet size to be finite. There are (|Σ|+ k + 1)k patterns
of length at most k (|Σ| constants, up to k variables, and an empty symbol). It
follows immediately from Theorem 1 of [9] that P (ErrL,D[h∗] < ErrL,D[h]−ε) ≤
δ when h minimizes the empirical error, h∗ = infh∈H{ErrL,D[h]} is the truly best
approximation of L in H , and the sample size is at least m ≥ 1

ε2 log (|Σ|+k)k

δ .
In other words, by returning the hypothesis with the least empirical error a
learner returns (with high probability) a hypothesis which is almost as good
as the best possible hypothesis in the language. Hence, length bounded pattern
languages are agnostically learnable. In order to find h∗, a learner can enumerate
the hypothesis space in O((|Σ|+ k + 1)k).

The union of length bounded patterns is the power set of the set of
length bounded patterns – hence, this hypothesis space can be bounded
to at most 2(|Σ|+k+1)k

. This implies that the sample complexity is m ≥
(|Σ|+k+1)k

δ log 1
δ log(|Σ|+k+1) (that is polynomial in |Σ|, 1

ε , and 1
δ ) but we still

need to find an algorithm which finds a consistent hypothesis in polynomial
time – together this proves that this class is polynomially learnable [4]. A greedy
coverage algorithm which subsequently generates patterns which cover at least
one positive and no negative example can be guaranteed to find a consistent hy-
pothesis (if one exists) in O((|Σ|+k)k ·m+) where m+ is the number of positive
examples (that is, polynomially for a fixed k).

In order to learn unions of length bounded pattern languages agnostically
we would have to construct a polynomial algorithm which finds an empirical
error minimizing hypothesis. Note that this is much more difficult: The greedy
algorithm will find a consistent hypothesis – if one exists. It may occur that every
positive instance is covered by a distinct pattern. In the agnostic framework,



The VC-Dimension of Subclasses of Pattern Languages 103

we would have to find the hypothesis which minimizes the observed error. An
enumerative algorithm, however, would have a time complexity of O(2(|Σ|+k)k

).

7 Conclusion

We studied the VC-dimension of several subclasses of pattern languages. We
showed that even single variable pattern languages have an unbounded VC-
dimension. For this and several other classes with unbounded VC-dimension
we furthermore quantified the VC-dimension witness size, thus characterizing
just how quickly the VC-dimension grows. We showed that the VC-dimension
of the class of single variable pattern languages which are consistent with a
positive example is unbounded; by contrast, the class of pattern languages with
k variable occurrences which are consistent with a positive example is finite.
Hence, after the first positive example has been read, the sample size which is
necessary or good generalization can be quantified. This result does seem to
vindicate recent attempts by Reischuk and Zeugmann [18] (see also [7]) to study
feasible average case learnability of single variable pattern languages by placing
reasonable restrictions on the class of distributions.

Acknowledgment

We would like to express our gratitude to the reviewers for several helpful
comments that have improved the exposition of the paper. Andrew Mitchell is
supported by an Australian Postgraduate Award. Tobias Scheffer is supported
by grants WY20/1-1 and WY20/1-2 of the German Research Council (DFG),
and an Ernst-von-Siemens fellowship. Arun Sharma is supported by the Aus-
tralian Research Council Grants A49600456 and A49803051. Frank Stephan is
supported by the German Research Council (DFG) grant Am 60/9-2.

References

[1] D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21:46–62, 1980.

[2] D. Angluin. Inductive inference of formal languages from positive data. Informa-
tion and Control, 45:117–135, 1980.

[3] P. Auer, R. C. Holte, and W. Maass. Theory and applications of agnostic PAC-
learning with small decision trees. In Proceedings of the 12th International Con-
ference on Machine Learning, pages 21–29. Morgan Kaufmann, 1995.

[4] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Occam’s razor. In-
formation Processing Letters, 24:377–380, 1987.

[5] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the
Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965, 1989.

[6] D. Dobkin, D. Gunopoulos, and S. Kasif. Computing optimal shallow decision
trees. In Proceedings of the International Workshop on Mathematics in Artificial
Intelligence, 1996.



104 Andrew Mitchell et al.

[7] T. Erlebach, P. Rossmanith, H. Stadtherr, A. Steger, and T. Zeugmann. Learn-
ing one-variable pattern languages very efficiently on average, in parallel, and by
asking queries. In Ming Li and Akira Maruoka, editors, Algorithmic Learning
Theory: Eighth International Workshop (ALT ’97), volume 1316 of Lecture Notes
in Artificial Intelligence, pages 260–276, 1997.

[8] E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

[9] D. Haussler. Decision theoretic generalizations of the PAC model for neural net
and other learning applications. Information and Computation, 100(1):78–150,
1992.

[10] K. Hoeffgen, H. Simon, and K. van Horn. Robust trainability of single neurons.
Preprint, 1993.

[11] M. Kearns and L. Pitt. A polynomial-time algorithm for learning k-variable pat-
tern languages. In R. Rivest, D. Haussler, and M. Warmuth, editors, Proceedings of
the Second Annual Workshop on Computational Learning Theory. Morgan Kauf-
mann, 1989.

[12] M. Kearns, R. Schapire, and L. Sellie. Towards efficient agnostic learning. In
Proceedings of the Fifth Annual Workshop on Computational Learning Theory,
pages 341–352. ACM Press, 1992.

[13] K.-I Ko, A. Marron, and W.-G. Tseng. Learning string patterns and tree patterns
from examples. In Machine Learning: Proceedings of the Seventh International
Conference, pages 384–391, 1990.

[14] S. Lange and T. Zeugmann. Monotonic versus non-monotonic language learning.
In G. Brewka, K. Jantke, and P. H. Schmitt, editors, Proceedings of the Second
International Workshop on Nonmonotonic and Inductive Logic, volume 659 of
Lecture Notes in Artificial Intelligence, pages 254–269. Springer-Verlag, 1993.

[15] A. Marron. Learning pattern languages from a single initial example and from
queries. In D Haussler and L. Pitt, editors, Proceedings of the First Annual Work-
shop on Computational Learning Theory, pages 345–358. Morgan Kaufmann, 1988.

[16] A. Marron and K. Ko. Identification of pattern languages from examples and
queries. Information and Computation, 74(2), 1987.

[17] A. Mitchell. Learnability of a subclass of extended pattern languages. In Pro-
ceedings of the Eleventh Annual Conference on Computational Learning Theory.
ACM Press, 1998.

[18] R. Reischuk and T. Zeugmann. Learning one-variable pattern languages in linear
average time. In Proceedings of the Eleventh Annual Conference on Computational
Learning Theory, pages 198–208. ACM Press, 1998.

[19] P. Rossmanith and T. Zeugmann. Learning k-variable pattern languages efficiently
stochastically finite on average from positive data. In Proc. 4th International Col-
loquium on Grammatical Inference (ICGI-98), LNAI 1433, pages 13–24. Springer,
1998.

[20] A. Salomma. Patterns (The Formal Language Theory Column). EATCS Bulletin,
54:46–62, 1994.

[21] A. Salomma. Return to patterns (The Formal Language Theory Column). EATCS
Bulletin, 55:144–157, 1994.

[22] R.E. Schapire. Pattern languages are not learnable. In M. Fulk and J. Case,
editors, Proceedings of the Third Annual Workshop on Computational Learning
Theory, pages 122–129. Morgan Kaufmann, 1990.

[23] T. Shinohara. Polynomial time inference of extended regular pattern languages.
In RIMS Symposia on Software Science and Engineering, Kyoto, Japan, volume
147 of Lecture Notes in Computer Science, pages 115–127. Springer-Verlag, 1982.



The VC-Dimension of Subclasses of Pattern Languages 105

[24] T. Shinohara and A. Arikawa. Pattern inference. In Klaus P. Jantke and Steffen
Lange, editors, Algorithmic Learning for Knowledge-Based Systems, volume 961
of Lecture Notes in Artificial Intelligence, pages 259–291. Springer-Verlag, 1995.

[25] L. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–1142,
1984.



On the Vγ Dimension for Regression in

Reproducing Kernel Hilbert Spaces

Theodoros Evgeniou and Massimiliano Pontil

Center for Biological and Computational Learning, MIT
45 Carleton Street E25-201, Cambridge, MA 02142, USA

{theos,pontil}@ai.mit.edu

Abstract. This paper presents a computation of the Vγ dimension for
regression in bounded subspaces of Reproducing Kernel Hilbert Spaces
(RKHS) for the Support Vector Machine (SVM) regression ε-insensitive
loss function Lε, and general Lp loss functions. Finiteness of the Vγ

dimension is shown, which also proves uniform convergence in probability
for regression machines in RKHS subspaces that use the Lε or general
Lp loss functions. This paper presents a novel proof of this result. It also
presents a computation of an upper bound of the Vγ dimension under
some conditions, that leads to an approach for the estimation of the
empirical Vγ dimension given a set of training data.

1 Introduction

The Vγ dimension, a variation of the VC-dimension [11], is important for the
study of learning machines [1,5]. In this paper we present a computation of the
Vγ dimension of real-valued functions L(y, f(x)) = |y − f(x)|p and (Vapnik’s
ε-insensitive loss function Lε [11]) L(y, f(x)) = |y − f(x)|ε with f in a bounded
sphere in a Reproducing Kernel Hilbert Space (RKHS). We show that the Vγ

dimension is finite for these loss functions, and compute an upper bound on it. We
also present a second computation of the Vγ dimension in a special case of infinite
dimensional RKHS, which is often the type of hypothesis spaces considered in
the literature (i.e. Radial Basis Functions [9,6]). It also holds for the case when a
bias is added to the functions, that is with f being of the form f = f0 + b, where
b ∈ R and f0 is in a sphere in an infinite dimensional RKHS. This computation
leads to an approach for computing the empirical Vγ dimension (or random
entropy of a hypothesis space [11]) given a set of training data, an issue that
we discuss at the end of the paper. Our result applies to standard regression
learning machines such as Regularization Networks (RN) and Support Vector
Machines (SVM).

For a regression learning problem using L as a loss function it is known
[1] that finiteness of the Vγ dimension for all γ > 0 is a necessary and sufficient
condition for uniform convergence in probability [11]. So the results of this paper
have implications for uniform convergence both for RN and for SVM regression
[5].

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 106–117, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



On the Vγ Dimension for Regression in Reproducing Kernel Hilbert Spaces 107

Previous related work addressed the problem of pattern recognition where
L is an indicator function [3,7]. The fat-shattering dimension [1] was considered
instead of the Vγ one. A different approach to proving uniform convergence for
RN and SVM is given in [13] where covering number arguments using entropy
numbers of operators are presented. In both cases, regression as well as the case
of non-zero bias b were marginally considered.

The paper is organized as follows. Section 2 outlines the background and
motivation of this work. The reader familiar with statistical learning theory and
RKHS can skip this section. Section 3 presents a proof of the results as well as
an upper bound to the Vγ dimension. Section 4 presents a second computation
of the Vγ dimension in a special case of infinite dimensional RKHS, also when
the hypothesis space consists of functions of the form f = f0 + b where b ∈ R
and f0 in a sphere in a RKHS. Finally, section 5 discusses possible extensions of
this work.

2 Background and Motivation

We consider the problem of learning from examples as it is viewed in the frame-
work of statistical learning theory [11]. We are given a set of l examples
{(x1, y1), .., (xl, yl)} generated by randomly sampling from a space X × Y with
X ⊂ Rd, Y ⊂ R according to an unknown probability distribution P (x, y).
Throughout the paper we assume that X and Y are bounded. Using this set of
examples the problem of learning consists of finding a function f : X → Y that
can be used given any new point x ∈ X to predict the corresponding value y.

The problem of learning from examples is known to be ill-posed [11,10]. A
classical way to solve it is to perform Empirical Risk Minimization (ERM) with
respect to a certain loss function, while restricting the solution to the problem
to be in a “small” hypothesis space [11]. Formally this means minimizing the
empirical risk Iemp[f ] = 1

l

∑l
i=1 L(yi, f(xi)) with f ∈ H, where L is the loss

function measuring the error when we predict f(x) while the actual value is y,
and H is a given hypothesis space.

In this paper, we consider hypothesis spaces of functions which are hyper-
planes in some feature space:

f(x) =
∞∑

n=1

wnφn(x) (1)

with: ∞∑
n=1

w2
n

λn
< ∞ (2)

where φn(x) is a set of given, linearly independent basis functions, λn are given
non-negative constants such that

∑∞
n=1 λ2

n < ∞. Spaces of functions of the form
(1) can also be seen as Reproducing Kernel Hilbert Spaces (RKHS) [2,12] with
kernel K given by:



108 Theodoros Evgeniou and Massimiliano Pontil

K(x,y) ≡
∞∑

n=1

λnφn(x)φn(y). (3)

For any function f as in (1), quantity (2) is called the RKHS norm of f , ‖f‖2K ,
while the number D of features φn (which can be finite, in which case all sums
above are finite) is the dimensionality of the RKHS.

If we restrict the hypothesis space to consist of functions in a RKHS with
norm less than a constant A, the general setting of learning discussed above
becomes:

Minimize : 1
l

∑l
i=1 L(yi, f(xi))

subject to : ‖f‖2K ≤ A2. (4)

An important question for any learning machine of the type (4) is whether it
is consistent: as the number of examples (xi, yi) goes to infinity the expected er-
ror of the solution of the machine should converge in probability to the minimum
expected error in the hypothesis space [11,4]. In the case of learning machines
performing ERM in a hypothesis space (4), consistency is shown to be related
with uniform convergence in probability [11], and necessary and sufficient condi-
tions for uniform convergence are given in terms of the Vγ dimension (also known
as level fat shattering dimension) of the hypothesis space considered [1,8], which
is a measure of complexity of the space.

In statistical learning theory typically the measure of complexity used is
the VC-dimension. However, as we show below, the VC-dimension in the above
learning setting in the case of infinite dimensional RKHS is infinite both for Lp

and Lε, so it cannot be used to study learning machines of the form (4). Instead
one needs to consider other measures of complexity, such as the Vγ dimension,
in order to prove uniform convergence in infinite dimensional RKHS. We now
present some background on the Vγ dimension [1].

The Vγ dimension of a set of real-valued functions is defined as follows:

Definition 1. Let C ≤ L(y, f(x)) ≤ B, f ∈ H, with C and B < ∞. The Vγ-
dimension of L in H (of the set {L(y, f(x)), f ∈ H}) is defined as the maximum
number h of vectors (x1, y1) . . . , (xh, yh) that can be separated into two classes
in all 2h possible ways using rules:

class 1 if: L(yi, f(xi)) ≥ s + γ
class -1 if: L(yi, f(xi)) ≤ s− γ

for f ∈ H and some C + γ ≤ s ≤ B − γ. If, for any number N , it is possible to
find N points (x1, y1) . . . , (xN , yN) that can be separated in all the 2N possible
ways, we will say that the Vγ-dimension of L in H is infinite.

For γ = 0 and for s being free to change values for each separation of the
data, this becomes the VC dimension of the set of functions [11]. In the case
of hyperplanes (1), the Vγ dimension has also been referred to in the literature
[11] as the V C dimension of hyperplanes with margin. In order to avoid confu-
sion with names, we call the V C dimension of hyperplanes with margin as the



On the Vγ Dimension for Regression in Reproducing Kernel Hilbert Spaces 109

Vγ dimension of hyperplanes (for appropriate γ depending on the margin, as
discussed below).

The Vγ dimension can be used to bound the covering numbers of a set of
functions [1], which are in turn related to the generalization performance of
learning machines. Typically the fat-shattering dimension [1] is used for this
purpose, but a close relation between that and the Vγ dimension [1] makes the
two equivalent for the purpose of bounding covering numbers and hence studying
the statistical properties of a machine. The V C dimension has been used to
bound the growth function GH(l). This function measures the maximum number
of ways we can separate l points using functions from hypothesis space H. If h is
the V C dimension, then GH(l) is 2l if l ≤ h, and ≤ ( el

h )h otherwise [11] (where e
is the standard natural logarithm constant). In section 3 we will use the growth
function of hyperplanes with margin to bound their VC dimension, which, as
discussed above, is their Vγ dimension that we are interested in.

Using the Vγ dimension Alon et al. [1] gave necessary and sufficient conditions
for uniform convergence in probability to take place in a hypothesis space H. In
particular they proved the following important theorem:

Theorem 1. (Alon et al. , 1997 ) Let C ≤ L(y, f(x))) ≤ B, f ∈ H, H be a set
of bounded functions. The ERM method uniformly converges (in probability) if
and only if the Vγ dimension of L in H is finite for every γ > 0.

It is clear that if for learning machines of the form (4) the Vγ dimension of
the loss function L in the hypothesis space defined is finite for ∀γ > 0, then
uniform convergence takes place. In the next section we present a proof of the
finiteness of the Vγ dimension, as well as an upper bound on it.

2.1 Why Not Use the VC-Dimension

Consider first the case of Lp loss functions. Consider an infinite dimensional
RKHS, and the set of functions with norm ‖f‖2K ≤ A2. If for any N we can find
N points that we can shatter using functions of our set according to the rule:

class 1 if : |y − f(x)|p ≥ s

class − 1 if : |y − f(x)|p ≤ s

then clearly the V C dimension is infinite. Consider N distinct points (xi, yi) with
yi = 0 for all i, and let the smallest eigenvalue of matrix G with Gij = K(xi,xj)
be λ. Since we are in infinite dimensional RKHS, matrix G is always invertible
[12], so λ > 0 since G is positive definite and finite dimensional (λ may decrease
as N increases, but for any finite N it is well defined and 6= 0).

For any separation of the points, we consider a function f of the form f(x) =∑N
i=1 αiK(xi,x), which is a function of the form (1). We need to show that we

can find coefficients αi such that the RKHS norm of the function is ≤ A2. Notice
that the norm of a function of this form is αT Gα where (α)i = αi (throughout



110 Theodoros Evgeniou and Massimiliano Pontil

the paper bold letters are used for noting vectors). Consider the set of linear
equations

xj ∈ class 1 :
∑N

i=1 αiGij = s
1
p + η η > 0

xj ∈ class − 1 :
∑N

i=1 αiGij = s
1
p − η η > 0

Let s = 0. If we can find a solution α to this system of equations such that
αT Gα ≤ A2 we can perform this separation, and since this is any separation we
can shatter the N points. Notice that the solution to the system of equations is
G−1η where η is the vector whose components are (η)i = η when xi is in class 1,
and −η otherwise. So we need (G−1η)T G(G−1η) ≤ A2 ⇒ ηT G−1η ≤ A2. Since
the smallest eigenvalue of G is λ > 0, we have that ηT G−1η ≤ ηT η

λ . Moreover
ηT η = Nη2. So if we choose η small enough such that Nη2

λ ≤ A2 ⇒ η2 ≤ A2λ
N ,

the norm of the solution is less than A2, which completes the proof.
For the case of the Lε loss function the argument above can be repeated with

yi = ε to prove again that the VC dimension is infinite in an infinite dimensional
RKHS.

Finally, notice that the same proof can be repeated for finite dimensional
RKHS to show that the V C dimension is never less than the dimensionality D of
the RKHS, since it is possible to find D points for which matrix G is invertible
and repeat the proof above. As a consequence the VC dimension cannot be
controlled by A2. This is also discussed in [13].

3 An Upper Bound on the V
 Dimension

Below we always assume that data X are within a sphere of radius R in the
feature space defined by the kernel K of the RKHS. Without loss of generality,
we also assume that y is bounded between −1 and 1. Under these assumptions
the following theorem holds:

Theorem 2. The Vγ dimension h for regression using Lp (1 ≤ p < ∞) or Lε

loss functions for hypothesis spaces HA = {f(x) =
∑∞

n=1 wnφn(x) | ∑∞
n=1

w2
n

λn
≤

A2} and y bounded, is finite for ∀γ > 0. If D is the dimensionality of the RKHS,
then h ≤ O(min(D, (R2+1)(A2+1)

γ2 )).

Proof. Let’s consider first the case of the L1 loss function. Let B be the upper
bound on the loss function. From definition 1 we can decompose the rules for
separating points as follows:

class 1 if yi − f(xi) ≥ s + γ
or yi − f(xi) ≤ −(s + γ)

class − 1 if yi − f(xi) ≤ s− γ
and yi − f(xi) ≥ −(s− γ)

(5)

for some γ ≤ s ≤ B − γ. For any N points, the number of separations of the
points we can get using rules (5) is not more than the number of separations we



On the Vγ Dimension for Regression in Reproducing Kernel Hilbert Spaces 111

can get using the product of two indicator functions with margin (of hyperplanes
with margin):

function (a) : class 1 if yi − f1(xi) ≥ s1 + γ
class − 1 if yi − f1(xi) ≤ s1 − γ

function (b) : class 1 if yi − f2(xi) ≥ −(s2 − γ)
class − 1 if yi − f2(xi) ≤ −(s2 + γ)

(6)

where f1 and f2 are in HA, γ ≤ s1, s2 ≤ B − γ. This is shown as follows.
Clearly the product of the two indicator functions (6) has less “separating

power” when we add the constraints s1 = s2 = s and f1 = f2 = f . Furthermore,
even with these constraints we still have more “separating power” than we have
using rules (5): any separation realized using (5) can also be realized using the
product of the two indicator functions (6) under the constraints s1 = s2 = s and
f1 = f2 = f . For example, if y − f(x) ≥ s + γ then indicator function (a) will
give +1, indicator function (b) will give also +1, so their product will give +1
which is what we get if we follow (5). Similarly for all other cases.

As mentioned in the previous section, for any N points the number of ways
we can separate them is bounded by the growth function. Moreover, for products
of indicator functions it is known [11] that the growth function is bounded by
the product of the growth functions of the indicator functions. Furthermore, the
indicator functions in (6) are hyperplanes with margin in the D +1 dimensional
space of vectors {φn(x), y} where the radius of the data is R2 + 1, the norm of
the hyperplane is bounded by A2 + 1, (where in both cases we add 1 because of
y), and the margin is at least γ2

A2+1 . The Vγ dimension hγ of these hyperplanes

is known [11,3] to be bounded by hγ ≤ min((D + 1) + 1, (R2+1)(A2+1)
γ2 ). So the

growth function of the separating rules (5) is bounded by the product of the

growth functions ( el
hγ

)hγ , that is G(l) ≤
(
( el

hγ
)hγ

)2

whenever l ≥ hγ . If hreg
γ is

the Vγ dimension, then hreg
γ cannot be larger than the larger number l for which

inequality 2l ≤ ( el
hγ

)2hγ holds. From this, after some algebraic manipulations
(take the log of both sides) we get that l ≤ 5hγ , therefore hreg

γ ≤ 5 min (D +

2, (R2+1)(A2+1)
γ2 ) which proves the theorem for the case of L1 loss functions.

For general Lp loss functions we can follow the same proof where (5) now
needs to be rewritten as:

class 1 if yi − f(xi) ≥ (s + γ)
1
p

or f(xi)− yi ≥ (s + γ)
1
p

class − 1 if yi − f(xi) ≤ (s− γ)
1
p

and f(xi)− yi ≤ (s− γ)
1
p

(7)

Moreover, for 1 < p < ∞, (s+γ)
1
p ≥ s

1
p + γ

pB (since γ =
(
(s + γ)

1
p

)p

−
(
s

1
p

)p

=

((s + γ)
1
p − s

1
p )(((s + γ)

1
p )p−1 + . . . + (s

1
p )p−1) ≤ ((s + γ)

1
p − s

1
p )(B + . . . B) =

((s + γ)
1
p − s

1
p )(pB) ) and (s− γ)

1
p ≤ s

1
p − γ

pB (similarly). Repeating the same



112 Theodoros Evgeniou and Massimiliano Pontil

argument as above, we get that the Vγ dimension is bounded by 5 min (D +
2, (pB)2(R2+1)(A2+1)

γ2 ). Finally, for the Lε loss function (5) can be rewritten as:

class 1 if yi − f(xi) ≥ s + γ + ε
or f(xi)− yi ≥ s + γ + ε

class − 1 if yi − f(xi) ≤ s− γ + ε
and f(xi)− yi ≤ s− γ + ε

(8)

where calling s′ = s + ε we can simply repeat the proof above and get the same
upper bound on the Vγ dimension as in the case of the L1 loss function. (Notice
that the constraint γ ≤ s ≤ B − γ is not taken into account. Taking this into
account may slightly change the Vγ dimension for Lε. Since it is a constraint, it
can only decrease - or not change - the Vγ dimension).

These results imply that in the case of infinite dimensional RKHS the Vγ

dimension is still finite and is influenced only by 5 (R2+1)(A2+1)
γ2 . In the next

section we present a different upper bound on the Vγ dimension in a special case
of infinite dimensional RKHS.

4 The V
 Dimension in a Special Case

Below we assume that the data x are restricted so that for any finite dimensional
matrix G with entries Gij = K(xi,xj) (where K is, as mentioned in the previous
section, the kernel of the RKHS considered, and xi 6= xj for i 6= j) the largest
eigenvalue of G is always ≤ M2 for a given constant M . We consider only the
case that the RKHS is infinite dimensional. We note with B the upper bound of
L(y, f(x)). Under these assumptions we can show that:

Theorem 3. The Vγ dimension for regression using L1 loss function and for
hypothesis space HA = {f(x) =

∑∞
n=1 wnφn(x) + b | ∑∞

n=1
w2

n

λn
≤ A2} is finite

for ∀γ > 0. In particular:

1. If b is constrained to be zero, then Vγ ≤
[

M2A2

γ2

]

2. If b is a free parameter, Vγ ≤ 4
[

M2A2

γ2

]

Proof of part 1.
Suppose we can find N >

[
M2A2

γ2

]
points {(x1, y1), ..., (xN , yN )} that we can

shatter. Let s ∈ [γ, B − γ] be the value of the parameter used to shatter the
points.

Consider the following “separation”1: if |yi| < s, then (xi, yi) belongs in class
1. All other points belong in class -1. For this separation we need:

|yi − f(xi)| ≥ s + γ, if |yi| < s
|yi − f(xi)| ≤ s− γ, if |yi| ≥ s

(9)

1 Notice that this separation might be a “trivial” one in the sense that we may want
all the points to be +1 or all to be -1 i.e. when all |yi| < s or when all |yi| ≥ s
respectively.



On the Vγ Dimension for Regression in Reproducing Kernel Hilbert Spaces 113

This means that: for points in class 1 f takes values either yi + s + γ + δi or
yi − s − γ − δi, for δi ≥ 0. For points in the second class f takes values either
yi + s − γ − δi or yi − s + γ + δi, for δi ∈ [0, (s − γ)]. So (9) can be seen as a
system of linear equations:

∞∑
n=1

wnφn(xi) = ti. (10)

with ti being yi + s+γ + δi, or yi− s−γ− δi, or yi + s−γ− δi, or yi− s+γ + δi,
depending on i. We first use lemma 1 to show that for any solution (so ti are
fixed now) there is another solution with not larger norm that is of the form∑N

i=1 αiK(xi,x).

Lemma 1. Among all the solutions of a system of equations (10) the solution
with the minimum RKHS norm is of the form:

∑N
i=1 αiK(xi,x) with α = G−1t.

For a proof see the Appendix. Given this lemma, we consider only functions
of the form

∑N
i=1 αiK(xi,x). We show that the function of this form that solves

the system of equations (10) has norm larger than A2. Therefore any other
solution has norm larger than A2 which implies we cannot shatter N points
using functions of our hypothesis space.

The solution α = G−1t needs to satisfy the constraint:

αT Gα = tT G−1t ≤ A2

Let λmax be the largest eigenvalue of matrix G. Then tT G−1t ≥ tT t
λmax

. Since

λmax ≤ M2, tT G−1t ≥ tT t
M2 . Moreover, because of the choice of the separation,

tT t ≥ Nγ2 (for example, for the points in class 1 which contribute to tT t an
amount equal to (yi +s+γ+δi)2: |yi| < s ⇒ yi +s > 0, and since γ+δi ≥ γ > 0,
then (yi + s + γ + δi)2 ≥ γ2. Similarly each of the other points ”contribute” to
tT t at least γ2, so tT t ≥ Nγ2). So:

tT G−1t ≥ Nγ2

M2
> A2

since we assumed that N > M2A2

γ2 . This is a contradiction, so we conclude that
we cannot get this particular separation.

Proof of part 2.
Consider N points that can be shattered. This means that for any separation,

for points in the first class there are δi ≥ 0 such that |f(xi)+ b− yi| = s+γ + δi.
For points in the second class there are δi ∈ [0, s−γ] such that |f(xi)+ b− yi| =
s−γ− δi. As in the case b = 0 we can remove the absolute values by considering
for each class two types of points (we call them type 1 and type 2). For class
1, type 1 are points for which f(xi) = yi + s + γ + δi − b = ti − b. Type 2
are points for which f(xi) = yi − s − γ − δi − b = ti − b. For class 2, type 1



114 Theodoros Evgeniou and Massimiliano Pontil

are points for which f(xi) = yi + s − γ − δi − b = ti − b. Type 2 are points
for which f(xi) = yi − s + γ + δi − b = ti − b. Variables ti are as in the case
b = 0. Let S11, S12, S−11, S−12 denote the four sets of points (Sij are points of
class i type j). Using lemma 1, we only need to consider functions of the form
f(x) =

∑N
i=1 αiK(xi, x). The coefficients αi are given by α = G−1(t − b) there

b is a vector of b’s. As in the case b = 0, the RKHS norm of this function is at
least

1
M2

(t− b)T (t− b). (11)

The b that minimizes (11) is 1
N (

∑N
i=1 ti). So (11) is at least as large as (after

replacing b and doing some simple calculations) 1
2NM2

∑N
i,j=1(ti − tj)2.

We now consider a particular separation. Without loss of generality assume
that y1 ≤ y2 ≤ . . . ≤ yN and that N is even (if odd, consider N − 1 points).
Consider the separation where class 1 consists only of the ”even” points {N, N−
2, . . . , 2}. The following lemma is shown in the appendix:

Lemma 2. For the separation considered,
∑N

i,j=1(ti − tj)2 is at least as large

as γ2(N2−4)
2 .

Using Lemma 2 we get that the norm of the solution for the considered separation
is at least as large as γ2(N2−4)

4NM2 . Since this has to be ≤ A2 we get that N −
4
N ≤ 4

[
M2A2

γ2

]
, which completes the proof (assume N > 4 and ignore additive

constants less than 1 for simplicity of notation).

In the case of Lp loss functions, using the same argument as in the previous
section we get that the Vγ dimension in infinite dimensional RKHS is bounded
by (pB)2M2A2

γ2 in the first case of theorem 3, and by 4 (pB)2M2A2

γ2 in the second
case of theorem 3. Finally for Lε loss functions the bound on the Vγ dimension is
the same as that for L1 loss function, again using the argument of the previous
section.

4.1 Empirical V
 Dimension

Above we assumed a bound on the eigenvalues of any finite dimensional matrix
G. However such a bound may not be known a priori, or it may not even exist,
in which case the computation is not valid. In practice we can still use the
method presented above to measure the empirical Vγ dimension given a set of l
training points. This can provide an upper bound on the random entropy of our
hypothesis space [11].

More precisely, given a set of l training points we build the l × l matrix G
as before, and compute it’s largest eigenvalue λmax. We can then substitute M2

with λmax in the computation above to get an upper bound of what we call
the empirical Vγ dimension. This can be used directly to get bounds on the
random entropy (or number of ways that the l training points can be separated
using rules (5)) of our hypothesis space. Finally the statistical properties of our



On the Vγ Dimension for Regression in Reproducing Kernel Hilbert Spaces 115

learning machine can be studied using the estimated empirical Vγ dimension (or
the random entropy), in a way similar in spirit as in [13].

5 Conclusion

We presented a novel approach for computing the Vγ dimension of RKHS for
Lp and Lε loss functions. We conclude with a few remarks. First notice that in
the computations we did not take into account ε in the case of Lε loss function.
Taking ε into account may lead to better bounds. For example, considering
|f(x)− y|pε , p > 1 as the loss function, it is clear from the proofs presented that
the Vγ dimension is bounded by p2(B−ε)2M2A2

γ2 . However the influence of ε seems
to be minor (given that ε << B).

An interesting observation is that the eigenvalues of the matrix G appear in
the computation of the Vγ dimension. In the second computation we took into
account only the largest and smallest eigenvalues. If the computation is made
to upper bound the number of separations for a given set of points (random
entropy or empirical Vγ dimension) as discussed in section 4.1, then it may be
possible that all the eigenvalues of G are taken into account. This can lead to
interesting relations with the work in [13].

Acknowledgments
We would like to thank S. Mukherjee, T. Poggio, R. Rifkin, and A. Verri for
useful discussions and comments.

References

1. N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimen-
sions, uniform convergence, and learnability. J. of the ACM, 44(4):615–631, 1997.

2. N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 686:337–
404, 1950.

3. P. Bartlett and J. Shawe-Taylor. Generalization performance of support vector
machine and other pattern classifiers. In C. Burges B. Scholkopf, editor, Advances
in Kernel Methods–Support Vector Learning. MIT press, 1998.

4. L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.
Number 31 in Applications of mathematics. Springer, New York, 1996.

5. T. Evgeniou, M. Pontil, and T. Poggio. A unified framework for regularization
networks and support vector machines. A.I. Memo No. 1654, Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, 1999.

6. F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks
architectures. Neural Computation, 7:219–269, 1995.

7. L. Gurvits. A note on scale-sensitive dimension of linear bounded functionals in
Banach spaces. In Proceedings of Algorithm Learning Theory, 1997.

8. M. Kearns and R.E. Shapire. Efficient distribution-free learning of probabilistic
concepts. Journal of Computer and Systems Sciences, 48(3):464–497, 1994.



116 Theodoros Evgeniou and Massimiliano Pontil

9. M.J.D. Powell. The theory of radial basis functions approximation in 1990. In W.A.
Light, editor, Advances in Numerical Analysis Volume II: Wavelets, Subdivision
Algorithms and Radial Basis Functions, pages 105–210. Oxford University Press,
1992.

10. A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-posed Problems. W. H. Winston,
Washington, D.C., 1977.

11. V. N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.
12. G. Wahba. Splines Models for Observational Data. Series in Applied Mathematics,

Vol. 59, SIAM, Philadelphia, 1990.
13. R. Williamson, A. Smola, and B. Scholkopf. Generalization performance of reg-

ularization networks and support vector machines via entropy numbers. Technical
Report NC-TR-98-019, Royal Holloway College University of London, 1998.

Appendix

Proof of Lemma 1

We introduce the N ×∞ matrix Ain =
√

λnφn(xi) and the new variable zn =
wn√
λn

. We can write system (10) as follows:

Az = t. (12)

Notice that the solution of the system of equation 10 with minimum RKHS
norm, is equivalent to the Least Square (LS) solution of equation 12. Let us
denote with z0 the LS solution of system 12. We have:

z0 = (A>A)+A>t (13)

where + denotes pseudoinverse. To see how this solution looks like we use Sin-
gular Value Decomposition techniques:

A = UΣV >,

A> = V ΣU>,

from which A>A = V Σ2V > and (A>A)+ = VNΣ−2
N V >

N , where Σ−1
N denotes the

N ×N matrix whose elements are the inverse of the nonzero eigenvalues. After
some computations equation (13) can be written as:

z0 = V Σ−1
N U>

N t = (V ΣNU>
N )(UNΣ−2

N U>
N )t = AG−1t. (14)

Using the definition of z0 we have that
∞∑

n=1

w0
nφn(x) =

∞∑
n=1

N∑
i=1

√
λnφn(x)Aniαi. (15)

Finally, using the definition of Ain we get:
∞∑

n=1

w0
nφn(x) =

N∑
i=1

K(x,xi)αi

which completes the proof.



On the Vγ Dimension for Regression in Reproducing Kernel Hilbert Spaces 117

Proof of Lemma 2

Consider a point (xi, yi) in S11 and a point (xj , yj) in S−11 such that yi ≥ yj

(if such a pair does not exist we can consider another pair from the cases listed
below). For these points (ti − tj)2 = (yi + s + γ + δi − yj − s + γ + δj)2 =
((yi − yj) + 2γ + δi + δj)2 ≥ 4γ2. In a similar way (taking into account the
constraints on the δi’s and on s) the inequality (ti− tj)2 ≥ 4γ2 can be shown to
hold in the following two cases:

(xi, yi) ∈ S11, (xj , yj) ∈ S−11

⋃
S−12, yi ≥ yj

(xi, yi) ∈ S12, (xj , yj) ∈ S−11

⋃
S−12, yi ≤ yj

(16)

Moreover
∑N

i,j=1(ti − tj)2 ≥ 2
[∑

i∈S11

(∑
j∈S−11

⋃
S−12,yi≥yj

(ti − tj)2
)]

+

2
[∑

i∈S12

(∑
j∈S−11

⋃
S−12,yi≤yj

(ti − tj)2
)]

.
(17)

since in the right hand side we excluded some of the terms of the left hand side.
Using the fact that for the cases considered (ti − tj)2 ≥ 4γ2, the right hand side
is at least

8γ2
∑

i∈S11
(number of points j in class − 1 with yi ≥ yj)+

+8γ2
∑

i∈S12
(number of points j in class − 1 with yi ≤ yj)

(18)

Let I1 and I2 be the cardinalities of S11 and S12 respectively. Because of the
choice of the separation it is clear that (18) is at least

8γ2 ((1 + 2 + . . . + I1)) + (1 + 2 + . . . + (I2 − 1)))

(for example if I1 = 2 in the worst case points 2 and 4 are in S11 in which case
the first part of (18) is exactly 1+2). Finally, since I1 + I2 = N

2 , (18) is at least

8γ2 N2−4
16 = γ2(N2−4)

2 , which proves the lemma.



On the Strength of Incremental Learning

Steffen Lange1 and Gunter Grieser2

1 Universität Leipzig, Institut für Informatik
Augustusplatz 10–11, 04109 Leipzig, Germany

slange@informatik.uni-leipzig.de
2 Technische Universität Darmstadt, Fachbereich Informatik

Alexanderstraße 10, 64283 Darmstadt, Germany
grieser@informatik.tu-darmstadt.de

Abstract. This paper provides a systematic study of incremental learn-
ing from noise-free and from noisy data, thereby distinguishing between
learning from only positive data and from both positive and negative
data. Our study relies on the notion of noisy data introduced in [22].

The basic scenario, named iterative learning, is as follows. In every learn-
ing stage, an algorithmic learner takes as input one element of an infor-
mation sequence for a target concept and its previously made hypothesis
and outputs a new hypothesis. The sequence of hypotheses has to con-
verge to a hypothesis describing the target concept correctly.

We study the following refinements of this scenario. Bounded example-
memory inference generalizes iterative inference by allowing an iterative
learner to additionally store an a priori bounded number of carefully
chosen data elements, while feedback learning generalizes it by allowing
the iterative learner to additionally ask whether or not a particular data
element did already appear in the data seen so far.

For the case of learning from noise-free data, we show that, where both
positive and negative data are available, restrictions on the accessibility
of the input data do not limit the learning capabilities if and only if
the relevant iterative learners are allowed to query the history of the
learning process or to store at least one carefully selected data element.
This insight nicely contrasts the fact that, in case only positive data
are available, restrictions on the accessibility of the input data seriously
affect the capabilities of all types of incremental learning (cf. [18]).

For the case of learning from noisy data, we present characterizations
of all kinds of incremental learning in terms being independent from
learning theory. The relevant conditions are purely structural ones. Sur-
prisingly, where learning from only noisy positive data and from both
noisy positive and negative data, iterative learners are already exactly
as powerful as unconstrained learning devices.

1 Introduction

The theoretical investigations in the present paper derive their motivation to
a certain extent from the rapidly developing field of knowledge discovery in

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 118–131, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



On the Strength of Incremental Learning 119

databases (abbr. KDD). KDD mainly combines techniques originating from ma-
chine learning, knowledge acquisition and knowledge representation, artificial
intelligence, pattern recognition, statistics, data visualization, and databases to
automatically extract new interrelations, knowledge, patterns and the like from
huge collections of data (cf. [7], for a recent overview).

Among the different parts of the KDD process, like data presentation, data
selection, incorporating prior knowledge, and defining the semantics of the re-
sults obtained, we are mainly interested in the particular subprocess of applying
specific algorithms for learning something useful from the data. This subprocess
is usually named data mining. There is one problem when invoking machine
learning techniques to do data mining. Almost all machine learning algorithms
are “in-memory” algorithms, i.e., they require the whole data set to be present
in the main memory when extracting the concepts hidden in the data. However,
if huge data sets are around, no learning algorithm can use all the data or even
large portions of it simultaneously for computing hypotheses. Different methods
have been proposed for overcoming the difficulties caused by huge data sets.
For example, instead of doing the discovery process on all the data, one starts
with significantly smaller samples, finds the regularities in it, and uses different
portions of the overall data to verify what one has found.

Looking at data mining from this perspective, it becomes a true limiting pro-
cess. That means, the actual hypothesis generated by the data mining algorithm
is tested versus parts of the remaining data. Then, if the current hypothesis is
not acceptable, the sample may be enlarged or replaced and the data mining al-
gorithm will be restarted. Thus, from a theoretical point of view, it is appropriate
to look at the data mining process as an ongoing, incremental one.

For the purpose of motivation and discussion of our research, we next intro-
duce some basic notions. By X we denote any learning domain. Any collection C
of sets c ⊆ X is called a concept class. Moreover, c is referred to as concept. An
algorithmic learner, henceforth called inductive inference machine (abbr. IIM),
takes as input initial segments of an information sequence and outputs, once in
a while, a hypothesis about the target concept. The set H of all admissible hy-
potheses is called hypothesis space. The sequence of hypotheses has to converge
to a hypothesis describing the target concept correctly. If there is an IIM that
learns a concept c from all admissible information sequences for it, then c is said
to be learnable in the limit with respect to H (cf. [10]).

Gold’s [10] model of learning in the limit relies on the unrealistic assumption
that the learner has access to samples of growing size. Therefore, we investigate
variations of the general approach that restrict the accessibility of the input data
considerably. We deal with iterative learning, k-bounded example-memory infer-
ence, and feedback identification of indexable concept classes. All these models
formalize incremental learning, a topic attracting more and more attention in
the machine learning community (cf., e.g., [6,9,20,24]).

An iterative learner is required to produce its actual guess exclusively from
its previous one and the next element in the information sequence presented.
Iterative learning has been introduced in [26] and has further been studied by



120 Steffen Lange and Gunter Grieser

various authors (cf., e.g., [3,8,13,14,15,18,19]). Alternatively, we consider learn-
ers that are allowed to store up to k carefully chosen data elements seen so
far, where k is a priori fixed (k-bounded example-memory inference). Bounded
example-memory learning has its origins in [18]. Furthermore, we study feedback
identification. The idea of feedback learning goes back to [26], too. In this setting,
the iterative learner is additionally allowed to ask whether or not a particular
data element did already appear in the data seen so far.

In the first part of the present paper, we investigate incremental learning
from noise-free data. As usual, we distinguish the case of learning from only
positive data and learning from both positive and negative data, synonymously
learning from text and informant, respectively. A text for a concept c is an infinite
sequence that eventually contains all and only the elements of c. Alternatively,
an informant for c is an infinite sequence of all elements of X that are classified
according to their membership in c.

Former theoretical studies mostly dealt with incremental concept learning
from only positive data (cf. [3,8,18]). It has been proved that (i) all defined
models of incremental learning are strictly less powerful than conservative infer-
ence (which itself is strictly less powerful than learning in the limit), (ii) feedback
learning and bounded example-memory inference outperform iterative learning,
and (iii) feedback learning and bounded example-memory inference extend the
learning capabilities of iterative learners in different directions. In particular, it
has been shown that any additional data element an iterative learner may store
buys more learning power.

As we shall show, the situation changes considerably in case positive and
negative data are available. Now, it is sufficient to store one carefully selected
data element in the example-memory in order to achieve the whole learning
power of unconstrained learning machines. As a kind of side-effect, the infinite
hierarchy of more and more powerful bounded example-memory learners which
has been observed in the text case collapses. Furthermore, also feedback learners
are exactly as powerful as unconstrained learning devices. In contrast, similarly
to the case of learning from positive data, the learning capabilities of iterative
learners are again seriously affected.

In the second part of the present paper, we study incremental learning from
noisy data. This topic is of interest, since, in real world-applications, one rarely
receives perfect data. There are a lot of attempts to give a precise notion of
what the term noisy data means (cf., e.g., [2,12,19]). In our study, we adopt
the notion from [22] (see also [23]) which seems to have become standard when
studying Gold-style learning (cf. [2,4,5]). This notion has the advantage that
noisy data about a target concept nonetheless uniquely specify that concept.
Roughly speaking, correct data elements occur infinitely often whereas incorrect
data elements occur only finitely often. Generally, the model of noisy environ-
ments introduced in [22] aims to grasp situations in which, due to better simu-
lation techniques or better technical equipment, the experimental data which a
learner receives about an unknown phenomenon become better and better over
time until they reflect the reality sufficiently well.



On the Strength of Incremental Learning 121

Surprisingly, where learning from noisy data is considered, iterative learners
are exactly as powerful as unconstrained learning machines, and thus iterative
learners are able to fully compensate the limitations in the accessibility of the
input data. This nicely contrasts the fact that, where learning from noise-free
text and noise-free informant, iterative learning is strictly less powerful than
learning in the limit. Moreover, it immediately implies that all different models
of incremental learning introduced above coincide. Furthermore, we characterize
iterative learning from noisy data in terms being independent from learning
theory. We show that an indexable class can be iteratively learned from noisy
text if and only if it is inclusion-free. Alternatively, it is iteratively learnable
from noisy informant if and only if it is discrete.

2 Preliminaries

Let IN = {0, 1, 2, . . .} be the set of all natural numbers. By 〈., .〉 : IN × IN → IN
we denote Cantor’s pairing function. We write A# B to indicate that two sets
A and B are incomparable, i.e., A \B 6= ∅ and B \A 6= ∅.

Any recursively enumerable set X is called a learning domain. By ℘(X ) we
denote the power set of X . Let C ⊆ ℘(X ) and let c ∈ C. We refer to C and c as to
a concept class and a concept. Sometimes, we will identify a concept c with its
characteristic function, i.e., we let c(x) = +, if x ∈ c, and c(x) = −, otherwise.

We deal with the learnability of indexable concept classes with uniformly
decidable membership defined as follows (cf. [1]). A class of non-empty concepts C
is said to be an indexable concept class with uniformly decidable membership if
there are an effective enumeration (cj)j∈IN of all and only the concepts in C and a
recursive function f such that, for all j ∈ IN and all x ∈ X , it holds f(j, x) = +,
if x ∈ cj , and f(j, x) = −, otherwise. We refer to indexable concept classes with
uniformly decidable membership as to indexable classes, for short.

Next, we describe some well-known examples of indexable classes. First, let
Σ denote any fixed finite alphabet of symbols and let Σ∗ be the free monoid
over Σ. Moreover, let X = Σ∗ be the learning domain. We refer to subsets
L ⊆ Σ+ as to languages (instead of concepts). Then, the set of all context-
sensitive languages, context-free languages, regular languages, and of all pattern
languages form indexable classes (cf. [1,11]). Second, let Xn = {0, 1}n be the
set of all n-bit Boolean vectors. We consider X =

⋃
n≥1 Xn as learning domain.

Then, the set of all concepts expressible as a monomial, a k-CNF, a k-DNF, and
a k-decision list constitute indexable classes (cf. [21,25]).

Finally, we define some useful properties of indexable classes. Let X be the
underlying learning domain and let C be an indexable class. Then, C is said to
be inclusion-free iff c # c′ for all distinctive concepts c, c′ ∈ C. Let (wj)j∈IN be
the lexicographically ordered enumeration of all elements in X . For all c ⊆ X ,
by ic we denote the lexicographically ordered informant of c, i.e., the infinite
sequence ((wj , c(wj)))j∈IN. Then, C is said to be discrete iff, for every c ∈ C,
there is an initial segment of c’s lexicographically ordered informant ic, say icx,



122 Steffen Lange and Gunter Grieser

that separates c from all other concepts c′ ∈ C. More precisely speaking, for all
c′ ∈ C, if c 6= c′ then icx 6= ic

′
x .

3 Formalizing Incremental Learning

3.1 Learning from Noise-Free Data

Let X be the underlying learning domain, let c ⊆ X be a concept, and let t =
(xn)n∈IN be an infinite sequence of elements from c such that {xn | n ∈ IN} = c.
Then, t is said to be a text for c. By Text(c) we denote the set of all texts for c.
Alternatively, let i = ((xn, bn))n∈IN be an infinite sequence of elements from
X × {+,−} such that {xn | n ∈ IN} = X , {xn | n ∈ IN, bn = +} = c, and
{xn | n ∈ IN, bn = −} = co-c = X \ c. Then, we refer to i as an informant
for c. By Info(c) we denote the set of all informants for c. Moreover, let t be a
text, let i be an informant, and let y be a number. Then, ty and iy denote the
initial segment of t and i of length y+1. Furthermore, we set t+y = {xn | n ≤ y},
i+y = {xn | n ≤ y, bn = +}, and i−y = {xn | n ≤ y, bn = −}.

As in [10], we define an inductive inference machine (abbr. IIM ) to be an
algorithmic mapping from initial segments of texts (informants) to IN∪{?}. Thus,
an IIM either outputs a hypothesis, i.e., a number encoding a certain computer
program, or it outputs “?,” a special symbol representing the case the machine
outputs “no conjecture.” Note that an IIM, when learning some target class
C, is required to produce an output when processing any initial segment of any
admissible information sequence, i.e., any initial segment of any text (informant)
for any c ∈ C.

The numbers output by an IIM are interpreted with respect to a suitably
chosen hypothesis space H = (hj)j∈IN. Since we exclusively deal with indexable
classes C, we always assume that H is also an indexing of some possibly larger
class of non-empty concepts. Hence, membership is uniformly decidable in H,
too. Formally speaking, we deal with class comprising learning (cf. [27]). When
an IIM outputs some number j, we interpret it to mean that it hypothesizes hj .

In all what follows, a data sequence σ = (dn)n∈IN for a target concept c is
either a text t = (xn)n∈IN or an informant i = ((xn, bn))n∈IN for c. By convention,
for all y ∈ IN, σy denotes the initial segment ty or iy.

We define convergence of IIMs as usual. Let σ be given and let M be an IIM.
The sequence (M(σy))y∈IN of M ’s hypotheses converges to a number j iff all but
finitely many terms of it are equal to j.

Now, we are ready to define learning in the limit.

Definition 1 ([10]) Let C be an indexable class, let c be a concept, and let
H = (hj)j∈IN be a hypothesis space. An IIM M LimTxtH [LimInfH]–identifies c
iff, for every data sequence σ with σ ∈ Text(c) [σ ∈ Info(c)], there is a j ∈ IN
with hj = c such that the sequence (M(σy))y∈IN converges to j.

Then, M LimTxtH [LimInf H]–identifies C iff, for all c′ ∈ C, M LimTxtH
[LimInf H]–identifies c′.



On the Strength of Incremental Learning 123

Finally, LimTxt [LimInf ] denotes the collection of all indexable classes C′
for which there are a hypothesis space H′ = (h′j)j∈IN and an IIM M such that
M LimTxtH′ [LimInfH′ ]–identifies C′.

In the above definition, Lim stands for “limit”. Suppose an IIM identifies
some concept c. That means, after having seen only finitely many data of c the
IIM reaches its (unknown) point of convergence and it computes a correct and
finite description of the target concept. Hence, some form of learning must have
taken place.

In general, it is not decidable whether or not an IIM has already converged
on a text t (an informant i) for the target concept c. Adding this requirement
to the above definition results in finite learning (cf. [10]). The corresponding
learning types are denoted by FinTxt and FinInf .

Next, we define conservative IIMs. Intuitively speaking, conservative IIMs
maintain their actual hypothesis at least as long as they have not seen data
contradicting it.

Definition 2 ([1]) Let C be an indexable class, let c be a concept, and let
H = (hj)j∈IN be a hypothesis space. An IIM M ConsvTxtH [ConsvInf H]–identi-
fies c iff M LimTxtH [LimInf H]–identifies c and, for every data sequence σ with
σ ∈ Text(c) [σ ∈ Info(c)] and for any two consecutive hypotheses k = M(σy)
and j = M(σy+1), if k ∈ IN and k 6= j, then hk is not consistent with σy+1.1

M ConsvTxtH [ConsvInfH]–identifies C iff, for all c′ ∈ C, M ConsvTxtH
[ConsvInfH]–identifies c′.

The learning types ConsvTxt and ConsvInf are defined analogously as above.
The next theorem summarizes the known results concerning the relations

between the standard learning models defined so far.

Theorem 1 ([10], [16])
(1) For all indexable classes C, we have C ∈ LimInf .
(2) FinTxt ⊂ FinInf ⊂ ConsvTxt ⊂ LimTxt ⊂ ConsvInf = LimInf .

Now, we formally define the different models of incremental learning.
An ordinary IIM M has always access to the whole history of the learning

process, i.e., it computes its actual guess on the basis of all data seen so far. In
contrast, an iterative IIM is only allowed to use its last guess and the next data
element in σ. Conceptually, an iterative IIM M defines a sequence (Mn)n∈IN of
machines each of which takes as its input the output of its predecessor.

Definition 3 ([26]) Let C be an indexable class, let c be a concept, and let
H = (hj)j∈IN be a hypothesis space. An IIM M ItTxtH [ItInfH]–identifies c
iff, for every data sequence σ = (dn)n∈IN with σ ∈ Text(c) [σ ∈ Info(c)], the
following conditions are fulfilled:

(1) for all n ∈ IN, Mn(σ) is defined, where M0(σ) = M(d0) as well as Mn+1(σ) =
M(Mn(σ), dn+1).

(2) the sequence (Mn(σ))n∈IN converges to a number j with hj = c.

1 In the text case, σ+
y+1 6⊆ ck, and, in the informant case, σ+

y+1 6⊆ ck or σ−y+1 6⊆ co-ck.



124 Steffen Lange and Gunter Grieser

Finally, M ItTxtH [ItInf H]–identifies C iff, for each c′ ∈ C, M ItTxtH
[ItInfH]–identifies c′.

The learning types ItTxt and ItInf are defined analogously to Definition 1.
Next, we consider a natural relaxation of iterative learning, named k-bounded

example-memory inference. Now, an IIM M is allowed to memorize at most k of
the data elements which it has already seen in the learning process, where k ∈ IN
is a priori fixed. Again, M defines a sequence (Mn)n∈IN of machines each of
which takes as input the output of its predecessor. Clearly, a k-bounded example-
memory IIM outputs a hypothesis along with the set of memorized data elements.

Definition 4 ([18]) Let C be an indexable class, let c be a concept, and let
H = (hj)j∈IN be a hypothesis space. Moreover, let k ∈ IN. An IIM M BemkTxtH
[BemkInf H]–identifies c iff, for every data sequence σ = (dn)n∈IN with σ ∈
Text(c) [σ ∈ Info(c)], the following conditions are satisfied:

(1) for all n ∈ IN, Mn(σ) is defined, where M0(σ) = M(d0) = 〈j0, S0〉 such
that S0 ⊆ {d0} and card(S0) ≤ k as well as Mn+1(σ) = M(Mn(σ), dn) =
〈jn+1, Sn+1〉 such that Sn+1 ⊆ Sn ∪ {dn+1} and card(Sn+1) ≤ k.

(2) the jn in the sequence (〈jn, Sn〉)n∈IN of M ’s guesses converge to a number j
with hj = c.

Finally, M BemkTxtH [BemkInf H]–identifies C iff, for each c′ ∈ C, M
BemkTxtH [BemkInfH]–identifies c′.

For every k ∈ IN, the learning types BemkTxt and BemkInf are defined
analogously as above. By definition, Bem0Txt = ItTxt and Bem0Inf = ItInf .

Next, we define learning by feedback IIMs. Informally speaking, a feedback
IIM M is an iterative IIM that is additionally allowed to make a particular type
of queries. In each learning stage n+1, M has access to the actual input dn+1 and
its previous guess jn. M is additionally allowed to compute a query from dn+1

and jn which concerns the history of the learning process. That is, the feedback
learner computes a data element d and gets a “YES/NO” answer A(d) such that
A(d) = 1, if d appears in the initial segment σn, and A(d) = 0, otherwise. Hence,
M can just ask whether or not the particular data element d has already been
presented in previous learning stages.

Definition 5 ([26]) Let C be an indexable class, let c be a concept, and let
H = (hj)j∈IN be a hypothesis space. Let Q : IN × X → X [Q : IN × Xi → Xi,
where Xi = X ×{+,−}] be a total computable function. An IIM M , with a query
asking function Q, FbTxtH [FbInfH]–identifies c iff, for every data sequence σ =
(dn)n∈IN with σ ∈ Text(c) [σ ∈ Info(c)], the following conditions are satisfied:

(1) for all n ∈ IN, Mn(σ) is defined, where M0(σ) = M(d0) as well as Mn+1(σ) =
M(Mn(σ), A(Q(Mn(σ), dn+1)), dn+1).

(2) the sequence (Mn(σ))n∈IN converges to a number j with hj = c provided A
truthfully answers the questions computed by Q.

Finally, M FbTxtH [FbInf H]–identifies C iff, for each c′ ∈ C, M FbTxtH
[FbInfH]–identifies c′.

The learning types FbTxt and FbInf are defined analogously as above.



On the Strength of Incremental Learning 125

3.2 Learning from Noisy Data

In order to study iterative learning from noisy data we have to provide some
more notations and definitions.

Let X be the underlying learning domain, let c ⊆ X be a concept, and let
t = (xn)n∈IN be an infinite sequence of elements from X . Following [22], t is said
to be a noisy text for c provided that every element from c appears infinitely
often, i.e., for every x ∈ c there are infinitely many n such that xn = x, whereas
only finitely often some x /∈ c occurs, i.e., xn ∈ c for all but finitely many n ∈ IN.
By NText(c) we denote the collection of all noisy texts for c. For every y ∈ IN,
ty denotes the initial segment of t of length y + 1. We let t+y = {xn | n ≤ y}.

Next, let i = ((xn, bn))n∈IN be any sequence of elements from X × {+,−}.
Following [22], i is said to be a noisy informant for c provided that every el-
ement x of X occurs infinitely often, almost always accomplished by the right
classification c(x). More formally, for all x ∈ X , there are infinitely many n ∈ IN
such that xn = x and, for all but finitely many of them, bn = c(x). By NInfo(c)
we denote the collection of all noisy informants for c. For every y ∈ IN, iy de-
notes the initial segment of i of length y + 1, i+y = {xn | n ≤ y, bn = +}, and
i−y = {xn | n ≤ y, bn = −}.

In contrast to the noise-free case, now an IIM receives as input finite se-
quences of a noisy text (noisy informant). When an IIM is supposed to identify
some target concept class C, then it has to output a hypothesis on every ad-
missible information sequence, i.e., any initial segment of any noisy text (noisy
informant) for any c ∈ C. Analogously to the case of learning from noise-free
data, we deal with class comprising learning (cf. [27]).

The learning types LimNTxt , FinNTxt , ConsvNTxt , ItNTxt , BemkNTxt ,
and FbNTxt as well as LimNInf , FinNInf , ConsvNInf , ItNInf , BemkNInf ,
and FbNInf are defined analogously to their noise-free counterparts by replacing
everywhere text and informant by noisy text and noisy informant, respectively.

The following theorem summarizes the known results concerning learning of
indexable concept classes from noisy data.
Theorem 2 ([22])

(1) FinTxt ⊂ LimNTxt ⊂ LimTxt .
(2) FinInf ⊂ LimNInf ⊂ LimInf .
(3) LimNTxt #LimNInf .

4 Incremental Learning from Noise-Free Data

4.1 The Text Case

In this subsection, we briefly review the known relations between the different
variants of incremental learning and the standard learning models defined above.

All the models of incremental learning introduced above pose serious restric-
tions on the accessibility of the data provided during the learning process. There-
fore, one might expect a certain loss of learning power. And indeed, conservative
inference already forms an upper bound for any kind of incremental learning.



126 Steffen Lange and Gunter Grieser

Theorem 3 ([18])

(1) ItTxt ⊂ ConsvTxt .
(2) FbTxt ⊂ ConsvTxt .
(3)

⋃
k∈IN BemkTxt ⊂ ConsvTxt .

Moreover, bounded example-memory inference and feedback learning enlarge
the learning capabilities of iterative identification, but the surplus power gained
is incomparable. Moreover, the existence of an infinite hierarchy of more and
more powerful bounded example memory learners has been shown.

Theorem 4 ([18])

(1) ItTxt ⊂ FbTxt .
(2) ItTxt ⊂ Bem1Txt .
(3) For all k ∈ IN, BemkTxt ⊂ Bemk+1Txt.
(4) Bem1Txt \ FbTxt 6= ∅.
(5) FbTxt \⋃

k∈IN BemkTxt 6= ∅.
A comparison of feedback learning and bounded example-memory inference

with finite inference from positive and negative data illustrates another difference
between both generalizations of iterative learning.

Theorem 5 ([18])

(1)
⋃

k∈IN BemkTxt #FinInf .
(2) FinInf ⊂ FbTxt .

Finally, finite inference from text is strictly less powerful than any kind of
incremental learning.

Theorem 6 ([18]) FinTxt ⊂ ItTxt .

4.2 The Informant Case

Next, we study the strengths and the limitations of incremental learning from
informant. Our first result deals with the similarities to the text case.

Theorem 7 FinInf ⊂ ItInf ⊂ LimInf .

Moreover, analogously to the case of learning from only positive data, feed-
back learners and bounded example-memory learners are more powerful than
iterative IIMs. But surprisingly, the surplus learning power gained is remark-
able. The ability to make queries concerning the history of the learning process
fully compensates the limitations in the accessibility of the input data.

Theorem 8 FbInf = LimInf .

Even more surprisingly, the infinite hierarchy of more and more powerful
k-bounded example-memory learners, parameterized by the number of data ele-
ments the relevant iterative learners may store, collapses in the informant case.
The ability to memorize one carefully selected data element is also sufficient to
fully compensate the limitations in the accessibility of the input data.

Theorem 9 Bem1Inf = LimInf .



On the Strength of Incremental Learning 127

Proof. It suffices to show that LimInf ⊆ Bem1Inf . Let C be any indexable
class and (cj)j∈IN be any indexing of C. By Theorem 1, C ∈ LimInf .

Let (wj)j∈IN denote the lexicographically ordered enumeration of all elements
in X . For all m ∈ IN and all c ⊆ X , we set cm = {wz | z ≤ m, wz ∈ c} and
c~m = {wz | z > m, wz ∈ c}.

We let the required 1-bounded example-memory learner M output as hy-
pothesis a triple (F, m, j) along with a singleton set containing the one data
element stored. The triple (F, m, j) consists of a finite set F and two numbers m
and j. It is used to describe a finite variant of the concept cj , namely the concept
F ∪c~m

j . Intuitively speaking, c~m
j is the part of the concept cj that definitely does

not contradict the data seen so far, while F is used to handle exceptions. For
the sake of readability, we abstain from explicitly defining a hypothesis space H
that provides an appropriate coding of all finite variants h(F,m,j) = F ∪ c~m

j of
concepts in C.

Let c ∈ C and let i = ((xn, bn))n∈IN ∈ Info(c). M is defined in stages.
Stage 0. On input (x0, b0) do the following:

Fix m ∈ IN with wm = x0. Determine the least j such that cj is consistent
with (x0, b0). Set S = {(x0, b0)}. Output 〈(cm

j , m, j), S〉 and goto Stage 1.
Stage n, n ≥ 1. On input 〈(F, m, j), S〉 and (xn, bn) proceed as follows:

Let S = {(x, b)}. Fix z, z′ ∈ IN such that wz = x and wz′ = xn. If z′ > z,
set S′ = {(xn, bn)}. Otherwise, set S′ = S. Test whether h(F,m,j) = F ∪ c~m

j

is consistent with (xn, bn). In case it is, goto (A). Otherwise, goto (B).
(A) Output 〈(F, m, j), S′〉 and goto Stage n + 1.
(B) If z′ ≤ m, goto (β1). If z′ > m, goto (β2).

(β1) If bn = +, set F ′ = F ∪ {xn}. If bn = −, set F ′ = F \ {xn}. Output
〈(F ′, m, j), S′〉 and goto Stage n + 1.

(β2) Determine ` = max {z, z′} and F ′ = {wr | r ≤ `, wr ∈ h(F,m,j)}. If
bn = +, set F ′′ = F ′ ∪ {xn}. If bn = −, set F ′′ = F ′ \ {xn}. Search
for the least index k > j such that ck is consistent with (xn, bn).
Then, output 〈(F ′′, `, k), S′〉 and goto Stage n + 1.

Due to space limitations, the verification of M ’s correctness is skipped. 2

On the other hand, it is well-known that, where learning from informant,
iterative learning with finitely many anomalies2 is exactly as powerful as learning
in the limit. Hence, Theorems 8 and 9 demonstrate the error correcting power
of feedback queries and bounded example-memories.

Next, we summarize the established relations between the different models of
incremental learning from text and their corresponding informant counterparts.

Corollary 10

(1) ItTxt ⊂ ItInf .
(2)

⋃
k∈IN BemkTxt ⊂ Bem1Inf .

(3) FbTxt ⊂ FbInf .

2 In this setting, it suffices that an iterative learner converges to a hypothesis which
describes a finite variant of the target concept.



128 Steffen Lange and Gunter Grieser

Finally, we want to point out further differences between incremental learning
from text and informant.
Theorem 11

(1) ItInf \ LimTxt 6= ∅.
(2) Bem1Txt \ ItInf 6= ∅.
(3) FbTxt \ ItInf 6= ∅.

The figure aside summarizes the
observed separations and coincidences.
Each learning type is represented as a
vertex in a directed graph. A directed
edge (or path) from vertex A to vertex
B indicates that A is a proper subset
of B. Moreover, no edge (or path) be-
tween these vertices imply that A and
B are incomparable.

FbInf = Bem1Inf = LimInf

LimTxt

ConsvTxt

FbTxt

ItTxt

FinTxt
XX

XXXy

XX
XX

��
���:

6

6

6

6

6

XXy

��:

ItInf

FinInf

6

��
��

��
���:

⋃
k∈IN BemkTxt

...

Bem2Txt

Bem1Txt
6

6

6

XXX
XXy

5 Incremental Learning from Noisy Data

5.1 Characterizations

In this section, we present characterizations of all models of learning from noisy
text and noisy informant. First, we characterize iterative learning from noisy
text in purely structural terms.

Theorem 12 C ∈ ItNTxt iff C is inclusion-free.
Since LimNTxt exclusively contains indexable classes that are inclusion-free

(cf. [22]), by Theorem 1, and since, by definition, ItNTxt ⊆ Bem1NTxt and
ItNTxt ⊆ FbNTxt , we arrive at the following insight.
Theorem 13

(1) ItNTxt = ConsvNTxt = LimNTxt .
(2) ItNTxt = FbNTxt =

⋃
k∈IN BemkNTxt .

Interestingly, another structural property allows us to characterize the collec-
tion of all indexable classes that can be iteratively learned from noisy informant.

Theorem 14 C ∈ ItNInf iff C is discrete.
Proof. Necessity: Recently, it has been shown that every class of recursive

enumerable languages that is learnable in the limit from noisy informant has
to be discrete (cf. Stephan [22]; see also Case et al. [5], for the relevant de-
tails). Clearly, this result immediately translates in our setting. Now, since, by
definition, ItNInf ⊆ LimNInf , we are done.

Sufficiency: Let C be an indexable class that is discrete. Informally speaking,
the required iterative learner M behaves as follows. In every learning stage,
M outputs an index for some concept, say c′, along with a number k. The
number k is an lower bound for the length of the shortest initial segment of c′’s



On the Strength of Incremental Learning 129

lexicographically ordered informant ic
′
that separates c′ from all other concepts

in target class C. Since M does not know whether a new data element is really
correct, M rejects its actual guess only in case the new data element contradicts
the information represented in the initial segment ic

′
k . Moreover, since M is

supposed to learn in an iterative manner, M has to use the input data to improve
its actual lower bound k.

We proceed formally. Let (cj)j∈IN be any indexing of C. For all j ∈ IN, icj

denotes the lexicographically ordered informant of cj . As before, let (wj)j∈IN be
the lexicographically ordered enumeration of all elements in X . Moreover, let
f be any total recursive function such that, for all z ∈ IN, there are infinitely
many j ∈ IN with f(j) = z. We select a hypothesis space H = (h〈j,k〉)j,k∈IN that
meets, for all j, k ∈ IN, h〈j,k〉 = cf(j). The required iterative IIM M is defined in
stages. Let c ∈ C and let i = ((xn, bn))n∈IN be any noisy informant for c.

Stage 0. On input (x0, b0) do the following:
Set j0 = 0, set k0 = 0, output 〈j0, k0〉, and goto Stage 1.

Stage n, n ≥ 1. On input 〈jn−1, kn−1〉 and (xn, bn) do the following:
Determine p ∈ IN with wp = xn. If p ≤ kn−1, execute Instruction (A).
Otherwise, execute Instruction (B).
(A) Test whether or not bn = cf(jn−1)(xn). In case it is, set jn = jn−1 and

kn = kn−1. Otherwise, set jn = jn−1 + 1 and kn = 0. Output 〈jn, kn〉
and goto Stage n + 1.

(B) For all z ≤ p, test whether i
cf(z)

kn−1
= i

cf(jn−1)

kn−1
and i

cf(z)
p 6= i

cf(jn−1)
p . In case

there is a z successfully passing this test, set jn = jn−1 and kn = kn−1+1.
Otherwise, set jn = jn−1 and kn = kn−1. Output 〈jn, kn〉 and goto
Stage n + 1.

Due to space limitations, the verification of M ’s correctness is skipped. 2

Analogously to the text case, all models of learning from noisy informant
coincide, except FinNInf .
Theorem 15

(1) ItNInf = ConsvNInf = LimNInf .
(2) ItNInf = FbNInf =

⋃
k∈IN BemkNInf .

Furthermore, the collection of all indexable classes that can be finitely learned
from noisy text (noisy informant) is easily characterized as follows.
Proposition 1 Let C be an indexable class. Then, the following statements are
equivalent:

(1) C ∈ FinNTxt .
(2) C ∈ FinNInf .
(3) C contains at most one concept.

5.2 Comparisons with Other Learning Types

The characterizations presented in the last subsection form a firm basis for fur-
ther investigations. They are useful to prove further results illustrating the re-
lation of learning from noisy text and noisy informant to all the other types of



130 Steffen Lange and Gunter Grieser

learning indexable classes defined. Subsequently, ItNTxt and ItNInf are used as
representatives for all models of learning from noisy data, except finite inference.

The next two theorems sharpen the upper bounds for learning from noisy
data established in [22] (cf. Theorem 2 above).
Theorem 16 ItNTxt ⊂ ConsvTxt .

The next theorem puts the weakness of learning from noisy informant in the
right perspective.
Theorem 17 ItNInf ⊂ LimTxt .

The reader should note that Theorem 17 cannot be sharpened to ItNInf ⊆
ConsvTxt , since there are discrete indexable classes not belonging to ConsvTxt
(cf. [16]). Since the class of all finite concepts is ConsvTxt–identifiable and ob-
viously not discrete, we may conclude:
Theorem 18 ItNInf #ConsvTxt .

The next theorem provides us the missing piece in the overall picture.
Theorem 19 ItNTxt #FinInf .

The figure aside displays the established rela-
tions between the different models of learning from
noisy data and the standard models of learning in
the noise-free setting. The semantics of this fig-
ure is the same as that of the figure in the pre-
vious section. The displayed relations between the
learning models FinNTxt , FinNInf , and FinTxt
are rather trivial. On the one hand, every single-
ton concept class is obviously FinTxt–identifiable.
On the other hand, FinTxt also contains richer in-
dexable classes.

LimInf

LimTxt

ConsvTxt

ItNTxt

FinTxt

FinNTxt = FinNInf

XX
XXXy

6

6

6

6

6

ItNInf

FinInf

��
���:

��
���:

6

Recall that Assertion (3) of Theorem 2 rewrites into ItNTxt # ItNInf . As we
shall see, this result generalizes as follows: All models of iterative learning are
pairwise incomparable, except ItTxt and ItInf .
Theorem 20
(1) ItNTxt # ItTxt .
(3) ItNInf # ItTxt .

(2) ItNTxt # ItInf .
(4) ItNInf # ItInf .

Acknowledgment

We thank the anonymous referees for their careful reading and comments which
improved the paper considerably.

References

1. D. Angluin. Inductive inference of formal languages from positive data. Informa-
tion and Control, 45:117–135, 1980.

2. J. Case and S. Jain. Synthesizing learners tolerating computable noisy data. In
Proc. 9th ALT, LNAI 1501, pp. 205–219. Springer-Verlag, 1998.



On the Strength of Incremental Learning 131

3. J. Case, S. Jain, S. Lange, and T. Zeugmann. Incremental concept learning for
bounded data mining. Information and Computation. to appear.

4. J. Case, S. Jain, and A. Sharma. Synthesizing noise-tolerant language learners. In
Proc. 8th ALT, LNAI 1316, pp. 228–243. Springer-Verlag, 1997.

5. J. Case, S. Jain, and F. Stephan. Vacillatory and BC learning on noisy data. In
Proc. 7th ALT, LNAI 1160, pp. 285–289. Springer-Verlag, 1997.

6. A. Cornuéjols. Getting order independence in incremental learning. In Proc.
ECML, LNAI 667, pp. 196–212. Springer-Verlag, 1993.

7. U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors. Ad-
vances in Knowledge Discovery and Data Mining. MIT Press, 1996.

8. M. Fulk, S. Jain, and D.N. Osherson. Open problems in systems that learn. Journal
of Computer and System Sciences, 49:589–604, 1994.

9. R. Godin and R. Missaoui. An incremental concept formation approach for learning
from databases. Theoretical Computer Science, 133:387–419, 1994.

10. M.E. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

11. J.E. Hopcroft and J.D. Ullman. Formal Languages and their Relation to Automata.
Addison-Wesley, 1969.

12. S. Jain. Program synthesis in the presence of infinite number of inaccuracies. In
Proc. 5th ALT, LNAI 872, pp. 333–348. Springer-Verlag, 1994.

13. K.P. Jantke and H.R. Beick. Combining postulates of naturalness in inductive
inference. Journal of Information Processing and Cybernetics, 17:465–484, 1981.

14. E. Kinber and F. Stephan. Mind changes, limited memory, and monotonicity. In
Proc. 8th COLT, pp. 182–189. ACM Press, 1995.

15. S. Lange and R. Wiehagen. Polynomial-time inference of arbitrary pattern lan-
guages. New Generation Computing, 8:361–370, 1991.

16. S. Lange and T. Zeugmann. Language learning in dependence on the space of
hypotheses. In Proc. 6th COLT, pp. 127–136. ACM Press, 1993.

17. S. Lange and T. Zeugmann. Learning recursive languages with bounded mind
changes. Int. Journal of Foundations of Computer Science, 4:157–178, 1993.

18. S. Lange and T. Zeugmann. Incremental learning from positive data. Journal of
Computer and System Sciences, 53:88–103, 1996.

19. D. Osherson, M. Stob, and S. Weinstein. Systems that Learn, An Introduction to
Learning Theory for Cognitive and Computer Scientists. MIT Press, 1986.

20. S. Porat and J.A. Feldman. Learning automata from ordered examples. In Proc.
1st COLT, pp. 386–396. Morgan Kaufmann Publ., 1988.

21. R. Rivest. Learning decision lists. Machine Learning, 2:229–246, 1988.
22. F. Stephan. Noisy inference and oracles. In Proc. 6th ALT, LNAI 997, pp. 185–200.

Springer-Verlag, 1995.
23. F. Stephan. Noisy inference and oracles. Theoretical Computer Science, 185:129–

157, 1997.
24. L. Torgo. Controlled redundancy in incremental rule learning. In Proc. ECML,

LNAI 667, pp. 185–195. Springer-Verlag, 1993.
25. L.G. Valiant. A theory of the learnable. Communications of the ACM, 27:1134–

1142, 1984.
26. R. Wiehagen. Limes-Erkennung rekursiver Funktionen durch spezielle Strategien.

Journal of Information Processing and Cybernetics, 12:93–99, 1976.
27. T. Zeugmann and S. Lange. A guided tour across the boundaries of learning

recursive languages. In Algorithmic Learning for Knowledge-Based Systems, LNAI
961, pp. 193–262. Springer-Verlag, 1995.



Learning from Random Text

Peter Rossmanith

Institut für Informatik
Technische Universität München

80333 München, Fed. Rep. of Germany
rossmani@in.tum.de

Abstract. Learning in the limit deals mainly with the question of what
can be learned, but not very often with the question of how fast. The
purpose of this paper is to develop a learning model that stays very close
to Gold’s model, but enables questions on the speed of convergence to
be answered. In order to do this, we have to assume that positive ex-
amples are generated by some stochastic model. If the stochastic model
is fixed (measure one learning), then all recursively enumerable sets are
identifiable, while straying greatly from Gold’s model. In contrast, we
define learning from random text as identifying a class of languages for
every stochastic model where examples are generated independently and
identically distributed. As it turns out, this model stays close to learn-
ing in the limit. We compare both models keeping several aspects in
mind, particularly when restricted to several strategies and to the exis-
tence of locking sequences. Lastly, we present some results on the speed
of convergence: In general, convergence can be arbitrarily slow, but for
recursive learners, it cannot be slower than some magic function. Every
language can be learned with exponentially small tail bounds, which are
also the best possible. All results apply fully to Gold-style learners, since
his model is a proper subset of learning from random text.

1 Introduction

Learning in the limit as defined by Gold [5] has attracted much attention. It can
be described as follows: The words of a language are presented to a learner in
some order, where duplicates are allowed. At each point of time the learner has
seen only a finite subset of the language and thus gets an increasingly improved
idea of the language. The learner issues hypotheses that at some point have to
converge to a correct one (and never to be changed afterwards).

The representation of a language as an infinite sequence, containing exactly
the words of the language, is called a text. We will use the terms learning in the
limit, identification in the limit, and learning from text synonymously.

Much work on learning from text has addressed the question concerning what
classes of languages are learnable and of what restrictions and combinations of
restrictions for learners do restrict the power of identification. A set of learners
is called a strategy. The most important strategy is recursive learners. In this
paper we will deal with recursive as well as non-recursive learners. Another type

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 132–144, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Learning from Random Text 133

of a strategy is consistency [1]. A learner is consistent if all hypotheses denote
a language that at least contains all words thus far seen. It is well known that
consistency does not generally restrict learning power, but it does restrict the
power of recursive learners.

What has not been greatly adressed is how fast learning takes place. The
reason for this is simple: With the exception of trivial cases there exists no
upper bound on the learning time because texts can always be padded with use-
less information at the beginning. Therefore, this leaves average case analysis
as a possible way to proceed. A prerequisite for this is a stochastic model for
the texts. In general these models form a text by generating every word in the
text independently from the others and with an equal probability distribution,
which is well motivated by several scientific contexts. Results on learning pat-
tern languages [3,13,10] and monomials [9] emerged as a consequence. These
results are bounds on the average number of examples or on the time required
to learn on average according to a commonly large class of probability distribu-
tions. Some of the papers also deal with aspects other than the average time or
number of examples: They present tail bounds on the probability of convergence.
More specifically, they show that some algorithm have exponentially small tail
bounds [10]. There is also one general result: Every learner that is conservative
and set driven automatically has small tail bounds as concerns every proba-
bility distribution [10]. Knowledge about tail bounds enables a learner to stop
after a finite time and to announce his hypothesis as correct with high proba-
bility. There is a direct connection to stochastically finite learning, which was
introduced in [10] (see also additional remarks in [9]).

In general, fixing probability distributions for each language in some class
leads to a learning model that is much more powerful than that of identifica-
tion in the limit: The whole class of recursively enumerable languages becomes
learnable (see [8]). This model is called measure one learning. Kapur and Bilardi
present an elegant way to construct simple learners for a collection of languages
if there is some minimal knowledge about the underlying probability distribu-
tions [6]. They also show how knowledge about distributions provides indirect
negative evidence.

In this paper we introduce the model learning from random text, which over-
comes the difficulties above: It does not suffice to learn for fixed probability
distributions, every reasonable distribution must be considered. In other words,
a learner identifies a language from random text, if he converges to a correct
hypothesis with probability one for every probability distribution for which the
probability of a word is positive iff the word is a member of the language. This
definition overcomes the difficulties mentioned above. Formal definitions are con-
tained in the next section. (See also Kapur and Bilardi [7] for learning of indexed
languages.)

In the first part of this paper we investigate some basic properties of this
model. In particular, if a learner learns from text he also learns from random
text, but not necessarily vice versa. With this in mind we generalize the classical
model, due to the fact that a learner is now allowed to fail on certain texts.



134 Peter Rossmanith

These texts, which we call the failure set of the learner, must have measure zero
for every admissible distribution. However, if a class is learnable from random
text, it can also be learned from text. This is also valid if we restrict ourselves
to recursive learners. This equivalence can be translated to all strategies holding
no restriction on identification in the limit, for which are many.

To further compare the two models, we investigate some strategies that act
as a restriction for recursive learning in the limit. Set-driven learners (whose
hypotheses depend only on the set of examples seen, not on their multiplicity
or order), confident learners (who converge on all texts for all languages), and
memory limited learners (who can remember only a constant number of examples
back in time). It will prove to be the case that the qualities of being set-driven
or confident are restrictions for recursive learning from random text, too. The
characteristic of limited memory, on the other hand, does not act as a restriction.

Every learner that learns in the limit has a locking sequence [2], whose exis-
tence plays a crucial part in many proofs. After reading a locking sequence as a
prefix of a text, a learner never again changes his hypothesis. Blum and Blum
showed that every learner has a locking sequence and that every initial prefix
of a text is a prefix of a locking sequence [2]. When learning from random text,
locking sequences do not necessarily exist. We offer a simple characterization in
terms of topological properties of the failure set, showing whether or not locking
sequences nevertheless exist. The topology concerned is the natural topology on
the sequences of words from the languages to be learned: A locking sequence
exists iff (1) the failure set is not comeager and iff (2) it is not dense. Similarly,
every prefix of a text is aa prefix of a locking sequence iff (1) the failure set is
meager and iff (2) it is nowhere dense.

In the second part of this paper we investigate the functions that map n to
the probability that the learner has not converged to the correct hypothesis after
reading n examples. This function will be called convergence indicator. The limit
of a convergence indicator is zero for every admissible probability distribution,
as to be expected. We show that, except for trivial cases, a convergence indi-
cator cannot be smaller than exponential, i.e., it is always Ω(1)n. This is true
regardless of the class of languages to be learned and the underlying probability
distribution; hence we have a lower bound. Exists an upper bound as well? In
other words, is it possible to learn arbitrarily slowly? The answer is generally
‘yes’, but for recursive learners ‘no’. There exists some function f such that every
recursive learner’s convergence indicator is o(f(n)). This forms a kind of magical
barrier: Either you can learn faster or not at all.

After finding lower and upper bounds for the convergence behavior of indi-
vidual learners, we have to consider the more general task of finding the best
convergence behavior among all learners that learn a class of languages: We can
always construct a learner that learns with exponentially small tail bounds, i.e,
its convergence indicator is O(1)n.

We also show that if a learner is set-driven, then his tail bounds are auto-
matically exponentially small. This phenomenon has already been recognised for
when a learner is simultaneously set-driven and conservative [10].



Learning from Random Text 135

2 Preliminaries

This section contains fundamental definitions. The notation is almost identical
to that in Osherson, Stob, and Weinstein’s textbook [8]. The natural numbers
are denoted by N = {1, 2, 3, . . .}. A language is a subset of natural numbers. Let
Wi be the language accepted by the ith Turing machine and RE = {W1,W2, . . . }
the recursively enumerable languages. A text is a sequence of natural number. If t
is a text, then ti denotes its ith component, i.e., t = (t1, t2, . . . ). The range rng(t)
of a text t is the set of all its components, i.e., rng(t) = {t1, t2, . . . }. We say t is a
text for L if rng(t) = L. The set of all texts for L is denoted by TL and T is the set
of all texts. The prefix of length n of a text t is denoted by t̄n = (t1, t2, . . . , tn).
Let F be the set of all partial functions from N to N. We will identify finite
sequences with natural numbers. If φ ∈ F and limn→∞ φ(t̄n) = i, i.e., φ(t̄n) = i
for all but finitely many n, we say that φ converges on t to i and write φ(t) = i.
We say φ converges on t if it converges on t to some i. If Wφ(t) = L for every
text for L, then we say that φ identifies L (in the limit or from text). If L ⊆ RE
and φ identifies every L ∈ L then we say that φ identifies L.

Let S ⊆ F be a strategy. Then [S] denotes the set of all classes L ⊆ RE that
are learnable by some φ ∈ S. In particular, [F] are all learnable classes and [Frec]
all recursively learnable classes.

We define a topology TL = (TP(L), OL), where TP(L) is the set of all texts
for all subsets of L. The open sets OL are defined by a base consisting of all sets
BL

σ = { t ∈ TP(L) | t̄n = σ for n = lh(σ) }, i.e., all texts for all subsets of L that
have a prefix σ. (lh(σ) is the length of σ.) The induced topology is the sequence
space over L. More details can be found in [8].

With the help of TL we can define a probability space (TP(L),A,ML), where
A, the measurable sets, is the smallest σ-Algebra that contains all basic open
sets BL

σ and ML is an admissible probability measure defined via ML(BL
σ ) =∏lh(σ)

i=1 mL(σi) where mL is a probability measure on L and must fulfill mL(n) >
0 iff n ∈ L and mL(L) = 1. The random variable T denotes a random text for L;
technically, T is the identity function on T. If P is a predicate for texts, we use
the usual abbreviation ML[P ] = ML({ t | P (t) }). For example, ML[T ∈ BL

σ ] =
ML({ t ∈ T | T (t) ∈ BL

σ }) = ML({ t ∈ T | t ∈ BL
σ }) = ML(BL

σ ). We are now
ready to define learning from random text formally.

Definition 1 A learner φ ∈ F identifies a language L ⊆ RE from random text
if ML[Wφ(T ) = L] for all admissible probability measures ML. He indentifies a
class L from random text if he identifies all L ∈ L from random text. The set of
all classes identified by learners in S from random text is denoted by [[S]].

3 Relations to Identification in the Limit

In this section we compare identification in the limit and identification from
random text. The first result is that learning from random text is at least as
powerful as learning from text for all strategies. Then we show that [F] = [[F]]



136 Peter Rossmanith

and [Frec] = [[Frec]], i.e., that general learners, resp. recursive learners as a whole
are equally powerful in both models. The next theorem is based on the simple
fact that a random text is a text with probability one.

Theorem 1 [S] ⊆ [[S]] for every set of strategies S ⊆ F.

Proof. If φ ∈ S identifies a language L from text then it identifies every text
for L. We have to show that φ identifies L on a random text with probability
one.

Let us fix some measure ML. We want to show that ML(TL) = 1. We can
write TL = TP(L) −

⋃
i∈L TL−{i}, i.e., the texts for L are all texts whose range

is a subset of L minus all texts whose range is a proper subset of L. But TP(L)

is the sure event and therefore ML(TP(L)) = 1. All that remains is to show that
ML(TL−{i}) = 0 for every i ∈ L. We can write

TL−{i} ⊆ Xn =
⋃
{BL

σ | lh(σ) = n and σ contains no i }
and ML(Xn) = (1 − mL(i))n and consequently

∑∞
n=1ML(Xn) < ∞. The

Borel–Cantelli Lemma implies ML(lim supXn) = 0 and ML(TL−{i}) = 0, since
TL−{i} = lim supXn. (lim supXn is the set of all elements that appear in in-
finitely many Xn.) Consequently ML(TL) = 1.

We have shown that φ identifies L on all texts except on a measure zero set.
Consequently it identifies L from random text. ut

The difficulty in the next theorem is to find a learner that fails on no text, if
we only know that a learner exists that fails only on a set of measure zero.

Theorem 2 [F] = [[F]].

Proof. The ⊆-part acts as a special case of Theorem 1.
To prove the opposite direction let φ ∈ F identify a class of languages L from

random text. We can assume w.l.o.g. that φ(σ) = φ(τ) whenever Wφ(σ) = Wφ(τ).
We construct a ψ ∈ F that identifies L.

The purpose of using ψ is to simulate φ(t) on a random text constructed
from t with a particular probability distribution. The following is a detailed
definition of ψ:

Let σ = (n1, n2, . . . , nm) be some sequence. Here the measure mσ is defined
as mσ(ni) =

∑
nj=ni

2−j for i = 1, . . . ,m and mσ(n) = 0 if n /∈ rng(σ). In this
way we obtain a sequence mt̄n

of measures. There is a limit distribution mt(i) =
limn→∞mt̄n

(i) that is a probability measure. The corresponding probability
measure on texts is Mt, which is defined as Mt(BL

σ ) =
∏lh(σ)

i=1 mt(σi).
We know that limn→∞Mt[Wφ(T̄n) = L] = 1 if t is a text for L from Theorem 1

because Mt is admissible for L. Let us fix the language L and a text t for L. We
can then find for every 1

3 > ε > 0 an N ∈ N, so that Mt[Wφ(T̄n) = L] ≥ 1− ε for
all n ≥ N . To compute ψ(t̄n) it suffices to look at all φ(σ) where lh(σ) = n and
mt(σ) > 0. There must be an i ∈ {φ(σ) |Mt(BL

σ ) > 0 and lh(σ) = n }, so that∑
σ

Mt(BL
σ ) ≥ 1− ε



Learning from Random Text 137

where the sum is taken over all σ such that Mt(BL
σ ) > 0, lh(σ) = n, and

φ(σ) = i. Moreover, Wi = L. We cannot define ψ(t̄n) as that i because mt is
not known. However, mt̄n

and mt are very similar. If σ contains no j /∈ rng(t̄n),
then clearly Mt̄n

(BL
σ ) = Mt(BL

σ ). The Mt-measure of all BL
σ with lh(σ) = n and

rng(σ) 6⊆ rng(t̄n) is at most n2−n. Hence,

∑
σ

Mt̄n
(BL

σ ) ≥ 1− ε

2
⇒

∑
σ

Mt(BL
σ ) ≥ 1− ε ⇒

∑
σ

Mt̄n
(BL

σ ) ≥ 1− 3
2
ε

for sufficiently large n (such that n2−n < ε/2). Consequently, we can define ψ(t̄n)
as that i for which the sum of all Mt̄n

(BL
σ ) over all σ with rng(σ) = rng(t̄n),

lh(σ) = n, and φ(σ) = i is bigger than 1/2. If such an i does not exist, then
ψ(t̄n) is undefined. It is not hard to see that ψ identifies all L ∈ L. ut

The same is valid for recursive learners:

Theorem 3 [Frec] = [[Frec]].

Proof. The construction in Theorem 2 of ψ(t̄n) is not effective (this refers to
the “w.l.o.g.”-section). Let φ ∈ Frec identify L from random text. We construct
a different ψ ∈ Frec that also identifies L from random text, but that has an
additional property: If ψ identifies a language L from random text then there is a
single index i for each admissible ML making ML[φ(T ) = i] = 1 and Wi = L. In
order to define ψ we decompose T into a countable number of disjoint texts T k

for example by T k
n = T〈k,n〉, where 〈k, n〉 = 2k3n. Then ψ(T̄〈k,n〉) = min{φ(T̄ i

n) |
1 ≤ i ≤ k }. (If m cannot be written as 〈k, n〉 then ψ(T̄m) = ψ(T̄〈k,n〉) where
〈k, n〉 is the next smaller number of this form.) For each i with ML[φ(T ) = i] > 0
the probability that φ(T k) = i for some k is one. Therefore with probability one
ψ(T ) = i where i the minimal number with ML[φ(T ) = i] > 0.

If we use ψ instead of φ in the construction of Theorem 2, we can avoid
deciding whether Wi = Wj . Then the construction becomes effective. ut

The remainder of this section deals with three strategies: set-driven, memory
limited, and confident learners. If [S] = [F], then [[S]] = [[F]] (a simple corollary
of the above theorem). If, however, [S] ⊂ [F], then both [[S]] = [[F]] and [[S]] ⊂ [[F]]
remain possible (the same applies for Frec instead of F). It is known that [Frec∩
Fset−driven ] ⊂ [Frec] [11,4]. A learner is set-driven if each hypothesis depends
only on the set of examples so far seen, but not on their order or multiplicity.
The next theorem implies [Frec∩Fset−driven ] = [[Frec∩Fset−driven ]], since it states
both models are equivalent for set-driven learners. If a learner is set-driven he
cannot fail on a single text when learning from random text. Surprisingly, this is
not true for rearrangement-independent learners, whose hypotheses depend only
on the set of examples so far seen and on their number.

Theorem 4 Let L ∈ RE be a language where φ ∈ Fset driven identifies L from
random text. Then φ identifies L.



138 Peter Rossmanith

Proof. If L is finite then φ locks as soon as it has seen all words form L. Otherwise
it would converge on no text at all to the right hypothesis. Hence, it converges
on all texts.

If L is infinite, then take an arbitraty text t = (n1, n2, n3, . . . ) for L. We
can assume that all ni are pairwise distinct, since φ is set-driven. Define M =
{ {n1, n2, . . . , nm} | m ∈ N } and S = { t ∈ T | rng(t̄n) ∈ M for all n ∈ N }.
Then there is a measure mL such that ML(S) > 0, e.g., mL(nk) = ce−4k

with
c = 1/

∑∞
k=1 e

−4k

(a short computation shows ML(S) > 1/2). Since φ is set-
driven it converges on all texts from S to the same hypothesis or it diverges
on all of them. The latter cannot happen, since S does not have a measure of
zero. Therefore φ converges to the correct hypothesis on all of S. Since t ∈ S, φ
identifies t. ut

Corollary 1 [S] = [[S]] for all S ⊆ Fset-driven.

The same result does not hold for rearrangement-independent learners which
shows that the number of examples plays a crucial role in this context.

Theorem 5 There is a S ⊆ Frearrangement independent such that [[S]] 6= [S].

Proof. Let L = {{1},N} and φ defined via

φ(σ) =
{
i if σ = (1, 1, 1, . . . , 1) or rng(σ) = {1, 2, 3, . . . , lh(σ)}
j otherwise.

Obviously, φ is rearrangement independent (but not set-driven). While φ iden-
tifies L from random text, it does not identify L. Now choose S = {φ}.

It is easy to see that φ identifies N from random text since φ identifies
every text for N unless t1 6= ti for all i > 1. This happens with probability
limn→∞(1−mL(1))n = 0. ut

Memory limited learners are an example of a natural strategy causing no
restriction on learning from random text, but causing a restriction on learning
in the limit. A learner φ is memory limited if there is a number n such that φ(σ)
depends only on φ(σ1σ2 . . . σlh(σ)−1) and σlh(σ), σlh(σ)−1, . . . , σlh(σ)−n for all
sequences σ [12]. A memory limited learner remembers only his last hypothesis
and the last n examples.

Theorem 6 [[Fmemory limited ]] = [[F]].

Proof. First we show that every random text is a fat text (a text that contains
everything infinitely often) with probability one. Let f : N → N × N be an
arbitrary bijective function. Then T(i) = (Tf(i,1), Tf(i,2), Tf(i,3), . . . ) is a random
text for every i ∈ N. We have already shown that every random text is a text
with probability one. Hence, T contains an infinite number of texts T(i) with
probability one.



Learning from Random Text 139

Let L ⊆ RE and let φ identify L from random text. Then there is a ψ
that identifies L from text (Theorem 2) and we can assume that ψ identifies
L memory limited from fat text [8]. Since every random text is a fat text with
probability one, ψ identifies L from random text, too. ut

Confidency is an example, where old proof techniques partially transfer to
learning from random text. In most cases this is not possible, in particular if
the proofs are based on locking sequence arguments. A learner is confident if he
converges on all texts, even on texts for a language that he does not identify.

Theorem 7 [[Fconfident ]] ⊂ [[F]].

Proof. We can adapt the proof of [Fconfident ] ⊂ [F] of Osherson, Stob, and Wein-
stein [8]. While the basic principle remains the same, the proof for learning from
random text is much more involved as they use failure on single texts, while we
have to provide sets with non-zero measure. Suppose φ ∈ F identifies REfin (the
finite languages) from random text. Let σ0 be the shortest sequence of zeros
such that Wφ(σ0) = {0}. Such σ0 exists, since (0, 0, . . . ) is the only text for {0}
and therefore every random text coincides with it with probability 1. Let σ1 be
the shortest sequence of zeros and ones such that Wφ(σ0σ1) = {0, 1}. Let L = N
and ML be admissible. Again, this σ1 exists because ML(B{0,1}

σ0 − B
{0}
σ0 ) > 0

and therefore are many sequences starting with σ0 and on which φ even iden-
tifies {0, 1}. Generally we define σn to be the shortest sequence of {1, . . . , n}
such that Wφ(σ1σ2...σn) = {1, 2, . . . , n}. For analogous reasons as above σn must
exist.

However, φ obviously does not converge on σ1σ2σ3 . . . and is therefore not
confident. Since REfin ∈ [[F]] the claim follows. ut

4 Locking Sequences

Locking sequences play a crucial role in many proofs. In general, no locking
sequences may exist when learning from random text. The following theorems
give simple characterizations, when locking sequences exist and when not.

Lemma 1 TL ∩BL
σ and BL

σ are equivalent modula a meager set in TL.

Proof. TL ∩ BL
σ = BL

σ − ⋃
i∈L B

L−{i}
σ and B

L−{i}
σ is nowhere dense if i /∈ L:

Every non-void open set contains some basic open set BL
τ that contains then

itself BL
τi, which is disjoint from B

L−{i}
σ . ut

Theorem 8 Let φ ∈ Ftotal identify L ∈ RE from random text. Let M be the
measure zero set of texts for L on which φ does not identify L. Then the following
three statements are equivalent: (1) Every σ with rng(σ) ⊆ L is prefix of a locking
sequence for L. (2) M is meager in TL. (3) M is nowhere dense in TL.



140 Peter Rossmanith

Proof. We show 2 ⇒ 1 ⇒ 3 ⇒ 2. Fix some admissible ML and let rng(σ) ⊆ L.
Since φ identifies L on all texts in TL −M ,

TL ∩BL
σ ⊆

⋃
{F−1

φ ({t}) | t is stabilized on L and σ v t } ∪M. (1)

Since BL
σ and TL ∩ BL

σ are equivalent modulo a meager set, TL ∩ BL
σ is not

contained in a meager set by the Baire category theorem. In particular, the
right hand side of (1) is not meager and since M is meager, some F−1

φ ({t})
cannot be nowhere dense if t is stabilized on L and σ v t. Since F−1

φ ({t}) is
closed this means that ∅ 6= Int(F−1

φ ({t})) ⊆ F−1
φ ({t}). As a non-void closed set

F−1
φ ({t}) contains some basic open set BL

τ . The corresponding sequence τ w σ
is a locking sequence for φ on L.

1 ⇒ 3: Let us assume that t is an accumulation point of M and let σ < t.
Then every open subset of BL

σ is not disjoint from M . Hence σ is not not a
locking sequence. Since we can choose σ arbitrarily, no prefix of t is a locking
sequence.

3 ⇒ 2: Every set that is nowhere dense is meager. ut

Theorem 9 Let φ ∈ Ftotal identify L ∈ RE from random text. Let M be the
measure zero set of texts for L on which φ does not identify L. Then the following
conditions are equivalent: (1) φ has a locking sequence for L. (2) M is not dense
in TL. (3) M is not comeager in TL.

Proof. 1 ⇒ 2: Assume M is dense and σ is a locking sequence. This is not
possible since BL

τ ∩M 6= ∅ for every τ with rng(τ) ⊆ L because M is dense.
Since σ is a locking sequence, however, BL

σ ∩M = ∅.
2 ⇒ 3: If a set is not dense, it is not comeager.
3 ⇒ 1: If M is not comeager, then TL−M is not meager because TL is itself

comeager. As before we can argue as follows:

TL −M ⊆ {F−1
φ (t) | t is stabilized on L }

Since TL −M is not meager some F−1
φ (t) is not nowhere dense and contains as

a closed set some basic open set BL
σ and σ is a locking sequence. ut

The above two theorems are stated for total functions. The reason is that
the proofs use Fφ, which is a function that maps texts to texts — and not to
“partial texts.” It is possible, but very technical to modify the proofs for partial
functions. A simpler way is the following, from which the same generalization
immeadiately follows:

Theorem 10 Let φ ∈ F identify L ⊆ RE from random text. Then there is a
ψ ∈ Ftotal that identifies also L from random text and has the same failure sets
as φ for every L ∈ L. Moreover φ and ψ have the same locking sequences for
each L ∈ L.



Learning from Random Text 141

Proof. Let Wi /∈ L. Define ψ as

ψ(σ) =

{
φ(σ) if φ(σ) is defined,
i otherwise.

Obviously, φ and σ share the same locking sequences. If φ diverges on a text, ψ
diverges, too, or converges to i thus failing to identify an L ∈ L. If φ identifies
some L ∈ L then ψ converges to the same hypothesis. Hence, the failure sets are
identical. ut

Since φ ∈ F and ψ ∈ Ftotal share conditions (1), (2), and (3) in Theorems 8
and 9, the three conditions are also equivalent for a partial function φ ∈ F.

Example how to use these characterizations: Can a learner fail on t iff t
consists only of 1’s with finitely many exceptions? The answer would be no,
as there is obviously no locking sequence. Nevertheless the failure set is dense.
Another application is the following theorem, which guarantees that confident
learners have locking sequences. Nevertheless, confident learners can have non-
void failure sets, but they cannot be dense.

Theorem 11 Every φ ∈ Fconfident that identifies a language L from random
text has a locking sequence for L.

Proof. Since φ is confident it converges on every text. Therefore

TL ⊆
⋃
{F−1

φ (t) | t is stabilized }

and again because of Baire’s category theorem some F−1
φ (t) is not nowhere dense

and contains a basic open set BL
σ . This σ is a locking sequence. ut

This theorem can also be easily generalized such that even every sequence is
prefix of a locking sequence.

5 Tail Bounds

It can be shown that general learners can learn arbitrarily slowly, i.e., the prob-
ability that they still fail after n rounds (the convergence indicator) converges
arbitrarily slowly towards zero (the proof is based on ignoring larger and larger
segments of the text, which slows down learning). However, the next theorem
shows that recursive learners cannot learn arbitrarily slowly: Either they con-
verge “fast” or they cannot learn at all.

Theorem 12 Let L ∈ RE and let some mL be fixed. There is then a function
h : N → Q such that f(n) = o(h(n)) for every f that is a convergence indicator
for a φ ∈ Frec that identifies L with probability one.



142 Peter Rossmanith

Proof. We define an oracle O : N ×Q+ → Q such that |O(i, ε) −mL(i)| < ε,
i.e., O(i, ε) is a rational number that is very near at mL(i), but still remains a
rational number. Moreover, let O(i, ε) = 0 iff mL(i) = 0, i.e., iff i /∈ L. The oracle
O is not uniquely determined; we just choose some O with these properties.

An oracle Turing machine that has access to O and additionally access to the
halting problem for Turing machines with oracle O can compute a lower bound
for f(n) (the details are omitted).

Hence, whenever φ measure one identifies a language L with convergence
indicator f , then there is a function g with g(n) > f(n). Moreover, this g is
computable by some kind of oracle Turing machine whose oracle depends only
on mL, but not on φ. Therefore, let h be a function shrinking so slowly towards
zero for n→∞ such that no oracle Turing machine as defined above can compute
a function that shrinks slower (it can be easily constructed by diagonalization).
This h is the claimed function. ut

The following theorem states that for each nontrivial learning problem expo-
nential tail bounds can always be achieved and are also the best bounds possible.

Theorem 13 If L ∈ [[F]] (resp. L ∈ [[Frec]]) and L contains at least two lan-
guages that are not disjoint, then the convergence indicator for some L ∈ L is
always Ω(1)n. On the other hand there is always a φ ∈ F (resp. φ ∈ Frec) that
learns L from random text and whose convergence indicator for L is O(1)n.

Proof. The lower bound follows from a text (i, i, i, . . . ) where Wi is contained
in two languages of L. Each learner fails on at least one of them. The upper
bound follows from rearrangement-independent learners: If L is identified by a
rearrangement-independent learner, its convergence indicator is O(1)n, since he
converges when the examples read contain a locking set. ut

This proof also shows that every rearrangement-independent learner (and
thus every conservative one) have automatically exponentially small tail bounds.
It is already known that this is the case for learners that are simultaneously con-
servative (or rearrangement-independent) and conservative [10]. Then, however,
there exists a tight relationsship between the tail bounds and the expected learn-
ing time, which is lacking if the learner is not conservative.

6 Conclusion

A stochastic model is a prerequisite to study the speed of learning in inductive
inference, which was the main objective to start this line of research. There
are several stochastic models available, where positive examples are generated
independently and identically distributed according to a distribution. Kapur and
Bilardi show how to construct learners in a uniform way [6].

If the same learner must identify a language for all reasonable probability
distributions, then the only languages that are learnable are those that are also
learnable in Gold’s model of learning in the limit [5]. We call the latter stochastic



Learning from Random Text 143

model learning from random text. This model captures all classes of languages
learnable in Gold’s model and none else. However, learners restricted in some
ways can learn more classes from random text than from text. An example are
memory limited learners. On the other hand, for many strategies the two models
coincide.

While there exist always locking sequences for Gold-style learners, this is
not necessarily the case for learning from random text. The existence of locking
sequences is closely related to the topological properties of the failure sets.

The general results on the speed of learning are as follows. One problem of
inductive inference is a learner does never know whether he already converged
or whether he will have to change his hypothesis somewhere in the future. Ex-
ponentially small tail bounds let the probability of the latter drop very fast, so
exponentially small tail bounds are a useful property of a learner. We have seen
that everything that can be learned at all can also be learned with exponentially
small tail bounds, but not better. In particular, stochastically finite learning [10]
is always possible in principle.

References

1. D. Angluin. Finding patterns common to a set of strings. Journal of Computer
and System Sciences, 21(1):46–62, 1980.

2. L. Blum and M. Blum. Toward a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

3. T. Erlebach, P. Rossmanith, H. Stadtherr, A. Steger, and T. Zeugmann. Learn-
ing one-variable pattern languages very efficiently on average, in parallel, and by
asking queries. In M. Li and A. Maruoka, editors, Proceedings of the 8th Interna-
tional Workshop on Algorithmic Learning Theory, number 1316 in Lecture Notes
in Computer Science, pages 260–276. Springer-Verlag, October 1997.

4. M. A. Fulk. Prudence and other conditions on formal language learning. Informa-
tion and Computation, 85:1–11, 1990.

5. E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

6. S. Kapur and G. Bilardi. Language learning from stochastic input. In Proceedings
of the 5th International Workshop on Computational Learning Theory, pages 303–
310. ACM, 1992.

7. S. Kapur and G. Bilardi. Learning of indexed families from stochastic input. In The
Australasian Theory Symposium (CATS’96), pages 162–167, Melbourne, Australia,
January 1996.

8. D. Osherson, M. Stob, and S. Weinstein. Systems That Learn: An Introduction for
Cognitive and Computer Scientists. MIT Press, Cambridge, Mass., 1986.

9. R. Reischuk and T. Zeugmann. A complete and tight average-case analysis of learn-
ing monomials. In C. Meinel and S. Tison, editors, Proceedings of the 16th Sympo-
sium on Theoretical Aspects of Computer Science, number 1563 in Lecture Notes
in Computer Science, pages 414–423. Springer-Verlag, 1999.

10. P. Rossmanith and T. Zeugmann. Learning k-variable pattern languages efficiently
stochastically finite on average from positive date. In V. Honavar and G. Slutzki,
editors, Proceedings of the 4th International Colloquium on Grammatical Inference,



144 Peter Rossmanith

number 1433 in Lecture Notes in Artificial Intelligence, pages 13–24, Ames, Iowa,
jul 1998. Springer-Verlag.

11. G. Schäfer. Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien. PhD
thesis, Rheinisch Westfälische Technische Hochschule Aachen, 1984. In German.

12. K. Wexler and P. Culicover. Formal Principles of Language Acquisition. MIT
Press, Cambridge, Mass., 1980.

13. T. Zeugmann. Lange and Wiehagen’s pattern learning algorithm: An average-
case analysis with respect to its total learning time. Annals of Mathematics and
Artificial Intelligence, 23(1–2):117–145, 1998.



Inductive Learning with Corroboration

Phil Watson

Department of Computer Science,
University of Kent at Canterbury,

Canterbury, Kent CT2 7NZ, United Kingdom.
P.R.Watson@ukc.ac.uk

Abstract. The basis of inductive learning is the process of generating
and refuting hypotheses. Natural approaches to this form of learning
assume that a data item that causes refutation of one hypothesis opens
the way for the introduction of a new (for now unrefuted) hypothesis, and
so such data items have attracted the most attention. Data items that
do not cause refutation of the current hypothesis have until now been
largely ignored in these processes, but in practical learning situations
they play the key role of corroborating those hypotheses that they do not
refute.

We formalise a version of K.R. Popper’s concept of degree of corroboration
for inductive inference and utilise it in an inductive learning procedure
which has the natural behaviour of outputting the most strongly corrob-
orated (non-refuted) hypothesis at each stage. We demonstrate its utility
by providing characterisations of several of the commonest identification
types in the case of learning from text over class-preserving hypothe-
sis spaces and proving the existence of canonical learning strategies for
these types. In many cases we believe that these characterisations make
the relationships between these types clearer than the standard charac-
terisations. The idea of learning with corroboration therefore provides a
unifying approach for the field.

Keywords: Degree of Corroboration; Inductive Inference; Philosophy of Science.

1 Introduction

The field of machine inductive inference has developed in an ad hoc manner,
in particular in the characterisations of identification types which have been
achieved. In this paper we wish to propose a new unifying framework for the
field based on the philosophical work of K. R. Popper, and in particular his con-
cept of degree of corroboration. We will demonstrate that many of the existing
identification types in the case of learning from text allow an alternative char-
acterisation using the concept of learning with corroboration; in particular this
approach reveals the existence of canonical learning algorithms for the various
types.

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 145–156, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



146 Phil Watson

We will be concerned with learning indexable recursive families of recursive
languages from text. We restrict our attention to the standard case of class-
preserving hypothesis spaces, i.e. those indexed recursive families H1, H2, ... for
C such that for every L ∈ C there exists at least one (and possibly many) i such
that Hi describes L and every Hi describes some L in C.

We assume the standard definitions in the field of machine inductive infer-
ence [Go67, An80, AS83]. Definitions of other concepts used in this paper may
be found as follows: strong monotonic learning (SMON-TXT) [Ja91]; refuting
inductive inference machines (RIIMs) [MA93, LW94]; justified refuting learning
(JREF-TXT) [LW94]; set-driven learning (s-*-TXT) [WC80, LZ94].

Our notation will mostly be standard. We mention the following points. IN
will be the natural numbers 0, 1, 2, ... while IN+ will be the positive integers
1, 2, 3, .... Our languages L will be non-empty sets of words over a fixed finite
alphabet Σ; therefore L ⊆ Σ∗. We will write (Σ∗) for the space of all finite
and infinite sequences from Σ∗; therefore if t is a text for language L, we have
t ∈ (Σ∗). We write tm for the finite initial subsequence of t of length m + 1,
and t+m for the content of tm, i.e. if t = s0, s1, s2, ... then t+m = {si | i ≤ m}.
Index(C) will be the set of all class-preserving recursive indexings L of class C of
recursive languages; such indexings will be our hypothesis spaces. If hypothesis
H ∈ L describes language L ∈ C, where L ∈ Index(C), then we abuse notation
slightly by writing H = L. Similarly if H1, H2 ∈ L describe the same L ∈ C we
write H1 = H2. We say that tm refutes H iff t+m 6⊆ H . The set of all texts for
H will be written Txt(H) while Txts(L) will be the set of all texts t such that
(∃H ∈ L)t ∈ Txt(H).

2 Degree of Corroboration

2.1 Popper’s ‘Logic of Scientific Discovery’

The philosopher K.R. Popper [Po34, Po54, Po57, Po63] defined a philosophical
and logical system covering the epistemology and practice of science. A central
plank of this system was the concept of degree of corroboration, C(x, y), meaning
the degree to which a theory x receives support from the available evidence
y. Evidence supporting x causes C(x, y) to increase in value, while evidence
undermining x causes C(x, y) to decrease. A set of ten desiderata [Po34, Po57]
defined C(x, y). Space precludes a full discussion of these desiderata here; the
reader is referred to [Wa99].

Popper’s degree of corroboration is a practical measure enabling us to choose
between unrefuted theories, given that a scientific theory is, by its very nature,
incaple of proof (another major strand of Popper’s work was concerned with set-
tling this point). We should tentatively believe the best-corroborated hypothesis
at any given time.

An interesting recent discussion of Popper’s work is to be found in Gillies
[Gi93, Gi96]. There a logical system is characterised as one with both inferential
and control elements; in both Popper’s work and the present paper corrobora-
tion plays the role of control. Indeed given the characterisations using canonical



Inductive Learning with Corroboration 147

learners which we have obtained for standard learning types (Section 4) we may
say that degree of corroboration is the only control element necessary in machine
inductive inference. A more detailed discussion of Gillies’s work may be found
in [Wa99].

2.2 Our Differences from Popper’s Approach - Discussion

Restricted Domain We wish to define a corroboration function analogous to
Popper’s but for use in the domain of inductive learning theory. This restricted
domain enables us to make a number of simplifying assumptions compared to
Popper’s version.

First we note that we always wish to state how well a hypothesis is corrobo-
rated by data. This is already more specific than Popper’s approach, in which he
specifically allows the corroboration of, for example, one theory by another. Our
hypotheses will be those of an inductive inference machine and will come from
a particular hypothesis space, within which we aim to find a true description of
the phenomenon producing the data, which will be a recursive language. The
data will be a sequence of examples forming a text (or strictly speaking, forming
at any particular time an initial segment of a text) for the phenomenon.

c(H, t) will be the degree to which example text t corroborates hypothesis
H . Lower case is used to distinguish our versions of Popper’s functions.

Fixed Values We assume that data is free of noise, and that we aim to find a
hypothesis which exactly describes or explains the concept producing the data.
Now the idea that data undermines (Popper’s choice of word) a theory can be
replaced by outright refutation in the case that data disagrees with the predic-
tions of the theory. Thus all the possible negative values in Popper’s scheme may
be replaced in ours by −1, the corroboration value of refuted hypotheses.

Similarly the value 0, reserved by Popper for the degree of corroboration
offered to x by an independent theory y, subtly changes its meaning when we
restrict ourselves to corroboration of hypotheses by data. The value 0 is now
the corroboration given to any theory by the empty data set ∅, by vacuous data
which gives us no help in choosing between competing hypotheses in our space,
or in the case that the theory itself is tautological, metaphysical or otherwise
not logically refutable.

References to Probability For historical reasons, Popper’s desiderata are
tied closely to definitions in probability; specifically, Popper sets out to demon-
strate that degree of corroboration is in no sense a measure of probability. For
our purposes, we have no need of any directly defined probabilistic measures. In
a powerful argument, Popper identified the maximum degree of corroboration
possible for a hypothesis with its logical improbability, and therefore with its
scientific interest. Similarly, we use c(H) to mean the highest degree of corrobo-
ration of which H is capable; however we drop the reference to P (x) in Popper’s
definition of C(x) and instead add some natural restrictions on c(H).



148 Phil Watson

Popper’s dependence on probabilistic definitions leads him to restrict the
maximum degree of corroboration in any case to the value 1. Objections to this
unnecessary restriction led him to drop it in [Po57], and we do likewise. Further,
we may drop the restriction of degrees of corroboration to real number values
altogether, and use any partially ordered set S with a minimum element −1 such
that S−{−1} has a minimum element 0, and decidable (recursive) relations ≥,≤
and ./.

2.3 Our Definition of Degree of Corroboration

Let H range over hypotheses from our space L, and t over texts and finite initial
segments of texts. We assume that c(H, t) ranges over some partially ordered set
S with minimum element −1 and an element 0 minimal in S − {−1}. We write
c(H) for the maximum degree of corroboration possible for H . Falsifiers(H) is the
set of potential data items in Σ∗ which refute H . If Falsifiers(Hi) ⊆ Falsifiers(Hj)
then we will write Hj ⊆ Hi to capture the natural Popperian sense that Hj is
more easily refuted (potentially more strongly corroborable) than Hi.

Our model of learning requires that c(H, t) and comparison (≤) between
degrees of corroboration are both recursive, but not necessarily that c(H) is
recursive or that c(Hi) ≤ c(Hj) is decidable.

First we formally define our corroboration functions.

Definition 1. A corroboration function c : L × (Σ∗) → S over L maps hy-
potheses and texts to some set S with minimum element −1 and an element 0
minimal in S−{−1} such that S has a decidable partial ordering ≤, and satisfies
the following desiderata for all hypotheses H, H ′ ∈ L and all texts t, t′ ∈ (Σ∗):

1. c(H, t) = −1 iff there exists data in t which refutes H.
2. c(H, t) ≥ 0 iff t does not refute H
3. c(H, t) = 0 if t is empty or contains no data capable of refutation of any

hypothesis in our space.
4. c(H) = max{Limn→∞c(H, tn) | t is a text for H} is uniquely defined
5. c(H) ≥ c(H ′) if H ⊆ H ′

6. If t is a finite initial subsequence of t′ then either c(H, t) ≤ c(H, t′) or
c(H, t′) = −1

Note that item 5 in the definition implies that if H = H ′ then c(H) = c(H ′).
Our definition of degree of corroboration is simpler than Popper’s because

we have dropped all reference to probability and this gives us greater freedom
when actually assigning values to our functions c(H) and c(H, t). We will see in
the next section that certain inductive learning identification criteria will require
corroboration functions with additional properties to those specified above.

3 Learning with Corroboration

In this section we cover the remaining assumptions and definitions necessary to
define a theory of inductive learning with corroboration.



Inductive Learning with Corroboration 149

3.1 Hypotheses and Hypothesis Spaces

All forms of inductive inference suffer from the problem that the learner is re-
quired to choose one from among (typically) infinitely many hypotheses at each
stage. Clearly no learner can consider all these hypotheses before it outputs a
hypothesis or requests further data, so in effect there are only a limited number
of hypotheses in play at any given time. Most authors gloss over this question
as a matter of detail, or deal with it implicitly, but as we intend to propose a
new unifying model for machine inductive inference, we feel constrained to deal
with it explicitly.

We therefore assume that along with our hypothesis space H1, H2, ... we have
a recursive, monotonically increasing function ip : IN → IN with Limn→∞ip(n) =
∞ which gives the number of hypotheses in play at stage n of any learning
procedure with this hypothesis space. This leads to one slight concession with
respect to our desiderata: hypotheses Hj which are not yet in play at stage n need
not be considered to be either refuted or corroborated by tn, the examples seen
to that stage - we therefore arbitrarily assign c(Hj , tn) = 0 for such n, j. This
cannot cause confusion as these hypotheses are (by definition) not considered by
any algorithm; it serves only to simplify some algorithms defined in the proofs.

3.2 Corroboration Functions and Canonical Learners with
Corroboration

In the following section (Section 4) we examine the use of corroboration in in-
ductive learning and prove that many of the most natural inductive learning
identification types can be characterised by an existence condition for a suitable
corroboration function over the hypothesis space. Our intention is that this cor-
roboration function (which is invariably recursive so no undecidability results
are implied, nor is any additional computing power gained illicitly) will be used
as an oracle by a canonical learner for the appropriate type; this demonstrates
that there is effectively a single best learning strategy for each identification
type, and only the details of the corroboration function change depending on
the hypothesis space.

The behaviour of a learner with corroboration is defined as follows.

Definition 2. Turing machine M, with oracle c(H, t) is called a learner with
corroboration if c(H, t) is a recursive corroboration function and on input t with
hypotheses H1, .., Hp in play, M outputs some i ≤ p such that c(Hi, t) > 0
is maximal among the c(Hj , t), j = 1, ..., p, if defined, and requests more input
otherwise.

If additionally M learns within identification type ∗, we call M a ∗-learner
with corroboration.

Clearly such a learner is consistent with Popper’s dictum that we should
prefer the most strongly corroborated hypothesis among competing hypotheses.



150 Phil Watson

4 Characterising TXT-Identification Types in Learning
with Corroboration

In this section we are concerned only with learning from text, and often abbrevi-
ate the names of identification types by dropping the -TXT. Our learners always
work with respect to class-preserving hypothesis spaces.

Lack of space precludes the inclusion of most proofs. The proofs of the The-
orems follow the form of the proof of Theorem 1 with additional details for the
more complex learning types. The Corollaries concerning canonical learners rely
on the observation that in each case the learner defined in the ⇐ part of the
proof of the preceding Theorem depends on C only via c. All proofs may be
found in [Wa99].

4.1 LIM- and s-LIM-Learning

Definition 3. A corroboration function c over L is called limiting iff

(∀H ∈ L)(∀t ∈ Txt(H))(∃i)[Hi = H∧
(∃n)(∀m ≥ n)(∀j)[c(Hi, tm) > c(Hj , tm) ∨ [c(Hi, tm) 6< c(Hj , tm) ∧ i ≤ j]]]

Theorem 1. C ∈ LIM-TXT iff there exists L ∈ Index(C) such that there is a
recursive limiting corroboration function c over L.

Proof. (⇐)
We define a learner M which uses such a recursive limiting c to LIM-learn

any H ∈ L.
Let t be a text. Let the hypotheses in play at stage m be H1, ..., Hp. At the

(m + 1)th stage (i.e. on input tm) M behaves as follows.

M(tm)
{

= min(Bestm) if defined
requests more input otherwise

where

Bestm = {i | i ≤ p ∧ c(Hi, tm) > 0 ∧ (∀j ≤ p)c(Hi, tm) 6< c(Hj , tm)}

M is recursive: M recursively computes c(Hi, tm) for i = 1, ..., p and forms
the finite set of those i for which c(Hi, tm) is maximal under the recursive relation
≤. M now outputs the minimum such i, unless the set is empty, in which case
it requests more input.

On presentation of a text t for H ,M converges to some j such that Hj = H :
fix t, an arbitrary text for H . Let n be that stage defined in Definition 3. Now
there is some j with Hj = H such that at stage n and all subsequent stages m
M will output j because j = min(Bestm) by assumption that c is a limiting
corroboration function and the definition of M.



Inductive Learning with Corroboration 151

(⇒)
SupposeM is an inductive learning machine which LIM-learns C w.r.t. L. We

define a recursive c which produces values (for degree of corroboration) ranging
over IN ∪ {−1}. Let

c(Hj , tm) =



−1 if tm refutes Hj

m + 1 if M(tm) = j
m otherwise

c is recursive: it is decidable for any j whether tm refutes Hj , and by as-
sumption M is an IIM.

c is a limiting corroboration function over L: it is easily checked that c
satisfies the conditions of Definition 1 and so c is a corroboration function.

Let t be any text for H ∈ C. By assumption there exists an index j such
that Hj = H and a stage n after which M always outputs j. Therefore at all
stages m ≥ n we have c(Hj , tm) > c(Hk, tm) for all k 6= j, which satisfies the
requirements of Definition 3.

Corollary 1. If C ∈ LIM-TXT then there exists L ∈ Index(C) such that there
is a recursive limiting corroboration function c over L with the property that

(∀H∈L)(∀t∈Txt(H))(∃i)[Hi = H∧(∃n)(∀m ≥ n)(∀j 6= i)c(Hi, tm)>c(Hj , tm)]

Corollary 2. There is a canonical LIM-learner with corroboration which will
learn any C ∈ LIM-TXT w.r.t. any L ∈ Index(C) using any recursive limiting
corroboration function c over L as an oracle.

When considering the philosophical background for our model of learning, it
seems clear that the order in which examples are presented to the learner, or the
number of times the same example is repeated, has no significance. This leads
us to the following definition.

Definition 4. A corroboration function c over L = H1, H2, ... is called natural
if on all texts t, u, for all m, n we have t+m = u+

n ⇒ (∀i)c(Hi, tm) = c(Hi, un).

It might be objected that corroboration functions lacking the naturalness
property should be disallowed. However, they are no more unnatural than non-
set-driven learners (it is known [LZ94] that s-LIM-TXT ⊂ LIM-TXT).

Theorem 2. C ∈ s-LIM-TXT iff there exists L ∈ Index(C) such that there
exists a recursive natural limiting corroboration function c over L.

Corollary 3. There is a canonical s-LIM-learner with corroboration which will
learn any C ∈ s-LIM-TXT w.r.t. any L ∈ Index(C) using any recursive natural
limiting corroboration function c over L as an oracle.



152 Phil Watson

4.2 Conservative and Strong Monotonic Learning

Definition 5. A corroboration function c : L × (Σ∗) → S over L is called
attaining if

(∀H ∈ L)(∀t ∈ Txt(H))[(∃j)(∃n)[Hj = H ∧ c(Hj , tn) = c(Hj)]∧
(∀i)(∀m)[c(Hi, tm) = c(Hi) ⇒

(∀H ′ ∈ L)[[tm refutes H ′ ∨Hi 6⊃ H ′] ∧ c(H ′, tm) 6> c(Hi, tm)]]

c is a recursive attaining corroboration function if both c and cf :L×S→{0, 1}
are total and recursive, where:

cf (Hi, s) =
{

1 if s = c(Hi)
0 otherwise

Note that c(H, ∅) = 0 implies (∀i)c(Hi) ≥ 0.

Theorem 3. C ∈ CONSERV-TXT iff there exists L ∈ Index(C) such that there
exists a recursive attaining corroboration function c over L.

Corollary 4. There is a canonical CONSERV-learner with corroboration which
will learn any C ∈ CONSERV-TXT w.r.t. any L ∈ Index(C) using as an oracle
any recursive attaining corroboration function c over L.

Definition 6. A corroboration function c(H, t) over L = H1, H2, ... is called
strict if

(∀Hi ∈ L)(∀t ∈ Txt(Hi))(∀n)[c(Hi, tn) = c(Hi) ⇒ (∀Hj ⊇ t+n )Hj ⊇ Hi]

c is called a recursive strict corroboration function if both c and cf are total
and recursive, where cf is as defined in Definition 5.

Theorem 4. C ∈ SMON-TXT iff there exists L ∈ Index(C) such that there
exists a recursive strict attaining corroboration function c over L.

Corollary 5. There exists a canonical SMON-learner with corroboration which
SMON-learns any C ∈ SMON-TXT w.r.t. any L ∈ Index(C) using any recursive
strict attaining corroboration function over L as an oracle.

Corollary 6. There is a canonical (CONSERV∪SMON)-learner with corrob-
oration which will CONSERV-learn any C ∈ CONSERV-TXT w.r.t. any L ∈
Index(C) using any recursive attaining corroboration function c over L as an
oracle and will SMON-learn any C ∈ SMON-TXT w.r.t. any L ∈ Index(C)
using any recursive strict attaining corroboration function c for L as an oracle.



Inductive Learning with Corroboration 153

4.3 FIN- and Refuting Learning

Definition 7. Let L = H1, H2, ... be a hypothesis space. Then f : (Σ∗)×IN→
{0, 1} is called a sufficiency function over L if

(∀t)(∀m)(∀n)[f(tm, n) = 1
⇒ [(∀j)tm refutes Hj∨
(∃i ≤ n)[t+m ⊆ Hi ∧ (∀k)[Hk = Hi ∨ tm refutes Hk]]]]

and (∀t)(∀j)(∀k ≥ j)(∀n)(∀m ≥ n)[f(tj , n) = 1 ⇒ f(tk, m) = 1]

Definition 8. Let f be a sufficiency function over L.
f is called an inner sufficiency function over L if it additionally holds that

for every text t ∈ Txts(L), (∃m, n)f(tm, n) = 1.
If instead it holds that for every text t 6∈ Txts(L), (∃m, n)f(tm, n) = 1, then f
is called an outer sufficiency function over L.

Naturally the existence of a recursive (inner or outer) sufficiency function over
L is a very strong condition and allows particularly strong forms of learning.

Theorem 5. C ∈ FIN-TXT iff there exists L ∈ Index(C) such that there exists
a recursive inner sufficiency function over L.

Corollary 7. There exists a canonical FIN-learner which FIN-learns any C ∈
FIN-TXT w.r.t. any L ∈ Index(C) using any recursive inner sufficiency function
over L as an oracle.

We may use a sufficiency function to define a particularly strong form of
corroboration function.

Definition 9. c(H, t) is called a sufficient corroboration function over L if there
exists an inner sufficiency function f(t, n) over L such that:

(∀t)(∀i)(∀m)[[c(Hi, tm) > 0 ∧ c(Hi, tm) = c(Hi)] ⇒ f(tm, i) = 1]

and

(∀t)(∀m)(∀n)[f(tm, n) = 1 ⇒ (∃i ≤ n)c(Hi, tm) = c(Hi)]

c is called a recursive sufficient corroboration function if both c and cf are
total and recursive, where cf is as defined in Definition 5.

Theorem 6. C ∈ FIN-TXT iff there exists L ∈ Index(C) such that there exists
a recursive sufficient corroboration function c over L.

Corollary 8. There exists a canonical FIN-learner with corroboration which
FIN-learns any C ∈ FIN-TXT w.r.t. any L ∈ Index(C) using any recursive
sufficient corroboration function over L as an oracle.



154 Phil Watson

Theorem 7. C ∈ JREF-TXT iff there exists L ∈ Index(C) such that there
exists a recursive outer sufficiency function f over L and a recursive limiting
corroboration function c over L.

Corollary 9. There exists a canonical JREF-learner with corroboration which
JREF-learns any C ∈ JREF-TXT w.r.t. any L ∈ Index(C) using any recursive
outer sufficiency function and any recursive limiting corroboration function over
L as oracles.

5 Example

The corroboration functions constructed in the ⇒ proofs in Section 4 were sim-
plistic. However in practical use, the existence or non-existence of appropriate
corroboration functions may be suggested naturally by the space of hypotheses
in use. We give an example of the use of corroboration functions to prove the
learnability under certain identification criteria of a simple class.

Our example languages will be sets of points in the rational plane Q2, so
Σ = {(a, b) | a, b ∈ Q}.
Example 1. Let C be the set of all closed circles of finite radius. Let <, > be
a fixed recursive bijection between Q2 and IN+ and <<, >> a fixed recursive
bijection between Q2 and Q. A suitable hypothesis space L = H1, H2, ... is given
by

H<a,b> = {(p, q) | a =<< x, y >> ∧ (p− x)2+(q − y)2 ≤ b2}
It is easily seen that L is a class-preserving recursive indexing of C.
Consider the following corroboration function c : L × (Σ∗) → Q ∪ {∞},

which is based on the naturalistic idea that the further away a point is from a,
the more severe a test it is of hypothesis H<a,b>. For circles of non-zero radius
b we also include a scaling multiplier of 1/b2 into the corroboration function, so
that smaller circles are potentially more highly corroborable than large ones.

c(H<a,b>, tm)=




0 if t+M = ∅
−1 if tm refutes H<a,b>,

i.e. [a =<< x, y >>
∧(∃(c, d) ∈ t+m)[(c− x)2 + (d− y)2 > b2]]

∞ if b = 0 ∧ a =<< x, y >> ∧ t+m = {(x, y)}
1/b2∗max(a, b, tm) otherwise

where

max(a, b, tm) = max{((c− x)2 + (d− y)2)/b2 | a =<< x, y >> ∧ (c, d)∈t+m}
With a little checking we see that c is indeed a corroboration function under

Definition 1, and is recursive and natural. c is limiting because on any text t for
Hi we have a stage m at which tm contains two diametrically opposed points on
the circumference of the circle defined by Hi. Then if we let i =< a, b >:



Inductive Learning with Corroboration 155

– (∀j)[[j =< c, d > ∧ d2 < b2] → [tm refutes Hj ∧ c(Hj , tm) = −1]]
– (∀j)[[j =< c, d > ∧ d2 > b2] → (∀n ≥ m)c(Hi, tn) = 1/b2 > 1/d2 ≥

c(Hj , tn)
– (∀j)[[j =< c, d > ∧ d2 = b2] → [c = a ∨ tm refutes Hj ]]

These are the only cases, so at all stages n ≥ m we have that H<a,b> is the
most strongly corroborated hypothesis (except for H<a,−b>, which is equally
strongly corroborated and describes the same circle).

c is also attaining because

– if b = 0 then (∀a)c(H<a,0>) = ∞
– if b 6= 0 then (∀a)c(H<a,b>) = 1/b2

and for example c(H<a,b>, t0) = c(H<a,b>) where t = (x + b, y), ... is a text for
H<a,b> and a =<< x, y >>.

The above suffices to prove that C ∈ s-CONSERV-TXT, by Theorem 3.
Finally we can see that c is not strict because for example (let b > 0)

t = (x + b, y), ... results in c(H<<<x,y>>,b>, t0) = 1/b2 = c(H<<<x,y>>,b>) al-
though many hypotheses Hj with H<<<x,y>>,b> 6⊆ Hj remain unrefuted. Never-
theless it is possible to find a recursive, strict, attaining, limiting, set-driven cor-
roboration function over L by requiring that two diametrically opposed points on
the circumference of Hi must appear in the text before we set c(Hi, tm) = c(Hi).
This proves that C ∈ s-SMON-TXT. The details are left as an exercise for the
reader.

6 Conclusions and Future Work

We have proposed a unifying model for machine inductive inference based on the
philosophical work of K.R. Popper, and obtained characterisations of many of the
standard identification types in learning indexed families of recursive languages
from text. In our model canonical learners use recursive oracles which compute
a version of Popper’s degree of corroboration. These learners then follow the
natural strategy of preferring the most strongly (or at least a maximally strongly)
corroborated hypothesis at any given time. Membership of a class of concepts
within a particular identification criterion is then equivalent to the existence
of a recursive corroboration function with certain properties depending on the
identification type.

We intend to extend this unifying model of learning to include language
learning from informant and related problems such as learning of partial recur-
sive functions. An extension of our approach to learning from noisy data would
be particularly interesting; in this case it is no longer certain that a single ad-
verse data item refutes a hypothesis and we would be obliged to allow negative
corroboration values other than −1, as in Popper’s original model. Given the
crucial role played by the hypothesis space in our model, it would also be in-
teresting to extend this approach to cover exact and class comprising learning.
Another interesting direction is to drop the requirement that our corroboration
functions are recursive, thus obtaining a structure of ‘degrees of unlearnability’
analogous to the degrees of unsolvability of classical recursion theory.



156 Phil Watson

Acknowledgements

The author wishes to thank Prof. Dr. Steffen Lange of Universität Leipzig for
his comments on an earlier draft, and also the anonymous referees.

References

[An80] D. Angluin, Inductive inference of formal languages from positive data,
Information and Control 45, 117-135, 1980.
[AS83] D. Angluin, C.H. Smith, Inductive inference: theory and methods, Com-
puting Surveys 15, 237-269, 1983.
[Gi93] D. Gillies, Philosophy of Science in the Twentieth Century, Blackwell,
1993.
[Gi96] D. Gillies, Artificial Intelligence and Scientific Method, Oxford University
Press, 1996.
[Go67] E.M. Gold, Language identification in the limit, Information and Control
10, 447-474, 1967.
[Ja91] K.P. Jantke, Monotonic and non-monotonic inductive inference, New Gen-
eration Computing 8, 349-460.
[LW94] S. Lange, P. Watson, Machine discovery in the presence of incomplete or
ambiguous data, in S. Arikawa, K.P. Jantke (Eds.) Algorithmic Learning The-
ory, Proc. of the Fifth International Workshop on Algorithmic Learning Theory,
Reinhardsbrunn, Germany, Springer LNAI 872, 438-452, 1994.
[LZ94] S. Lange, T. Zeugmann, Set-driven and rearrangement-independent learn-
ing of recursive languages, in S. Arikawa, K.P. Jantke (Eds.) Algorithmic Learn-
ing Theory, Proc. of the Fifth International Workshop on Algorithmic Learning
Theory, Reinhardsbrunn, Germany, Springer LNAI 872, 453-468, 1994.
[MA93] Y. Mukouchi, S. Arikawa, Inductive inference machines that can refute
hypothesis spaces, in K.P. Jantke, S. Kobayashi, E. Tomita, T. Yokomori (Eds.),
Algorithmic Learning Theory, Proc. of the Fourth International Workshop on
Algorithmic Learning Theory, Tokyo, Japan, Springer LNAI 744, 123-136, 1993.
[Po34] K.R. Popper, The Logic of Scientific Discovery, 1997 Routledge reprint
of the 1959 Hutchinson translation of the German original.
[Po54] K.R. Popper, Degree of confirmation, British Journal for the Philosophy
of Science 5, 143ff, 334, 359, 1954.
[Po57] K.R. Popper, A second note on degree of confirmation, British Journal
for the Philosophy of Science 7, 350ff, 1957.
[Po63] K.R. Popper, Conjectures and Refutations, Routledge, 1963 (Fifth Edi-
tion, 1989).
[Wa99] P. Watson, Inductive Learning with Corroboration, Technical Report no.
6-99, Department of Computer Science, University of Kent at Canterbury, May
1999. Obtainable from http://www.cs.ukc.ac.uk/pubs/1999/782.
[WC80] K. Wexler, P. Culicover, Formal Principles of Language Acquisition,
MIT Press, Cambridge, MA, 1980.



Flattening and Implication

Kouichi Hirata?

Department of Artificial Intelligence,
Kyushu Institute of Technology,

Kawazu 680-4, Iizuka 820-8502, Japan
hirata@ai.kyutech.ac.jp

Abstract. Flattening is a method to make a definite clause function-
free. For a definite clause C, flattening replaces every occurrence of a term
f(t1, · · · , tn) in C with a new variable v and adds an atom pf (t1, · · · , tn, v)
with the associated predicate symbol pf with f to the body of C. Here,
we denote the resulting function-free definite clause from C by flat(C).
In this paper, we discuss the relationship between flattening and implica-
tion. For a definite program Π and a definite clause D, it is known that
if flat(Π) |= flat(D) then Π |= D, where flat(Π) is the set of flat(C)
for each C ∈ Π . First, we show that the converse of this statement does
not hold even if Π = {C}, that is, there exist definite clauses C and
D such that C |= D but flat(C) 6|= flat(D). Furthermore, we investi-
gate the conditions of C and D satisfying that C |= D if and only if
flat(C) |= flat(D). Then, we show that, if (1) C is not self-resolving and
D is not tautological, (2) D is not ambivalent, or (3) C is singly recursive,
then the statement holds.

1 Introduction

The purpose of Inductive Logic Programming is to find a hypothesis that ex-
plains a given sample. It is a normal setting of Inductive Logic Programming
that a hypothesis is a definite clause or a definite program and a sample is the
set of (labeled) ground definite clauses. In this setting, the word “explain” is
interpreted as either “subsume (denoted by �)” or “imply (denoted by |=)”.
In the latter case, note that the problem of whether or not a definite clause C
implies another definite clause, called an implication problem, is undecidable in
general [8]. On the other hand, if C is function-free, then it is obvious that the
implication problem is decidable.

Flattening, which has been first introduced in the context of Inductive Logic
Programming by Rouveirol [14] (though similar ideas had already been used in
other fields), is a method to make a definite clause function-free. For a defi-
nite clause C, flattening replaces every occurrence of a term f(t1, · · · , tn) in C
with a new variable v and adds an atom pf (t1, · · · , tn, v) with the associated
predicate symbol pf with f to the body of C. Additionally, the unit clause

? This work is partially supported by Japan Society for the Promotion of Science,
Grants-in-Aid for Encouragement of Young Scientists 11780284.

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 157–168, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



158 Kouichi Hirata

pf (x1, · · · , xn, f(x1, · · · , xn))← is introduced to the background theory for each
function symbol f in C. We denote the resulting function-free definite clause by
flat(C) and the set of unit clauses by defs(C).

Rouveirol [14] has investigated the several properties of flattening. Muggle-
ton [9,11] has dealt with flattening in order to characterize his inverting im-
plication. De Raedt and Džeroski [2] have analyzed their PAC-learnability of
jk-clausal theories by transforming possibly infinite Herbrand models into ap-
proximately finite models according to flattening. Recently, Nienhuys-Cheng and
de Wolf [13] have studied the properties of flattening with sophisticated discus-
sion.

Rouveirol [14] (and Nienhuys-Cheng and de Wolf [13]) has shown that flat-
tening “preserves” subsumption: Let C and D be definite clauses. Then, it holds
that:

C � D if and only if flat(C) � flat(D).

Also Rouveirol [14] (and Nienhuys-Cheng and de Wolf [13]) has claimed that
flattening “preserves” implication: Let Π be a definite program {C1, · · · , Cn}
and D be a definite clause. We denote {flat(C1), · · · ,flat(Cn)} and defs(C1) ∪
· · · ∪ defs(Cn) by flat(Π) and defs(Π), respectively. Then, Rouveirol’s Theorem
is described as follows:

Π |= D if and only if flat(Π) ∪ defs(Π) |= flat(D).

As the stronger relationship between flattening and implication than Rou-
veirol’s Theorem, Nienhuys-Cheng and de Wolf [13] have shown the following
theorem:

If flat(Π) |= flat(D), then Π |= D.

If the converse of this theorem holds, then the several learning techniques for
propositional logic such as [1,3] are directly applied to Inductive Logic Program-
ming. On the other hand, if the converse holds, then the implication problem
Π |= D is decidable, because flat(Π) and flat(D) are function-free. However, it
contradicts the undecidability of the implication problem [8,15] or the satisfia-
bility problem [5]. In this paper, we show that the converse does not hold even
if Π = {C}, that is, there exist definite clauses C and D such that:

C |= D but flat(C) 6|= flat(D).

Furthermore, we investigate the conditions of C and D satisfying that C |= D
if and only if flat(C) |= flat(D). Gottlob [4] has introduced the concepts of self-
resolving and ambivalent clauses. A definite clause C is self-resolving if C resolves
with a copy of C, and ambivalent if there exists an atom in the body of C with
the predicate symbol same as one of the head of C. As the corollary of Gottlob’s
results [4], we show that, if C is not self-resolving and D is not tautological, or
D is not ambivalent, then the statement holds. Furthermore, note that the C in
the counterexample stated above is given as a doubly recursive definite clause,
that is, the body of C contains two atoms that are unifiable with the head of a



Flattening and Implication 159

variant of C. Then, we show that, if C is singly recursive, that is, the body of
C contains at most one atom that is unifiable with the head of a variant of C,
then the statement also holds.

2 Preliminaries

A literal is an atom or the negation of an atom. A positive literal is an atom and
a negative literal is the negation of an atom. A clause is a finite set of literals.
A unit clause is a clause containing one positive literal. A definite clause is a
clause containing one positive literal. A set of definite clauses are called a definite
program. Conventionally, a definite clause is represented as A ← A1, · · · , Am,
where A and Ai (1 ≤ i ≤ m) are atoms.

Let C be a definite clause A ← A1, · · · , Am. Then, the atom A is called a
head of C and denoted by head(C), and the sequence A1, · · · , Am of atoms is
called a body of C and denoted by body(C).

Let C and D be definite clauses. We say that C subsumes D, denoted by
C � D, if there exists a substitution θ such that Cθ ⊆ D, i.e., every literal in Cθ
also appears in D. Also we say that C implies D or D is a logical consequence
of C, denoted by C |= D, if every model of C is also a model of D. C is logically
equivalent to D, denoted by C ≡ D, if C |= D and D |= C. For definite programs
Π and Σ, Π � D, Π � Σ, Π |= D and Π |= Σ are defined similarly.

Let C and D be two clauses {L1, · · · , Li, · · · , Ll} and {M1, · · · , Mj, · · · , Mm}
which have no variables in common. If the substitution θ is an mgu for the set
{Li,¬Mj}, then the clause ((C − {Li}) ∪ (D − {¬Mj}))θ is called a (binary)
resolvent of C and D. All of the resolvents of C and D are denoted by Res(C, D).

Let Π be a definite program and C be a definite clause. An SLD-derivation
of C from Π is a sequence (R1, C0, θ1), . . . , (Rk, Ck−1, θk) such that R0 ∈ Π ,
Rk = C, Ci−1 is a variant of an element of Π , Ri ∈ Res(Ri−1, Ci−1), and θi

is an mgu of the selected literals of Ri−1 and Ci−1 for each 1 ≤ i ≤ k. If an
SLD-derivation of C from Π exists, we write Π ` C. In particular, {C} ` D is
denoted by C ` D.

Theorem 1 ((Subsumption Theorem [13])). Let Π be a definite program
and D be a definite clause. Then, Π |= D if and only if there exists a definite
clause E such that Π ` E and E � D.

For a definite clause C, the lth self-resolving closure of C, denoted by S l(C),
is defined inductively as follows:

1. S0(C) = {C},
2. S l(C) = Sl−1(C) ∪ {R ∈ Res(C, D) | D ∈ Sl−1(C)} (l ≥ 1).

Here, the logically equivalent clauses are regarded as identical. Note that C ` D
if and only if D ∈ S l(C) for some l ≥ 0. Then:

Corollary 2 ((Implication between Definite Clauses [12])). Let C and
D be definite clauses. Then, C |= D if and only if there exists a definite clause
E such that E ∈ Sl(C) and E � D for some l ≥ 0.



160 Kouichi Hirata

For each n-ary function symbol f , the associated (n+1)-ary predicate symbol
pf , called a flattened predicate symbol (on f), is introduced uniquely in the
process of flattening. Also we call a definite clause C or a definite program Π
regular if C or Π contains no flattened predicate symbols.

Let C be a definite clause, t be a term appearing in C and v be a variable
not appearing in C. Then, C|vt denotes the definite clause obtained from C by
replacing all occurrences of t in C with v.

There exist several variants (but equivalent) of the definition of flattening:

1. Do we introduce an equality theory [9,14] or not [2,13]?
2. Do we transform a constant symbol to an atom with an unary predicate

symbol [2,14] or not [13]?

As the definition of flattening, we adopt the definition similar as De Raedt and
Džeroski [2] that does not introduce an equality theory and does not transform
a constant symbol.

Let C be a definite clause. Then, the flattened clause flat(C) of C is defined
as follows:

flat(C) =
{

C if C is function-free,
flat(C′) if t = f(t1, · · · , tn)(n ≥ 1) appears in C,

where C′ = C|vt ∪ {¬pf (t1, · · · , tn, v)} and each ti (1 ≤ i ≤ n) is a vari-
able or a constant. Also defs(C) is the set {pf (x1, · · · , xn, f(x1, · · · , xn))← |
f(t1, · · · , tn) appears in C} of unit clauses. Furthermore, the number of calls of
flat that is necessary to obtain the function-free clause flat(C) of C is called a
rank of C and denoted by rank(C).

For a definite program Π = {C1, · · · , Cn}, we define flat(Π) and defs(Π) as
follows:

flat(Π) = {flat(C1), · · · ,flat(Cn)},
defs(Π) = defs(C1) ∪ · · · ∪ defs(Cn).

3 Flattening and Implication

As the relationship between flattening and subsumption, Rouveirol [14] (and
Nienhuys-Cheng and de Wolf [13]) has shown the following theorem:

Theorem 3 ((Rouveirol [14], Nienhuys-Cheng & de Wolf [13])). Let C
and D be regular definite clauses. Then, C � D if and only if flat(C) � flat(D).

Also Rouveirol [14] (and Nienhuys-Cheng and de Wolf [13]) has proposed the
following relationship between flattening and implication. Let Π be a regular
definite program and D be a regular definite clause. Then, Rouveirol’s Theorem
is described as follows:

Theorem 4 ((Rouveirol [14], Nienhuys-Cheng & de Wolf [13])). Let Π
be a regular definite program and D be a regular definite clause. Then, Π |= D
if and only if flat(Π) ∪ defs(Π) |= flat(D).

In Appendix, we discuss the proof of Rouveirol’s Theorem.



Flattening and Implication 161

Furthermore, Nienhuys-Cheng and de Wolf [13] have shown the following
theorem, which is a stronger relationship between flattening and implication
than Rouveirol’s Theorem:

Theorem 5 ((Nienhuys-Cheng & de Wolf [13])). Let Π be a regular def-
inite program and D be a regular definite clause. If flat(Π) |= flat(D), then
Π |= D.

On the other hand, the converse of Theorem 5 does not hold even if Π = {C}:
Theorem 6. There exist regular definite clauses C and D such that

C |= D but flat(C) 6|= flat(D).

Proof. Let C and D be the following regular definite clauses:

C = p(f(x1), f(x2))← p(x1, x3), p(x3, x2),
D = p(f(f(x1)), f(f(x2)))← p(x1, x3), p(x3, x4), p(x4, x5), p(x5, x2).

By resolving C to a copy of C itself twice, it holds that C ` D as Figure 1.
Hence, it holds that C |= D.

C = p(f(x1),f(x2))←p(x1,x3),p(x3,x2)

{f(y1)/x1,f(y2)/x3}

{z1/y2,f(z2)/x2}

C = p(f(y1),f(y2))←p(y1,y3),p(y3,y2)

p(f(f(y1)),f(x2))←p(f(y2),x2),p(y1,y3),p(y3,y2)

C = p(f(z1),f(z2))←p(z1,z3),p(z3,z2)

p(f(f(y1)),f(f(z2)))←p(y1,y3),p(y3,z1),p(z1,z3),p(z3,z2)

= p(f(f(x1)),f(f(x2)))←p(x1,x3),p(x3,x4),p(x4,x5),p(x5,x2)

Fig. 1. The SLD-derivation of D from C

On the other hand, flat(C) and flat(D) are constructed as follows:

flat(C) = p(x1, x2)← p(x3, x4), p(x4, x5), pf (x3, x1), pf (x5, x2),
flat(D) = p(x1, x2)← p(x3, x4), p(x4, x5), p(x5, x6), p(x6, x7),

pf(x3, x8), pf (x8, x1), pf (x7, x9), pf (x9, x2).

The first and second self-resolving closures of flat(C) are constructed as Figure 2.
Then, there exists no definite clause E ∈ S2(flat(C)) such that E � flat(D).
By paying our attention to the number of atoms with the predicate pf and its
relation, it holds that flat(C) |= flat(D) if and only if there exists a definite clause



162 Kouichi Hirata

S1(flat(C)) = {flat(C)}

∪




p(x1, x2)←p(x3, x4), p(x5, x6), p(x6, x7),
pf (x5, x8), pf (x8, x1), pf (x4, x2), pf (x7, x3)

p(x1, x2)←p(x3, x4), p(x5, x6), p(x6, x7),
pf (x3, x1), pf (x7, x8), pf (x8, x2), pf (x5, x4)


 ,

S2(flat(C)) = S1(flat(C))

∪




p(x1, x2)←p(x3, x4), p(x4, x5), p(x6, x7), p(x7, x8),
pf (x3, x9), pf (x9, x1), pf (x8, x10), pf (x10, x2),
pf (x5, x11), pf (x6, x11)

p(x1, x2)←p(x3, x4), p(x5, x6), p(x7, x8), p(x8, x9),
pf (x7, x10), pf (x10, x11), pf (x11, x1), pf (x4, x2),
pf (x6, x3), pf (x9, x5)

p(x1, x2)←p(x3, x4), p(x5, x6), p(x7, x8), p(x8, x9),
pf (x5, x10), pf (x10, x1), pf (x4, x2), pf (x7, x6),
pf (x9, x11), pf (x11, x3)

p(x1, x2)←p(x3, x4), p(x5, x6), p(x7, x8), p(x8, x9),
pf (x3, x1), pf (x6, x10), pf (x10, x2), pf (x7, x11),
pf (x11, x4), pf (x9, x5)

p(x1, x2)←p(x3, x4), p(x5, x6), p(x7, x8), p(x8, x9),
pf (x3, x1), pf (x9, x10), pf (x10, x11), pf (x11, x2),
pf (x5, x4), pf (x7, x6)




.

Fig. 2. The first and second self-resolving closures of flat(C)

E ∈ S2(flat(C)) such that E � flat(D) by Corollary 2. Hence, we can conclude
that there exists no definite clause E ∈ S2(flat(C)) such that E � flat(D), so it
holds that flat(C) 6|= flat(D). ut

For the definite clauses C and D given in Theorem 6, it holds that {flat(C)} ∪
defs(C) ` flat(D) as Figure 3, so it holds that {flat(C)} ∪ defs(C) |= flat(D).

4 Improvement

In this section, we investigate the conditions of definite clauses C and D satis-
fying that C |= D if and only if flat(C) |= flat(D).

First, we give the following lemma by Gottlob [4]. A definite clause C is
self-resolving if C resolves with a copy of C. A definite clause C is ambivalent
if there exists an atom in body(C) with the predicate symbol same as one of
head(C). Then:

Lemma 7 ((Gottlob [4])). Let C and D be definite clauses.

1. Suppose that C is not self-resolving and D is not tautological. Then, C |= D
if and only if C � D.

2. Suppose that D is not ambivalent. Then, C |= D if and only if C � D.



Flattening and Implication 163

flat(C) = p(x1,x2)←p(x3,x4),p(x4,x5),pf(x3,x1),pf(x5,x2)

flat(C) = p(y1,y2)←p(y3,y4),p(y4,y5),pf(y3,y1),pf(y5,y2)

p(x1,x2)←p(y2,x5),p(y3,y4),p(y4,y5),pf(y1,x1),pf(x5,x2),pf(y3,y1),pf(y5,y2)

{y1/x3,y2/x4}

{z1/y2,z2/x5}

p(x1,x2)←p(y3,y4),p(y4,y5),p(z3,z4),p(z4,z5),pf(y1,x1),pf(z2,x2),pf(y3,y1),pf(y5,z1),pf(z3,z1),pf(z5,z2)

pf(x,f(x))←

pf(x,f(x))←

{f(z3)/z1}

{y5/z3}

flat(C) = p(z1,z2)←p(z3,z4),p(z4,z5),pf(z3,z1),pf(z5,z2)

p(x1,x2)←p(y3,y4),p(y4,y5),p(z3,z4),p(z4,z5),pf(y1,x1),pf(z2,x2),pf(y3,y1),pf(y5,f(z3)),pf(z5,z2)

p(x1,x2)←p(y3,y4),p(y4,y5),p(y5,z4),p(z4,z5),pf(y1,x1),pf(z2,x2),pf(y3,y1),pf(z5,z2)

= p(x1,x2)←p(x3,x4),p(x4,x5),p(x5,x6),p(x6,x7),pf(x8,x1),pf(x9,x2),pf(x3,x8),pf(x7,x9)

= flat(D)

Fig. 3. The SLD-derivation of flat(D) from {flat(C)} ∪ defs(C) in Theorem 6

By incorporating Lemma 7 with the previous theorems, we obtain the following
corollary:

Corollary 8. Let C and D be regular definite clauses.

1. Suppose that C is not self-resolving and D is not tautological. Then, C |= D
if and only if flat(C) |= flat(D).

2. Suppose that D is not ambivalent. Then, C |= D if and only if flat(C) |=
flat(D).

Proof. 1. By Lemma 7, C |= D if and only if C � D. By Theorem 3, C � D if
and only if flat(C) � flat(D). By the definition of � and |=, if flat(C) � flat(D)
then flat(C) |= flat(D). So it holds that if C |= D then flat(C) |= flat(D).
Hence, the statement holds by Theorem 5.

2. By the definition of ambivalence, the predicate symbol of the head of D
is different from all of the predicate symbols appearing in the body of D. This
condition is preserved in flat(D), because the flattened predicate symbols, which



164 Kouichi Hirata

does not appear in D, are introduced only in the body of D. Hence, flat(D) is
not ambivalent. By Lemma 7 and Theorem 3, the statement is obvious. ut

In Theorem 6, C is given as a doubly recursive definite clause, that is, body(C)
contains two atoms that are unifiable with head(C′), where C′ is a variant of C.
In the remainder of this section, we restrict the form of C to singly recursive.
Here, a definite clause C is singly recursive if body(C) contains at most one atom
that is unifiable with head(C′), where C′ is a variant of C.

Lemma 9 ((Gottlob [4])). If C |= D, then head(C) � head(D) and body(C) �
body(D).

Let C be a singly recursive definite clause. It is obvious that |S l(C)| ≤ l + 1
and |S l+1(C)−S l(C)| ≤ 1 for each l ≥ 0. Then, the lth self-resolvent Cl of C is
defined inductively as follows:

1. C0 = C,

2. Cl+1 =
{

D if S l+1(C)− S l(C) = {D},
C otherwise.

Lemma 10. Let C be a singly recursive regular definite clause with function
symbols. Suppose that C contains a term t = f(t1, · · · , tn), where each ti is either
a variable or a constant. Also let C′ be a definite clause C|vt ∪{¬pf (t1, · · · , tn, v)}.
Then, it holds that flat(Cl) ≡ flat(C′

l) for each l ≥ 0.

Proof. We show the statement by induction on l. If l = 0, then the statement is
obvious, since C0 = C, C′

0 = C′ and flat(C) = flat(C′).
Suppose that the statement holds for l ≤ k. It is sufficient to show the

case that C is of the form p(t) ← p(s). Consider Ck+1 and C′
k+1. By the def-

inition of the (k + 1)th self-resolvent, Ck+1 is a resolvent of C and Ck, and
C ′

k+1 is a resolvent of C′ and C′
k. Then, we can suppose that Ck+1 is of the

form (head(C) ← body(Ck)µ)θ, where θ is an mgu of head(Ck)µ and body(C)
and µ is a renaming substitution. Hence, C′

k+1 is of the form (head(C′) ←
body(C′

k)µ′, pf (t1, · · · , tn, v))θ′, where θ′ is a substitution obtained from θ by re-
placing the binding tµ/x in θ with v/x, and µ′ is a renaming substitution by
adding the binding u/v (u is a new variable) to µ. By induction hypothesis, it
holds that flat(Ck) ≡ flat(C′

k) and flat(C) ≡ flat(C′). By the forms of Ck+1 and
C ′

k+1, it holds that flat(Ck+1) ≡ flat(C′
k+1). ut

Lemma 11. For a singly recursive definite clause C, it holds that flat(Cl) ≡
(flat(C))l for each l ≥ 0.

Proof. We show the statement by induction on rank(C). If rank(C) = 0, then
the statement is obvious, because flat(Cl) = Cl and flat(C) = C for each l ≥ 0.

Suppose that the statement holds for C such that rank(C) ≤ k. Let C be
a singly recursive definite clause such that rank(C) = k + 1. Since C contains
some function symbols, suppose that C contains the term t = f(t1, · · · , tn),



Flattening and Implication 165

where each ti is either a variable or a constant. Let C′ be a definite clause
C|vt ∪{¬pf(t1, · · · , tn, v)}. Then, it holds that flat(C′) ≡ flat(C) and rank(C′) =
k. By Lemma 10, it holds that flat(C′

l) ≡ flat(Cl) for each l ≥ 0. By induction
hypothesis, it holds that flat(Cl) ≡ flat(C′

l) ≡ (flat(C′))l ≡ (flat(C))l for each
l ≥ 0. Hence, the statement holds for rank(C) = k + 1. ut

Lemma 12. For a singly recursive definite clause C, it holds that flat(C) |=
flat(Cl) for each l ≥ 0.

Proof. We show the statement by induction on l. If l = 0, then C0 = C, so the
statement is obvious.

Suppose that the statement holds for l ≤ k. Since Ck+1 is a resolvent of C
and Ck and by Lemma 11, flat(Ck+1) is a resolvent of flat(C) and flat(Ck). By
the soundness of SLD-resolution (cf. [7,13]), it holds that {flat(C),flat(Ck)} |=
flat(Ck+1). By induction hypothesis, it holds that flat(C) |= flat(Ck). Hence, it
holds that flat(C) |= flat(Ck+1), so the statement holds for l = k + 1. ut

Theorem 13. Let C be a singly recursive regular definite clause and D be a
regular definite clause. Then, C |= D if and only if flat(C) |= flat(D).

Proof. By Theorem 5, it is sufficient to show the only-if direction. We show it
by induction of rank(D). If rank(D) = 0, that is, D is function-free, then so is C
by Lemma 9. Then, flat(C) = C and flat(D) = D, so the statement is obvious.

Suppose that the statement holds for D such that rank(D) ≤ k. Let D be
a regular definite clause such that rank(D) = k + 1. Since D contains some
function symbols, suppose that D contains a term t = f(t1, · · · , tn), where each
ti (1 ≤ i ≤ n) is a variable or a constant. Also let D′ be a definite clause
D|vt ∪ {¬pf (t1, · · · , tn, v)}. Then, rank(D) = k and flat(D′) ≡ flat(D). Suppose
that C |= D. Then, by Corollary 2 and the definition of the lth self-resolvent,
there exists an index l ≥ 0 such that Cl � D.

As similar as the proof of Lemma 19.6 in [13], we can construct the definite
clause C′ from Cl such that C′ � D′ and flat(Cl) ≡ flat(C′) as follows: Suppose
that Clθ ⊆ D′. Let {s1, · · · , sm} be the set of distinct terms occurring in Cl such
that siθ = t. If si is a variable, then replace the binding t/si with v/si. If si is
of the form f(r1, · · · , rn), in which case the rj are variables or constants, then
replace all occurrences of si in Cl with a new variable vi, add ¬pf (r1, · · · , rn, vi)
in Cl, and add the binding v/vi to θ. We call the definite clause resulting from
these m adjustments C′. Finally, replace all occurrences of t in bindings in θ
with y, and call the resulting substitution θ′. Then, it holds that C′θ′ ⊆ D′, so
C′ � D′. Hence, C′ |= D′. Furthermore, by the construction of C′, it holds that
flat(Cl) ≡ flat(C′).

By induction hypothesis, it holds that flat(C′) |= flat(D′), so flat(Cl) |=
flat(D). By Lemma 12, it holds that flat(C) |= flat(D). Hence, the statement
holds for rank(D) = k + 1. ut



166 Kouichi Hirata

5 Conclusion

In this paper, we have investigated the relationship between flattening and im-
plication [13,14]. Let Π be a regular definite program and C and D be definite
clauses. As the stronger relationship between flattening and implication than
Rouveirol’s Theorem [14], Nienhuys-Cheng and de Wolf [13] have shown the
following theorem:

If flat(Π) |= flat(D), then Π |= D.

In this paper, we have shown that there exist definite clauses C and D such that:

C |= D but flat(C) 6|= flat(D).

Furthermore, we have shown that if C and D satisfy one of the following condi-
tions, then it holds that C |= D if and only if flat(C) |= flat(D):

1. C is not self-resolving and D is not tautological,
2. D is not ambivalent,
3. C is singly recursive.

The class of definite clauses that flattening preserves implication is corre-
sponding to the class that the implication problem is decidable [4,6,7], and the
class of definite clauses that flattening does not preserve implication in the above
sense is corresponding to the class that the implication problem is undecid-
able [8,15]. It is a future work to investigate the relationship between the classes
of definite clauses that flattening preserves implication and that implication is
decidable.

Acknowledgment

The author would thank to anonymous referees for valuable comments.

References

1. Angluin, D., Frazier, M. and Pitt, L.: Learning conjunctions of Horn clauses, Ma-
chine Learning 9, 147–164, 1992.

2. De Raedt, L. and Džeroski, S.: First-order jk-clausal theories are PAC-learnable,
Artificial Intelligence 90, 375–392, 1994.

3. Frazier, M. and Pitt, L.: Learning from entailment: An application to propositional
Horn sentences, Proc. 10th International Conference on Machine Learning, 120–
127, 1993.

4. Gottlob, G.: Subsumption and implication, Information Processing Letters 24, 109–
111, 1987.

5. Hanschke, P. and Würtz, J.: Satisfiability of the smallest binary program , Informa-
tion Processing Letters 45, 237–241, 1993.

6. Leitsch, A.: Implication algorithms for classes of Horn clauses, Statistik, Infor-
matik und Ökonomie, Springer, 172–189, 1988.



Flattening and Implication 167

7. Leitsch, A.: The resolution calculus, Springer-Verlag, 1997.
8. Marcinkowski, J. and Pacholski, L.: Undecidability of the Horn-clause implication

problem, Proc. 33rd Annual IEEE Symposium on Foundations of Computer Sci-
ence, 354–362, 1992.

9. Muggleton, S.: Inverting implication, Proc. 2nd International Workshop on Induc-
tive Logic Programming, ICOT Technical Memorandum TM-1182, 1992.

10. Muggleton, S. (ed.): Inductive logic programming , Academic Press, 1992.
11. Muggleton, S.: Inverse entailment and Progol , New Generation Computing 13,

245–286, 1995.
12. Muggleton, S. and Page Jr., C., D.: Self-saturation of definite clauses, Proc. 4th

International Workshop on Inductive Logic Programming, 162–174, 1994.
13. Nienhuys-Cheng, S.-H. and de Wolf, R.: Foundations of inductive logic program-

ming , Lecture Notes in Artificial Intelligence 1228, 1997.
14. Rouveirol, C.: Extensions of inversion of resolution applied to theory completion,

in [10], 63–92.
15. Schmidt-Schauss, M.: Implication of clauses is undecidable, Theoretical Computer

Science 59, 287–296, 1988.

Appendix: Rouveirol’s Theorem

For Rouveirol’s Theorem, it is clear that Rouveirol’s original proof [14] is in-
sufficient. On the other hand, Nienhuys-Cheng and de Wolf [13] have shown
Rouveirol’s Theorem as the consequence of Theorem 5 and the following lemma:

Lemma 14. Let Π be a regular definite program. Then, flat(Π)∪defs(Π) |= Π.

However, we obtain the following theorem:

Theorem 15. There exist regular definite clauses C and D such that

C ` D but {flat(C)} ∪ defs(C) 6` flat(D).

Proof. Let C and D be the following regular definite clauses:

C = p(f(x1, x3), f(x3, x2))← p(x1, x3), p(x3, x2),
D = p(f(f(x1, x2), f(x2, x3)), f(f(x2, x3), f(x3, x4)))

← p(x1, x2), p(x2, x3), p(x2, x3), p(x3, x4).

By resolving C with C itself twice, we can show that C ` D.
On the other hand, flat(C) and flat(D) are constructed as follows:

flat(C) = p(x1, x2)← p(x3, x4), p(x4, x5), pf (x3, x4, x1), pf (x4, x5, x2),
flat(D) = p(x1, x2)← p(x3, x4), p(x4, x5), p(x4, x5), p(x5, x6),

pf (x3, x4, x7), pf (x4, x5, x8), pf (x5, x6, x9),
pf (x7, x8, x1), pf (x8, x9, x2).

Also defs(C) = {pf(x, y, f(x, y))←}.
The first and second self-resolving closures of flat(C) are constructed as Fig-

ure 4. Note that {flat(C)} ∪ defs(C) ` flat(D) if and only if there exists a
definite clause E ∈ S2(flat(C)) such that flat(D) is obtained by resolving E



168 Kouichi Hirata

S1(flat(C)) = {flat(C)}

∪




p(x1, x2)←p(x3, x4), p(x5, x6), p(x6, x7),
pf (x5, x6, x8), pf (x8, x3, x1), pf (x3, x4, x2), pf (x6, x7, x3)

p(x1, x2)←p(x3, x4), p(x5, x6), p(x6, x7),
pf (x3, x4, x1), pf (x6, x7, x8), pf (x4, x8, x2), pf (x5, x6, x4)


 ,

S2(flat(C)) = S1(flat(C))

∪




E1 : p(x1, x2)←p(x3, x4), p(x4, x5), p(x6, x7), p(x7, x8),
pf (x3, x4, x9), pf (x9, x10, x1), pf (x7, x8, x11), pf (x10, x11, x2),
pf (x4, x5, x10), pf (x6, x7, x10)

E2 : p(x1, x2)←p(x3, x4), p(x4, x5), p(x6, x7), p(x7, x8),
pf (x3, x4, x10), pf (x9, x10, x1), pf (x4, x5, x11), pf (x10, x11, x2),
pf (x7, x8, x10), pf (x6, x7, x9)

p(x1, x2)←p(x3, x4), p(x5, x6), p(x7, x8), p(x8, x9),
pf (x8, x3, x1), pf (x3, x4, x2), pf (x11, x5, x10), pf (x5, x6, x3),
pf (x7, x8, x11), pf (x8, x9, x5)

p(x1, x2)←p(x3, x4), p(x5, x6), p(x7, x8), p(x8, x9),
pf (x10, x3, x1), pf (x3, x4, x2), pf (x5, x6, x10), pf (x6, x11, x3),
pf (x3, x8, x6), pf (x8, x9, x11)

p(x1, x2)←p(x3, x4), p(x5, x6), p(x7, x8), p(x8, x9),
pf (x3, x4, x1), pf (x4, x10, x2), pf (x11, x5, x4), pf (x5, x6, x10),
pf (x7, x8, x11), pf (x8, x9, x5)

p(x1, x2)←p(x3, x4), p(x5, x6), p(x7, x8), p(x8, x9),
pf (x3, x4, x1), pf (x4, x10, x2), pf (x5, x6, x4), pf (x6, x11, x10),
pf (x7, x8, x6), pf (x8, x9, x11)




.

Fig. 4. The first and second self-resolving closures of flat(C)

with pf (x, y, f(x, y)) ← some times. Then, we cannot obtain the above E from
each element in S2(flat(C)) except E1 and E2. Furthermore, the resolvent of
Ei (i = 1, 2) with pf (x, y, f(x, y)) ← twice, where the selected atoms in Ei are
atoms of which the third argument’s term is x10, contains a term with f . Hence,
it holds that {flat(C)} ∪ defs(C) 6` flat(D). ut
Hence, we cannot directly conclude Rouveirol’s Theorem from Theorem 5 and
Lemma 14.

Note that the definite clauses C and D in Theorem 15 are not a counterex-
ample of the if-direction of Rouveirol’s Theorem, because E1 and E2 subsume
flat(D) by the following substitutions σ1 and σ2:

σ1 = {x4/x6, x5/x7, x6/x8, x7/x9, x8/x10, x9/x11},
σ2 = {x4/x3, x5/x4, x6/x5, x4/x7, x5/x8, x7/x9, x8/x10, x9/x11}.

Rouveirol’s Theorem seems to be correct, but it is necessary to improve the
proof by [13,14] because of Theorem 6 and 15.



Induction of Logic Programs Based on ψ-Terms

Yutaka Sasaki

NTT Communication Science Laboratories,
2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan

sasaki@cslab.kecl.ntt.co.jp

Abstract. This paper extends the traditional inductive logic program-
ming (ILP) framework to a ψ-term capable ILP framework. Aı̈t-Kaci’s
ψ-terms have interesting and significant properties for markedly widening
applicable areas of ILP. For example, ψ-terms allow partial descriptions
of information, generalization and specialization of sorts (or types) placed
instead of function symbols, and abstract descriptions of data using sorts;
they have comparable representation power to feature structures used
in natural language processing. We have developed an algorithm that
learns logic programs based on ψ-terms, made possible by a bottom-up
approach employing the least general generalization (lgg) extended for ψ-
terms. As an area of application, we have selected information extraction
(IE) tasks in which sort information is crucial in deciding the generality
of IE rules. Experiments were conducted on a set of test examples and
background knowledge consisting of case frames of newspaper articles.
The results showed high precision and recall rates for learned rules for
the IE tasks.

1 Introduction

In the traditional setting of inductive logic programming (ILP) [14], the input is a
set of examples, which are usually ground instances, and background knowledge,
which is a set of ground instances or logic programs. The output of ILP systems is
a set of logic programs, such as pure Prolog programs. The form (i.e., language)
of the output is called a hypothesis language. The task of ILP systems is to find,
based on the background knowledge, good hypotheses that cover most positive
examples and least negative examples (if any).

Previously, as one direction of extending the scope of the representation
power of examples and a hypothesis language of ILP, RHB+ [19] was presented
for learning logic programs based on τ -terms which are logic terms whose vari-
ables have sorts (or types). τ -terms, however, are a very restricted form of ψ-
terms used in LOGIN [1] and LIFE [3].

For example, in the previously proposed framework, a positive example that
expresses “Jack was injured” was represented as

injured(agent⇒ Jack),

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 169–181, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



170 Yutaka Sasaki

using a feature (or attribute) agent. If Jack is defined as a sub-sort of people,
this example could be generalized to

injured(agent⇒ people)

However, the example

injured(agent⇒ passenger(count⇒ 10))

could not be generalized to

injured(agent⇒ people(count⇒ number)).

This is because RHB+ would treat the passenger as a function symbol and
would not be able to generalize the passenger to the sort people. This restricted
the application range which had to learn from the data as to which of the original
structures of natural language sentences to preserve.

This paper presents the design and algorithm of our new ILP system which
is capable of handling ψ-terms. After explaining attractive points of ψ-terms,
we formally define ψ-terms and explain their properties. Then previous type-
oriented learner is briefly described and an algorithm for achieving an ILP sys-
tem that learns logic programs based on ψ-terms is presented. As an application
to test the feasibility of our system, information extraction (IE) is briefly intro-
duced. After that, experimental results on IE tasks are shown. A discussion and
conclusions conclude this paper.

2 Attractive Points of ψ-Terms

For the sake of introducing of features (or attributes) and sorts, ψ-terms enable
the following advantages.

partial descriptions For example, term name(first ⇒ peter) expresses the
information of a person whose first name is known. This is equivalent to
name(first⇒peter,last⇒>). In the process of unification[4], possibly other
features can be added to the term.

dynamic generalization and specialization Sorts, placed at the positions
of function symbols, can be dynamically generalized and specialized. For
example, person(id ⇒ name(first ⇒ person)) is a generalized form of
man(id⇒ name(first⇒ Jack)).

abstract representation Abstract representations of examples using sorts can
reduce the amount of data. For example,

familiar(agent⇒ person(residence⇒ France), obj ⇒ French)

represents a number of ground instances, such as,

familiar(agent⇒ Serge(residence⇒ France), obj ⇒ French).



Induction of Logic Programs Based on ψ-Terms 171

coreference Coreference enables the recursive representation of terms. For ex-
ample, X : person(spouse ⇒ person(spouse ⇒ X)) refers to itself recur-
sively 1.

NLP applicability ψ-terms have the same representation power as feature
structures [8] which are used for formally representing the syntax and se-
mantics of natural language sentences.

3 ψ-Terms

Given a set of sorts S containing the sorts > and ⊥, the partial order ≤ on S
such that ⊥ is the least and > is the greatest element, and features (i.e., labels
or attributes) F , ψ-terms are defined as follows [2].

3.1 Ordered Sorts

Sorts S have a partial order ≤. τ1 ≤ τ2 means that τ2 is more general than τ1
2. A set of sorts S must include the greatest element > and the least element ⊥.
s∨ t is defined as the supremum of sorts s and t, and s∧ t is the infimum of sorts
s and t. Then, 〈S,≤,∨,∧〉 forms a lattice [6].

If the given sort hierarchy is a tree without > and ⊥, we add r ≤ > for root
sort r and ⊥ ≤ li for leaf sort li. As a special treatment, we distinguish constants
from sorts when we have to distinguish them for ILP purposes, while constants
are usually regarded as sorts. Formally, constants C is C ⊂ S and for c ∈ C,
∀t t < c ⊃ t = ⊥.

3.2 Definition of ψ-Terms

Informally, ψ-terms are Prolog terms whose variables are replaced with variable
V ar of sort s, which is denoted as Var:s. Function symbols are also replaced
with sorts. Terms have features (labels or attributes) for readability and for
representing partial information.

For example,

injured(agent ⇒ X : people(of ⇒ number))

is an atomic formula based on ψ-terms whose features are agent and of and
whose sorts are people and number.

The recursive definition of ψ-terms is as follows.

Definition 1 (ψ-terms) A ψ-term is either an untagged ψ-term or a tagged
ψ-term.

1 Variables are also used as coreference tags. This is one of the most elegant ways to
represent coreference.

2 This is defined as τ2 v τ1 in [8].



172 Yutaka Sasaki

Definition 2 (tagged ψ-term)

– A variable is a tagged ψ-term.
– If X is a variable and t is an untagged ψ-term, X : t is a tagged ψ-term.

Definition 3 (untagged ψ-term)

– A sort symbol is an untagged ψ-term.
– If s is a sort symbol, l1, ..., ln are features and t1, ..., tn are ψ-terms, s(l1 ⇒
t1,...,ln ⇒ tn) is an untagged ψ-term.

Definition 4 (atomic formula)

– If p is a predicate, l1, ..., ln are features and t1, ..., tn are ψ-terms, p(l1 ⇒
t1,...,ln ⇒ tn) is an atomic formula.

While terms have features, they are compatible with the usual atomic for-
mulae of Prolog. The first-order term notation p(t1, ..., tn) is syntactic sugar for
the ψ-term notation p(1 ⇒ t1, ..., n⇒ tn) [2].

3.3 Least General Generalization

In the definition of the least general generalization (lgg) [17], the part that defines
the term lgg should be extended to the lgg of ψ-terms 3.

Now, we operationally define the lgg of ψ-terms using the following notations.
a and b represent untagged ψ-terms. s, t, and u represent ψ-terms. f , g, and h
represent sorts. X , Y , and Z represent variables. Given t = f(l1 ⇒ t1, ..., ln ⇒
tn), the li projection of t is defined as t.li = ti. For simplicity of the algorithm,
we regard untagged ψ-term a appearing without a variable to type V : a, where
V is a fresh variable. Note that a variable appearing nowhere typed is implicitly
typed by >.

Definition 5 (lgg of ψ-terms)

1. lgg(X : a,X : a) = X : a.
2. lgg(s, t) = u, where s 6= t and the tuple (s, t, u) is in the history Hist.
3. If s = X : f(ls1 ⇒ s1, .., l

s
n ⇒ sn), t = Y : g(lt1 ⇒ t1, .., l

t
m ⇒ tm) and s 6= t,

then lgg(s, t) = u, where L = {ls1, ..., lsn}∩{lt1, ..., ltm} and for features li ∈ L,
u = Z : h(l1 ⇒ lgg(s.l1, t.l1), ..., l|L| ⇒ lgg(s.l|L|, t.l|L|)) with h = f ∨ g4.
(s, t, u) is added to Hist.

3 The lgg of ψ-terms has already been described in [1]. We present an algorithm as an
extension of Plotkin’s lgg. The lgg of feature terms, which are equivalent to ψ-terms,
can be found in [16].

4 Here, ∨ means the supremum of two sorts.



Induction of Logic Programs Based on ψ-Terms 173

For example, the lgg of

injured(agent ⇒ passenger(of ⇒ 10))

and
injured(agent ⇒ men(of ⇒ 2))

is
injured(agent ⇒ people(of ⇒ number)).

Definition 6 (lgg of atoms based on ψ-terms) Let P and Q be atomic formulae
(atoms). The lgg of atoms is defined as follows.

1. If P = p(ls1 ⇒ s1, .., l
s
n ⇒ sn) and Q = p(lt1 ⇒ t1, .., l

t
m ⇒ tm), then

lgg(P,Q) = p(l1 ⇒ lgg(s.l1, t.l1), ..., l|L| ⇒ lgg(s.l|L|, t.l|L|)) where L =
{ls1, ..., lsn} ∩ {lt1, ..., ltm}.

2. If P = p(ls1 ⇒ s1, .., l
s
n ⇒ sn), Q = q(lt1 ⇒ t1, .., l

t
m ⇒ tm) and p 6= q,

lgg(P,Q) is undefined.

Let P and Q be atoms and L1 and L2 be literals. The lgg of literals and
clauses are defined as follows [12].

Definition 7 (lgg of literals based on ψ-terms)

1. If L1 and L2 are atomic, then lgg(L1, L2) is the lgg of atoms.
2. If L1 = ¬P and L2 = ¬Q, then lgg(L1, L2) = lgg(¬P,¬Q) = ¬lgg(P,Q).
3. If L1 = ¬P and L2 = Q or L1 = P and L2 = ¬Q, then lgg(L1, L2) is

undefined.

Definition 8 (lgg of clauses)
Let clauses c1 = {L1, ..., Ln} and c2 = {K1, ...,Km}. Then lgg(c1, c2) =

{Lij = lgg(Li,Kj)|Li ∈ c1,Kj ∈ c2 and lgg(Li,Kj) is defined}.

4 Previous Type-Oriented ILP System

This section briefly describes a summary of a previous ILP system. RHB+ learns
logic programs based on τ -terms. τ -terms are restricted forms of ψ-terms. Infor-
mally, τ -terms are Prolog terms whose variables are replaced with Var:type and
whose function symbols have features. It employs a combination of bottom-up
and top-down approaches, following the result described in [23].

In the definition of the least general generalization (lgg) [17], the definition
of the term lgg was extended to the τ -term lgg. The other definitions of lgg were
equivalent to the originals.

The special feature of RHB+ is the dynamic type restriction by positive exam-
ples during clause construction. The restriction uses positive examples currently
covered in order to determine appropriate types. For each variable Xi appearing



174 Yutaka Sasaki

in the clause, RHB+ computes the supremum of all types bound to Xi when
covered positive examples are unified with the current head in turn.

The search heuristic PWI is a weighted informativity employing a Laplace
estimate [9]. Let T = {Head :−Body } ∪ BK.

PWI(T ) = − 1
|P̂ | × log2

|P̂ |+ 1
|Q(T )|+ 2

,

where |P̂ | denotes the number of positive examples covered by T and Q(T ) is
the empirical content.

Type information was made use of for computing |Q(T )|. Let Hs be a set
of instances of Head generated by proving Body using backtracking. |τ | was
defined as the number of constants under type τ in the type hierarchy. When τ
is a constant, |τ | is defined as 1.

|Q(T )| =
∑

h∈Hs

∏

τ∈Types(h)

|τ |,

where Types(h) returns the set of types in h.
The stopping condition also utilized |Q(T )| in the computation of the Model

Covering Ratio (MCR):

MCR(T ) =
|P̂ |

|Q(T )| .

RHB+ was successfully applied to the IE task of extracting key information
from 100 newspaper articles related to new product release [21]. This implies a
potential of applying our ψ-term capable ILP system to the IE task.

5 New ILP Capable of ψ-Term

This section describes a novel relational learner ψ-RHB which learns logic pro-
grams based on ψ-terms.

Extending ILP to a ψ-term capable ILP is not straightforward. In top-down
learning, the learner constructs all possible literals to be added to the current
body. When considering only simple sorts which do not have any arguments,
top-down approaches, like Foil, are efficient. However, when it comes to learning
clauses with ψ-terms, it is not realistic to produce all kinds of literals that contain
possible terms.

For example, if we have predicate p, sorts t1 and t2, features l1 and l2, and
variable X , one of the possible literals is p(l1⇒ t1(l2⇒ X :t1(l1⇒ t2))) because
the predicate arity and term depth are unbound. The maximum depth of modi-
fication to the sort in a possible literal must be more than the maximum depth
of modification to a sort seen in the given training examples. Moreover, at each
level of a modification to a sort, the maximum number of features of the sort



Induction of Logic Programs Based on ψ-Terms 175

is the number of features F . Therefore, generating all patterns of literals with
ψ-terms is too time consuming and so not very practical. To cope with this
problem, the learning strategy should be bottom-up.

5.1 Algorithms of ψ-Term Capable ILP

The positive examples are atomic formulae based on ψ-terms. The hypothesis
language is a set of Horn clauses based on ψ-terms. The background knowledge
also consists of atomic formulae. ψ-RHB, a ψ-term capable ILP system, employs
a bottom-up approach, like Golem [15].

Learning Algorithm

The learning algorithm of our ILP system is based on the Golem’s algorithm
[15] extended for ψ-terms.

The steps are as follows.

Algorithm 1 Learning algorithm

1. Given positive examples P , background knowledge BK.
2. Link sorts which have the same names in P and BK.
3. A set of hypotheses H ={}.
4. Select K pairs of examples (Ai, Bi) as EP (0 ≤ i ≤ K).
5. Select sets of literals ARi and BRi as selected background knowledge accord-

ing to the variable depth D.
6. Compute lggs of clauses Ai:−ARi and Bi:−BRi.
7. Simplify the lggs by evaluating with weighted informativity PWI, which is

the informativity defined in Section 4.
8. Select the best clause C, and add it to H if the score of C is better than the

threshold δ.
9. Remove covered examples from P .

10. If P is empty then return H; Otherwise, goto Step 4.

In Step 2, we have to link sorts in the examples and the background knowl-
edge because the OSF theory [4] which underlies the theory of ψ-terms is not
formed under the unique name assumption. For example, if we have two terms
f(t) and g(t), t in f(t) and t in g(t) are not identical. The OSF theory requires
that they be represented as f(X : t) and f(X : t), if t is identical in both of two
terms. Therefore, the same sort symbols in the examples and in the background
knowledge are linked and will be treated as identical symbols in the later steps.

In Step 5, to speed up the learning process, literals related to each pair of
examples are selected. At first, ARi and BRi are empty. Then, (1) select the
background knowledge literals Asel so that it has all literals whose sort symbols
are identical to the sorts in Ai or ARi, and select Bsel in the same manner using
Bi or BRi. (2) Add literals Asel and Bsel to sets ARi and BRi, respectively.
Repeat (1) and (2) n times when the predefined variable depth is n. This iteration
creates sets of literals.



176 Yutaka Sasaki

We use ARi as the selected background knowledge for Ai, and BRi for Bi in
Step 6. What is computed in Step 6 is the following lgg of clauses.

lgg((Ai :−
∧
ARi), (Bi :−

∧
BRi)),

where
∧
S is a conjunction of all of the elements in S. The lggs of clauses have

the variable depth of at most n.
In Step 7, simplification of the lggs is achieved by checking all literals in

the body as to whether removal of literals makes the score of the weighted
informativity worse or not. For the purpose of informativity estimation, we use
the concept of ground instances of atomic formulae based on ψ-terms. We call
atomic formula A ground instance if all of the sorts appearing in A are constants.
For example,

familiar(agent⇒ Serge(residence⇒ France), obj ⇒ French).

Moreover, literals in the body are checked as to whether they satisfy the input-
output mode declarations of the predicates.

6 NLP Application

6.1 Information Extraction

This section presents a brief introduction of our target application: information
extraction (IE). The task of information extraction involves extracting key in-
formation from a text corpus, such as newspaper articles or WWW pages, in
order to fill empty slots of given templates. Information extraction techniques
have been investigated by many researchers and institutions in a series of Mes-
sage Understanding Conferences (MUC), which are not only technical meetings
but also IE system contests on information extraction, conducted on common
benchmarks.

The input for the information extraction task is a set of natural language
texts (usually newspaper articles) with an empty template. In most cases, the
articles describe a certain topic, such as corporate mergers or terrorist attacks
in South America. The given templates have some slots which have field names,
e.g., “company name” and “merger date”. The output of the IE task is a set
of filled templates. IE tasks are highly domain dependent because the rules and
dictionaries used to fill values in the template slots depend on the domain.

6.2 Problem in IE System Development

The domain dependence has been a serious problem for IE system developers.
As an example, Umass/MUC-3 needed about 1500 person-hours of skilled labor
to build the IE rules represented as a dictionary [13]. Worse, new rules have to
be constructed from scratch when the target domain is changed.



Induction of Logic Programs Based on ψ-Terms 177

Template

ILP
System IE rules

Filled templates

Background
knowledge

Select case frames
relating to the examples

Type
hierarchyExamples

Case
frames

Fig. 1. Block diagram of the preparation of data for ILP

To cope with this problem, some researchers have studied methods to learn
information extraction rules. On this background, we selected the IE task for an
application of a ψ-term capable ILP. An IE task is appropriate for our application
because natural languages contain a vast variety of nouns relating to a taxonomy
(i.e., sort hierarchy).

7 Experimental Results

For the purpose of estimating the performance of our system, we conducted
experiments on the learning of IE rules. The IE tasks here involved the MUC-
4 style IE and the template elements to be filled included two items 5. We
extracted articles related to accidents from a one-year newspaper corpus written
in Japanese 6. Forty two articles were related to accidents which resulted in some
deaths and injuries. The template we used consisted of two slots: the number
of deaths and injuries. We filled one template for each article. After parsing the
sentences, tagged parse trees were converted into atomic formulae representing
case frames.

Figure 1 shows the learning block diagram. Those case frames were given
to our learner as background knowledge. All of the 42 articles were able to be
represented as case frames for the sake of the representation power of ψ-terms,
while only 25 articles were able to be represented using τ-terms. Each slot of a
filled template was given as a positive example. For the precision and recall, the
standard evaluation metrics for IE tasks, we counted them by using four-fold
cross validation on the 42 examples.

5 This is a relatively simple setting compared to state-of-the-art IE tasks.
6 We thank the Mainichi Newspaper Co. for permitting us to use the articles of 1992.



178 Yutaka Sasaki

Table 1. Comparison between RHB+ and ψ-RHB

[deaths] Time (sec) |Hypo| |P̂ | / |Q(T )|
RHB+ 172.7 4 25/25

ψ-RHB 954.2 4 25/25

[injuries] Time (sec) |Hypo| |P̂ | / |Q(T )|
RHB+ 508.5 8 25/25

ψ-RHB 3218.0 10 25/25

Precision =
correct output answers

output answers

Recall =
correct output answers

all correct answers

7.1 Natural Language Processing Tools

We used a sort hierarchy hand-crafted for the Japanese-English machine trans-
lation system ALT-J/E [11]. This hierarchy is a sort of concept thesaurus repre-
sented as a tree structure in which each node is called a category (i.e., a sort).
An edge in the tree represents an is a relation among the categories. The current
version of the sort hierarchy is 12 levels deep and contains about 3000 category
nodes. We also used the commercial-quality morphological analyzer, parser, and
semantic analyzer of ALT-J/E.

Results after the semantic analysis were parse trees with case and semantic
tags. We developed a logical form translator FEP2 which generates case frames
expressed as atomic formulae from the parse trees.

7.2 Results

Table 1 and Table 2 show the results of our experiments. Table 1 shows the
experimental results of RHB+ and ψ-RHB using the same 25 examples as used
in [19]. We used a SparcStation 20 for this experiment. ψ-RHB showed a high
accuracy like RHB+ but slowed down in exchange for its extended representation
power in the hypothesis language.

Table 2 shows the experimental results on forty two examples. We used a
AlphaStation 500/333MHz for this experiment. Overall, a very high precision,
90-97%, was achieved. 63-80% recall was achieved with all case frames including
errors in the case selection and semantic tag selection. These selections had an
error range of 2-7%. With only correct case frames, 67-88% recall was achieved.

It is important to note that the extraction of two different pieces of informa-
tion showed good results. This indicates that our learner has high potential in
IE tasks.



Induction of Logic Programs Based on ψ-Terms 179

Table 2. Learning results of accidents

deaths injuries

Precision (all case frames) 96.7% 89.9%

Recall (all case frames) 80.0% 63.2%

Recall (correct case frames) 87.5% 66.7%

Average time (sec.) 966.8 828.0

8 Discussion

The benefits of ψ-term capability, not just involving the τ -term, in an appli-
cation, depend on the writing style of the topic. In English, the expression
“ABC Corp.’s printer” is commonly used and the logical term representation
can be printer(pos ⇒ “ABC Corp.”). However, if the expression “ABC Corp.
released a printer and ...” were very common, it could be release(“ABC Corp.”,
printer). In this case, since the required representation is within the τ -term,
extending the language from τ -term based to ψ-term based does not pay for the
higher computing cost.

In the IE community, some previous research has looked at generating IE
rules from texts with filled templates, for example, AutoSlog-TS [18], CRYSTAL
[22], LIEP [10], and RAPIER [7]. The main differences between our approach
and the others are that

– we use semantic representations (i.e. case frames) created by a domain-
independent parser and semantic analyzer.

– we use ILP techniques independent of both the parser and semantic analyzer.

Note that the second item means that learned logic programs may have
several atomic formulae in the bodies. This point differentiates our approach
from the simple generalization of a single case frame.

INDIE [5] learns a set of feature terms equivalent to ψ-terms. The learning
is equivalent to the learning of a set of atomic formulae based on ψ-terms which
cover all positive examples and no negative examples. Because its hypotheses
are generated so as to exclude any negatives, it might be intolerant to noise.

Sasaki [20] reported a preliminary version ILP system which was capable of
limited features of ψ-terms. Preliminary experiments are conducted on learning
IE rules to extract information from only twenty articles.

9 Conclusions and Remarks

This paper has described an algorithm of a ψ-term capable ILP and its appli-
cation to information extraction. The lgg of logic terms was extended to the lgg
of ψ-terms. The learning algorithm is based on the lgg of clauses with ψ-terms.



180 Yutaka Sasaki

Natural language processing relies on a vast variety of nouns relating to the sort
hierarchy (or taxonomy) which plays a crucial role in generalizing data generated
from the natural language. Therefore, the information extraction task matches
the requirements of the ψ-term capable ILP.

Because of the modest robustness and performance of current natural lan-
guage analysis techniques (for Japanese texts), errors were found in parsing, case
selection, and semantic tag selection. The experimental results, however, show
that learned rules achieve high precision and recall in IE tasks. Moreover, an
important point is that all of the 42 articles related to the topic were able to
be represented as case frames, which demonstrates the representation power of
ψ-terms. This indicates that applying ILP to the learning from case frames will
become more practical as NLP techniques progress in the near future.

References

1. H. Aı̈t-Kaci and R. Nasr, LOGIN: A logic programming language with built-in
inheritance, J. Logic Programming, 3, pp.185-215, 1986.

2. H. Aı̈t-Kaci and A. Podelski, Toward a Meaning of LIFE, PRL-RP-11, Digital
Equipment Corporation, Paris Research Laboratory, 1991.

3. H. Aı̈t-Kaci, B. Dumant, R. Meyer, A. Podelski, and P. Van Roy, The Wild Life
Handbook, 1994.

4. H. Aı̈t-Kaci, A. Podelski and S. C. Goldstein, Order-Sorted Feature Theory Unifi-
cation, J. Logic Programming, Vol.30, No.2, pp.99-124, 1997.

5. E. Armengol and E. Plaza, Induction of Feature Terms with INDIE, ECML-97,
pp.33-48, 1997.

6. Birkhoff, G., Lattice Theory, American Mathematical Society, 1979.
7. M. E. Califf and R. J. Mooney, Relational Learning of Pattern-Match Rules for

Information Extraction, ACL-97 Workshop in Natural Language Learning, 1997.
8. B. Carpenter, The Logic of Typed Feature Structures, Cambridge University Press,

1992.
9. B. Cestnik, Estimating Probabilities: A Crucial Task in Machine Learning, ECAI-

90, pp.147-149, 1990.
10. S. B. Huffman, Learning Information Extraction Patterns from Examples, Statis-

tical and Symbolic Approaches to Learning for Natural Language Processing, pp.
246-260, 1996.

11. S. Ikehara, M. Miyazaki, and A. Yokoo, Classification of Language Knowledge for
Meaning Analysis in Machine Translations, Transactions of Information Processing
Society of Japan, Vol. 34, pp.1692-1704, 1993 (in Japanese).

12. N. Lavrač and S. Džeroski: Inductive Logic Programming: Techniques and Appli-
cations, Ellis Horwood, 1994.

13. W. Lehnert, C. Cardie,D. Fisher, J. McCarthy, E. Riloff and S. Soderland, Uni-
versity of Massachusetts: MUC-4 Test Results and Analysis, Fourth Message Un-
derstanding Conference, pp.151-158, 1992.

14. S. Muggleton, Inductive Logic Programming, New Generation Computing, 8(4),
pp.295-318, 1991.

15. S. Muggleton and C. Feng, Efficient Induction of Logic Programs, in Inductive
Logic Programming, Academic Press,1992.

16. E. Plaza, Cases as terms: A feature term approach to the structured representation
cases, First Int. Conf. on Case-Based Reasoning, pp. 263-276, 1995.



Induction of Logic Programs Based on ψ-Terms 181

17. G. Plotkin, A Note on Inductive Generalization, in B. Jeltzer et al. eds., Machine
Intelligence 5, pp.153-163, Edinburgh University Press, 1969.

18. E. Riloff, Automatically Generating Extraction Pattern from Untagged Text,
AAAI-96, pp. 1044-1049, 1996.

19. Y. Sasaki and M. Haruno, RHB+: A Type-Oriented ILP System Learning from
Positive Data, IJCAI-97, pp.894-899, 1997.

20. Y. Sasaki, Learning of Information Extraction Rules using ILP — Preliminary Re-
port, The Second International Conference on The Practical Application of Knowl-
edge Discovery and Data Mining, pp.195–205, London, 1998.

21. Y. Sasaki, Applying Type-Oriented ILP to IE Rule Generation, AAAI-99 Work-
shop on Machine Learning for Information Extraction, pp.43–47,1999.

22. S. Soderland, D. Fisher, J. Aseltine, W. Lenert, CRYSTAL: Inducing a Conceptual
Dictionary, IJCAI-95, pp.1314-1319, 1995.

23. J. M. Zelle and R. J. Mooney, J. B. Konvisser, Combining Top-down and Bottom-
up Methods in Inductive Logic Programming, ML-94, pp.343-351, 1994.



Complexity in the Case Against Accuracy:

When Building One Function-Free Horn Clause
Is as Hard as Any

Richard Nock

Department of Mathematics and Computer Science, Université des Antilles-Guyane,
Campus de Fouillole, 97159 Pointe-à-Pitre, France

rnock@univ-ag.fr

Abstract. Some authors have repeatedly pointed out that the use of
the accuracy, in particular for comparing classifiers, is not adequate.
The main argument discusses the validity of some assumptions underly-
ing the use of this criterion. In this paper, we study the hardness of the
accuracy’s replacement in various ways, using a framework very sensi-
tive to these assumptions: Inductive Logic Programming. Replacement
is investigated in three ways: completion of the accuracy with an addi-
tional requirement, replacement of the accuracy by the ROC analysis,
recently introduced from signal detection theory, and replacement of the
accuracy by a single criterion. We prove strong hardness results for most
of the possible replacements. The major point is that allowing arbitrary
multiplication of clauses appears to be totally useless. Another point is
the equivalence in difficulty of various criteria. In contrast, the accuracy
criterion appears to be tractable in this framework.

1 Introduction

As the number of classification learning algorithms is rapidly increasing, the
question of finding efficient criteria to compare their results is of particular rel-
evance. This is also of importance for the algorithms themselves, as they can
naturally optimize directly such criteria to achieve good results. A criterion fre-
quently encountered to address both problems is the accuracy, which received
recently on these topics some criticisms about its adequacy [7].
The primary inadequacy of the accuracy stems from a tacit assumption that the
overall accuracy controls by-class accuracies, or similarly that class distributions
among examples are constant and relatively balanced [6]. This is obviously not
true : skewed distributions are frequent in agronomy, or more generally in life
sciences. As an example, consider the human DNA, in which no more than 6%
are coding genes [7]. In that cases, the interesting, unusual class is often the
rare one, and the well-balanced hypothesis may not lead to discover the unusual
individuals. Moreover, in real-world problems, not only is this assumption false,
but also of heavy consequences may be the misclassification of some examples,
another cost which is not integrated in the accuracy. Fraud detection is a good

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 182–193, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Complexity in the Case Against Accuracy 183

example of such situations [7], but medical domains are typical. As an example,
consider the case where a mutagen molecule is predicted as non-mutagen, and
the case where an harmless molecule is predicted as mutagen. In that cases, the
interesting class has the heaviest misclassification costs, and the equal error costs
assumption may produce bad results. Finally, the accuracy may be inadequate in
some cases because other parameters are to be taken into account. Constraints
on size parameters are sometimes to be used because we want to obtain small
formulae, for interpretation purposes. As an example, consider again the problem
of mutagenesis prediction, where two equally accurate formulae are obtained. If
one is much smaller, it is more likely to provide useful descriptions for the mining
expert.
We have chosen for our framework a field particularly sensitive to these prob-
lems, Inductive Logic Programming (ILP). ILP is a rapidly growing research
field, concerned by the use of variously restricted subclasses of Horn clauses to
build Machine Learning (ML) algorithms. According to [9], almost seventy ap-
plications use ILP formalism, twenty of which are science applications, which
can be partitioned into biological (four) and drug design (sixteen) applications.
ILP-ML algorithms have been applied with some success in areas of biochemistry
and molecular biology [9]. Using ILP formalism, we argue that the replacement
of the accuracy raises structural complexity issues. The argument is structured
as follows.
First, to address the latter problems, we explain that the single accuracy require-
ment can be completed by an additional requirement to provide more adequate
criteria. We integrate various constraints over two important kinds of param-
eters: by-class error functions, and representation parameters such as feature
selection ratios, size constraints. We show that any of such integration leads to
a very negative structural complexity result, similar to NP -Hardness, which is
not faced by the accuracy optimization alone. The result has a side effect which
can be presented as a “loss” in the formalism’s expressiveness, a rare property
in classical ML complexity issues. Indeed, it authorizes the construction of ar-
bitrary large (even exponential sized) sets of Horn clauses, but which we prove
having no more expressive power than a single Horn clause. We prove a threshold
in intractability since it appears immediately with the additional requirement,
and is not a function of the tightness of it. Furthermore, the effects of the con-
straints on optimal accuracies vanish as the number of predicates increases, as
optimal accuracies with or without the additional constraints are asymptotically
equal. Finally, for some criteria, their mixing with the accuracy brings the most
negative result: not only does the intractability appears immediately with the
criterion, but also the error cannot be dropped down under that of the unbiased
coin. We then study the replacement of the accuracy criterion using a general
method [6, 7], derived from statistical decision theory, based on a specific bi-
criteria optimization. We show that this method leads to the same drawbacks.
Finally, we investigate the replacement of the error by a single criterion, and
show that it is also to be analyzed very carefully, as some of the “candidates”
lead exactly to the same negative results presented before. The reductions are



184 Richard Nock

presented for a subclass of Horn formalism simple enough to be an element of
the intersection of all classically encountered theoretical ILP studies.

2 Mono and Bi-criteria Solutions to Replace the
Accuracy

Denote as C and H two classes of concepts representations, respectively called
target’s class and hypothesis class. In real-world domains, we do not know the
target concept’s class, that is why we have to make ad hoc choices for H with a
powerful enough formalism, yet ensuring tractability. Even if some benchmarks
problems appear to be easily solvable [3], ML applications, and particularly
ILP, face more difficult problems [9], for which the choice of H is crucial. Since
most of the studies dealing with the accuracy replacement problem have been
investigated with two classes [7], we also consider two-classes problems and not
multi-class cases. It is not really important for us, as results already become hard
in that setting. Let c ∈ C. Suppose that we have drawn examples following some
unknown but fixed distribution D, labelled according to c. We can denote the
accuracy of h ∈ H with respect to (w.r.t.) c by PD(h = c) =

∑
h(x)=c(x) D(x).

2.1 Extending the Accuracy

The principal drawbacks of the accuracy are of two kinds: the equal costs as-
sumption [6], and the well balanced assumption [7]. We propose a solution to
the problem by the maximization of the accuracy subject to constraints. We
also propose criteria on related problems, an example of such being the feature
selection problem, in which we want to build formulae on restricted windows
of the total features set. For any fixed positive rational ν, we use the follow-
ing adequate notion of distance between two reals u, v : dν(u, v) = |u−v|

u+v+ν . We
also use eight rates on the examples (definitions differ slightly from [7]): TP =∑

h(x)=1=c(x) D(x) ; TPR = TP/P ; FP =
∑

h(x)=16=c(x) D(x) ; FPR = FP/N ;
TN =

∑
h(x)=0=c(x) D(x) ; TNR = TN/N ; FN =

∑
h(x)=06=c(x) D(x) ; FNR =

FN/P , with N =
∑

c(x)=0 D(x) and P =
∑

c(x)=1 D(x). In order to complete
the accuracy requirements, we imagine seven types of additional constraints,
each of them being parameterized by a number ζ (between 0 and 1). Each of
them defines a subset ofH, which shall be parameterized by D if the distribution
controls the subset through the constraint. The first three subsets of H contain
hypotheses for which the FP and FN are not far from each other, or a one-
side error is upper bounded: HD,1(ζ) = {h ∈ H|dν(FP, FN) ≤ ζ};HD,2(ζ) =

{h ∈ H|FN ≤ ζ};HD,3(ζ) =
{
h ∈ H|FN ≤ 1

ζ FP
}
. The two following sub-

sets are parameterized by constraints equivalent to some frequently encountered
in the information retrieval community [8], respectively (1 minus) the preci-
sion and (1 minus) the recall criteria: HD,4(ζ) = {h ∈ H|FP/(TP + FP ) ≤ ζ}
; HD,5(ζ) = {h ∈ H|FN/(TP + FN) ≤ ζ}. Define #P(h) as the total num-
ber of different predicates of h, #W(h) as the whole number of predicates of



Complexity in the Case Against Accuracy 185

h(if one predicate is present k times, it is counted k times), and #T as the
total number of different available predicates. The two last subsets of H are
parameterized by formulae respectively having a sufficiently small fraction of
the available predicates, or having a sufficiently small overall size: H6(ζ) =
{h ∈ H|#P(h)/#T ≤ ζ} ;H7(ζ) = {h ∈ H|#W(h)/#T ≤ ζ}. The division by the
total number of different predicates in H7(ζ) is made only for technical reasons:
to obtain hardness results for small values of ζ and thus, already for small sizes
of formulae (in the last constraint). The first problem we address can be sum-
marized as follows:
Problem 1: Given ζ and a ∈ {1, 2, ..., 7}, can we find an algorithm re-
turning a set of Horn clauses from H(D,)a(ζ) whose error is no more
than a given γ, if such an hypothesis exists ?

2.2 Replacing the Accuracy: The ROC Analysis

Receiver Operating Characteristic (ROC) analysis is a traditional methodology
from signal detection theory [1]. It has been used in machine learning recently
[6, 7] in order to correct the main drawbacks of the accuracy. In ROC space (this
is the coordinate system), we visualize the performance of a classifier by plot-
ting TPR on the Y axis, and FPR on the X axis. Figure 1 presents the ROC
analysis, along with three possible outputs which we present and analyze. If a

1

10 0,5

0,5

set of Horn Clauses
TPR

FPR

continuous prediction

random continuous prediction

Fig. 1. The ROC analysis of a learning algorithm.

classifier produces a continuous output (such as an estimate of posterior prob-
ability of an instance’s class membership [7]), for any possible value of FPR,
we can get a value for TPR, by thresholding the output between its extreme
bounds. If a classifier produces a discrete output (such as Horn clauses), then
the classifier gives rise to a single point. If the classifier is the random choice
of the class, either (if it is continuous) the curve is the line y = x, or (if it
is discrete) there is a single dot, on the line y = x. One important thing to
note is that the ROC representation gives the behavior of an algorithm without
regarding the class distribution or the error cost [6]. And it allows to choose
the best of some classifiers, by the following procedure. Fix as K+ the cost



186 Richard Nock

of misclassifying a positive example, and K− the cost of misclassifying a neg-
ative example (these two costs depend on the problem). Then the expected
cost of some classifier represented by point (FPR, TPR) is given by the follow-
ing formula:

∑
c(x)=1 D(x)× (1 − TPR)×K+ +

∑
c(x)=0 D(x)× FPR×K−.

Two algorithms, whose corresponding point are respectively (FPR1, TPR1) and
(FPR2, TPR2), have the same expected cost iff (TPR2 − TPR1)/(FPR2 −
FPR1) = (

∑
c(x)=1 D(x)K+)/(

∑
c(x)=0 D(x)K−). This gives the slope of an

isoperformance line, which only depends on the relative weights of the exam-
ples, and the respective misclassification costs. Given one point on the ROC, the
classifiers performing better are those on the “northwest” of the isoperformance
line with the preceding slope, and to which the point belongs. If we want to
find an algorithm A performing surely better than an algorithm B, we therefore
should strive to find A such that its point lies into the rectangle whose opposite
vertices are the (0, 1) point (the perfect classification) and B’s point (a grey
rectangle is shown on the top left of figure 1). From that, the second problem
we address is the following (Note the constraint’s weakness : the algorithm is
required to work only on a single point):
Problem 2: Given one point (TPRx, FPRx) on the ROC, can we find
an algorithm returning a set of Horn clauses whose point falls into
the rectangle with opposite vertices (0, 1) and (TPRx, FPRx), if such
an hypothesis exists ?

2.3 Replacing the Accuracy by a Single Criterion

The question of whether the accuracy can be replaced by a single criterion instead
of two (such as in ROC) has been raised in [6]. Some researchers [6] propose the
use of the following criterion: (1− FPR)× TPR. A geometric interpretation of
the criterion is the following [6]: it corresponds to the area of a rectangle whose
opposite vertices are (FPR, TPR) and (1, 0). The typical isoperformance curve
is now an hyperbola. The third problem we address is therefore:
Problem 3: Given γ, can we find an algorithm returning a set of Horn
clauses such that (1− FPR)× TPR ≥ γ, if such an hypothesis exists ?

3 Introduction to the Proof Technique

We present here the basic ILP notions which we use, with a basic introduction
to our proofs. Technical parts are proposed in two appendices.

3.1 ILP Background Needed

The ILP background needed to understand this article can be summarized as
follows. More formalization and details are given in [4], but they are not needed
here. Given a Horn clause language L and a correct inference relation on L,
an ILP learning problem can be formalized as follows. Assume a background
knowledge BK expressed in a language LB ⊆ L, and a set of examples E in



Complexity in the Case Against Accuracy 187

a language LE ⊆ L. The goal is to produce an hypothesis h in an hypothesis
class H ⊆ L consistent with BK and E such that h and the background knowl-
edge cover all positive examples and none of the negative ones. Sometimes the
formalism cannot correctly classify all examples according to the preceding sce-
nario, for the reason that the examples describe a complex concept. We may
transform the ILP learning problem to a relaxed version, where we want the
formulae to make sufficiently small errors over the examples. The choice of the
representation languages for the background knowledge and the examples, and
the inference relation greatly influence the complexity (or decidability) of the
learning problem. A common restriction for both BK and E is to use ground
facts. As in [5], we use θ-subsumption as the inference relation (a clause h1 θ-
subsumes a clause h2 iff there exists a substitution θ such that h1θ ⊆ h2 [5, 4]).
In order to treat our problem as a classical ML problem, we use the following
lemma, which authorizes us to create ordinary examples:

Lemma 1. [5] Learning a Horn clause program from a set of ground background
knowledge BK and ground examples E , the inference relation being generalized
subsumption, is equivalent to learning the same program with θ-subsumption,
and empty background knowledge and examples defined as ground Horn clauses
of the form e← b, where e ∈ E and b ∈ BK.

In the following, we are interested in learning concepts in the form of (sets of)
non recursive Horn clauses. It is important to note that all results are still valid
when considering propositional, determinate or local Horn clauses, similarly to
the study of [4], to which we refer for all necessary definitions. For the sake of
simplicity in stating our results, we sometimes abbreviate “Function free Horn
Clauses” by the acronym “FfHC”.

3.2 Basic Tools for the Hardness Results

Concerning problem 1, fix a ∈ {1, 2, 3, 4, 5, 6, 7}. We want to approximate the
best concept in H(D;)a(ζ) by one still in H(D;)a(ζ). However, the best concept
in H(D;)a(ζ) generally does not have an error equal to the optimal one over H
given D, optHD (c). In fact, it has an error that we can denote optH(D;)a(ζ)(c) =
minh′∈H(D;)a(ζ)

∑
h(x) 6=c(x) D(x) ≥ optHD (c). The goodness of the accuracy of a

concept taken from H(D;)a(ζ) should be appreciated with respect to this latter
quantity. Our results on problem 1 are all obtained by showing the hardness of
solving the following decision problem:

Definition 1. Approx-Constrained(H, (a, ζ)):
Instance : A set of negative examples S−, a set of positive examples S+, a
rational weight 0 < w(xi) = ni

di
< 1 for each example xi, a rational 0 ≤ γ < 1.

We assume that
∑

x∈S+∪S− w(xi) = 1.
Question : ∃?h ∈ H(D;)a(ζ) satisfying

∑
h(x) 6=c(x) w(x) ≤ γ ?

Define as ne the size of the largest example we dispose of. Note that when the
constraint is too tight, it can be the case that H(D;)a(ζ) = ∅. Define as |h| the



188 Richard Nock

size of some h ∈ H (in our case, it is the number of Horn clauses of h). In the non-
empty subset of H where formulae are the most constrained (i.e. strengthening
further the constraint gives an empty subset), define noptH(D;)a(ζ)(c) as the size of

the smallest hypothesis. Then, our reductions all satisfy noptH(D;)a(ζ)(c) ≤ (ne)3.
Note that the constraint makes generally optH(D;)a(ζ)(c) > optHD(c). However,

the reductions all satisfy dν

(
optHD (c), optH(D;)a(ζ)(c)

)
= o(1), i.e. asymptotic

values coincide. In addition, the principal result we get (similar for all other
problems) is that we can suppose that the whole time used to write the total set
of Horn clauses is assimilated to O(ne), for any set. By writing time, we mean
time of any procedure consisting only in writing down clauses. Examples of such
a procedure are “write down all clauses having k literals”, or even “write down
all Horn clauses”. Such procedures can be viewed as for-to, or repeat algorithms.
This property authorizes the construction of Horn clause sets having arbitrary
sizes, even exponential. Problem 2 is addressed by studying the complexity of
the following decision problem.

Definition 2. Approx-Constrained-ROC(H, γFPR, γTPR):
Instance : A set of negative examples S−, a set of positive examples S+, a
rational weight 0 < w(xi) = ni

di
< 1 for each example xi, a rational 0 ≤ γ < 1.

We assume that
∑

x∈S+∪S− w(xi) = 1.
Question : ∃?h ∈ H satisfying 1− FPR ≥ 1− γFPR and TPR ≥ γTPR?

Concerning problem 3, the reductions study a single replacement criterion Γ ,
and the following decision problem.

Definition 3. Approx-Constrained-Single(H, Γ, γ):
Instance : A set of negative examples S−, a set of positive examples S+, a
rational weight 0 < w(xi) = ni

di
< 1 for each example xi, a rational 0 ≤ γ < 1.

We assume that
∑

x∈S+∪S− w(xi) = 1.
Question : ∃?h ∈ H satisfying Γ (h) ≤ γ?

4 Hardness Results

Theorem 1. We have:
[1] ∀0 < ζ < 1, Approx-Constrained(FfHC, (1, ζ)) is Hard, when ν < (1− ζ)/ζ.
[2] ∀0 < ζ < 1

2 , Approx-Constrained(FfHC, (2, ζ)) is Hard.
[3] ∀a ∈ {3, 4, 5, 6, 7}, ∀0 < ζ < 1, Approx-Constrained(FfHC, (a, ζ)) is Hard.

At that point, the notion of “hardness” needs to be clarified. By “Hard” we
mean “cannot be solved in polynomial time under some particular complexity
assumption”. The notion of hardness used encompasses that of classical NP -
completeness, since we use the results of [2] involving randomized complexity
classes. All our hardness results are to be read with that precision in mind.
Due to space constraints, only proof of point [1] is presented in appendix 2;
all other results strictly use the same type of reduction. Also, in appendix 1,
we sketch the proof that all distributions under which our negative results are



Complexity in the Case Against Accuracy 189

proven lead to trivial positive results for the same problem when we remove the
additional constraint, and optimize the accuracy alone. While negative results
for optimizing the accuracy itself would naturally hold when considering the
additional constraints, we therefore prove that optimizing the accuracy under
constraint is a strictly more difficult problem, with non-trivial additional draw-
backs. Furthermore, the upperbound error value (γ in def. 1) in constraints 4,
5, 6, 7 can be fixed arbitrarily in ]0, 1/2[, i.e. requiring the Horn clauses set to
perform slightly better than the unbiased coin does not make the problem easier.
We now show that the classical ROC components as described by [7] lead to the
same results as those we claimed for the preceding bi-criteria optimizations. The
problem is all the more difficult as the difficulty appears as soon as we choose
to use ROC analysis, and is not a function of the ROC bounds.

Theorem 2. Approx-Constrained-ROC(FfHC, γFPR, γTPR) is Hard; the result
holds ∀0 < γFPR, γTPR < 1.

The distribution under which the negative result is proven is an easy distribution
for the accuracy’s optimization alone, similarly to those of the seven constraints.
We now investigate the replacement of the accuracy by a single criterion. The
negative result stated in the following theorem is to be read with all additional
drawbacks mentioned for the previous theorems. Again, the distribution under
which the theorem is proven is easy when optimizing the accuracy alone.

Theorem 3. ∃γmax > 0 such that ∀0 < γ < γmax, the problem Approx-
Constrained-Single(FfHC,(1 − FPR)× TPR, γ) is Hard.

(Proof sketch included in appendix 2). As far as we know, γmax ≥ 175
41616 (roughly

4.2× 10−3), but we think that this bound can be much improved.

5 Appendix 1: The Global Reduction

Reductions are achieved from the NP -Complete problem “Clique” [2], whose
instance is a graph A graph G = (X, E), and an integer k. The question is
“Does there exist a clique of size ≥ k in G?”. Of course, “Clique” is not hard to
solve for any value of k. The following lemma establishes values of k for which
we can suppose that the problem is hard to solve (

(
n
k

)
= n!/((n − k)!k!) is the

binomial coefficient):

Theorem 4. (i) We can suppose that
(
k
2

) ≤ |E|, and k is not a constant, oth-
erwise “Clique” is polynomial. (ii) For any α ∈]0, 1[, “Clique” is hard for the
value k = α|X | or k = |X |α.

Proof. (i) is immediate ; (ii) follows from [2]: it is proven that the largest clique
size is not approximable to within |X |β, for any constant 0 < β < 1. Therefore,
the graphs generated have a clique number which is either l, or greater than
l × |X |β , with l < |X |1−β. Therefore, the decision problem is intractable for
values of k > l, which is the case if k = α|X | or k = |X |α, with α ∈]0, 1[. ut



190 Richard Nock

The structure of the examples is the same for any of our reductions. Define
a set of |X | unary predicates a1(.), ..., a|X|(.), in bijection with the vertices of
G. To this set of unary predicates, we add two unary predicates, s(.) and t(.).
The inferred predicate is denoted q(.). The choice of unary predicates is made
only for a simplicity purpose. We could have replaced each of them by l-ary
predicates without changing our proof. Define a set of constant symbols useful
for the description of the examples: {li,j, ∀(i, j) ∈ E} ∪ {l1, l2, l3, l4} ∪ {mi, ∀i ∈
{1, 2, ..., |X |}}. Examples are described in the following way. Positive examples
from S+ are as follows:

∀(i, j) ∈ E, pi,j = q(li,j)← ∧k∈{1,2,...,|X|}\{i,j}ak(li,j) ∧ t(li,j) (1)
p1 = q(l1)← ∧k∈{1,2,...,|X|}ak(l1) ∧ t(l1) (2)
p2 = q(l2)← a1(l2) (3)

Negative examples from S− are as follows:

∀i ∈ {1, 2, ..., |X |}, ni = q(mi)← ∧k∈{1,2,...,|X|}\{i}ak(mi) ∧ t(mi) (4)
n′1 = q(l3)← ∧k∈{1,2,...,|X|}ak(l3) ∧ s(l3) ∧ t(l3) (5)
n′2 = q(l4)← ∧k∈{1,2,...,|X|}ak(l4) ∧ s(l4) (6)

It comes that noptH(D,)a(ζ)(c) = O(|X |3) (coding size of positive examples) and
ne = O(|X |). Non-uniform weights are given to each example, depending on the
constraint to be tackled with. The common-point to all reductions is that the
weights of all examples nj (resp. all pi,j) are equal (resp. to w− and w+). In
each reduction, examples and clauses satisfy:

H1 p2 is forced to be badly classified.
H2 n′1 is always badly classified.
H3 w(n′2) ensures that n′2 is always given the right class, forcing any clause to

contain literal t(.) (When we remove n′2, we ensure that p2 is removed too).

Lemma 2. Any clause containing literal s(.) can be removed.

Proof. Suppose that one clause contains s(.). Then it can be θ-subsumed by n′1
and by no other example (even if n′2 exists, because of H3); but n′1 θ-subsumes
any clauses and also the empty clause. Therefore, removing the clause does not
modify the value of any criteria based on the examples weights. Concerning the
sixth constraint, the fraction of predicates used after removing the clause is at
most the one before, thus, if the clause is an element of H6(ζ) before, it is still
an element after. The same remark holds for the seventh constraint. ut
As a consequence, p1 is always given the positive class (even by the empty
clause!). We now give a general outline of the proof for Problem 1 ; reductions
are similar for the other problems. Given h = {h1, h2, ..., hl} a set of Horn clauses,
we define the set I = {i ∈ {1, 2, ..., |X |}|∃j ∈ {1, 2, ..., l}, ai(.) 6∈ hj}, and we fix
|I| = k′. In our proofs, we define two functions taking rational values, E(k′) and
Fa(k′) (k′ ∈ {1, 2, ..., |X |}, a = 1, 2, 3, 4, 5, 6, 7). They are chosen such that:



Complexity in the Case Against Accuracy 191

– E(k′) is strictly increasing,
∑

x∈S+∪S−|h(x) 6=c(x) w(x) ≥ E(k′) and E(k) = γ.
– Fa(k′) is strictly decreasing, is a lowerbound of the function insideH(D,)a(ζ),

and Fa(k) = ζ (excepted for a = 3, F3(k) = 1/ζ).

∀a ∈ {1, 2, 3, 4, 5, 6, 7}, if there exists an unbounded set of Horn clauses h ∈
H(D,)a(ζ) satisfying

∑
(x∈S+∧h(x)=0)∨(x∈S−∧h(x)=1) w(x) ≤ γ, its error rate im-

plies k′ ≤ k and constraint implies k′ ≥ k. So |I| = k′ = k. The interest of the
weights is then to force

(
k
2

)
positive examples from the set {pi,j}(i,j)∈E to be well

classified, while we ensure the misclassification of at most k negative examples
of the set {ni}i∈{1,2,...,|X|}. It comes that these

(
k
2

)
examples correspond to the(

k
2

)
edges linking the |I| = k vertices corresponding to negative examples badly

classified. We therefore dispose of a clique of size ≥ k.
Conversely, ∀a ∈ {1, 2, 3, 4, 5, 6, 7}, given some clique of size k whose set of ver-
tices is denoted I, we show that singleton h = q(X) ← ∧i∈{1,2,...,|X|}\Iai(X) ∧
t(X) is ∈ H(D,)a(ζ), satisfying

∑
(x∈S+∧h(x)=0)∨(x∈S−∧h(x)=1) w(x) ≤ γ. In this

case, noptH(D,)a(ζ)(c) drops down to O(ne).

All distributions used in theorems 1 and 3 are such that w+ < w−/|X |, at least
for graphs exceeding a fixed constant size. Also, due to the negative examples of
weights w−, if we remove the additional constraints and optimize the accuracy
alone, we can suppose that the optimal Horn clause is a singleton: merging all
clauses by keeping over predicates aj(.) only those present in all clauses does
not decrease the accuracy. Under such a distribution, the optimal Horn clause
necessarily contains all predicates aj(.), and the problem becomes trivial. The
distribution in theorem 2 satisfies w+ = w−. This is also a simple distribution
for the accuracy’s optimization alone: indeed, the optimal Horn clause over pred-
icates aj(.) is such that it contains no predicates aj(.) that does not appear at
least in one positive example. If the graph instance of “Clique” is connex (and
we can suppose so, otherwise the problem boils down to find the largest clique
in one of the connected components), then the optimal Horn clause does not
contain any of the aj(.).

6 Appendix 2: Proofs of Negative Results

6.1 Proof of Point [1], Theorem 1

Weights of positive examples: w(p2) = 1
2(1−ζ)

(
ζν + |X |2w−(1 + ζ)

)
; ∀(i, j) ∈ E,

w(pi,j) = w+ = w−
(|X|+k)2 ; w(p1) = 1

2

(
1− ζν

1−ζ

)
− 1

2

(
w−|X |2

[
1+ζ
1−ζ + |X | − k

])
−

1
2

(
w+

[
1−ζ
1+ζ

(
|E| − (

k
2

))
+ |X |

])
. Weights of negative examples: w(n′2) = 1/2;

∀j ∈ {1, 2, ..., |X |}, w(nj) = w− = 1
|X|2|E|2 ; w(n′1) = 1

2

(
1−ζ
1+ζ

(
|E| − (

k
2

))
w+

)
+

1
2

(
(|X |2 − k)w−)

.

Fix γ =
(
w(p2) + w(n′1) + kw− +

(
|E| − (

k
2

)))
/2 (note that w(n′2) ensures that

n′2 is given the right class), and kmax = 1 + max
2≤k′′≤|X|:|E|−(k′′

2 )≥0
k′′. From



192 Richard Nock

the choice of weights, lcm(∪xi∈S+∪S−di) = O(|X |8) (“lcm” is the least com-
mon multiple), which is polynomial. Define the functions: ∀k′ ∈ {0, 1}, E(k′) =
|E|w++k′w−+w(p2)+w(n1); ∀2 ≤ k′ ≤ kmax, E(k′) =

(
|E| − (

k′
2

))
w++k′w−+

w(p2)+w(n1); ∀kmax < k′ ≤ |X |, E(k′) = k′w−+w(p2)+w(n1). From the choice
of weights, E(k) = γ. ∀k′ ∈ {0, 1}, F1(k′) = ||E|w+ − k′w− + w(p2)− w(n1)|/q;
∀2 ≤ k′ ≤ kmax, F1(k′) = |

(
|E| − (

k′

2

)) − k′w− + w(p2) − w(n1)|/q; ∀kmax <

k′ ≤ |X |, F1(k′) = | − k′w− + w(p2) − w(n1)|/q, with q = ν + |E|w+ + k′w− +
w(p2) + w(n1). From the choice of weights, F1(k) = ζ.
The equation obtained when k′ < kmax takes its maximum for integer val-
ues when k′ = (|X | + k)2 + 0, 5 ± 0, 5 > |X |. Furthermore, ∀1 ≤ kmax ≤
|X |,

(
|E| − (

kmax−1
2

))
w+ < w− , which leads to E(kmax − 1) < E(kmax). In

a more general way, E(k′) is strictly increasing over natural integers. Now
remark that the numerator of F1(k′) is strictly decreasing, and its denomi-
nator strictly increasing. Therefore, F1(k′) is strictly decreasing. Furthermore
dν

(∑
h(x) 6=1=c(x) w(x),

∑
h(x) 6=0=c(x) w(x)

)
≥ F1(k′). If ∃h ∈ H{wi},1(ζ) satisfy-

ing
∑

h(x) 6=c(x) w(x) ≤ γ, the error rate implies k′ ≤ k and the constraint implies
k′ ≥ k. Thus |I| = k′ = k. As pointed out in the preceding appendix, this leads
to the existence of a clique of size ≥ k.
Reciprocally, the Horn clause h constructed in Appendix 1 satisfies both relations
h ∈ H{wi},1(ζ), and

∑
h(x) 6=c(x) w(x) ≤ γ. Indeed, we have

∑
h(x) 6=1=c(x) w(x) =(

|E| − (
k
2

))
w+ + w(p2), but also

∑
h(x) 6=0=c(x) w(x) = kw− + w(n1). Therefore,

dν

(∑
h(x) 6=1=c(x) w(x),

∑
h(x) 6=0=c(x) w(x)

)
= F1(k) = ζ and h ∈ H{wi},1(ζ). We

have also
∑

h(x) 6=c(x) w(x) = E(k) = γ. The reduction is achieved. We end by re-

marking that dν

(
optH{wi}(c), optH{wi},1(ζ)(c)

)
≤ (|E|w+ + |X |w−)/

(
ζν

1−ζ + ν
)
,

which is o(1) (as |X | → ∞ or |E| → ∞), as claimed in subsection 3.2.

6.2 Proof Sketch of Theorem 3

Remark that TPR(1−FPR) = TPR×TNR. Weights are as follows for positive
examples (we do not use p2):

∀(i, j) ∈ E, w(pi,j) = w+ =
γ

(|X | − k)w− ×
[(

k
2

)
+

(|X|+1)2−
(
k− |X|+1

3

)2−3|X|
6

]

w(p1) = w+ ×
(

(|X |+ 1)2 −
(
k − |X|+1

3

)2

− 3|X |
)

/6. Weights are as follows

for negative examples (we do not use n′2): ∀j ∈ {1, 2, ..., |X |}, w(nj) = w− =
1/(|X | + k); w(n′1) = 1 − |E|w+ − |X |w− − w(p1). The choice of γmax comes
from the necessity of keeping weights within correct limits. We explain how to the
existence of a clique, by describing a polynomial of degree 3, F (k′) which upper-
bounds TPR×TNR, and of course has the desirable property of having its maxi-



Complexity in the Case Against Accuracy 193

mum for k′ = k, with value γ, and with no other equal or greater values on the in-
terval [0, |X |]. Similarly to the other proofs, the value γ can only be reached when
k′ = k represents k “holes” among predicates {aj(.)}, and this induces a size-k
clique in the graph. Define the function F (k′) as follows. ∀k′ ∈ {0, 1}, F (k′) =
w(p1)× (|X | − k′)w−; ∀2 ≤ k′ ≤ kmax, F (k′) =

((
k′
2

)
w+ + w(p1)

)
(|X | − k′)w−;

∀kmax < k′ ≤ |X |, F (k′) = (|E|w+ + w(p1))(|X | − k′)w−. With our choice of
weights, and inside the values of k′ for which we described k (clearly, in the
second F (k′)), F describes a polynomial of degree 3, shown in figure 2. F upper-

k’=k

|X |+1)/3k’=(k’=2( |X |+1)/3- k

|X |

γ

>0

<

=

k’

k’

F k’)(

γ

Fig. 2. Scheme of F (k′) =
((

k′

2

)
w+ + w(p1)

)
(|X | − k′)w−.

bounds TPR×TNR of any set of Horn clauses, and the demand on TPR×TNR
leads to a single favorable case: the ”holes” inside the set of Horn clauses describe
a clique of size k′ = k in the graph.



A Method of Similarity-Driven Knowledge

Revision for Type Specializations

Nobuhiro Morita, Makoto Haraguchi, and Yoshiaki Okubo

Division of Electronics and Information Engineering, Hokkaido University
N-13 W-8, Sapporo 060-8628, JAPAN

{morita,makoto,yoshiaki}@db-ei.eng.hokudai.ac.jp

Abstract. This paper proposes a new framework of knowledge revision,
called Similarity-Driven Knowledge Revision. Our revision is invoked
based on a similarity observation by users and is intended to match with
the observation. Particularly, we are concerned with a revision strat-
egy according to which an inadequate variable typing in describing an
object-oriented knowledge base is revised by specializing the typing to
more specific one without loss of the original inference power. To realize
it, we introduce a notion of extended sorts that can be viewed as a concept
not appearing explicitly in the original knowledge base. If a variable typ-
ing with some sort is considered over-general, the typing is modified by
replacing it with more specific extended sort. Such an extended sort can
efficiently be identified by forward reasoning with SOL-deduction from
the original knowledge base. Some experimental results show the use of
SOL-deduction can drastically improve the computational efficiency.

1 Introduction

This paper proposes a novel method of knowledge revision (KR), called Similar-
ity-Driven Knowledge Revision. In traditional KR methods previously proposed
(e.g. [1]), their revision processes are triggered by some examples logically in-
consistent with an original knowledge base. Then the knowledge base should be
revised so that its extension (defined by a set of facts derived from it) becomes
consistent with the examples. As a result, the inconsistency in the knowledge
base will be removed.

Although we can have several revision methods to remove the conflict as a
logical inconsistency, a minimal revision principle is especially preferred. Here
the principle implies a strategy for selecting a new knowledge base that has a
minimal extension consistent with the examples. Thus, both the notion of con-
flicts in knowledge bases and the basic revision strategy have been investigated
in terms of extensions.

However, even if we find no extensional conflict in our knowledge base, we
might need to revise it from an non-extensional viewpoint. We intend to utilize
the revision from the non-extensional viewpoint to make our revision faster in the
presence of extensional conflicts and to do revision even for cases not involving
them.

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 194–205, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



A Method of Similarity-Driven Knowledge Revision for Type Specializations 195

male females’

male_with_long_hair female_with_long_hair
(male       has_long_hair)> (female        has_long_hair)>

Fig. 1. Extensional Relationship between male and female

As a first approach to such a non-extensional revision, this paper considers
a conflict caused by an over-general typing of variables in an object-oriented
knowledge base. When the knowledge base contains an over-general typing of
some variable, then it deduces negative facts that will eventually be observed.
However, it is not only way to find the over-general typing. This paper proposes
to use a notion of similarities between types to find the inappropriateness, and
tries to present a revision method based on it. As a type becomes more general,
we have more chances to observe properties and rules shared by another type.
Thus the possible class of similarities between types will contain a similarity that
does not meet a user’s intention.

Suppose we have a method for finding a similarity ψ for a given knowledge
base. There exist two cases where the similarity does not fit a user’s intention: 1)
ψ shows the similarity between types s1 and s2, while the user considers they are
not similar and 2) ψ shows the dissimilarity between s1 and s2, while the user
considers they are similar. This paper is especially concerned with a knowledge
revision in the former case, assuming GDA, Goal-Dependent Abstraction, as an
algorithm to find the similarities between types under an order-sorted logic,
where the types are called sorts in the logic.

Given a knowledge base KB and a goal G to be proved, GDA detects an
appropriate similarity for G between sorts s1 and s2 reflected in KB if the same
property relevant to G is shared for both s1 and s2. For example, suppose we
have knowledge “if female has a property has long hair, then female has a
property takes long time shower” and “ifmale has the property has long hair,
then male has the property takes long time shower”. It can be represented as
the following order-sorted clauses:

“takes long time shower(X : female)← has long hair(X : female)” and

“takes long time shower(X : male)← has long hair(X : male)”.

In these clauses, the description “X : s” is called a variable typing and means that
the range of the value is restricted to an object (constant) belonging to the sort s.
For the knowledge, GDA detects a similarity between female and male with re-
spect to the property “takes long time shower”. However, this similarity seems
not to fit our intuition very well. Such an unfitness would come from the fact
that “has long hair” would be considered as a feasible feature for female, while
not so for male, as illustrated in Fig. 1. This implies that the variable typing
X : male is inappropriate in the sense of over-general. We consider such a wrong
typing as an intensional conflict in the original knowledge base and try to resolve
it. The wrong typing X : male is specialized (revised) by finding a new sort con-
cept s′ that is a subconcept of male and has the concept “male with long hair”



196 Nobuhiro Morita, Makoto Haraguchi, and Yoshiaki Okubo

as its subconcept, as shown in Fig. 1. In a word, such a new s′ is an imaginable
subconcept of male that has the property “has long hair” as its feasible fea-
ture like female has. For the revised knowledge base, GDA detects a similarity
between s′ and female that seems to fit our intuition.

Thus, our revision is triggered when we recognized an unfitness of detected
similarity. Therefore, we call it Similarity-Driven Knowledge Revision.

A newly introduced imaginable concept is defined as an extended sort. An
extended sort denotes a concept that does not appear explicitly in the original
knowledge base. If a variable typing X : s is considered over-general, the typing
is modified by replacing the general sort s with a more specific extended sort
s′. In order for the extended sort to be meaningful, we present four conditions
to be satisfied. It is theoretically showed that such an extended sort can be
identified by a forward reasoning from the original knowledge base. Especially, a
forward reasoning with SOL-deduction is adopted for an efficient computation.
Some experimental results show that the use of SOL-deduction can drastically
improve the computational efficiency.

2 Preliminaries

In this section, we introduce some fundamental terminologies and definitions 1.
Our knowledge base consists of the following three components.

Sort Hierarchy: A sort hierarchy is given as a partially ordered set of sort
symbols, H = (S,�). Each sort s ∈ S denotes a sort concept and is interpreted
as the set of possible instances of the concept. The relation s � s′ means that s
is a subconcept of s′.
Type Declaration: A type declaration, TD, is a finite set of typed constants
that is of the form {c1 : s1, . . . , cn : sn}, where ci is a constant symbol denoting
an object and si is a sort in S. A typed constant ci : si declares that the object
denoted by ci primarily belongs to the sort concept si, where si is called the
primary type (or simply, type) of ci which is referred to as [ci]. The extension of
sort is defined as follows:

Definition 1 (Extension of Sort). Let s be a sort. The extension of s, As, is
defined as As = {c | [c] � s}. We say that c belongs to s, if c ∈ As.
From the interpretation, it is obvious that if s � s′ and [c] = s, then c belongs
to s′ as well as to s.
Domain Theory: A domain theory (or simply, theory), T , is a set of function-
free Horn clauses of the form A ← B1 ∧ · · · ∧ Bk, where A and Bi are positive
literals of the form p(t1, . . . , tm) and each term ti is a typed variable Xi : si
or a typed constant. A typed variable Xi : si means that the range of values
is restricted to instances belonging to si. On the other hand, we assume that a
predicate p can take objects of any sort concept as its arguments.

1 Throughout this paper, we assume that the notions with respect to First-Order Logic
are familiar to the reader.



A Method of Similarity-Driven Knowledge Revision for Type Specializations 197

The inference under our knowledge base is the same as standard first-order
deduction except the following point:

Every substitution θ = {Xi : si/ti} should satisfy the type constraint
that [ti] � si. That is, the variable must be instantiated to a variable or
a constant of more specific sort concept 2.

3 Goal-Dependent Abstraction

In this section, we briefly present a framework of Goal-Dependent Abstraction
that is used as the basis of our similarity finding algorithm GDA.

3.1 Abstraction Based on Sort Mapping

We first introduce a framework of abstraction based on sort mapping, an extended
version of the framework of abstraction based on predicate mapping [3].

Definition 2 (Sort Mapping). Let (S,�) be a sort hierarchy. A sort mapping
is a mapping ψ : S

onto7−→ S′, where S′ is an abstract sort set such that S ∩S′ = φ.

A sort mapping can easily be extended to a mapping over a set of any ex-
pressions. For an expression E, ψ(E) is defined as the expression obtained by
mapping the sort symbols in E under ψ.

For any expressions E1 and E2, if ψ(E1) = ψ(E2) = E′, then E1 and E2 are
said to be similar and to be instantiations of E′ under ψ. Thus, a sort mapping
can be viewed as a representation of similarity between sorts. Therefore, we often
use the term “similarity” as a synonym for “sort mapping”.

Definition 3 (Theory Abstraction Based on Sort Mapping). Let KB =<
(S,�), TD, T > be an order-sorted (concrete) knowledge base and ψ : S onto7−→ S′

be a sort mapping. The abstract domain theory of T based on ψ, SortAbsψ(T ), is
defined as SortAbsψ(T ) = {C′ | ∀C ∈ ψ−1(C′) T ` C}, where for an expression
E′, ψ−1(E′) is defined as ψ−1(E′) = {E | ψ(E) = E′}.

For example, assume we have a domain theory consisting of three clauses
(facts) p(X : s1), p(X : s2) and q(X : s1). Based on a similarity ψ such that
ψ(s1) = ψ(s2) = s′, the first two clauses can be preserved as an abstract
clause p(X : s′), while the last one cannot so. Thus, only such a property p
shared among all similar sorts are preserved by the abstraction process. Based
on this interesting characteristic, a dynamic abstraction framework, called Goal-
Dependent Abstraction, has been proposed [4,5].

2 We consider in this paper only substitutions satisfying this constraint.



198 Nobuhiro Morita, Makoto Haraguchi, and Yoshiaki Okubo

3.2 Appropriate Similarity for Goal

When we try to prove a goal from our knowledge base, the used (necessary)
knowledge is completely dependent on the goal. Observing which properties
(knowledge) can be preserved in the abstraction process based on a similarity,
we define an appropriateness of similarity with respect to a given goal.

Definition 4 (Appropriateness of Similarity for Goal). Let T be a theory,
ψ a similarity and G a goal. Assume that G can be proved from T and Proof(G)
is the set of clauses in T that are used in a proof of G. The similarity ψ is said
to be appropriate for G if ψ(Proof(G)) ⊆ SortAbsψ(T ).

If a similarity ψ is appropriate for a goal G, it is implied that the properties
appearing in Proof(G) (that is, the properties relevant to G) are shared among
all similar sorts defined by ψ 3. Since such an appropriate similarity depends on
a goal we try to prove, we can realize a goal-dependent aspect of abstraction
based on an appropriate similarity for the given goal.

Given a knowledge base and a goal to be proved, an algorithm GDA detects an
appropriate similarity for the goal. Discussing GDA in more detail is beyond the
scope of this paper. Its precise description can be found in the literatures [4,5].
In our knowledge revision, GDA is used to detect a similarity reflected in our
knowledge base. Our revision process is invoked when the detected similarity
does not fit our intuition.

4 Similarity-Driven Knowledge Revision for Type
Specialization

In this section, we propose a novel method of knowledge revision, called Similar-
ity-Driven Knowledge Revision. Before giving a formal descriptions, we present
some assumptions imposed in the following discussion.

Our knowledge revision is triggered by an observation of undesirable similar-
ity that is reflected in a given original knowledge base. For a knowledge base and
a goal G, assume GDA detects a similarity ψ such that s1 'ψ s2. For the similar-
ity, assume that a user considers they are not similar because the user recognizes
some difference between s1 and s2 with respect to the plausibility of a property
p relevant to G, as illustrated in the first section. In this case, our knowledge
base is tried to revise by specializing a variable typing with s1 or s2, which is
considered too general with respect to the property p. However, since such a
recognition of over-generality seems to highly depend on the user’s subjectivity,
our revision system would not be able to decide itself which variable typing to
be specialized. Therefore, we assume that a variable typing to be specialized is
given to the system by the user as an input.

In our knowledge base, the occurrence of a given variable typing to be spe-
cialized might not be identified uniquely. In that case, it would be desired to
3 Briefly speaking, in terms of EBL method [6], this means that for any similar sort, the

goal G can be explained in the same way (that is, the same explanation structure).



A Method of Similarity-Driven Knowledge Revision for Type Specializations 199

adequately specialize all of the occurrences. Although one might consider that a
naive way is to specialize them individually, the result of one specialization pro-
cess deeply affects subsequent specializations. It is not so easy to obtain a good
characterization of such a complicated revision at the present time. In this pa-
per, therefore, we deal with only a case where a variable typing to be specialized
can uniquely be identified.

4.1 Extended Sort

We first introduce a notion of extended sort that is a core concept in our revision.
In our method, a modification of the type s of a variable is realized by finding

a new sort s′ that is more specific than s. Such a newly introduced sort is precisely
defined as an extended sort.

Definition 5 (Extended Sort). Let us consider a conjunction of atoms, es,
and focus on a typed variable X : s in es. Then, es is called an extended sort
with the root variable X . The root variable is referred to as Root(es).

An extended sort is interpreted as the set of possible instances of its root
variable, as defined below. In the definition, a Herbrand model of a theory T is
a subset M of Herbrand base
B = {p(a1, ..., an)|p is a predicate symbol and aj is a typed constant symbol}

which satisfies a condition that for any clause A ← Bs in T and any ground
substitution θ, Aθ ∈ M whenever Bsθ ⊆ M.

Definition 6 (Extension of Extended Sort). Let T be a theory and M be
an Herbrand Model of T . Consider an extended sort es such that Root(es) = X .
The extension of es with respect to M, EM(es), is defined as

EM(es) = {Xθ | θ is a ground substitution to es such that esθ ⊆M}.
For a constant c, if c ∈ EM(es), then it is said that c belongs to es.

For example, es = has a child(X : person, Y : person) ∧ likes(Y,Z : dog) with the
root variable X is interpreted as the set of persons each of which has a child
who likes a dog. Thus the variables except the root variable are existentially
quantified.

An ordering on extended sorts can be introduced based on their extensions.

Definition 7 (Ordering on Extended Sorts). Let T be a theory and ES
be the set of all extended sorts. For any extended sorts es1 and es2 in ES,
es1 �T es2 iff for any Herbrand Model M of T,EM(es1) ⊆ EM(es2).

Let us consider an extended sort, es1 = has son(X : father, Y : boy)∧dislikes(Y,X),
whose root variable is X . es1 means fathers each of which has a (young) son who
dislikes his father. By the definition, es1 is a subsort of father and parent under
a sort hierarchy involving father ≺ parent and boy ≺ young person. As a more
general concept placed between es1 and parent, we can suppose fathers each of
which has a child who dislikes his/her parent, father or mother (possibly both



200 Nobuhiro Morita, Makoto Haraguchi, and Yoshiaki Okubo

of two). It will be expressed by an extended sort es2 = has child(X : father,W :

young person), dislikes(W,Z : parent). It can be drawn from the following knowl-
edge that es1 is a special case of es2:
– Domain Theory: We know has child(X,Y ) ← has son(X,Y ). Therefore
es1 is a special case of es3 = has child(X : father, Y : boy), dislikes(Y,X).

– Sort Hierarchy: For the existentially quantified variables Z : parent and
W : young person in es2 to have their values, it suffices to have values
in their subsort father and boy, respectively. In addition, it is possible to
identify Z with X (that is, Z and X are the same person). This is done by
a substitution ζ = {Z : parent/X : father,W : young person/Y : boy}. Thus
any instance of es3 turns out to be an instance of es2.

As a result, it is found es1 is more specific than es2 (via es3). We can summarize
this argument by the following proof-theoretic characterization of the ordering.

Theorem 1. Let T be a theory and es1 and es2 be extended sorts such that
Root(es1) = Root(es2) = X . Consider a ground substitution θ to es1 that
substitutes no constant appearing in T . Then for a ground substitution σ to es2
such that Xθ = Xσ, es1 �T es2 iff T ` es2σ ← es1θ.

4.2 Revising Knowledge Base by Specializing Type of Variable

We describe here our specialization process for over-general variable typing.
For a knowledge base KB =< H,TD, T > and a goal G, let us assume that

GDA detects a similarity ψ such that s1 'ψ s2 and a user considers that s1 and
s2 are not similar. In addition, assume the user considers a variable typing by
s1 to be over-general.

Let “C = P ← ES” be a clause in Proof(G), where ES is a conjunction of
atoms and contains a typed variable X : s1. Here we consider ES as an extended
sort whose root variable is X .

For an expression E, E(t,t′) denotes the resultant expression obtained by re-
placing every occurrence of t in E with t′. Since GDA detects s1 'ψ s2, it is found
from Definition 4 that the clause “C(X:s1,X:s2) = P(X:s1,X:s2) ← ES(X:s1,X:s2)” is
true (provable) under the original knowledge base. Nevertheless, this similarity
does not fit the user’s intuition.

This unfitness would be caused in a situation such as one illustrated in Fig. 1.
In this example, the objects of s1 satisfying ES are a small part of s1, while ones
of s2 satisfying ES(X:s1,X:s2) are most of s2. In a word, the objects of s2 satisfying
ES(X:s1,X:s2) would be considered typical, while ones of s1 satisfying ES not so.
In order for GDA not to detect a similarity between them, we introduce a new
sort s′1 which is a subsort of s1 and subsumes ES (refer to Fig. 1). Then, the
original clause C is modified into a new clause “C(X:s1,X:s′1) = P(X:s1,X:s′1) ←
ES(X:s1,X:s′1)”. Furthermore, the newly introduced sort s′1 is adequately inserted
into the original sort hierarchy and the original type declaration is modified. As
a result, for the revised knowledge base, GDA detects a similarity between s′1 and
s2 instead of one between s1 and s2. It should be emphasized here that since s′1
subsumes the extended sort ES, the extension of the original knowledge base is
not affected by this revision. That is, our revision can be considered minimal.
Below we discuss our specialization process in more detail.



A Method of Similarity-Driven Knowledge Revision for Type Specializations 201

Identifying Newly Introduced Sort: The newly introduced sort s′1 is pre-
cisely defined as an extended sort that is identified according to the following
criterion.

Definition 8 (Appropriateness of Introduced Extended Sort). If an ex-
tended sort es satisfies the following conditions, then it is considered as an ap-
propriate extended sort to be introduced:
C1 : ES �T es.
C2 : For any answer substitution θ to es w.r.t. the knowledge

base KB, there exists a term t such that X : s1/t ∈ θ.
C3 : es ∩ ES = φ.
C4 : For any es0 such that es0 ⊆ es and any selection of root variable in

P and es0, P 6�T es0.
By the condition C1, it is guaranteed that the revision causes no influence on
the extension of the original knowledge base. C2 is required in order for s′1 to
become a proper subsort of s1. C3 and C4 are imposed to remove redundant
descriptions.

An appropriate extended sort is basically computed in a generate-and-test
manner. According to Theorem 1, a forward reasoning from T ∪ {ESθ} is per-
formed to obtain a candidate es such that T ∪{ESθ} ` esσ. Then the candidate
is tested for its appropriateness based on the conditions C2, C3 and C4. If the
candidate is verified to satisfy those conditions, the newly introduced sort s′1 is
defined by es. Based on the definition of es, the user might assign an adequate
sort symbol to s′1 if he/she prefers.

For an efficient computation of es, we present an useful theorem and propose
to adopt a reasoning method, SOL-deduction [7].

Theorem 2. Let C = P ← ES be the clause in Proof(G) to be replaced in the
revision, and es be an extended sort such that Root(es) = Root(ES) = X : s.
If es satisfies C1, C2 and C4, then (T − {C}) ∪ {ESθ} ` esσ and T − {C} 6` esσ,
where θ is a ground substitution to ES that substitutes no constant appearing
in T and σ is a ground substitution to es such that Xθ = Xσ.

From the theorem, it is sufficient for our candidate generation to perform a
forward reasoning from (T − {C}) ∪ {ESθ}, instead of from T ∪ {ESθ}. Since
removing C from T will reduce the cost of the forward reasoning, we can expect
an efficient candidate generation.

In addition, the theorem says that any candidate derived from T − {C} is
quite useless to obtain an appropriate extended sort. That is, it is sufficient
to have candidates that can newly be derived by adding ESθ to T − {C}. If
we have a method by which we can efficiently obtain such candidates, desired
extended sorts can be obtained more efficiently. We can obtain such an efficient
method with the help of SOL-deduction [7]. Briefly speaking, for a theory T and
a clause C, by performing SOL-deduction from T ∪{C}, we can centrally obtain
all clause that can newly be derived by adding C to T . This characteristic of
SOL-deduction is quite helpful for our task of candidate generation. However, it
should be noted that we still have to test for the appropriateness based on C2,
C3 and C4.



202 Nobuhiro Morita, Makoto Haraguchi, and Yoshiaki Okubo

Inserting Extended Sort into Sort Hierarchy: After the computation of
the newly introduced sort s′1 (defined as es), we have to modify the original sort
hierarchy by inserting s′1 into an adequate position. Such a position is identified
according to the following theorems.

Theorem 3. Let es be an extended sort such that Root(es) = X : s. For any
Herbrand ModelM, EM(es) ⊆ As.
The theorem says that the new sort s′1 should be a subsort of s1 in the resultant
hierarchy.

Theorem 4. Let es be an extended sort such that Root(es) = X : s. If there
exists an answer substitution θ to es with respect to KB such that Xθ = Y : t
(where Y is a new variable), then for any Herbrand ModelM, At ⊆ EM(es).

Let Θ be the set of answer substitutions to es. Consider the set of sorts Subses
such that Subes = {s | θ ∈ Θ and X : s1/Y : s appears in θ}. Theorem 4 says that
s′1 should have every sort in Subes as its subsort in the resultant hierarchy.

Modifying Type Declaration: As well as the modification of sort hierarchy,
a modification of type declaration might be needed.

The modification have to be performed according to the condition that ∀c ∈
EMT (es), c belongs to s′1, where MT is the Least Herbrand Model of T . The
next theorem shows how to modify the original type declaration.

Theorem 5. Let es be an extended sort such that Root(es) = X : s. The next
two statements are equivalent:

– c ∈ EMT (es).
– There exists an answer substitution θ to es with respect to KB such that
Xθ = c, or Xθ = Y : t (where Y is a new variable) and c ∈ At.

In the case where an answer substitution θ such that Xθ = Y : t is obtained,
no modification of type declaration is necessary. In this case, since the original
sort hierarchy is modified and t becomes a subsort of s′1 as the result, c ∈ At
obviously belongs to s′1.

In the case where an answer substitution θ such that Xθ = c is obtained, let
Θ be the set of answer substitutions to es. Consider the set of constants Instes
defined as Instes = {c | θ ∈ Θ and X : s1/c appears in θ}. From Theorem 5, for any
c ∈ Instes, we have to modify the original type declaration TD into TD′ based
on which it is implied that c belongs to s′1. Let us assume that for a constant
c ∈ Instes, c : t ∈ TD. We have to take two cases into account. In the first case
where t = s1, the original type s1 of c is simply replaced with s′1. In the second
case where t 6= s1, the type s1 of c is replaced with a sort sc that corresponds
to a common subsort of t and s′1, since the type of a constant should be unique.
As such a sc, it might be necessary to introduce a quite new sort and then the
sort hierarchy might be modified following the introduction.

Our revision process is summarized as an algorithm in Fig. 2.



A Method of Similarity-Driven Knowledge Revision for Type Specializations 203

Input: A knowledge base KB =< H, TD, T >.
Proof(G): the set of clauses that is used to prove a goal G from KB.
A sort s to be specialized.

Output: A revised knowledge base KB′ =< H′, TD′, T ′ >.

1. Extract a clause C = P ← ES from Proof(G) such that a variable typed with s appears in its
body, and the variable X typed with s to the root variable of ES.

2. Derive esσ from (T − {C}) ∪ {ESθ} by a forward reasoning with SOL-deduction, where θ is a
ground substitution to ES that substitutes no constant appearing in KB.
Then make sure that es satisfies the appropriateness conditions C2, C3 and C4. If such a es
cannot be found, terminate with failure.

3. Inform that a new sort s′ to be introduced can be defined as es.
4. Revise H to H′ by replacing the clause C in T with C′ = P(X:s,X:s′) ← ES(X:s,X:s′).
5. Modify H into H′ by inserting the new sort s′ into an adequate position.
6. Modify TD into TD′ by redeclaring with s′ or with a quite new sort s′′ if necessary. In the

latter case, modify H′ following the introduction of s′′.
7. Output the new knowledge base KB′ =< H′, TD′, T ′ > and terminate.

Fig. 2. Algorithm for Knowledge Revision by Type Specialization

Sort Hierarchy H and Type Declaration TD :

aluminum_cup     plastic_cup     ceramic_cup     steel_cup     aluminum_can     aluminum     steel     plastic     ceramic

cup can

metal

material

steel_cansteel_can

Domain Theory T :

throw away on friday(X) ← incombustible(X). made of(X : aluminum cup, aluminum : metal).
throw away on tuesday(X) ← combustible(X). made of(X : plastic cup, plastic : material).
incombustible(X : cup)← made of(X : cup, Y : metal). made of(X : ceramic cup, ceramic : material).
incombustible(X : can)← made of(X : can, Y : metal). made of(X : steel can, steel : metal).
has handle(X : cup) ← made of(X : cup, Y : metal). made of(X : aluminum can, aluminum : metal).

Fig. 3. Order-Sorted Knowledge Base

4.3 Example of Similarity-Driven Knowledge Revision

We illustrate here our revision processes for a knowledge base shown in Fig. 3 4.
For the knowledge base and a goal G = throw away on friday(X), we obtain

Proof(G) = { throw away on friday(X)← incombustible(X),
incombustible(X : cup)← made of(X : cup, Y : metal),
made of(X : cup, aluminum : metal) }.

And GDA detects a similarity ψ such that cup 'ψ can. Let us assume that
contrary to the similarity, a user considers that cup and can are not similar and
considers a variable typing with cup to be over-general.

A clause in Proof(G) whose body contains a variable typed with cup is
C = incombustible(X : cup) ← made of(X : cup, Y : metal), where made of(X :
cup, Y : metal) is considered as an extended sort ES whose root variable is

4 In the figure, the sort hierarchy and type declaration are given in a hierarchical form.
A plain line denotes a “is a subsort of” relation and a dotted line corresponds to a
declaration of constant type. For example, it is declared that the type of a constant
aluminum is a sort metal.



204 Nobuhiro Morita, Makoto Haraguchi, and Yoshiaki Okubo

Table 1. Experimental Results

KB Size R. Type Num. of Atoms Exec. Time KB Size R. Type Num. of Atoms Exec. Time

10

FWR-T 4 80

40

FWR-T 6 1130
FWR-TC 2 50 FWR-TC 2 1020
SOL-T 4 10 SOL-T 6 40
SOL-TC 2 0 SOL-TC 2 20

X . According to Theorem 2, consider a ground instance of ES with a substi-
tution θ = {X : cup/a, Y : metal/b}, where a and b are constants not appear-
ing in the original knowledge base. By a forward reasoning from (T − {C}) ∪
{made of(a, b)}, an atom has handle(a) can be derived.

As the next step, has handle(X : cup) is tested for its appropriateness.
The answer substitution to the goal has handle(X : cup) is {X : cup/Y :
aluminum cup}, where Y is a new variable. Therefore, has handle(X : cup)
satisfies C2. It is obvious that it satisfies C3. Furthermore, since incombustible(X :

cup) 6�T has handle(X : cup), C4 is satisfied as well. Therefore, it is verified that
has handle(X : cup) is an appropriate extended sort.

Let s be a new sort defined by the extended sort has handle(X : cup). The
sort s is tried to put to an adequate position in the original sort hierarchy. It
is easily found that s becomes a subsort of cup. Moreover, since s subsumes
the extended sort ES = made of(X : cup, Y : metal), only aluminum cup can
become a subsort of s.

The original type declaration does not need to be modified in this revision.
Finally, replace the original clause C with C(X:cup,X:s) = incombustible(X :

s)← made of(X : s, Y : metal).
The extension of the newly introduced sort s is defined as one of has handle(X :

cup). Some sort symbol meaning “cup with handle” might be assigned to s.

5 Experimental Results

We have implemented a knowledge revision system based on our algorithm and
made an experimentation to verify its usefulness 5. We show the results here.

As discussed previously, we have four ways to obtain an extended sort to be
introduced: 1) by forward reasoning from T∪{ESθ}, 2) by forward reasoning from
(T − {C}) ∪ {ESθ}. 3) by SOL-deduction from T ∪ {ESθ}. 4) by SOL-deduction
from (T −{C})∪ {ESθ}. In our experimental results, they are referred to as rea-
soning types, “FWR-T ”, “FWR-TC”, “SOL-T ” and “SOL-TC”, respectively. We
provided two knowledge bases consisting of 10 clauses and 40 clauses. For each
knowledge base and reasoning type, the number of atoms defining an extended
sort and the execution time (msec.) were examined. Our experimental results
are shown in Table 1.

The results show that the removal of C affects the quality of computed ex-
tended sorts. For both knowledge bases, some unnecessary atoms were derived
5 Our system has been written in SICStus Prolog and run on a SPARC-station 5.



A Method of Similarity-Driven Knowledge Revision for Type Specializations 205

by the reasonings from T . Moreover, such a meaningless derivation undesirably
affects the execution times. It is, therefore, considered that the removal of C is
effective to improve both the efficiency and the quality of our knowledge revision.

The experimental results also show that the use of SOL-deduction can dras-
tically reduce the execution time. The reduction ratios tend to be large as knowl-
edge base grows. This implies that the use of SOL-deduction would be useful to
improve the efficiency of our revision even in a real domain. We are currently
considering a legal domain [4] as an attractive application field for our method.

6 Concluding Remarks

In this paper, we presented a novel framework of Similarity-Driven Knowledge
Revision. Our revision process is invoked by an observation of undesirable sim-
ilarity reflected in the original knowledge base. The knowledge base is revised
by specializing an over-general variable typing X : s into more specific X : s′.
The central task is to find an extended sort es by which s′ is precisely defined
and is an imaginable subsort of s. For the efficient computation of the extended
sort, we presented an effective proof-theoretic property and proposed the use of
SOL-deduction. A drastic improvement of the efficiency was empirically verified.

An important future work is to investigate this kind of knowledge revision in a
case where several over-general variable typings are found. Further investigation
would be needed to obtain a good characterization of this complicated revision.

Contrary to the assumption on similarity observation in this paper, it would
also be worth studying a revision method in a case where a dissimilarity between
two sorts is detected by GDA, while the user considers they are similar. In this
case, it might be needed to add some new clauses to the original knowledge base
as well as modifying variable typings.

References

1. S. Wrobel. Concept Formation and Knowledge Revision, Kluwer Academic Publish-
ers, Netherlands, 1994.

2. C. Walter. Many-Sorted Unification, Journal of the Association for Computing Ma-
chinery, Vol. 35 No. 1, 1988, pp.1–17.

3. D. J. Tenenberg. Abstracting First-Order Theories, Change of Representation and
Inductive Bias (P. D. Benjamin, ed. ), Kluwer Academic Publishers, USA, 1989, pp.
67–79.

4. T. Kakuta, M. Haraguchi and Y. Okubo. A Goal-Dependent Abstraction for Le-
gal Reasoning by Analogy, Artificial Intelligence & Law, Vol.5, Kluwer Academic
Publishers, Netherlands, 1997, pp. 97–118.

5. Y. Okubo and M. Haraguchi. Constructing Predicate Mappings for Goal-Dependent
Abstraction, Annals of Mathematics and Artificial Intelligence, Vol.23, 1998, pp.
169–197.

6. T. Mitchell, R. Keller and S. Kedar-Cabelli. Explanation-Based Generalization: A
Unifying View, Machine Learning, Vol.1, 1986, pp. 47–80.

7. K. Inoue. Liner Resolution for Consequence-Finding, Artificial Intelligence, Vol. 56
No. 2–3, 1992, pp 301–353.



PAC Learning with Nasty Noise

Nader H. Bshouty?, Nadav Eiron, and Eyal Kushilevitz

Computer Science Department, Technion, Haifa 32000, Israel.
{bshouty,nadav,eyalk}@cs.technion.ac.il

Abstract. We introduce a new model for learning in the presence of
noise, which we call the Nasty Noise model. This model generalizes pre-
viously considered models of learning with noise. The learning process
in this model, which is a variant of the PAC model, proceeds as follows:
Suppose that the learning algorithm during its execution asks for m ex-
amples. The examples that the algorithm gets are generated by a nasty
adversary that works according to the following steps. First, the ad-
versary chooses m examples (independently) according to the fixed (but
unknown to the learning algorithm) distribution D as in the PAC-model.
Then the powerful adversary, upon seeing the specific m examples that
were chosen (and using his knowledge of the target function, the distri-
bution D and the learning algorithm), is allowed to remove a fraction
of the examples at its choice, and replace these examples by the same
number of arbitrary examples of its choice; the m modified examples are
then given to the learning algorithm. The only restriction on the adver-
sary is that the number of examples that the adversary is allowed to
modify should be distributed according to a binomial distribution with
parameters η (the noise rate) and m.
On the negative side, we prove that no algorithm can achieve accuracy
of ε < 2η in learning any non-trivial class of functions. On the positive
side, we show that a polynomial (in the usual parameters, and in ε− 2η)
number of examples suffice for learning any class of finite VC-dimension
with accuracy ε > 2η. This algorithm may not be efficient; however, we
also show that a fairly wide family of concept classes can be efficiently
learned in the presence of nasty noise.

1 Introduction

Valiant’s PAC model of learning [23] is one of the most important models for
learning from examples. Although being an extremely elegant model, the PAC
model has some drawbacks. In particular, it assumes that the learning algo-
rithm has access to a perfect source of random examples. Namely, upon request,
the learning algorithm can ask for random examples and in return gets pairs
(x, ct(x)) where all the x’s are points in the input space distributed identically
and independently according to some fixed probability distribution D, and ct(x)
is the correct classification of x according to the target function ct that the
algorithm tries to learn.

Since Valiant’s seminal work, there were several attempts to relax these as-
sumptions, by introducing models of noise. The first such noise model, called the
? Some of this research was done while this author was at the Department of Computer

Science, the University of Calgary, Canada.

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 206–218, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



PAC Learning with Nasty Noise 207

Random Classification Noise model, was introduced in [2] and was extensively
studied, e.g., in [1,6,10,14,15,17]. In this model the adversary, before providing
each example (x, ct(x)) to the learning algorithm tosses a biased coin; when-
ever the coin shows “H”, which happens with probability η, the classification
of the example is flipped and so the algorithm is provided with the, wrongly
classified, example (x, 1− ct(x)). Another (stronger) model, called the Malicious
Noise model, was introduced in [24], revisited in [18], and was further studied in
[8,11,12,13,21]. In this model the adversary, whenever the η-biased coin shows
“H”, can replace the example (x, ct(x)) by some arbitrary pair (x′, b) where x′
is any point in the input space and b is a boolean value. (Note that this in
particular gives the adversary the power to “distort” the distribution D.)

In this work, we present a new model which we call the Nasty (Sample) Noise
model. In this model, the adversary gets to see the whole sample of examples
requested by the learning algorithm before giving it to the algorithm and then
modify E of the examples, at its choice, where E is a random variable distributed
by the binomial distribution with parameters η and m, where m is the size of the
sample1. The modification applied by the adversary can be arbitrary (as in the
Malicious Noise model).2 Intuitively speaking, the new adversary is more pow-
erful than the previous ones – it can examine the whole sample and then remove
from it the most “informative” examples and replace them by less useful and
even misleading examples (whereas in the Malicious Noise Model for instance,
the adversary also may insert to the sample misleading examples but does not
have the freedom to choose which examples to remove). The relationships be-
tween the various models are shown in Table 1.

Random Noise-Location Adversarial Noise-Location

Label Noise Only Random Classification Noise Nasty Classification Noise
Point and Label Noise Malicious Noise Nasty Sample Noise

Table 1. Summary of models for PAC-learning from noisy data

We argue that the newly introduced model, not only generalizes the previous
noise models, including variants such as Decatur’s CAM model [13] and CPCN
model [14], but also, that in many real-world situations, the assumptions previ-
ous models made about the noise seem insufficient. For example, when training
data is the result of some physical experiment, noise may tend to be stronger in
boundary areas rather than being uniformly distributed over all inputs. While
special models were devised to describe this situation in the exact-learning set-
ting (for example, the incomplete boundary query model of Blum et al., [5]), it
may be regarded as a special case of Nasty Noise, where the adversary chooses to
provide unreliable answers on sample points that are near the boundary of the
target concept (or to remove such points from the sample). Another situation to
which our model is related is the setting of Agnostic Learning. In this model, a

1 This distribution makes the number of examples modified be the same as if it were
determined by m independent tosses of an η-biased coin. However, we allow the
adversary’s choice be dependent on the sample drawn.

2 We also consider a weaker variant of this model, called the Nasty Classification Noise
model, where the adversary may modify only the classification of the chosen points
(as in the Random Classification Noise model).



208 Nader H. Bshouty, Nadav Eiron, and Eyal Kushilevitz

concept class is not given. Instead, the learning algorithm needs to minimize the
empirical error while using a hypothesis from a predefined hypotheses class (see,
for example, [19] for a definition of the model). Assuming the best hypothesis
classifies the input up to an η fraction, we may alternatively see the problem
as that of learning the hypotheses class under nasty noise of rate η. However,
we note that the success criterion in the agnostic learning literature is different
from the one used in our PAC-based setting.

We show two types of results. Sections 3 and 4 show information theoretic re-
sults, and Sect. 5 shows algorithmic results. The first result, presented in Sect. 3,
is a bound on the quality of learning possible with a nasty adversary. This result
shows that any learning algorithm cannot learn any non-trivial concept class
with accuracy less than 2η when the sample contains nasty noise of rate η. It
is complemented by a matching positive result in Sect. 4 that shows that any
class of finite VC-dimension can be learned by using a sample of polynomial size,
with any accuracy ε > 2η. The size of the sample required is polynomial in the
usual PAC parameters and in 1/∆ where ∆ = ε− 2η is the margin between the
requested accuracy ε and the above mentioned lower bound.

The main, quite surprising, result (presented in Sect. 5) is another positive
result showing that efficient learning algorithms are still possible in spite of
the powerful adversary. More specifically, we present a composition theorem
(analogous to [3,8] but for the nasty-noise learning model) that shows that any
concept class that is constructed by composing concept classes that are PAC-
learnable from a hypothesis class of fixed VC-dimension, is efficiently learnable
when using a sample subject to nasty noise. This includes, for instance, the class
of all concepts formed by any boolean combination of half-spaces in a constant
dimension Euclidean space. The complexity here is, again, polynomial in the
usual parameters and in 1/∆. The algorithm used in the proof of this result is
an adaptation to our model of the PAC algorithm presented in [8].

Our results may be compared to similar results available for the Malicious
Noise model. For this model, Cesa-Bianchi et al. [11] show that the accuracy
of learning with malicious noise is lower bounded by η/(1 − η). A matching
algorithm for learning classes similar to those presented here with malicious
noise is presented in [8]. As for the Random Classification Noise model, learning
with arbitrary small accuracy, even when the noise rate is close to a half, is
possible. Again, the techniques presented in [8] may be used to learn the same
type of classes we examine in this work with Random Classification Noise.

2 Preliminaries

In this section we provide basic definitions related to learning in the PAC model,
with and without noise. A learning task is specified using a concept class, denoted
C, of boolean concepts defined over an instance space, denoted X . A boolean
concept c is a function c : X 7→ {0, 1}. The concept class C is a set of boolean
concepts: C ⊆ {0, 1}X .

Throughout this paper we sometimes treat a concept as a set of points instead
of as a boolean function. The set that corresponds to a concept c is simply
{x|c(x) = 1}. We use c to denote both the function and the corresponding set
interchangeably. Specifically, when a probability distribution D is defined over
X , we use the notation D(c) to refer to the probability that a point x drawn
from X according to D will have c(x) = 1.



PAC Learning with Nasty Noise 209

2.1 The Classical PAC Model

The Probably Approximately Correct (PAC) model was originally presented by
Valiant [23]. In this model, the learning algorithm has access to an oracle PAC
that returns on each call a labeled example (x, ct(x)) where x ∈ X is drawn
(independently) according to a fixed distribution D over X , unknown to the
learning algorithm, and ct ∈ C is the target function the learning algorithm
should “learn”.

Definition 1. A class C of boolean functions is PAC-learnable using hypothesis
class H in polynomial time if there exists an algorithm that, for any ct ∈ C, any
0 < ε < 1/2, 0 < δ < 1 and any distribution D on X , when given access to the
PAC oracle, runs in time polynomial in log |X |, 1/δ, 1/ε and with probability at
least 1− δ outputs a function h ∈ H for which: PrD[ct(x) 6= h(x)] ≤ ε.

2.2 Models for Learning in the Presence of Noise

Next, we define the model of PAC-learning in the presence of Nasty Sample
Noise (NSN for short). In this model, a learning algorithm for the concept class
C is given access to an (adversarial) oracle NSNC,η(m). The learning algorithm
is allowed to call this oracle once during a single run. The learning algorithm
passes a single natural number m to the oracle, specifying the size of the sample
it needs, and gets in return a labeled sample S ∈ (X × {0, 1})m. (It is assumed,
for simplicity, that the algorithm knows in advance the number of examples it
needs; It is possible to extend the model to circumvent this problem.)

The sample required by the learning algorithm is constructed as follows: As
in the PAC model, a distribution D over the instance space X is defined, and
a target concept ct ∈ C is chosen. The adversary then draws a sample Sg of
m points from X according to the distribution D. Having full knowledge of the
learning algorithm, the target function ct, the distribution D, and the sample
drawn, the adversary chooses E = E(Sg) points from the sample, where E(Sg) is
a random variable. The E points chosen by the adversary are removed from the
sample and replaced by any other E point-and-label pairs by the adversary. The
m−E points not chosen by the adversary remain unchanged and are labeled by
their correct labels according to ct. The modified sample of m points, denoted S,
is then given to the learning algorithm. The only limitation that the adversary
has on the number of examples that it may modify is that it should be distributed
according to the binomial distribution with parameters m and η, namely:

Pr[E = n] =
(

m
n

)
ηn(1− η)m−n,

where the probability is taken by first choosing Sg ∈ Dm and then choosing E
according to the corresponding random variable E(Sg).

Definition 2. An algorithm A is said to learn a class C with nasty sample noise
of rate η ≥ 0 with accuracy parameter ε > 0 and confidence parameter δ < 1
if, given access to any oracle NSNC,η(m), for any distribution D and any target
ct ∈ C it outputs a hypothesis h : X 7→ {0, 1} such that, with probability at least
1− δ the hypothesis satisfies PrD[h4ct] ≤ ε.



210 Nader H. Bshouty, Nadav Eiron, and Eyal Kushilevitz

We are also interested in a restriction of this model, which we call the Nasty
Classification Noise learning model (NCN for short). The only difference be-
tween the NCN and NSN models is that the NCN adversary is only allowed
to modify the labels of the E chosen sample-points, but it cannot modify the
E points themselves. Previous models of learning in the presence of noise can
also be readily shown to be restrictions of the Nasty Sample Noise model: The
Malicious Noise model corresponds to the Nasty Noise model with the adversary
restricted to introducing noise into points that are chosen uniformly at random,
with probability η, from the original sample. The Random Classification Noise
model corresponds to the Nasty Classification Noise model with the adversary
restricted so that noise is introduced into points chosen uniformly at random,
with probability η, from the original sample, and each point that is chosen gets
its label flipped.

2.3 VC Theory Basics

The VC-dimension [25], is widely used in learning theory to measure the com-
plexity of concept classes. The VC-dimension of a class C, denoted VCdim(C),
is the maximal integer d such that there exists a subset Y ⊆ X of size d for
which all 2d possible behaviors are present in the class C, and VCdim(C) = ∞
if such a subset exists for any natural d. It is well known (e.g., [4]) that, for
any two classes C and H (over X ) of VC-dimension d, the class of negations
{c|X \ c ∈ C} has VC-dimension d, and the class of unions {c ∪ h|c ∈ C, h ∈ H}
has VC-dimension at most 2max {VCdim(C), VCdim(H)}+1 = O(d). Following
[3] we define the dual of a concept class:

Definition 3. The dual H⊥ ⊆ {0, 1}H of a class H ⊆ {0, 1}X is defined to be
the set

{
x⊥|x ∈ X}

where x⊥ is defined by x⊥(h) = h(x) for all h ∈ H.

If we view a concept class H as a boolean matrix MH where each row represents
a concept and each column a point from the instance space, X , then the matrix
corresponding to H⊥ is the transpose of the matrix MH. The following claim,
from [3], gives a tight bound on the VC dimension of the dual class:

Claim 1: For every class H, VCdim(H) ≥ ⌊
log VCdim(H⊥)

⌋
.

In the following discussion we limit ourselves to instance spaces X of finite
cardinality. The main use we make of the VC-dimension is in constructing α-
nets. The following definition and theorem are from [7]:

Definition 4. A set of points Y ⊆ X is an α-net for concept class H ⊆ {0, 1}X
under distribution D over X , if for every h ∈ H such that D(h) ≥ α, Y ∩h 6= ∅.

Theorem 1. For any class H ⊆ {0, 1}X of VC-dimension d, any distribution
D over X , and any α > 0, δ > 0, if m ≥ max

{
4
α log 2

δ , 8d
α log 13

α

}
examples are

drawn i.i.d. from X according to the distribution D, they constitute an α-net for
H with probability at least 1− δ.

In [22], Talagrand proved a similar result:



PAC Learning with Nasty Noise 211

Definition 5. A set of points Y ⊆ X is an α-sample for the concept class
H ⊆ {0, 1}X under the distribution D over X , if it holds that every h ∈ H
satisfies

∣∣∣D(h)− |Y ∩h|
|Y |

∣∣∣ ≤ α.

Theorem 2. There is a constant c1, such that for any class H ⊆ {0, 1}X of
VC-dimension d, and distribution D over X , and any α > 0, δ > 0, if m ≥
c1
α2

(
d + log 1

δ

)
examples are drawn i.i.d. from X according to the distribution D,

they constitute an α-sample for H with probability at least 1− δ.

2.4 Consistency Algorithms

Let P and N be subsets of points from X . We say that a function h : X 7→ {0, 1}
is consistent on (P, N) if h(x) = 1 for every “positive point” x ∈ P and h(x) = 0
for every “negative point” x ∈ N . A consistency algorithm (see [8]) for a pair
of classes (C,H) (both over the same instance space X ), receives as input two
subsets of the instance space, (P, N), runs in time t(|P ∪N |), and satisfies the
following. If there is a function in C that is consistent with (P, N), the algorithm
outputs “YES” and some h ∈ H that is consistent with (P, N), or “NO” if no
consistent h ∈ H exist (there is no restriction on the output in the case that
there is a consistent function in H but not in C).

Given a subset of points of the instance space Q ⊆ X , we will be inter-
ested in the set of all possible partitions of Q into positive and negative ex-
amples, such that there is a function h ∈ H and a function c ∈ C that are
both consistent with this partition. This may be formulated as: SCON(Q) =
{P | CON(P, Q \ P ) = “YES”} where CON is a consistency algorithm for (C,H).
Bshouty [8] shows the following, based on the Sauer Lemma [20]:

Lemma 1. For any set of points Q, |SCON(Q)| ≤ |Q|VC-dim(H).

Furthermore, an efficient algorithm for generating this set of partitions (along
with the corresponding functions h ∈ H) is presented, assuming that C is PAC-
learnable from H of constant VC dimension. The algorithm’s output is denoted
ŜCON(Q)

4
={((P, Q \ P ), h) | P ∈SCON(Q) and h is consistent with (P, Q \ P )}.

3 Information Theoretic Lower Bound

In this section we show that no learning algorithm (not even inefficient ones)
can learn a “non-trivial” concept class with accuracy ε better than 2η under the
NSN model; in fact, we prove that this impossibility result holds even for the
NCN model.

Definition 6. A concept class C over an instance space X is called non-trivial
if there exist two points x1, x2 ∈ X and two concepts c1, c2 ∈ C, such that
c1(x1) = c2(x1) and c1(x2) 6= c2(x2).

Theorem 3. Let C be a non-trivial concept class, η be a noise rate and ε < 2η
be an accuracy parameter. Then, there is no algorithm that learns the concept
class C with accuracy ε under the NCN model (with rate η).



212 Nader H. Bshouty, Nadav Eiron, and Eyal Kushilevitz

Proof sketch: We base our proof on the method of induced distributions
introduced in [18, Theorem 1]. We show that there are two concepts c1, c2 ∈ C
and a probability distribution D such that PrD(c14c2) = 2η and an adversary
can force the labeled examples shown to the learning algorithm to be distributed
identically both when c1 is the target and when c2 is the target.

Let c1 and c2 be the two concepts whose existence is guaranteed by the fact
that C is a non-trivial class, and let x1, x2 ∈ X be the two points that satisfy
c1(x1) = c2(x1) and c1(x2) 6= c2(x2). We define the probability distribution D to
be D(x1) = 1− 2η, D(x2) = 2η, and D(x) = 0 for all x ∈ X \ {x1, x2}. Clearly,
we indeed have PrD(c14c2) = PrD(x2) = 2η.

The adversary will modify exactly half of the sample points of the form (x2, ε)
to (x2, 1−ε). This would result with the learning algorithm being given a sample
effectively drawn from the following induced distribution:

Pr(x1, c1(x1)) = 1− 2η and Pr(x2, c1(x2)) = Pr(x2, c2(x2)) = η.

This induced distribution would be the same no matter whether the true target
is c1 or c2. Therefore, according to the sample that the learning algorithm sees,
it is impossible to differentiate between the case where the target function is c1

and the case where the target function is c2. ut
Note that in the above proof we indeed take advantage of the “nastiness”

of the adversary. Unlike the malicious adversary, our adversary can focus all its
“power” on just the point x2, causing it to suffer a relatively high error rate,
while examples in which the point is x1 do not suffer any noise. Finally, since
any NCN adversary is also a NSN adversary, Theorem 3 implies the following:

Corollary 1. Let C be a non-trivial concept class, η > 0 be the noise rate, and
ε < 2η be an accuracy parameter. There is no algorithm that learns the concept
class C with accuracy ε under the NSN model, with noise rate η.

4 Information Theoretic Upper Bound

In this section we provide a positive result that complements the negative result
of Sect. 3. This result shows that, given a sufficiently large sample, any hypothesis
that performs sufficiently well on the sample (even when this sample is subject
to nasty noise) satisfies the PAC learning condition. Formally, we analyze the
following generic algorithm for learning any class C of VC-dimension d, whose
inputs are a certainty parameter δ > 0, the nasty error rate parameter η < 1

2
and the required accuracy ε = 2η + ∆:

Algorithm NastyConsistent:

1. Request a sample S = {(x, bx)} of size m ≥ c
∆2

(
d + log 2

δ

)
2. Output any h ∈ C such that |{x ∈ S : h(x) 6= bx}| ≤ m(η +∆/4) (if no such

h exists, choose any h ∈ C arbitrarily).

Theorem 4. Let C be any class of VC-dimension d. Then, (for some constant
c) algorithm NastyConsistent is a PAC learning algorithm under nasty sample
noise of rate η.



PAC Learning with Nasty Noise 213

Proof. By Hoeffding’s inequality [16], with probability 1 − δ/2 the number of
sample points that are modified by the adversary E is at most m(η + ∆/4).

Now, we note that the target function ct, errs on at most E points of the
sample shown to the learning algorithm (as it is completely accurate on the non-
modified sample Sg). Thus, with high probability Algorithm NastyConsistent
will be able to choose a function h ∈ C that errs on no more that (η + ∆/4)m
points of the sample shown to it. However, in the worst case, these errors of the
function h occur in points that were not modified by the adversary. In addition,
h may be erroneous for all the points that the adversary did modify. Therefore,
all we are guaranteed in this case, is that the hypothesis h errs on no more
that 2E points of the original sample Sg. By Theorem 2, there exists a constant
c such that, with probability 1 − δ/2, the sample Sg is a ∆

2 -sample for the
class of symmetric differences between functions from C. By the union bound we
therefore have that, with probability at least 1− δ, E ≤ (η + ∆/4)m, meaning
that |Sg ∩ (ct4h)| ≤ (2η + ∆/2)m, and that Sg is a ∆/2-sample for the class of
symmetric differences, and so: PrD[(ct4h)] ≤ 2η + ∆ = ε as required. ut

5 Composition Theorem for Learning with Nasty Noise

Following [3] and [8], we define the notion of “composition class”: Let C be a
class of boolean functions g : X 7→ {0, 1}n. Define the class C? to be the set of
all boolean functions F (x) that can be represented as f(g1(x), . . . , gk(x)) where
f is any boolean function, and gi ∈ C for i = 1, . . . , k. We define the size of
f(g1, . . . , gk) to be k. Given a vector of hypotheses (h1, . . . , ht) ∈ Ht define the
set W(h1, . . . , ht) to be the set of sub-domains Wa = {x|(h1(x), . . . , ht(x)) = a}
for all possible vectors a ∈ {0, 1}t.

We now show a variation of the algorithm presented in [8] that can learn
the class C? with a nasty sample adversary, assuming that the class C is PAC-
learnable from a class H of constant VC dimension d. The algorithm builds
on the fact that a consistency algorithm CON for (C,H) can be constructed,
given an algorithm that PAC learns C from H [8]. This algorithm can learn the
concept class C? with any confidence parameter δ and with accuracy ε that is
arbitrarily close to the lower bound of 2η, proved in the previous section. Its
sample complexity and computational complexity are both polynomial in k, 1/δ
and 1/∆, where ∆ = ε− 2η.

The algorithm is based on the following idea: Request a large sample from
the oracle and randomly pick a smaller sub-sample from the sample retrieved.
The random choice of a sub-sample neutralizes some of the power the adversary
has, since the adversary cannot know which examples are the ones that will
be most “informative” for us. Then use the consistency algorithm for (C,H) to
find one representative from H for any possible behavior on the smaller sub-
sample. These hypotheses from H now define a division of the instance space
into “cells”, where each cell is characterized by a specific behavior of all the
hypotheses picked. The final hypotheses is simply based on taking a majority
vote among the complete sample inside each such cell.

To demonstrate the algorithm, we consider (informally) the specific, relatively
simple, case where the class to be learned is the class of k intervals on the line
(see Fig. 1). The algorithm, given a sample as input, proceeds as follows:



214 Nader H. Bshouty, Nadav Eiron, and Eyal Kushilevitz

1. The algorithm uses a “small”, random sub-sample to divide the line into
sub-intervals. Each two adjacent points in the sub-sample define such a sub-
interval.

2. For each such sub-interval the algorithm calculates a majority vote on the
complete sample. The result is our hypothesis.

The number of points (which in this specific case is the number of sub-intervals)
the algorithm chooses in the first step depends on k. Intuitively, we want the total
weight of the sub-intervals containing the target’s end-points to be relatively
small (this is what is called the “bad part” in the formal analysis that follows).
Naturally, there will be 2k such “bad” sub-intervals, so the larger k is, the
larger the sub-sample needed. Except for these “bad” sub-intervals, all other
subintervals on which the algorithm errs have to have at least half of their
points modified by the adversary. Thus the total error will be roughly 2η, plus
the weight of the “bad” sub-intervals.

Target Concept:

(Errornous) Sample points:

Sub-sample and intervals:

"Bad" "Bad" "Bad" "Bad"

Algorithm’s hypothesis:

Fig. 1. Example of NastyLearn for intervals.

Now, we proceed to a formal description of the learning algorithm. Given
the constant d, the size k of the target function3, the bound on the error rate η,
the parameters δ and ∆, and two additional parameters M, N (to be specified
below), the algorithm proceeds as follows:

Algorithm NastyLearn:

1. Request a sample S of size N .
2. Choose uniformly at random a sub-sample R ⊆ S of size M .
3. Use the consistency algorithm for (C,H) to compute

ŜCON(R) = {((P1, R \ P1), h1), . . . , ((Pt, R \ Pt), ht)} .
4. Output the hypotheses H(h1, . . . , ht), computed as follows: For any Wa ∈
W(h1, . . . , ht) that is not empty, set H to be the majority of labels in S∩Wa.
If Wa is empty, set H to be 0 on any x ∈ Wa.

3 The algorithm can use the “doubling” technique in case that k is not given to it. In
this case however, the sample size is not known in advance and so we need to use
the extended definition of the Nasty Noise model that allows repetitive queries to
the oracle.



PAC Learning with Nasty Noise 215

Theorem 5. Let

M = max
(

24k

∆
log

8
δ
,
c2dk

∆
log

78k

∆

)
and N =

M c1d2d

k2

∆2

(
2dd + log

4
δ

)

where c1 and c2 are constants. Then, Algorithm NastyLearn learns the class C?

with accuracy ε = 2η + ∆ and confidence δ in time polynomial in k, 1
δ , and 1

∆ .

Before commencing with the actual proof, we present a technical lemma:

Lemma 2. Assuming N is set as in the statement of Theorem 5, with probability
at least 1− δ

4 , E (the number of points in which errors are introduced) is at most
(η + ∆/12)N .

For lack of space, the proof is omitted (see [9] for details). We are now ready to
present the proof of Theorem 5:

Proof. To analyze the error made by the hypothesis that the algorithm generates,
let us denote the adversary’s strategy as follows:

1. Generate a sample of the requested size N according to the distribution D,
and label it by the target concept F . Denote this sample by Sg.

2. Choose a subset Sout ⊆ Sg of size E = E(Sg), where E(Sg) is a random
variable (as defined in Sect. 2.2).

3. Choose (maliciously) some other set of points Sin ⊆ X × {0, 1} of size E.
4. Hand to the learning algorithm the sample S = (Sg \ Sout) ∪ Sin.

Assume the target function F is of the form F = f(g1, . . . , gk). For all i ∈
{1, . . . , k}, denote by hji , where ji ∈ {1, . . . , t}, the hypothesis the algorithm
have chosen in step 3 that exhibits the same behavior gi has over the points of R
(from the definition of ŜCON we are guaranteed that such a hypothesis exists).
By definition, there are no points from R in hji4gi, so:

R ∩ (hji4gi) = ∅. (1)

As the VC-dimension of both the class C of all gi’s and the class H of all hi’s
is d, the class of all their possible symmetric differences also has VC-dimension
O(d) (see Sect. 2.3). By applying Theorem 1, when viewing R as a sample taken
from S according to the uniform distribution, and by choosing M to be as in
the statement of the theorem, R will be an α-net (with respect to the uniform
distribution over S) for the class of symmetric differences, with α = ∆/6k, with
probability at least 1− δ/4. Note that there may still be points in S which are
in hji4gi. Hence, we let S(i) = S ∩ (hji4gi). Now, by using (1) we get that
|S(i)|
|S| ≤ ∆

6k with probability at least 1− δ/4, simultaneously for all i.
For every sub-domain B ∈ W(h1, . . . , ht) we define:

NB
4
= |Sg ∩B| , N in

B

4
= |Sin ∩B|

Nout,g
B

4
=

∣∣∣Sout ∩B ∩⋃
i(hji4gi)

∣∣∣ , Nout,b
B

4
= |Sout ∩B ∩⋃

i(hji4gi)|
Nα

B

4
= |S ∩B ∩⋃

i(hji4gi)|



216 Nader H. Bshouty, Nadav Eiron, and Eyal Kushilevitz

In words, NB and N in
B simply stand for the size of the restriction of the original

(noise-free) sample Sg and the noisy examples Sin introduced by the adversary
to the sub-domain B. The other definitions are based on the distinction between
the “good” part of B, where the gis and the hjis behave the same, and the “bad”
part, which is present due to the fact that the gis and the hjis exhibit the same
behavior only on the sub-sample R, rather than on the complete sample S.

Since the hypothesis takes a majority vote in each sub-domain, then it will
err on the domain B ∩ (

⋃
i(hji4gi)) if the number of examples left untouched in

B is less than the number of examples in B that were modified by the adversary,
plus those that were misclassified by the hjis (with respect to the gis). This
may be formulated as the following condition: N in

B + Nα
B ≥ NB −Nout,g

B −Nα
B.

Therefore, the total error the algorithm may experience is at most:

D

[⋃
i

hji4gi

]
+

∑
B: NB≤N in

B
+N

out,g
B

+2Nα
B

D(B).

We now calculate a bound for each of the two terms above separately. To bound
the second term, note that by Theorem 2 our choice of N guarantees Sg to be a

∆
6|W(h1,...,ht)| -sample for our domain with probability at least 1− δ/4. Note that
from the definition of W(h1, . . . , ht) and from the Sauer Lemma [20] we have
that |W(h1, . . . , ht)| ≤ tVCdim(H⊥), which, with Claim 1 and Lemma 1 yields:

|W(h1, . . . , ht)| ≤ MVCdim(H)VCdim(H⊥) ≤ Md2d

Our choice of N indeed guarantees, with probability at least 1− δ/4 that:

∑
B: NB≤N in

B
+N

out,g
B

+2Nα
B

D(B)≤
∑

B: NB≤N in
B

+N
out,g
B

+2Nα
B

(
NB

N
+

∆

6 |W(h1, . . . , ht)|
)

≤∆

6
+

∑
B∈W(h1,...,ht)

N in
B +Nout,g

B +2Nα
B

N

From the above choice of N , it follows that Sg is also a ∆
6|W(h1,...,ht)| -sample for

the class of symmetric differences of the form hji4gi. Thus, with probability at
least 1− δ/4, we have:

k∑
i=1

D(hji4gi) ≤ 2∆

6
+

∑
B∈W(h1,...,ht)

Nout,b
B

N
.

The total error made by the hypothesis (assuming that none of the four bad
events happen) is therefore bounded by:

Pr
D

[H4F ] ≤ 3∆

6
+

∑
B∈W(h1,...,ht)

N in
B + Nout,g

B + Nout,b
B + 2Nα

B

N
≤ 2η + ∆ = ε,

as required. This bound holds with certainty at least 1− δ. ut



PAC Learning with Nasty Noise 217

References

1. J. A. Aslam and S. E. Decatur, “General Bounds on Statistical Query Learning
and PAC Learning with Noise via Hypothesis Boosting”, FOCS93, pp. 282-291,
1993.

2. D. Angluin and P. Laird, “Learning from Noisy Examples”, Machine Learning,
Vol. 2, pp. 343–370, 1988.

3. S. Ben-David, N. H. Bshouty and E. Kushilevitz, “A Composition Theorem for
Learning Algorithms with Applications to Geometric Concept Classes”, STOC97,
pp. 324–333, 1997.

4. S. Ben-David and A. Litman, “Combinatorial Variability of Vapnik–Chervonenkis
Classes with Applications to Sample Compression Schemes”, Discrete Applied Math
86, pp. 3–25, 1998.

5. A. Blum, P. Chalasani, S. A. Goldman, and D. K. Slonim, “Learning with Unreli-
able Boundary Queries”, COLT95, pp. 98–107, 1995.

6. A. Blum, M. Furst, J. Jackson, M. J. Kearns, Y. Mansour, and S. Rudich, “Weakly
Learning DNF and Characterizing Statistical Query Learning Using Fourier Anal-
ysis”, STOC94, 1994.

7. A. Blumer, A. Ehrenfeucht, D. Haussler and M. K. Warmuth, “Learnability and
the Vapnik-Chervonenkis dimension”, J. of the ACM, 36(4), pp. 929–965, 1989.

8. N. H. Bshouty, “A New Composition Theorem for Learning Algorithms”, STOC98,
pp. 583–589, 1998.

9. N. H. Bshouty, N. Eiron and E. Kushilevitz, “PAC Learning with Nasty Noise”,
Technical Report CS0693, Department of Computer Science, The Technion —
Israel Institute of Technology.

10. N. H. Bshouty, S. A. Goldman, H. D. Mathias, S. Suri, and H. Tamaki, “Noise-
Tolerant Distribution-Free Learning of General Geometric Concepts”, STOC96,
pp. 151–160, 1996.

11. N. Cesa-Bianchi, E. Dichterman, P. Fischer, and H. U. Simon, “Noise-Tolerant
Learning near the Information-Theoretic bound”, STOC96, pp. 141–150, 1996.

12. N. Cesa-Bianchi, P. Fischer, E. Shamir and H. U. Simon, “Randomized hypotheses
and Minimum Disagreement hypotheses for Learning with Noise”, proceedings of
EuroCOLT 97, pp. 119–133, 1997.

13. S. E. Decatur, “Learning in Hybrid Noise Environments Using Statistical Queries”,
in Learning from Data: Artificial Intelligence and Statistics V, D. Fisher and
H. J. Lenz, (Eds.), 1996.

14. S. E. Decatur, “PAC Learning with Constant-Partition Classification Noise and
Applications to Decision Tree Induction”, Proceedings of the Sixth International
Workshop on Artificial Intelligence and Statistics, pp. 147–156, 1997.

15. S. E. Decatur and R. Gennaro, “On Learning from Noisy and Incomplete Exam-
ples”, COLT95, pp. 353–360, 1995.

16. W. Hoeffding, “Probability Inequalities for Sums of Bounded Random Variables”,
J. of the American Statistical Association, 58(301), pp. 13–30, 1963.

17. M. Kearns, “Efficient Noise-Tolerant Learning from Statistical Queries”, Proc. 25th
ACM Symposium on the Theory of Computing, pp. 392–401, 1993.

18. M. J. Kearns and M. Li, “Learning in the Presence of Malicious Errors”, SIAM J.
on Computing, 22:807-837, 1993.

19. M. J. Kearns, R. E. Schapire, and L. M. Sellie, “Toward Efficient Agnostic Learn-
ing”, Machine Learning, vol. 17(2), pp. 115–142, 1994.

20. N. Sauer, “On the Density of Families of sets”, Journal of Combinatorial Theory,
13:145–147, 1972.

21. R. E. Schapire, “The Design and Analysis of Efficient Learning Algorithms”, MIT
Press, 1991.

22. M. Talagrand, “Sharper Bounds for Gaussian and Empirical Processes”, Annals of
Probability, 22:28–76, 1994.



218 Nader H. Bshouty, Nadav Eiron, and Eyal Kushilevitz

23. L. G. Valiant, “A Theory of the Learnable”, Comm. ACM, 27(11):1134-1142, 1984.
24. L. G. Valiant, “Learning Disjunctions of Conjunctions”, IJCAI85, pp. 560–566,

1985.
25. V. N. Vapnik and A. Y. Chervonenkis, “On the Uniform Convergence of Relative

Frequencies of Events to Their Probabilities”, Theory Probab. Appl. 16, no. 2
pp. 264–280, 1971.



Positive and Unlabeled Examples Help Learning?

Francesco De Comité, François Denis, Rémi Gilleron, and Fabien Letouzey

LIFL, URA 369 CNRS, Université de Lille 1
59655 Villeneuve d’Ascq FRANCE

{decomite, denis, gilleron, letouzey}@lifl.fr

Abstract. In many learning problems, labeled examples are rare or ex-
pensive while numerous unlabeled and positive examples are available.
However, most learning algorithms only use labeled examples. Thus we
address the problem of learning with the help of positive and unlabeled
data given a small number of labeled examples. We present both the-
oretical and empirical arguments showing that learning algorithms can
be improved by the use of both unlabeled and positive data. As an illus-
trating problem, we consider the learning algorithm from statistics for
monotone conjunctions in the presence of classification noise and give
empirical evidence of our assumptions. We give theoretical results for
the improvement of Statistical Query learning algorithms from positive
and unlabeled data. Lastly, we apply these ideas to tree induction algo-
rithms. We modify the code of C4.5 to get an algorithm which takes as
input a set LAB of labeled examples, a set POS of positive examples and
a set UNL of unlabeled data and which uses these three sets to construct
the decision tree. We provide experimental results based on data taken
from UCI repository which confirm the relevance of this approach.

Key words: PAC model, Statistical Queries, Unlabeled Examples, Positive Examples,

Decision Trees, Data Mining

1 Introduction

Usual learning algorithms only use labeled examples. But, in many machine
learning settings, gathering large sets of unlabeled examples is easy. This remark
has been made about text classification tasks and learning algorithms able to
classify text from labeled and unlabeled documents have recently been proposed
([BM98], [NMTM98]). We also argue that, for many machine learning problems,
a “natural” source of positive examples (that belong to a single class) is available
and positive data are abundant and cheap. For example consider a classical
domain, such as the diagnosis of diseases: unlabeled data are abundant (all
patients); positive data may be numerous (all the patients who have the disease);
but, labeled data are rare if detection tests for this disease are expensive. As a

? This research was partially supported by “Motricité et Cognition” : Contrat par
objectifs région Nord/Pas-de-Calais

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 219–230, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



220 Francesco De Comité et al.

second example, consider mailing for a specific marketing action: unlabeled data
are all the clients in the database; positive data are all the clients who asked
information about the product concerned by the marketing action before the
mailing was done; but, labeled data are rare and expensive because a survey
has to be done on a part of the database of all clients. We do not address
text classification problems in the present paper, but they are concerned too:
for a web-page classification problem, unlabeled web-pages can be inexpensively
gathered, a set of web pages you are interested in is available in your bookmarks,
labeled web-pages are fairly expensive but a small set of hand labeled web-pages
can be designed.

It has been proved in [Den98] that many concepts classes, namely those
which are learnable from statistical queries, can be efficiently learned in a PAC
framework using positive and unlabeled data only. But the price to pay is an
increase in the number of examples needed to achieve learning (although it re-
mains of polynomial size). We consider the problem of learning with a small
set of labeled examples, a set of positive examples and a large set of unlabeled
examples. We assume that unlabeled examples are drawn according to some hid-
den distribution D, that labeled examples are drawn according to the standard
example oracle EX(f, D), and that positive examples are drawn according to
the oracle EX(f, Df) where Df is the distribution D restricted to positive ex-
amples. The reader should note that our problem is different from the problem
of learning with imbalanced training sets (see [KM97]) because we use three
sources of examples. In the method we discuss here, labeled examples are only
used to estimate the target weight (the proportion of positive examples among
all examples); therefore, if an estimate of the target weight is available for the
problem, only positive and unlabeled data are needed. We present experimental
results showing that unlabeled data and positive data can efficiently boost ac-
curacy of the statistical query learning algorithm for monotone conjunctions in
the presence of classification noise. Such boosting can be explained by the fact
that SQ algorithms are based on the estimate of probabilities. We prove that
these estimates could be replaced by: an estimate of the weight of the target
concept with respect to (w.r.t.) the hidden distribution using the (small) set of
labeled examples and estimates of probabilities which can be computed from
positive and unlabeled data only. If the sets of unlabeled and positive data are
large enough, all estimates can be calculated within the accuracy of the esti-
mate of the weight of the target concept. We present theoretical arguments in
the PAC framework showing that a gain in the size of the query space (or its VC
dimension) can be obtained on the number of labeled examples. But as usual,
the results could be better for real problems.

In the last section of the paper, we consider standard methods of decision tree
induction and examine the commonly used C4.5 algorithm described in [Qui93].
In this algorithm, when refining a leaf into an internal node, the decision criterion
is based on statistical values. Therefore, C4.5 can be seen as a statistical query
algorithm and the above ideas can be applied. We adapt the code of C4.5. Our
algorithm takes as inputs three sets: a set of labeled examples, a set of positive



Positive and Unlabeled Examples Help Learning 221

examples and a set of unlabeled examples. The information gain criterion used
by C4.5 is modified such that the three sets are used. The reader should note
that labeled examples are used only once for the computation of the weight of
the target concept under the hidden distribution. We provide some promising
experimental results, but further experiments are needed for an experimental
validation of our approach.

2 Preliminaries

2.1 Basic Definitions and Notations

For each n ≥ 1, Xn denotes an instance space on n attributes. A concept f is a
subset of some instance space Xn or equivalently a {0, 1}-valued function defined
on Xn. For each n ≥ 1, let Cn ⊂ 2Xn be a set of concepts. Then C =

⋃ Cn denotes
a concept class over X =

⋃
Xn. The size of a concept f is the size of a smallest

representation for a given representation scheme. An example of a concept f is
a pair 〈x, f(x)〉, which is positive if f(x) = 1 and negative otherwise. We denote
by Pos(f) the set of all x such that f(x) = 1. If D is a distribution defined
over X and if A is a subset of the instance space X , we denote by D(A) the
probability of the event [x ∈ A] and we denote by DA the induced distribution.
For instance, if f is a concept over X such that D(f) 6= 0, Df(x) = D(x)/D(f)
if x ∈ Pos(f) and 0 otherwise. We denote by f the complement of the set f in
X and f∆g the symmetric difference between f and g. A monotone conjunction
is a conjunction of boolean variables . For each x ∈ {0, 1}n, we use the notation
x(i) to indicate the ith bit of x. If V is a subset of {x1, . . . , xn}, the conjunction
of variables in V is denoted by Πxi∈V xi. If V = ∅, Πxi∈V xi = 1.

2.2 PAC and SQ Models

Let f be a target concept in some concept class C. Let D be the hidden distribu-
tion defined over X . In the PAC model [Val84], the learner is given access to an
example oracle EX(f, D) which returns at each call an example 〈x, f(x)〉 drawn
randomly according to D. A concept class C is PAC learnable if there exist a
learning algorithm L and a polynomial p(., ., ., .) with the following property: for
any f ∈ C, for any distribution D on X , and for any 0 < ε < 1 and 0 < δ < 1,
if L is given access to EX(f, D) and to inputs ε and δ, then with probability at
least 1− δ, L outputs a hypothesis concept h satisfying error(h) = D(f∆h) ≤ ε
in time bounded by p(1/ε, 1/δ, n, size(f)).

The SQ-model [Kea93] is a specialization of the PAC model in which the
learner forms its hypothesis solely on the basis of estimates of probabilities.
A statistical query over Xn is a mapping χ : Xn × {0, 1} → {0, 1} associated
with a tolerance 0 < τ ≤ 1. In the SQ-model the learner is given access to a
statistics oracle STAT (f, D) which, at each query (χ, τ), returns an estimate of
D({x | χ(〈x, f(x)〉) = 1}) within accuracy τ . Let C be a concept class over X . We
say that C is SQ-learnable if there exist a learning algorithm L and polynomials



222 Francesco De Comité et al.

p(., ., .), q(., ., .) and r(., ., .) with the following property: for any f ∈ C, for any
distribution D over X , and for any 0 < ε < 1, if L is given access to STAT (f, D)
and to an input ε, then, for every query (χ, τ) made by L, the predicate χ can
be evaluated in time q(1/ε, n, size(f)), and 1/τ is bounded by r(1/ε, n, size(f)),
L halts in time bounded by p(1/ε, n, size(f)) and L outputs a hypothesis h ∈ C
satisfying D(f∆h) ≤ ε.

It is clear that given access to the example oracle EX(f, D), it is easy to
simulate the statistics oracle STAT (f, D) drawing a sufficiently large set of
labeled examples. This is formalized by the following result:

Theorem 1. [Kea93] Let C be a class of concepts over X. Suppose that C is SQ
learnable by algorithm L. Then C is PAC learnable, and furthermore:

– If L uses a finite query space Q and α is a lower bound on the allowed approx-
imation error for every query made by L, the number of calls of EX(f, D)
is O(1/α2 log |Q|/δ)

– If L uses a query space Q of finite VC dimension d and α is a lower bound
on the allowed approximation error for every query made by L, the number
of calls of EX(f, D) is O(d/α2 log 1/δ)

The reader should note that this result has been extended to white noise
PAC models: the Classification Noise model of Angluin and Laird [AL88]; the
Constant Partition Classification Noise Model [Dec97]. The proofs may be found
in [Kea93] and [Dec97]. Also note that almost all the concept classes known
to be PAC learnable are SQ learnable and are therefore PAC learnable with
classification noise.

3 Learning Monotone Conjunctions in the Presence of
Classification Noise

In this section, the target concept is a monotone conjunction over {x1, . . . , xn}.
In the noise free case, a learning algorithm for monotone conjunctions is:

Learning Monotone Conjunctions - Noise Free Case
input: ε, δ

V = ∅
Draw a sample S of m(ε, δ) examples
for i=1 to n do

if for every positive example 〈x, 1〉, x(i) = 1 then V ← V ∪ {xi}
output: h = Πxi∈V xi

It can be proved that O (1/ε log 1/δ + n/ε) examples are enough to guarantee
that the hypothesis h output by the learning algorithm has error less than ε
with confidence at least 1− δ. The given algorithm is not noise-tolerant. In the
presence of classification noise, it is necessary to compute an estimate p̂1(xi = 0)
of p1(xi = 0) which is the probability that a random example according to the



Positive and Unlabeled Examples Help Learning 223

hidden distribution D is positive and satisfies x(i) = 0. Then only variables such
that this estimate is small enough are included in the output hypothesis. Let us
suppose that examples are drawn according to a noisy oracle which, on each call,
first draws an instance x according to D together with its correct label and then
flips the label with probability 0 ≤ η < 1/2. Let us suppose that the noise rate
η is known, then we can consider the following learning algorithm of monotone
conjunctions from statistics in the presence of classification noise:

Learning Monotone Conjunctions - Noise Tolerant Case
input: ε, δ , η

V = ∅
Draw a sample S of m(ε, δ, η) examples
the size of S is sufficient to ensure that the following estimates
are accurate to within ε/(2n) with a confidence greater that 1− δ
for i=1 to n do

compute an estimate bp1(xi = 0) of p1(xi = 0)
if bp1(xi = 0) ≤ ε/(2n) then V ← V ∪ {xi}

output: h = Πxi∈V xi

If the noise rate is not known, we can estimate it with techniques described in
[AL88]. We do not consider that case because we want to show the best expected
gain.

Let q1(xi = 0) (resp. q0(xi = 0)) be the probability that a random example
according to the noisy oracle is positive (resp. negative) and satisfies x(i) = 0.
We have:

p1(xi = 0) =
(1− η)q1(xi = 0)− ηq0(xi = 0)

1− 2η
(1)

Thus we can estimate p1(xi = 0) using estimates of q1(xi = 0) and q0(xi = 0).
Then simple algebra and standard Chernoff bound may be used to prove that
O

[
(n2 log n)/(ε2(1− 2η)2) log 1/δ

]
examples are sufficient to guarantee that the

hypothesis h output by the learning algorithm has error less than ε with confi-
dence at least 1− δ. The reader should note that this bound is quite larger than
the noise free case one. We now make the assumption that labeled examples are
rare, but that sources of unlabeled examples and positive examples are available
to the learner. Unlabeled examples are drawn according to D. A noisy positive
oracle, on each call, draws examples from the noisy oracle until it gets one with
label 1.

We raise the following problems:

– How can we use positive and unlabeled examples in the previous learning
algorithm?

– What could be the expected gain?

In the learning algorithm of conjunctions from statistics with noise, an es-
timate of p1(xi = 0) is calculated using (1). From usual formulas for condi-
tional probabilities, q1(xi = 0) may be expressed as the probability q(1) that



224 Francesco De Comité et al.

a labeled example is positive according to the noisy oracle times the proba-
bility qf (xi = 0) that a positive example (drawn according to the positive
noisy oracle) satisfies x(i) = 0. Now, using the formula for probabilities of
disjoint events, q0(xi = 0) is equal to the probability q(xi = 0) that an un-
labeled example (drawn according to D) satisfies x(i) = 0 minus q1(xi = 0).
Thus, to compute an estimate of p1(xi = 0), we use the following equations:
q1(xi = 0) = q(1) × qf (xi = 0), q0(xi = 0) = q(xi = 0) − q1(xi = 0) and
p1(xi = 0) = [(1 − η)q1(xi = 0) − ηq0(xi = 0)]/(1 − 2η). Consequently, to com-
pute estimates of p1(xi = 0) for all i, we have to compute an estimate of q(1)
with labeled examples, estimates of qf (xi = 0) for every i using the source of
positive examples, and compute estimates of q0(xi = 0) for every i using the
source of unlabeled examples. The reader should note that labeled examples are
used only once for the calculation of an estimate of the probability that a labeled
example is positive. Thus, we have given a positive answer to our first question:
unlabeled examples and positive examples can be used in the learning algorithm
of conjunctions from statistics. We now raise the second question, that is: what
could be the expected gain? We give below an experimental answer to these
questions.

We compare three algorithms:

– The first one is the learning algorithm of conjunctions from statistics where
only labeled examples are used

– The second one computes an estimate of q(1) from labeled examples and
uses exact values for qf (xi = 0) and q0(xi = 0). That amounts to say that
an infinite pool of positive and unlabeled data is available

– The third one computes an estimate of q(1) from labeled examples and es-
timates of qf (xi = 0) and q0(xi = 0) from a finite number of positive and
unlabeled examples

Each of these three algorithms outputs an ordered list V = (xσ(1), . . . , xσ(n))
of variables such that, for each i, p̂1(xσ(i) = 0) ≤ p̂1(xσ(i+1) = 0). For a given
ordered list V , and for each i, we define gi(V ) = Πj≤ixσ(j). The minimal error
of an ordered list V is defined as errormin(V ) = min{error(gi(V )) | 0 ≤ i ≤ n}
which is the least error rate we can hope. We compare the minimal errors for
the three algorithms. First, let us make more precise these three algorithms.
We recall that labeled examples are drawn from a noisy oracle, that positive
examples are drawn from the noisy oracle restricted to positive examples, and
that the noise rate η is known.

Algorithm L(LABN )
input: a sample LAB of N labeled examples

for i=1 to n do
bq1(xi = 0) = |{〈x, c〉 ∈ LAB | x(i) = 0 ∧ c = 1}|/N
bq0(xi = 0) = |{〈x, c〉 ∈ LAB | x(i) = 0 ∧ c = 0}|/N
bp1(xi = 0) = (1−η)cq1(xi=0)−ηcq0(xi=0)

1−2η

output: ordered list V = (xσ(1), . . . , xσ(n))



Positive and Unlabeled Examples Help Learning 225

Algorithm L(LABN , POS∞, UNL∞)
input: a sample LAB of N labeled examples
bq(1) = |{〈x, c〉 ∈ LAB | c = 1}|/N
for i=1 to n do

compute exactly qf (xi = 0)
compute exactly q(xi = 0)
bq1(xi = 0) = bq(1)× qf (xi = 0)
bq0(xi = 0) = q(xi = 0)− bq1(xi = 0)

cp1(xi = 0) =
(1−η)cq1(xi=0)−ηcq0(xi=0)

1−2η

output: ordered list V = (xσ(1), . . . , xσ(n))

Algorithm L(LABN , POSM , UNLM )
input: a sample LAB of N labeled examples,

a sample POS of M positive examples
and a sample UNL of M unlabeled examples

bq(1) = |{〈x, c〉 ∈ LAB | c = 1}|/N
for i=1 to n do
bqf (xi = 0) = |{〈x, c〉 ∈ POS | x(i) = 0}|/M
bq(xi = 0) = |{x ∈ UNL | x(i) = 0}|/M
bq1(xi = 0) = bq(1)× bqf (xi = 0)
bq0(xi = 0) = bq(xi = 0)− bq1(xi = 0)

cp1(xi = 0) =
(1−η)cq1(xi=0)−ηcq0(xi=0)

1−2η

output: ordered list V = (xσ(1), . . . , xσ(n))

Now, we describe experiments and experimental results 1. The concept class
is the class of monotone conjunctions over n variables x1, . . . , xn for some n. The
target concept is a conjunction containing five variables. The class D of distribu-
tions is defined as follows: D ∈ D is characterized by a tuple (ρ1, . . . , ρn) ∈ [0, ρ]n

where ρ = 2(1 − 2−
1
5 ) ' 0.26; for a given D ∈ D, all values x(i) are selected

independently of each other, and x(i) is set to 0 with probability ρi and set to
1 with probability 1 − ρi. Note that ρ has been chosen such that, if each ρi is
drawn randomly and independently in [0, ρ], the average weight of the target
concept f w.r.t. D is 0.5. We suppose that examples are drawn accordingly to
noisy oracles where the noise rate η is set to 0.2.

Experiment 1. The number n of variables is set to 100. We compare the av-
erages of minimal errors for algorithms L(LABN ) and L(LABN , POS∞,
UNL∞) as functions of the number N of labeled examples. For a given N ,
averages of minimal errors for an algorithm are obtained doing k times the
following:
– f is a randomly chosen conjunction of five variables
– D is chosen randomly in D by choosing randomly and independently

each ρi

– N examples are drawn randomly w.r.t. D, they are labeled according to
the target concept f , then the correct label is flipped with probability η

– Minimal errors for L(LABN ) and L(LABN , POS∞, UNL∞) are com-
puted

and then compute the averages over the k iterations. We set k to 100. The
results can be seen in Fig. 1. The top plot corresponds to L(LABN) and the
bottom plot to L(LABN , POS∞, UNL∞).

Experiment 2. We now consider a more realistic case: there are M positive
examples and an equal number of unlabeled examples. We show that to-
gether with a small number N of labeled examples, these positive and un-
labeled examples give about as much information as do M labeled ex-
amples alone. We compare the averages of minimal errors for algorithms
L(LABN , POSM , UNLM) and L(LABM ) as functions of M . The number
n of variables is set to 100. The number N of labeled examples is set to 10.
The results can be seen in Fig. 1.

1 Sources and scripts can be found at
ftp://grappa.univ-lille3.fr/pub/Softs/posunlab.



226 Francesco De Comité et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 10 20 30 40 50 60 70 80 90 100

er
ro

r 
ra

te

LAB size

LAB only
LAB + unlimited number of POS and UNL examples

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 100 200 300 400 500 600 700 800 900 1000

er
ro

r 
ra

te

POS, UNL et LAB2 sizes

LAB + POS + UNL
LAB 2

Fig. 1. results of experiments 1 and 2. For experiment 1: target size = 5; 100
variables; 100 iterations. This figure shows the gain we can expect using free
positive and unlabeled data. For experiment 2: target size = 5; 100 variables;
100 iterations; size(LAB) = 10; size(POS) = size(UNL) = size(LAB2) = M ;
M ranges from 10 to 1000 by step 10. These curves show that with only 10 labeled
examples, the learning algorithm performs almost as well with M positive and
M unlabeled examples as with M labeled examples.

4 Theoretical Framework

Let C be a class of concepts over X . Suppose that C is SQ learnable by some
algorithm L. Let f be the target concept and let us consider a statistical query
χ made by L. The statistics oracle STAT (f, D) returns an estimate D̂χ of Dχ =
D({x | χ(〈x, f(x)〉) = 1}) within some given accuracy. We may write: Dχ =
D({x | χ(〈x, 1〉) = 1 ∧ f(x) = 1}) + D({x | χ(〈x, 0〉) = 1 ∧ f(x) = 0}) = D({x |
χ(〈x, 1〉) = 1}∩f)+D({x | χ(〈x, 0〉) = 1}∩f) = D(A∩f)+D(B∩f) where the
sets A and B are defined by: A = {x | χ(〈x, 1〉) = 1}, B = {x | χ(〈x, 0〉) = 1}.
Furthermore, let A be any subset of the instance space X and f be a concept over
X , we have D(A∩ f) = Df (A)×D(f) and D(A∩ f) = D(A)−D(A∩ f). From
the preceding equations, we obtain that Dχ = D(f)× (Df (A)−Df (B))+D(B).

Now, in order to estimate Dχ, it is sufficient to estimate D(f), Df(A), Df (B)
and D(B). If we get an estimate of D(f) within accuracy α and estimates of
Df (A), Df (B) and D(B) within accuracy β, it can be easily shown that D(f)×
(Df (A)−Df(B))+D(B) is an estimate of D(f) within accuracy α+β(3+2α).

As usual, D(f) can be estimated using the oracle EX(f, D). We can estimate
Df (A) and Df (B) using the POS oracle EX(f, Df). We can estimate D(B)
with the UNL oracle EX(1, D). So we can modify any statistical query based
algorithm so that it uses the EX, POS and UNL oracles. Furthermore, if the
standard algorithm makes N queries, labeled, positive and unlabeled example
sources will be used to estimate respectively 1, 2N and N queries.

In this paper, we make the assumption that labeled examples are “expensive”
and that unlabeled and positive examples are “cheap”. If we make the stronger
assumption that positive and unlabeled data are free, we can estimate Df (A),



Positive and Unlabeled Examples Help Learning 227

Df (B) and D(B) within arbitrary accuracy, i.e. β = 0. If τmin is the smallest
tolerance needed by the learning algorithm L and whatever is the number of
queries made by L, we see that we only need labeled examples to estimate only
one probability, say D(f), within accuracy τmin. Let Q be the query space used
by L. Theorem 1 gives an upper bound of the number of calls of EX(f, D)
necessary to simulate the statistical queries needed by L. We see that we can
expect to divide this number of calls by V CDIM(Q).

A more precise theoretical study remains to be done. For instance, it should
be interesting to estimate the expected improvements of the accuracy when the
number of labeled examples is fixed depending on the number of positive and
unlabeled examples. This could be done for each usual statistical query learning
algorithm.

5 Tree Induction from Labeled, Positive, and Unlabeled
Data

C4.5, and more generally decision tree based learning algorithms are SQ-like
algorithms because attribute test choices depend on statistical queries. After
a brief presentation of C4.5 and as C4.5 is an SQ algorithm, we describe in
Sect. 5.2 how to adapt it for the treatment of positive and unlabeled data. We
finally discuss experimental results of a modified version of C4.5 which uses
positive and unlabeled examples.

5.1 C4.5, a Top-Down Decision Tree Algorithm

Most algorithms for tree induction use a top-down, greedy search through the
space of decision trees. The splitting criterion used by C4.5 [Qui93] is based on
a statistical property, called information gain, itself based on a measure from
information theory, called entropy. Given a sample S of some target concept,
the entropy of S is Entropy(S) =

∑c
i=1−pi log2 pi where pi is the proportion

of examples in S belonging to the class i. The information gain is the expected
reduction in entropy by partitioning the sample according to an attribute test t.
It is defined as

Gain(S, t) = Entropy(S)−
∑

v∈V alues(t)

Nv

N
Entropy(Sv) (2)

where V alues(t) is the set of every possible value for the attribute test t, Nv is
the cardinality of the set Sv of examples in S for which t has value v and N is
the cardinality of S.

5.2 C4.5 with Positive and Unlabeled Data

Let X be the instance space, we only consider binary classification problems.
The classes are denoted by 0 and 1, an example is said to be positive if its



228 Francesco De Comité et al.

label is 1. Let POS be a sample of positive examples of some target concept f ,
let LAB be a sample of labeled examples and let UNL be a set of unlabeled
data. Let D be the hidden distribution which is defined over X . POS is a set
of examples 〈x, f(x) = 1〉 returned by an example oracle EX(f, Df ), LAB is a
set of examples 〈x, f(x)〉 returned by an example oracle EX(f, D) and UNL is
a set of instances x drawn according to the distribution D. The entropy of a
sample S is defined by Entropy(S) = −p0 log2 p0− p1 log2 p1. In this formula, S
is the set of training examples associated with the current node n and p1 is the
proportion of positive examples in S. Let Dn be the filtered distribution, that
is the hidden distribution D restricted to instances reaching the node n, let Xn

be the set of instances reaching the node n: p1 is an estimation of Dn(f). Now,
in the light of the results of Sect. 4, we modify formulas for the calculation of
the information gain. We have Dn(f) = D(Xn ∩ f)/D(Xn). Using the equation
D(Xn ∩ f) = Df (Xn)×D(f), we obtain Dn(f) = Df (Xn)×D(f)× 1/D(Xn).

We can estimate Df (Xn) using the set of positive examples associated with
the node n, we can estimate D(f) with the complete set of labeled examples,
and we can estimate D(Xn) with unlabeled examples. More precisely, let POSn

be the set of positive examples associated with the node n, let UNLn be the set
of unlabeled examples associated with the node n, and let LAB1 be the set of
positive examples in the set of labeled examples LAB, the entropy of the node
n is calculated using the following:

p1 = inf
( |POSn|
|POS| ×

|LAB1|
|LAB| ×

|UNL|
|UNLn| , 1

)
; p0 = 1− p1 (3)

The reader should note that |LAB1|
|LAB| is independent of the node n. We now define

the information gain of the node n by Gain(n, t) = Entropy(n) −∑
v∈V alues(t)

(Nn
v /Nn)Entropy(nv) where V alues(t) is the set of every possible value for the

attribute test t, Nn is the cardinality of UNLn, Nn
v is the cardinality of the set

UNLn
v of examples in UNLn for which t has value v, and nv is the node below

n corresponding to the value v for the attribute test t.

5.3 Experimental Results

We applied the results of the previous section to C4.5 and called the resulting
algorithm C4.5PosUnl. The differences as compared with C4.5 are the following:

– C4.5PosUnl takes as input three sets: LAB, POS and UNL
– |LAB1|/|LAB| which appears in (3) is calculated only once
– For the current node, entropy and gain are calculated using (3)
– When gain ratio is used, split information is calculated with unlabeled ex-

amples
– The majority class is chosen using (3)
– halting criteria during the top-down tree generation are evaluated on UNL
– When pruning the tree, classification errors are estimated with the help of

proportions p0 and p1 from (3)



Positive and Unlabeled Examples Help Learning 229

We consider two data sets from the UCI Machine Learning Database [MM98]:
kr-vs-kp and adult. The majority class is chosen as positive. We fix the sizes
of the test set, set of positive examples, and set of unlabeled examples. These
values are set to:

– For kr-vs-kp: 1000 for the test set, 600 for the set of positive examples, and
to 600 for the set of unlabeled examples

– For adult: 15000 for the test set, 10000 for the set of positive examples, and
to 10000 for the set of unlabeled examples

We let the number of labeled examples vary, and compare the error rate of C4.5
and C4.5PosUnl. For a given size of LAB, we iterate 100 times the following: all
sets are selected randomly (for POS, a larger set is drawn and only the selected
number of positive examples are kept), we compute the error rate for C4.5 with
input LAB and the error rate for C4.5PosUnl with input LAB, POS and UNL.
Then, we average out the error rates over the 1000 experiments.

The results can be seen in Fig. 2. The error rates are promising when the
number of labeled examples is small (e.g. less than 100). We think that the better
results of C4.5 for higher number of examples is due to our pruning algorithm
which does not use in the best way positive and unlabeled examples (C4.5PosUnl
trees are consistently larger than C4.5 ones).

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300

er
ro

r 
ra

te

LAB size

LAB only
LAB + fixed number of POS and UNL examples

0

5

10

15

20

25

30

0 100 200 300 400 500 600 700 800

er
ro

r 
ra

te

LAB size

LAB only
LAB + fixed number of POS and UNL examples

Fig. 2. error rate of C4.5 and C4.5PosUnl averaged over 100 trials. The left
figure shows the results on the kr-vs-kp data set and the right one corresponds
to the adult data set.

adult and kr-vs-kp were selected in this paper because they are well known
and contain many examples. The experiments were run on all other two-class UCI
problems (ftp://grappa.univ-lille3.fr/pub/Experiments/C45PosUnl).

6 Conclusion

In many practical learning situations, labeled data are rare or expensive to collect
while a great number of positive and unlabeled data are available. In this paper,



230 Francesco De Comité et al.

we have given experimental and theoretical evidence that these kind of examples
can efficiently be used to boost statistical query learning algorithms. A lot of
work remains to be done, in several directions:

– More precise theoretical results must be stated, at least for specific statistical
query learning algorithms

– C4.5 should be modified further, especially the pruning algorithm which
must be adapted to the data types presented in this paper

– We intend to collect real data of the kind studied here (labeled, positive and
unlabeled) to test this new variant of C4.5

– Our method can be applied to any statistical query algorithm. It would be
interesting to know if it can be appropriate elsewhere

References

[AL88] D. Angluin and P. Laird. Learning from noisy examples. Machine Learn-
ing, 2(4):343–370, 1988.

[BM98] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-
training. In Proc. 11th Annu. Conf. on Comput. Learning Theory, pages
92–100. ACM Press, New York, NY, 1998.

[Dec97] S. E. Decatur. Pac learning with constant-partition classification noise and
applications to decision tree induction. In Proceedings of the Fourteenth
International Conference on Machine Learning, 1997.

[Den98] F. Denis. Pac learning from positive statistical queries. In ALT 98, 9th
International Conference on Algorithmic Learning Theory, volume 1501
of Lecture Notes in Artificial Intelligence, pages 112–126. Springer-Verlag,
1998.

[Kea93] M. Kearns. Efficient noise-tolerant learning from statistical queries. In
Proceedings of the 25th ACM Symposium on the Theory of Computing,
pages 392–401. ACM Press, New York, NY, 1993.

[KM97] M. Kubat and S. Matwin. Addressing the curse of imbalanced training sets
: One-sided selection. In Proceedings of the 14th International Conference
on Machine Learning, pages 179–186, 1997.

[MM98] C.J. Merz and P.M. Murphy. UCI repository of machine learning
databases, 1998.

[NMTM98] K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Learning to classify
text from labeled and unlabeled documents. In Proceedings of the 15th
National Conference on Artificial Intelligence, AAAI-98, 1998.

[Qui93] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA, 1993.

[Val84] L.G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–
1142, November 1984.



Learning Real Polynomials with a

Turing Machine

Dennis Cheung

Department of Mathematics, City University of Hong Kong
83 Tat Chee Avenue, Kowloon, HONG KONG

50000548@plink.cityu.edu.hk

Abstract. We provide an algorithm to PAC learn multivariate poly-
nomials with real coefficients. The instance space from which labeled
samples are drawn is IRN but the coordinates of such samples are known
only approximately. The algorithm is iterative and the main ingredient
of its complexity, the number of iterations it performs, is estimated us-
ing the condition number of a linear programming problem associated
to the sample. To the best of our knowledge, this is the first study of
PAC learning concepts parameterized by real numbers from approximate
data.

1 Introduction

In the PAC model of learning one often finds concepts parameterized by real
numbers. Examples of such concepts appear in the first pages of well-known
textbooks such as [7]. The algorithmics for learning such concepts follows the
same pattern as that for learning concepts parameterized by Boolean values.
One randomly selects a number of elements x1, . . . , xm in the instance space X .
Then, with the help of an oracle, one decides which of them satisfy the target
concept c∗. Finally, one computes a hypothesis ch which is consistent with the
sample, i.e. a concept ch which is satisfied by exactly those xi which satisfy c∗.

A main result from Blumer et al. [3] provides a bound for the size m of the
sample above in order to guarrantee that the error of ch is less than ε with
probability at least 1− δ, namely

m ≥ C0

(
1
ε

log
(

1
δ

)
+

VCdim(C)
ε

log
(

δ

ε

))
(1)

where C0 is a universal constant and VCdim(C) is the Vapnick-Chervonenkis
dimension of the concept class at hand. This result is specially useful when
concepts are not discrete entities (i.e. not representable using words over a finite
alphabet) since in this case one can bound the size of the sample without using
the VC dimension.

A particularly important case of concepts parameterized by real numbers is
the one in which the membership test of an instance x ∈ X to a concept c in the
concept class C can be expressed by a quantifier-free first-order formula. In this

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 231–240, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



232 Dennis Cheung

case, concepts in Cn,N are parameterized by elements in IRn, the instance space
X is the Euclidean space IRN , and the membership of x ∈ X to c ∈ C is given by
the truth of Ψn,N(x, c) where Ψn,N is a quantifier-free first-order formula of the
theory of the reals with n + N free variables. In this case, a result of Goldberg
and Jerrum [5] bounds the VC-dimension of Cn,N by

VCdim(Cn,N) ≤ 2n log(8eds). (2)

Here d is a bound for the degrees of the polynomials appearing in Ψn,N and s is
a bound for the number of distinct atomic predicates in Ψn,N .

One may say that, at this stage, the problem of PAC learning a concept c∗ ∈
Cn,N is solved. Given ε, δ > 0 we simply compute m satisfying (1) with the VC-
dimension replaced by the bound in (2). Then we randomly draw x1, . . . , xm ∈ X
and finally we compute a hypothesis ch ∈ Cn,N consistent with the membership
of xi to c∗, i = 1, . . . , m (which we obtain from some oracle). To obtain ch we
may use any of the algorithms proposed recently to solve the first-order theory
of the reals (cf. [6, 8, 1]).

It is however at this stage that our research has its starting point by re-
marking that, from a practical viewpoint, we can not exactly read the elements
xi. Instead, we obtain rational approximations x̃i. As an example, imagine that
we want to learn how to classify some kind of stones according as to whether
a stone satisfies a certain concept c∗ or not. For each stone we measure N pa-
rameters —e.g. radioactivity, weight, etc.— and we have access to a collection of
such stones already classified. That is, for each stone in the collection, we know
whether the stone satisfies c∗. When we measure one of the parameters xi of a
stone, say the weight, we don’t obtain the exact weight but an approximation
x̃i. The membership of this stone to c∗ depends nevertheless on x = (x1, . . . , xN )
and not on x̃. Our problem thus, becomes that of learning c∗ from approximate
data. A key feature is that we know the precision ρ of these approximations and
that we can actually modify ρ in our algorithm to obtain better approximations.
In our example this corresponds to fixing the number of digits appearing on the
display of our measuring instrument.

In this paper we give an algorithm to learn from approximate data for a par-
ticular learning problem namely, PAC learning the coefficients of a multivariate
polynomial from the signs (≥ 0 or < 0) the polynomial takes over a sample of
points. While there are several papers dealing with this problem (e.g. [11, 2])
they either consider Boolean variables, i.e. X = {0, 1}N , or they work over finite
fields. To the best of our knowledge, the consideration of rounded-off real data
is new.

In studying the complexity of our algorithm we will naturally deal with a
classical theme in numerical analysis, that of conditioning, and we will find
the common dependence of running time on the condition number of the input
(cf. [4]).



Learning Real Polynomials with a Turing Machine 233

2 The Problem

Consider the class PO
d,N of real polynomials of degree d in N variables which

have a certain fixed monomial structure. That is, fix a subset O ⊂ INN such that
for all α = (α1, . . . , αN ) ∈ O, α1 + · · · + αN ≤ d. Thus, the elements in PO

d,N

have the form
f =

∑
α∈O

cαyα

with cα ∈ IR, and yα = yα1
1 · · · yαN

N . Let n be the cardinality of O. We will denote
by c the vector of coefficients of f and assume an ordering of the elements in O
so that c = (c1, . . . , cn). Also, to emphasize the dependance of f on its coefficient
vector we will write the polynomial above as fc.

Our goal is to PAC learn a target polynomial fc∗ with coefficients c∗. The
instance space is IRN and we assume a probability distribution D over it. For an
instance y ∈ IRN , we say that y satisfies c∗ when fc∗(y) ≥ 0. This makes PO

d,N

into a concept class by associating to each f ∈ PO
d,N the concept set {y ∈ IRN |

f(y) ≥ 0}.
The error of a hypothesis fch is given by

Error (ch) = Prob (sign (fc∗(y)) 6= sign (fch(y)))

where the probability is taken according to D and the sign function is defined
by

sign (z) =
{

1 if z ≥ 0
0 otherwise

As usual, we will suppose that an oracle EXc∗ : IRN → {0, 1} is available comput-
ing EXc∗(y) = sign (fc∗(y)). We finally recall that a randomized algorithm PAC
learns fc∗ with error ε and confidence δ when it returns a concept ch satisfying
Error (ch) ≤ ε with probability at least 1− δ.

Should we be able to deal with arbitrary real numbers, the following algo-
rithm would PAC learn fc∗ .

Algorithm 1
Input: N, d, ε and δ

1. Compute m using (1) and (2)
2. Draw m random points y(i) ∈ IRN

3. Use the function EXc∗ to obtain sign (fc∗(y(i))) for i = 1, . . . , m
4. From step 3, we obtain a number of linear inequalities in c

and these inequalities can be writen in matrix form{
B1c < 0
B2c ≤ 0

5. Find any vector ch satisfying the system in step 4
6. Output: ch



234 Dennis Cheung

Note that, to execute step 5, we don’t need the general algorithms for solving
the first-order theory over the reals mentioned in the preceding section but only
an algorithm to find a feasible point of a linear programming instance whose
feasible set is non-empty (since c∗ belongs to it).

If real data can not be dealt with exactly, we need to proceed differently. We
begin to do so in the next section, by discussing our model of round-off.

3 Round-Off and Errors

Let y ∈ IRN . We say that ỹ ∈ 0QN approximates y with precision ρ, 0 < ρ < 1
(or that ỹ is a measure of y with such precision) when

|yj − ỹj | ≤ ρ|yj| for j = 1, . . . , N .

Remark. The definition above is the usual definition of relative precision found
in numerical analysis. Numbers here are represented in the form

z = ±a× 10e

where e ∈ ZZ, a = 0 or a ∈ [1, 10), and a is written with | log10 ρ| digits. The
number a is called the mantissa of z and the number e its exponent. For instance

3.14159× 100

approximates π with precision 10−6.
There is a strong correlation between ρ and the number of digits (or bits)

necessary to write down ỹj. However, this correlation does not translate into a
definite relation since the magnitude of yj (among other things) also contribute
to determining this number of digits. For instance the number 1.23456×1012 will
use 13 digits when written down. On the other hand, 4.00000× 100 only needs
one digit. And both have precision 10−6.

In our learning problem, we fix a precision ρ and we measure each instance
y(i) in our sample to obtain ỹ(i). Consequently, when we compute B1 and B2 we
do not obtain those matrices but rather some approximations B̃1 and B̃2. Our
first result bounds the relative error (the precision) for the entries of B̃1 and B̃2.

Theorem 1. Let b be any entry of B1 or B2. If |y(i)
j − ỹ

(i)
j | ≤ ρ|y(i)

j | for i =
1, . . . , m and j = 1, . . . , N then

|b− b̃|
|b| ≤ σ = (1 + ρ)d − 1.

ut



Learning Real Polynomials with a Turing Machine 235

A crucial remark at this stage is that if the feasible set of the system{
B1c < 0
B2c ≤ 0

has empty interior, no matter how small is ρ, the system{
B̃1c < 0
B̃2c ≤ 0

may have not solutions at all. Therefore, in the sequel, we will search only for
interior solutions of the system. That is, we will search for solutions of the system

(LP1) Bc < 0 with B =
[
B1

B2

]
.

Our problem remains to find a solution of Bc < 0 knowing only B̃. In the next
section we will give a first step in this direction.

4 Narrowing the Feasible Set

Consider the system
(LP2) B̃c < 0.

Let A = (B,−B) and

(LP3)
{

Ax < 0
x ≥ 0

with x ∈ IR2n. Similarly, let Ã = (B̃,−B̃) and

(LP4)
{

Ãx < 0
x ≥ 0

The following lemma is immediate.

Lemma 2. For i = 1, . . . , m and j = 1, . . . , 2n,
|aij − ãij |
|aij | ≤ σ = (1 + ρ)d − 1.

ut

Define A as follows. For i = 1, . . . , m and j = 1, . . . , 2n let

aij =


ãij

1−σ if ãij ≥ 0

ãij

1+σ if ãij < 0.

Now consider the system

(LP5)
{

Ax < 0
x ≥ 0.



236 Dennis Cheung

Theorem 3. If x is a solution of (LP5) and x = (u, v) with u, v ∈ IRn then
c = u− v is a solution of (LP1). ut

Theorem 3 inspires the following algorithm.

Algorithm 2
Input: N, d, ε and δ

1. Compute m using (1) and (2)
2. Get m random points y(i) ∈ IRN

3. Use the function EXc∗ to obtain sign (fc∗(y(i))) for i = 1, . . . , m

4. ρ := (3/2)1/d − 1
5. Measure y(i) with precision ρ to obtain ỹ(i), i = 1, . . . , m

6. Write down the system (LP2), i.e., B̃c < 0
7. Transform system (LP2) to (LP4) and then to (LP5),

as described above
8. If there is any vector xh satisfying (LP5)

return ch := uh − vh and HALT
else

ρ := ρ2

go to step 5

Remark. The initial value ρ0 for the precision is set to (3/2)1/d − 1 since this
implies σ = 1/2. We actually can take for ρ0 the largest power of 2 smaller than
(3/2)1/d − 1.

At each iteration of the algorithm ρ is squared. This corresponds to doubling
the number of bits of the mantissas in the measures ỹ

(i)
j .

Before stepping into the analysis of Algorithm 2, we derive an upper bound
for the relative error of A as an approximation of A. In the next statement, and
in the rest of this paper, ‖ ‖ denotes the 2-norm in Euclidean space.

Proposition 4. If ρ ≤ (3/2)1/d − 1 then for i = 1, . . . , m

‖ai − ai‖
‖ai‖ ≤ 4σ.

ut

5 Complexity and Condition

Algorithm 2 can be implemented on a Turing machine (modulo the oracle EXc∗).
Its running time its determined by two quantities:

1) the number of iterations performed by the algorithm, and
2) the bit-size of the rational numbers involved in the intermediate compu-

tations.



Learning Real Polynomials with a Turing Machine 237

Notice that the cost of each iteration is dominated by step 8 and, more
precisely, by checking the existence of a solution of (LP5). This is a linear pro-
gramming problem over the rationals and, as such, it can be solved in polynomial
time by either the ellipsoid method or the interior point method (see, e.g., [10]).

These methods work in time bounded by a polynomial of low degree in the
dimension of the input system and linear in the largest bit-size of its entries. In
our problem, the dimension of the input system is fixed (m × 2n) through all
the iterations and is itself polynomial in n, d, ε and | log δ|.

The bit-size of the entries of (LP5) presents a more complicated issue. It
depends, on the one hand, on the largest and smaller (in absolute value) quanti-
ties among the y

(i)
j and, on the other hand, on the precision ρ with which these

quantities are measured. The first number,

L = max

{
|y(i)

j |, 1

|y(i)
j |

∣∣∣∣∣ i ≤ m, j ≤ 2n, y
(i)
j 6= 0

}
is not controlled by Algorithm 2. It is actually a random variable dependent on
the distribution D. The second number, the precision ρ, affects the bit-size of
ỹ
(i)
j as observed in Remark 1.

In the rest of this paper we will focus on estimating the number of iterations
performed by Algorithm 2. In doing so, it will be necessary to traverse the
territory of linear programming and numerical analysis.

Let bi ∈ IRn be the ith row of B and b⊥i be the hyperplane perpendicular to
bi and passing through the origin. Note that b⊥i is the boundary of the half-space
defined by the inequality bic < 0.

Definition 5. For every c∈IRn let θi(B, c) be the acute angle, i.e. 0≤θi(B, c)≤
π
2 , between c and the hyperplane b⊥i . Also, let

θ(B, c) = min
i=1,...,m

θi(B, c).

Finally, let the condition number of B be

C(B) = min
c∈Sol(B)

1
sin θ(B, c)

.

Here Sol(B) denotes the set of points c ∈ IRn such that Bc < 0. We will denote
by c any point in Sol(B) for which this minimum is attained.

Remark. Note that c actually maximizes θ(B, c). Also, for c ∈ Sol(B), let di be
the distance between c and b⊥i . Then, di = ‖c‖ sin θi(B, c). So, we can rewrite
C(B) as

C(B) = min
c∈Sol(B)

‖c‖
mini≤m di

.

The expression min di

‖c‖ can be seen as the (normalized) distance from c to the
boundary of Sol(B). So, c is a solution of (LP1) having a maximal distance to
this boundary and C(B) is the inverse of this distance.



238 Dennis Cheung

Intuitively, if C(B) is small (i.e. if θ(B, c) is large) a greater error can be
allowed in the coefficients of B and we may need less iterations in Algorithm 2.
The following theoren, our main result, quantifies this fact.

Theorem 6. If C(B) < ∞ then the algorithm will halt and return a solution ch.
Furthermore, the number of iterations is bounded by the smallest integer greater
than

log2

 log2

[(
1 + 1

4
√

2C(B)

)( 1
d )

− 1
]

log2(ρ0)


where ρ0 is the value of ρ set in step 4. ut

Remark. Theorem 6 bounds the number of iterations in Algorithm 2 as a function
of C(B). We end this section by noting that C(B) is actually a random variable
since B depends on the random sample y(1), . . . , y(m). The number of iterations
in Algorithm 2 is a random variable as well. Its expected value can be bounded
by replacing C(B) by its expected value in the bound of Theorem 6.

6 A Characterization of C(B)

Condition numbers are defined in numerical analysis mainly for continuous func-
tions ϕ : IRn → IRm. At a point x ∈ IRn, the condition number µ(x) measures
the largest possible value

‖ϕ(x + ∆)− ϕ(x)‖
‖∆‖

over all infinitesimal perturbations ∆ of the point x.
A recurrent theme is the relation between µ(x) and the distance from x to the

set Σ of ill-posed inputs, i.e. to the set of points x ∈ IRn such that µ(x) = ∞. For
a number of problems, the condition number µ(x) is the inverse to the distance
from x to Σ (often multiplied by ‖x‖ to scale properly).

For computational problems which are not describable by a function ϕ as
above the definition of condition number is less clear (we have been very sketchy
here, for a more detailed discusion on condition numbers see [4, 12]). For linear
programming problems, several condition numbers were defined in the last few
years (e.g. [9, 13]). The one introduced by Renegar is defined precisely in terms
of distance to ill-posedness.

Let Bc ≤ 0 be a feasible system, i.e. Sol(B) 6= ∅. Also, let

D(B) = sup{∆ | max |bij − b′ij | < ∆ ⇒ Sol(B′) 6= Ø}.
Renegar defines the condition number of B to be

C(B) =
max |bij |
D(B)

.



Learning Real Polynomials with a Turing Machine 239

A variation of Renegar’s condition number, also in the spirit of the inverse
to the distance to infeasibility (but normalized differently) is the following. Let

D∗(B) = sup
{

∆

∣∣∣∣ max
‖bi − b′i‖
‖bi‖ < ∆ ⇒ Sol(B′) 6= Ø

}
and

C∗(B) =
1

D∗(B)
.

In this section, we will state some relationships between C(B), C∗(B) and
C(B).

Theorem 7. C(B) = C∗(B). ut

Proposition 8. C∗(B) ≤ √
nC(B). ut

One can prove that an upper bound for C(B) in terms of C∗(B) with the
format of Proposition 8 —i.e. with the form C(B) ≤ f(n, m)C∗(B) for some
function f of the dimensions n and m— can not exist. A key difference be-
tween C(B) and C∗(B) is that while both condition numbers are homogeneous
of degree zero in B (i.e. C(λB) = C(B) for all λ > 0), C∗(B) is actually multi-
homogeneous in its rows and C(B) is sensitive to differences in row scaling. The
next two propositions make this more precise.

Proposition 9. Let λ1, . . . , λm > 0 and b′i = λibi for i = 1, . . . , m. Denote by
B′ the matrix whose ith row is b′i. Then C∗(B) = C∗(B′). ut

Proposition 10.

C∗(B) ≥ mini ‖bi‖√
n maxi,j |bij |C(B).

ut

Acknowledgement. The ideas of Renegar [9] have been a source of inspira-
tionfor our work. We are also indebted to Steve Smale who first suggested to us
the subject of this paper.

References

[1] Basu, S., R. Pollack, and M.-F. Roy (1994). On the combinatorial and alge-
braic complexity of quantifier elimination. In 35th annual IEEE Symp. on Foun-
dations of Computer Science, pp. 632–641.

[2] Bergadano, F., N. Bshouty, and S. Varrichio (1996). Learning multivariate
polynomials from substitutions and equivalence queries. Preprint.



240 Dennis Cheung

[3] Blumer, A., A. Ehrenfeucht, D. Haussler, and M. Warmuth (1989). Learn-
ability and the vapnik-chervonenkis dimension. J. of the ACM 36, 929–965.

[4] Cucker, F. (1999). Real computations with fake numbers. To appear in Pro-
ceedings of ICALP’99.

[5] Goldberg, P. and M. Jerrum (1995). Bounding the Vapnik-Chervonenkis di-
mension of concept classes parameterized by real numbers. Machine Learning 18,
131–148.

[6] Heintz, J., M.-F. Roy, and P. Solerno (1990). Sur la complexité du principe de
Tarski-Seidenberg. Bulletin de la Société Mathématique de France 118, 101–126.

[7] Kearns, M. and U. Vazirani (1994). An Introduction to Computational Learning
Theory. The MIT Press.

[8] Renegar, J. (1992). On the computational complexity and geometry of the first-
order theory of the reals. Part I. Journal of Symbolic Computation 13, 255–299.

[9] Renegar, J. (1995). Incorporating condition measures into the complexity theory
of linear programming. SIAM Journal of Optimization 5, 506–524.

[10] Schrijver, A. (1986). Theory of Linear and Integer Programming. John Wiley
& Sons.

[11] Shapire, R. and L. Sellie (1993). Learning sparse multivariate polynomials over
a field with queries and counterexamples. In 6th ACM Workshop on Computa-
tional Learning Theory, pp. 17–26.

[12] Smale, S. (1997). Complexity theory and numerical analysis. In A. Iserles (Ed.),
Acta Numerica, pp. 523–551. Cambridge University Press.

[13] Vavasis, S. and Y. Ye (1995). Condition numbers for polyhedra with real number
data. Oper. Res. Lett. 17, 209–214.



Faster Near-Optimal Reinforcement Learning:

Adding Adaptiveness to the E3 Algorithm

Carlos Domingo?

Dept. of Math. and Comp. Science, Tokyo Institute of Technology
Meguro-ku, Ookayama, Tokyo, Japan

carlos@is.titech.ac.jp

Abstract. Recently, Kearns and Singh presented the first provably ef-
ficient and near-optimal algorithm for reinforcement learning in general
Markov decision processes. One of the key contributions of the algorithm
is its explicit treatment of the exploration-exploitation trade off. In this
paper, we show how the algorithm can be improved by substituting the
exploration phase, that builds a model of the underlying Markov deci-
sion process by estimating the transition probabilities, by an adaptive
sampling method more suitable for the problem. Our improvement is
two-folded. First, our theoretical bound on the worst case time needed
to converge to an almost optimal policy is significatively smaller. Second,
due to the adaptiveness of the sampling method we use, we discuss how
our algorithm might perform better in practice than the previous one.

1 Introduction

In reinforcement learning, an agent faces the problem of learning how to behave
in an unknown dynamic environment in order to achieve a goal. Instead of re-
ceiving examples as in the supervised learning model, the learning agent must
discover by interaction with the environment how to behave to get the most
reward [9].

Reinforcement learning has been receiving increasing attention in the last
few years from both, machine learning practitioners and theoreticians. The for-
mal modeling of the environment as a Markov decision process (see next section
for a formal definition) makes it particularly suitable for obtaining theoretical
results that might also be applicable to real-world problems. Recently, learning
theoretical style results have been obtained, being the algorithm E3 of Kearns
and Singh [5] one of the most relevant. The E3 algorithm is the first reinforce-
ment learning algorithm that provably achieves near-optimal performance in
polynomial time for general Markov decision processes, in contrast with pre-
vious asymptotic results. One of the key contributions of the algorithm is an
explicit treatment of the exploration versus exploitation dilemma inherent to
any reinforcement learning problem. In other words, any reinforcement learning
? Supported by the EU Science and Technology Fellowship Program (STF13) of the

European Commission.

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 241–251, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



242 Carlos Domingo

algorithm has to spend some time obtaining information about the environment,
the exploration phase, and then, use that information to discover an almost opti-
mal policy, the exploitation phase. Obviously, a too long exploration phase might
lead to a poor bound while, a too short one, might not allow the algorithm to
find an almost optimal policy. The E3 algorithm provides an explicit method for
deciding when to switch between the two phases.

A close look at the analysis of the E3 algorithm reveals that the factor that
strongly dominates the time bound (a polynomial of degree 4 in all the relevant
problem parameters) comes from the sampling process used by the authors to
estimate the transition probabilities during the exploration phase. Not only the
bound is too large for any practical purposes, it also fails to satisfy the follow-
ing intuitively desirable property. Given a certain state i in a Markov decision
process, suppose that one of the transition probabilities from state i to state j
executing action a has a very high probability, for instance 0.9. Intuitively, most
of the time when we apply action a from state i we will land on state j and then,
we should be able to realize very quickly that the probability of that particular
transition is large. On the other hand, suppose that another state i′ has transi-
tion probabilities uniformly distributed among all the reachable states. In this
case, when applying action a from i′ we will be landing all the time in different
states. Intuitively, in this case, more experience will be required to obtain a good
approximation of all these transition probabilities. However, the E3 algorithm
will execute action a from both states, i and i′ exactly the same number of
times. In other words, the number of times that we need to execute an action
from certain state in the exploration phase is fixed in advance to a worst case
bound independent of the underlying Markov decision process.

The improvement proposed here solves the two problems just mentioned. We
substitute the static batch sampling method used in the original E3 algorithm
by a sequential sampling method adapted to this problem from the one proposed
in [8]. This algorithm does sampling sequentially and has a stopping condition
that depends on the current estimated. Thus, the amount of sampling needed to
estimate certain transition probability will depend adaptively on the unknown
underlying value being estimated, satisfying the intuition outlined above. In
other words, our version of E3 will perform differently depending on how it is
the underlying Markov decision process. That is it, it will adapt to the situation
at hand instead of being always in the worst case.

Moreover, even in the worst case, we will still use less amount of examples
than the fixed worst case bound provided in [5]. Due to the nature of our sampling
method, we can obtain estimators that are multiplicatively close to the original
probabilities instead of additively close as in the original E3. This will allow us to
modify the proof of correctness so that, the amount of sampling required will be
smaller, even in the worst case. Since the time spend estimating the underlying
model dominates the overall time bound, this will lead us to reduce it from a
polynomial of degree 4 to a polynomial of degree 2 in worst case, a significant
reduction.



Faster Near-Optimal Reinforcement Learning 243

Adaptive sampling has been studied since long time ago (see, for instance,
the book by Walt [10]) and has also been recently used in the context of database
query estimation [8] and knowledge discovery [1,2]. Furthermore, adaptivity is a
very desirable property for an algorithm that is expected to be used in practical
applications. See the discussion about the relevance of adaptivity in the context
of learning and discovery science in [11].

As noted by the authors, a practical implementation based on the algorithmic
ideas provided by them would enjoy performance on natural bounds that is
considerably better than what their bounds indicate. In fact, our improvement
corroborates that intuition since our modification uses all the ideas strongly
related to the reinforcement learning problem proposed while substituting the
method of sampling used by a more appropriate one for this problem in an ad-
hoc manner. It is important to notice that our method while being more efficient
also keeps the same theoretical guarantees of reliability as the one used by the
original E3 algorithm.

This paper is organized as follows. In Section 2 we provide the formal defi-
nitions related to reinforcement learning. Then, we move on Section 3 where we
review in detail the E3 algorithm and its proof. In Section 4 we show how to
modify the E3 algorithm by the adaptive sampling method and sketch a proof
of its correctness. We will conclude in Section 5 discussing our result and future
related work.

2 Preliminaries and Definitions

A Markov decision process (MDP) M can be defined by a tuple (S, A, T, R)
where: S consists of a set of states S = {1, . . . , N}; A is a set of actions A =
{a1, . . . , ak}; T represents the set of transition probabilities for each state-action
pair (i, a) where P a

M (ij) ≥ 0 specifies the probability of landing in state j when
executing action a from state i in M 1; R represents the rewards R : S →
[0, Rmax] where R(i) is the reward obtained by the agent in state i.

A policy defines how the agent behaves on the Markov decision process.
More formally, a policy π in a Markov decision process M over a set of states
{1, . . . , N} with actions {a1, . . . , ak} is a mapping π : {1, . . . , N} → {a1, . . . , ak}.

Once a Markov decision process and a policy have been defined, we will dis-
cuss about how good is that policy using the two standard asymptotic measures
of return of a policy: the expected average return and the expected discounted
return. Since the goal of the E3 algorithm, as well as our improved version, is
to obtain finite time convergence results, in this draft we will be talking only
about T -step expected average return and this can be translated to expected
discounted return through the horizon time 1/(1− γ) or to the expect average
return through the mixing time of the optimal policy as described in [5].

Let M be a Markov decision process and a let π be a policy in M . The T -step
(expected) average return from state i is defined as Uπ

M (i, T ) =
∑

p Prπ
M [p]UM (p)

1 Note that
∑

j
P a

M (ij) = 1 for any pair (i, a).



244 Carlos Domingo

where the sum is over all T -paths p in M that start at i, Prπ
M [p] is the probability

of crossing path p in M executing π and UM (p) is the average return along path
p defined as UM (p) = 1

T (Ri1 + ·+ RiT ). Moreover, we define the optimal T -step
average return from i in M by Uπ∗

M (i, T ) = maxπUπ
M (i, T ).

Thus, the goal in reinforcement learning will be the following. Given param-
eters ε (the error), δ (the confidence) and T (the time horizon in the case of
discounted return and the mixing time of the optimal policy in the case of in-
finite horizon average return) we would like to have a reinforcement learning
algorithm that with probability larger than 1− δ obtains a policy such that the
expect return of the policy is ε close to the optimal one.

3 The E3 Algorithm

Before going into the details of our improved version, we will need to review
in certain detail algorithm E3 and its proof of correctness and reliability.

The E3 algorithm is what is usually called an indirect or model-based rein-
forcement learning algorithm. That it is, it builds a partial model of the un-
derlying Markov decision process and then, it attempts to compute an optimal
policy from it. Thus, there are two phases clearly distinct that we review in the
following.

One phase consists in obtaining knowledge of the underlying Markov model
from experience on it. The kind of experience that the algorithm has access
to consist of, given that the agent is in a particular state at a a particular
time step, choose the action to perform, execute it and land on a (possibly)
different state from where a further experiment can be performed. Kearns and
Singh coined this action as balanced wandering meaning that upon arrival in a
state, the algorithm tries the action that has been tried the fewest number of
times. Since we assume that the world where the agent moves is modeled with a
MDP, the state reached when choosing an action from certain state is determined
according to the transition probabilities distribution. This experience is gathered
at each state the algorithm visits and used to build an approximate model of
the transition probabilities distribution in the obvious way. This phase is what
it is known as the exploration phase.

The other phase, known as the exploitation phase, consists on making use of
the statistics gathered so far to compute a policy that, hopefully, at some point
will be close to the optimal one in the sense made precise in Section 2.

These two phases are interleaved during the learning process. That is, the
algorithm collects statistics by experimenting on the MDP (therefore, it is in the
exploration phase) and at some point, it decides to switch to the exploitation
phase and attempts to compute an optimal policy using the approximate model
constructed so far. Whenever the policy is still not close enough to the optimal,
it goes back to the exploration phase and tries to collect new statistics about
the unknown part of the underlying MDP and so on. Thus, it is important to
notice that the algorithm might choose in some cases not to build a complete



Faster Near-Optimal Reinforcement Learning 245

model of the underlying MDP if doing so it is not necessary to achieve a close
to optimal return.

One of the main contributions of the E3 algorithm was to provide an explicit
method for deciding when to switch between phases, hence, the name Explicit
Explore or Exploit (E3) for the algorithm. For this, a crucial definition was that
of a known state, a state that has been visited enough number of times so that
the estimates of the transition probabilities from that state are close enough to
their true values. We will state here their definition for future comparison with
the new one we will provide in Section 4. Recall that ε, δ and T are the input
parameters of the algorithm as described in Section 2.

Definition 1. [5] Let M be a Markov decision process over N states. We say
that a state i of M is known if each action has been executed from i at least
mkn = O((NTRmax)/ε)4 log(1/δ)) times.

An important observation is that, given the definition above, we cannot do
balanced wandering forever before at least one state becomes known. By the
Pigeonhole Principle, at most after N(mkn−1)+1 steps of balanced wandering,
some state becomes known.

When the agent lands in a known state (either previously known or that just
becomes known at this point for the first time), the algorithm does the following.
The algorithm builds a new MDP with the set of currently known states. More
precisely, if S is the set of currently known states in M , it constructs a MDP
MS induced on S by M where all transitions between states in S are preserved
and the rest are redirected to a new absorbing state that intuitively represents
all the unknown and unvisited states.

Notice that even though the algorithm does not known MS it has a good
approximation of it thanks to the definition of known state, we will refer to this
approximation as M̂S. The notion of approximation used is the following.

Definition 2. [5] Let M and M̂ be two Markov decision processes over the
same set of states. Then, we will say that M̂ is an α-approximation of M if
for any pair of states i and j and any action a, the following inequalities are
satisfied:

P a
M (ij)− α ≤ P̂ a

M (ij) ≤ P a
M (ij) + α

It can be shown by a straightforward application of the Hoeffding bound that
if a state is known as defined in Definition 1 then M̂S is a O((ε/(NTRmax))2)-
approximation of MS . Moreover, Kearns and Singh proved a Simulation Lemma
that stated that, in this case, the expected T -return of any policy in M̂S is close
to the expected return of the same policy in MS .

The other key lemma in their analysis is the Exploit or Explore Lemma that
states that, either the optimal policy achieves high return just by using the set of
known states S (which can be detected thanks to MS and the Simulation Lemma)
or the optimal policy has high probability of leaving S (which again the algorithm
can detect by finding a exploration policy that quickly reaches the additional
absorbing state in M̂S). Thus, performing two on-line computations on M̂S , the



246 Carlos Domingo

algorithm is provided with either a way to compute a policy with near-optimal
return for the next T steps or to obtain new statistics on an unknown or unvisited
state. The computation time required for this off-line computations is shown to
be bounded by O(N2T/ε).

Putting all these pieces together Kearns and Singh showed that the E3 algo-
rithm achieves, with probability larger than 1− δ, a return that is ε close to the
return of the optimal policy in time polynomial in N, T, 1/ε, and log(1/δ). The
main factor in the overall bound comes from the definition of known states, that
is, the number of times that a state needs to be visited during the exploration
phase before we can attempt to compute an optimal policy. We refer to their
paper [5] for further details.

Our improvement affects only the part concerning the exploration phase. In
the following section we will show how a more efficient sampling method will
allow us to declare a state as known more quickly obtaining a significant reduc-
tion on the overall running time while keeping the same theoretical guarantees of
reliability. Our improvement does not affect the rest of the algorithm and thus,
the same lemmas can be used almost exactly the same way as in the original E3

algorithm to proof the correctness of the overall algorithm.

4 Knowing the States Faster: Adding Adaptivity to the
Exploration Phase

As we mentioned in the introduction, the key idea for improving E3 relies
on using a different sampling method for estimating the transition probabilities.
This will result on a substantial reduction on the number of statistics need
before a state is declared known. For this, we need first to modify the notion of
approximation given in Definition 2.

Definition 3. Let M and M̂ be two Markov decision processes over the same
set of states. Then, we say that M̂ is an α-strong approximation of M if for
any pair of states i and j, and any action a such that P a

M (ij) ≥ α, the following
inequalities are satisfied:

(1− α)P a
M (ij) ≤ P a

M̂
(ij) ≤ (1 + α)P a

M (ij)

The differences between this definition and the original one are the following.
We require that only the transitions that are not “too small” are approximated
in a multiplicative way while, previously, every transition was required to be
approximated but just in an additive way. The following key lemma related to
the one that was already proved in [5] holds under the definition of approximation
given above.

Lemma 1. (Modified Simulation Lemma) Let M be any Markov decision pro-
cess over N states and let M̂ be an O(ε/(NTRmax))-strong approximation of
M . Then for any policy π, number of steps T and for any state i, Uπ

M (i, T )−ε ≤
Uπ

M̂
(i, T ) ≤ Uπ

M (i, T ) + ε.



Faster Near-Optimal Reinforcement Learning 247

Proof. The proof follows the same lines of the proof of the related lemma pro-
vided in [5]. For simplicity of notation, let us denote by α = cε/(4NTRmax)
where c is some constant smaller than 1 and let us fix throughout the proof a
policy π and a start state i.

We first consider the contribution to the return of the transitions that are
not approximated in M̂ , that it is, the transitions whose transition probabilities
are smaller than α. Since we have N states, the total probability of all these
transitions is at most αN . Moreover, the probability that in T steps we cross
any of these transitions can be bounded by αNT . Thus, the total contribution
to the expected return of any of these transitions is at most αNTRmax. By our
definition of α this quantity is smaller than cε.

Let us consider the paths that do not cross any transition whose transition
probability is smaller than α. By our definition of α-strong approximation, for
any path p of length T the following holds:

(1− α)T Prπ
M [p] ≤ Prπ

M̂
[p] ≤ (1 + α)T Prπ

M [p]

Recall that Uπ
M (i, T ) =

∑
p Prπ

M [p]UM (p). Since the inequality above holds
for any path T , it also holds when we take the expected value. In other words,
the following inequality can be derived from the inequality above:

cε + (1 − α)T Uπ
M (i, T ) ≤ Uπ

M̂
(i, T ) ≤ (1 + α)T Uπ

M (i, T ) + cε

where the factor cε comes from our previous calculation of the error introduced
by the small transitions not required to be approximated in the definition of
α-strong approximation. Now we should show that our choice of α together with
the inequality obtained above implies the lemma. We will show it only for the
upper bound, the lower bound can be shown in a similar manner. For showing
the upper bound, we need to show that the following two inequalities hold:

(1 + α)T Uπ
M (i, T ) ≤ Uπ

M (i, T ) + ε/2 and cα ≤ ε/2

The second inequality easily follows by choosing an appropriate value for c in
the definition of α. For the first one, showing that (1+α)T ≤ 1+ε/(2Rmax) holds
will suffice since the average reward is bounded by Rmax. To see this, notice that
from the Taylor expansion of log(1 + α) one can show that T log(1 + α) is less
than Tα/2 and standard calculus shows that 2x ≤ 1 + 2x. Thus, choosing α
such that Tα ≤ ε/(2Rmax) will suffice and this can be obviously satisfied by our
choice of α and an appropriate choice of c. ut

As in [5], the appropriate definition of known state should be derived from
the Simulation Lemma. We will use the following one.

Definition 4. Let α = O(ε/(NTRmax)). An state i will be denoted as well-
known when for any action a such that P a

M (ij) ≥ α,

(1− α)P a
M (ij) ≤ P a

M̂
(ij) ≤ (1 + α)P a

M (ij)



248 Carlos Domingo

Notice that a straightforward application of Chernoff bounds is not appro-
priate to determine how many times we need to visit a state before it can be
declared as well-known. This is because the required approximation is multi-
plicative and, then the number of visits needed that we will obtain if we derive
it from the Chernoff bound will depend on the true transition probabilities, a
number that is unknown to the algorithm. In fact, it is precisely what it is be-
ing estimated. On the other hand, the Hoeffding bound cannot be used here to
derive the number of necessary steps since it only provides an additive approx-
imation while we want a multiplicative one. For the statements of the Chernoff
and Hoeffding bounds we refer the reader to [6].

To get around this difficulty, we will use a sequential sampling algorithm
based on the one proposed by Lipton et.al. [7,8] for database query estimation.
This algorithm will substitute the following steps of the E3 algorithm. Recall
that when the algorithm is in the exploration phase, it does balanced wandering.
That is, it just executes the least used action from the state where the agent is
currently located, updates the estimates according to the landing state and, in
case the number of times that the state has been visited becomes larger than the
required by the definition of known state given in Section 3, then it is declared
as known.

1 AdaExploStep /* for state i */
2 if state i is visited for the first time then
3 α = O(ε/NTRmax); β = 10 ln(2kN/δ)/α2

4 for all states j ∈ S and actions a ∈ A do
5 ma = 0; Na

M (ij) = 0;
6 apply action a (least used breaking ties randomly);
7 let j the landing state, Na

M (ij) = Na
M (ij) + 1;

8 ma = ma + 1;
9 if (Na

M (ij) ≥ 3 ln(2kN/δ)(1 + α)/α2) then

10 declare P a
M (ij) as estimated by P̂ a

M (ij) = Na
M (ij)/ma;

11 if (ma ≥ β) then

12 declare all remaining P a
M (ij′) as estimated by P̂ a

M (ij′) = Na
M (ij)/ma

13 if all P a
M (ij) are estimated for all states j and actions a then

14 declare i as well-known.

Fig. 1. Adaptive exploration step for state i.

Our approach is the following. Every time we land on an unknown or un-
visited state i in the exploration phase we will execute an Adaptive Exploration
Step (AdaExploStep for short). A pseudo code for AdaExploStep is provided in
Figure 1 and we discuss it now. First, if the state is unvisited, we will initialize
variables Na

M (ij) that will be used for estimating the real transitions probabili-
ties P a

M (ij), the number of times every action a has been used from it ma and,
the two parameters of the algorithm α and β. Then, we will choose the action to



Faster Near-Optimal Reinforcement Learning 249

execute (the least used, breaking ties randomly), we will denote by j the landing
state and update Na

M (ij) accordingly. Then, we will check two conditions whose
meaning is the following. The first condition (line 9 of Figure 1) controls whether
the estimator P̂ a

M (ij) = Na
M (ij)/ma of P a

M (ij) is already α close to it in a mul-
tiplicative sense as desired. Notice that for doing this we are just using value
Na

M (ij). The second condition (line 11 of Figure 1) checks whether we have done
enough sampling so we can guarantee with high probability that all the tran-
sition probabilities that have not been declared estimated yet must be smaller
than α. Finally, when all the transition probabilities for all the actions are de-
clared as estimated, the state is declared well-known. In the following theorem
we discuss the reliability and complexity of the procedure just described.

Theorem 1. Let i be a state in a Markov decision process M and let α =
O(ε/NTRmax). Then, if procedure AdaExploStep declares state i as well-known,
with probability more than 1−δ, it does it correctly in at most m=O(k ln(2kN/δ)/
α2σ) steps where σ is the maximum between the smallest transition probability
and α.

Proof. Let us start proving the correctness, that is, that the estimates P̂ a
M (ij)

output by procedure AdaExploStep satisfy Definition 4 with high probability. For
this, let us fix first one particular transition probability p = P a

M (ij) and let us de-
note by α = O(ε/NTRmax) the desired accuracy on the estimate. Furthermore,
let us suppose that the algorithm declares p as estimated in the first if-then con-
dition, that is, N(p) = Na

M (ij) becomes larger than c = 3 ln(2kN/δ)(1 + α)/α2.
Notice that since N(p) only increases at most by 1 at every step, at the stopping
step N(p) satisfies c ≤ N(p) ≤ c + 1. Thus, since the estimator output by the
algorithm is p̂ = N(p)/ma, it can be easily verified that for any values of ma

satisfying
c

p(1 + α)
≤ ma ≤ c + 1

p(1− α)

estimate p̂ is within the desired range, that is, (1−α)p ≤ p̂ ≤ (1+α)p. Therefore,
the probability of error can be bounded by the probability of stopping before
l1 = c/(p(1 + α)) steps (and thus, p̂ > p(1 + α)) plus the probability of stopping
after l2 = (c + 1)/(p(1 − α)) steps (and thus, p̂ < p(1 − α)). Moreover, notice
that the stopping condition is monotone in the following sense. If it is satisfied
at step l then it will also be satisfied at any step l′ > l and if it has not been
satisfied at step l, then it has also not been satisfied at any step l′ < l, no matter
what are the results of the random trials. Therefore, we need to consider only
the two extreme points l1 and l2. Applying the Chernoff bound to bound those
two probabilities and by our choice of c we can conclude that the probability
that p̂ does not correctly estimate p is less than δ/(2kN). Since there are at
most kN transition probabilities being estimated simultaneously, by the union
bound, the probability that any of them fails is at most δ/2.

We have just shown that, with high probability, any transition probability
p ≥ α that is declared as estimated by the first condition satisfies Definition 4.
More over, it takes at most (c + 1)/(p(1 + α)) steps. By our choice of c and



250 Carlos Domingo

noticing that (1 + α)/(1 − α) is smaller than 5/3 for any α less than 0.25, it
follows that the algorithm will estimate p in at most 5 ln(2kN/δ)/(α2p) steps.

Now, let us discuss the second if-then condition. The meaning of this condi-
tion is the following. If we are doing too many steps in the same state and there
are still transition probabilities that have not been yet declared as estimated,
then, those transitions are “small” with high probability and we can declare the
state as well-known satisfying Definition 4 without further steps. To show the
correctness of this condition, suppose that the algorithm stops in the second
condition and let q = P a

M (ij) a transition probability that was not yet declared
as estimated. Thus, from the first if-then condition (not yet satisfied) we know
that N(q) = Na

M (ij) should be smaller than c and from the second if-then con-
dition (just satisfied) we know that ma ≥ d, where d = 10 ln(2kN/δ)/α2. Thus,
the probability that q is larger than α can be bounded by the probability that
q − N(q)/d is larger than α − c/d. Applying the Hoeffding bound and by our
choice of d and c it can be derived that this probability is smaller than δ/(kN).
Again, using the union bound we can bound by δ/2 the probability that a tran-
sition probability larger than α is incorrectly declared classified by the second
condition.

Finally, the probability that the algorithm makes a mistake in either bound
is bound by δ/2 + δ/2 and the theorem follows. ut

We have just seen that AdaExploStep correctly declares the states as well-
known. Moreover, if S is the set of well-known states, then M̂S will be a strong
approximation of MS in the sense of Definition 3 and thus, by Lemma 1 it will
appropriately simulate MS . Thus, it can be used to compute the off-line policies
the same way as it was used in the original E3 algorithm.

5 Conclusion

We have seen how we can modify the exploration phase of the E3 algorithm
by an adaptive sampling method so that is possible to improve its overall time
bound. Moreover, we have argued that due to the adaptiveness of our method,
it should be more suitable for practical purposes and part of our future work
will be to implement our version of E3 and test it experimentally.

Notice that algorithm E3 as well as our improvement suffer the problem of
being polynomial in the number of states N , something that might be impractical
in certain problems. One possible way around this problem is to consider factored
MDP, that it is, MDP whose transition model can be factored as a dynamic
Bayesian network. A generalization of the E3 algorithm to that case has been
recently obtained in [4]. Our method seems to be applicable also to improve that
generalization although some technical points need to be carefully checked and
this will be part of our future job.



Faster Near-Optimal Reinforcement Learning 251

6 Acknowledgments

I would like to thanks Denis Therien for inviting me to the McGill Annual
Workshop on Computational Complexity where I learned all the neat things
about reinforcement learning from this year main speaker Michael Kearns. I also
would like to thank Michael for kindly providing me all the details about the E3

algorithm. Finally, thanks to the anonymous referees for several comments that
help me to improve the presentation of the paper.

References

1. Carlos Domingo, Ricard Gavaldà and Osamu Watanabe. Practical Algorithms for
On-line Selection. In Proceedings of the First International Conference on Discov-
ery Science, DS’98. Lecture Notes in Artificial Intelligence 1532:150–161, 1998.

2. Carlos Domingo, Ricard Gavaldà and Osamu Watanabe. Adaptive Sampling Meth-
ods for Scaling Up Knowledge Discovery Algorithms. To appear in Proceedings of
the Second International Conference on Discovery Science, DS’99, December 1999.

3. Leslie Pack Kaebling, Michael L. Littman and Andrew W. Moore. Reinforcement
Learning: A Survey. Journal of Artificial Intelligence Research 4 (1996) 237–285.

4. Michael Kearns and Daphne Koller. Efficient Reinforcement Learning in Factored
MDPs. To appear in the Proc. of the International Joint Conference on Artificial
Intelligence, IJCAI’99.

5. Michael Kearns and Satinder Singh. Near-Optimal Reinforcement Learning in
Polynomial Time. In Machine Learning: Proceedings of the 16th International Con-
ference, ICML’99, pages 260–268, 1998.

6. M.J. Kearns and U.V. Vazirani. An Introduction to Computational Learning The-
ory. Cambridge University Press, 1994.

7. Richard J. Lipton and Jeffrey F. Naughton. Query Size Estimation by Adaptive
Sampling. Journal of Computer and System Science, 51:18–25, 1995.

8. Richard J. Lipton, Jeffrey F. Naughton, Donovan Schneider and S. Seshadri. Effi-
cient sampling strategies for relational database operations. Theoretical Computer
Science, 116:195–226, 1993.

9. R.S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. Cam-
bridge, MA. MIT Press.

10. Abraham Wald. Sequential Analysis. Wiley Mathematical, Statistics Series, 1947.
11. Osamu Watanabe. From Computational Learning Theory to Discovery Science. In

Proc. of the 26th International Colloquium on Automata, Languages and Program-
ming, Invited talk of ICALP’99. Lecture Notes in Computer Science 1644:134–148,
1999.



A Note on Support Vector Machine Degeneracy

Ryan Rifkin, Massimiliano Pontil, and Alessandro Verri?

Center for Biological and Computational Learning, MIT
45 Carleton Street E25-201, Cambridge, MA 02142, USA

{rif,pontil,verri}@ai.mit.edu

Abstract. When training Support Vector Machines (SVMs) over non-
separable data sets, one sets the threshold b using any dual cost coefficient
that is strictly between the bounds of 0 and C. We show that there exist
SVM training problems with dual optimal solutions with all coefficients
at bounds, but that all such problems are degenerate in the sense that
the “optimal separating hyperplane” is given by w = 0, and the resulting
(degenerate) SVM will classify all future points identically (to the class
that supplies more training data). We also derive necessary and sufficient
conditions on the input data for this to occur. Finally, we show that an
SVM training problem can always be made degenerate by the addition of
a single data point belonging to a certain unbounded polyhedron, which
we characterize in terms of its extreme points and rays.

1 Introduction

We are given l examples (x1, y1), . . . , (xl, yl), with xi ∈ IRn and yi ∈ {−1, 1} for
all i. The SVM training problem is to find a hyperplane and threshold (w, b) that
separates the positive and negative examples with maximum margin, penalizing
misclassifications linearly in a user-selected penalty parameter C > 0.1 This
formulation was introduced in [2]. For a good introduction to SVMs and the
nonlinear programming problems involved in their training, see [3] or [1]. We
train an SVM by solving either of the following pair of dual quadratic programs:

(P) min 1
2‖w‖2 + C(

∑`
i=1 ξi) (D) max Λ · 1− 1

2ΛDΛ
w, b,Ξ Λ

yi(w · xi + b) ≥ 1− ξi Λ · y = 0
ξi ≥ 0 λi ≤ C

λi ≥ 0

where we used the vector notations Ξ = (ξ1, . . . , ξl),Λ = (α1, . . . , αl). D is the
symmetric positive semidefinite matrix defined by Dij ≡ yiyjxi ·xj . Throughout
this note, we use the convention that if an equation contains i as an unsummed
subscript, the corresponding equation is replicated for all i ∈ {1, . . . , l}.
? INFM-DISI, Università di Genova, Via Dodecaneso 35, 16146 Genova, Italy
1 Actually, we penalize linearly points for which yi(w ·xi + b) < 1; such points are not

actually “misclassifications” unless yi(w · xi + b) < 0.

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 252–263, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



A Note on Support Vector Machine Degeneracy 253

In practice, the dual program is solved.2 However, for this pair of primal-
dual problems, the KKT conditions are necessary and sufficient to characterize
optimal solutions. Therefore, w, b,Ξ, and Λ represent a pair of primal and dual
optimal solutions if and only if they satisfy the KKT conditions. Additionally,
any primal and dual feasible solutions with identical objective values are primal
and dual optimal. The KKT conditions (for the primal problem) are as follows:

w−
∑̀
i=1

λiyixi = 0 (1)

∑̀
i=1

λiyi = 0 (2)

C − λi − µi = 0 (3)
yi(xi ·w + b)− 1 + ξi ≥ 0 (4)

λi{yi(xi ·w + b)− 1 + ξi} = 0 (5)
µiξi = 0 (6)

ξi, λi, µi ≥ 0 (7)

The µi are Lagrange multipliers associated with the ξi; they do not appear
explicitly in either (P) or (D). The KKT conditions will be our major tool for
investigating the properties of solutions to (P) and (D).

Suppose that we have solved (D) and possess a dual optimal solution Λ.
Equation (1) allows us to determine w for the associated primal optimal solution.
Further suppose that there exists an i such that 0 < λi < C. Then, by equation
(3), µi > 0, and by equation (6), ξi = 0. Because λi 6= 0, equation (5) tells us
that yi(xi ·w + b)− 1 + ξi = 0. Using ξi = 0, we see that we can determine the
threshold b using the equation b = 1− yi(xi ·w).

Once b is known, we can determine the ξi by noting that ξi = 0 if λi 6= C (by
equations (3) and (6)), and that ξi = 1 − yi(xi ·w + b) otherwise (by equation
(5)). However, this is not strictly necessary, as it is w and b that must be known
in order to classify future instances.

We note that our ability to determine b and Ξ is crucially dependent on the
existence of a λi strictly between 0 and C. Additionally, the optimality condi-
tions, and therefore the SVM training algorithm derived in Osuna’s thesis [3],
depend on the existence of such a λi as well. On page 49 of his thesis Osuna
states that “We have not found a proof yet of the existence of such λi, or condi-
tions under which it does not exist.” Other discussions of SVM’s ( [1], [2]) also
implicitly assume the existence of such a λi.

In this paper, we show that there need not exist a λi strictly between bounds.
Such cases are a subset of degenerate SVM training problems: those problems

2 SVMs in general use a nonlinear kernel mapping. In this note, we explore the lin-
ear simplification in order to gain insight into SVM behavior. Our analysis holds
identically in the nonlinear case.



254 Ryan Rifkin, Massimiliano Pontil, and Alessandro Verri

where the optimal separating “hyperplane” is w = 0, and the optimal solution is
to assign all future points to the same class. We derive a strong characterization
of SVM degeneracy in terms of conditions on the input data. We go on to
show that any SVM training problems can be made degenerate via the addition
of a single training point, and that, assuming the two classes are of different
cardinalities, this new training point can fall anywhere in a certain unbounded
polyhedron. We provide a strong characterization of this polyhedron, and give
a mild condition which will insure non-degeneracy.

2 Support Vector Machine Degeneracy

In this section, we explore SVM training problems with a dual optimal solution
satisfying λi ∈ {0, C} for all i.

We begin by noting and dismissing the trivial example where all training
points belong to the same class, say class 1. In this case, it is easily seen that
Λ = 0, Ξ = 0, w = 0, and b = 1 represent primal and dual optimal solutions,
both with objective value 0.

Definition 1. A vector Λ is a {0, C}-solution for an SVM training problem P
if Λ solves (D), λi ∈ {0, C} for all i and Λ 6= 0 (note that this includes cases
where λi = C for all i).

We demonstrate the existence of problems having {0, C}-solutions with an
example where the data lie in IR2:

x y
(2, 3) 1
(2, 2) −1
(1, 2) 1
(1, 3) −1

D =




13 −10 8 −11
−10 8 −6 8

8 −6 5 −7
−11 8 −7 10




Suppose C = 10. The reader may easily verify that Λ = (10, 10, 10, 10),
w = 0, b = −1, Ξ = (0, 2, 0, 2) are feasible primal and dual solutions, both
with objective value 40, and are therefore optimal. Actually, given our choice
of Λ and w, we may set b anywhere in the closed interval [−1, 1], and set Ξ =
(1 + b, 1− b, 1 + b, 1− b).

We have demonstrated the possibility of {0, C}-solutions, but the above ex-
ample seems highly abnormal. The data are distributed at the four corners of a
unit square centered at (1.5, 2.5), with opposite corners being of the same class.
The “optimal separating hyperplane” is w = 0, which is not a hyperplane at all.
We now proceed to formally show that all SVM training problems which admit
{0, C}-solutions are degenerate in this sense.

The following lemma is obvious from inspection of the KKT conditions:

Lemma 1. Suppose that Λ is a {0, C}-solution to an SVM training problem
P1 with C = C1. Given a new SVM training problem P2 with identical input
data and C = C2, (C2/C1) ·Λ is dual optimal for P2. The corresponding primal
optimal solution(s) is (are) unchanged.



A Note on Support Vector Machine Degeneracy 255

We see that {0, C}-solutions are not dependent on a particular choice of C.
This in turn implies the following:

Lemma 2. If Λ is a {0, C}-solution to an SVM training problem P, D ·Λ = 0.

Proof:Since D is symmetric positive semidefinite, we can write D = RΣRT ,
where Σ is a diagonal matrix with the (nonnegative) eigenvalues of D in descend-
ing order on the diagonal, R is an orthogonal basis of corresponding eigenvectors
of D, and RRT = I. If D ·Λ 6= 0, then for some index k, σk ≥ 0 and Rk ·Λ 6= 0.

For any value of C, let ΛC be the {0, C}-solution obtained by adjusting Λ
appropriately. This solution is dual optimal for a problem having input data
identical to P , with a new value of C, by Lemma 1.

ΛCDΛC =
l∑

j=1

σj‖Rj ·ΛC‖2

≥ σk‖Rk ·ΛC‖2

= σkC2‖Rk ·Λ1‖2

Define S to be the number of non-zero elements in Λ. As we vary C, the
optimal dual objective value of our family of {0, C}-solutions is given by:

fΛ(C) = ΛC · 1− 1
2
ΛCDΛC

≤ SC − 1
2
σkC2‖Rk ·Λ1‖2

However, if

C∗ >
2S

σk‖Rk ·Λ1‖2

fΛ(C∗) < 0. This is a contradiction, for Λ = 0 is feasible in P with objective
value zero, and zero is therefore a lower bound on the value of any optimal
solution to P , regardless of the value of C.

Theorem 1. If Λ is a {0, C}-solution to an SVM training problem P, w = 0
in all primal optimal solutions.

Proof:
Any optimal solution must, along with Λ, satisfy the KKT conditions. Ex-

ploiting this, we see:

0 = D ·Λ
=⇒ 0 = ΛDΛ



256 Ryan Rifkin, Massimiliano Pontil, and Alessandro Verri

=
l∑

i=1

l∑
j=1

λiDijλj

=
l∑

i=1

l∑
j=1

λiyiyjxixjλj

= (
l∑

i=1

λiyixi) · (
l∑

j=1

λjyjxj)

= w ·w
=⇒ w = 0

This is a key result. It states that if our dual problem admits a {0, C}-
solution, the “optimal separating hyperplane” is w = 0. In other words, it is of no
value to construct a hyperplane at all, no matter how expensive misclassifications
are, and the optimal classifier will classify all future data points using only the
threshold b. Our data must be arranged in such a way that we may as well
“de-metrize” our space by throwing away all information about where our data
points are located, and classify all points identically.

The converse of this statement is false: given an SVM training problem P
that admits a primal solution with w = 0, it is not necessarily the case that
all dual optimal solutions are {0, C}-solutions, nor even that a {0, C}-solution
necessarily exists, as the following example, constructed from the first example
by “splitting” a data point into two new points whose average is one of the
original points, shows:

x y
(2, 3) 1
(2, 2) −1

(1, 1.5) 1
(1, 2.5) 1
(1, 3) −1

D =




13 −10 6.5 9.5 −11
−10 8 −5 −7 8
6.5 −5 3.25 4.75 −5.5
9.5 −7 4.75 7.25 −8.5
−11 8 −5.5 −8.5 10




Again letting C = 10, the reader may verify that setting Λ = (10, 10, 5, 5, 10),
w = 0, b = −1, Ξ = (0, 20, 0, 20, 0, 0) are feasible primal and dual solutions, both
with objective value 40, and are therefore optimal. With more effort, the reader
may verify that Λ = {10, 10, 5, 5, 10} is the unique optimal solution to the dual
problem, and therefore no {0, C}-solution exists.

Although our initial motivation was to study problems with optimal solutions
having every dual coefficient λi at bounds, we gain additional insight by studying
the following, broader class of problems.

Definition 2. An SVM training problem P is degenerate if there exists an
optimal primal solution to P in which w = 0.

By Theorem 1, any problem that admits a {0, C}-solution is degenerate. As
in the {0, C}-solution case, one can use the KKT conditions to easily show that



A Note on Support Vector Machine Degeneracy 257

the degeneracy of an SVM training problem is independent of the particular
choice of the parameter C, and that w = 0 in all primal optimal solutions of a
degenerate training problem.

For degenerate SVM training problems, even though there is no optimal
separating hyperplane in the normal sense, we still call those data points that
contribute to the “expansion” w = 0 with λi 6= 0 support vectors. Given an
SVM training problem P , define Ki to be the index set of points in class i,
i ∈ {1,−1}.

Lemma 3. Given a degenerate SVM training problem P, assume without loss
of generality that |K-1| ≤ |K1|. Then all points in class −1 are support vectors;
furthermore, λi = C if i ∈ K-1. Additionally, if |K-1| = |K1|, the (unique) dual
optimal solution is Λ = C.

Proof:Because w = 0, the primal constraints reduce to:

yib ≥ 1− ξi

If |K-1| < |K1|, the optimal value of b is 1, and ξi is positive for i ∈ |K-1|.
Therefore, λi = C for i ∈ K-1 (by Equations 6 and 3).

Assume |K-1| = |K1|. We may (optimally) choose b anywhere in the range
[−1, 1]. If b ≤ 0, all points in class 1 have λi = C, and if b ≥ 0, all points in class
−1 have λi = C. In either case, there are at least |K-1| points in a single class
satisfying λi = C. But equation ( 2) says that the sum of the λi for each class
must be equal, and since no λi may be greater then C, we conclude that every
λi is equal to C in both classes.

Finally, we derive conditions on the input data for a degenerate SVM training
problem P .

Theorem 2. Given an SVM training problem P, assume without loss of gener-
ality that |K-1| ≤ |K1|. Then:
a. P is degenerate if and only if there exists a set of multipliers Ω for the points
in K1 satisfying:

0 ≤ ωi ≤ 1
∑

i∈K-1
xi =

∑
i∈K1

ωixi

∑
i∈K1

ωi = |K-1|

b. P admits a {0, C}-solution if and only if P is degenerate and the ωi in part
(a) may all be chosen to be 0 or 1.

Proof:
(a, ⇒) Suppose P is degenerate. Consider a modification of P with identical

input data, but C = 1; this problem is also degenerate. All points in class −1
are support vectors, and their associated λi are at 1, by Lemma 3. Letting Λ



258 Ryan Rifkin, Massimiliano Pontil, and Alessandro Verri

be any dual optimal solution to P , we see that letting ωi = λi for i ∈ K1 and
applying Equation ( 2) demonstrates the existence of the ωi.

(a, ⇐) Given ωi satisfying the condition, we easily see that λi = C for
i ∈ K-1, λi = ωiC for i ∈ K1 induces a pair of optimal primal and dual solutions
to P with w = 0 using the KKT conditions.

(b, ⇒) Given a {0, C}-solution, w = 0 in an associated primal solution by
Theorem 1, and setting ωi = λi/C for i ∈ K1 satisfies the requirements on Ω.

(b, ⇐) Let λi = ωiC for i ∈ K1, and apply the KKT conditions.

3 The Degenerating Polyhedron

Theorem 2 indicates that it is always possible to make an SVM training problem
degenerate by adding a single new data point. We now proceed to characterize
the set of individual points whose addition will make a given problem degenerate.
For the remainder of this section, we assume that |K-1| ≤ |K1|, and we denote∑

i∈K-1 xi by V, and |K-1| by n.
Suppose we choose, for each i ∈ K1, an ωi ∈ [0, 1], satisfying n − 1 ≤∑

i∈K1
ωi < n. It is clear from the conditions of Theorem 2 that if we add a new

data point

xc =
V − ∑

i∈K1

ωixi

n− ∑
i∈K1

ωi
(8)

that the problem becomes degenerate, where the new point has a multiplier given
by ωc = n −∑

i∈K1
ωi, and that all single points whose additions would make

the problem degenerate can be found in such a manner. We denote the set of
points so obtained by XD.

We introduce the following notation. For k ≤ n, we let Sk denote the set
containing all possible sums of k points in K1. Given a point s ∈ Sk, we define
an indicator function χs : K1 → {0, 1} with the property χs(xi) = 1 if and only
if xi is one of the k points of K1 that were summed to make x.

The region XD is in fact a polyhedron whose extreme points and extreme
rays are of the form V −x for x ∈ Sn−1 and §n, respectively. More specifically, we
have the following theorem; the proof is not difficult, but it is rather technical,
and we defer it to Appendix A:

Theorem 3. Given a non-degenerate problem P, consider the polyhedron

PD ≡ {
∑

sp∈Sn−1

λsp(V − sp) +
∑

sr∈Sn

αsr (V − xr) |λsp , αsr ≥ 0,
∑

sp∈Sn−1

λsp = 1}

Then PD = XD.

An example is shown in Figure 1. The dark region represents the set of those
points that, when added to the class 1, will make the problem degenerate. This
set can be obtained following the construction in Appendix A.



A Note on Support Vector Machine Degeneracy 259

On the one hand, the idea that the addition of a single data point can make
an SVM training problem degenerate seems to bode ill for the usefulness of the
method. Indeed, SVMs are in some sense not robust. This is a consequence of
the fact that because errors are penalized in the L1 norm, a single outlier can
have arbitrarily large effects on the separating hyperplane. However, the fact
that we are able to precisely characterize the “degenerating” polyhedron allows
us to provide a positive result as well. We begin by noting that in the example
of Figure 1, the entire polyhedron of points whose addition make the problem
degenerate is located well away from the initial data. This is not a coincidence.
Indeed, using Theorem 3, we may easily derive the following theorem:

Theorem 4. Given a non-degenerate problem P with |K−1| ≤ |K1|, suppose
there exists a hyperplane w through V/n, the center of mass of K−1, such that
all points in K1 lie on one side of w, and the closest distance between a point in
K1 and w is d. Then all points in the “degenerating” polyhedron PD lie at least
(|K−1| − 1) ∗ d from w on the other side of w from K1.

Using Theorem 2 we can easily show that if the center of mass of the points
in the smaller class (V/n) does not lie in the convex hull of the points in the
larger class, our problem is not degenerate, and we may apply Theorem 4 to
bound below the distance at which an outlier would have to lie from V/n in
order to make the problem degenerate. We conclude that if the class with larger
cardinality lies well away from and entirely to one side of a hyperplane through
the center of mass of the class of smaller cardinality, our problem is nondegen-
erate, and any single point we could add to make the problem degenerate would
be an extreme outlier, lying on the opposite side of the smaller class from the
larger class.

4 Nonlinear SVMs and Further Remarks

The conditions we have derived so far apply to the construction of a linear
decision surface. It should be clear that similar arguments apply to nonlinear
kernels. In particular, degenerate SVMs will occur if and only if the data satisfy
the conditions of Theorem 2 after undergoing the nonlinear mapping to the high-
dimensional space. It is not necessary that the data be degenerate in the original
input space, although examples could be derived where they were degenerate in
both spaces, for a particular kernel choice. The important message of Theorem 2,
however, is that while degenerate SVMs are possible, the requirements on the
input data are so stringent that one should never expect to encounter them in
practice. On another note, if a degenerate SVM does occur, one simply sets the
threshold b to 1 or −1, depending on which class contributes more points to
the training set. Thus in all cases, we are able to determine the threshold b. Of
course, the wisdom of this approach depends on the data distribution. If our two
classes lie largely on top of each other, than classifying according to the larger
class may indeed be the best we can do (assuming our examples were drawn



260 Ryan Rifkin, Massimiliano Pontil, and Alessandro Verri

−30 −25 −20 −15 −10 −5 0 5 10
−30

−25

−20

−15

−10

−5

0

5

10

Fig. 1. A sample problem, and the “degenerating” polyhedron: whenever a point
in the polyhedron is added to the class 1 (circle), the problem has the degenerate
solution w = b = 0

randomly from the input distribution). If, instead, our dataset looks more like
that of Figure 1, we are better off removing outliers and resolving.

Finally, a brief remark on complexity is in order. The quadratic program
(D) can be solved in polynomial time, and solving this program will allow us to
determine whether a given SVM training problem P is degenerate. However, the
problem of determining whether or not a {0, C}-solution exists is not so easy.
Certainly, if P is not degenerate, no {0, C}-solution exists, but the converse is
false. Determining the existence of a {0, C}-solution may be quite difficult: if
we require the xi to lie in IR1, determining whether a {0, C}-solution exists is
already equivalent to solving the weakly NP-complete problem SUBSET-SUM
(see [4] for more information on NP-completeness).3

3 Because the problem is only weakly NP-complete, given a bound on the size of the
numbers involved, the problem is polynomially solvable.



A Note on Support Vector Machine Degeneracy 261

References

1. C. Burges. A tutorial on support vector machines for pattern recognition. In
Data Mining and Knowledge Discovery. Kluwer Academic Publishers, Boston, 1998.
(Volume 2).

2. C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:1–25,
1995.

3. E. Osuna. Support Vector Machines: Training and Applications. PhD thesis, Mas-
sachusetts Institute of Technology, 1998.

4. M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness W. Freeman and Company, San Francisco, 1979.

A Proof of Theorem 3

Theorem 5. Given a non-degenerate problem P, consider the polyhedron

PD ≡ {
∑

sp∈Sn−1

λsp(V − sp) +
∑

sr∈Sn

αsr (V − xr) |λsp , αsr ≥ 0,
∑

sp∈Sn−1

λsp = 1}

Proof:
(a, PD ⊆ XD) Given a set of λxp and αsr satisfying λsp , αsr ≥ 0,

∑
sp∈Sn−1

λsp =

1, we define A ≡ ∑
sr∈Sn

αsr , and set

ωc =
1

1 + A
,

and, for i ∈ K1, we set

ωi = ωc(
∑

sp∈Sn−1

λspχsp(xi) +
∑

sp∈Sn−1

λspχsr (xi))

Then 0 ≤ ωi ≤ 1 for each i ∈ K1, and

∑
i∈K1

ωi =
n− 1 + nA

1 + A
= n− 1

1 + A
,

which is in [n− 1, n), so we conclude that the assigned wi are valid. Finally,
substituting into Equation ( 8), we find:

V − ∑
i∈K1

ωixi

n− ∑
i∈K1

ωi
=

V − 1
1+A

∑
i∈K1

(
∑

sp∈Sn−1

λspχsp(xi) +
∑

sr∈Sn

αsrχsr(xi))xi

1
1+A

= (1 + A)V −
∑

sp∈Sn−1

λspsp −
∑

sr∈Sn

αsrsr

=
∑

sp∈Sn−1

λsp(V − sp) +
∑

sr∈Sn

αsr (V − sr)



262 Ryan Rifkin, Massimiliano Pontil, and Alessandro Verri

We conclude that PD ⊆ XD.
(b, XD ⊆ PD) Our proof is by construction: given a set of ωi, i ∈ K1, we

show how to choose λsp and αsr so that:

λsp ≥ 0 ∀sp ∈ Sn−1∑
sp∈Sn−1

λsp = 1

αsr ≥ 0 ∀xr ∈ Sn

V − ∑
i∈K1

ωixi

n− ∑
i∈K1

ωi
=

∑
sp∈Sn−1

λsp(V − sp) +
∑

sr∈Sn

αsr (V − sr)

If we impose the reasonable “separability” conditions:

V

n− ∑
i∈K1

ωi
=

∑
sp∈Sn−1

λspV +
∑

sr∈Sn

αsrV

∑
i∈K1

ωixi

n− ∑
i∈K1

ωi
=

∑
sp∈Sn−1

λspsp +
∑

sr∈Sn

αsrsr

we can easily derive the following:

∑
sr∈Sn

αsr =
(

∑
i∈K1

ωi + 1)− n

n− ∑
i∈K1

ωi
≡ A

We are now ready to describe the actual construction. We will first assign the
αsr , then the λsp . We describe in detail the assignment of the αsr , the assignment
of the λsp is essentially similar. We begin by initializing each αsp to 0. At each
step of the algorithm, we consider the “residual”:

V − ∑
i∈K1

ωixi

n− ∑
i∈K1

ωi
−

∑
sr∈Sn

αsr(V − sr) (9)

Note that by expanding each sr in the n points of K1 which sum to it, we
can represent (9) as a multiple of V minus a linear combination of the points of
K1 — we will maintain the invariant that this linear combination is actually a
nonnegative combination. During a step of the algorithm, we select the n points
of K1 that have the largest coefficients in this expansion. If there is a tie, we
expand the set to include all points with coefficients equal to the nth largest
coefficient. Let j be the number of points in the set that share the nth largest



A Note on Support Vector Machine Degeneracy 263

coefficient, and let k (≥ n) be the total size of the selected set. We select the(
j

n−k+j

)
points sr containing the remaining max(k−j, 0) points with the largest

coefficients, and n−k+j of the j points which contain the nth largest coefficient.
We will then add equal amounts of each of these sr to our representation until
some pair of coefficients in the residual that were unequal become equal. This can
happen in one of two ways: either the smallest of the coefficients in our set can
become equal to a new, still smaller coefficient, or the second smallest coefficient
in the set can become equal to the smallest (this can only happen in the case
where k > n.) At each step of the algorithm, the total number of different
coefficients in the residual is reduced by at least one, so, within |K1| steps, we
will be able to assign all the αsr (note that at each step of our algorithm, we
increase

(
j

n−k+j

)
of the αsr ). The only way the algorithm could break down is

if, at some step, there were fewer than n points in K1 with nonzero coefficients
in the residual. Trivially, the algorithm does not break down at the first step
— there must always be at least n points with non-zero coefficients initially. To
show that the algorithm does not break down at a later step, assume that after
assigning coefficients to the sr totaling k (< A), we are left with j (< n) non-zero
coefficients. Noting that our algorithm requires that each of the j remaining
points with non-zero coefficients is part of each sr with a non-zero coefficient,
we can see that the the residual value of each of these j points is no more then

1
n−w − k. We derive the following bound on the initial sum of the coefficients,
which we call Isum:

Isum ≤ j(
1

n− ∑
i∈K1

ωi
− k) + kn

=
j

n− ∑
i∈K1

ωi
+ k(n− j)

≤ n− 1
n− ∑

i∈K1

ωi
+ k

<
n− 1

n− ∑
i∈K1

ωi
+

∑
i∈K1

ωi + 1− n

n− ∑
i∈K1

ωi

=

∑
i∈K1

ωi

n− ∑
i∈K1

ωi

But this is a contradiction, Isum must be equal to

∑
i∈K1

ωi

n−
∑

i∈K1

ωi
. We conclude

that we are able to assign the αsr successfully. Extremely similar arguments hold
for the λsp .



Learnability of Enumerable Classes of

Recursive Functions from “Typical” Examples

Jochen Nessel

University of Kaiserslautern, Postfach 3049, D-67653 Kaiserslautern, Germany
nessel@informatik.uni-kl.de

Abstract. The paper investigates whether it is possible to learn every
enumerable classes of recursive functions from “typical” examples. “Typ-
ical” means, there is a computable family of finite sets, such that for each
function in the class there is one set of examples that can be used in any
suitable hypothesis space for this class of functions. As it will turn out,
there are enumerable classes of recursive functions that are not learnable
from “typical” examples. The learnable classes are characterized.
The results are proved within an abstract model of learning from exam-
ples, introduced by Freivalds, Kinber and Wiehagen. Finally, the results
are interpreted and possible connections of this theoretical work to the
situation in real life classrooms are pointed out.

1 Introduction

This work started with the following question. Assume a teacher has to teach
five pupils the concepts from a given concept class. Is it always possible to come
up with one finite set of examples for each concept, such that all pupils will learn
the intended concept when given the corresponding set of examples?

This seems to be a very natural question; in fact every teacher will ask herself
the question, as to which examples she should present to her pupils to have all
of them learn, for example, arithmetic.

In inductive inference, a pupil is mostly represented by a learning machine
M and a hypothesis space ϕ, which is usually some numbering. The machine is
fed examples of some unknown concept – which has to be represented in ϕ – and
outputs one or more hypotheses, which are interpreted with respect to ϕ. The
machine has learned the concept successfully, if its last hypothesis is a correct
description for what it had to learn.

Some of the results in learning theory depend fundamentally on the choice
of an appropriate hypothesis space; see for example [6], [7]. This problem of
finding a suitable hypothesis space for a target class could be avoided, if there
were examples so “typical” for the concepts in the target class, that they would
suffice to learn in any hypothesis space.

In this paper, we will investigate this problem for the relatively manageable
case of enumerable sets of recursive functions. The used learning model was intro-
duced by Freivalds, Kinber and Wiehagen; cf. [2]. One of their intentions was to

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 264–275, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



Learnability of Enumerable Classes of Recursive Functions 265

model the teacher–pupil–scenario encountered real life classrooms; more on this
in the next section. Even in this rather easy case, there are enumerable classes
of recursive functions, that do not have “typical” examples. The paper gives
a recursion theoretic characterization of the enumerable classes learnable from
“typical” examples. It would be nice though, to have a deeper understanding of
which classes fall within this characterization.

The next section gives formal definitions, some basic results and further mo-
tivation regarding the models used for this investigation. In section three we
give the main results. Due to lack of space, only a few proofs could be included
entirely in the main part of the paper, the rest is sketched. The last section is
devoted to conclusions, open problems and an attempt to give connections of
this theoretical work to real life teaching. It might be argued that this has no
place in work on machine learning. But the author is convinced, that if machine
learning might give insights into how humans learn or problems they might face
while learning, the possibility to discuss this insights should not be passed by.

2 Definitions, Notations, and Basic Results

In the following, familiarity with standard mathematical and recursion theoretic
notation and concepts, as given for example in [10], is assumed.

Pn will denote the set of partial recursive functions of n arguments; by defini-
tion P = P1.R will stand for the set of recursive functions. Sometimes, functions
are identified with their graphs; for example “020∞” may stand for the function
that is everywhere zero with exception of argument 1, where it assumes value 2.
For a function f , f(x)↓ means that f is defined on argument x. A function f is
an initial segment of a function g ∈ R, if domain(f) = {0, . . . , n} for some n and
furthermore f ⊆ g. For any recursive f , let fn stand for a standard encoding
of the initial segment of f with length n. This will later ease the definition of
the learning machines, that can then be thought off as machines with a fixed
number of input parameters.

All functions in P2 are called numberings. Let ϕ and ψ range over numberings
and let η be any fixed standard acceptable numbering; cf. [10]. A numbering ϕ
has decidable equality, if the set {(i, j) | ϕi = ϕj} is recursive. A numbering is
called one-one, if every function appears at most once in it. A numbering ϕ is
said to be reducible to a numbering ψ, written ϕ � ψ, if there exists r ∈ R
such that ϕi = ψr(i) for all i. The function r is then called a reduction. Two
numberings ϕ and ψ are called equivalent, written ϕ ≡ ψ, if both ϕ � ψ and
ψ � ϕ hold.

Define Pϕ = {f | there exists i such that ϕi = f}. If Pϕ ⊆ Pψ, then ϕ is a
subnumbering of ψ.

Let U range over subsets of R. U is said to be enumerable, if there is a
numbering ϕ satisfying Pϕ = U .

Let ϕ be any numbering. A numbering ex contains good examples for ϕ if
the following conditions are fulfilled: (1) exi ⊆ ϕi for all i, and (2) there is e ∈ R
such that e(i) = card(domain(exi)) for all i.



266 Jochen Nessel

In particular, part (2) implies that domain(exi) is finite and recursive. There-
fore, the set of good examples {(x, exi(x)) | x ∈ domain(exi)} can easily be
computed from i, i.e. there is an effective algorithm that computes on input i
the good examples given by exi, returns them and stops; cf. [2]. We will say “ex
are good examples for ϕ” synonymously for “there is a numbering ex containing
good examples for ϕ”.

An inference machine is any computable device that takes given, finite sets
of examples to natural numbers, which will be interpreted as programs with
respect to some previously selected numbering.

Definition 1. (See [2].) U is called learnable from good examples with respect to
ϕ (written U ∈ Gex-Finϕ) if there exist good examples ex for ϕ and an inference
machine M , such that for all i such that ϕi ∈ U and all finite A such that
exi ⊆ A ⊆ ϕi the following holds: M(A)↓ and ϕM(A) = ϕi.

Let Gex-Fin = {U | U ∈ Gex-Finϕ for some ϕ}.
Note that we require only functions in the target class U to be identified.

Furthermore, we require M to learn from any finite superset of the good exam-
ples, as long as this set is contained in the target function. This is done in order
to avoid some coding tricks, like presenting the only example (i, ϕi(i)) in order
to learn ϕi, which would have nothing in common with the learning problem we
would like to model.

Other models consider learning to be a limiting process.

Definition 2. (See [3].) An inference machine M is said to identify a recursive
function f with respect to ϕ in the limit if, for all n, M(fn)↓ = in and there
exists an in0 such that im = in0 for all m ≥ n0, and furthermore ϕin0

= f .

In other words, an inference machine learning some f can change its mind
about a correct description for f a finite number of times, but must eventually
converge to an index for f in ϕ.

Definition 3. U is learnable in the limit with respect to ϕ (written U ∈ EXϕ)
if there is an inference machine, that identifies every f ∈ U with respect to ϕ.

Define EX = {U | U ∈ EXϕ for some ϕ}.
There are two major differences between these two definitions: (1) a “good-

example-machine” receives one finite set of examples, whereas a “Gold-machine”
over time will see every value of the target function; and (2): a good-example-
machine is only allowed one guess, whereas a Gold-machine can change its guess
finitely many times.

So it would be natural to expect the relation Gex-Fin ⊂ EX. But surpris-
ingly, Freivalds, Kinber and Wiehagen in [2] proved

Theorem 1. EX ⊂ Gex-Fin.

Beside the formal proof, there is an intuitive argument supporting this result:
when the good-example-machine gets its examples, which are computed from



Learnability of Enumerable Classes of Recursive Functions 267

a program of the function to be learned, it knows that these examples are the
important part of the target function and can concentrate its efforts on processing
this important information. On the other hand, the Gold-machine might not
be able to distinguish the important part of what it sees from unimportant
information and therefore cannot learn a function it is presented, even though
it may change its mind a finite number of times.

Furthermore, the result states, that for every function in every EX-learnable
class, there is such an important part of that function which suffices to identify
it with respect to the other functions in U .

Theorem 1 is one reason the Gex-model was used for this study, since it
contains everything that can be learned in the limit if all examples are demon-
strated. The other reason is, that the Gex–model seems to model the usual
pupil–teacher–situation pretty well, which is interesting in its own right. To see
this, imagine the good examples exi = {(x, exi(x)) | x ∈ domain(exi)} to be
computed by a teacher, who wants a pupil (M,ϕ) – i.e., the “learning-algorithm”
M the pupil knows, together with the pupils “knowledge-base” ϕ – to learn con-
cept ϕi. The pupil is then given a superset of those examples by the teacher,
processes them, and hopefully comes up with a representation of the intended
concept. We will follow this thoughts in the conclusions some more.

Suppose we want to learn an enumerable class U . It is rather easy to see
that there exist infinitely many enumerations for any such U . Furthermore, the
following holds:

Proposition 1. Let U be any enumerable class and ϕ any numbering satisfying
Pϕ = U . Then U ∈ Gex-Finϕ iff {(i, j) | ϕi = ϕj} is recursive.

Proof. (Sketch) “⇒” Assume a) U ∈ Gex-Finϕ, where b) ϕ ∈ R2. Then a) is
easily seen to imply ϕi = ϕj iff exi ⊆ ϕj and exj ⊆ ϕi; while b) together with
the properties of good examples implies that the latter test is recursive.

“⇐” If equality in ϕ is decidable, it is very easy to compute good examples,
since ϕj 6= ϕj yields the existence of an x such that ϕi(x)↓ 6= ϕj(x)↓. ut

Let us now consider an arbitrary enumerable class U of recursive functions.
The following is a well known result from recursion theory; see [5] for references.

Proposition 2. For every enumerable class U there exists a numbering ϕ such
that Pϕ = U and {(i, j) | ϕi = ϕj} is recursive.

So, by Proposition 1 we get that for any enumerable class U there are infer-
ence machines able to learn U in the Gex-Fin–sense with respect to ϕ. Now it
is easy to see that there are infinitely many numberings enumerating U and all
have recursive equality.

Let f be any function from U . Is there a set of examples so typical for f ,
such that a teacher could present those examples to any machine able to learn
U – and hence f – and it comes up with a correct description for f?

The results in the next section will show, that there exist classes of recursive
functions that do not have “typical” examples.



268 Jochen Nessel

3 Results

Definition 4. Let U be an enumerable class of recursive functions.

Hyp(U) = {ϕ | U ∈ Gex-Finϕ}
The abbreviation Hyp should remind the fact, that this set contains all suit-

able hypothesis spaces for the class U . Now Propositions 2 and 1 imply that
Hyp(U ) 6= ∅ for all enumerable classes U .

Next we define what it means for an enumerable class of functions to be
learnable with typical examples.

Definition 5. Let U be an enumerable class of recursive functions. We say
U ∈ Gex-Fin with typical examples, if there exist ϕ ∈ Hyp(U ) and good examples
ex for U with respect to ϕ such that U ∈ Gex-Finϕ with the good examples
given by ex, and for all ψ ∈ Hyp(U ) there exist good examples ex′ such that
U ∈ Gex-Finψ with examples ex′ and furthermore, for all i, j, we have that
ϕi = ψj implies exi = ex′j.

In other words, U is learnable from typical examples, if there is a way to
choose the examples for any f ∈ U to be equal in all suitable hypothesis spaces.
This seems to capture our intention pretty well, since a teacher can now present
this set of examples to all inference machines and all of them will learn f . So,
the examples are so “typical” for f with respect to the other functions in U , that
every machine able to learn U , can do so when given the “typical” examples.

Note that this definition implies the typical examples to be uniformaly com-
putable for each admissible hypothesis space.

The first result in this section characterizes the enumerable sets of recursive
functions that may be learned with typical examples.

Theorem 2. Let U be an enumerable class of recursive functions. U ∈ Gex-Fin
with typical examples iff ϕ ≡ ψ holds for all ϕ, ψ ∈ Hyp(U ).

Proof. “⇒” The reduction r to be defined takes ϕ-indices to ψ-indices by just
searching for a function with the same set of good examples, which exists by
assumption and definition of typical examples.

“⇐” From Proposition 1 we get that the set Hyp(U ) contains every one-one-
numbering of U , since for those numberings equality is obviously decidable. Let
ϕ be any one-one-numbering of U . Proposition 1 implies U ∈ Gex-Finϕ; let ex be
the good examples witnessing this. Pick any ψ ∈ Hyp(U ). Then, by assumption,
ψ � ϕ via some r ∈ R. Define ex′i = exr(i) for all i. Since ex are good examples
for ϕ and ϕr(i) = ψi for all i, ex′ contains good examples for ψ. Furthermore,
if ψi = ψj then r(i) = r(j), because ϕ is one-one, and therefore ex′i = ex′j .
This yields that equality in ψ is decidable and, applying Proposition 1, we get
U ∈ Gex-Fin with typical examples. ut

Proofs for the following theorem are already known, see [5] and the references
therein for a short survey; especially [9]. A new proof is given here that allows
the observations we need in order to make our point concerning the existence of
typical examples.



Learnability of Enumerable Classes of Recursive Functions 269

Theorem 3. There exists an enumerable class of recursive functions that has
one-one numberings ϕ and ψ such that ϕ 6≡ ψ.

The two constructed numberings being one-one implies {ϕ, ψ} ⊆ Hyp(Pϕ).
But now Theorem 2 implies that Pϕ is not learnable with typical examples.

Proof. We will construct two numberings ϕ and ψ in parallel and diagonalize
against all functions possibly witnessing ϕ � ψ. Recall that η is a numbering of
all partial recursive functions.

Initialize: For all i, set ϕi := ψi := ∅ and `i := 0. Set D := ∅ and n := 0.
Step s: Set ϕn := 1s0∞, `n := s, ψn := 1s0, D := D ∪ {n}, n := n+ 1.

For i = 1 to n− 1, i ∈ D do:
Compute j = η`i(i) for at most s steps.
(1) If j is still undefined, then ψi := ψi0, i.e. extend ψi with another

zero.
(2) If j = i, then

set ψi := ψi1∞ and terminate ψi,
set ϕn := ψi, ψn := ϕi, n := n+ 1.

(3) If j 6= i, then ψi := ψi0∞ and terminate ψi.
next i

(a) First note that ϕ and ψ are computable, everywhere defined and Pϕ =
Pψ; this follows immediately from the construction.

(b) Furthermore, ϕ and ψ are one-one: the functions in both numberings
take as values only 0 and 1. For every s, at most two functions start with 1s0.
Furthermore, every function begins with 1s0 for some suitable s. If there are two
such functions, one continues with 0∞ and the one is terminated by ending it
with 1∞; cf. (2) in the construction above.

(c) Finitely, {j | there is i such that `i = j} = N : obviously, in every step s
some `n will assume the value s.

So we have – by (a) and (b) – that Pϕ = Pψ is an enumerable set of functions
and both ϕ and ψ are one-one. It remains to prove that ϕ 6� ψ.

Assume by way of contradiction, there is a recursive function ηc satisfying
ϕn = ψηc(n) for all n. By (c) there exists i such that `i = c. Since η`i is recursive,
η`i(i)↓ = j. There are two possible cases:

i = j : Then ψi = 1`i0k1∞ for some suitable k, since the construction will be
terminated in (2). But ϕi = 1`i0∞ and therefore ϕi 6= ψi. Contradiction.

i 6= j : In this case ϕi = ψi = 1`i0∞ by (3) of the construction. Since ψ is
one-one, ψj 6= ψi follows. Contradiction.

So, ϕ 6� ψ and hence the theorem follows. ut

Corollary 1. Let ϕ and ψ be the numberings constructed in the proof of Theo-
rem 3. Assume Pϕ ∈ Gex-Finϕ with good examples ex and Pϕ ∈ Gex-Finψ with
good examples ex′. Then there exist infinitely many i such that

(1) exi ⊆ ψi and ex′i ⊆ ϕi,
(2) ϕi 6= ψi.



270 Jochen Nessel

Proof. Due to space restriction we only give an informal argument. If ϕi 6= ψi,
then there exists j such that ϕi = ψj and ϕj = ψi. The set {i | ϕi = ψi} is
not recursive and therefore so is the question, whether there is a j as mentioned
above. The functions ϕi and ψi have the same beginning and since it is not
known if they will differ later, the good examples – once for ϕ and once for ψ
– have to be selected from this common part. If the two functions differ, i.e. if
there exists j as indicated above, then the good examples exj (ex′j , resp.) can
be selected as to contain a difference between ϕi and ϕj (ψi and ψj , resp.). So,
ϕi and ψi are not equal, but the examples were picked from the common part.
This yields the assertion. ut

Let us interpret this result. Pick any i satisfying conditions (1) and (2) of
the corollary. Note that (1) implies exi ∪ ex′i ⊆ ϕi and exi ∪ ex′i ⊆ ψi. Hence,
exi ∪ ex′i is an admissible input for any inference machine M1 witnessing Pϕ ∈
Gex-Finϕ as well as for any inference machine M2 witnessing Pϕ ∈ Gex-Finψ.
Since both numberings are one-one and by definition of the inference process, we
get ϕM1(exi∪ex′

i)
= ϕi and ψM2(exi∪ex′

i)
= ψi. So, both machines learn a function

from the input exi∪ex′i, but since ϕi 6= ψi, they have learned different functions
from the same set of examples. The corollary states that this will happen for
infinitely many concepts in Pϕ, regardless of how the teacher selects the examples
for the machines M1 and M2 and their respective hypothesis spaces ϕ and ψ.

Now we will prove the theorems for the general case. Again we stress that
the fact stated in Theorem 4 is already known. On the other hand, the proof
given here had to be made from scratch in order to guarantee the properties we
need to formulate and prove Corollary 2.

Theorem 4. For each 2 ≤ a ∈ N there exist numberings ϕ1, . . . , ϕa with the
following properties for all 0 ≤ i, j ≤ a:

(1) ϕi ∈ R2 and is one-one,
(2) Pϕi = Pϕj and
(3) i 6= j implies ϕi 6≡ ϕj.

Proof. Let a ≥ 2 be given. We will construct the numberings ϕ1, . . . , ϕa in
parallel by diagonalizing against all possible

(
a
2

)
-tuples of reductions among the

ϕi. There are easier ways to prove part (3) of the theorem, but this will enable
us to prove an analogue to Corollary 1.

The construction below uses lists. Let [] denote the empty list. For some
non-empty list L = [a, b, c, d], as you would expect, Head(L) = a and Tail(L) =
[b, c, d].

Now we will give a short explanation of the variables used in the construction
and hope this will increase readability a little bit.

In `i we code the reductions we will diagonalize against with the set of func-
tions beginning with 1`i0. Of course we could get this information by scanning
the beginning part of each function, but this keeps notation easier. In Li we
keep a list of reductions, in the order we want to diagonalize against them. The
variable mi will denote the biggest value, for which all the functions starting



Learnability of Enumerable Classes of Recursive Functions 271

with 1`i0 have been already defined. If we write cij , we will mean reduction ηcij

which is supposed to reduce ϕi to ϕj . Finally, we use bx and by to store the
index of the “biggest” function beginning with 1`i0 in ϕx and ϕy. By “biggest”
we mean the function f with the largest x ∈ domain(f) such that f(x) = 1 up
to the arguments defined until now. Note that it will be possible to compute
those, since we have knowledge of mi.

Initialize: ϕji := ∅ for all j ∈ {1, . . . , a}, i ≥ 0.
`i := mi := n := 0 and Li = [] for all i ≥ 0.

Step s: `n := s = 〈c12, c13, . . . , c1a, c23, . . . , ca−1 a〉
Ln = [c12, c23, c34, . . . , ca−1 a, “rest”], where “rest” is the list resulting from
erasing c12, c23, c34,. . ., ca−1 a from the list [c12, c13, . . . , c1a, c23, . . . , ca−1 a]
[∗ For example Ln = [c12, c23, c34, c45, c13, c14, c15, c24, c25, c35] ∗]

for j = 1 to a do: ϕjn := 1`n0; mn = `n; end for;
n := n+ 1;
for i = 1 to n− 1, `i 6= 0 do:

if Li = [] then [∗ all reductions have been taken care off ∗]
for all ϕjz, j ∈ {1, . . . , a}, z ≤ n, that begin with 1`i0, define ϕjz(mi+

1) := 0.
end for

mi := mi + 1.
else [∗ there still are reductions we need to diagonalize against ∗]
c := Head(Li) = cxy
if x+ 1 = y then [∗ still in the “first part” of the diagonalization ∗]

compute r := ηc(i) for at most s steps.
if r = i then

[∗ so we have ϕxi = ϕyi = 1`i0X0, where ‘X’ is some suitable
sequence of zeros and ones of length mi − `i − 2 ∗]

ϕxi := 1`i0X000;
ϕjn := 1`i0X010 for all 1 ≤ j ≤ x;
ϕji := 1`i0X010 for all y ≤ j ≤ a;
ϕjn := 1`i0X000 for all y ≤ j ≤ a;
for all ϕjz , j ∈ {1, . . . , a}, z ≤ n, that start with 1`i0 and have

not yet been defined for arguments mi + 1 and mi + 2, let
ϕjz(mi + 1) := ϕjz(mi + 2) := 0.
end for

n := n+ 1, mi := mi + 2; Li := Tail(Li).
else [∗ i.e., x+ 1 < y, the “second part” of the diagonalization ∗]

bx := index of “biggest function” beginning with 1`i0 in ϕx.
by := index of ϕxbx

in ϕy .
compute r := ηc(bx) for at most s steps.
if r = by then

[∗ again ϕxi = ϕyi = 1`i0X0; see above ∗]
ϕxbx

:= 1`i0X000;

ϕyby
:= 1`i0X010;

ϕjn := 1`i0X010 for all j ∈ {1, . . . , a} \ {y};



272 Jochen Nessel

ϕyn := 1`i0X000;
for all ϕjz , j ∈ {1, . . . , a}, z ≤ n, that start with 1`i0, and

have not yet been defined for arguments mi+1 and mi+2,
let ϕjz(mi + 1) := ϕjz(mi + 2) := 0.
end for

n := n+ 1, mi := mi + 2; Li := Tail(Li).
if the computation of ηc(i), or resp. ηc(bx) does not terminate, then

for all ϕjz, j ∈ {1, . . . , a}, z ≤ n, that egin with 1`i0, define ϕjz(mi +
1) := 0.
end for

mi := mi + 1.
end for

(a) Note that ϕi ∈ R2 and Pϕi = Pϕj for all i, j ∈ {1, . . . , a} follows imme-
diately from construction.

(b) Every ϕi is one-one. This can be argued in the same way as in the proof
of Theorem 2.

(c) For any
(
a
2

)
-tuple (c12, c13, . . . , c1a, c23, . . . , ca−1 a) of indices of recursive

functions, ηcij does not reduce ϕi to ϕj . Again, this can easily be seen, since the
construction takes care that every possible reduction is wrong.

It remains to prove that i 6= j implies ϕi 6≡ ϕj for i, j ∈ {1, . . . , a}. Assume
i < j, otherwise just exchange i and j. Suppose by way of contradiction, that
ηk reduces ϕi to ϕj . Hence k is an index of a recursive function. Let (k, . . . , k)
be an

(
a
2

)
-tuple. Obviously, it only contains indices of recursive functions. By (c)

we have that, for all indices cij in this tuple, ηcij does not reduce ϕi to ϕj . This
contradicts our choice of k. The theorem follows. ut

Corollary 2. Let a ≥ 2 and ϕ1, . . . , ϕa be the numberings constructed in the
proof of Theorem 4. Assume ϕi ∈ Gex-Finϕi with good examples exi for all
i ∈ {1, . . . , a}. Then there exist infinitely many n such that

(1) exin ⊆ ϕjn for all i, j ∈ {1, . . . , a} and
(2) ϕin 6= ϕjn for all i, j ∈ {1, . . . , a}.
Proof. (Sketch) A self referential argument shows, that the construction used in
the proof of Theorem 4 would make a mistake, if conditions (1) and (2) of the
formulation of the corollary were not fulfilled. ut

This corollary somewhat strengthens the remarks following Corollary 1. Here
we have the situation that, for infinitely many n, (

⋃a
j=1 ex

j
n) ⊆ ϕin and ϕin 6= ϕkn

for all i, k ∈ {1, . . . , a}. Condition (2) now implies that every machine learns
a different function when presented with the examples

⋃a
j=1 ex

j
n. The other

comments apply here as well.
Furthermore note, that there exist families {exij}j≥0,i∈{1,...,a} of finite sets,

which we also might call “good examples” for now, such that exij ⊆ ϕi
′
j′ iff

ϕij = ϕi
′
j′ , for all i, i′ ∈ {1, . . . , a} and j, j′ ≥ 0.



Learnability of Enumerable Classes of Recursive Functions 273

To see this, one checks the proof of Theorem 4, which yields that for every
function f in the generated numberings only finitely many x exist, such that
f(x) 6= 0. So there exist families containing examples with all and only those x.

It is easy to see, that now these sets of good examples are equal if and only
if so are the corresponding functions. This obviously yields the assertion stated
above. But none of this families is computable, since this would clearly contradict
the corollary.

On the other hand: it would be easy to compute these families “in the limit”.
And hence, a teacher with lots of experience might know a good part of this
typical examples for his area of expertise.

One might ask if this phenomenon can also be achieved for infinitely many
numberings. As the following theorem, cf. [9], shows, there is indeed an infinite
sequence of pairwise non-equivalent numberings, all of them enumerating the
same class of recursive functions. The proof used here is conceptionally much
simpler than the original one in [9].

Theorem 5. There exists a sequence ϕi, i ≥ 0, of numberings such that for all
i, j the following properties are satisfied:

(1) ϕi ∈ R2, ϕj ∈ R2 and both numberings are one-one,
(2) Pϕi = Pϕj ,
(3) i 6= j implies ϕi 6≡ ϕj.

Proof. (Sketch) This is again a diagonalization, but this time it is made sure
that, for i < j, ϕi can not be reduced to ϕj . In essence, the argument used to
prove Theorem 3 is repeated an infinite number of times. The only thing to take
care of is the accounting of which functions were used in the construction, in
order to fulfill condition (2). ut

But there is no analogue for Corollaries 1 and 2. An analogue to the corollaries
in the finite case would require for any choice of the good examples a sequence
of indices nk, k ≥ 0, such that ϕink

6= ϕjnk
and

⋃
k≥0 ex

k
nk
⊆ ϕini

for all i, j. Note
that in the corollaries above we have that one index n fulfills this requirement
and do not need a whole sequence. But requiring one index n would complicate
the previous proof and is not needed for the following argument.

For each ϕi in the sequence constructed in Theorem 5, Pϕi ∈ Gex-Finϕi holds
by Proposition 1. Furthermore, this can be achieved with good examples gexi

that satisfy, for all i, j, the following conditions: card(gexij) > max ({i, j}) and
furthermore gexij is an initial segment of ϕij . To see this, assume Pϕi ∈ Gex-Finϕi

with good examples exi for some i. Define gexij , for all j, by gexij = {(x, ϕij(x)) |
0 ≤ x ≤ max({i, j,max (domain(exij))})}. Since the inference machine witness-
ing Pϕi ∈ Gex-Finϕi has to learn from all finite supersets of the good examples
exi as well, obviously gexi also are good examples for Pϕi with respect to ϕi.

This yields that for every sequence nk, the set E =
⋃
k≥0 gex

k
nk

will be
infinite. For every x there is at least one y such that (x, y) ∈ E, since the good
examples are initial segments. Therefore E can be contained in at most one
function. In fact, E might not even be a function, but a relation. An analogue
to the corollaries in the finite case therefore can not hold.



274 Jochen Nessel

4 Conclusion, Open Problems, and Interpretation

Theorem 4 and Corollary 2 witness the following fact: for every n ≥ 2, there is
an enumerable class of recursive functions and n hypothesis spaces, such that,
no matter how the teacher chooses the examples for some concepts within the
class, each machine witnessing the learnability for one of those hypothesis spaces
will learn a different function when confronted with this set of examples. Even
worse, they all produce seemingly identical hypotheses consistent with the given
examples, so that it is impossible for the teacher to know, whether the machines
have successfully learned the intended function or not.

Of course, there are unanswered questions.
What do concept classes look like that fulfill the corollaries? What are neces-

sary or/and sufficient conditions for those? Or, rephrased in recursion theoretic
terms: given two recursive numberings ϕ an ψ, what is needed to be able to test
“pointwise equality” between them? I.e., is there an f ∈ R such that f(i) = 1
iff ϕi = ψi?

Another interesting question is, which classes of recursive functions have the
property, that all their numberings with decidable equality are reducible to one
another, or, equivalently, that all their one-one numberings are equal with respect
to �. This would characterize the classes of functions that are learnable with
typical good examples, by using Theorem 2, in a different way. For enumerable
classes, necessary and sufficient conditions are known in order to assure that all
of their numberings are equivalent with respect to �; cf. [5] and the references
therein. But it is easy to see that there is an enumerable class U of functions,
such that all one-one numberings of U are equivalent, but not all enumerations
of U are. For example, let U = {fi | i ∈ N} ∪ { constant zero function}, where
fi is always 0, with exception of i, where it takes value 1. Obviously, all one-one
numberings of U are equivalent, and it is easy to construct two numberings of
U that are not equivalent, by exploiting the fact that the constant zero function
is an “accumulation point” for U . (The function f is an accumulation point for
U , if for all n ∈ N there exists mn such that mn < mn+1 and f(x) = gn(x) for
all x < mn and f(mn) 6= gn(mn) for some gn in U .)

In the comments following Corollary 2 it is mentioned, that “typical” exam-
ples could be computed in the limit. It could be interesting to find an intuitive
definition for “limit computable examples”, without “shifting” most of the in-
ference process into this limiting computation.

The reader only interested in mathematical results may now stop reading.
The following tries to give some connections of the obtained results to real life
teaching and interpret them in that context.

As mentioned before, the pair (M,ϕ) might be thought of as a pupil: the
pupils learning algorithmM and its knowledge base ϕ. In a classroom the follow-
ing might happen: a teacher gives two pupils (M1, ϕ) and (M2, ψ) the examples
for some concepts he wants them to learn. The pupils process those examples
and return an identical hypothesis i, as it happens even in the theoretical case,
see the comments following Corollary 2 on page 270. Now, if the teacher does not
know which knowledge base a pupil is using, he might not know, if both pupils



Learnability of Enumerable Classes of Recursive Functions 275

have learned the intended concept. As a consequence, he will have to submit
them both to a series of tests, in order to check what they learned. And eventu-
ally, he will have to correct mistakes the pupils made. Normally this is achieved
by presenting new examples to the pupil in order to make it see its mistake and
learn the correct concept.

The corollaries show that there are concept classes and sets of pupils, such
that for some concepts the teacher has to compute a different set of examples
for each pupil. But this is only feasible in small classrooms, since otherwise the
teacher just will not have the time to dedicate enough time to each student and
compute a different set example for each one. So the model reflects the well
know fact, that smaller classrooms improve learning performance. In addition
one might notice that all students have the same learning potential, since all
knowledge bases contain the same set of functions. Hence no pupil could be
considered “stupid”, they just generate and test ideas in a different way. This
might be a reason why some pupils like some teachers and learn better with them:
teacher and pupil use a similar “knowledge base”, the teacher for generating and
the pupil for testing the examples. So it is to expect that they will achieve good
learning performance. Of course, there might, and most likely will, be other
reasons, but it would be interesting to test this hypothesis in a real classroom.

I am grateful to R. Wiehagen, C. Smith and the referees for many valuable
suggestions and to W. and A. Nessel for carefully reading a draft of this work.

References

1. Jain, S., Lange, S., Nessel, J. (1997), Learning of r.e. Languages from Good Exam-
ples, in Li, Maruoka, Eds., Eighth International Workshop on Algorithmic Learning
Theory, 32 - 47, Lecture Notes in Artificial Intelligence 1316, Springer Verlag.

2. Freivalds, R., Kinber, E.B., Wiehagen, R. (1993), On the power of inductive infer-
ence from good examples. Theoretical Computer Science 110, 131 - 144.

3. Gold, E.M. (1967), Language identification in the limit. Information and Control
10, 447 - 474.

4. Goldman, S.A., Mathias, H.D. (1996), Teaching a smarter learner. Journal of Com-
puter and System Sciences 52, 255 - 267.

5. Kummer, M. (1995), A Learning-Theoretic Characterization of Classes of Recursive
Functions, Information Processing Letters 54, 205 - 211.

6. Lange, S., Nessel, J., Wiehagen, R. (1998), Learning recursive languages from good
examples, Annals of Mathematics and Artificial Intelligence 23, 27 - 52.

7. Lange, S., Zeugmann, T. (1993), Language Learning in Dependence on the Space of
Hypotheses, Proceedings of the Sixth Annual ACM Conference on Computational
Learning Theory, 127 - 136, ACM Press.

8. Lange, S., Zeugmann, T. (1993), Learning recursive languages with bounded mind-
changes, International Journal of Foundations of Computer Science 2, 157 - 178.

9. Marchenkov, S. S. (1972), The computable enumerations of families of recursive
functions, Algebra i Logika 11, 588-607; English Translation Algebra and Logic 15,
128 - 141, 1972.

10. Rogers, H. Jr. (1987), Theory of Recursive Functions and Effective Computability,
MIT Press, Cambridge, Massachusetts.



On the Uniform Learnability of Approximations

to Non-recursive Functions

Frank Stephan1 , ? and Thomas Zeugmann2 , ??

1 Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 294,
69120 Heidelberg, Germany

fstephan@math.uni-heidelberg.de
2 Department of Informatics, Kyushu University, Kasuga 816-8580, Japan

thomas@i.kyushu-u.ac.jp

Abstract. Blum and Blum (1975) showed that a class B of suitable re-
cursive approximations to the halting problem is reliably EX-learnable.
These investigations are carried on by showing that B is neither in NUM
nor robustly EX-learnable. Since the definition of the class B is quite
natural and does not contain any self-referential coding, B serves as an
example that the notion of robustness for learning is quite more restric-
tive than intended.
Moreover, variants of this problem obtained by approximating any given
recursively enumerable set A instead of the halting problem K are stud-
ied. All corresponding function classes U(A) are still EX-inferable but
may fail to be reliably EX-learnable, for example if A is non-high and
hypersimple. Additionally, it is proved that U(A) is neither in NUM nor
robustly EX-learnable provided A is part of a recursively inseparable
pair, A is simple but not hypersimple or A is neither recursive nor high.
These results provide more evidence that there is still some need to find
an adequate notion for “naturally learnable function classes.”

1. Introduction

Though algorithmic learning of recursive functions has been intensively studied
within the last three decades there is still some need to elaborate this theory
further. For the purpose of motivation, let us shortly recall the basic scenario.

An algorithmic learner is fed growing initial segments of the graph of the
target function f . Based on the information received, the learner computes a
? Supported by the Deutsche Forschungsgemeinschaft (DFG) under Research Grant

no. Am 60/9-2.
?? Supported by the Grant-in-Aid for Scientific Research in Fundamental Areas

from the Japanese Ministry of Education, Science, Sports, and Culture under
grant no. 10558047. Part of this work was done while visiting the Laboratoire
d’Informatique Algorithmique: Fondements et Applications, Université Paris 7. This
author is gratefully indebted to Maurice Nivat for providing financial support and
inspiring working conditions.

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 276–290, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



On the Uniform Learnability of Approximations to Non-recursive Functions 277

hypothesis on each input. The sequence of all computed hypotheses has to con-
verge to a correct, finite and global description of the target f . We shall refer
to this scenario by saying that f is EX-learnable (cf. Definition 1).

Clearly, what one is really interested in are powerful learning algorithms that
cannot only learn one function but all functions from a given class of functions.
Gold [11] provided the first such powerful learner, i.e., the identification by enu-
meration algorithm and showed that it can learn every class contained in NUM .
Here NUM denotes the family of all function classes that are subsets of some
recursively enumerable class of recursive functions.

There are, however, learnable classes of recursive functions which are not
contained in NUM . The perhaps most prominent example is the class SD of
self-describing recursive functions, i.e., of all those functions that compute a pro-
gram for themselves on input 0. Clearly, SD is EX-learnable.

Since Gold’s [11] pioneering paper a huge variety of learning criteria have
been proposed within the framework of inductive inference of recursive func-
tions (cf., e.g., [3,6,8,9,15,19,21]). By comparing these inference criteria to one
another, it became popular to show separation results by using function classes
with self-referential properties. On the one hand, the proof techniques developed
are mathematically quite elegant. On the other hand, these separating examples
may be considered to be a bit artificial, because of the use of self-describing
properties. Hence, Bārzdiņš suggested to look at versions of learning that are
closed under computable transformations (cf. [20,28]). For example, a class U is
robustly EX-learnable, iff, for every computable operator Θ such that Θ(U) is a
class of recursive functions, the class Θ(U) is EX-learnable, too (cf. Definition 4).
There have been many discussions which operators are admissible in this context
(cf., e.g., [10,14,16,20,23,28]). At the end, it turned out to be most suitable to
consider only general recursive operators, that is, operators which map every
total function to a total one. The resulting notion of robust EX-learning is the
most general one among all notions of robust EX-inference.

Next, we state the two main questions that are studied in the present paper.

(1) What is the overall theory developed so far telling us about the learnability
of “naturally defined function classes?”

(2) What is known about the robust EX -learnability of such “naturally defined
function classes?”

Clearly an answer to the first question should tell us something about the use-
fulness of the theory, and an answer to the second problem should, in particular,
provide some insight into the “naturalness” of robust EX-learning. However,
our knowledge concerning both questions has been severely limited. For func-
tion classes in NUM everything is clear, i.e., their learnability has been proved
with respect to many learning criteria including robust EX-learning. Next, let us
consider one of the few “natural” function classes outside NUM that have been
considered in the literature, i.e., the class C of all recursive complexity functions.
Then, using Theorem 2.4 and Corollary 2.6. in [23], one can conclude that C is
not robustly EX-learnable for many complexity measures including space, since



278 Frank Stephan and Thomas Zeugmann

there is no recursive function that bounds every function in C for all but finitely
many arguments. On the other hand, C itself is still learnable with respect to
many inference criteria by using the identification by enumeration learner.

The latter result already provides some evidence that the notion of robust
EX-learning may be too restrictive. Nevertheless, the situation may be com-
pletely different if one looks at classes of {0, 1} -valued recursive functions, since
their learnability differs sometimes considerably from the inferability of arbitrary
function classes (cf., e.g., [17,26]). As far as these authors are aware of, one of
the very few “natural classes” of {0, 1} -valued recursive functions that may be a
candidate to be not included in NUM has been proposed by Blum and Blum [6].
They considered a class B of approximations to the halting problem K and
showed that B is reliably EX-learnable. This class B is quite natural and not
self-describing. It remained, however, open whether or not B is in NUM .

Within the present work, it is shown that B is neither in NUM nor ro-
bustly EX-learnable. Moreover, we study generalizations of Blum and Blum’s [6]
original class by considering classes U(A) of approximations for any recursively
enumerable set A . In particular, it is shown that all these classes remain EX-
learnable but not necessarily reliably EX-inferable (cf. Theorems 14 and 16).
Furthermore, we show U(A) to be neither in NUM nor robustly EX-learnable
provided A is part of a recursively inseparable pair, A is simple but not hyper-
simple or A is neither recursive nor high (cf. Theorems 13 and 17).

Thus the results obtained enlarge our knowledge concerning the learnabil-
ity of “naturally defined” function classes. Additionally, all those classes U(A)
which are not in NUM as well as B are natural examples for a class which is
on the one side not self-describing and on the other side not robustly learnable.
So all these U(A) provide some incidence that the presently discussed notions
of robust and hyperrobust learning [1,7,10,14,16,23,28] destroy not only coding
tricks but also the learnability of quite natural classes.

Due to the lack of space, many proofs are only sketched or omitted. We refer
the reader to [25] for a full version of this paper.

2. Preliminaries

Unspecified notations follow Rogers [24]. IN = {0, 1, 2, . . .} and IN∗ denote the
set of all natural numbers and the set of all finite sequences of natural numbers,
respectively. {0, 1}∗ stands for the set of all finite {0, 1} -valued sequences and for
all x ∈ IN we use {0, 1}x for the set of all {0, 1} -valued sequences of length x .

The classes of all partial recursive and recursive functions of one, and two
arguments over IN are denoted by P , P2, R, and R2 , respectively. f ∈ P is
said to be monotone provided for all x, y ∈ IN we have, if both f(x) and f(y)
are defined then f(x) ≤ f(y). R0,1 and Rmon denotes the set of all {0, 1} -
valued recursive functions and of all monotone recursive functions, respectively.

Furthermore, we write fn instead of the string (f(0), . . . , f(n)), for any n ∈
IN and f ∈ R . Sometimes it will be suitable to identify a recursive function with



On the Uniform Learnability of Approximations to Non-recursive Functions 279

the sequence of its values, e.g., let α = (a0, . . . , ak) ∈ IN∗, j ∈ IN, and p ∈ R0,1 ;
then we write αjp to denote the function f for which f(x) = ax , if x ≤ k ,
f(k+1) = j , and f(x) = p(x−k−2), if x ≥ k+2. Furthermore, let g ∈ P and
α ∈ IN∗ ; we write α � g iff α is a prefix of the sequence of values associated
with g , i.e., for all x ≤ k , g(x) is defined and g(x) = ax .

Any function ψ ∈ P2 is called a numbering. Moreover, let ψ ∈ P2 , then
we write ψi for the function x → ψ(i, x) and set Pψ = {ψi i ∈ IN} as well as
Rψ = Pψ ∩ R . Consequently, if f ∈ Pψ , then there is a number i such that
f = ψi . If f ∈ P and i ∈ IN are such that ψi = f , then i is called a ψ–program
for f . Let ψ be any numbering, and i, x ∈ IN; if ψi(x) is defined (abbr. ψi(x)↓ )
then we also say that ψi(x) converges. Otherwise, ψi(x) is said to diverge (abbr.
ψi(x)↑ ).

A numbering ϕ ∈ P2 is called a Gödel numbering or acceptable numbering
(cf. [24]) iff Pϕ = P , and for any numbering ψ ∈ P2 , there is a c ∈ R such that
ψi = ϕc(i) for all i ∈ IN. In the following, let ϕ be any fixed Gödel numbering. As
usual, we define the halting problem to be the set K = {i i ∈ IN, ϕi(i)↓ } . Any
function Φ ∈ P2 satisfying dom(ϕi) = dom(Φi) for all i ∈ IN and {(i, x, y)
i, x, y ∈ IN, Φi(x) ≤ y} is recursive is called a complexity measure (cf. [5]).

Furthermore, let NUM = {U (∃ψ ∈ R2)[U ⊆ Pψ]} denote the family of all
subsets of all recursively enumerable classes of recursive functions.

Next, we define the concepts of learning mentioned in the introduction.

Definition 1. Let U ⊆ R and M : IN∗ → IN be a recursive machine.
(a) (Gold [11]) M is an EX-learner for U iff, for each function f ∈ U , M

converges syntactically to f in the sense that there is a j ∈ IN with ϕj = f and
j = M(fn) for all but finitely many n ∈ IN.

(b) (Angluin [2]) M is a conservative EX-learner for U iff M EX -learns U
and M makes in addition only necessary hypothesis changes in the sense that,
whenever M(ση) 6= M(σ) then the program M(σ) is inconsistent with the data
ση by either ϕM(σ)(x)↑ or ϕM(ση)(x)↓ 6= ση(x) for some x ∈ dom(ση).

(c) (Bārzdins [4], Case and Smith [8]) M is a BC-learner for U iff, for each
function f ∈ U , M converges semantically to f in the sense that ϕM(fn) = f
for all but finitely many n ∈ IN.

A class U is EX -learnable iff it has a recursive EX -learner and EX denotes
the family of all EX -learnable function classes. Similar we define when a class
is conservatively EX -learnable or BC -learnable. We write BC for the family of
all BC -learnable function classes.

Note that EX ⊂ BC (cf. [8]). As far as we are aware of, it has been open
whether or not conservative learning constitutes a restriction for EX -learning of
recursive functions. The negative answer is provided by the next proposition.

Proposition 2. EX = conservative-EX .

Nevertheless, whenever suitable, we shall design a conservative learner instead
of just an EX -learner, thus avoiding the additional general transformation given
by the proof of Proposition 2.



280 Frank Stephan and Thomas Zeugmann

Next, we define reliable inference. Intuitively, a learner M is reliable provided it
converges if and only if it learns. There are several variants of reliable learning,
so we will give a justification of our choice below.

Definition 3 (Blum and Blum [6], Minicozzi [21]). Let U ⊆ R ; then U is
said to be reliably EX-learnable if there is a machine M ∈ R such that

(1) M EX -learns U and
(2) for all f ∈ R , if the sequence (M(fn))n∈IN converges, say to j , then ϕj = f .

By REX we denote the family of all reliably EX -learnable function classes.

Note that one can replace the condition “f ∈ R” in (2) of Definition 3 by
“f ∈ P ” or “all total f .” This results in a different model of reliable learning,
say PEX and T EX , respectively. Then for every U ⊆ R0,1 such that U ∈ PEX
or U ∈ T EX one has U ∈ NUM (cf. [6,12,26]). On the other hand, there are
classes U ⊆ R0,1 such that U ∈ REX \NUM (cf. [12]). As a matter of fact, our
Theorem 6 below together with Blum and Blum’s [6] result B ∈ REX provides
a much easier proof of the same result than Grabowski [12].

Finally, we define robust EX -learning. This involves the notion of general
recursive operators. A general recursive operator is a computable mapping that
maps functions over IN to functions over IN and every total function has to be
mapped to a total function. For a formal definition and more information about
general recursive operators the reader is referred to [13,22,27].

Definition 4 (Jain, Smith and Wiehagen [16]). Let U ⊆ R ; then U is said
to be robustly EX-learnable if Θ(U) is EX -learnable for every general recursive
operator Θ . By robust-EX we denote the family of all robustly EX -learnable
function classes.

3. Approximating the Halting Problem

Within this section, we deal with Blum and Blum’s [6] class B . First, we define
the class of approximations to the halting problem considered in [6].

Definition 5. Let τ ∈ R be such that for all i ∈ IN

ϕτ(i)(x) =




1, if Φi(x)↓ and Φx(x) ≤ Φi(x)
0, if Φi(x)↓ and ¬[Φx(x) ≤ Φi(x)]
↑ , otherwise.

Now, we set B = {ϕτ(i) i ∈ IN and Φi ∈ Rmon} .

Blum and Blum [6] have shown B ∈ REX but left it open whether or not
B ∈ NUM . It is not, as our next theorem shows.

Theorem 6. B /∈ NUM .

Proof. First, recall that K is part of a recursively inseparable pair (cf. [22,
Exercise III.6.23.(a)]). That is, there is an r.e. set H such that K∩H = ∅ and for



On the Uniform Learnability of Approximations to Non-recursive Functions 281

every recursive set A ⊇ H we have |A∩K| = ∞ . Now, we fix any enumeration
k0, k1, k2, . . . and h0, h1, h2, . . . of K and H , respectively. Suppose to the
contrary, that there exists a numbering ψ ∈ R2 such that B ⊆ Rψ . Next, we
define for each ψe a function ge ∈ P as follows. For all e, x ∈ IN let

ge(x) = “Search for the least n such that for n = s+ y either (A), (B) or (C)
happens:

(A) y = hs ∧ ψe(y) = 1
(B) y = ks ∧ ψe(y) = 0 ∧ y > x
(C) ψe(y) > 1

If (A) happens first, then set ge(x) = s+ y .
If (B) happens first, then let ge(x) = Φy(y) + y .
If (C) happens first, then let ge(x) = 0.”

Claim 1. ge ∈ R for all e ∈ IN .
If there is at least one y such that ψe(y) > 1, then ge ∈ R . Now let

ψe ∈ R0,1 and suppose that there is an x ∈ IN with ge(x)↑ . Then there are no
s, y such that y = hs and ψe(y) = 1. Hence, M = {y y ∈ IN∧ψe(y) = 0} ⊇ H
and M is recursive. Thus, |M ∩K| = ∞ . So there must be a y > x such that
ψe(y) = 0 and an s ∈ IN with y = ks . Thus (B) must happen, and since y = ks ,
we conclude Φy(y)↓ . Hence, ge(x)↓ , too, a contradiction. This proves Claim 1.

Claim 2. Let e be any number such that ψe = ϕτ(i) for some ϕτ(i) ∈ B . Then
ge(x) > Φi(x) for all x ∈ IN .

Assume any i, e as above, and consider the definition of ge(x). Suppose
ge(x) = s + y for some s, y such that y = hs and ψe(y) = 1. Since ψe(y) =
ϕτ(i)(y) = 1 implies Φy(y) ≤ Φi(y), and hence y ∈ K , we get a contradiction
to K ∩H = ∅ . Thus, this case cannot happen.

Consequently, in the definition of ge(x) condition (B) must have happened.
Thus, some s, y such that y > x , y = ks and ψe(y) = 0 have been found.
Since y = ks , we conclude Φy(y)↓ and thus g(x) > Φy(y). Because of ψe(y) =
ϕτ(i)(y) = 0, we obtain Φi(y) < Φy(y) by the definition of ϕτ(i) . Now, putting it
all together, we get g(x) > Φy(y) > Φi(y) ≥ Φi(x), since y > x and Φi ∈ Rmon .
This proves Claim 2.

Claim 3. For every b ∈ R there exists an i ∈ IN such that Φi ∈ Rmon and
b(x) < Φi(x) for all x ∈ IN.

Let r ∈ R be such that for all j, x ∈ IN we have

ϕr(j)(0) =
{

0, if ¬[Φj(0) ≤ b(0)]
ϕj(0) + 1, otherwise

and for x > 0

ϕr(j)(x) =




0, if Φj(n) is defined for all n < x ∧
¬[Φj(x) ≤ Φj(x− 1) ∨ Φj(x) ≤ b(x)]

ϕj(x) + 1, if Φj(n) is defined for all n < x ∧
[Φj(x) ≤ Φj(x− 1) ∨ Φj(x) ≤ b(x)]

↑ , otherwise.



282 Frank Stephan and Thomas Zeugmann

By the fixed point theorem [24] there is an i ∈ IN such that ϕr(i) = ϕi . Now, one
inductively shows that ϕi = 0∞ , Φi ∈ Rmon and b(x) < Φi(x) for all x ∈ IN
and Claim 3 follows.

Finally, by Claim 1, all ge ∈ R , and thus there is a function b ∈ R such that
b(x) ≥ ge(x) for all e ∈ IN and all but finitely many x ∈ IN (cf. [6]). Together
with Claim 2, this function b contradicts Claim 3, and hence B /∈ NUM .

The next result can be obtained by looking at U(K) in Theorems 15 and 17.

Theorem 7. B is REX -inferable but not robustly EX -learnable.

Theorems 6 and 7 immediately allow the following separation, thus reproving
Grabowski’s [12] Theorem 5.

Corollary 8. NUM ∩ ℘(R0,1) ⊂ REX ∩ ℘(R0,1).

Finally, we ask whether or not the condition Φi ∈ Rmon in the definition of the
class B is necessary. The affirmative answer is given by our next theorem. That
is, instead of B , we now consider the class B̃ = {ϕτ(i) i ∈ IN and Φi ∈ R} .

Theorem 9. B̃ is not BC -learnable.

Next, we generalize the approach undertaken so far by considering classes U(A)
of approximations to any recursively enumerable (abbr. r.e.) set A .

4. Approximating Arbitrary r.e. Sets

The definition of Blum and Blum’s [6] class uses implicitly the measure ΦK
defined as ΦK(x) = Φx(x) for measuring the speed by which K is enumerated.
Using this notion ΦK , the class B of approximations of K is defined as

B = {f ∈ R0,1 (∃Φe ∈ Rmon) (∀x) [f(x) = 1 ⇔ ΦK(x) ≤ Φe(x)] } .

Our main idea is to replace K by an arbitrary r.e. set A and to replace ΦK by
a measure ΦA of (the enumeration speed of) A . Such a measure satisfies the
following two conditions:

– The set {(x, y) ΦA(x)↓≤ y} is recursive.
– x ∈ A⇔ (∃y) [ΦA(x) ≤ y] .

Here, ΦA is intended to be taken as the function Φi of some index i of A , but
sometimes we might also take the freedom to look at some other functions ΦA
satisfying the two requirements above. The natural definition for a class U(A)
corresponding to the class B in the case A = K based on an underlying function
ΦA is the following.

Definition 10. Given an r.e. set A , an enumeration ΦA and a total function
Φe , let

fe(x) =
{

1, if ΦA(x) ≤ Φe(x)
0, if ¬[ΦA(x) ≤ Φe(x)].



On the Uniform Learnability of Approximations to Non-recursive Functions 283

Now U(A) consists of all those fe where Φe ∈ Rmon .

Next, comparing U(K) to the original class B of Blum and Blum [6] one can
easily prove the following. For every f ∈ B there is a function g ∈ U(K) such
that for all x ∈ IN we have f(x) = 1 implies g(x) = 1. Hence, the approximation
g is at least as good as f . The converse is also true, i.e., for each g ∈ U(K) there
is an f ∈ B such that g(x) = 1 implies f(x) = 1 for all x ∈ IN. Therefore, we
consider our new classes of approximations as natural generalizations of Blum
and Blum’s [6] original definition.

Moreover, note that there is a function genA which computes for every e of
a monotone Φe a program genA(e) for the function f associated with Φe :

ϕgenA(e)(x) =




1, if ΦA(x) ≤ Φe(x)↓ ∧ (∀y < x)[Φe(y) ≤ Φe(y + 1)]
0, if ¬[ΦA(x) ≤ Φe(x)↓ ] ∧ (∀y < x)[Φe(y) ≤ Φe(y + 1)]
↑ , otherwise.

Now, if A is recursive, everything is clear, since we have the following.

Theorem 11. If A is recursive then U(A) ∈ NUM .

The direct generalization of Theorem 6 would be that U(A) is not in NUM for
every non-recursive r.e. set A and every measure ΦA . Unfortunately, there are
some special cases where this is still unknown to us.

We obtained many intermediate results which give incidence that U(A) is
not in NUM for any non-recursive r.e. set A . First, every non-recursive set A has
a sufficiently “slow” enumeration such that U(A) /∈ NUM for this underlying
enumeration and the corresponding ΦA . Second, for many classes of sets we can
directly show that U(A) /∈ NUM , whatever measure ΦA we choose. Besides the
cases where A is part of a recursively inseparable pair or A is simple but not
hypersimple, the case of the non-recursive and non-high sets A is interesting, in
particular, since the proof differs from that for the two previous cases.

Recall that a set A is simple iff A is both r.e. and infinite, A is infinite but
there is no infinite recursive set R disjoint to A . A set A is hypersimple iff A
is both r.e. and infinite, and there is no function f ∈ R such that f(n) ≥ an
for all n ∈ IN, where a0, a1, . . . is the enumeration of A in strictly increasing
order (cf. Rogers [24]). Using this definition of hypersimple sets, one can easily
show the following lemma.

Lemma 12. A set A ⊆ IN is hypersimple iff
(a) A is r.e. and both A and A are infinite
(b) for all functions g ∈ R with g(x) ≥ x for all x ∈ IN there exist infinitely

many x ∈ IN such that {x, x+ 1, . . . , g(x)} ⊆ A .

Now, we are ready to state the announced theorem.

Theorem 13. U(A) is not in NUM for the following r.e. sets A .
(a) A is part of a recursively inseparable pair.
(b) A is simple but not hypersimple.
(c) A is neither recursive nor high.



284 Frank Stephan and Thomas Zeugmann

Proof. We sketch only the proof of Assertion (c) here. Assume by way of
contradiction U(A) ∈ NUM . Thus, there is a ψ ∈ R2 such that U(A) ⊆ Rψ .
Assume without loss of generality that 0 ∈ A . The A-recursive function dA(x) =
max{ΦA(y) y ≤ x and y ∈ A} is total and recursive relative to A . If now
m(x) ≥ dA(x), then the function generated by m in accordance to Definition 10
is equal to the characteristic function of A .

A(x) = fm(x) =
{

1, if ΦA(x) ≤ m(x)
0, if ¬[ΦA(x) ≤ m(x)].

So one can define the following A-recursive function h :

h(x) = min{y ≥ x (∀j ≤ x) (∃z)[(x ≤ z ≤ y) ∧ ψj(z) 6= A(z)]} .

Since A is not recursive, no function ψj can be a finite variant of A(x), and
thus h is total. Using h we next the following total A-recursive function g by
g(x) =

∑h(x)
y=x dA(y). Since A is not high, there is a function b ∈ R such that

b(x) ≥ g(x) for infinitely many x . By Claim 3 in the demonstration of Theo-
rem 6, there exists an e ∈ IN such Φe ∈ Rmon and Φe(x) > b(x) for all x ∈ IN.
Thus, Φe(x) ≥ g(x) for infinitely many x .

Next, for every ψk ∈ Rψ there exists an x > k such that Φe(x) > g(x).
Consider all y = x, x+ 1, . . . , h(x). By the definition of g and by Φe ∈ Rmon ,
we have Φe(y) ≥ dA(y) for all these y . Thus, by the choice of dA and the defini-
tion of ϕgenA(e) we arrive at ϕgenA(e)(y) = A(y) for all y = x, x + 1, . . . , h(x).
But now the definition of the function h guarantees that ψk(z) 6= ϕgenA(e)(z)
for some z with x ≤ z ≤ h(x). Consequently, ϕgenA(e) differs from all fk in
contradiction to the assumption U(A) ∈ NUM .

5. Reliable and EX -Learnability of U(A)

Blum and Blum [6] showed B ∈ REX . The EX -learnability of U(A) alone can
be generalized to every r.e. set A , but this is not possible for reliability. But
before dealing with REX -inference, we show that every U(A) is EX -learnable.

Theorem 14. U(A) is EX -learnable for all r.e. sets A .

Proof. If A is recursive, then U(A) ∈ NUM (cf. Theorem 11) and thus EX -
learnable. So let A be non-recursive and let ΦA be a recursive enumeration of A .
An EX -learner for the class U(A) is given as follows.

– On input σ , disqualify all e such that there are x ∈ dom(σ) and y ≤ |σ|
satisfying one of the following three conditions:
(a) ΦgenA(e)(x) ≤ |σ| and ϕgenA(e)(x) 6= σ(x)
(b) σ(x) = 0, ΦA(x) ≤ y and ¬[Φe(x) ≤ y]
(c) Φe(x+ 1) ≤ y and ¬[Φe(x) ≤ y] .

– Output genA(e) for the smallest e not yet disqualified.



On the Uniform Learnability of Approximations to Non-recursive Functions 285

The algorithm disqualifies only such indices e where ϕgenA(e) is either defined
and false or undefined for some x ∈ dom(σ). Thus the learner is conservative.

Since the correct indices are never disqualified, it remains to show that the
incorrect ones are. This clearly happens if ϕgenA(e)(y) ↓ 6= σ(y) for some y .
Otherwise let z be the first undefined place of ϕgenA(e) . This undefined place is
either due to the fact that Φe(x) > Φe(x + 1) for some x < z or that Φe(z)↑ .
In the first case, e is eventually disqualified by condition (c), in the second case,
either Φe(x + 1) ↓ for some first x ≥ z , then e is again eventually disqualified
by condition (c) or Φe(x)↑ for some x ∈ A above z and so e is disqualified by
condition (b). Hence, the learning algorithm is correct.

The result that B is reliably EX -learnable can be generalized to halves of re-
cursively inseparable pairs and to simple but not hypersimple sets.

Theorem 15. U(A) is reliably EX-learnable if
(a) A is part of a recursively inseparable pair or
(b) A is simple but not hypersimple.

Proof. The central idea of the proof is that conditions (a) and (b) allow to
identify a class of functions which contains all recursive functions which are too
difficult to learn and on which the learner then signals infinitely often diver-
gence. The recursive functions outside this class turn out to be EX -learnable
and contain the class U(A).

The learner M does not need to succeed on functions f /∈ R0,1 or if f(x) = 1
for almost all x ∈ A . Now, the second condition can be checked indirectly for
f ∈ R0,1 and the A in the precondition of the theorem.

In case (a), let A and B = {b0, b1, . . .} form a recursively inseparable pair.
If f(x) = 1 for almost all x ∈ A then f(bs) = 1 for some bs . So one defines
that σ disqualifies if σ(x) ≥ 2 for some x or if σ(bs)↓= 1 for some s ≤ |σ| .

In case (b), the set A is simple but not hypersimple. By Lemma 12 there
is a function g ∈ R with g(x) ≥ x for all x ∈ IN such that A intersects every
interval {x, x+ 1, . . . , g(x)} . But if f(x) = 1 for almost all x ∈ A , then, by the
simplicity of A , f(x) = 1 for almost all x and there is an x with f(y) = 1 for
all y ∈ {x, x + 1, . . . , g(x)} . So one defines that σ disqualifies if σ(x) ≥ 2 for
some x or if there is an x and σ(y) = 1 for all y ∈ {x, x+ 1, . . . , g(x)} .

The reliable EX -learner N is a modification of the learner M from The-
orem 14 which copies M on all σ except those which disqualify — on them,
N always outputs a guess for σ0∞ and thus either converges to some σ0∞ or
diverges by infinitely many changes of the hypothesis. Let e(σ) be a program
for σ0∞ and let

N(σ) =
{
e(σ), if σ is disqualified
M(σ), otherwise.

For the verification, note that for every f ∈ U(A) we have f(x) = 0 for all
x ∈ A . Thus, if f ∈ U(A) then no σ � f is disqualified and therefore N is an
EX -learner for U(A).



286 Frank Stephan and Thomas Zeugmann

Assume now that N converges to an e′ on some recursive function f . If
this happens for a function f such that some σ′ � f has been disqualified then
f = σ0∞ and so also ϕe′ = σ0∞ for some σ � f . Thus, N converges to a
correct program for f in this case.

Otherwise, no σ′ � f is disqualified. Since N copies the indices of M and
those are all of the form genA(e), there is a least e with e′ = genA(e). If
f(x) = 0 for infinitely many x ∈ A , then M converges only to genA(e) if
ϕgenA(e) = f and the algorithm is correct in that case.

Finally, consider the subcase that f(x) = 0 for only finitely many x ∈ A .
Consequently, in case (a) f(x) = 1 for some x ∈ B and in case (b) there must
be an x such that f(y) = 1 for all y = x, x + 1, . . . , g(x). In both cases, some
σ′ � f is disqualified, thus this case cannot occur. Hence, N is reliable.

Theorem 16. If A is hypersimple and not high then U(A) /∈ REX .

Proof. Let A be a hypersimple non-high set, let ΦA be a corresponding mea-
sure, and assume to the contrary that U(A) ∈ REX . Then also the union

U(A) ∪ {α1∞ α ∈ {0, 1}∗}

is EX -learnable, since every class in NUM is also in REX and REX is closed
under union (cf. [6,21]). Given an EX -learner M for the above union, one can
define the following function h1 by taking

h1(x) = min{s ≥ x (∀σ ∈ {0, 1}x) (∀y ≤ x) [M(σ1s) 6= M(σ) ∨
ΦM(σ)(y) ≤ s ∧ ϕM(σ)(y) = σ(y)]}.

The function h1 is total since any guess M(σ) either computes the function
σ1∞ or is eventually replaced by a new guess on σ1∞ . Note that h1 ∈ Rmon

and h1(x) ≥ x for all x .
Since A is not recursive, there is no total function dominating ΦA . Thus

one can define a recursive function h2(x) by taking

h2(x) = the smallest s such that there is a y with x ≤ y ≤ s ∧
h1(y + h1(y)) < s ∧ ΦA(y) + ΦA(y + 1) + . . .+ ΦA(y + h1(y)) < s .

Since A is hypersimple, we directly get from Lemma 12 that h2 ∈ R . Consider
for every f ∈ U(A) the index i to which M converges and an index j with
f = ϕgenA(j) .

Assume now that M has converged to i at z ≤ x . Consider the y, s from
the definition of h2 and let σ = f(0), . . . , f(y). If M(σ1h1(y)) 6= M(σ) then
there is some y′ ∈ {y, y + 1, . . . , y + h1(y)} with f(y′) = 0. As a consequence,
Φj(y′) < ΦA(y′) < h2(y). Since Φj ∈ Rmon , we know Φj(y) < s . Otherwise,
Φi(x) ≤ h1(y) and ϕi(x) has converged. Since y ≤ h2(x), we conclude Φi(x) ≤
h1(h2(x)). So one can give the following definition for f by case-distinction
where the first case is taken which is applicable and where σ = f(0), . . . , f(z).



On the Uniform Learnability of Approximations to Non-recursive Functions 287

ϕe(i,j,σ)(x) =



σ(x), if x ∈ dom(σ)
ϕi(x), if Φi(x) ≤ h1(h2(x))
1, if ΦA(x) ≤ Φj(x) ≤ h2(x)
0, otherwise.

Since the search-conditions in the second and third case are bounded by a re-
cursive function in x , the family of all ϕe(i,j,σ) contains only total functions
and its universal i, j, σ, x → ϕe(i,j,σ)(x) is computable in all parameters. Fur-
thermore, for the correct i, j, σ as chosen above, ϕe(i,j,σ) equals the given f
since, for all x > z , either ϕi(x) converges within h1(h2(x)) steps to f(x) or
ΦA(x) ≤ Φj(x) ≤ h2(x). It follows that this family covers U(A) and that U(A)
is in NUM which, a contradiction to Theorem 13, since A is neither recursive
nor high.

6. Robust Learning

A mathematical elegant proof method to separate learning criteria is the use of
classes of self-describing functions. On the one hand, these examples are a bit
artificial, since they use coding tricks. On the other hand, natural objects like
cells contain a description of themselves. Nevertheless, from a learning theoretical
point some criticism remains in order, since a learner needs only to fetch some
code from the input.

Therefore, Bārzdiņš suggested to look at restricted versions of learning: For
example, a class S is robustly EX -learnable, iff, for every operator Θ , the class
Θ(S) is EX -learnable. There were many discussions, which operators Θ are
admissible in this context and how to deal with those cases where Θ maps
some functions in S to partial functions. At the end, it turned out that it is
most suitable to consider only general recursive operators Θ which map every
total function to a total one [16]. This notion is among all notions of robust
EX -learning the most general one in the sense that every class S which is
robustly EX -learnable with respect to any criterion considered in the literature
is also robustly EX -learnable with respect to the model of Jain, Smith and
Wiehagen [16].

Although the class B is quite natural and does not have any obvious self-
referential coding, the class B is not robustly EX -learnable — so while on the
one hand the notion of robust EX -learning still permits topological coding tricks
[16,23], it does on the other hand already rule out the natural class B . The
provided example gives some incidence, that there is still some need to find a
adequate notion for a “natural EX -learnable class.”

Every class in NUM is robustly EX -learnable, in particular the class U(A)
for a recursive set A (cf. Theorem 11). The next theorem shows that U(A)
is not robustly EX -learnable for any nonrecursive sets A which are part of a
recursively inseparable pair, which are simple but not hypersimple or which are
neither recursive nor high. Thus, here the situation is parallel to the one at
Theorem 13.



288 Frank Stephan and Thomas Zeugmann

Theorem 17. U(A) is not robustly EX-learnable for the following r.e. sets A .
(a) A is part of a recursively inseparable pair.
(b) A is simple but not hypersimple.
(c) A is neither recursive nor high.

7. Conclusions

The main topic of the present investigations have been the class B of Blum and
Blum [6] and the natural generalizations U(A) of it obtained by using r.e. sets A
as a parameter. It is has been shown that for large families of r.e. sets A , these
classes U(A) are not in NUM . Furthermore, they can be always EX -learned.
Moreover, for some but not all sets A there is also a REX -learner. Robust EX -
learning is impossible for all non-recursive sets A that are part of recursively
inseparable pair, for simple but not hypersimple sets A and for all sets A that
are non-high and non-recursive. Since the classes U(A) are quite natural, this
result adds some incidence that “natural learnability” does not coincide with
robust learnability as defined in the current research.

Future work might address the remaining unsolved question whether U(A)
is outside NUM for all non-recursive sets A . Additionally, one might investigate
whether U(A) is robustly BC -learnable for some sets A such that U(A) is
not robustly EX -inferable. It would be also interesting to know whether or not
U(A) can be reliably BC -learned for sets A with U(A) /∈ REX (cf. [18] for
more information concerning reliable BC -learning). Finally, there are some ways
to generalize the notion of U(A) to every K -recursive set A and one might
investigate the learning theoretic properties of the so obtained classes.

References

1. A. Ambainis and R. Freivalds. Transformations that preserve learnability. In
Proccedings of the 7th International Workshop on Algorithmic Learning Theory
(ALT’96) (S. Arikawa and A. Sharma, Eds.) Lecture Notes in Artificial Intelligence
Vol. 1160, pages 299–311, Springer-Verlag, Berlin, 1996.

2. D. Angluin. Inductive inference of formal languages from positive data. Informa-
tion and Control, 45:117–135, 1980.

3. D. Angluin and C.H. Smith. A survey of inductive inference: Theory and methods.
Computing Surveys, 15:237–289, 1983.

4. J. Bārzdins. Prognostication of automata and functions. Information Processing
’71, (1) 81–84. Edited by C. P. Freiman, North-Holland, Amsterdam, 1971.

5. M. Blum. A machine-independent theory of the complexity of recursive functions.
Journal of the Association for Computing Machinery, 14:322–336.

6. L. Blum and M. Blum. Towards a mathematical theory of inductive inference.
Information and Control, 28:125–155, 1975.

7. J. Case, S. Jain, M. Ott, A. Sharma and F. Stephan. Robust learning aided by
context. In Proceedings of 11th Annual Conference on Computational Learning
Theory (COLT’98), pages 44–55, ACM Press, New York, 1998.



On the Uniform Learnability of Approximations to Non-recursive Functions 289

8. J. Case and C.H. Smith. Comparison of identification criteria for machine inductive
inference. Theoretical Computer Science 25:193–220, 1983.

9. R. Freivalds. Inductive inference of recursive functions: Qualitative theory. In
Baltic Computer Science (J. Bārzdiņš and D. Bjørner, Eds.), Lecture Notes in
Computer Science Vol. 502, pages 77–110. Springer-Verlag, Berlin, 1991.

10. M. Fulk. Robust separations in inductive inference. In Proceedings of the 31st
Annual Symposium on Foundations of Computer Science (FOCS), pages 405–410,
St. Louis, Missouri, 1990.

11. M.E. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967.

12. J. Grabowski. Starke Erkennung. In Strukturerkennung diskreter kybernetischer
Systeme, (R. Linder, H. Thiele, Eds.), Seminarberichte der Sektion Mathematik
der Humboldt-Universität Berlin Vol. 82, pages 168–184, 1986.

13. J.P. Helm. On effectively computable operators. Zeitschrift für mathematische
Logik und Grundlagen der Mathematik (ZML), 17:231–244, 1971.

14. S. Jain. Robust Behaviourally Correct Learning. Technical Report TRA6/98 at
the DISCS, National University of Singapore, 1998.

15. S. Jain, D. Osherson, J.S. Royer and A. Sharma. Systems That Learn: An Intro-
duction to Learning Theory. MIT-Press, Boston, MA., 1999.

16. S. Jain, C. Smith and R. Wiehagen. On the power of learning robustly. In Proceed-
ings of Eleventh Annual Conference on Computational Learning Theory (COLT),
pages 187–197, ACM Press, New York, 1998.

17. E.B. Kinber and T. Zeugmann. Inductive inference of almost everywhere correct
programs by reliably working strategies. Journal of Information Processing and
Cybernetics, 21:91–100, 1985.

18. E.B. Kinber and T. Zeugmann. One-sided error probabilistic inductive inference
and reliable frequency identification. Information and Computation, 92:253–284,
1991.

19. R. Klette and R. Wiehagen. Research in the theory of inductive inference by GDR
mathematicians – A survey. Information Sciences, 22:149–169, 1980.

20. S. Kurtz and C.H. Smith. On the role of search for learning. In Proceedings of the
2nd Annual Workshop on Computational Learning Theory (R. Rivest, D. Haussler
and M. Warmuth, Eds.) pages 303–311, Morgan Kaufman, 1989.

21. E. Minicozzi. Some natural properties of strong-identification in inductive infer-
ence. Theoretical Computer Science, 2:345–360, 1976.

22. P. Odifreddi. Classical Recursion Theory. North-Holland, Amsterdam, 1989.
23. M. Ott and F. Stephan. Avoiding coding tricks by hyperrobust learning. Pro-

ceedings of the Fourth European Conference on Computational Learning Theory
(EuroCOLT) (P. Fischer and H.U. Simon, Eds.) Lecture Notes in Artificial Intel-
ligence Vol. 1572, pages 183–197, Springer-Verlag, Berlin, 1999.

24. H.Jr. Rogers. Theory of Recursive Functions and Effective Computability.
McGraw–Hill, New York, 1967.

25. F. Stephan and T. Zeugmann. On the Uniform Learnability of Approximations
to Non-Recursive Functions. DOI Technical Report DOI-TR-166, Department of
Informatics, Kyushu University, July 1999.

26. T. Zeugmann. A-posteriori characterizations in inductive inference of recursive
functions. Journal of Information Processing and Cybernetics (EIK), 19:559–594,
1983.



290 Frank Stephan and Thomas Zeugmann

27. T. Zeugmann. On the nonboundability of total effective operators. Zeitschrift für
mathematische Logik und Grundlagen der Mathematik (ZML), 30:169–172, 1984.

28. T. Zeugmann. On Bārzdiņš’ conjecture. In Proceedings of the International Work-
shop on Analogical and Inductive Inference (AII’86) (K.P. Jantke, Ed.), Lecture
Notes in Computer Science Vol. 265, pages 220–227. Springer-Verlag, Berlin, 1986.



Learning Minimal Covers of Functional

Dependencies with Queries?

Montserrat Hermo1 and Vı́ctor Lav́ın2

1 Dpto. Lenguajes y Sistemas Informáticos
UPV/EHU, P.O. Box 649, E-20080 San Sebastián, SPAIN

jiphehum@si.ehu.es
2 Dpto. Sistemas Informáticos y Programación

Universidad Complutense E-28040 Madrid, SPAIN
vlavin@eucmos.sim.ucm.es

Abstract. Functional dependencies play an important role in the design
of databases. We study the learnability of the class of minimal covers of
functional dependencies (MCFD) within the exact learning model via
queries. We prove that neither equivalence queries alone nor membership
queries alone suffice to learn the class. In contrast, we show that learning
becomes feasible if both types of queries are allowed. We also give some
properties concerning minimal covers.

1 Introduction

Functional dependencies were introduced by Codd [7] as a tool for designing
relational databases. Based on this concept, a well developed formalism has
arisen, the theory of normalization. This formalism helps to build relational
databases that lack undesirable features, such as redundancy in the data and
update anomalies.

We study the learnability of the class MCFD (minimal covers of functional
dependencies) in the model of learning with queries due to Angluin [1,2]. In this
model the learner’s goal is to identify an unknown target concept c in some class
C. In order to obtain information about the target, the learner has available two
types of queries: membership and equivalence queries. In a membership query
the learner supplies an instance x from the domain and gets answer YES if x
belongs to the target, and NO otherwise. The input to an equivalence query is
some hypothesis h, and the answer is either YES if h ≡ c or a counterexample
in the symmetric difference of c and h.

The class C is learnable if the learner can identify any target concept c in
time polynomial in the size of c and the length of the largest counterexample
received.

? Partially supported by the Spanish DGICYT through project PB95-0787 (KOALA).

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 291–300, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



292 Montserrat Hermo and Vı́ctor Lav́ın

We prove that neither equivalence queries alone nor membership queries alone
suffice to learn MCFD. For these negative results we use techniques similar to
those in [3,6,8].

On the other hand, we show that MCFD is learnable using both types of
queries. Our algorithm is a modification of Angluin et al.’s algorithm [4] to learn
conjunctions of Horn clauses. We also show that the size of equivalent minimal
covers of functional dependencies is polynomially related.

Some related work can be found in [9,10] where the authors study how prior
knowledge can speed up the task of learning. They propose functional depen-
dencies (“determinations” in their terminology) as a form of prior knowledge.
They pose the question of whether prior knowledge can be learned. This paper
investigates that direction.

The paper is organized as follows. In Section 2 we introduce definitions re-
lated to functional dependencies, and some algorithms that are folk-knowledge.
We need them to prove some properties that will be used throughout the pa-
per. In Sections 3 and 4 we prove negative results for membership queries and
equivalence queries respectively. Finally, Section 5 shows the learning algorithm
using membership and equivalence queries.

2 Preliminaries

In what follows, we give some definitions, properties and algorithms related to
functional dependencies, most of which can be found in any databases text book
(see [11,5]). For definitions concerning the model of learning via queries we refer
the reader to [2].

2.1 Functional Dependencies and Minimal Covers

A relation scheme R = {A1, A2, . . . , An} is a set of attributes. Each attribute
Ai takes values from domain DOM(Ai). An instance r of relation scheme R is
a subset of DOM(A1)×DOM(A2)× . . .×DOM(An). The size of an instance
r is the number of n-tuples of r.

Given R and X, Y subsets of R, the functional dependency X −→ Y is a
constraint on the values that instances of R can take. More precisely, we say
X −→ Y , read “X functionally determines Y ”, if for every instance r of R, and
for every pair 〈t1, t2〉 of tuples of r, t1(X) = t2(X) =⇒ t1(Y ) = t2(Y ) (where
t1(Z) = t2(Z) means that tuples t1 and t2 coincide in the value of all attributes
in Z). Given a functional dependency X −→ Y , we call X the antecedent of the
functional dependency and Y the consequent.

We say that a functional dependency X −→ Y is logically implied by a set of
functional dependencies F if every instance r of R that satisfies the dependencies
in F also satisfies X −→ Y . If r does not satisfy X −→ Y , then we say that r
violates X −→ Y .



Learning Minimal Covers of Functional Dependencies with Queries 293

Definition 1. The closure of a set of dependencies F , denoted by F+, is the
set of functional dependencies that are logically implied by F .

Definition 2. Let F and G be sets of dependencies. F is equivalent to G (F ≡
G) if F+ = G+.

Definition 3. The closure of a set of attributes X, written X+, with respect to
a set of dependencies F , is the set of attributes A such that X −→ A is in F+.

Given a relation scheme R, X ⊆ R and a set of functional dependencies F , the
following algorithm (see [5]) computes X+ with respect to F , in time polynomial
in |R| and |F |.

Algorithm Closure

input X ;
X+ = X ;
repeat

OLDX+ := X+;
for each dependency V −→ W in F do

if V ⊆ X+ then X+ := X+ ∪W ;
end if

end for
until OLDX+ = X+;

It is easy to test whether two sets of dependencies F and F ′ are equivalent: for
each dependency X −→ Y in F (F ′), test whether X −→ Y is in F ′(F ) using
the above algorithm to compute X+ with respect to F ′(F ) and then checking
whether Y ⊆ X+. We will use this test in Subsection 2.2 to prove some properties
concerning minimal covers.

Definition 4. Let F be a set of dependencies. A set of dependencies G is a
minimal cover for F if:

1. G ≡ F .
2. The consequent of each dependency in G is a single attribute.
3. For no dependency X −→ A in G, G− {X −→ A} ≡ F .
4. For no dependency X −→ A in G and proper subset Y of X,

(G− {X −→ A}) ∪ {Y −→ A} ≡ F .

We outline a procedure to find a minimal cover –there can be several– for a given
set of dependencies F (see [11] for more details). First, using the property that
a functional dependency X −→ Y holds if and only if X −→ A holds for all A
in Y , we decompose all dependencies in F so that condition 2 of the definition is
fulfilled. Then, for conditions 3 and 4, we check repeatedly whether dropping a
dependency (or some attribute in the antecedent of a dependency) from F yields



294 Montserrat Hermo and Vı́ctor Lav́ın

a set F ′ equivalent to F . If it is so we substitute F ′ for F , and keep applying
the procedure until neither dependencies nor attributes can be eliminated.

Note that it follows from the above that the size of a minimal cover for F
is never much bigger that the size of F itself (at most a multiplicative factor in
the number of attributes), what makes learning minimal covers as interesting as
learning sets of general functional dependencies.

2.2 Some Properties of Minimal Covers

Now we prove that the size of equivalent minimal covers is polynomially related.
First we need a lemma.

Lemma 1. Let R be a relation scheme, let F and F ′ be minimal covers of
functional dependencies over R. If F ≡ F ′ then any dependency X −→ A in F
can be inferred from F ′ using at most |R| dependencies of F ′.

Proof. Let us assume, by way of contradiction, that more than |R| depen-
dencies of F ′ are needed to infer X −→ A. Then, at least two of them, say D1

and D2, must have the same consequent. If we run Algorithm Closure to com-
pute X+, the last one of D1 and D2 examined by the algorithm does not force
the inclusion of any new attribute into X+, and thus is unnecessary. ut
Corollary 1. Let R be a relation scheme, let F and F ′ be minimal covers of
functional dependencies over R. If F ≡ F ′ then |F ′| ≤ |R| ∗ |F |.

Proof. Suppose, by contradiction, that |F ′| > |R| ∗ |F |. Then there is some
dependency D ∈ F ′ that, by Lemma 1, is not used to infer any of the depen-
dencies in F . Let G be F ′ − {D}. Clearly F+ can be inferred from G, and since
F+ = (F ′)+ then D is redundant in F ′, that is, F ′ is not a minimal cover. ut

In Sections 3 and 4 we define some target classes containing sets of depen-
dencies, that must be inequivalent and minimal covers. The following lemmas
will allow us to ensure such requirements.

Lemma 2. Let F be a set of functional dependencies over R = {A1, . . . An, B}
such that the consequent of each dependency in F is the attribute B. If for all
X −→ B in F it holds that X does not contain the antecedent of any other
dependency of F , then F is a minimal cover for F .

Proof. Obviously F satisfies conditions 1 and 2 of Definition 4. To check
that F satisfies conditions 3 and 4 note that for every dependency X −→ B in
F , and for all proper subset Y of X , X+ with respect to F − {X −→ B} and
Y + with respect to F do not contain B. ut
Lemma 3. Let F1 and F2 be sets of dependencies whose consequents are the
single attribute B. If there exists a dependency Y −→ B in F1, such that Y
does not contain the antecedent of any dependency of F2, then both sets are
inequivalent.

Proof. Let Y −→ B be the dependency of the hypothesis. As B 6∈ Y + with
respect to F2, F1 6≡ F2. ut



Learning Minimal Covers of Functional Dependencies with Queries 295

3 Membership Queries

To show that MCFD is not learnable using membership queries alone, a stan-
dard adversary technique is used. We define a large target class, from which the
target cover will be selected, in such a way that the answer to any membership
query eliminates few elements from the target class. This will force the learner
to make a superpolynomial number of queries to identify the target cover.

Theorem 1. The class MCFD cannot be learned using a polynomial number
of polynomially-sized membership queries.

Proof. Let R = {A1, A2, . . . An, B}, for n even, be a relation scheme and
let p be any polynomial. The target class Tn will contain 2

n
2 covers, all of them

having dependencies

A1A2 −→ B, A3A4 −→ B, . . . , An−1An −→ B.

Besides, each cover contains a distinguished dependency, whose antecedent has
one attribute picked up from the antecedent of each dependency above, and B
as the consequent. By Lemma 2 all covers in the target class Tn are minimal,
and by Lemma 3 they are logically inequivalent.

Using Tn as the target class, suppose the learner makes a membership query
with instance r of size at most p(n). The adversary considers every pair of tuples
〈t1, t2〉 in r, and answers according to the following rule:

– If t1(B) = t2(B) for every pair 〈t1, t2〉, then the answer is YES. No cover is
eliminated from Tn.

– Otherwise, let S be the set of all pairs 〈t1, t2〉 such that t1(B) 6= t2(B):
• If for some 〈t1, t2〉 ∈ S there exist attributes A2i+1, A2(i+1) (0 ≤ i ≤

n
2 − 1) such that t1(A2i+1A2(i+1)) = t2(A2i+1A2(i+1)), then the answer
is NO. Again no cover is eliminated from Tn.

• If none of the conditions above hold then the answer is YES. Note that
this answer removes p(n)

2 covers from Tn in the worst case, the case being
that r can be partitioned into pairs 〈t1, t2〉, where t1 and t2 coincide in
the value of exactly n

2 attributes.

Therefore, to identify the target cover the learner must make at least 2
n
2

p(n) − 1
membership queries. ut

4 Equivalence Queries

As in the case of membership queries, to prove nonlearnability with equivalence
queries alone we use an adversary argument. First, we need a lemma.

Lemma 4. Let F be a minimal cover defined over R = {A1, A2, . . . , An, B},
containing p dependencies, each of them having consequent B, and antecedent
with at least

√
n attributes from {A1, A2, . . . , An}. There exists some instance r

of R with the following properties:



296 Montserrat Hermo and Vı́ctor Lav́ın

– r has two tuples 〈t1, t2〉.
– r satisfies F .
– The number of attributes Ai ∈ {A1, A2, . . . An} for which t1(Ai) 6= t2(Ai) is

at most 1 +
√

n(ln p).

Proof. Since all antecedents of dependencies in F have at least
√

n attributes
from {A1, A2, . . . , An}, there must be some attribute Ai that occurs in at least

p√
n

of them. We now can delete from F the dependencies that have Ai in their
antecedent, and apply the same procedure to the remaining set of dependencies.
After doing so k times we are left with a set of at most p(1− 1√

n
)k dependencies.

Taking k = 1 +
√

n(ln p), we obtain p(1− 1√
n
)k < 1. Therefore, there is a set X

with at most 1+
√

n(ln p) attributes such that all the antecedents of dependencies
in F have some attribute in X .

The instance r = 〈t1, t2〉 where t1(A) 6= t2(A) for all A ∈ X and t1(R−X) =
t2(R −X) surely satisfies F . ut

Theorem 2. The class MCDF cannot be learned using a polynomial number
of polynomially-sized equivalence queries.

Proof. Let R = {A1, A2, . . . , An, B} be a relation scheme. We define the
target class, Tn, that contains every cover G that satisfies the following:

– G has
√

n dependencies of the form Ai1Ai2 . . . Ai√n
−→ B.

– The antecedents of the dependencies in G are pairwise disjoint.

By Lemma 2 and Lemma 3 all covers in Tn are minimal and logically inequivalent.
The cardinality of Tn is

|Tn| = n!
(
√

n)!
√

n+1

Now, to an equivalence query on input F , of size at most p = nc, where c is a
constant, the adversary answers as follows:

– If there is some dependency X −→ Ai in F , where Ai ∈ {A1, A2, . . . An},
then give as a counterexample the instance r = 〈t1, t2〉 where t1(Ai) 6= t2(Ai)
and t1(R − {Ai}) = t2(R − {Ai}). Clearly this counterexample does not
remove any cover from Tn.

– Otherwise, if there is some dependency X −→ B in F and |X | < √
n, then

return as a counterexample the instance r = 〈t1, t2〉 where t1(X) = t2(X)
and t1(A) 6= t2(A) for all A ∈ R − X . No cover in Tn is violated by this
instance, although it violates F .

– If none of the cases above hold then Lemma 4 guarantees the existence of
an instance r = 〈t1, t2〉 that satisfies F , and whose tuples disagree in the
values of at most 1 + c

√
n(ln n) attributes. In this case give that instance as

counterexample. The covers that will be eliminated by the counterexample
are those for which the antecedent of every dependency has at least one



Learning Minimal Covers of Functional Dependencies with Queries 297

attribute in which the tuples of r disagree. Therefore, the number of covers
that r eliminates from Tn is at most

En =
(

1 + c
√

n(lnn)√
n

)
(n−√

n)!
((
√

n− 1)!)
√

n(
√

n)!

The fraction of covers removed from Tn, that is, En

|Tn| , is at most

(1 + c
√

n(lnn))
√

n

(
√

n)!
(
√

n)
√

n

(n−√
n)
√

n

which is superpolynomially small in n. ut

5 The Learning Algorithm

In this section we show that a slight modification of Angluin et al.’s algorithm
HORN for learning conjunctions of Horn clauses, using membership and equiv-
alence queries, yields an algorithm that learns MCFD.

First, we discuss the meaning of positive and negative counterexamples in the
setting of functional dependencies. Let us assume that the counterexamples are
instances of two tuples (obviously, a one-tuple instance never can be a counterex-
ample). In this case, a positive counterexample 〈t1, t2〉 tells that no dependency
having its antecedent contained in the set of attributes where t1 and t2 agree,
and its consequent outside, can be in the target cover. In contrast, a negative
counterexample indicates that at least one dependency satisfying the conditions
just mentioned must be in the target.

Note that the significance of these counterexamples is the same as the mean-
ing of counterexamples in the case of Horn clauses, if we translate “set of
attributes where t1 and t2 agree” into “set of variables assigned true”. Also
note that there is no syntactic difference between a conjunction of Horn clauses
and a minimal cover for a set of functional dependencies1, hence the input to
equivalence queries has the same “shape”, no matter what oracle –EQHORN or
EQMCFD– we use.
1 There is an exception to this statement. The counterpart to a Horn clause c with no

positive literal should be a functional dependency f with the empty set as consequent.
The difference is not merely syntactic but also semantic, since f does not impose
any constraint on the instance space, that is, f is superfluous unlike c. This fact
rules out the straightforward transformation of the target class used by Angluin [3]
to prove approximate fingerprints for CNF (and implicitly for conjunctions of Horn
clauses) into a target class for proving non-learnability with equivalence queries alone
for MCFD. The reason is that, once transformed, the class would contain just one
minimal cover: the empty one. Also the counterpart to a Horn clause c with no
negative literals should be a functional dependency f with the empty set in the
antecedent. However, in this case the meaning of both c and f is alike



298 Montserrat Hermo and Vı́ctor Lav́ın

Therefore, were we to learn MCFD over an instance space containing only
two-tupled examples, the transformation of HORN would be straightforward:
substitute EQMCFD and MQMCFD for EQHORN and MQHORN respectively;
whenever EQMCFD provides a counterexample 〈t1, t2〉, convert 〈t1, t2〉 into a
boolean vector by setting to true the attributes (variables) where t1 and t2
agree and false elsewhere; finally, perform the reverse mapping before asking
any membership query. One last remark, if we wanted the learning algorithm to
be proper, in the sense that inputs to equivalence queries be in the class MCFD,
we should transform the hypotheses generated into minimal covers. This can be
done in polynomial time.

Now, we wish to address the problem of learning in the general case, that is,
when the instance space is not restricted to contain only two-tupled instances.
The key observation is that, to detect the violation of some dependency or the
need of its inclusion in the current hypothesis, it suffices to consider pairs of
tuples. When a k-tupled positive counterexample is received, we consider all(
k
2

)
pairs of tuples, and for each of them proceed to remove from the current

hypothesis the dependencies that are violated. If the counterexample is negative
then we ask

(
k
2

)
membership queries to detect a pair of tuples –there must be

at least one– that violates some dependency in the target cover, and proceed
accordingly, that is, trying to identify the dependency in order to include it in
the current hypothesis. Thus, we have reduced the problem of learning MCFD
over an unrestricted instance space to that of learning when the instances have
two tuples.

We present now the algorithm that learns MCFD. We follow the notation
in [4] as much as possible. For x and y boolean vectors, true(x) is the set of
attributes assigned true by x; x ∩ y is the boolean vector such that true(x ∩
y) = true(x) ∩ true(y). Given a two-tupled relation r, sketch(r) is the boolean
vector whose true values correspond to the attributes for which the tuples of r
agree. For boolean vector x, rel(x) maps x onto a relation r (there are many)
such that sketch(r) = x. Finally, if x is a boolean vector such that true(x) =
{A1, A2, . . . Ak}, then FD(x) denotes the set of functional dependencies

FD(x) = {A1, A2, . . . Ak −→ B : B 6∈ true(x)}.

The algorithm maintains a sequence S of boolean vectors that are sketches
of negative counterexamples, each of them violating distinct dependencies of the
target cover. This sequence is used to generate a new hypothesis F by taking
the union of FD(x) for all x in S. Since we want a proper learning algorithm,
we must transform the hypothesis F thus generated into a minimal cover G,
prior to any equivalence query. Note that when a positive counterexample is
received we eliminate dependencies from F instead of G. In doing so we preserve
the parallelism with algorithm HORN , where a hypothesis may contain clauses
that are implied by other clauses in the same hypothesis. This is to prevent the
algorithm from possibly entering an infinite loop. On the other hand, it is obvious



Learning Minimal Covers of Functional Dependencies with Queries 299

that the counterexample provided by an equivalence query is independent of
whether the input to that query is a minimal cover or not, as long as they are
equivalent. (For more explanations and ideas behind the algorithm see [4]).

Set S to be the empty sequence; /* si denotes the i-th boolean vector of S */
Set F to be the empty hypothesis;
Set G to be the empty hypothesis; /* G is a minimal cover for F */
while EQMCFD(G) 6= YES loop

Let r be the counterexample relation returned by the equivalence query;
if r violates at least one functional dependency of F

then /* r is a positive example */
remove from F every dependency that r violates;

else /* r is a negative example */
ask (at most

(|r|
2

)
) queries to MQMCFD until a

negative answer is got for some 〈t1, t2〉 in r;
x:= sketch (〈t1, t2〉);
for each si in S such that true(si ∩ x)

is properly contained in true(si) loop
MQMCFD(rel(si ∩ x));

end loop;
if any of these queries is answered NO
then

let i =min {j : MQMCFD(rel(sj ∩ x)) = NO};
replace si with si ∩ x;

else
add x as the last element in the sequence S;

end if ;
F =

⋃
s∈S FD(s);

end if;
set G to be a minimal cover for F ;

end loop;
return G;
end;

The correctness of the algorithm follows from the correctness of HORN and
the comments above. About the query and time complexity, the algorithm makes
as many equivalence queries as HORN makes. However, both the number of
membership queries and the time complexity are increased, since the counterex-
amples can have an arbitrary number of tuples, and for each counterexample
received the algorithm has to compute a minimal cover. In any case, the com-
plexity is polynomial in the size of the target cover, the number of attributes of
the relation scheme and the number of tuples of the largest counterexample.



300 Montserrat Hermo and Vı́ctor Lav́ın

References

1. D. Angluin. “Learning Regular Sets from Queries and Counterexamples”. Informa-
tion and Computation, 75, 87-106, 1987.

2. D. Angluin. “Queries and Concept Learning”. Machine Learning, 2(4), 319-342,
1988.

3. D. Angluin. “Negative Results for Equivalence Queries”. Machine Learning, 5, 121-
150, 1990.

4. D. Angluin, M. Frazier and L. Pitt. “Learning Conjunctions of Horn Clauses”.
Machine Learning, 9, 147-164, 1992.

5. R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Benjamin-
Cummings Pub. Redwood City, California, 1994.

6. J. Castro, D. Guijarro and V. Lav́ın. “Learning Nearly Monotone k-term DNF”.
Information Processing Letters, 67(2), 75-79, 1998.

7. E.F. Codd. “A Relational model for Large Shared Data Banks”. Comm. of the
ACM, 13(6), 377-387, 1970.

8. D. Guijarro, V. Lav́ın and V. Raghavan. “Learning Monotone Term Decision Lists”.
To appear in Theoretical Computer Science. Proceedings of EUROCOLT’97, 16-26,
1997.

9. S. Mahadevan and P. Tadepalli. “Quantifying Prior Determination Knowledge using
PAC Learning Model”. Machine Learning, 17(1), 69-105, 1994.

10. P. Tadepalli and S. Russell. “Learning from Examples and Membership Queries
with Structured Determinations”. Machine Learning, 32, 245-295, 1998.

11. J.D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Sci-
ence Press, Inc. 1988.



Boolean Formulas Are Hard to Learn for Most

Gate Bases

Vı́ctor Dalmau

Departament LSI, Universitat Politècnica de Catalunya,
Mòdul C5. Jordi Girona Salgado 1-3. Barcelona 08034, Spain,

dalmau@lsi.upc.es

Abstract. Boolean formulas are known not to be PAC-predictable even
with membership queries under some cryptographic assumptions. In this
paper, we study the learning complexity of some subclasses of boolean
formulas obtained by varying the basis of elementary operations al-
lowed as connectives. This broad family of classes includes, as a par-
ticular case, general boolean formulas, by considering the basis given by
{AND, OR, NOT}. We completely solve the problem. We prove the fol-
lowing dichotomy theorem: For any set of basic boolean functions, the
resulting set of formulas is either polynomially learnable from equivalence
queries or membership queries alone or else it is not PAC-predictable even
with membership queries under cryptographic assumptions. We identify
precisely which sets of basic functions are in which of the two cases. Fur-
thermore, we prove than the learning complexity of formulas over a basis
depends only on the absolute expressivity power of the class, ie., the set
of functions that can be represented regardless of the size of the represen-
tation. In consequence, the same classification holds for the learnability
of boolean circuits.

1 Introduction

The problem of learning an unknown boolean formula under some determined
protocol has been widely studied. It is well known that, even restricted to propo-
sitional formulas, the problem is hard [4, 18] in the usual learning models. There-
fore researchers have attempted to learn subclasses of propositional boolean
formulas obtained by enforcing some restrictions on the structure of the for-
mula, specially subclasses of boolean formulas in disjunctive normal form (DNF).
For example, k-DNF formulas, k-term DNF formulas, monotone-DNF formulas,
Horn formulas, and their dual counterparts [1, 5, 2] have all been shown ex-
actly learnable using membership and equivalence queries in Angluin’s model [1]
while the question of whether DNF formulas are learnable is still open. Another
important class of problems can be obtained by restricting the number of occur-
rences of a variable. For example, whereas there is a polynomial-time algorithm
to learn read-once formulas with equivalence and membership queries [3], the
problem of learning read-thrice boolean formulas is hard under cryptographic
assumptions [4].

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 301–312, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



302 Vı́ctor Dalmau

In this paper we take a different approach. We study the complexity of learn-
ing subclasses of boolean formulas obtained placing some restrictions in the el-
ementary boolean functions that can be used to build the formulas. In general,
boolean formulas are constructed by using elementary functions from a complete
basis, generally {AND, OR, NOT}. In this paper we will allow formulas to use
as a basis any arbitrary set of boolean functions.

More precisely, let F = {f1, . . . , fm} be a finite set of boolean functions. A
formula in FOR(F ) can be any of (a) a boolean variable, or (b) an expression
of the form f(g1, . . . , gk) where f is a k-ary function in F and g1, . . . , gk are
formulas in FOR(F ).

For example, consider the problem of learning a monotone boolean formula.
Every such formula can be expressed as a formula in the class FOR({AND, OR}).
The main result of this paper characterizes the complexity of learning FOR(F )
for every finite set F of boolean functions. The most striking feature of this
characterization is that for any F , FOR(F ) is either polynomially learnable
with equivalence or membership queries alone or, under some cryptographic
assumptions, not polynomially predictable even with membership queries.

This dichotomy is somewhat surprising since one might expect that any such
large and diverse family of concept classes would include some representatives of
the many intermediate learning models such as exact learning with equivalence
and membership queries, PAC learning with and without membership queries
and PAC-prediction without membership queries.

Furthermore, we give an interesting classification of the polynomially learn-
able classes. We show that, in a sense that will be made precise later, FOR(F )
is polynomially learnable if and only if at least one of the following conditions
holds:

(a) Every function f(x1, x2, . . . , xn) in F is definable by an expression of the
form c0 ∨ (c1 ∧ x1) ∨ (c2 ∧ x2) ∨ · · · ∨ (cn ∧ xn) for some boolean coefficients
ci (1 ≤ i ≤ n).

(b) Every function f(x1, x2, . . . , xn) in F is definable by an expression of the
form c0 ∧ (c1 ∨ x1) ∧ (c2 ∨ x2) ∧ · · · ∧ (cn ∨ xn) for some boolean coefficients
ci (1 ≤ i ≤ n).

(a) Every function f(x1, x2, . . . , xn) in F is definable by an expression of the
form c0 ⊕ (c1 ∧ x1)⊕ (c2 ∧ x2)⊕ · · · ⊕ (cn ∧ xn) for some boolean coefficients
ci (1 ≤ i ≤ n).

There is another rather special feature of this result. Learnability of boolean
formulas over a basis F depends only on the set of functions that can be expressed
as a formula in FOR(F ) but it does not depend on the size of the representation.
As a consequence of this fact, the same dichotomy holds for representation classes
which, in terms of absolute expressivity power, are equivalent to formulas, such
as boolean circuits.

As an intermediate tool for our study we introduce a link with some well
known algebraic structure, called clones in Universal Algebra. In particular,
we make use of very remarkable result on the structure of boolean functions
proved by Post [21]. This approach has been successful in the study of other



Boolean Formulas Are Hard to Learn for Most Gate Bases 303

computational problems such as satisfiability, tautology and counting problems
of boolean formulas [23], learnability of quantified formulas [9] and Constraint
Satisfaction Problems [13, 14, 15, 16, 12].

Finally we mention some similar results: a dichotomy result for satisfiability,
tautology and some counting problems over closed sets of boolean functions [23],
the circuit value problem [11, 10], the satisfiability of generalized formulas [24],
the inverse generalized satisfiability problem [17], the generalized satisfiability
counting problem [7], the approximability of minimization and maximization
problems [6, 19, 20], the optimal assignments of Generalized Propositional For-
mulas [22] and the learnability of quantified boolean formulas [8].

2 Learning Preliminaries

Most of the terminology about learning comes from [4]. Strings over X = D∗

will represent both examples and concept names. A representation of concepts C
is any subset of X×X . We interpret an element 〈u, x〉 of X×X as consisting of
a concept name u and an example x. The example x is a member of the concept
u if and only if 〈u, x〉 ∈ C. Define the concept represented by u as KC(u) = {x :
〈u, x〉 ∈ C}. The set of concepts represented by C is KC = {KC(u) : u ∈ X}.

Along these pages we use two models of learning, all of them fairly standard:
Angluin’s model of exact learning with queries defined by Angluin [1], and the
model of PAC-prediction with membership queries as defined by Angluin and
Kharitonov [4].

To compare the difficulty of learning problems in the prediction model we use
a slight generalization of the prediction-preserving reducibility with membership
queries [4].

Definition 1. Let C and C′ be representations of concepts. Let ⊥ and > be
elements not in X. Then C is pwm-reducible to C′, denoted C ≤pwm C′, if and
only if there exist four mappings g,f ,h, and j with the following properties:

1. There is a nondecreasing polynomial q such that for all natural numbers s
and n and for u ∈ X with |u| ≤ s, g(s, n, u) is a string u′ of length at most
q(s, n, |u|).

2. For all natural numbers s and n, for every string u ∈ X with |u| ≤ s, and
for every x ∈ X with |x| ≤ n, f(s, n, x) is a string x′ and x ∈ KC(u) if and
only if x′ ∈ KC′(g(s, n, u)). Moreover, f is computable in time bounded by a
polynomial in s, n, and |x|, hence there exists a nondecreasing polynomial t
such that |x′| ≤ t(s, n, |x|).

3. For all natural numbers s and n, for every string u ∈ X with |u| ≤ s, for
every x′ ∈ X, and for every b ∈ {>,⊥}, h(s, n, x′) is a string x ∈ X, and
j(s, n, x′, b) is either ⊥ or >. Furthermore x′ ∈ KC′(g(s, n, u)) if and only if
j(s, n, x′, b) = >, where b = > if x ∈ KC(u) and b = ⊥ otherwise. Moreover,
h and j are computable in time bounded by a polynomial in s, n, and |x′|.
In (2), and independently in (3), the expression “x ∈ KC(u)” can be replaced

with “x 6∈ KC(u)”, as discussed in [4].



304 Vı́ctor Dalmau

The following results are obtained adapting slightly some proofs in [4].

Lemma 1. The pwm-reduction is transitive, i.e., let C, C′ and C′′ be represen-
tations of concepts, if C ≤pwm C′ ≤pwm C′′ then C ≤pwm C′′.

Lemma 2. Let C and C′ be representations of concepts. If C ≤pwm C′ and C′
is polynomially predictable with membership queries, then C is also polynomially
predictable with membership queries.

3 Clones

Let D be finite set called domain. An n-adic function over D is a map f : Dn −→
D. Let FD be the set of all the functions over the domain D. Let P be a class
of functions over D. Let Pn be the n-adic functions in P . We shall say that P is
a clone if it satisfies the following conditions:

C1 For each n ≥ m ≥ 1, P contains the projection function projn,m, defined by

projn,m(x1, . . . , xn) = xm

C2 For each n, m ≥ 1, each f ∈ Pn and each g1, . . . , gn ∈ Pm. Pm contains the
composite function h = f [g1, . . . , gn] defined by

h(x1, . . . , xm) = f(g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

If F ⊆ FD is any set of functions over D, there is a smallest clone containing
all of the functions in F ; this is the clone generated by F , and we denote it 〈F 〉
If F = {f1, . . . , fk} is a finite set, we may write 〈f1, . . . , fk〉 for 〈F 〉, and refer to
f1, . . . , fk as generators of 〈F 〉. The set of clones over a finite domain D is closed
under intersection and therefore it constitutes a lattice, with meet (∧) and join
(∨) operations defined by:

∧
i∈I

Ci =
⋂
i∈I

Ci

∨
i∈I

Ci =

〈⋃
i∈I

Ci

〉

There is a smallest clone which is the intersection of all clones; we shall denote
it ID. It is easy to see that ID contains exactly the projections over D.

3.1 Boolean Case

Operations on a 2-element set, say D = {0, 1} are boolean operations. The
lattice of the clones over the boolean domain was studied by Post, leading to a
full description [21]. The proof is too long to be included here. We will give only
the description of the lattice.

A usual way to describe a poset (P,≤) (and a lattice in particular) is by
depicting a diagram with the relation coverage, where for every a, b ∈ P we say



Boolean Formulas Are Hard to Learn for Most Gate Bases 305

O1

O4O5 O6

O8

O9

S1

S3 S5

S6

P1

P3P5

P6

F∞1

F 3
1

F 2
1

F∞2

F 3
2

F 2
2

F∞3

F 3
3

F 2
3

F∞4

F 3
4

F 2
4

F∞5

F 3
5

F 2
5

F∞6

F 3
6

F 2
6

F∞7

F 3
7

F 2
7

F∞8

F 3
8

F 2
8

L1

L2 L3

L4

L5

D1

D2

D3

M1

M2

M3

M4

C1

C2 C3

C4

Fig. 1. Post Lattice

that a covers b if b ≤ a and if c is an element in P such that b ≤ c ≤ a, then
either c = a or c = b. The diagram of the lattice of clones on D = {0, 1}, often
called Post’s lattice is depicted in Figure 1. The clones are labeled according
their standard names.

A clone C is join irreducible iff C = C1 ∨ C2 always implies C = C1 or
C = C2. In Figure 1, the join irreducible clones of the diagram are denoted by
^. Since 〈P〉 =

∨
f∈P〈f〉, it follows that the join irreducible clones are generated

by a single operation, furthermore, it suffices to present a generating operation
for each join irreducible clone of Post’s lattice. Table 2 associates to every join
irreducible clone C, its generating operation ϕC .

For a n-ary boolean function f define its dual dual(f) by

dual(f)(x1, . . . , xn) = ¬f(¬x1, . . . ,¬xn).

Obviously, dual(dual(f)) = f . Furthermore, f is self-dual iff dual(f) = f .
For a class F of boolean functions define dual(F ) = {dual(f) : f ∈ F}. The
classes F and dual(F ) are called dual. Notice that 〈dual(F )〉 = dual(〈F 〉).

4 The Dichotomy Theorem

A base F is a finite set of boolean functions {f1, f2, . . . , fn} (fi 1 ≤ i ≤ n,
denotes both the function and its symbol). We follow the standard definitions
of boolean circuits and boolean formulas. The class of boolean circuits over the
basis F , denoted by CIR(F ), is defined to be the set of all the boolean circuits



306 Vı́ctor Dalmau

D2 ϕD2(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

F∞1 ϕF∞1 (x, y, z) = x ∨ (y ∧ z̄)

F∞2 ϕF∞2 (x, y, z) = x ∨ (y ∧ z)

F i
2 (i ≥ 2) ϕF i

2
(x1, . . . , xi+1) =

Vi+1
j=1(x1 ∨ · · · ∨ xj−1 ∨ xj+1 ∨ · · · ∨ xi+1)

F∞5 ϕF∞5 (x, y, z) = x ∧ (y ∨ z̄)

F∞6 ϕF∞6 (x, y, z) = x ∧ (y ∨ z)

F i
6 (i ≥ 2) ϕF i

6
(x1, . . . , xi+1) =

Wi+1
j=1(x1 ∧ · · · ∧ xj−1 ∧ xj+1 ∧ · · · ∧ xi+1)

L4 ϕL4(x, y, z) = x⊕ y ⊕ z

O1 ∅
O4 ϕO4(x) = x̄

O5 ϕO5(x) = 1

O6 ϕO6(x) = 0

P1 ϕP1(x, y) = x ∧ y

S1 ϕS1(x, y) = x ∨ y

Fig. 2. Generating operations for meet irreducible clones

where every gate is a function in F . The class of boolean formulas over the basis
F , denoted by FOR(F ) is the class of circuits in CIR(F ) with fan-out ≤ 1.

Given a boolean circuit C over the input variables x1, x2, . . . , xn, we denote
by [C] the function computed by C when the variables are taken as arguments
in lexicographical order. In the same way, given a finite set of boolean func-
tions F we define [CIR(F )] as the class of functions computed by circuits in
CIR(F ). Similarly, given a boolean formula Φ over the variables x1, x2, . . . , xn,
we denote by [Φ] the function computed by Φ when the variables are taken as
arguments in lexicographical order. In the same way, given a finite set of boolean
functions F we define [FOR(F )] as the class of functions computed by formulas
in FOR(F ). Given a boolean circuit C ∈ CIR(F ), it is possible to construct a
formula Φ ∈ FOR(F ) computing the same function than C (the size of Φ can be
exponentially bigger than the size of C but we are not concerned with the size
of the representation). Thus [FOR(F )] = [CIR(F )].

In fact, it is direct to verify that the class of functions [CIR(F )] contains the
projections and it is closed under composition. Therefore, it constitutes a clone.
More precisely, [CIR(F )] is exactly the clone generated by F , in our terminology

[CIR(F )] = [FOR(F )] = 〈F 〉, for all bases F.

The use of clone theory to study computational problems over boolean formu-
las was introduced in [23] studying the complexity of some computational prob-
lems over boolean formulas, such as satisfiability, tautology and some counting
problems.

We say that an n-ary function f is disjunctive if there exists some boolean
coefficients ci (0 ≤ i ≤ n) such that

f(x1, . . . , xn) = c0 ∨ (c1 ∧ x1) ∨ (c2 ∧ x2) ∨ · · · ∨ (cn ∧ xn).



Boolean Formulas Are Hard to Learn for Most Gate Bases 307

Similarly, we say that an n-ary function f is conjunctive if there exists some
boolean coefficients ci (0 ≤ i ≤ n) such that

f(x1, . . . , xn) = c0 ∧ (c1 ∨ x1) ∧ (c2 ∨ x2) ∧ · · · ∧ (cn ∨ xn).

Accordingly, we say that an n-ary function f is linear if there exists some
boolean coefficients ci (0 ≤ i ≤ n) such that

f(x1, . . . , xn) = c0 ⊕ (c1 ∧ x1)⊕ (c2 ∧ x2)⊕ · · · ⊕ (cn ∧ xn).

Let F be a set of boolean functions. We will say that F is disjunctive (resp.
conjunctive, linear) iff every function in F is disjunctive (resp. conjunctive, lin-
ear). We will say that F is basic iff F is disjunctive, conjunctive or linear.

For any set of boolean formulas (circuits) B, we define CB as the representa-
tion of concepts formed from formulas (circuits) in B. More precisely, CB contains
all the tuples of the form 〈C, x〉 where C represents a formula (circuit) in B and
x is a model satisfying C.

In this section we state and prove the main result of the paper.

Theorem 1. (Dichotomy Theorem for the Learnability of Boolean Circuits and
Boolean Formulas) Let F be a finite set of boolean functions. If F is basic, then
CCIR(F ) is both polynomially exactly learnable with n+1 equivalence queries, and
polynomially exactly learnable with n+1 membership queries. Otherwise, CFOR(F )

is not polynomially predictable with membership queries under the assumption
that any of the following three problems are intractable: testing quadratic residues
modulo a composite, inverting RSA encryption, or factoring Blum integers.

We refer the reader to Angluin and Kharitonov [4] for definitions of the cryp-
tographic concepts. We mention that the non-learnability results for boolean
circuits hold also with the weaker assumption of the existence of public-key en-
cryption systems secure against CC-attack, as discussed in [4].

Proof of Theorem 1
Learnability of formulas over disjunctive, conjunctive and linear bases is

rather straightforward. Notice that if a basis F is disjunctive (resp. conjunctive,
linear) then every function computed by a circuit in CIR(F ) is also disjunctive
(resp. conjunctive, linear). Thus, learning a boolean circuit over a basic basis is
reduced to finding the boolean coefficients of the canonical expression. It is easy
to verify that this task can be done in polynomial time with n + 1 equivalence
queries or n + 1 membership queries, as stated in the theorem.

Now, we study which portion of Post’s lattice is covered by these cases.
Consider clone L1 with generating set L1 = 〈ϕO4 , ϕO5 , ϕO6 , ϕL4〉. Since all the
operations in the generating set of L1 are linear, then the clone L1 is linear.
Similarly, clone P6, generated by operations ϕO5 , ϕO6 and ϕP1 is conjunctive,
since so is every operation in the generating set. Finally clone S6, generated by
operations ϕO5 , ϕO6 and ϕS1 is disjunctive, since so is every operation in the



308 Vı́ctor Dalmau

generating set. Thus, every clone contained in L1, P6, or S6 is linear, conjunctive
or disjunctive respectively. Actually, clone L1 (resp. P6, S6) has been chosen
carefully among the linear (resp. conjunctive, disjunctive) clones. It corresponds
to the maximal linear (resp. conjunctive, disjunctive) clone in Post’s lattice.
It has been obtained as the join of all the linear (resp. conjunctive, disjunctive)
clones and, in consequence, has the property that every linear (resp. conjunctive,
disjunctive) clone is contained in L1 (resp. P6, S6).

Let us study non-basic clones. With a simple inspection of Post’s lattice
we can infer that any clone not contained in L1, S6 or P6 contains any of the
following operations: ϕF∞2 , ϕF∞6 , ϕD2 . In Section 4.1 it is proved that if 〈F 〉
contains any of the previous functions, then the class FOR(F ) is not PAC-
predictable even with membership queries under the assumptions of the theorem.

4.1 Three Fundamental Non-learnable Functions

Let B = {AND, OR, NOT} be the usual complete basis for boolean formulas.
In [4], it is proved that CFOR(B) is not polynomially predictable under the as-
sumptions of Theorem 1. In this section we generalize the previous result to all
bases F able to “simulate” any of the following three basic non-learnable func-
tions: ϕF∞2 , ϕF∞6 , and ϕD2 . This three functions can be regarded as the basic
causes for non-learnability in formulas.

The technique used to prove non-learnability results is a two-stage pwm-
reduction from FOR(B). First, we prove as an intermediate result that monotone
boolean formulas are as hard to learn, as general boolean formulas.

Lemma 3. The class CFOR(B) is pwm-reducible to CFOR({AND,OR}).

Proof. Let Φ be a boolean formula with x1, . . . , xn as input variables. We can
assume that NOT operations are applied only to input variables. Otherwise by
using repeatedly De Morgan’s law we can move every NOT function towards the
input variables.

Consider the formula Ψ with x1, . . . , xn, y1, . . . , yn as input variables, ob-
tained modifying slightly formula Φ as follows: replace every NOT function ap-
plied to variable xi, by the new input variable yi. Finally, we define the formula
Υ with x1, . . . , xn, y1, . . . , yn as input variables to be:

Υ (x1, . . . , xn, y1, . . . , yn) =
Ψ(x1, . . . , xn, y1, . . . , yn) ∨

∨
1≤i≤n

(xi ∧ yi)


 ∧

∧
∧

1≤i≤n

(xi ∨ yi)

Formula Υ evaluates the following function:

Υ (x1, . . . , xn, y1, . . . , yn) =




Φ(x1, . . . , xn) if ∀i : 1 ≤ i ≤ n, xi 6= yi

0 if ∃i : 1 ≤ i ≤ n, xi = yi = 0
1 otherwise



Boolean Formulas Are Hard to Learn for Most Gate Bases 309

For every natural number s and for every concept representation u ∈ CFOR(B)

such that |u| ≤ s, let Φ be the boolean formula with n input variables represented
by u, let u′ be the representation of the monotone boolean formula Υ obtained
from Φ as described above. We define g(s, n, u) = u′. For every assignments x
and y of length n we define f(s, n, x) = xx, h(s, n, xy) = x and

j(s, n, xy, b) =




b if x = y
⊥ if ∃i : 1 ≤ i ≤ n, xi = yi = 0
> otherwise

Clearly, f , g, h and j satisfy the conditions (1), (2) and (3) in Definition 1
and therefore define a pwm-reduction.

Technical note: In the proof of this prediction with membership reduction and
in the next ones, functions f, g, h, j have been defined only partially to keep the
proof clear. It is trivial to extend them to obtain complete functions preserving
conditions (1), (2) and (3).

Now, we have to see that CFOR({NOT,AND}) is pwm-reducible to CFOR(F ) if F
is able to “generate” any of the following functions: ϕF∞2 , ϕF∞6 or ϕD2 . Let us
do a case analysis.

Theorem 2. Let F be a set of boolean functions. If ϕF∞2 ∈ 〈F 〉 then
CFOR({AND,OR}) is pwm-reducible to CFOR(F ).

Proof. Clone 〈F 〉 includes the operation ϕF∞2 (x, y, z) = x ∨ (y ∧ z). Thus,
there exists some formula ΦF∞2 in FOR(F ) over three variables x, y, z such that
[ΦF∞2 ] = ϕF∞2 .

Clearly, with the operation ϕF∞2 and the additional help of constant 0 it is
possible to simulate functions AND and OR,

AND(x, y) = ϕF∞2 (0, x, y)

OR(x, y) = ϕF∞2 (x, y, y)

Let Ψ be an arbitrary monotone boolean formula in FOR({AND, OR}) over
the input variables x1, x2 . . . , xn.

Let Υ2 be the boolean formula over the input variables x1, . . . , xn, c0 obtained
from Ψ by replacing every occurrence AND(x, y) by ΦF∞2 (c0, x, y) and, similarly,
every occurrence of OR(x, y) by ΦF∞2 (x, y, y).

Finally, let Υ1 be the boolean formula defined by:

Υ1(x1, x2, . . . , xn, c0) = ΦΥ∞2 (Υ2(x1, x2 . . . , xn, c0), c0, c0),

By construction we have

Υ2(x1, x2, . . . , xn, 0) = Ψ(x1, x2, . . . , xn), and

Υ1(x1, x2, . . . , xn, c0) =
{

Ψ(x1, x2, . . . , xn) if c0 = 0
1 otherwise



310 Vı́ctor Dalmau

Now we are in position to define the pwm-reduction. Let g be the function
assigning to every monotone boolean formula Ψ , an associated formula Υ1 in
FOR(F ) constructed as described above. Let f be the function adding the value
of the constant zero to the end of string, i.e.,

f(s, n, 〈x1, x2, . . . , xn〉) = 〈x1, x2, . . . , xn, 0〉.
Mapping h produces the inverse result. That is, given an string removes the last
value (corresponding to the constant 0).

h(s, n, 〈x1, . . . , xn, c0〉) = 〈x1, . . . , xn〉
Finally, function j is defined by

j(s, n, 〈x1, . . . , xn, c0〉, b) =
{

b if c0 = 0
> otherwise

Thus, it is immediate to verify that f , g, h, and j define a pwm-reduction from
C{AND,OR} to CFOR(F ).

By duality we have,

Theorem 3. Let F be a set of boolean functions. If ϕ∞F6
∈ 〈F 〉 then

CFOR({AND,OR}) is pwm-reducible to CFOR(F ).

Finally we study clones containing ϕD2 .

Theorem 4. Let F be a set of boolean functions. If ϕD2 ∈ 〈F 〉 then
CFOR({AND,OR}) is pwm-reducible to CFOR(F ).

Proof. For this proof we will use the fact that operation ϕD2 satisfies the self-
duality property. Thus, every function in 〈ϕD2〉 is self-dual. Clone 〈F 〉 includes
the majority operation ϕD2(x, y, z) = (x∧y)∨(x∧z)∨(y∧z). Thus, there exists
some formula ΦD2 in FOR(F ) over three variables x, y, z such that the function
computed by FD2 is ϕD2 .

Clearly, with the operation ϕD2 and the additional help of constants it is
possible to simulate functions AND and OR,

AND(x, y) = ϕD2(0, x, y)

OR(x, y) = ϕD2 (1, x, y)

For every monotone boolean formula Ψ in FOR({AND, OR}) over the input
variables x1, x2 . . . , xn we construct an associated formula Υ1 over the variables
x1, x2 . . . , xn, c0, c1 defined by

Υ1(x1, x2, . . . , xn, c0, c1) = ΦD2(Υ2(x1, x2 . . . , xn, c0, c1), c0, c1),

where Υ2 is the formula over the input variables x1, x2, . . . , xn, c0, c1 obtained
from Ψ in a similar way to the previous proof: we replace every occurrence of
AND(x, y) by ΦD2(c0, x, y) and every occurrence of OR(x, y) by ΦD2(c1, x, y).



Boolean Formulas Are Hard to Learn for Most Gate Bases 311

By construction we have (the case c0 = 1 ∧ c1 = 0 is a consequence of the
self-duality of D2),

Υ2(x1, x2, . . . , xn, c0, c1) =




Ψ(x1, x2, . . . , xn) if c0 = 0 ∧ c1 = 1
¬Ψ(¬x1,¬x2, . . . ,¬xn) if c0 = 1 ∧ c1 = 0
undetermined otherwise

Υ1(x1, x2, . . . , xn, c0, c1) =



⊥ if c0 = c1 = 0
> if c0 = c1 = 1
Ψ(x1, x2, . . . , xn) if c0 = 0 ∧ c1 = 1
¬Ψ(¬x1,¬x2, . . . ,¬xn) if c0 = 1 ∧ c1 = 0

Now we are in position to define the pwm-reduction. Let g be the function
assigning to every monotone boolean formula Ψ in FOR({AND, OR}), an as-
sociated formula Υ1 in FOR(F ) constructed as described above. Let f be the
function adding the value of the constants to the end of string, i.e.,

f(s, n, 〈x1, x2, . . . , xn〉) = 〈x1, x2, . . . , xn, 0, 1〉.

Mapping h removes the last two values (corresponding to the constants) and,
moreover, h negates the values of the assignment if the values of the constants
are flipped,

h(s, n, 〈x1, . . . , xn, c0, c1〉) =
{ 〈x1, . . . , xn〉 if c0 = 0 ∨ c1 = 1
〈¬x1, . . . ,¬xn〉 otherwise

Finally, function j is defined by

j(s, n, 〈x1, . . . , xn, c0, c1〉, b) =




0 if c0 = 0 ∧ c1 = 0
b if c0 = 0 ∧ c1 = 1
¬b if c0 = 1 ∧ c1 = 0
1 if c0 = 1 ∧ c1 = 1

Thus, it is immediate to verify that f , g, h, and j define a pwm-reduction from
C{AND,OR} to CCIR(F ).

References

[1] D. Angluin. Queries and Concept Learning. Machine Learning, 2:319–342, 1988.
[2] D. Angluin, M. Frazier, and L. Pitt. Learning Conjunctions of Horn Clauses.

Machine Learning, 9:147–164, 1992.
[3] D. Angluin, L. Hellerstein, and M. Karpinski. Learning Read-Once Formulas with

Queries. Journal of the ACM, 40:185–210, 1993.
[4] D. Angluin and M. Kharitonov. When won’t Membership Queries help. Journal

of Computer and System Sciences, 50:336–355, 1995.
[5] U. Berggren. Linear Time Deterministic Learning of k-term DNF. In 6th Annual

ACM Conference on Computational Learning Theory, COLT’93, pages 37–40,
1993.



312 Vı́ctor Dalmau

[6] N. Creignou. A Dichotomy Theorem for Maximum Generalized Satisfiability
Problems. Journal of Computer and System Sciences, 51(3):511–522, 1995.

[7] N. Creignou and M. Hermann. Complexity of Generalized Satisfiability Counting
Problems. Information and Computation, 125:1–12, 1996.

[8] V. Dalmau. A Dichotomy Theorem for Learning Quantified Boolean Formulas.
Machine Learning, 35(3):207–224, 1999.

[9] V. Dalmau and P. Jeavons. Learnability of Quantified Formulas. In 4th Eu-
ropean Conference on Computational Learning Theory Eurocolt’99, volume 1572
of Lecture Notes in Artificial Intelligence, pages 63–78, BerlinNew York, 1999.
Springer-Verlag.

[10] L.M. Goldschlager. A Characterization of Sets of n-Input Gates in Terms of their
Computational Power. Technical Report 216, Basser Department of Computer
Science, The University of Sidney, 1983.

[11] L.M. Goldschlager and I. Parberry. On the Construction of Parallel Computers
from various bases of Boolean Circuits. Theoretical Computer Science, 43:43–58,
1986.

[12] P. Jeavons, D. Cohen, and M.C. Cooper. Constraints, Consistency and Closure.
Artificial Intelligence, 101:251–265, 1988.

[13] P. Jeavons, D. Cohen, and M. Gyssens. A Unifying Framework for Tractable Con-
straints. In 1st International Conference on Principles and Practice of Constraint
Programming, CP’95, Cassis (France), September 1995, volume 976 of Lecture
Notes in Computer Science, pages 276–291. Springer-Verlag, 1995.

[14] P. Jeavons, D. Cohen, and M. Gyssens. A Test for Tractability. In 2nd Interna-
tional Conference on Principles and Practice of Constraint Programming CP’96,
volume 1118 of Lecture Notes in Computer Science, pages 267–281, Berlin/New
York, August 1996. Springer-Verlag.

[15] P. Jeavons, D. Cohen, and M. Gyssens. Closure Properties of Constraints. Journal
of the ACM, 44(4):527–548, July 1997.

[16] P. Jeavons and M. Cooper. Tractable Constraints on Ordered Domains. Artificial
Intelligence, 79:327–339, 1996.

[17] D. Kavvadias and M. Sideri. The Inverse Satisfiability Problem. In 2nd Comput-
ing and Combinatorics COCOON’96, volume 1090 of Lecture Notes in Computer
Science, pages 250–259. Springer-Verlag, 1996.

[18] Michael Kearns and Leslie Valiant. Cryptographic limitations on learning Boolean
formulae and finite automata. Journal of the ACM, 41(1):67–95, January 1994.

[19] S. Khanna, M. Sudan, and L. Trevisan. Constraint Satisfaction: The Approx-
imability of Minimization Problems. In 12th IEEE Conference on Computational
Complexity, 1997.

[20] S. Khanna, M. Sudan, and P. Williamson. A Complete Classification fo the Ap-
proximability of Maximation Problems Derived from Boolean Constraint Satis-
faction. In 29th Annual ACM Symposium on Theory of Computing, 1997.

[21] E.L. Post. The Two-Valued Iterative Systems of Mathematical Logic, volume 5 of
Annals of Mathematics Studies. Princeton, N.J, 1941.

[22] S. Reith and H. Vollmer. The Complexity of Computing Optimal Assignments
of Generalized Propositional Formulae. Technical Report TR196, Department of
Computer Science, Universität Würzburg, 1999.

[23] S. Reith and K.W. Wagner. The Complexity of Problems Defined by Subclasses of
Boolean Functions. Technical Report TR218, Department of Computer Science,
Universität Würzburg, 1999.

[24] T.J. Schaefer. The Complexity of Satisfiability Problems. In 10th Annual ACM
Symposium on Theory of Computing, pages 216–226, 1978.



Finding Relevant Variables in PAC Model with

Membership Queries

David Guijarro1?, Jun Tarui2, and Tatsuie Tsukiji3

1 Department LSI, Universitat Politècnica de Catalunya,
Jordi Girona Salgado, 1-3, Barcelona 08034, Spain

david@lsi.upc.es
2 Department of Communications and Systems, University of

Electro-communications, Chogugaoka, Chofu-shi, Tokyo 182, Japan
jun@sw.cas.uec.ac.jp

3 School of Informatics and Sciences, Nagoya University, Nagoya 464-8601, Japan
tsukiji@info.human.nagoya-u.ac.jp

Abstract. A new research frontier in AI and data mining seeks to de-
velop methods to automatically discover relevant variables among many
irrelevant ones. In this paper, we present four algorithms that output
such crucial variables in PAC model with membership queries. The first
algorithm executes the task under any unknown distribution by measur-
ing the distance between virtual and real targets. The second algorithm
exhausts virtual version space under an arbitrary distribution. The third
algorithm exhausts universal set under the uniform distribution. The
fourth algorithm measures influence of variables under the uniform dis-
tribution. Knowing the number r of relevant variables, the first algorithm
runs in almost linear time for r. The second and the third ones use less
membership queries than the first one, but runs in time exponential for
r. The fourth one enumerates highly influential variables in quadratic
time for r.

1 Introduction: Terminology and Strategy

We propose several algorithms with their own character for automatically finding
relevant variables in the presence of many irrelevant ones. Recent application of
such algorithms ranges from data mining in the genome analysis to information
filtering in the network computing. In these applications, sample data consist
of a huge volume of variables, although the target phenomenon may depend on
only a few of them. In order for a machine to find such crucial variables, we study
algorithms in PAC model with membership queries, and analyze their query and
time complexities.

To learn an unknown Boolean function that depends on only a small number
of the potential variables, the learner may (1) find a set of relevant variables and
? Author supported in part by the EC through the Esprit Program EU BRA program

under project 20244 (ALCOM-IT) and the EC Working Group EP27150 (NeuroColt
II) and by the spanish DGES PB95-0787 (Koala).

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 313–322, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



314 David Guijarro, Jun Tarui, and Tatsuie Tsukiji

(2) combine them into a hypothesis that approximates the target concept with
an arbitrarily high accuracy. Most inductive learning algorithms do not separate
these conceptually different tasks, but rather let them depend on each other.
On the other hand, some AI learning papers separate them and execute (1) as a
preprocess for (2) (see [5] for a survey). This paper pursues (1) for the learning
goal.

Let us begin with fixing notion of relevant variables. We say that two Boolean
instances are neighbor of each other if they have the same bit length and differs
by exactly one bit.

Definition 1. A variable x is relevant to a function f if there exist neighbor
instanes A and A′ such that x(A) 6= x(A′) and f(A) 6= f(A′).

Let Rel(r, n) be the class of Boolean functions with n variables that depend
on only r of them, or equivalently, have at most r relevant variables. In this
paper, the target concept is an arbitrary function in Rel(r, n). In other words,
the learner is given the n Boolean variables, say x1, . . . , xn, and told that there
are at most r relevant variables to the target concept 1.

In this paper we work on Probably Approximately Correct (PAC) Learning
introduced by Valiant [11], where the target concept f and the target distribution
D are postulated and hidden from the learner. The learner receives a sequence of
examples (A, f(A)), (B, f(B)), . . . independently and randomly from D. From
these examples, the learner must build a hypothesis that can approximate the
target concept by an arbitrary accuracy with respect to D.

This paper sets a weaker goal for learning. For a Boolean function h let rel(h)
denotes the set of relevant variables to h.

Definition 2. A set V of variables is called an α-dominator, 0 ≤ α ≤ 1, if there
exists a function h such that rel(h) ⊆ V and ProbA{h(A) = f(A)} ≥ α, where
A is randomly chosen according to D.

A weaker goal of learning is to find an (1 − ε)-dominator. Our algorithms
may use inner coin flips and achieve this weaker goal with probability ≥ 1 − δ
for arbitrary given constants 0 ≤ ε, δ ≤ 1.

Unfortunately, random examples are not enough as information resource for
identifying relevant variables of a given Boolean concept, because:

– There can be computationally hard problems even though we can information-
theoretically identify the function. For instance consider the class of conjunc-
tions of an (log n)-bit majority and an (log n)-bit parity. This class (contained
in Rel(2 log n, n)) is believed to be hard to predict within polynomial even
under the uniform distribution [3]. The problem there is that we may have
enough information to identify the function (using a universal set) but it is
computationally hard to discover the set of relevant variables.

1 We can tune our algorithms up into adaptive versions for r by guessing and doubling
r, that is to execute the algorithms by guessing r = 20,21,22, . . . until they succeed.



Finding Relevant Variables in PAC Model with Membership Queries 315

– Moreover, due to reduction from set cover, it is NP-hard in general to discover
a set of relevant variables on which one can build an accurate hypothesis [8].

We will thus allow algorithms to use more active query in addition with
random examples, that are membership queries introduced by Angluin [1].

Definition 3. A membership query for an instance A about the target concept
f is a request for the value MQf (A) = f(A) to the membership oracle MQf .

In empirical test, reverse engineer or information search, however, member-
ship queries are much more expensive than random examples. We will thus
present econimical algorithms in Section 3 that spend at most r log n member-
ship queries.

The algorithms in this paper follow a common learning strategy; Find wit-
nesses for relevance and execute binary search on them. The algorithms differ in
methods to discover witnesses for relevance.

Definition 4. For an instance A and a set V of variables AV and AV are
instances such that

x(AV ) =
{

x(A) if x ∈ V ,
0 otherwise. x(AV ) =

{
1− x(A) if x ∈ V ,
x(A) otherwise.

Definition 5. A witness for relevance outside of V about the target concept f
is a pair (A, B) of instances A and B such that AV = BV and f(A) 6= f(B).

Given a witness (A, B) for relevance, binary search finds a relevant variable
as follows. It flips half of the different bits between A and B, and ask the mem-
bership query for the obtained instance C. If f(A) 6= f(C) then it repeats the
argument on a new witness (A, C), otherwise on (B, C). Either case reduces the
number of different bits in the witnesses by half. This divide-and-query argument
repeats until reaching to a variable x such that x(A) 6= x(B).

Lemma 1. Given an arbitrary witness for relevance outside of V , the binary
search outputs a relevant variable x 6∈ V by using at most log n membership
queries in O(n log n) time.

The proof is folklore (see e.g. [7, Lemma 2.4]). Note that log n is a query
complexity lower bound in finding one relevant variable from a given witness for
relevance, hence r log n is a lower bound in finding r relevant variables.

2 Measuring the Distance between Virtual and Real
Targets

This section provides a distribution-free algorithm that runs in time almost linear
to r. It measures the distance between virtual and real targets and if the distance
is large then the algorithm discovers a new relevant variable.



316 David Guijarro, Jun Tarui, and Tatsuie Tsukiji

Definition 6. The virtual target fV on a set V of variables about the target
concept f is a Boolean function fV with rel(fV ) ⊆ V such that fV (AV ) = f(AV )
holds for any instance A.

In the mistake bound model with membership queries, Blum, Hellerstein and
Littlestone [4] measures ProbA{f(A) = hV (A)} for a temporal hypothesis h to
find a new relevant variable that is not yet implemented in h. Here we measure
ProbA{f(A) = fV (A)}, the distance between f and fV . If it is large, then our
algorithm finds a witness for relevance (A, AV ) with high probability.

Lemma 2. Let m be any integer with (1 − ε)m ≤ δ. Draw a sample O of m
examples. If V is not an (1 − ε)-dominator then f(A) 6= f(AV ) happens for
some (A, f(A)) ∈ O with probability greater than 1− δ.

Proof. Suppose that V is not an (1− ε)-dominator. Then the distance between
f and fV is greater than ε, hence f(A) = f(AV ) happens for each (A, f(A)) ∈
O with probability < (1 − ε)m ≤ δ.

Now we implement this lemma in an algorithm MsrDist and analyze its
performance.

Procedure MsrDist
Input: Integers n, r and m0.
Output: A set of relevant variables.
Set V := ∅ and m := 0.
Do until either |V | = r or m = m0

Draw a random example (A, f(A)) and increment m by 1.
Let β := MQf (AV ).
If f(A) 6= β then Do

Set m := 0.
Execute the binary search on (A, AV ) and put an obtained variable
into V .

EndDo
EndDo
Output V .

EndProc

Theorem 1. MsrDist finds an (1 − ε)-dominator (a set of relevant variables)
with probability greater than 1 − δ. For some m0 = O(ε−1 log(r/δ)), MsrDist
uses at most m0r random examples, at most r(m0 + log n) membership queries
and runs in O(nr(m0 + log n)) time.

Proof. Fix an arbitrary m0 = O(ε−1 log(r/δ)) such that (1− ε)m0 ≤ δ/r. Then,
in view Lemma 2, in each stage of the Do loop in the procedure MsrDist where



Finding Relevant Variables in PAC Model with Membership Queries 317

V is not an (1−ε)-dominator, each example (A, f(A)) may be a witness (A, AV )
for relevance outside of V with probability greater than δ/r. Since MsrInf can
draw m0 examples in the stage, it will succeed in find a witness with probability
greater than 1− (1− ε

er )m0 ≥ 1− δ/r. Since there are at most r stages, due to
the union bound, every stage will succeed with probability ≥ 1− δ/r · r ≥ 1− δ,
so with this probability MsrDist outputs an (1− ε)-dominator.

3 Exhausting Virtual Version Spaces

This section presents two algorithms that saves membership queries than one
in the previous section. One algorithm is distribution-free and exhausts virtual
version spaces, while another works under the uniform distribution and exhausts
an r-universal.

Intuitively, a version space is the set of hypotheses under consideration in
inductive learning. Haussler [9] proposed to exhaust the version space by throw-
ing the hypotheses away that are inconsistent with drawn examples until only
accurate hypotheses may remain. In this section, for a set V of variables,

Definition 7. the virtual version space on V is the set of Boolean functions h
with rel(h) ⊆ V .

Let V be the set of already found relevant variables. Then virtual version
spaces may expand at each moment that a new relevant variable is discovered
and added to V . Unless V is an (1−ε)-dominator, exhausting the virtual version
space on V is shown to provide a witness for relevance outside of V with high
probability.

Lemma 3. Let m be any integer such that (1−ε)m22r ≤ δ. Draw a sample O of
m random examples. If V is not an (1−ε)-dominator then there exists a witness
(A, B) for relevance outside of V with (A, f(A)),(B, f(B)) ∈ O with probability
at least 1− δ.

Proof. Suppose that V is not an (1 − ε)-dominator. Then for every function h
in the virtual version space on V , h(A) 6= f(A) holds with probability greater
than ε, so O is consistent with h with probability < (1− ε)m. The union bound
thus implies that O does not provide any witness for relevance outside of V with
probability < (1− ε)m22r ≤ δ.

We now implement this lemma in an algorithm ExhVVS that finds an (1 −
ε)-dominator. For each new example (A, f(A)), ExhVVS checks over the old
examples (B, f(B)) in a stock that whether (A, B) is a witness for relevance
outside of V . If ExhVVS finds a new witness it discards all the old examples and
make the stock empty.



318 David Guijarro, Jun Tarui, and Tatsuie Tsukiji

Procedure ExhVVS

Input: Integers n and r.

Output: A set of relevant variables.

Set O := ∅, V := ∅, s := 1 and m := 0.

Initialize m0 := the minimum integer such that (1− ε)m022 ≥ δ/r.

Do until either |V | = r or m = m0

Draw a random example (A, f(A)).

For each B ∈ O Do

If AV = BV and f(A) 6= f(B) then Do

Update O := ∅, m := 0 and s := s + 1.

Update m0 := the minimum integer such that (1− ε)m022s ≥ δ/r.

Execute the binary search on (A, B) and put an obtained variable
into V .

EndDo

EndDo

Put (A, f(A)) into O and increment m by 1.

EndDo

Output V .

EndProc

Theorem 2. The procedure ExhVVS outputs an (1 − ε)-dominator (a set of
relevant variables) with probability greater than 1−δ. ExhVVS uses at most m0 =
O(r2r log(1/ε) log(r/δ)) random examples, r log n membership queries and runs
in O(n(m0 + r log n)) time.

Proof. If |V | = s then ExhVVS draws m0 random examples so that (1−ε)m022s

≥ δ/r. Therefore, due to Lemma 3, if V is not an (1 − ε)-dominator then it
derives a witness for relevance outside of V with probability at least δ/r. The
remaining argument is the same with the proof of Theorem 1.

Under the uniform distribution, a modification of ExhVVS can find all the
relevant variables by exhausting an r-universal set.

Definition 8. A set U of instances is called r-universal if every r-bits on every
set of r variables occurs in some instance A in U .

Damaschke [7] worked in the exact learning model with only membership
queries and studied the numbers of (adaptive and non-adaptive) membership
queries for exhausting r-universal set. Here we show that, under the uniform
distribution, an enough number of random examples provides an r-universal set
and that any of those sets is a sufficient source for witnesses for all relevant
variables.

Lemma 4. Let m be any integer such that (1 − 2−r)m2r
(
n
r

) ≤ δ. Draw m in-
stances independently and randomly under the uniform distribution over the n-bit
instance space. Then it forms an r-universal set with probability at least 1− δ.



Finding Relevant Variables in PAC Model with Membership Queries 319

Proof. We say that the sample hits an r-bits on a set of r variables if an assign-
ment A of some example (A, f(A)) in the sample sets those variables to those
bits. Then, due to probabilistic independence of examples, the sample does not
hit a given r-bits with probability (1−2−r)m. Since there are 2r

(
n
r

)
possibility of

such r-bits’s, the union bound implies that the sample does not hit some r-bits
with probability at most (1− 2−r)m2r

(
n
r

) ≤ δ. Or equivalently, the sample hits
every r-bits with probability at least 1− δ.

Let ExhUniv be a modification of ExhVVS that does not discard old examples
at all; ExhUniv omits updating O and m0 in the lines 9 and 10 of the procedure
ExhVVS.

Theorem 3. Under the uniform distribution, ExhUniv finds all the relevant
variables with probability at least 1 − δ by at most m0 = O(r2r log n log(1/δ))
random examples and r log n membership queries in O(n(m0 + r log n)) time.

Proof. Let R be the set of relevant variables and let s = |R| ≤ r. Let m0 satisfy
(1 − 2−s)m02s

(
n
s

) ≤ δ. Then, due to Lemma 4, the sample of size m0 presents
an s-universal set with probability ≥ 1 − δ. Such a sample induces every s-bits
on R, so in particular ExhUniv discovers a witness (A, B) for relevance of every
variable x ∈ R such that AR and BR are neighbors at x, hence x itself by binary
searching on (A, B).

4 Measuring Influence of Variables

An algorithm in this section measures influence of variables to the target concept
under the uniform distribution and outputs highly influential ones. Such an
approach for learning has been taken in many AI and data mining research
papers and achieves good empirical success (see [5, Section 2.4]). Based on this
approach, we will design an algorithm that finds an (1 − ε)-dominator under
the uniform distribution in time almost quadratic for r, the number of relevant
variables.

Definition 9. The influence Inf(x) of a variable x is the number of instances A
as a fraction of the set of all instances such that f(A) 6= f(A′) for the neighbor
instance A′ of A at x.

Therefore, Inf(x) = 0 if and only if a variable x is irrelevant, and Inf(x) = 1
if and only if f = x⊕g for some function g irrelevant with respect to x. To show
existence of highly influential variables, Ben-Or and Linial [2] applied the edge-
isoperimetric inequality (see [6, Section 16] for edge-isoperimetric inequalities).

Lemma 5 (Edge Isoperimetric Inequality). For a given Boolean function
f(x1, . . . , xn) choose b ∈ {0, 1} and 1 ≤ k such that

2−k−1 ≤ ProbA{f(A) = b} ≤ 2−k

under the uniform distribution on A. We then have
∑n

i=1 Inff (xi) ≥ k21−k.



320 David Guijarro, Jun Tarui, and Tatsuie Tsukiji

In order to implement this inequality in a learning algorithm, we need to
relatize it on a given set V of variables.

Lemma 6. If V is not an (1 − ε)-dominator then
∑

x 6∈V Inf(x) > 2ε.

Proof. Let h be a Bayes optimal predictor of f on V . That is, (1) rel(h) ⊆ V
and (2) h(A) = 1 if and only if ProbB{f(B) = 1|BV = AV } ≥ 1/2. We suppose∑

x 6∈V Inf(x) ≤ 2ε and prove that h approximates f with accuracy ≥ 1− ε.
For any instance A we let

p(A) = 1−max{ProbB{f(B) = 1|BV = AV }, ProbB{f(B) = 0|BV = AV }}.
Then expectation of p(A) on A is EA[p(A)] = ProbA{h(A) 6= f(A)}, so it is
enough to claim that EA[p(A)] ≤ ε.

For any instance A let fA,V be the function that fixes the input-bits of f
on V by A. Hence rel(fA,V ) ⊆ rel(f) − V . Lemma 5 then promises 2p(A) ≤∑

x 6∈V InffA,V (x), so taking average on A for both sides derives

2EA[p(A)] ≤
∑
x 6∈V

Inff (x) ≤ 2ε,

so we obtain EA[p(A)] ≤ ε.

Uehara et. al. [10] apply the following lemma for finding relevant variables
to fundamental Boolean functions (conjunctions, parities, etc).

Lemma 7 (Uehara et. al. [10]). Let R be any set of r elements in the n
element set X. Choose a subset W of X with |W | = n/r uniformly at random.
Then |V ∩W | = 1 happens with probability > 1/e.

Now, we present an algorithm that applies Lemma 6 and Lemma 7 and finds
highly influential variables.

Procedure MsrInf

Input: Integers n, r and m0.

Output: A set of relevant variables.

Set X := {x1, . . . , xn}, V := ∅, m := 0, n′ := n and r′ := r.

Do until either r′ = 0 or m = m0

Draw a random example (A, f(A)) and increment m by 1.

Choose a set of variables W ⊆ X − V with |W | = n′/r′ uniformly at random.

Let β := MQf (AW ).ppp

If f(A) 6= β then Do

Update m := 0, n′ := n′ − 1 and r′ := r′ − 1.

Execute the binary search on (A,AW ), put the obtained variable in V and
remove the variable from X.

EndDo

EndDo

Output V .

EndProc



Finding Relevant Variables in PAC Model with Membership Queries 321

Theorem 4. Under the uniform distribution, MsrInf finds an (1−ε)-dominator
(a set of relevant variables) with probability greater than 1 − δ by at most m0

= O((r/ε) log(r/δ)) random examples and r(m0 + log n) membership queries in
O(nr(m0 + log n)) time.

Proof. Fix an arbitrary m0 = O(ε−1 log(r/δ)) such that (1 − ε
er )m0 ≤ δ/r. Let

R be any set of r variables containing all the relevant variables.
In view of Lemma 7, choosing W as in the procedure, we have |(R− V ) ∩W |

= 1 with probability greater than 1/e. Moreover, if it is so, (R− V )∩W = {x}
happens equally likely for each x ∈ R−V . Therefore, drawing A according to D
and choosing W as in the procedure, f(A) 6= f(AW ) happens with probability
greater than 1

2er ·
∑

x 6∈V Inff (x). Thus if V is not an (1 − ε)-dominator then
Lemma 6 promises

∑
x 6∈V Inf(x) > 2ε, so (A, AW ) happens to be a witness for

relevance outside of V with probability greater than ε
er .

Therefore, in each stage of the Do loop, if V is not an (1 − ε)-dominator
then a witness for relevance is successfully found with probability greater than
1 − (1 − ε

er )m0 ≥ 1 − δ/r. The remaining argument is the same with the proof
of Theorem 1.

The procedure MsrInf enumerates variables in order of their influence to the
target. For example, suppose that there are 100 relevant variables where only
three of them have influence 0.1 and the other 97 have only 0.001. MseInf gets
the three in precedence with the other 97 with probability > (0.9)3 = 0.729.

Acknowledgments

Osamu Watanabe contributed to this research from the beginning. We would
like to thank him for motivation and many technical improvements. We would
also like to thank Ryuhei Uehara for his helpful comments.

References

[1] D. Angluin. Queries and concept learning. Machine Learning, 2:319, 1987.
[2] M. Ben-Or and N. Linial. Collective coin flipping. Advances in Computing Re-

search, 5, 1989.
[3] A. Blum, M. Furst, M.l. Kearns, and R. J. Lipton. Cryptographic primitives based

on hard learning problems. In Proc. CRYPTO 93, pages 278–291, 1994. LNCS
773.

[4] A. Blum, L. Hellerstein, and N. Littlestone. Learning in the presence of finitely or
infinitely many irrelevant attributes. Journal of Computer and System Sciences,
50(1):32–40, 1995.

[5] A.L. Blum and P. Langrey. Selection of relevant features and examples. Machine
Learning. to be appeared.

[6] B. Bollobas. Combinatorics. Cambridge Univ. Press, Cambridge, 1986.
[7] P. Damaschke. Adaptive versus nonadaptive attribute-efficient learning. In Pro-

ceedings of the 30th Annual ACM Symposium on Theory of Computing (STOC-
98), pages 590–596, 1998.



322 David Guijarro, Jun Tarui, and Tatsuie Tsukiji

[8] A. Dhagat and L. Hellerstein. PAC learning with irrelevant attributes. In Proceed-
ings of the 35th Annual Symposium on Foundations of Computer Science, pages
64–74, 1994.

[9] D. Haussler. Quantifying inductive bias: AI learning algorithms and Valiant’s
model. Artificial Intelligence, 36(2):177–221, 1988.

[10] R. Uehara, K. Tsuchida, and I. Wegener. Optimal attribute-efficient learning of
disjunction, parity and threshold functions. In Proceedings of the 3rd European
Conference on Computational Learning Theory, volume 1208 of LNAI, pages 171–
184, 1997.

[11] L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134–1142, 1985.



General Linear Relations among Different Types

of Predictive Complexity

Yuri Kalnishkan?

Department of Computer Science, Royal Holloway, University of London,
Egham, Surrey TW20 0EX, United Kingdom,

yura@dcs.rhbnc.ac.uk

Abstract. In this paper we introduce a general method that allows to
prove tight linear inequalities between different types of predictive com-
plexity and thus we generalise our previous results. The method relies
upon probabilistic considerations and allows to describe (using geomet-
rical terms) the sets of coefficients which correspond to true inequalities.
We also apply this method to the square-loss and logarithmic complex-
ity and describe their relations which were not covered by our previous
research.

1 Introduction

This paper generalises the author’s paper [4]. In [4] we proved tight inequalities
between the square-loss and logarithmic complexities. The key point of that pa-
per is a lower estimate on the logarithmic complexity, which follows from the
coincidence of the logarithmic complexity and a variant of Kolmogorov complex-
ity. That estimate could not be extended for other types of predictive complexity.
The main theorem (Theorem 7) of [4] pointed out the “accidental” coincidence
of two real-valued functions but [4] did not explain the deeper reasons beyond
this fact.

In this paper we use a different approach to lower estimates of predictive
complexity. It relies upon probabilistic considerations and may be applied to
a broader class of games. The results of [4] become a particular case of more
general statements and receive a more profound explanation.

As an application of the general method we establish linear relations between
the square-loss and logarithmic complexity we have not covered in [4].

When giving the motivations for considering predictive complexity, we will
briefly repeat some points from [4].

We work within an on-line learning model. In this model, a learning algorithm
makes a prediction of a future event, than observes the actual event, and suffers
loss due to the discrepancy between the prediction and the actual outcome.
The total loss suffered by an algorithm over a sequence of several events can be
regarded as the complexity of this sequence with respect to this algorithm. An
? Supported partially by EPSRC through the grant GR/M14937 (“Predictive com-

plexity: recursion-theoretic variants”) and by ORS Awards Scheme.

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 323–334, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



324 Yuri Kalnishkan

optimal or universal measure of complexity cannot be defined within the class
of losses of algorithms, so we need to consider a broader class of “complexities”,
namely, the class of optimal superloss processes. In many reasonable cases, this
class contains an optimal element, a function which provides us with the intrinsic
measure of complexity of a sequence of events with respect to no particular
learning strategy.

The concept of predictive complexity is a natural development of the theory
of prediction with expert advice (see [1, 3, 5]) and it was introduced in the
paper [7]. In the theory of prediction with expert advice we merge some given
learning strategies. Roughly speaking, predictive complexity may be regarded as
a mixture of all possible strategies and some “superstrategies”.

The paper [10] introduces a method that allows to prove the existence of
predictive complexity for many natural games. This method relies upon the
Aggregating Algorithm (see [8]) and works for all so-called mixable games. It
is still an open problem whether the mixability is a necessary condition for the
existence of predictive complexity but, in this paper, we restrict ourselves to
mixable games.

In Sect. 2 we give the precise definition of the environment our learning
algorithms work in. A particular kind of environment (a particular game) is
specified by choosing an outcome space, a hypothesis space, and a loss function.
A loss function measures the loss suffered by a prediction algorithm in this
environment and thus it is of interest to compare games with the same outcome
space and the same hypothesis space but different loss functions. In this paper
we compare the values of predictive complexity of strings w.r.t. different games
and therefore we compare the inherent learnability of an object in different
environments.

Our goal is to describe the set of pairs (a, b) such that the inequality aK1(x)+
b|x| ≥+ K2(x) holds for complexities K1 and K2 specified by mixable games G1

and G2. In Sect. 3 we formulate necessary and sufficient conditions for inequal-
ities aK1(x) + b|x| ≥+ K2(x) and a1K1(x) + a2K2(x) ≤+ b|x| to hold. We
establish both geometrical and probabilistic criteria. It is remarkable that both
inequalities hold if and only if their counterparts hold “on the average”.

In Sect. 4 we apply our results to relations between the square-loss and
logarithmic complexity we have not investigated before.

2 Definitions

The notations in this paper are generally the same as in the paper [4] but some
extra notations will also be introduced.

We will denote the binary alphabet {0, 1} by B and finite binary strings by
bold lowercase letters, e.g. x, y. The expression |x| denotes the length of x and
B∗ denotes the set of all finite binary strings.

We use the following notations, typical for works on Kolmogorov complexity.
We will write f(x) ≤+ g(x) for real-valued functions f and g if there is a constant
C ≥ 0 such that f(x) ≤ g(x) + C for all x from the domain of these functions



General Linear Relations among Different Types of Predictive Complexity 325

(the set B∗ throughout this paper). We consider mostly logarithms to the base
2 and we denote log2 by log.

We begin with the definition of a game. A game G is a triple (Ω, Γ, λ), where
Ω is called an outcome space, Γ stands for a hypothesis space, and λ : Ω × Γ →
IR∪{+∞} is a loss function. We suppose that a definition of computability over
Ω and Γ is given and λ is computable according to this definition.

Admitting the possibility of λ(ω, γ) = +∞ is essential (cf. [9]). We need this
assumption to take the very interesting logarithmic game into consideration.
The continuity of a function f : M → IR ∪ {+∞} in a point x0 ∈ M such that
f(x0) = +∞ is the property limx→x0,x∈M f(x) = +∞ (the continuity in the
extended topology).

Throughout this paper, we let Ω = B = {0, 1} and Γ = [0, 1]. We will
consider the following examples of games: the square-loss game with

λ(ω, γ) = (ω − γ)2 (1)

and the logarithmic game with

λ(ω, γ) =
{− log(1− γ) if ω = 0
− log γ if ω = 1 .

(2)

A prediction algorithm A works according to the following protocol:

FOR t = 1, 2, . . .
(1) A chooses a hypothesis γt ∈ Γ
(2) A observes the actual outcome ωt ∈ Ω
(3) A suffers loss λ(ωt, γt)

END FOR.

Over the first T trials, A suffers the total loss

LossA(ω1, ω2, . . . , ωT ) =
T∑

t=1

λ(ωt, γt) . (3)

By definition, put LossA(Λ) = 0, where Λ denotes the empty string. A function
L : Ω∗ → IR∪ {+∞} is called a loss process w.r.t. G if it coincides with the loss
LossA of some algorithm A. Note that any loss process is computable.

We say that a pair (s0, s1) ∈ [−∞, +∞]2 is a superprediction if there exists
a hypothesis γ ∈ Γ such that s0 ≥ λ(0, γ) and s1 ≥ λ(1, γ). If we consider
the set P = {(p0, p1) ∈ [−∞, +∞]2 | ∃γ ∈ Γ : p0 = λ(0, γ) and p1 = λ(1, γ)}
(cf. the canonical form of a game in [8]), the set S of all superpredictions is
the set of points that lie “north-east” of P . We will loosely call P the set of
predictions. The set of predictions P = {(γ2, (1 − γ)2) | γ ∈ [0, 1]} and the set
of superpredictions S for the square-loss game are shown on Fig. 1.

A function L : Ω∗ → IR ∪ {+∞} is called a superloss process w.r.t. G if the
following conditions hold:



326 Yuri Kalnishkan

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

0.25 0.5 0.75 1 1.25 1.5

0.2

0.4

0.6

0.8

1

1.2

1.4

P

S

Fig. 1. The sets of predictions and superpredictions for the square-loss game.

– L(Λ) = 0,
– for any x ∈ Ω∗, the pair (L(x0)− L(x), L(x1)− L(x)) is a superprediction

w.r.t. G, and
– L is semicomputable from above.

We will say that a superloss process K is universal if it is minimal to within
an additive constant in the class of all superloss processes. In other words, a
superloss process K is universal if for any other superloss process L there exists
a constant C such that

∀x ∈ Ω∗ : K(x) ≤ L(x) + C . (4)

The difference between two universal superloss processes w.r.t. G is bounded by
a constant. If superloss processes w.r.t. G exist we may pick one and denote it
by KG. It follows from the definition that, for any L which is a superloss process
w.r.t. G and any prediction algorithm A, we have

KG(x) ≤+ L(x) , (5)

KG(x) ≤+ LossGA(x) , (6)

where LossG denotes the loss w.r.t. G. One may call KG the complexity w.r.t. G.
Note that universal processes are defined for concrete games only. Two games

G1 = (Ω, Γ, λ1) and G2 = (Ω, Γ, λ2) with the same outcome and hypothesis
spaces but different loss functions may have different sets of universal superloss
processes (e.g. G1 may have universal processes and G2 may have not).

We now proceed to the definition of a mixable game. For any A ⊆ [−∞, +∞]2

and any (u, v) ∈ IR2, the shift A + (u, v) is the set {(x + u, y + v) | (x, y) ∈ A}.
For the sequel, we also need the definition of the expansion aA = {(ax, ay) |
(x, y) ∈ A}, where a ∈ IR. For any B ⊆ [−∞, +∞]2, the A-closure of B is the
set

clA(B) =
⋂

(u,v)∈IR2 : B⊆A+(u,v)

A + (u, v) . (7)



General Linear Relations among Different Types of Predictive Complexity 327

We let

A0 = {(x, y) ∈ [−∞, +∞]2 | x ≥ 0 or y ≥ 0} , (8)
Aβ = {(x, y) ∈ [−∞, +∞]2 | βx + βy ≤ 1} . (9)

On Fig. 2 you can see the sets A0 and Aβ for β = 1/3.

-4 -2 2 4

-4

-2

2

4

-4 -2 2 4

-4

-2

2

4

A0

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

0.5 1 1.5 2 2.5 3

0.5

1

1.5

2

2.5

3

A1/3

Fig. 2. The sets A0 and A1/3.

Definition 1 ([8, 9]). A game G is mixable if there exists β ∈ (0, 1) such that
for any straight line l ⊆ IR2 passing through the origin the set (clAβ S \ clA0 S)∩l
contains no more than one element, where S is the set of superpredictions for
G.

Proposition 2 ([8]). For any mixable game, there exists a universal superloss
process.

Proposition 3 ([2, 7]). The logarithmic and the square-loss games are mixable
and therefore the complexities Klog and Ksq exist.

3 General Linear Inequalities

In this section we prove some general results on linear inequalities. Throughout
this section G1 and G2 are any games with loss functions λ1 and λ2, sets of
predictions P1 and P2, and sets of superpredictions S1 and S2, respectively. The
closure and the boundary of M ⊆ IR2 in the standard topology of IR2 are denoted
by M and ∂M , respectively.



328 Yuri Kalnishkan

3.1 Case aK1(x) + b|x| ≥+ K2(x).

The following theorem is the main result of the paper.

Theorem 4. Suppose that the games G1 and G2 are mixable and specify the
complexities K1 and K2; suppose that the loss function λ1(ω, γ) is continuous in
the second argument; then the following statements are equivalent:

(i) ∃C > 0∀x ∈ B∗ : K1(x) + C ≥ K2(x),
(ii) P1 ⊆ S2,
(iii) ∀p ∈ [0, 1]∃C > 0∀n ∈ IN : EK1(ξ(p)

1 . . . ξ
(p)
n ) + C ≥ EK2(ξ(p)

1 . . . ξ
(p)
n ),

where ξ
(p)
1 , . . . , ξ

(p)
n are results of n independent Bernoulli trials with the

probability of 1 being equal to p.

Loosely speaking, the inequality K1(x) ≥+ K2(x) holds if and only if the
graph

{(λ1(0, γ), λ1(1, γ)) | γ ∈ [0, 1]} (10)

lies “north-east” of the graph

{(λ2(0, γ), λ2(1, γ)) | γ ∈ [0, 1]} . (11)

Proof. The implication (i) ⇒ (iii) is trivial.
Let us prove that (ii) ⇒ (i). Suppose that P1 ⊆ S2 and therefore S1 ⊆ S2.

Let L be a superloss process w.r.t. G1. It follows from the definition, that, for
any x ∈ B

∗ , we have (L(x0) − L(x), L(x1) − L(x)) ∈ S1 ⊆ S2. One can easily
check that L(x) + (1− 1

2|x| ) is a superloss process w.r.t. G2. If we take L = K1

and apply (5) we will obtain (i).
It remains to prove that (iii) ⇒ (ii). Let us assume that condition (ii) is

violated i.e. there exists γ(0) ∈ [0, 1] such that

(λ1(0, γ(0)), λ1(1, γ(0)) = (u0, v0) /∈ S2 . (12)

Since λ1 is continuous, without loss of generality we may assume that γ(0) is a
computable number. We will now find p0 ∈ [0, 1] such that

EK2(ξ(p0)
1 . . . ξ(p0)

n )−EK1(ξ(p0)
1 . . . ξ(p0)

n ) = Ω(n) . (13)

We need the following lemmas.

Lemma 5. Let G be a mixable game; then the set of superpredictions for G is
convex.

Proof (of the lemma).
Let S be the set of superpredictions for G and let β ∈ (0, 1) be the number

from Definition 1. Consider two points D, E ∈ S and the line segment [D, E] ⊆
IR2. We will prove that [D, E] ⊆ IR2.



General Linear Relations among Different Types of Predictive Complexity 329

If one of the points lies “north-east” of another i.e.

{D, E} = {(x1, y1), (x2, y2)} , (14)

where x1 ≥ x2 and y1 ≥ y2), then there is nothing to prove. Now suppose that
D = (x1, y1), E = (x2, y2), x1 < x2, and y1 > y2 (see Fig. 3). There exists a
shift A′ of the set Aβ such that D, E ∈ ∂A′. Let us prove that the closed set
M bounded by the line segment [D, E] and the segment of ∂A′ lying between D
and E is a subset of clAβ S.

D

r1

r2

Q

F

E ∂A′

M

Fig. 3. The set Q ∩M from the proof of Lemma 5 is coloured grey.

Consider a shift A′′ of the set Aβ such that D, E ∈ A′′. Trivially, two different
shifts of ∂Aβ can have no more than one point in common. It follows from
D, E ∈ A′′ that ∂A′′ intersects the rays r1 = {(x1, y) | y ≤ y1} and r2 =
{(x2, y) | y ≤ y2}. The continuity of ∂Aβ yields M ⊆ A′′.

If there exists a point F = (x0, y0) ∈ [D, E] such that F /∈ S, then the
whole quadrant Q = {(x, y) | x ≤ x0 and y ≤ y0} (see Fig. 3) has no common
points with S and the set Q ∩ M ⊆ (clAβ S \ clA0 S) violates the condition of
Definition 1.

ut

Lemma 6. Let M ⊆ IR2 be a convex set closed in the standard topology of IR2

and (u0, v0) /∈ M . Suppose that for any u, v ≥ 0 we have M + (u, v) ⊆ M . Then
there exist p0 ∈ [0, 1] and m2 ∈ IR such that, for any (u, v) ∈ M , we have

p0v + (1− p0)u ≥ m2 > m1 = p0v0 + (1− p0)u0 . (15)

Proof (of the lemma).
The lemma can be derived from the Separation Theorem for convex sets

(see e.g. [6]) but we will give a self-contained proof. Let us denote (u0, v0) by
D. It follows from M being closed, that there exists a point E ∈ M which is
closest to D. Clearly, all the points of M lay on one side of the straight line l



330 Yuri Kalnishkan

which is perpendicular to DE and passes through E and D lays on the other
side (see Fig. 4). The straight line l should come from the “north-west” to the
“south-east” and therefore normalising its equation one may reduce it to the
form p0v + (1− p0)u = m2, where p0 ∈ [0, 1].

ut

D

l

E

M

Fig. 4. The set M from the proof of Lemma 6 is coloured grey.

Lemma 7. Suppose that a game G is mixable and the set S of superpredictions
for G lies “north-east” of the straight line pv + (1− p)u = m i.e.

∀(u, v) ∈ S : pv + (1− p)u ≥ m , (16)

where p ∈ [0, 1]. If K is the complexity w.r.t. G, than

EK(ξ(p)
1 . . . ξ(p)

n ) ≥ mn . (17)

Proof (of the lemma). Consider a superloss process L and a string x. The point
(L(x0)− L(x), L(x1)− L(x)) = (s1, s2) is a superprediction. We have

E(L(xξ(p))− L(x)) = p0s2 + (1 − p0)s1 , (18)

where ξ(p) is a result of one Bernoulli trial with the probability of 1 being equal
to p.

ut

Lemma 8. Let G be a mixable game with the loss function λ and the complexity
K. Suppose that γ(0) ∈ [0, 1] is a computable number such that

p0λ(1, γ(0)) + (1 − p0)λ(0, γ(0)) = m , (19)

where p0 ∈ [0, 1]; then there exists C > 0 such that

EK(ξ(p0)
1 . . . ξ(p0)

n ) ≤ mn + C .



General Linear Relations among Different Types of Predictive Complexity 331

Proof (of the lemma). The proof is by considering the strategy which makes the
prediction γ(0) on each trial and applying (6). ut

The theorem follows. ut
For any game G with the loss function λ, any positive real a, and any real b,

one may consider the game Ga,b with the loss function λa,b = aλ + b. Any L(x)
is a superloss process w.r.t. G if and only if aL(x) + b|x| is a superloss process
w.r.t. Ga,b. This implies the following corollary.

Corollary 9. Under the conditions of Theorem 4 the following statements are
equivalent:

(i) ∃C > 0∀x ∈ B∗ : aK1(x) + b|x|+ C ≥ K2(x)
(ii) aP1 + (b, b) ⊆ S2

(iii) ∀p ∈ [0, 1]∃C > 0∀n ∈ IN : aEK1(ξ(p)
1 . . . ξ

(p)
n )+ bn+C ≥ EK2(ξ(p)

1 . . . ξ
(p)
n ),

where ξ
(p)
1 , . . . , ξ

(p)
n are results of n independent Bernoulli trials with the

probability of 1 being equal to p.

It is natural to ask whether the extra term b|x| can be replaced by a smaller
term. The next corollary follows from the proof of Theorem 4 and clarifies the
situation.

Corollary 10. Suppose that under the conditions of Theorem 4 the following
statement holds:

For any p ∈ [0, 1] there exists a function αp : IN → IR such that αp(n) =
o(n)(n → +∞) and for any n ∈ IN the inequality

aEK1(ξ(p)
1 . . . ξ(p)

n ) + bn + αp(n) ≥ EK2(ξ(p)
1 . . . ξ(p)

n ) (20)

holds, where ξ
(p)
1 , . . . , ξ

(p)
n are results of n independent Bernoulli trials with the

probability of 1 being equal to p.
Then the inequality

aK1(x) + b|x| ≥+ K2(x)

holds.

Proof. The corollary follows from (13) ut

Corollary 11. If under the conditions of Theorem 4 there exists a function
f : IN → IR such that f(n) = o(n) (n → +∞) and, for any x ∈ B∗, the
inequality

aK1(x) + b|x|+ f(|x|) ≥ K2(x) (21)

holds, then the inequality

aK1(x) + b|x| ≥+ K2(x)

holds.



332 Yuri Kalnishkan

The next statement shows a property of the set of all pairs (a, b) such that
a ≥ 0 and the inequality aK1(x) + b|x| ≥+ K2(x) holds.

Corollary 12. Under the conditions of Theorem 4 the set

{(a, b) | a ≥ 0and ∃C > 0∀x ∈ B∗ : aK1(x) + b|x|+ C ≥ K2(x)} (22)

is closed in the topology of IR2.

Proof. The proof is by continuity of λ1. ut

3.2 Case a1K1(x) + a2K2(x) ≤+ b|x|.
In the previous subsection we considered nonnegative values of a. In this sub-
section we study the inequality aK1(x) + b|x| ≥+ K2(x) with negative a or, in
other words, the inequality a1K1(x) + a2K2(x) ≤+ b|x| with a1, a2 ≥ 0.

Theorem 13. Suppose that games G1 and G2 are mixable and, for any γ ∈
[0, 1], we have

λ1(0, γ) = λ1(1, 1− γ) , (23)
λ2(0, γ) = λ2(1, 1− γ) , (24)

where λ1 and λ2 are the loss functions. Then, for any a1, a2 ≥ 0, the following
statements are equivalent:

(i) ∃C > 0∀x ∈ B∗ : a1K1(x) + a2K2(x) ≤ b|x|+ C,
(ii) a1λ1(0, 1/2) + a2λ2(0, 1/2) ≤ b,
(iii) ∃C > 0∀n ∈ IN : a1EK1(ξ(1/2)

1 . . . ξ
(1/2)
n )+a2EK2(ξ(1/2)

1 . . . ξ
(1/2)
n ) ≤ bn+C,

where ξ
(1/2)
1 , . . . , ξ

(1/2)
n are results of n independent Bernoulli trials with the

probability of 1 being equal to 1/2.

Proof. The proof is similar to the one of Theorem 4 but a little simpler.

Lemma 14. Suppose that a game G is mixable, λ is its loss function, and K
is the complexity w.r.t. G. If, for any γ ∈ [0, 1], we have λ(0, γ) = λ(1, 1 − γ),
then, for any x ∈ B∗, we have

K(x) ≤+ λ(0, 1/2)|x| . (25)

Proof (of the lemma). The proof is by considering the strategy which makes the
prediction 1/2 on each trial and applying (6). ut

Clearly, the sets of superpredictions S1 and S2 for G1 and G2 lay “north-
east” of the straight lines x/2 + y/2 = λ1(0, 1/2) and x/2 + y/2 = λ2(0, 1/2),
respectively. It follows from Lemma 7 that, for any n ∈ IN, the inequalities

EK1(ξ(1/2)
1 . . . ξ(1/2)

n ) ≥ λ1(0, 1/2)n , (26)

EK2(ξ(1/2)
1 . . . ξ(1/2)

n ) ≥ λ2(0, 1/2)n (27)

hold. The theorem follows. ut



General Linear Relations among Different Types of Predictive Complexity 333

4 Application to the Square-Loss and Logarithmic
Complexity

In this section we will apply our general results to the square-loss and logarithmic
games.

Theorem 15. If a ≥ 0, then the inequality

aKlog(x) + b|x| ≥+ Ksq(x) (28)

holds if and only if b ≥ max(1
4 − a, 0).

Proof. We apply Corollary 9.
Let p ∈ [0, 1]. To estimate the expectations, we need the values

Esq
p := min

0≤γ≤1
(p(1− γ)2 + (1− p)γ2) (29)

= p(1− p) (30)
and

Elog
p := min

0≤γ≤1
(−p log γ − (1− p) log(1− γ)) (31)

= −p log p− (1− p) log(1− p) . (32)

It follows from Lemmas 7 and 8 that there are C1, C2 > 0 such that, for any
p ∈ [0, 1] and for any n ∈ IN, we have

|EKlog(ξ(p)
1 . . . ξ(p)

n )− Elog
p n| ≤ C1 , (33)

|EKsq(ξ(p)
1 . . . ξ(p)

n )− Esq
p n| ≤ C2 . (34)

Therefore the inequality aKlog(x) + b|x| ≥+ Ksq(x) holds if and only if for any
p ∈ [0, 1] the inequality aElog

p + b ≥ Esq
p holds.

Lemma 16. For any a ≥ 0, we have

sup
p∈[0,1]

(Esq
p − aElog

p ) = max(
1
4
− a, 0) . (35)

The theorem follows. ut
The next theorem corresponds to Subsect. 3.2.

Theorem 17. For any a1, a2 > 0 and any b the inequality

a1Ksq(x) + a2Klog(x) ≤+ b|x|

holds for any x ∈ B∗ if and only if a1/4 + a2 ≤ b.

Proof. The proof is by applying Theorem 13. ut



334 Yuri Kalnishkan

5 Acknowledgements

I would like to thank Prof. V. Vovk and Prof. A. Gammerman for providing
guidance to this work. I am also grateful to Dr. A. Shen for helpful discussions.

References

[1] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire, and
M. K. Warmuth. How to use expert advice. Journal of the ACM, (44):427–485,
1997.

[2] A. DeSantis, G. Markowski, and M. N. Weigman. Learning probabilistic predic-
tion functions. In Proceedings of the 1988 Workshop on Computational Learning
Theory, pages 312–328, 1988.

[3] D. Haussler, J. Kivinen, and M. K. Warmuth. Tight worst-case loss bounds for
predicting with expert advise. Technical Report UCSC-CRL-94-36, University of
California at Santa Cruz, revised December 1994.

[4] Y. Kalnishkan. Linear relations between square-loss and Kolmogorov complex-
ity. In Proceedings of the Twelfth Annual Conference on Computational Learning
Theory, pages 226–232. Association for Computing Machinery, 1999.

[5] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Informa-
tion and Computation, 108:212–261, 1994.

[6] F. A. Valentine. Convex Sets. McGraw-Hill Book Company, 1964.
[7] V. Vovk. Probability theory for the Brier game. To appear in Theoretical Com-

puter Science. Preliminary version in M. Li and A. Maruoka, editors, Algorithmic
Learning Theory, vol. 1316 of Lecture Notes in Computer Science, pages 323–338.

[8] V. Vovk. Aggregating strategies. In M. Fulk and J. Case, editors, Proceedings
of the 3rd Annual Workshop on Computational Learning Theory, pages 371–383,
San Mateo, CA, 1990. Morgan Kaufmann.

[9] V. Vovk. A game of prediction with expert advice. Journal of Computer and
System Sciences, (56):153–173, 1998.

[10] V. Vovk and C. J. H. C. Watkins. Universal portfolio selection. In Proceedings
of the 11th Annual Conference on Computational Learning Theory, pages 12–23,
1998.



Predicting Nearly as Well as the Best Pruning of

a Planar Decision Graph

Eiji Takimoto1? and Manfred K. Warmuth2??

1 Graduate School of Information Sciences, Tohoku University
Sendai, 980-8579, Japan.

2 Computer Science Department, University of California, Santa Cruz
Santa Cruz, CA 95064, U.S.A.

Abstract. We design efficient on-line algorithms that predict nearly as
well as the best pruning of a planar decision graph. We assume that
the graph has no cycles. As in the previous work on decision trees, we
implicitly maintain one weight for each of the prunings (exponentially
many). The method works for a large class of algorithms that update its
weights multiplicatively. It can also be used to design algorithms that
predict nearly as well as the best convex combination of prunings.

1 Introduction

Decision trees are widely used in Machine Learning. Frequently a large tree
is produced initially and then this tree is pruned for the purpose of obtaining
a better predictor. A pruning is produced by deleting some nodes and with
them all their successors. Although there are exponentially many prunings, a re-
cent method developed in coding theory [WST95] and machine learning [Bun92]
makes it possible to (implicitly) maintain one weight per pruning. In particular
Helmbold and Schapire [HS97] use this method to design an elegant algorithm
that is guaranteed to predict nearly as well as the best pruning of a decision
tree. Pereira and Singer [PS97] modify this algorithm to the case of edge-based
prunings instead of the node-based prunings defined above. Edge-based prunings
are produced by cutting some edges of the original decision tree and then re-
moving all nodes below the cuts. Both definitions are closely related. Edge-based
prunings have been applied to statistical language modeling [PS97], where the
out-degree of nodes in the tree may be very large.

In this paper we generalize the methods from decision trees to planar directed
acyclic graphs (dags). Trees, upside-down trees and series-parallel dags are all
special cases of planar dags. We define a notion of edge-based prunings of a
planar dag. Again we find a way to efficiently maintain one weight for each of
the exponentially many prunings.

In Fig. 1, the tree T ′ represents a node-based pruning of the decision tree
T . Each node in the original tree T is assumed to have a prediction value in
? This work was done while the author visited University of California, Santa Cruz.

?? Supported by NSF grant CCR 9700201

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 335–346, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



336 Eiji Takimoto and Manfred K. Warmuth

0.4

0.6

0.2

0.3

0.1

0.9 0.2

a

b

d e

c

gf

h i

0.9 0.6

0.4

0.3

0.6 0.1

a

b c

gf

0.6

s

t

a  0.4

c  0.3

b  0.6

g  0.1

d  0.9

f  0.6

e  0.2

T T ′ G

Fig. 1. An example of a decision tree, a pruning, and a decision dag

some prediction space Ŷ . Here, we assume Ŷ = [0, 1]. In the usual setting each
instance (from some instance space) induces a path in the decision tree from the
root to a leaf. The path is based on decisions done at the internal nodes. Thus
w.l.o.g. our instances are paths in the original decision tree. For a given path, a
tree predicts the value at the leaf at which the path ends. For example, for the
path {a, c, f, i}, the original tree T predicts the value 0.2 and the pruning T ′
predicts 0.6.

In what follows, we consider the prediction values to be associated with the
edges. In Fig. 1 the prediction value of each edge is given at its lower endpoint. For
example, the edges a, b and c have prediction values 0.4, 0.6 and 0.3, respectively.
Moreover, we think of a pruning as the set of edges that are incident to the
leaves of the pruning. So, T and T ′ are represented by {d, e, g, h, i} and {b, f, g},
respectively. Note that for any pruning R and any path P , R intersects P at
exactly one edge. That is, a pruning “cuts” each path at an edge. The pruning
R predicts on path P with the prediction value of the edge that is cut.

The notion of pruning can easily be generalized to directed acyclic graphs.
We define decision dags as dags with a special source and sink node where each
edge is assumed to have a prediction value. A pruning R of the decision dag
is defined as a set of edges such that for any s-t path P , R intersects P with
exactly one edge. Again the pruning R predicts on the instance/path P with
the value of the edge that is cut. It is easily seen that the rightmost graph G in
Fig. 1 is a decision dag that is equivalent to T .

We study learning in the on-line prediction model where the decision dag is
given to the learner. At each trial t = 1, 2, . . ., the learner receives a path Pt and
must produce a prediction ŷt ∈ Ŷ . Then an outcome yt in the outcome space
Y is observed (which can be thought of as the correct value of Pt). Finally, at
the end of the trial the learner suffers loss L(yt, ŷt), where L : Y × Ŷ → [0,∞]
is a fixed loss function. Since each pruning R has a prediction value for Pt, the
loss of R at this trial is defined analogously. The goal of the learner is to make
predictions so that its total loss

∑
t L(yt, ŷt) is not much worse than the total



Predicting Nearly as Well as the Best Pruning of a Planar Decision Graph 337

loss of the best pruning or that of the best mixture (convex combination) of
prunings.

It is straightforward to apply any of a large family of on-line prediction
algorithms to our problem. To this end, we just consider each pruning R of G
as an expert that predicts as the pruning R does on all paths. Then, we can
make use of any on-line algorithm that maintains one weight per expert and
forms its own prediction ŷt by combining the predictions of the experts using
the current weights (See for example: [Lit88, LW94, Vov90, Vov95, CBFH+97,
KW97]). Many relative loss bounds have been proven for this setting bounding
the additional total loss of the algorithm over the total loss of the best expert
or best weighted combination of experts. However, this “direct” implementation
of the on-line algorithms is inefficient because one weight/expert would be used
for each pruning of the decision dag and the number of prunings is usually
exponentially large. So the goal is to find efficient implementations of the direct
algorithms so that the exponentially many weights are implicitly maintained.
In the case of trees this is possible [HS97]. Other applications that simulate
algorithms with exponentially many weights are given in [HPW99, MW98]. We
now sketch how this can be done when the decision dag is planar.

Recall that each pruning and path intersect at one edge. Therefore in each
trial the edges on the path determine the predictions of all the prunings as well as
their losses. So in each trial the edges on the path also incur a loss and the total
loss of a pruning is always the sum of the total losses of all of its edges. Under a
very general setting the weight of a pruning is then a function of the weights of
its edges. Thus the exponentially many weights of the prunings collapse to one
weight per edge. It is obvious that if we can efficiently update the edge weights
and compute the prediction of the direct algorithm from the edge weights, then
we have an efficient algorithm that behaves exactly as the direct algorithm.

One of the most important family of on-line learning algorithms is the one
that does multiplicative updates of its weights. For this family the weight wR

of a pruning R is always the product of the weights of its edges, i.e. wR =∏
e∈R ve. The most important computation in determining the prediction and

updating the weights is summing the current weights of all the prunings, i.e.∑
R

∏
e∈R ve. We do not know how to efficiently compute this sum for arbitrary

decision dags. However, for planar decision dags, computing this sum is reduced
to computing another sum for the dual planar dag. The prunings in the primal
graph correspond to paths in the dual, and paths in the primal to prunings in
the dual. Therefore the above sum is equivalent to

∑
P

∏
e∈P ve, where P ranges

over all paths in the dual dag. Curiously enough, the same formula appears as the
likelihood of a sequence of symbols in a Hidden Markov Model where the edge
weights are the transition probabilities. So we can use the well known forward-
backward algorithm for computing the above formula efficiently [LRS83].

The overall time per trial is linear in the number of edges of the decision dag.
For the case where the dag is series-parallel, we can improve the time per trial
to grow linearly in the size of the instance (a path in the dag).



338 Eiji Takimoto and Manfred K. Warmuth

Another approach for solving the on-line pruning problem is to use the spe-
cialist framework developed by Freund, Schapire, Singer and Warmuth [FSSW97].
Now each edge is considered to be a specialist. In trial t only the edges on the
path “awake” and all others are “asleep”. The predictions of the awake edges
are combined to form the prediction of the algorithm. The redeeming feature
of their algorithm is that it works for arbitrary sets of prunings and paths over
some set of edges with the property that any pruning and any path intersect at
exactly one edge. They can show that their algorithm performs nearly as well as
any mixture of specialists, that is, essentially as well as the best single pruning.

However, even in the case of decision trees the loss bound of their algorithm
is quadratic in the size of the pruning. In contrast, the loss bound for the direct
algorithm grows only linearly in the size of the pruning. Also when we use for
example the EG algorithm [KW97] as our direct algorithm, then the direct
algorithm (as well as its efficient simulation) predicts nearly as well as the best
convex combination of prunings.

2 On-Line Pruning of a Decision Dag

A decision dag is a directed acyclic graph G = (V, E) with a designated start
node s and a terminal node t. We call s and t the source and the sink of G,
respectively. An s-t path is a set of edges of G that forms a path from the
source to the sink. In the decision dag G, each edge e ∈ E is assumed to have a
predictor that, when given an instance (s-t path) that includes the edge e, makes
a prediction from the prediction space Ŷ . In a typical setting, the predictions
would be real numbers from Ŷ = [0, 1]. Although the predictor at edge e may
make different predictions whenever the path passes through e, we write its
prediction as ξ(e) ∈ Ŷ .

A pruning R of G is a set of edges such that for any s-t path P , R inter-
sects P with exactly one edge, i.e., |R ∩ P | = 1. Let eR∩P denote the edge at
which R and P intersect. Because of the intersection property, a pruning R can
be thought of as a well-defined function from any instance P to a prediction
ξ(eR∩P ) ∈ Ŷ . Let P(G) and R(G) denote the set of all paths and all prunings of
G, respectively. For example, the decision dag G in Fig. 1 has four prunings, i.e.,
R(G) = {{a}, {b, c}, {b, f, g}, {d, e, g}}. Assume that we are given an instance
P = {a, b, e}. Then, the pruning R = {b, f, g} predicts 0.6 for this instance P ,
which is the prediction of the predictor at edge b = eR∩P .

We study learning in the on-line prediction model, where an algorithm is
required not to actually produce prunings but to make predictions for a given
instance sequence based on a given decision dag G. The goal is to make predic-
tions that are competitive with those made by the best pruning of G or with
those by the best mixture of prunings of G. We will now state our learning model
more precisely. A prediction algorithm A is given a decision dag G as its input.
At each trial t = 1, 2, . . ., algorithm A receives an instance/path Pt ∈ P(G) and
generates a prediction ŷt ∈ Ŷ . After that, an outcome yt ∈ Y is observed. Y is a
set called the outcome space. Typically, the outcome space Y would be the same



Predicting Nearly as Well as the Best Pruning of a Planar Decision Graph 339

as Ŷ . At this trial, the algorithm A suffers loss L(yt, ŷt), where L : Y ×Ŷ → [0,∞]
is a fixed loss function. For example the square loss is L(y, ŷ) = (y− ŷ)2 and the
relative-entropic loss is given by L(y, ŷ) = y ln(y/ŷ)+ (1− y) ln((1− y)/(1− ŷ)).
For any instance-outcome sequence S = ((P1, y1), . . . , (PT , yT )) ∈ (P(G) × Y )∗,
the cumulative loss of A is defined as LA(S) =

∑T
t=1 L(yt, ŷt). In what follows,

the cumulative loss of A is simply called the loss of A. Similarly, for a pruning
R of G, the loss of R for S is defined as

LR(S) =
T∑

t=1

L(yt, ξ(eR∩Pt)) .

The performance of A is measured in two ways. The first one is to compare the
loss of A to the loss of the best R. In other words, the goal of algorithm A is to
make predictions so that its loss LA(S) is close to minR∈R(G) LR(S). The other
goal (that is harder to achieve) is to compare the loss of A to the loss of the
best mixture of prunings. To be more precise, we introduce a mixture vector u
indexed by R so that uR ≥ 0 for R ∈ R(G) and

∑
R uR = 1. Then the goal of A

is to achieve a loss LA(S) that is close to minu Lu(S), where

Lu(S) =
T∑

t=1

L(yt,
∑

R∈R(G)

uRξ(eR∩Pt)) .

Note that the former goal can be seen as the special case of the latter one where
the mixture vector u is restricted to unit vectors (i.e., uR = 1 for some particular
R).

3 Dual Problem for a Planar Decision Dag

In this section, we show that our problem of on-line pruning has an equivalent
dual problem provided that the underlying graph G is planar. The duality will
be used to make our algorithms efficient. An s-t cut of G is a minimal set of
edges of G such that its removal from G results in a graph where s and t are
disconnected. First we point out that a pruning of G is an s-t cut of G as
well. The converse is not necessarily true. For instance, the set {a, e, f} is an
s-t cut of G in Fig. 2 but it is not a pruning because a path {a, d, e} intersects
the cut with more than 1 edge. So, the set of prunings R(G) is a subset of
all s-t cuts of G, and our problem can be seen as an on-line min-cut problem
where cuts are restricted in R(G). To see this, let us consider the cumulative
loss `e =

∑
t:e∈Pt

L(yt, ξ(e)) at edge e as the capacity of e. Then, the loss of a
pruning R, LR(S) =

∑
t L(yt, ξ(eR∩Pt)) =

∑
e∈R `e, can be interpreted as the

total capacity of the cut R. This implies that a pruning of minimum loss is a
minimum capacity cut from R(G).

It is known in the literature that the (unrestricted) min-cut problem for an
s-t planar graph can be reduced to the shortest path problem for its dual graph
(see, e.g., [Hu69, Law70, Has81]). A slight modification of the reduction gives



340 Eiji Takimoto and Manfred K. Warmuth

e

s
a

d

f

b

c

1’

s’t’

t

3’

2’
S’

1’

3’

2’ t’

b

f e

a

c
d

G GD

Fig. 2. A decision dag G and its dual dag GD.

us a dual problem for the best pruning (restricted min-cut) problem. Below we
show how to construct the dual dag GD from a planar decision dag G that is
suitable for our purpose.

Assume we have a planar decision dag G = (V, E) with source s and sink
t. Since the graph G is acyclic, we have a planar representation of G so that
the vertices in V are placed on a vertical line with all edges downward. In this
linear representation, the source s and the sink t are placed on the top and the
bottom on the line, respectively (See Fig. 2). The vertical line (the dotted line)
bisects the plane and defines two outer faces s’ and t’ of G. Let s’ be the right
face. The dual dag GD = (V D, ED) is constructed as follows. The set of vertices
V D consists of all faces of G. Let e ∈ E be an edge of G which is common to the
boundaries of two faces fr and fl in G. By virtue of the linear representation,
we can let fr be the “right” face on e and fl be the “left” face on e. Then, let
ED include the edge e′ = (fr, fl) directed from fr to fl. It is clear that the dual
dag GD is a planar directed acyclic graph with source s’ and sink t’, and the
dual of GD is G. The following proposition is crucial in this paper.

Proposition 1. Let G be a planar decision dag and GD be its dual dag. Then,
there is a one-to-one correspondence between s-t paths P(G) in G and prunings
R(GD) in GD, and there is also a one-to-one correspondence between prunings
R(G) in G and s’-t’ paths P(GD) in GD.

Thus there is a natural dual problem associated with the on-line pruning
problem. We now describe this dual on-line shortest path problem. An algo-
rithm A is given as input a decision dag G. At each trial t = 1, 2, . . ., algo-
rithm A receives a pruning Rt ∈ R(G) as the instance and generates a predic-
tion ŷt ∈ Ŷ . The loss of A, denoted LA(S), for an instance-outcome sequence
S = ((R1, y1), . . . , (RT , yT )) ∈ (R(G)×Y )∗ is defined as LA(S) =

∑T
t=1 L(yt, ŷt).

The class of predictors which the performance of A is now compared to consists
of all paths. For a path P of G, the loss of P for S is defined as



Predicting Nearly as Well as the Best Pruning of a Planar Decision Graph 341

LP (S) =
T∑

t=1

L(yt, ξ(eRt∩P )) .

Similarly, for a mixture vector u indexed by P so that uP ≥ 0 for P ∈ P(G)
and

∑
P uP = 1, the loss of the u-mixture of paths is defined as

Lu(S) =
T∑

t=1

L(yt,
∑

P∈P(G)

uP ξ(eRt∩P )) .

The objective of A is to make the loss as small as the loss of the best path P ,
i.e., minP LP (S), or the best mixture of paths, i.e., minu Lu(S). It is natural to
call this the on-line shortest path problem because if we consider the cumulative
loss `e =

∑
t:e∈Rt

L(yt, ξ(e)) at edge e as the length of e, then the loss of P ,
LP (S) =

∑
e∈P `e, can be interpreted as the total length of P . It is clear from

the duality that the on-line pruning problem for a decision dag G is equivalent
to the on-line shortest path problem for its dual dag GD. In what follows, we
consider only the on-line shortest path problem.

4 Inefficient Direct Algorithm

In this section, we show the direct implementation of the algorithms for the on-
line shortest path problem. Namely, the algorithm considers each path P of G
as an expert that makes a prediction xt,P = ξ(eRt∩P ) for a given pruning Rt.
Note that this direct implementation would be inefficient because the number of
experts (the number of paths in this case) can be exponentially large.

In general, such direct algorithms have the following generic form: They main-
tain a weight wt,P ∈ [0, 1] for each path P ∈ P(G); when given the predictions
xt,P (= ξ(eRt∩P )) of all paths P , they combine these predictions based on the
weights to make their own prediction ŷt, and then update the weights after the
outcome yt is observed. In what follows, let wt and xt denote the weight and
prediction vectors indexed by P ∈ P(G), respectively. Let N be the number
of experts, i.e., the cardinality of P(G). More precisely, the generic algorithm
consists of two parts:

– a prediction function pred :
⋃

N

(
[0, 1]N × Ŷ N

)
→ Ŷ which maps the cur-

rent weight and prediction vectors (wt, xt) of experts to a prediction ŷt;
and

– an update function update :
⋃

N

(
[0, 1]N × Ŷ N × Y

)
→ [0, 1]N which maps

(wt, xt) and outcome yt to a new weight vector wt+1.

Using these two functions, the generic on-line algorithm behaves as follows: For
each trial t = 1, 2, . . .,

1. Observe predictions xt from the experts.
2. Predict ŷt = pred(wt, xt).



342 Eiji Takimoto and Manfred K. Warmuth

3. Observe outcome yt and suffer loss L(yt, ŷt).
4. Calculate the new weight vector according to wt+1 = update(wt, xt, yt).

Vovk’s Aggregating Algorithm (AA) [Vov90] is a seminal on-line algorithm of
generic form and has the best possible loss bound for a very wide class of loss
functions. It updates its weights as wt+1 = update(wt, xt, yt), where

wt+1,P = wt,P exp(−L(yt, xt,P )/cL)

for any P ∈ P(G). Here cL is a constant that depends on the loss function L.
Since AA uses a complicated prediction function, we only discuss a simplified
algorithm called the Weighted Average Algorithm (WAA) [KW99]. The latter
algorithm uses the same updates with a slightly worse constant cL and predicts
with the weighted average based on the normalized weights:

ŷt = pred(wt, xt) =
∑

P∈P(G)

w̄t,P xt,P , where w̄t,P = wt,P /
∑
P ′

wt,P ′ .

The following theorem gives an upper bound on the loss of the WAA in terms
of the loss of the best path.

Theorem 1 ([KW99]). Assume Y = Ŷ = [0, 1]. Let the loss function L be
monotone convex and twice differentiable with respect to the second argument.
Then, for any instance-outcome sequence S ∈ (R(G) × Y )∗,

LWAA(S) ≤ min
P∈P(G)

{LP (S) + cL ln(1/w̄1,P )} ,

where w̄1,P is the normalized initial weight of P .

We can obtain a more powerful bound in terms of the loss of the best mixture
of paths using the exponentiated gradient (EG) algorithm due to Kivinen and
Warmuth [KW97]. The EG algorithm uses the same prediction function pred as
the WAA and uses the update function wt+1 = update(wt, xt, yt) so that for
any P ∈ P(G),

wt+1,P = wt,P exp

(
−ηxt,P

∂L(yt, z)
∂z

∣∣∣∣
z=ŷt

)
.

Here η is a positive learning rate. Kivinen and Warmuth show the following loss
bound of the EG algorithm for the square loss function L(y, ŷ) = (y− ŷ)2. Note
that, for the square loss, the update above becomes wt+1,P = wt,P exp(−2η(ŷt−
yt)xt,P ).

Theorem 2 ([KW97]). Assume Y = Ŷ = [0, 1]. Let L be the square loss
function. Then, for any instance-outcome sequence S ∈ (R(G) × Y )∗ and for
any probability vector u ∈ [0, 1]N indexed by P ,

LEG(S) ≤ 2
2− η

Lu(S) +
1
η
RE(u||w̄1),

where RE(u||w̄1) =
∑

P uP ln(uP /w̄1,P ) is the relative entropy between u and
the initial normalized weight vector w̄1.



Predicting Nearly as Well as the Best Pruning of a Planar Decision Graph 343

Now we give the two conditions on the direct algorithms that are required
for our efficient implementation.

Definition 1. Let w ∈ [0, 1]N and x ∈ Ŷ N be a weight and a prediction vector.
Let P1 ∪ · · · ∪ Pk = P(G) be a partition of P(G) such that Pi ∩ Pj = ∅ for any
i 6= j and all paths in the same class have the same prediction. That is, for each
class Pi, there exists x′i ∈ Ŷ such that xP = x′i for any P ∈ Pi. In other words,
x′ = (x′1, . . . , x

′
k) and w′ = (w′1, . . . , w

′
k), where w′i =

∑
P∈Pi

wP , can be seen
as a projection of the original prediction vector x and weight vector w onto the
partition {P1, . . . ,Pk}. The prediction function pred is projection-preserving if
pred(w, x) = pred(w′, x′) for any w and x.

Definition 2. The update function update is multiplicative if there exists a
function f : Ŷ × Ŷ × Y such that for any w ∈ [0, 1]N , x ∈ Ŷ N and y ∈ Y , the
new weight w′ = update(w, x, y) is given by w′P = wP f(xP , ŷ, y) for any P ,
where ŷ = pred(w, x).

These conditions are natural. In fact, they are actually satisfied by the prediction
and update functions used in many families of algorithms such as AA [Vov90],
WAA [KW99], EG and EGU [KW97]. Note that the projection used may change
from trial to trial.

5 Efficient Implementation of the Direct Algorithm

Now we give an efficient implementation of a direct algorithm that consists of
a projection-preserving prediction function pred and a multiplicative update
function update. Clearly, it is sufficient to show how to efficiently compute the
functions pred and update. Obviously, we cannot explicitly maintain all of the
weights wt,P as the direct algorithm does since there may be exponentially many
paths P in G. Instead, we maintain a weight vt,e for each edge e, which requires
only a linear space. We will give indirect algorithms below for computing pred
and update so that, the weights vt,e for edges implicitly represent the weights
wt,P for all paths P as follows:

wt,P =
∏
e∈P

vt,e . (1)

First we show an indirect algorithm for update which is simpler. Suppose
that, given a pruning Rt as instance, we have already calculated a prediction
ŷt and observe an outcome yt. Then, the following update for the weight of the
edges is equivalent to the update wt+1 = update(wt, xt, yt) of the weights of
the paths. Recall that wt is a weight vector indexed by P given by (1) and xt is
a prediction vector given by xt,P = ξ(eRt∩P ). Let f be the function associated
with our multiplicative update (see Definition 2). For any edge e ∈ E, the weight
of e is updated according to

vt+1,e =
{

vt,ef(ξ(e), ŷt, yt) if e ∈ Rt,
vt,e otherwise. (2)



344 Eiji Takimoto and Manfred K. Warmuth

Lemma 1. The update rule for edges given by (2) is equivalent to update(wt,
xt, yt).

Proof. It suffices to show that the relation (1) is preserved after updating. That
is, wt+1,P =

∏
e∈P vt+1,e for any P ∈ P(G). Let e′ = eRt∩P . Since update is

multiplicative, we have

wt+1,P = wt,P f(xt,P , ŷt, yt) =
∏
e∈P

vt,ef(ξ(e′), ŷt, yt)

=


 ∏

e∈P\{e′}
vt,e


(vt,e′f(ξ(e′), ŷt, yt)

)
=
∏
e∈P

vt+1,e,

as required. ut

Next we show an indirect algorithm for pred. Let the given pruning be Rt =
{e1, . . . , ek}. For 1 ≤ i ≤ k, let Pi = {P ∈ P(G) | ei ∈ P}. Since |Rt ∩ P | = 1
for any P , P1 ∪ · · · ∪ Pk = P(G) forms a partition of P(G) and clearly for any
path P ∈ Pi, we have xt,P = ξ(ei). So,

x′ = (ξ(e1), . . . , ξ(ek)) (3)

is a projected prediction vector of xt. Therefore, if we have the corresponding
projected weight vector w′, then by the projection-preserving property of pred
we can obtain ŷt by pred(w′, x′), which equals ŷt = pred(w, x). Now what we
have to do is to efficiently compute the projected weights for 1 ≤ i ≤ k:

w′t,i =
∑

P∈Pi

wt,P =
∑

P :ei∈P

wt,P =
∑

P :ei∈P

∏
e∈P

vt,e . (4)

Surprisingly, the
∑∏

-form formula above is similar to the formula of the like-
lihood of a sequence of symbols in a Hidden Markov Model (HMM) with a par-
ticular state transition (ei) [LRS83]. Thus we can compute (4) with the forward-
backward algorithm. For node u ∈ V , let Ps→u and Pu→t be the set of paths
from s to the node u and the set of paths from the node u to t, respectively.
Define

α(u) =
∑

P∈Ps→u

∏
e∈P

vt,e and β(u) =
∑

P∈Pu→t

∏
e∈P

vt,e .

Suppose that ei = (u1, u2). Then, the set of all paths in P(G) through ei is
represented as {P1 ∪ {ei} ∪ P2 | P1 ∈ Ps→u1 , P2 ∈ Pu2→t}, and therefore the
formula (4) is given by

w′t,i = α(u1)vt,eiβ(u2) . (5)

We summarize this result as the following lemma.

Lemma 2. Let x′ and w′ be given by (3) and (5), respectively. Then
pred(w′, x′) = pred(w, x).



Predicting Nearly as Well as the Best Pruning of a Planar Decision Graph 345

The forward-backward algorithm [LRS83] is an algorithm that efficiently com-
putes α and β by dynamic programming as follows: α(u) = 1 if u = s and
α(u) =

∑
u′∈V :(u′,u)∈E α(u′)vt,(u′,u), otherwise. Similarly, β(u) = 1 if u = t and

β(u) =
∑

u′∈V :(u,u′)∈E β(u′)vt,(u,u′), otherwise. It is clear that both α and β can
be computed in time O(|E|).

6 A More Efficient Algorithm for Series-Parallel Dags

In the case of decision trees, there is a very efficient algorithm with per trial
time linear in the size of the instance (a path in the decision tree) [HS97]. We
now give an algorithm with the same improved time per trial for series-parallel
dags, which include decision trees.

A series-parallel dag G(s, t) with source s and sink t is defined recursively
as follows: An edge (s, t) is a series-parallel dag; If G1(s1, t1), . . . , Gk(sk, tk) are
disjoint series-parallel dags, then the series connection G(s, t) = s(G1, . . . , Gk)
of these dags, where s = s1, ti = si+1 for 1 ≤ i ≤ k−1 and t = tk, or the parallel
connection G(s, t) = p(G1, . . . , Gk) of these dags, where s = s1 = · · · = sk and
t = t1 = · · · = tk, is a series-parallel dag. Note that a series-parallel dag has a
parse tree, where each internal node represents a series or a parallel connection
of the dags represented by its child nodes.

It suffices to show that the projected weights (4) can be calculated in time
linear in the size of instance/pruning Rt. To do so the algorithm maintains one
weight vt,G per one node G of the parse tree so that

vt,G =
∑

P∈P(G)

∏
e∈P

vt,e

holds. Note that if G consists of an single edge e, then vt,G = vt,e; if G =
s(G1, . . . , Gk), then vt,G =

∏k
i=1 vt,Gi ; if G = p(G1, . . . , Gk), then vt,G =∑k

i=1 vt,Gi . Now (4), i.e., W (G, e) =
∑

P∈P(G),e∈P

∏
e′∈P vt,e′ , is recursively

computed as

W (G, e) =




vt,e if G consists of e,
W (Gi, e)vt,G/vt,Gi if G = s(G1, . . . , Gk) and e ∈ Gi,
W (Gi, e) if G = p(G1, . . . , Gk) and e ∈ Gi.

The weights vt,G are also recursively updated as

vt+1,G =




vt+1,e if G consists of e,
vt+1,Givt,G/vt,Gi if G = s(G1, . . . , Gk) and Rt is in Gi,∑k

i=1 vt+1,Gi if G = p(G1, . . . , Gk).

It is not hard to see that the prediction and the update can be calculated in
time linear in the size of Rt.

Note that the dual of a series-parallel dag is also a series-parallel dag that
has the same parse tree with the series and the parallel connections exchanged.
So we can solve the primal on-line pruning problem using the same parse tree.



346 Eiji Takimoto and Manfred K. Warmuth

Acknowledgments

We would like to thank Hiroshi Nagamochi for calling our attention to the duality
of planar graphs.

References

[Bun92] W. Buntine. Learning classification trees. Statistics and Computing,
2:63–73, 1992.

[CBFH+97] N. Cesa-Bianchi, Y. Freund, D. Haussler, D. Helmbold, R. Schapire, and
M. Warmuth. How to use expert advice. Journal of the ACM, 44(3):427–
485, 1997.

[FSSW97] Y. Freund, R. Schapire, Y. Singer, and M. Warmuth. Using and combin-
ing predictors that specialize. 29th STOC, 334–343, 1997.

[Has81] R. Hassin. Maximum flow in (s, t) planar networks. Information Pro-
cessing Letters, 13(3):107–107, 1981.

[HPW99] D. Helmbold, S. Panizza, and M. Warmuth. Direct and indirect algorithm
for on-line learning of disjunctions. 4th EuroCOLT, 138–152, 1999.

[HS97] D. Helmbold and R. Schapire. Predicting nearly as well as the best
pruning of a decision tree. Machine Learning, 27(1):51–68, 1997.

[Hu69] T. Hu. Integer Programming and Network Flows. Addison-Wesley, 1969.
[KW97] J. Kivinen and M. Warmuth. Additive versus exponentiated gradient

updates for linear prediction. Information and Computation, 132(1):1–
64, 1997.

[KW99] J. Kivinen and M. Warmuth. Averaging expert prediction. 4th Euro-
COLT, 153–167, 1999.

[Law70] E. Lawler. Combinatorial Optimization: Network and Matroids. Hold,
Rinehart and Winston, New York, 1970.

[Lit88] N. Littlestone. Learning when irrelevant attributes abound: A new linear-
threshold algorithm. Machine Learning, 2:285–318, 1988.

[LRS83] S. Levinson, L. Rabiner, and M. Sondhi. An introduction to the appli-
cation of the theory of probabilistic functions of a markov process to au-
tomatic speech recognition. Bell System Technical Journal, 62(4):1035–
1074, 1983.

[LW94] N. Littlestone and M. Warmuth. The weighted majority algorithm. In-
formation and Computation, 108(2):212–261, 1994.

[MW98] M. Maass and M. Warmuth. Efficient learning with virtual threshold
gates. Information and Computation, 141(1):66–83, 1998.

[PS97] F. Pereira and Y. Singer. An efficient extension to mixture techniques
for prediction and decision trees. 10th COLT, 114–121, 1997.

[Vov90] V. Vovk. Aggregating strategies. 3rd COLT, 371–383, 1990.
[Vov95] V. Vovk. A game of prediction with expert advice. 8th COLT, 51–60,

1995.
[WST95] F. Willems, Y. Shtarkov, and T. Tjalkens. The context tree weighting

method: basic properties. IEEE Transactions on Information Theory,
41(3):653–664, 1995.



On Learning Unions of Pattern Languages and

Tree Patterns

Sally A. Goldman?1 and Stephen S. Kwek2

1 Washington University, St. Louis MO 63130-4899, USA,
sg@cs.wustl.edu,

http://www.cs.wustl.edu/∼sg
2 Washington State University, Pullman WA 99164-1035, USA,

kwek@eecs.wsu.edu,
http://www.eecs.wsu.edu/∼kwek

Abstract. We present efficient on-line algorithms for learning unions of
a constant number of tree patterns, unions of a constant number of one-
variable pattern languages, and unions of a constant number of pattern
languages with fixed length substitutions. By fixed length substitutions
we mean that each occurence of variable xi must be substituted by ter-
minal strings of fixed length l(xi). We prove that if an arbitrary unions
of pattern languages with fixed length substitutions can be learned effi-
ciently then DNFs are efficiently learnable in the mistake bound model.
Since we use a reduction to Winnow, our algorithms are robust against
attribute noise. Furthermore, they can be modified to handle concept
drift. Also, our approach is quite general and may be applicable to learn-
ing other pattern related classes. For example, we could learn a more gen-
eral pattern language class in which a penalty (i.e. weight) is assigned
to each violation of the rule that a terminal symbol cannot be changed
or that a pair of variable symbols, of the same variable, must be substi-
tuted by the same terminal string. An instance is positive iff the penalty
incurred for violating these rules is below a given tolerable threshold.

1 Introduction

A pattern p is a string in (T ∪S)∗ for sets T of terminal symbols and S of variable
symbols. The number of terminal symbols could be infinite. For a pattern p, let
L(p) denote the set of strings from T + that can be obtained by substituting non-
empty strings from T + for the variables in p. We call L(p) the pattern language
generated by p. The strings in L(p) are positive instances and the others are
negative instances. For example, p = 1x10x21x3x10x2 is a 3-variable pattern.
The instance 11010111001101011 is in L(p) since it can be obtained by the
substitutions x1 = 101, x2 = 11, x3 = 001.

Pattern languages were first introduced by Angluin [4, 5]. Since then, they
have been extensively investigated in the identification in the limit framework [44,
41, 40, 21, 31, 45, 20, 1, 16, 38, 46]. They have also been studied in the PAC
? Supported in part by NSF Grant CCR-9734940.

O. Watanabe, T. Yokomori (Eds.): ALT’99, LNAI 1720, pp. 347–363, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



348 Sally A. Goldman and Stephen S. Kwek

learning [33, 24, 39] and exact learning [11, 19, 27, 32, 33] frameworks. They are
applicable to text processing [36], automated data entry systems [41], case-based
reasoning [22] and genome informatics [7, 8, 9, 13, 35, 42, 43].

Learning general pattern languages is a very difficult problem. In fact, even if
the learner knows the target pattern, deciding whether a string can be generated
by that pattern is NP-complete [4, 25]. Ko and Tzeng [26] showed that the
consistency problem of pattern languages is ΣP

2 -complete. Schapire [39] proved
a stronger result. He showed that pattern languages cannot be learned efficiently
in the PAC-model assuming P/poly 6= NP/poly regardless of the representation
used by the learning algorithm. In the exact model, Angluin [6] proved that
learning with membership and equivalence queries requires exponential time.

A natural approach in making pattern languages learnable is to restrict the
number of occurrences of each variable symbol in the pattern to one [40] or at
most some constant k [33]. Another approach is to bound the number of variables
by some constant (though there is no restriction on the number of times each
variable symbol can be used). Kearns and Pitt [24] gave a polynomial-time PAC-
learning algorithm for learning such k-variable patterns under the assumption
that examples are drawn from a product distribution. However, for arbitrary
distributions, the problem seems to be difficult even if k = 2 [4, 18]. We present
an efficient algorithm that does not place any restrictions on k or the number
of times each variable symbol occurs (albeit at the cost of only allowing fixed
length substitutions). Furthermore, we can also learn the union of a constant
number of patterns even with attribute noise.

For k = 1, Angluin [4] presented a learner that produces a descriptive pattern
in O(l4 log l) update time, where l is the length of all the examples seen so far. A
pattern p is said to be descriptive if given a sample S that can be generated by p,
no other pattern that generates S can generate a proper subset of the language
generated by p. Erlebach et. al. [16] gave a more efficient algorithm that outputs a
descriptive pattern in expected total learning time O(|p|2 log |p|) where |p| is the
length of the target pattern p. Recently, Reischuk and Zeugmann [38] proved that
if the sample S is drawn from some fixed distribution satisfying certain benign
restrictions and the learner is not required to output a descriptive pattern, then
one can learn one-variable patterns with expected total time linear in the length
of the pattern while converging within a constant number of rounds.

In their paper, Reischuk and Zeugmann [38] suggested several research di-
rections in learning one-variable patterns. First, they pointed out that even with
two variables (i.e. k = 2) the situation becomes considerably more complicated
and will require additional tools. One open problem they suggested is to con-
struct efficient algorithms for learning unions of constant number of one-variable
pattern languages. In Section 5, we present an efficient algorithm to learn the
union of L one-variable pattern languages in the mistake bound model. Our al-
gorithm tolerates attribute errors but requires the learner be given one positive
example, which does not contain attribute noise, for each pattern. The number
of attribute errors of a labeled string 〈s, y〉, with respect to a target pattern,
is the number of (terminal) symbols of s that have to be changed so that the



On Learning Unions of Pattern Languages and Tree Patterns 349

classification of the resulting string by the target pattern is consistent with y.
The update time is polynomial in the length of the noise-free positive example
of each pattern, and the current instance that we want to classify. However, it
is exponential in L. When L = 1 our algorithm is less efficient than Reischuck
and Zeugmann algorithm. However, our analysis is a worst-case analysis which
does not assume the sample is drawn from a fixed distribution. It also tolerates
concept drift.

A concept class that closely resembles pattern languages is the class of tree
patterns. A tree pattern p is a rooted tree where the internal nodes are labeled
using a set T of terminal symbols while the leaves may be labeled using T or a
set S of variable symbols. An instance t is a “ground” tree if all the nodes are
labeled by terminal symbols. An instance t is in the language L(p) generated by
a tree pattern p if t can be obtained from p by substituting the leaves labeled
with the same variable symbol by the same ground tree. Those tree patterns
where the siblings are distinguishable from each other are referred to as ordered
and otherwise as unordered. A union of ordered (resp. unordered) tree patterns
is called an ordered forest (resp. unordered forests). In this paper, we consider
only ordered trees and forests. For recent results on learning unordered forests
see Amoth, Cull and Tadepalli [3].

The study of tree patterns is motivated by natural language processing [15]
and symbolic integration [34] where instances are represented as parse trees
and expressions [34], respectively. Tree patterns are also closely related to logic
program representations [10, 23]. Using the exact learning model with member-
ship and equivalence queries, Arimura, Ishizaka and Shinohara [11] showed that
ordered forests with bounded number of trees can be learned efficiently. Sub-
sequently, Amoth, Cull and Tadepalli [2] showed that ordered forests with an
infinite alphabet are exactly learnable using equivalence and membership queries.
They also showed that ordered trees are exactly learnable with only equivalence
queries. We give an efficient algorithm to learn unions of a constant number of
ordered tree patterns (in the mistake bound model without membership queries)
in the presence of attribute noise. The number of attribute errors of a labeled
ground tree 〈t, y〉, with respect to a target pattern, is the number of (terminal)
symbols in the nodes of t that have to be changed so that the classification of
the resulting tree by the target tree pattern is consistent with y. Our algorithm
does not require any restrictions on the alphabet size for the terminal symbols
or on the number of children per node.

2 Our Results

In this paper, we present algorithms to learn unions of pattern languages and tree
patterns. We obtain all of our algorithms by reductions of the following flavor. We
introduce two sets of boolean attributes. One set is to ensure that the terminal
symbols have not been changed. The other set is for ensuring all variable symbols
are substituted properly. The target concept is then represented as a conjunction
of a relatively small number of these attributes. More specifically, the number of



350 Sally A. Goldman and Stephen S. Kwek

relevant attributes depends only on the number of patterns in the target union,
the number of variables in the patterns and the number of occurrences of the
variable symbols in the patterns. We achieve this goal while keeping the total
number of attributes polynomial in the length of the examples (which could
be arbitrarily longer than the number of variable symbols). Furthermore, since
the target concept is represented as a conjunction of boolean attributes, we
can employ Winnow to obtain a small mistake bound and to handle attribute
noise. Finally, since a disjunction of a constant number of terms can be reduced
to a conjunction (with size exponential in the number of terms) we can use
our technique to learn unions of a constant number of patterns. This approach
seems to be quite general and was employed to learn geometric patterns [17]. It
is possibly applicable to learning other pattern related concept classes as well.

In Section 4, we apply our technique to learn a union of a constant number
of pattern languages with the only restriction being that there are fixed length
substitutions. A pattern language L(p) is said to have fixed length substitutions
if each variable xi can only be substituted by terminal strings of constant length
l(xi). The constant l(xi) depends only on xi and can be different for different
variables. Trivially, this means that all strings in L(p) must be of the same
length. The resulting algorithm learns a union of pattern languages L(p1), ...,
L(pL) with fixed length substitutions using polynomial time (for L constant) for
each prediction and with a worst-case mistake bound of

O



(

L∏
i=1

(2Vi − ki + 1)

)(
L∑

i=1

log ni

)
+

T∑
j=1

L∏
i=1

min (2Aj , 2Vi − ki + 1)




where ki is the number of variables in pi, Vi is the total number of occurrences
of variable symbols in pi, Aj is the worst-case number of attribute errors in
trial j, and ni is the length of the given positive example for pi (which must
have no attribute errors). Note that the mistake bound only has a logarithmic
dependence on the length of the examples. In addition, we could assign a penalty
(i.e. weight) to each violation of the rule that a terminal symbol cannot be
changed. The weights can be different for different terminal symbols. Similarly,
we can also assign a penalty to each violation of the rule that a pair of variable
symbols, of the same variable, must be substituted by the same terminal string.
If the penalty incurred by an instance for violating these rules is below a given
tolerable threshold then it is in the target concept L′(p) generated by p. If the
penalty is above the threshold then it is not in L′(p). Since Winnow can learn
linear threshold functions, the algorithms we present here can be extended tot
this more general class of pattern languages.

Contrasting this positive result, we prove that if unions of an arbitrary num-
ber of such patterns can be learned efficiently in the mistake bound model then
DNFs can be learned efficiently in the mistake bound model. Whether or not
DNF formulas can be efficiently learned is one of the more challenging open
problems. The problem remains open even for the easier PAC learning model.



On Learning Unions of Pattern Languages and Tree Patterns 351

Next, in Section 5, we present an algorithm to learn L(p1) ∪ · · · ∪ L(pL)
where each pi is a one-variable pattern. Our algorithm makes each prediction in
polynomial time (for constant L) and has a worst-case mistake bound of

O



(

L∏
i=1

2Vi

)(
L∑

i=1

log ni

)
+

T∑
j=1

L∏
i=1

min (2Aj , 2Vi)




where Vi is the number of occurrences of the variable symbol in pi, Aj is the
worst-case number of attribute errors in trial j, ni is the length of the first
positive example for pi (which must have no attribute errors) and m is the
length of the example to be classified.

In Section 6, we apply our technique to obtain an algorithm to learn ordered
forests composed of trees patterns p1, ..., pL. Our algorithm makes each predic-
tion in polynomial time (for constant L) and has worst-case mistake bound

O



(

L∏
i=1

|pi|
)(

L∑
i=1

log ni

)
+

T∑
j=1

L∏
i=1

min (2Aj , |pi|)



where Aj is the worst-case number of attribute errors in trial j, and ni is the
length of the first positive example for pi (which must have no attribute errors).
As in the case of pattern languages with fixed length substitutions, it has been
shown that in the exact learning model with equivalence queries only, efficient
learnability of ordered forests implies efficient learnability of DNFs [2]. Thus, it
seems unlikely that unions of arbitrary number of ordered tree patterns can be
learned in the mistake bound model.

In all of our algorithms, the requirement that the learner is initially given a
noise free positive example for each pattern or tree pattern in the target can be
relaxed. One way is to sample the instance space for positive labeled instances.
If the attribute noise rate is low then with high probability, we can obtain one
noise-free positive example for each (tree) pattern unless the positive instances
for a particular (tree) pattern do not occur frequently. In the latter, we can ignore
that (tree) pattern. We can then run our algorithms for each L-subset of these
positive examples and use the weighted majority algorithm [30] of Littlestone
and Warmuth to “filter out” the optimum algorithm.

3 Preliminaries

In concept learning, each instance in an instance space X is labeled according to
some target concept f . The target concept is assumed to be some concept class C.
The model used here is the on-line (a.k.a. mistake-bound) learning model [28, 6].
In this model, learning proceeds in a, possibly infinite, sequence of trials. In each
trial, the learner is presented with an instance Xt from some domain X . The
learner is required to make, in polynomial time, a prediction on the classification
of Xt. In return, the learner receives the desired output f(Xt) as feedback.



352 Sally A. Goldman and Stephen S. Kwek

A mistake is made if the prediction does not match the desired output. The
learner’s objective is to minimize the total number of mistakes.

An important result in this model is Littlestone’s algorithm Winnow for
learning small conjunctions (or disjunctions) of boolean attributes when there is
a large number n of irrelevant attributes. Winnow maintains a linear threshold
functions

∑n
i=1 wixi ≥ θ where wi is a weight that is associated with the boolean

attribute xi. Initially, all the weights are equal to 1. Upon receiving an input
〈v1, · · ·, vn〉, the algorithm predicts true if the sum

∑n
i=1 wivi is greater than the

fixed threshold θ and false otherwise. Typically, the threshold is set to n.
If the prediction is wrong then the weights are updated as follows. Suppose

the algorithm predicts false but the instance is in the target concept. Winnow
promotes the weight wi, for each attribute xi in the instance that is set to 1,
by multiplying wi by some constant update factor α for α > 1 (typically, we set
α = 2). Otherwise, the algorithm must have predicted true but the instance is
not in the target concept. In this case, for each literal xi in the instance that is
set to 1, Winnow demotes the weight wi by dividing it by α.

The number of attribute errors of a labeled example 〈Xt, yt〉, with respect to
the target disjunction, is the number of attributes of Xt that have to be changed
so that the classification of the resulting example by the target is consistent with
yt. In the presence of attribute noise, Littlestone offers the following performance
guarantee for Winnow.

Theorem 1. [29] Suppose, the target concept is a k-conjunction (or k-disjunc-
tion) and makes at most A attribute errors. Then Winnow makes at most
O(A + k log(N)) mistakes on any sequence of trials.

Auer and Warmuth [12] suggested a version of Winnow which tolerates con-
cept drift. Here the target disjunction may drift (change slowly) in time. The
idea is that when a weight is sufficiently small, we do not demote it any further.
We restrict our discussion in this paper to the original version of Winnow but
remark that we could use the drift-tolerant version of Winnow to yield results
that tolerates shifts (details omitted).

4 Learning Unions of Pattern Languages with Fixed
Length Substitutions

Although general pattern languages are difficult to learn, we prove the following
theorem which states that if the target concept is a union of L (a constant
number of) pattern languages that have fixed length substitutions then we can
learn it efficiently in the on-line model with the presence of attribute noise.
We note that for the case of a single pattern with fixed length substitutions
without any attribute noise, one can use a direct application of the halving
algorithm [14, 28] to obtain an algorithm with a polynomial mistake bound.
Along with the restrictions mentioned above, when directly using the halving
algorithm exponential time is required to make each prediction. The algorithm



On Learning Unions of Pattern Languages and Tree Patterns 353

we present handles a union of a constant number of patterns, is robust against
attribute noise, and each prediction is made in polynomial time.

We first prove our result for the case where the target is a single pattern with
no attribute noise. Then, we generalize our result to unions of patterns in the
presence of attribute noise.

Lemma 2. Suppose the target concept is the pattern language L(p) with fixed
length substitutions. Further, suppose that p is composed of variables x1, . . . , xk

with V total occurrences of the variable symbols in p. Then the target concept
can be efficiently learned in the mistake bound model with O ((2V − k + 1) log n)
mistakes in the worst case. The time complexity per trial is O

(
n3
)

where n is
the length of the first (positive) counterexample.

Proof. Our algorithm obtains its first positive counterexample by predicting neg-
ative until it gets a positive counterexample s0. Let n be the length of s0. Since
all substitutions of the same variable in the target have the same length, we
know that if an instance has length different from n then it is a negative in-
stance. Thus, without loss of generality, we assume all the instances are exactly
of length n. We denote the substring of a string s that begins at position i and
ends at position j by s[i, j] and the ith symbol of s is denoted by s[i]. To make a
prediction on an instance s, we transform s to a new instance with the following
sets of boolean attributes:

– X [i, j, l], 1 ≤ i < j ≤ n, 1 ≤ l ≤ n − j + 1. Each variable X [i, j, l] is set to 1
if and only if the two substrings s[i, i+ l− 1] and s[j, j + l− 1] are identical.

– C[i, j], 1 ≤ i ≤ j ≤ n. The variable C[i, j] is set to 1 if and only if the
substrings s[i, j] and s0[i, j] are the same.

We note that our reduction is a refinement of a more direct reduction that
uses O(n2) variables (versus the O(n3) variables used above) for the case where
the length of the substitutions must always be one. The following claim shows
that by introducing the n3

6 + o(n3) variables of the form X [i, j, l], the target
concept can be represented as a conjunction where the number of relevant vari-
ables is independent of n (versus having a linear dependence on n). By applying
Winnow to learn this conjunction, we obtain a mistake bound with a logarithmic
dependence on n versus a linear dependence on n.

Claim. The target k-variable pattern p can be expressed in the transformed
instance space as a conjunction of 2V − k + 1 attributes. Here, V is the total
number of occurrences of the variable symbols in p.

Proof. Since the substitutions of the same variable x must be of the same length
l(x), the substitution of a particular variable symbol in all positive instances
must appear in the same locations. That is, for the variable symbol x to appear
in a particular location in p, its substitution in a positive instance must appear
in position i to i + l(x) − 1 for some fixed i. The substitutions for a variable x
that appears in two distinct positions i and j are the same iff X [i, j, l(x)] = 1.



354 Sally A. Goldman and Stephen S. Kwek

Consider a particular variable, say xi. Suppose that xi appears in a positive
instance at positions j1 < . . . < jαi . Then for an instance to be positive, the
(αi − 1) transformed variables X [j1, j2, l(xi)], . . . , X [jαi−1, jαi , l(xi)] must all be
set to 1. Conversely, if one of these transformed variables are set to 0 then the
instance must be negative.

Further, suppose s0[i, j] is a substring of s0 that corresponds to a maximal
substring in p consisting of only terminal symbols. In other words, all symbols in
s0[i, j] are terminal symbols in p, but s0[i−1] and s0[j +1] are symbols obtained
from substituting a variable with a string of terminal symbols. Notice again that
the substitution of a variable symbol must appear at a specific location and be
of the same length. Therefore, for an instance s to be positive, the substring
s[i, j] and s0[i, j] must be the same. The latter means that C[i, j] must be set to
1. Conversely, if for some s0[i, j] that corresponds to a maximal substring in p
consisting of only terminal symbols, the substring s[i, j] of some instance s does
not match s0[i, j] (i.e. C[i, j] = 0) then s must be negative. There are at most
V + 1 of the C[i, j]’s that are positive (since each one, except the last, must end
with one of the V variables).

A positive instance s is positive if and only if (1) all the variables of the same
variable symbol are substituted by the same strings of terminal symbols and (2)
none of the substrings in p consisting of terminal symbols only are substituted.
The above discussion implies that (1) and (2) can be ensured by checking at
most

∑k
i=1(αi − 1) = V − k variables X [i, j, l]’s and V + 1 variables C[i, j]’s are

all 1s, respectively. ut
Consider the pattern p = x11x301x2001x1x211x1 with l(x1) = 3, l(x2) =

4, l(x3) = 2 as an example. The proof of the above claim says that it can be
represented as the conjunction

(C[4, 4] ∧ C[7, 8] ∧ C[13, 15] ∧ C[23, 24])
∧

(X[1, 16, 3] ∧X[16, 25, 3])
∧

X[9, 19, 4]

The variable x1 must appear at position 1, 16 and 25. Thus, the target
conjunction must contain the variable X [1, 16, 3] and X [16, 25, 3]. The substring
s[4, 4] of any positive instance s must always be the same as s0[4, 4] and is the
string “1”. Thus, C[4, 4] must be present. The presence of other attributes can
be similarly explained.

From the above claim we know that there are at most 2V − k + 1 relevant
attributes. Combined with the fact that there are O(n3) boolean attributes,
we obtain the desired mistake bound of Lemma 2 by applying Winnow. (Since
Winnow learns a disjunction of boolean attributes, we apply Winnow to learn
the negation of the target concept which is represented as a disjunction of the
negations of the attributes.) A straightforward implementation of the above idea
would have time complexity of O(n4) per trial. To reduce the time complexity,
for each distinct pair of i and j, 1 ≤ i < j ≤ n, the learner first finds the
longest common substring of the string that begins at position i and the string
that begins at position j. Say the common substring is of length l′. Then the
learner sets all variables X [i, j, l], 1 ≤ l ≤ l′ to 1 and X [i, j, l], l > l′ to 0. The



On Learning Unions of Pattern Languages and Tree Patterns 355

C[i, j]’s can be evaluated in a similar way. This implementation reduces the time
complexity to O(n3) per trial. This completes the proof of Lemma 2. ut

We now extend this result for the case of a union of a constant number of
patterns with fixed length substitutions under attribute noise.

Theorem 3. Suppose the target concept is a union of pattern languages L(p1),
..., L(pL) with fixed length substitutions. Further, suppose that for 1 ≤ i ≤ L,
pi has ki variables and Vi total occurrences of variable symbols. Then the target
concept can be efficiently learned in the mistake bound model. The number of
mistakes made after T trials is bounded by

O


( L∏

i=1

(2Vi − ki + 1)

)(
L∑

i=1

log ni

)
+

T∑
j=1

L∏
i=1

min (2Aj , 2Vi − ki + 1)




in the worst case. The time complexity per trial is O
(
(n1...nL)3

)
. We assume

that initially the learner is given a noise-free positive example, of length ni, for
each pattern pi. Here, Ai is the number of attribute errors in the ith trial. (For
this bound to be meaningful, we assume Ai is zero in most of the trials.)

Proof. First we consider the case where the target is a union of L patterns
satisfying the condition of Theorem 3, but with no attribute noise. In this case,
each pattern pi can be represented as a conjunction Ci of 2Vi−ki +1 attributes.
The target is a disjunction f̂ of the Ci’s. Thus, its complement can be represented
as a

∏L
i=1(2Vi − ki + 1)-term DNF which we denote by f ′. The term in f̂ must

contain exactly one literal from the set of transformed attributes corresponding
to a pattern pi, i = 1, ..., L. Since there are at most O(n3

i ) attributes for each
pattern pi, there are at most O((n1...nL)3) possible terms to consider. Each such
candidate term can be treated as a new attribute. Applying Winnow would then
give us the desired mistake bound. Further, as before, the transformed attributes
corresponding to the pattern pi can be computed in O(n3

i ) time. Thus, the time
complexity to update the O((n1...nL)3) attributes is O((n1...nL)3).

Finally, we introduce attribute errors. Suppose Aj symbol errors occur at
trial j. Each symbol error can result in at most two relevant attributes of Ci

being complemented. There are at most 2Vi−ki +1 literals in Ci. Thus, at most
min(2Aj , 2Vi − ki + 1) of the attributes in Ci are complemented. This implies
that at most

∏L
i=1 min(2Aj , 2Vi−ki+1) attributes in f ′ are complemented. This

gives us the second term in the mistake bound that is due to attribute errors. ut
The next theorem suggests that it appears necessary to bound the number

of patterns in the target for it be efficiently learnable.

Theorem 4. In the mistake bound model, if unions of arbitrary number of pat-
tern languages with fixed length substitution restriction can be learned efficiently,
then DNFs can be learned efficiently.

Proof. Suppose the learner is asked to learn a DNF f in the mistake bound
model. Without loss of generality, we can assume f is monotone and there are n



356 Sally A. Goldman and Stephen S. Kwek

variables x1, ..., xn. Let {0, 1} and {α1, ..., αn} be sets of terminal and variable
symbols, respectively. Each term t in f can be represented as a pattern p(t) with
n characters. The ith character is set to 1 if the literal xi is in term t and αi

otherwise. We represent an instance x as an n-bit vector (string). If we restrict
l(αi) = 1 for all αi’s then clearly, t(x) = 1 iff x ∈ L(p(t)). This is a polynomial-
time prediction preserving reduction [37], which completes the proof. ut

5 Learning Unions of One-Variable Pattern Languages

We now consider the case of one-variable patterns without the fixed length sub-
stitution requirement. As in the last section, we first prove our result for the case
where the target is a single pattern with no attribute noise. Then, we apply the
same technique to generalize this result to unions of patterns in the presence of
attribute noise.

Lemma 5. Suppose the target concept is a one-variable pattern p with V occur-
rences of the variable symbol. Then the target concept can be efficiently learned
in the mistake bound model with O (V log n) mistakes in the worst case. The time
complexity per trial is O

(
n4mV

)
= O

(
n5m

)
where n is the length of the first

(positive) counterexample and m is the length of the example to be classified.

Proof. The learner guesses negative until obtaining a positive counterexample
s0. Denote the length of s0 by n, and the starting position1 of the ith (counting
from the leftmost end of the pattern) substitution of the variable x by αi. For
a moment, we assume the learner is told the number of occurrences V of the
variable symbols in the target, and length ` of the substituted terminal string.

Suppose the learner is asked to classify a given unlabeled instance s of length
m. If the difference in length of s0 and s is not divisible by V then we can
conclude immediately that s must be classified negative. Henceforth, we assume
the difference between the lengths of s0 and s is divisible by V . If s is positive
then the substitution of x in s has length `′ = ` + m−n

V . The ith substitution
of x in s must begin at location α′i = αi + (i − 1)m−n

V and the substitution
for the variable x is the substring s[α′i, α

′
i + `′ − 1]. In other words, to see if all

substitutions of x in s are the same, we simply check for all i = 2, ..., V , whether
s[α′i−1, α

′
i−1 + `′−1] = s[α′i, α

′
i + `′−1]. If this is not so then we can immediately

conclude that s 6∈ L(p).
Unfortunately, we do not know the αi’s. To circumvent this problem, we

introduce new attributes X [β, γ, i], 2 ≤ β < γ ≤ n, 1 ≤ i ≤ V such that X [β, γ, i]
is set to true if and only if the substring s[β +(i−1)m−n

V , β +(i−1)m−n
V +`′−1]

is the same as s[γ + im−n
V , γ + im−n

V + `′− 1]. Clearly, if all substitutions of x in
s are the same then the (V − 1)-conjunction

CX = X [α1, α2, 2] ∧ . . . ∧X [αi−1, αi, i] ∧ . . . ∧X [αV−1, αV , V ]

is satisfied, and vice versa.
1 These positions are not known to the learner.



On Learning Unions of Pattern Languages and Tree Patterns 357

To classify an instance correctly as positive, we also need to ensure that the
terminal symbols in p remain the same. Let α0 = −` and αV +1 = n. Then
clearly, the ith substring of terminal symbols between the ith variable symbol
and i + 1st variable symbol is the string s0[αi + `, αi+1 − 1] (which is defined to
be the empty string if αi + ` > αi+1− 1). If none of the terminal symbols in this
maximal substring of terminal symbols is changed in s then it must appear in
s[α′i + `′, α′i+1 − 1]. In other words, to check if none of the terminal symbols in
the target has been replaced, it is sufficient and necessary to verify that

s[α′i + `′, α′i+1 − 1] = s0[αi + `, αi+1 − 1] ∀i = 0, ..., V (1)

As before, since we do not know where the αi’s are, we introduce new at-
tributes C[i, B, E], 0 ≤ i ≤ V, 1 ≤ B ≤ E ≤ n. We set C[i, B, E] to 1 when
s[B + im−n

V , E + im−n
V ] = s0[B, E]. It is easy to verify that saying Equation 1 is

satisfied is the same as saying the conjunction CT (shown below) is satisfied.

CT =
V∧

i=0

C[i, αi + `, αi+1 − 1]

Therefore, the target pattern p can be represented as a conjunction CT ∧CX

of 2V boolean attributes. There are O(n2V ) possible attributes to consider. Thus
by running Winnow to learn CT ∧CX guarantees at most O(2V (log n+log V )) =
O(2V log n) mistakes are made (since V ≤ n).

The question remains in guessing ` and V correctly. Well there are only O(n2)
such guesses. We can run one copy of the above algorithm for each guess and
run weighted majority algorithm [30] on these algorithms. The mistake bound is
O(log(n2)+2V log n) = O(V log n) with running time O(n4mV ) = O(n5m). ut

Lemma 5 can be extended to learn unions of one-variable pattern languages
in the presence of attribute noise (except for the first counterexample which
must be noise free). The bound obtained is shown in the next theorem.

Theorem 6. Suppose the target concept p is a union of one-variable pattern
languages L(p1), ..., L(pL). Further, suppose the number of occurrences of the
variable symbol in pi is Vi. Then p can be efficiently learned in the mistake bound
model. The number of mistakes made after T trials is bounded by

O

((
L∏

i=1

2Vi

)(
L∑

i=1

log ni

)
+

T∑
t=1

L∏
i=1

2 min (Aj , Vi)

)

in the worst case. The time complexity per trial is O
(
m(n1...nL)4

∑L
i=1 Vi

)
=

O
(
m(n1...nL)5

)
. Here,

– We assume that initially the learner is given a noise-free positive example,
of length ni, for each pattern pi.

– m is the length of the unlabeled example to be classified in the T + 1st trial.



358 Sally A. Goldman and Stephen S. Kwek

– Ai is the number of attribute errors in the ith trial. (For this bound to be
meaningful, we assume that Ai is zero in most of the trials.)

Proof. (Sketch) We obtain this result by extending Lemma 5 to unions of lan-
guages with attribute noise using the same technique as that used in extending
Lemma 2 to Theorem 3. ut

6 Learning Ordered Forests

We have demonstrated how the problem of learning unions of pattern languages
can be reduced to learning conjunctions of boolean attributes. Next, we apply
this idea to learning ordered forests with bounded number of trees. No restric-
tions are needed on the number of children per node or the alphabet size for the
terminal symbols.

Theorem 7. Ordered forests composed of trees patterns p1, ..., pL can be effi-
ciently learned in the on-line model. The number of mistakes made after T trials
is bounded by

O



(

L∏
i=1

|pi|
)(

L∑
i=1

log ni

)
+

T∑
j=1

L∏
i=1

min (2Aj , |pi|)



in the worst case. The time complexity per trial is O
(
(n1...nL)3

)
. Here,

– We assume that initially the learner is given a noise-free positive example,
of length ni, for each tree pattern pi.

– Aj is the number of attribute errors in the (j)th trial. (For this bound to be
meaningful, we assume that Aj is zero in most of the trials.) ut

Proof. (Sketch) We present only the proof for the case of learning a single ordered
tree pattern. The extension of the proof to the case of learning ordered forests
in the presence of attribute errors is like that used to prove Theorem 3.

Suppose t is a tree and u is a node in t. Let patht(u) denote the labeled path
obtained by traversing from the root of t to u. Given two distinct trees t and
t′, we say patht(u) = patht′(u′) if and only if the sequences of the node labels
(except for the last) and the branches taken as we traversed from the root of
t to u and from the root of t′ to u′ are the same. As before, we simply keep
predicting negative until we get a positive counterexample t0. Let n denote the
number of nodes in t0.

To make a prediction on an instance t, we transform t to a new instance with
the following set of O(n2) attributes (See Figure 1 for an illustration).

– For each vertex u0 in t0, we introduce a new attribute C[u0]. This attribute
is set to 1 if and only if patht0(u0) = patht(u) for some node u in t, and the
labels of the nodes u in t and u0 in t0 are the same.



On Learning Unions of Pattern Languages and Tree Patterns 359

x a

a

b

b

xx2 11

a

a

a

aa

bbb

a

a

b

b

tree pattern p
p

a (positive) instance t  that
can be generated by 

0

8 9 10 11 12

1

2 3

4 5 6 7

Fig. 1. The figure on the left shows a tree pattern p. The figure on the right is
a tree instance t0 that can be generated by p. If t0 is the first counterexample
obtained then the conjunctive representation of p is C[1] ∧ C[2] ∧ C[3] ∧ C[6] ∧
X [4, 7].

– For each distinct pair of nodes u0 and v0 in t0, we introduce a new attribute
X [u0, v0]. X [u0, v0] is set to 1 if and only if there are two distinct nodes u
and v in t that satisfies:

1. patht0(u0) = patht(u) and patht0(v0) = patht(v)
2. The two subtrees in t that are rooted at u and v are identical. (Since the

siblings are distinguishable, we can check that the subtrees are identical
in linear time).

Let t′ be the new instance with
(
n
2

)
boolean attributes obtained by the above

transformation.

Claim. The target tree pattern p can be represented as a conjunction f of at most
|p| of the new boolean attributes such that given an instance t, the transformed
instance t′ is classified positive by f iff t is classified as positive by p.

Proof. To verify an instance t is in L(p), it is necessary and sufficient to ensure
the following two conditions are satisfied.

1. For each node û in p that is labeled by a terminal symbol, there is a corre-
sponding node u in t such that pathp(û) = patht(u) and both û and u have
the same terminal label.

2. For each pair of distinct leaves û and v̂ in p labeled by the same variable, there
are two nodes u and v in t such that pathp(û) = patht(u) and pathp(v̂) =
patht(v). Furthermore, the subtrees in t rooted at u and v are identical. That
is, the substitutions in t for û and v̂ are the same.



360 Sally A. Goldman and Stephen S. Kwek

Clearly, pathp(û) = patht(u) is equivalent to patht0(u0) = patht(u) for the
nodes u0 in t0 that corresponds û in p. Condition 1 is satisfied if and only if
for each node u0 in t0 that corresponds to a node in p labeled using a terminal
symbol, the attribute C[u0] is set to 1. To ensure Condition 2 is satisfied, it is
sufficient to check that X [u0, v0] = 1 for each pair of distinct nodes u0 and v0 in
t0 that corresponds to some pair of distinct leaves in p that are labeled by the
same variable symbol. Suppose the leaves in t0 that corresponds to substituting
a variable symbol xi in p are l1, ..., lk. Then it suffices to check that X [l1, l2] =
X [l3, l4] = ... = X [lk−1, lk] = 1. Therefore, the target concept can be represented
as a conjunctions of at most |p| of the transformed attributes. This completes
the proof of the claim. ut

Combining the above Lemma with Theorem 1 and the technique used in
Theorem 3 completes the proof of Theorem 7. ut

Amoth, Cull and Tadepalli [2] have shown that DNF and the class of ordered
forests with bounded2 label alphabet size and bounded number of children per
node are equivalent. Hence, it seems unlikely that unions of arbitrary number of
tree patterns can be learned in the mistake bound model.

7 Conclusion

In this paper, we demonstrated how learning unions of pattern languages and
pattern-related concept can be reduced to learning disjunctions of boolean at-
tributes. In particular, we presented efficient on-line algorithms for learning
unions of a constant number of tree patterns, unions of a constant number of
one-variable pattern languages, and unions of a constant number of pattern lan-
guages with fixed length substitutions. All of our algorithms are robust against
attribute noise and can be modified to handle concept drift. Further, our mistake
bounds only have a logarithmic dependence on the length of the examples. The
requirement that the learner be given a noise-free example for each pattern can
be removed by sampling as discussed in Section 1.

There are several interesting future directions suggested by this work. As we
have discussed, we could generalize the class of pattern languages by assigning
a penalty (i.e. weight) to each violation of the rule that a terminal symbol
cannot be changed. The weights can be different for different terminal symbols.
Similarly, we can also assign a penalty to each violation of the rule that a pair of
variable symbols, of the same variable, must be substituted by the same terminal
string. If the penalty incurred by an instance for violating these rules is below
a given tolerable threshold then it is in the target concept L′(p) generated by
p. If the penalty is above the threshold then it is not in L′(p). It would be very
interesting to explore applications for this extension and compare our approach
to those currently in use.
2 They showed that ordered forests can be learned using subset queries and equivalence

queries. Further, if the alphabet size or number of children per node is unbounded,
then subset queries can be simulated using membership queries by using a unique
label or a subtree to stand for each variable.



On Learning Unions of Pattern Languages and Tree Patterns 361

In this paper, we solved one of the open problems suggested by Reischuk
and Zeugmann [38]. Namely, we gave an efficient algorithm to learn unions of a
constant number of one-variable pattern languages. We also were able to learn a
unions constant number of pattern languages (with no restriction on the number
of variables) when we restricted the substitutions to fixed length substitutions. A
challenging open problem from Reischuk and Zeugmann that we did not resolve
here is learning the class of 2-variable pattern languages (in the mistake bound
model). While, additional tools will be needed to solve this problem, we feel that
the technique proposed here may be applicable for this problem.

References

[1] Andris Ambainis, Sanjay Jain, and Arun Sharma. Ordinal mind change complex-
ity of language identification. In Computational Learning Theory: Eurocolt ’97,
pages 301–315. Springer-Verlag, 1997.

[2] Thomas R. Amoth, Paul Cull, and Prasad Tadepalli. Exact learning of tree pat-
terns from queries and counterexamples. In Proc. 11th Annu. Conf. on Comput.
Learning Theory, pages 175–186. ACM Press, New York, NY, 1998.

[3] Thomas R. Amoth, Paul Cull, and Prasad Tadepalli. Exact learning of unordered
tree patterns from queries. In Proc. 12th Annu. Conf. on Comput. Learning
Theory, pages 323–332. ACM Press, New York, NY, 1999.

[4] D. Angluin. Finding patterns common to a set of strings. J. of Comput. Syst.
Sci., 21:46–62, 1980.

[5] D. Angluin. Inductive inference of formal languages from positive data. Inform.
Control, 45(2):117–135, May 1980.

[6] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, April
1988.

[7] S. Arikawa, S. Kuhara, S. Miyano, Y. Mukouchi, A. Shinohara, and T. Shinohara.
A machine discovery from amino acid sequences by decision trees over regular
patterns. In Intern. Conference on Fifth Generation Computer Systems, 1992.

[8] S. Arikawa, S. Miyano, A. Shinohara, T. Shinohara, and A.Yamamota. Algorith-
mic learning theory with elementary formal systems. In IEICE Trans. Inf. and
Syst., volume E75-D No 4, pages 405–414, 1992.

[9] S. Arikawa, A. Shinohara, S. Miyano, and A. Shinohara. More about learning
elementary formal systems. In Nonmonotonic and Inductive Logic, Lecture Notes
in Artificial Intelligence, volume 659, pages 107–117. Springer-Verlag, 1991.

[10] H. Arimura, H. Ishizaka, T. Shinohara, and S. Otsuki. A generalization of the
least general generalization. In Machine Learning, volume 13, pages 59–85. Oxford
Univ. Press, 1994.

[11] Hiroki Arimura, Hiroki Ishizaka, and Takeshi Shinohara. Learning unions of tree
patterns using queries. In Proc. 6th Int. Workshop on Algorithmic Learning The-
ory, pages 66–79. Springer-Verlag, 1995.

[12] Peter Auer and Manfred Warmuth. Tracking the best disjunction. In Proceedings
of the 36th Annual Symposium on Foundations of Computer Science, pages 312–
321. IEEE Computer Society Press, Los Alamitos, CA, 1995.

[13] A. Bairoch. Prosite: A dictionary of sites and patterns in proteins. In Nucleic
Acid Research, volume 19, pages 2241–2245, 1991.

[14] J. M. Barzdin and R. V. Frievald. On the prediction of general recursive functions.
Soviet Math. Doklady, 13:1224–1228, 1972.



362 Sally A. Goldman and Stephen S. Kwek

[15] C. Cardie. Empirical methods in information extraction. In AI Magazine, vol-
ume 18, pages 65–80, 1997.

[16] Thomas Erlebach, Peter Rossmanith, Hans Stadtherr, Angelika Steger, and
Thomas Zeugmann. Learning one-variable pattern languages very efficiently on
average, in parallel, and by asking queries. In Algorithmic Learning Theory: ALT
’97, pages 260–276. Springer-Verlag, 1997.

[17] Sally A. Goldman, Stephen S. Kwek, and Stephen D. Scott. Agnostic learning
of geometric patterns. In Proc. 10th Annu. Conf. on Comput. Learning Theory,
pages 325–333. ACM Press, New York, NY, 1997.

[18] C. Hua and K. Ko. A note on the pattern-finding problem. Technical Report
UH-CS-84-4, Department of Computer Science, University of Houston, 1984.

[19] O. H. Ibarra and T. Jiang. Learning regular languages from counterexamples.
In Proc. 1st Annu. Workshop on Comput. Learning Theory, pages 371–385, San
Mateo, CA, 1988. Morgan Kaufmann.

[20] Sanjay Jain and Arun Sharma. Elementary formal systems, intrinsic complexity,
and procrastination. In Proc. 9th Annu. Conf. on Comput. Learning Theory,
pages 181–192. ACM Press, New York, NY, 1996.

[21] K. P. Jantke. Polynomial-time inference of general pattern languages. In Proceed-
ings of the Symposium of Theoretical Aspects of Computer Science; Lecture Notes
in Computer Science, volume 166, pages 314–325. Springer, 1984.

[22] K. P. Jantke and S. Lange. Case-based representation and learning of pattern
languages. In Proc. 4th Internat. Workshop on Algorithmic Learning Theory,
pages 87–100. Springer–Verlag, 1993. Lecture Notes in Artificial Intelligence 744.

[23] C. Page Jr. and A. Frisch. Generalization and learnability: A study of constrained
atoms. In Inductive Logic Programming, pages 29–61, 1992.

[24] M. Kearns and L. Pitt. A polynomial-time algorithm for learning k-variable
pattern languages from examples. In Proc. 2nd Annu. Workshop on Comput.
Learning Theory, pages 57–71, San Mateo, CA, 1989. Morgan Kaufmann.

[25] K. Ko, A. Marron, and W. Tzeng. Learnig string patterns and tree patterns from
examples. abstract. In State University of New York Stony Brook, 1989.

[26] K. Ko and W. Tzeng. Three Σp
2 -complete problems in computational learning

theory. Computational Complexity, 1(3):269–310, 1991.
[27] S. Lange and R. Wiehagen. Polynomial time inference of arbitrary pattern lan-

guages. New Generation Computing, 8:361–370, 1991.
[28] N. Littlestone. Learning when irrelevant attributes abound: A new linear-

threshold algorithm. Machine Learning, 2:285–318, 1988.
[29] N. Littlestone. Redundant noisy attributes, attribute errors, and linear threshold

learning using Winnow. In Proc. 4th Annu. Workshop on Comput. Learning
Theory, pages 147–156, San Mateo, CA, 1991. Morgan Kaufmann.

[30] N. Littlestone and M. K. Warmuth. The weighted majority algorithm. Informa-
tion and Computation, 108(2):212–261, 1994.

[31] A. Marron. Learning pattern languages from a single initial example and from
queries. In Proc. 1st Annu. Workshop on Comput. Learning Theory, pages 345–
358, San Mateo, CA, 1988. Morgan Kaufmann.

[32] Satoshi Matsumoto and Ayumi Shinohara. Learning pattern languages using
queries. In Computational Learning Theory: Eurocolt ’97, pages 185–197. Springer-
Verlag, 1997.

[33] Andrew R. Mitchell. Learnability of a subclass of extended pattern languages. In
Proc. 11th Annu. Conf. on Comput. Learning Theory, pages 64–71. ACM Press,
New York, NY, 1998.



On Learning Unions of Pattern Languages and Tree Patterns 363

[34] T. Mitchell, P. Utgoff, and R. Banerji. Learning by experimentation: Acquiring
and refining problem solving heuristics. In R. Michalski, J. Carbonell, T. Mitchell
eds., Machine Learning, pages 163–190. Palo Alto, CA: Tioga, 1983.

[35] S. Miyano, A. Shinohara, and T. Shinohara. Which classes of elementary formal
systems are polynomial-time learnable? In Proc. 2nd Int. Workshop on Algorith-
mic Learning Theory, pages 139–150. IOS Press, 1992.

[36] R. Nix. Editing by example. In Proc. 11th ACM Symposium on Principles of
Programming Languages, pages 186–195. ACM Press, 1984.

[37] L. Pitt and M. K. Warmuth. Prediction preserving reducibility. J. of Comput.
Syst. Sci., 41(3):430–467, December 1990. Special issue of the for the Third Annual
Conference of Structure in Complexity Theory (Washington, DC., June 88).

[38] Rüdiger Reischuk and Thomas Zeugmann. Learning one-variable pattern lan-
guages in linear average time. In Proc. 11th Annu. Conf. on Comput. Learning
Theory, pages 198–208. ACM Press, New York, NY, 1998.

[39] R. E. Schapire. Pattern languages are not learnable. In Proc. 3rd Annu. Work-
shop on Comput. Learning Theory, pages 122–129, San Mateo, CA, 1990. Morgan
Kaufmann.

[40] T. Shinohara. Polynomial time inference of extended regular pattern languages.
In RIMS Symposia on Software Science and Engineering, Kyoto, Japan, pages
115–127. Springer Verlag, 1982. Lecture Notes in Computer Science 147.

[41] T. Shinohara. Polynomial time inference of pattern languages and its applications.
Proceedings, 7th IBM Symp. on Math. Foundations of Computer Science, 1982.

[42] E. Tateishi, O. Maruyama, and S. Miyano. Extracting motifs from positive and
negative sequence data. In Proc. 13th Symposium on Theoretical Aspects of Com-
puter Science, Lecture Notes in Computer Science 1046, pages 219–230, 1996.

[43] E. Tateishi and S. Miyano. A greedy strategy for finding motifs from positive and
negative examples. In Proc. First Pacific Symposium on Biocomputing, pages
599–613. World Scientific Press, 1996.

[44] R. Wiehagen and T. Zeugmann. Ingnoring data may be the only way to learn
efficiently. Journal of Experimental and Artificial Intelligence, 6:131–144, 1994.

[45] K. Wright. Identification of unions of languages drawn from an identifiable class.
In Proc. 2nd Annu. Workshop on Comput. Learning Theory, pages 328–333. Mor-
gan Kaufmann, 1989. (See also the correction by Motoki, Shinohara and Wright
in the Proceedings of the Fourth Annual Workshop on Computational Learning
Theory, page 375, 1991).

[46] T. Zeugmann. Lange and Wiehagen’s pattern language learning algorithm: An
average-case analysis with respect to its total learning time. Technical Report
RIFIS-TR-CS-111, RIFIS, Kyushu University 33, 1995.



Author Index

Balcázar, José L., 77
Bshouty, Nader H., 206

Castro, Jorge, 77
Cheung, Dennis, 231

Dalmau, Vı́ctor, 301
De Comité, Francesco, 219
Denis, François, 219
Domingo, Carlos, 241

Eiron, Nadav, 206
Evgeniou, Theodoros, 106

Fukumizu, Kenji, 51

Gilleron, Rémi, 219
Goldman, Sally A., 347
Grieser, Gunter, 118
Guijarro, David, 77, 313

Haraguchi, Makoto, 194
Hermo, Montserrat, 291
Hirata, Kouichi, 157

Kalnishkan, Yuri, 323
Kushilevitz, Eyal, 206
Kwek, Stephen S., 347

Lange, Steffen, 118
Lav́ın, Vı́ctor, 291
Letouzey, Fabien, 219

Mitchell, Andrew, 93
Morik, Katharina, 1
Morita, Nobuhiro, 194

Nessel, Jochen, 264
Nock, Richard, 182

Okubo, Yoshiaki, 194

Pontil, Massimiliano, 106, 252

Rifkin, Ryan, 252
Rossmanith, Peter, 132

Sasaki, Yutaka, 169
Schapire, Robert E., 13
Scheffer, Tobias, 93
Sharma, Arun, 93
Simon, Hans-Ulrich, 77
Stephan, Frank, 93, 276

Takimoto, Eiji, 335
Tarui, Jun, 313
Tsukiji, Tatsuie, 313

Verri, Alessandro, 252

Warmuth, Manfred K., 335
Watanabe, Sumio, 39
Watson, Phil, 145
Wiedermann, Jǐŕı, 63

Yamanishi, Kenji, 26

Zeugmann, Thomas, 276


	Lecture Notes in Artificial Intelligence
	Preface
	List of Referees
	Table of Contents
	Tailoring Representations to Di
	Introduction
	Learnability of Restricted Horn Logic
	Optimizing Input Data
	Comprehensibility
	Embeddedness or Program Optimization
	Conclusion

	Theoretical Views of Boosting and Applications
	Extended Stochastic Complexity and Minimax Relative Loss Analysis
	Introduction
	Minimax Regret
	Purpose of This Paper and Overview of Results

	Minimax RCL
	Asymptotical Results
	Non-asymptotical Results
	Log-Loss Case
	General-Loss Cases

	Minimax RCL for Regression

	Algebraic Analysis for Singular Statistical Estimation
	Introduction
	Main Results
	Proof of Theorem 1
	Proof of Theorem 2
	Algorithm to Calculate the Learning Efficiency
	Conclusion

	Generalization Error of Linear Neural Networks in Unidentifiable Cases
	Introduction
	Neural Networks and Identifiability
	Neural Networks and Identifiability of Parameter
	Linear Neural Networks

	Generalization Error of Linear Neural Networks
	Exact Results
	Generalization Error of Large Scale Networks
	Numerical Simulations

	Conclusion
	Proof of Theorem 1

	The Computational Limits to the Cognitive Power of the Neuroidal Tabula Rasa
	Introduction
	Neuroidal Nets
	Variants of Neuroidal Nets
	Finite Weight Neuroidal Nets and Finite Automata
	Simulating Neuroidal Nets by Neural Nets
	Integer Weight Neuroidal Nets and Turing Machines
	Real Weight Neuroidal Nets and the Additive BSS Model
	Conclusions

	The Consistency Dimension and Distribution-Dependent Learning from Queries
	Introduction
	The Strong Consistency Dimension and Its Applications
	Certificates and Consistency Dimension
	Strong Certificates and Strong Consistency Dimension
	EQs Alone versus EQs and MQs

	Equivalence Queries with a Probability Distribution
	Random versus Arbitrary Counterexamples
	EQ-Learning from Random Samples

	The Sphere Number and Its Applications
	Strong Consistency Dimension and 1-Spheres
	Applications of the Sphere Number


	The VC-Dimension of Subclasses of Pattern Languages
	Introduction
	Preliminaries
	VC-Dimension of Erasing Pattern Languages
	VC-Dimension of Nonerasing Pattern Languages
	Learning $k$-Variable Nonerasing Patterns
	Length-Bounded Pattern Languages
	Conclusion

	On the V Dimension for Regression in Reproducing Kernel Hilbert Spaces
	Introduction
	Background and Motivation
	Why Not Use the VC-Dimension

	An Upper Bound on the $V_gamma $ Dimension
	The $V_gamma $ Dimension in a Special Case
	Empirical $V_gamma $ Dimension

	Conclusion

	On the Strength of Incremental Learning
	Introduction
	Preliminaries
	Formalizing Incremental Learning
	Learning from Noise-Free Data
	Learning from Noisy Data

	Incremental Learning from Noise-Free Data
	The Text Case
	The Informant Case

	Incremental Learning from Noisy Data
	Characterizations
	Comparisons with Other Learning Types


	Learning from Random Text
	Introduction
	Preliminaries
	Relations to Identification in the Limit
	Locking Sequences
	Tail Bounds
	Conclusion

	Inductive Learning with Corroboration
	Introduction
	Degree of Corroboration
	Popper's `Logic of Scientific Discovery'
	Our Differences from Popper's Approach - Discussion
	Our Definition of Degree of Corroboration

	Learning with Corroboration
	Hypotheses and Hypothesis Spaces
	Corroboration Functions and Canonical Learners with Corroboration

	Characterising TXT-Identification Types in Learning with Corroboration
	LIM- and s-LIM-Learning
	Conservative and Strong Monotonic Learning
	FIN- and Refuting Learning

	Example
	Conclusions and Future Work

	Flattening and Implication
	Introduction
	Preliminaries
	Flattening and Implication
	Improvement
	Conclusion

	Induction of Logic Programs Based on  -Terms
	Introduction
	Attractive Points of $psi $-Terms
	$psi $-Terms
	Ordered Sorts
	Definition of $psi $-Terms
	Least General Generalization

	Previous Type-Oriented ILP System
	New ILP Capable of $psi $-Term
	Algorithms of $psi $-Term Capable ILP

	NLP Application
	Information Extraction
	Problem in IE System Development

	Experimental Results
	Natural Language Processing Tools
	Results

	Discussion
	Conclusions and Remarks

	Complexity in the Case Against Accuracy: When Building One Function-Free Horn Clause Is as Hard as Any
	Introduction
	Mono and Bi-criteria Solutions to Replace the Accuracy
	Extending the Accuracy
	Replacing the Accuracy: The ROC Analysis
	Replacing the Accuracy by a Single Criterion

	Introduction to the Proof Technique
	ILP Background Needed
	Basic Tools for the Hardness Results

	Hardness Results
	Appendix 1: The Global Reduction
	Appendix 2: Proofs of Negative Results
	Proof of Point [1], Theorem ref {th1}
	Proof Sketch of Theorem ref {th3}


	A Method of Similarity-Driven Knowledge Revision for Type Specializations
	Introduction
	Preliminaries
	Goal-Dependent Abstraction
	Abstraction Based on Sort Mapping
	Appropriate Similarity for Goal

	Similarity-Driven Knowledge Revision for Type Specialization
	Extended Sort
	Revising Knowledge Base by Specializing Type of Variable
	Example of Similarity-Driven Knowledge Revision

	Experimental Results
	Concluding Remarks

	PAC Learning with Nasty Noise
	Introduction
	Preliminaries
	The Classical PAC Model
	Models for Learning in the Presence of Noise
	VC Theory Basics
	Consistency Algorithms

	Information Theoretic Lower Bound
	Information Theoretic Upper Bound
	Composition Theorem for Learning with Nasty Noise

	Positive and Unlabeled Examples Help Learning
	Introduction
	Preliminaries
	Basic Definitions and Notations
	PAC and SQ Models

	Learning Monotone Conjunctions in the Presence of Classification Noise
	Theoretical Framework
	Tree Induction from Labeled, Positive, and Unlabeled Data
	{C4.5}, a Top-Down Decision Tree Algorithm
	{C4.5} with Positive and Unlabeled Data
	Experimental Results

	Conclusion

	Learning Real Polynomials with a Turing Machine
	Introduction
	The Problem
	Round-Off and Errors
	Narrowing the Feasible Set
	Complexity and Condition
	A Characterization of ${cal C}(B)$

	Faster Near-Optimal Reinforcement Learning: Adding Adaptiveness to the E3 Algorithm
	Introduction
	Preliminaries and Definitions
	The $unhbox voidb @x hbox {E}^3$ Algorithm
	Knowing the States Faster: Adding Adaptivity to the Exploration Phase
	Conclusion
	Acknowledgments

	A Note on Support Vector Machine Degeneracy
	Introduction
	Support Vector Machine Degeneracy
	The Degenerating Polyhedron
	Nonlinear SVMs and Further Remarks
	Proof of Theorem ref {thm:badreg}

	Learnability of Enumerable Classes of Recursive Functions from "Typical" Examples
	Introduction
	Definitions, Notations, and Basic Results
	Results
	Conclusion, Open Problems, and Interpretation

	On the Uniform Learnability of Approximations to Non-recursive Functions
	Learning Minimal Covers of Functional Dependencies with Queries
	Introduction
	Preliminaries
	Functional Dependencies and Minimal Covers
	Some Properties of Minimal Covers

	Membership Queries
	Equivalence Queries
	The Learning Algorithm

	Boolean Formulas Are Hard to Learn for Most Gate Bases
	Introduction
	Learning Preliminaries
	Clones
	Boolean Case

	The Dichotomy Theorem
	Three Fundamental Non-learnable Functions


	Finding Relevant Variables in PAC Model with Membership Queries
	Introduction: Terminology and Strategy
	Measuring the Distance between Virtual and Real Targets
	Exhausting Virtual Version Spaces
	Measuring Influence of Variables

	General Linear Relations among Different Types of Predictive Complexity
	Introduction
	Definitions
	General Linear Inequalities
	Application to the Square-Loss and Logarithmic Complexity
	Acknowledgements

	Predicting Nearly as Well as the Best Pruning of a Planar Decision Graph
	Introduction
	On-Line Pruning of a Decision Dag
	Dual Problem for a Planar Decision Dag
	Inefficient Direct Algorithm
	Efficient Implementation of the Direct Algorithm
	A More Efficient Algorithm for Series-Parallel Dags

	On Learning Unions of Pattern Languages and Tree Patterns
	Introduction
	Our Results
	Preliminaries
	Learning Unions of Pattern Languages with Fixed Length Substitutions
	Learning Unions of One-Variable Pattern Languages
	Learning Ordered Forests
	Conclusion

	Author Index



