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Emerging high-rate applications (imaging, structural monitoring, acoustic localization) will
need to transport large volumes of data concurrently from several sensors. These applications
are also loss-intolerant. A key requirement for such applications, then, is a protocol that reliably

transport sensor data from many sources to one or more sinks without incurring congestion col-
lapse. In this paper, we discuss RCRT, a rate-controlled reliable transport protocol suitable for
constrained sensor nodes. RCRT uses end-to-end explicit loss recovery, but places all the conges-
tion detection and rate adaptation functionality in the sinks. This has two important advantages:

efficiency and flexibility. Because sinks make rate allocation decisions, they are able to achieve
greater efficiency since they have a more comprehensive view of network behavior. For the same
reason, it is possible to alter the rate allocation decisions (for example, from one that ensures

that all nodes get the same rate, to one that ensures that nodes get rates in proportion to their
demands), without modifying sensor code at all. We evaluate RCRT extensively on a 40-node
wireless sensor network testbed and show that RCRT achieves 1.7 times the rate achieved by IFRC
and 1.4 times that of WRCP, two recently proposed interference-aware distributed rate-control

protocols. We also present results from a 3-month-long 19-node real world deployment of RCRT
in an imaging application and show that RCRT works well in real long-term deployments. 1
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(Section 4.3), compares against another protocol (Section 4.2.5), investigates the

effect of additive increase parameter (Section 4.5), and reports the sensitivity of
the protocol to parameters in other layers of a networking system (e.g. link-layer
retransmissions, routing layer forwarding queue size) (Section 4.4).
Permission to make digital/hard copy of all or part of this material without fee for personal

or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Transactions on Sensor Networks, Vol. V, No. N, Month 20YY, Pages 1–0??.



2 · Jeongyeup Paek et al.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Latency (hours)

%
 o

f 
P

a
c
k
e
ts

 R
e
c
v
d

Fig. 1. CDF plot of the packet latency plot from Wisden deployment, 2004. Reception time on

the x-axis, percentage on the y-axis.
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1. INTRODUCTION

As sensor network software and hardware matures, it is becoming increasingly pos-
sible to conceive of a class of applications that has received relatively little atten-
tion so far — applications requiring the transport of high-rate data. Sources for
high-rate data include imagers, microphones, and accelerometers. These sensors in
turn motivate several interesting applications in surveillance, precision agriculture,
structural damage assessment, and military target tracking.

To support these emerging applications, we need to solve two problems. First,
wireless sensors have limited radio bandwidth. A collection of sensors generating
high-rate data can easily overwhelm the network to the point of congestion collapse,
where the network is unable to perform useful work because its capacity is exceeded.
Second, applications that use high-rate sensors of the kind described above are often
loss-intolerant. For example, source localization algorithms [Ali et al. 2007] use time
difference of arrival between comparable samples at different nodes, and structural
monitoring algorithms estimate structural mode shapes [Caffrey et al. 2004] by
correlating comparable samples observed at different nodes. Even if application
data can be compressed to reduce bandwidth requirements [Hicks et al. 2008],
compression algorithms require reliable delivery.

But a protocol for end-to-end reliable delivery of voluminous data can, if not
carefully designed, result in poor network performance. We learned this lesson in a
dramatic way during our deployment of wireless sensors on the Four Seasons build-
ing in Los Angeles about 4 years ago [Paek et al. 2005]. In this deployment, sensor
nodes measured vibrations and transmitted it to a central node, over multiple hops,
at a pre-configured fixed rate. During our deployment, severe network congestion
occurred, a behavior we did not observe during extensive pre-deployment tests.
Figure 1 plots the CDF of the packet latencies from the entire experiments for all
nodes. Greater than half the packets were delivered more than an hour after they
were first injected into the network!
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While many sensor network transport protocols have been studied in the liter-
ature, most of them solve one of the two problems identified above (Section 2):
they either provide reliable end-to-end delivery of data from every sensor to a sink,
or discuss a congestion control mechanism without ensuring end-to-end reliable
delivery.

In this paper, we discuss the design and implementation of a transport protocol
that ensures reliable delivery of sensor data from a collection of sensors to a base
station, while avoiding congestion collapse. However, we place two other require-
ments on the design of this transport protocol. First, unlike most existing proposals
which, implicitly or explicitly, support only a single stream of sensor data from each
network node, we require the network to be able to support multiple concurrent
streams from each sensor node. We foresee that future sensor network deployments
will be multi-user systems, with concurrently executing applications. Second, while
much existing work has assumed a specific way to allocate network capacity to all
sensors (e.g., a fair allocation), we require our solution to separate the capacity
allocation policy from the underlying transport mechanisms. It is unclear, yet,
if there exists a single traffic allocation policy that would satisfy the needs of all
sensor network applications.

Our solution, RCRT, has many different components, many of which are novel
(Section 3). It uses relatively standard mechanisms for end-to-end reliable delivery;
the base station (or sink) discovers missing packets and explicitly requests them
from the sensors. However, its congestion control functionality, in a significant de-
parture from much of the prior work, is implemented in the sink. The sink has a
comprehensive view of the performance of the network, and it uses this perspec-
tive to control traffic allocation in a more efficient way than would be possible with
decentralized congestion control. RCRT employs a novel congestion detection tech-
nique, in which the sink decides that the network is congested if the time to repair
a loss is significantly higher than a round-trip time. Moreover, it de-couples rate
adaptation from rate allocation; that is, the RCRT sink first decides how much the
total traffic needs to be reduced (or increased) in response to congestion (or lack
thereof), then separately decides how to allocate the increase or decrease to dif-
ferent sources. This decoupling allows a network administrator to assign different
capacity allocation policies for different applications.

We have implemented RCRT’s sink-side functionality on a PC-class platform
(our code ports to embedded systems such as Stargates as well), and the sensor-
side functionality on the Telosb, MicaZ, and Mica2 mote platforms. Our detailed
evaluation (Section 4) of RCRT performance brings out many of its features: its
ability to dynamically respond to congestion, its flexibility, robustness, and its sup-
port for multiple applications. More important, our evaluations show that RCRT
is able to achieve 1.7 times the network throughput of IFRC [Rangwala et al. 2006]
and 1.4 times that of WRCP [Sridharan and Krishnamachari 2009], two recently
proposed approach that implements decentralized congestion control but does not
guarantee end-to-end reliability. RCRT is able to achieve this because its traffic
control algorithms are able to better estimate and control the network capacity
given the sink’s comprehensive perspective into network performance. Finally, we
have employed RCRT in a 3-month-long moderate-sized real-world deployment of
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Distributed Centralized No

Congestion Control Congestion Control Congestion Control

Reliable Flush, STCP, Hop RCRT
Wisden, Tenet

RMST

Unreliable
WRCP, IFRC,

QCRA, ESRT
Surge, CTP, RBC,

Fusion, CODA CentRoute, Koala

Table I. Sensor Network Transport Protocols: A Taxonomy

an image-based environmental monitoring application, in which RCRT have col-
lected 83 million packets with 100% reliability, and show that RCRT is capable of
running robustly and efficiently in long term real deployments.

2. RELATED WORK

To place our work in context, we taxonomize sensor network transport protocols as
shown in Table I. We distinguish transport protocols by whether they provide end-
to-end reliability or not, whether they implement congestion control or not, and if
they do, whether the congestion control implementation is distributed or centralized
(at a sink, for example). As Table I shows, RCRT is, to the best of our knowledge,
the only instance of a reliable transport protocol that implements congestion control
in a centralized manner. Furthermore, to our knowledge, although there is a large
literature on congestion control in wired and wireless networks, this specific problem
has not been addressed in those contexts. However, many of our individual design
decisions draw from that literature; we cite the relevant pieces of work when we
describe the detailed design of RCRT in Section 3. We now discuss each element
of Table I in turn.

The simplest transport protocols are those that do not guarantee end-to-end re-
liability, and implement no congestion control. Surge (TinyOS) and CTP [Gnawali
et al. 2009] can be thought of as implementing such a simple transport protocol.
CentRoute/DataRel [Stathopoulos et al. 2005] centrally computes efficient source
routes to individual motes on demand and provides a TCP-like abstraction for
transporting data from a mote to a nearest gateway in a tiered network. It im-
plements a fixed number of end-to-end retransmissions to improve reliability, but
does not incorporate congestion control. RBC [Zhang et al. 2003] is a hop-by-hop
reliable transport scheme optimized for real-time many-to-one delivery of bursty
event data, and uses retransmission scheduling to increase reliability and reduce
latency. Koala [Musaloiu-E. et al. 2008] is a data retrieval system optimized for
bulk data delivery at low duty cycles. In Koala, the gateway initiates bulk delivery
by waking up and installing routing paths on the motes dynamically. However, nei-
ther RBC nor Koala were designed for continuous flows, and they do not guarantee
end-to-end reliability.

Next come the class of transport protocols that provide end-to-end reliabil-
ity, but implement no congestion control. RMST (Reliable Multi-Segment Trans-
port) [Stann and Heidemann 2003] and the transport protocol implemented in Wis-
den [Xu et al. 2004] and Tenet [Paek et al. 2010] are examples of such protocols.
RMST is a hop-by-hop reliable transport protocol built on top of Directed Diffu-
sion [Intanagonwiwat et al. 2002] in which loss is repaired hop-by-hop using caches
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in the intermediate nodes. RMST guarantees reliability, but it is designed for larger
and more capable platforms. Wisden’s transport protocol (Tenet’s is very similar)
provides end-to-end reliability of sensor data transmitted from a field of sensors
to a single sink. However, in both these systems, the rate at which this data is
transmitted by a node must be manually set by a system administrator.

Some research has examined centralized congestion control without end-to-end
reliability guarantees. QCRA [Bian et al. 2007] (Quasi-static Centralized Rate
Allocation) is a centralized rate allocation scheme that tries to achieve fair and near-
optimal rate allocation for each node given the topology, routing tree, and link loss
rate information. ESRT (Event-to-Sink Reliable Transport) [Sankarasubramaniam
et al. 2003], is also a centralized rate control scheme for event-driven applications
where the base station requests all source nodes to increase or decrease rate in
order to achieve the desired event reliability. But ESRT assumes that the sink can
communicate with all sources in one hop, and has only been evaluated in simulation.

There is a body of work that has designed distributed congestion control schemes
without regard to end-to-end reliability. IFRC (Interference-aware Fair Rate Con-
trol) [Rangwala et al. 2006] is a distributed rate allocation scheme that uses queue
size to detect congestion, shares the congestion state through overhearing, and con-
verges to fair and efficient rates for each node. Even though IFRC does not provide
end-to-end reliability, it is closest in spirit to our work in that it attempts to find
a fair and efficient transmission rate that avoids congestion collapse. We quantita-
tively compare IFRC and RCRT in a later section, but note that a) RCRT has
greater flexibility than IFRC since many different traffic allocation policies can be
implemented in the RCRT sink without changing any code at the sensor nodes, and
b) RCRT does not require sophisticated parameter tuning for stability as IFRC
does. WRCP (Wireless Rate Control Protocol) [Sridharan and Krishnamachari
2009] is another recently proposed distributed rate control scheme that uses an es-
timate of receiver capacity and estimates of active flow counts to allocate fair rates
to each node. It does not provide end-to-end reliability, and RCRT is more flexible
and requires less parameter tuning than WRCP as well. Although WRCP con-
verges faster to a less oscillatory rate allocation than IFRC, RCRT achieves better
goodput than WRCP. Also different from RCRT is work on congestion mitigation:
Fusion [Hull et al. 2004] uses hop-by-hop congestion control and CODA (Conges-
tion Detection and Avoidance) [Wan et al. 2003] uses end-to-end flow control along
with hop-by-hop back-pressure for this purpose.

Finally, some work has examined distributed congestion control of end-to-end
reliable transport. STCP [Iyer et al. 2005] proposes to use RED [Floyd and Jacob-
son 1993]-style congestion detection in sensor nodes and a slightly modified form of
TCP end-to-end. To our knowledge, STCP has not been evaluated on a real wire-
less testbed. By contrast, Flush [Kim et al. 2007] is a reliable transport protocol
designed for large diameter sensor networks. Unlike in RCRT, at any instant at
most one node can transport its data to the sink using Flush. Also, Hop [Li et al.
2009] is a recently proposed wireless transport protocol that uses reliable per-hop
block transfer and backpressure flow control. It eliminates the overhead and la-
tency involved in end-to-end control, but it is designed for larger and more capable
platforms with sufficient memory.
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Not included in the taxonomy described in Figure I are protocols for reliable dis-
semination. PSFQ [Wan et al. 2002], Deluge [Hui and Culler 2004], and TRD [Paek
et al. 2010] are reliable dissemination protocols designed for reprogramming or re-
tasking the sensor network from a base station, and not for transport of data in the
other direction. Also omitted from Figure I is prior work on congestion sharing in
wired networks (for example, Ensemble-TCP [Eggert et al. 2000], and Integrated
Congestion Management Architecture [Balakrishnan et al. 1999]). These propos-
als, though not directly applicable to sensor networks, bear some resemblance to
RCRT’s centralized congestion control.

3. RATE CONTROLLED RELIABLE TRANSPORT

In this section, we start by describing the goals of RCRT and discuss how its overall
design meets those goals. We then delve into the details of individual components
of RCRT: end-to-end reliability, congestion detection, rate adaptation and rate
allocation. We conclude with a discussion of RCRT’s limitations.

3.1 Design Goals

RCRT is designed for sensor networks in which sensor readings are transmitted
from one or more sensors (sources) to a base station (or sink). It is also applicable
to tiered sensor networks [Paek et al. 2010], where sensors may be transporting
sensor readings to the nearest gateway (master, in the terminology of [Paek et al.
2010]), which in turn routes the messages to a designated upper-tier node (which
we call the sink). RCRT does not require all sensors to be transmitting data. More
generally, sensors may start and end data transmissions at arbitrary times that are
not known a priori.

Six goals guide the design of RCRT. They are:
Reliable end-to-end transmission. Our first goal is to achieve complete end-

to-end reliability of all data transmitted by each sensor to a sink. Of course, this is
only possible if the network is not partitioned: that is, for each source, there exists
a network level path to the sink where each link has a non-zero packet reception
rate. This goal is motivated by emerging high data rate applications which are
loss-intolerant; examples of these applications include networked imaging [Rahimi
et al. 2005], acoustic source localization [Ali et al. 2007], and structural health
monitoring [Chintalapudi et al. 2006]. In each of these cases, processing algorithms
are extremely sensitive to packet loss, and they are rarely interested in inter-node
data aggregation. For example, source localization algorithms use time difference
of arrival between comparable samples at different nodes, and structural monitor-
ing algorithms estimate structural mode shapes by correlating comparable samples
observed at different nodes. In either case, the loss of samples can adversely affect
the accuracy of the algorithm.

Network Efficiency. Our second goal is to maintain the network at an efficient
operating point. Specifically, we wish to avoid congestion collapse [Floyd 2000],
a regime in which sources are sending data faster than the network can transport
them to the base station. In this regime, no useful work gets done by the network,
since packets are repeatedly lost and continually retransmitted. In addition, we
wish to ensure that sources transmit their sensor readings to the base station at
as high a rate as possible. Since sources may start transmitting sensor readings at
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arbitrary times, this rate cannot be determined a priori, but must be adaptively
discovered.

Support for concurrent applications. While much prior work on sensor
network transport has focused on supporting a single sensing application, we wish
to explicitly support multiple concurrent applications in RCRT. For example, a user
might want to run a network diagnostic application while a sensing application is
running, or run an actuation application depending on the results reported from an
environmental sensing application. Future sensor network deployments are likely
to evolve to being multi-user or multi-application systems, so it is important to
consider this design criterion at the outset.

Flexibility. Another goal is to allow different applications to choose different
capacity allocation policies. A capacity allocation policy determines how the overall
network capacity is divided up among the different sources. In some homogeneous
deployments, where all the sensors are generating data at exactly the same rates,
it may be necessary to divide up the capacity equally (in a fair manner). In
other cases, some sources might need a proportionally larger allocation since, for
example, they might be transmitting images. An important sub-goal is that this
flexibility should not come at the expense of requiring code modifications on the
sensors; this is clearly desirable. This goal distinguishes our work from distributed
congestion control mechanisms that implicitly embed a traffic allocation policy
within the network. For example, IFRC can only support fair and weighted fair
allocations [Rangwala et al. 2006].

Minimal Sensor Functionality. We wish to keep as much of the protocol
functionality out of the sensors as possible. This goal is motivated by the constraints
of the current generation of sensors. More generally, however, it is motivated by the
observation that, for our problem, it is possible to achieve overall system simplicity
by moving as much of the intelligence as possible out of the sensor network and
into the sink.

Robustness. Finally, we require that RCRT be robust to routing dynamics
and to nodes entering and leaving the system. This implies that traffic allocations
to sensors can dynamically change, as can the locations of congested nodes. The
system must be able to dynamically adapt to these changes.

3.2 RCRT Overview

To describe RCRT, we introduce the following notation and terminology. We define
a sink as an entity (software program, or part thereof) which runs on a base station
(or an upper-tier node in a tiered network) and which collects data from one or
more sensors (sources). Let S be the set of sensor nodes that have data to send to
a sink, and K the set of all sinks in the network. RCRT is oblivious to the kind
of data sourced by the sensors: they can be raw samples, processed time series,
images, and so forth. More than one sink can be running concurrently in the sensor
network. We use the notation fi,j to denote the flow of data from source i ∈ S for
sink j ∈ K. Of course, this flow is delivered from the source over (possibly) multiple
hops to the base station. A sensor i may source several flows fi,j for different sinks
j. Finally, each sink j is associated with a capacity allocation policy Pj which
determines how network capacity is divided up across flows fi,j for ∀i ∈ S. The
simplest Pj is one in which each flow fi,j gets an equal share of the network capacity
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Function Where How

End-to-end Source
End-to-end NACKs

Loss Recovery and Sink

Congestion Detection Sink Based on time to recover loss

Rate Adaptation Sink
Based on total traffic, with additive increase

and decrease based on loss rate

Rate Allocation Sink
Based on application-specified

capacity allocation policy

Table II. RCRT Components

(a fair allocation). We give more examples of Pj later.
RCRT provides reliable, sequenced delivery of flows fi,j . Furthermore, RCRT

ensures that, for a given application j, the available network capacity is allocated to
each flow according to policy Pj . Specifically, each flow fi,j is allocated a rate ri,j(t)
at each instant t that is in accordance with policy Pj . Thus, for a fair allocation
policy, all sensors would receive equal ri,j(t).

How does RCRT achieve all this? Table II describes the various components
of RCRT. End-to-end reliability is achieved using end-to-end negative acknowl-
edgments. A particularly novel aspect of RCRT is that its traffic management

functionality resides at the sink. Specifically, each sink determines congestion lev-
els and makes rate allocation decisions. Once sink j decides the rate ri,j , it either
piggybacks this rate on a negative acknowledgment packet, or sends a separate feed-
back packet, to source i. The source nodes simply react to the feedback provided
by the sink.

At the sink, RCRT has three distinct logical components. The congestion detec-

tion component observes the packet loss and recovery dynamics (which packets have
been lost, how long it takes to recover a loss) across every flow fi,j , and decides if
the network is congested. Once it determines that the network is congested, the rate

adaptation component estimates the total sustainable traffic R(t) in the network.
Then, the rate allocation component decreases the flow rates ri,j(t) to achieve R(t),
while conforming to policy Pj . Conversely, when the network is not congested, the
rate adaptation component additively increases the overall rate R(t), and the rate
allocation component determines ri,j(t). In our current implementation, multiple
sinks do not cooperate with each other to determine congestion, adapt or allocate
rates; doing so is likely to provide higher efficiency gains and a more equitable rate
allocation, and we have left this to future work.

RCRT satisfies our design goals (Section 3.1). By design, it provides end-to-end
reliability and attempts to keep the network operating efficiently while supporting
multiple applications, each with its own capacity allocation policy. Much of the
traffic management functionality in RCRT is centralized at the sink, keeping the
sensors as simple as possible.

Finally, our assumptions about the link layer and the routing layer are largely
consistent with current practice. Although our experiments are conducted using
the default CSMA MAC layer in TinyOS, the design of RCRT does not depend
on any features specific to a particular MAC layer. Link-level retransmissions at
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the MAC layer can improve the performance of RCRT but are not essential for its
correctness. We discuss this in more detail in Section 3.8, and verify our argument
through evaluation in Section 4.4.

We assume that the sensor nodes run a routing protocol that dynamically selects
a path from each node to the sink and also a reverse path from the sink to each
node. Also, RCRT does not assume symmetric routing between a source and
the sink. Our experiments (Section 4) are conducted using TinyOS’s tree-based
routing protocol, MultiHopLQI, but it can work with other routing protocols such
as CentRoute [Stathopoulos et al. 2005] which satisfy these requirements.

Finally, RCRT focuses on the transport protocol itself. Cross-layer techniques
for congestion control that exploit radio, MAC or routing protocol features are
beyond the scope of this work.

In the following sections, we discuss the detailed design of RCRT. As described
above, RCRT sinks act independently in rate allocation decisions. So, in what
follows, we drop the subscript j, with the understanding that all the behavior
described below refers to a sink and its associated flows.

3.3 End-to-end Reliability

Unlike TCP [Jacobson 1988], RCRT implements a NACK-based end-to-end loss
recovery scheme to guarantee 100% reliable data delivery. The sink detects packet
losses and repairs them by requesting end-to-end retransmissions from source nodes.
This design leverages the fact that the base station has significantly more mem-
ory and can keep track of all missing packets. Each sensor node stores a copy of
every data packet that it originates in its local retransmit buffer when transmit-
ting the packet to the sink. The sink keeps track of sequence numbers of packets
that it receives on each flow. A gap in the sequence number of received packets
indicates packet loss. The sink maintains a list of missing packets per flow. When
losses are detected, the sequence numbers of the lost packets are inserted into this
list. Entries in this list of missing packets are sent as negative acknowledgments
(NACKs) by the sink to each source. The use of NACKs avoids an “ACK implo-
sion” [Floyd et al. 1997], where the acknowledgments of successful receptions sent
by the sink overwhelm the network. Upon receiving a NACK, the source retrans-
mits the requested packets to repair the losses. Also, the source determines when it
can safely overwrite packets in the retransmit buffer by looking at the cumulative
ACK sequence number piggybacked in all feedback packets (Section 3.7 describes
cumulative ACKs and feedback packets).

The sink also maintains a list of out-of-order packets for each flow to provide
in-order delivery of data packets to the application. This list contains packets that
are received at the sink but have not been passed to the application layer because
there are one or more gaps in the sequence numbers. For example, if sequence
numbers [1, 2, 3, 5, 6] have been received so far, packets 5 and 6 are inserted into the
out-of-order packets list. When packet 4 is received, the sink passes packets 4, 5, 6
to the application and removes 5, 6 from the out-of-order packets list.

RCRT uses the per-flow lists of missing and out-of-order packets for detecting
congestion and adapting rates, as we shall discuss below.
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3.4 Congestion Detection

An important technical challenge for RCRT is the design of a mechanism for con-
gestion detection. Various techniques have been proposed in the wireless and sensor
network literature to measure the level of congestion at a node. Broadly speaking,
these techniques either directly measure the channel utilization around a node [Wan
et al. 2003], or measure the queue occupancy at the node [Hull et al. 2004; Rang-
wala et al. 2006]. These techniques are similar in spirit to approaches that attempt
to detect incipient congestion in Internet routers [Floyd and Jacobson 1993; Katabi
et al. 2002]. By contrast, RCRT attempts to measure, at the sink, whether the net-

work is congested. This approach is closer in spirit to approaches in wired networks
that have attempted to detect congestion at the ends [Jacobson 1988; Ramakrish-
nan and Jain 1990], but with one important difference: in RCRT, a sink has a more
extensive view of network performance than, for example, a TCP sender, since the
sink receives traffic from many sources.

However, it would be incorrect to merely borrow congestion detection methods
used in wired networks. For example, TCP uses a single packet drop to infer that the
network is congested. In a wireless network, it is well known that such a congestion
detection mechanism can result in extremely poor transport performance because
wireless links tend to exhibit relatively high packet loss rates.

Accordingly, RCRT bases its congestion detection mechanism on a completely
different approach. This approach is in line with RCRT’s primary goal of pro-
viding end-to-end reliability. Its congestion detection mechanism is based on the
following intuition, derived from our early experimental deployment and discussed
in Figure 1: that the network is uncongested as long as end-to-end losses are re-
paired “quickly enough”. This intuition permits a few end-to-end losses caused by
transient congestion, or by poor wireless links. Furthermore, it permits the sources
to transmit at a higher rate even if there are occasional end-to-end losses, since
those losses can be recovered by the mechanism described in the previous section.
For this reason, RCRT uses the “time to recover loss” as a congestion indicator.

Recall that RCRT maintains a per-flow list of packets that have been received
out of order, and also a per-flow list of packets that are missing (Section 3.3).
Now, the sum of the length of these two lists minus 1 indicates how many packets
should have been received after the first unrecovered packet loss, which reflects how
much time has passed since the first unrecovered loss. Ideally, we would want the
average time taken to recover a loss to be around one round trip time (RTT). If
that property holds, the network is not congested in the sense that loss recovery
is functioning properly. If it takes more than few RTTs to recover the losses, then
the network is more likely to be congested. Since the expected number of packets
received during one RTT is riRTTi, if the sum of out-of-order packet list length
and the missing packet list length is riRTTi, then roughly one RTT has passed
since the first unrecovered loss (recall that ri is the rate assigned to source i; we
have omitted the time dimension in the notation for simplicity). Denote by Fi

the length of source i’s out-of-order packet list, and by Gi the length of source i’s
missing packet list, at some instant.
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Then,

Vi =
Fi + (Gi − 1)

riRTTi

is a measure of the number of RTTs it would take to recover the loss. RCRT
uses the exponentially weighted moving average of this value Vi as the measure of
average congestion level, denoted by Ci, for source i. Thus, Ci = 2 means that it
takes around 2 RTTi’s on average to repair losses for node i. (Section 3.7 explains
how RTT is estimated.)

RCRT detects congestion by using a simple thresholding technique. If the Ci

exceeds an upper threshold U for any source i, we say that the network is congested.
RCRT declares the network under-utilized when Ci falls below a lower threshold
L for every i. The gap between U and L is the desired congestion level in steady
state that allows for some losses to achieve higher throughput while ensuring timely
loss recovery. RCRT updates the Cis for every flow whenever a packet is received
from that flow. It then decides whether the network is congested or under-utilized
or otherwise, based on the algorithm described above. RCRT performs different
actions in the congested and under-utilized states, as described in Section 3.5.

We use L = 0.2 and U = 2 as our thresholds, and the intuition behind this
is as follows. The lower threshold L = 0.2 corresponds to the case where a lost
packet takes around one RTT to recover and roughly one packet gets lost every

five successful data packets ( (1+0+0+0+0)
5 = 0.2). If the packet losses are less fre-

quent than this and are recovered well, the network should not be congested. The
upper threshold U = 2 corresponds to the case where a packet is lost every five
successful data packets, and this loss is recovered only after around four RTTs

( (1+2+3+4+0)
5 = 2). On the one hand, thresholds should be conservatively large

since a flow’s RTTi increases dramatically when the network transitions from an
uncongested to a congested state. On the other, small thresholds can account for
the fact that Ci is lower than the actual time to recover loss since it is averaged
over successfully received packets as well as the losses. Thus, large values for L and
U will increase the rates faster, but may result in oscillatory behavior. Smaller L
and U will allow RCRT to be more stable, but may require a longer convergence
time. A high L and low U may be fast and stable, but the smaller gap between
them will lead to frequent rate changes that will incur higher feedback overhead.
We experimentally choose our threshold values to balance these constraints and
ensure that RCRT reacts to congestion in a timely manner, but does not react to
congestion earlier than it should.

3.5 Rate Adaptation

The second major challenge in RCRT is the design of a mechanism to adapt trans-
mission rates in response to congestion (or lack thereof). Rate adaptation tech-
niques have been studied widely in the literature. Most transport protocols addi-
tively increase flow rates (or, as in TCP [USC/ISI 1981], windows) in the absence
of congestion, and multiplicatively decrease flow rates when congestion is detected.
Chiu et al. [Chiu and Jain 1989] show that this AIMD approach guarantees stabil-
ity and convergence to a fair and efficient allocation. While RCRT uses AIMD, it
adapts the total aggregate rate of all the flows as observed by the sink, rather than
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the rate of a single flow. In spirit, this is similar to XCP [Katabi et al. 2002], but
there are some qualitative differences: XCP’s decisions are made at a bottlenecked
router, and XCP adapts rate based on the excess capacity at a link. We describe
RCRT’s rate adaptation design now.

Let R(t) denote the sum of the currently assigned rates ri(t) for all flows i.
RCRT uses AIMD on R(t). When the network is not congested, RCRT increases
R(t) additively,

Increase: R(t + 1) = R(t) + A

where A is a positive constant2, independent of the number of flows in the network.
When the network is congested, RCRT decreases R(t) multiplicatively:

Decrease: R(t + 1) = M(t)R(t)

where M(t) ∈ (0, 1] is a time-dependent multiplicative decrease factor. The sym-
bol t represents the discrete time instants at which RCRT makes rate adaptation
decisions. An alternative design would have been to individually control the rates
of each flow. However, since the sink has a greater perspective into network per-
formance, designing the rate adaptation to control the total aggregate rate of the
network allows the control algorithm to be independent of the number of flows, and
less oscillatory when there are a large number of flows.

Two questions remain: When are rate adaptation decisions made? How is M(t)
determined? We address these questions next.

Whenever RCRT determines the network is congested (Section 3.4), it applies
the rate decrease step described above, computes a new rate allocation for all the
flows (Section 3.6), and sends the new rate ri for each flow to the corresponding
source. It doesn’t make another rate reduction decision until it observes the effects
of the previous decision. To do this, RCRT waits conservatively for at least three
times the maximum value of RTTi. This usually allows enough time for the rate
feedback to reach the sources, and for the sources to send enough packets so that
congestion measures at the sink are appropriately updated. Thereafter, if a packet
is received from some flow i, and Ci is still above the upper threshold U , another
rate decrease step is triggered, but only if fi reports that it is using the rate assigned
in the previous rate adaptation step. This last check ensures that RCRT does not
react to stale information; especially in times of congestion, RCRT’s RTT estimates
can be slightly off and this step ensures that RCRT reacts only after the source has
had a chance to respond to the previous rate adaptation. Finally, if the network is
under-utilized, RCRT applies the increase rule above, but only if three times the
maximum RTTi plus three times the current inter-packet interval (1/ri) has expired
since the last rate adaptation decision. In the rate regime at which sensor networks
operate, the inter-packet interval can sometimes be higher than the RTT; using
three inter-packet intervals reduces the frequency of feedback generation during
rate increase, at the expense of a more conservative increase. RCRT also refrains
from increasing the rate if there are un-recovered burst losses 3 in any single node,
even if their Ci is below L. We added this rule because burst losses at low Ci are

2We have used A = 0.5 pkts/sec for our experiments.
3We currently define three consecutive losses as burst losses.
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has been polynomial curve-fitted from the experimentally collected data. ri(t +1) is the new rate
after M(t) reduction, and r′

i
(t+1) is the expected total traffic after M(t) reduction. X-axis is the

offered load ri. Y-axis represent both packet delivery ratio pi (right axis), and the expected total
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often a symptom of the onset of congestion, when a flow moves from uncongested
state to a congested state.

In most transport protocols, the multiplicative decrease factor is constant (0.5
in TCP). However, because RCRT has a comprehensive view of network behavior
across different sources, it can do better than simply halve R(t). In RCRT, when
a packet is received from flow fi and that packet causes Ci to exceed the upper
threshold U , M(t) is computed based on the loss rate experienced by fi. What is
the intuition for this? Suppose that fi’s packet delivery ratio is pi. This means
that, every second, ripi packets out of ri are being delivered to the sink without
end-to-end loss. Furthermore, feedback traffic, roughly proportional to ri(1 − pi)
must be delivered by the sink to the source in response to these losses.4 Then the

expected amount of traffic to and from the sink is ri

pi

and ri(1−pi)
pi

respectively. This

adds up to total traffic of at least r′i = ri(2−pi)
pi

for node i in the network.

We know that this level of traffic (r′i(t)) was not sustainable, since the flow was
congested. But, the last time that a rate adaptation decision was made, a source
rate of ri(t) was deemed sustainable, assuming no end-to-end losses. Given a packet
delivery rate pi, it would now be safe to set fi’s rate such that the total amount of

traffic is ri(t). To do this, we should reduce fi’s rate to: ri(t + 1) = pi

2−pi

ri(t), so

that r′i(t + 1) ≡ ri(t). However, RCRT is a little bit more conservative than that.
It reduces the overall total rate R(t) by that factor, by setting the multiplicative

4In RCRT, a list of missing information can be packed into a single NACK. In this analysis, we
assume that only one missing packet is included in each NACK packet. This can happen when

the losses are infrequent and spread out uniformly over time.
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decrease factor M(t) to be:

M(t) =
pi(t)

2 − pi(t)

where fi is the flow that triggers the rate decrease. M(t) is larger than 0.5 for all
pi greater than 0.67. So, in regimes where the end-to-end packet reception rate is
high, RCRT can more efficiently adapt to congestion than protocols that employ
a fixed multiplicative decrease factor of 0.5.

We now give some intuition for how M(t) behaves for different values of ri(t).
To do this, we conducted an experiment consisting of 40 nodes, and measured the
average or smoothed value of pi as a function of ri. This is shown in Figure 2.
Also shown in that figure is 1) the total network traffic corresponding to a given ri

(labeled r′i(t)), 2) the value ri(t+1), which is the rate that would have been assigned
to node i by RCRT after its multiplicative decrease, and 3) the value r′i(t + 1),
which is the expected total network traffic corresponding to ri(t + 1) after the
multiplicative decrease. For this network, the network was empirically-determined
to be saturated at 1.1 pkts/sec per node (Section 4). Note that the estimated total
traffic r′i(t) increases drastically as the offered load ri increases above this capacity
line. We’d like to point out two important properties of M(t). First, regardless of
the value of ri, M(t) is always successful in assigning a rate ri(t + 1) which keeps
the aggregate rate below overall capacity, but also ensures that the expected total
traffic r′i(t+1) is below capacity. Second, M(t) is more aggressive when r′i(t) is well
above the network’s capacity. These two properties imply that M(t) is sufficient
to move RCRT out from a congested state to an uncongested state regardless
of when the congestion was detected and rate decrease was triggered. Moreover,
this detection is rapid: even if several packets are lost due to congestion, a single
successful delivery suffices to trigger a rate decrease.

Loss Rate Estimation. Thus far, we have not described how pi(t) is calculated.
RCRT keeps track of estimated path loss rate (1 − pi(t)) for each flow using the
Average Loss Interval method discussed in [Floyd et al. 2000]. It uses the average
interval (in number of packets) between loss events to estimate the loss rate of a
flow. Denote the interval between m-th and m + 1-th loss on flow i as si,m. Then,
for the recent 1 ≤ m ≤ n losses, the average loss event interval ŝi for flow i is
calculated as,

ŝi(1,n) =

∑n

m=1 wmsi,m∑n

m=1 wm

ŝi(0,n−1) =

∑n−1
m=0 wmsi,m∑n

m=1 wm

ŝi = max(ŝi(1,n), ŝi(0,n−1))

where s0 is the interval since the most recent loss and wm is the weight given
to each loss interval in the history. The larger of the two quantities ŝi(1,n) and
ŝi(0,n−1) is selected so that the most recent loss with small s0 does not cause severe
underestimation of ŝi. We have followed the analysis in [Floyd et al. 2000] and
used n = 8 and w = [1, 1, 1, 1, 0.8, 0.6, 0.4, 0.2] as our parameters. Intuitively, these
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choices give greater weight to recent loss periods, and lesser weight to more distant
loss events. Then we compute pi(t) from

1 − pi(t) =
1

ŝi(t)

We chose the Average Loss Interval (ALI) method over others after experimen-
tally verifying that it was more robust to parameter choices than the alternatives.
A window-based method that estimates loss rates based on some window of the
number of packets or time is highly sensitive to the choice of window. An EWMA
approach is sensitive to the choice of gain, and includes a significant history of
losses. By contrast, the ALI method always looks at a fixed number of loss events,
and preferentially weighs the recent ones. This helps RCRT be more responsive to
the onset of congestion.

3.6 Rate Allocation

Once the total rate R(t) is calculated by the rate adaptation mechanism, the role of
RCRT’s rate allocation component is to implement the capacity allocation policy
Pj associated with its sink. This is a novel aspect of RCRT; to our knowledge,
most prior work has (implicitly or explicitly) embedded a capacity allocation policy
within the rate allocation mechanism.

RCRT’s rate allocation component essentially assigns rates ri(t) to each flow
in keeping with the rate allocation policy Pj such that the individual flow rates
sum up to R(t). Because RCRT decouples rate adaptation from rate allocation,
it is possible to obtain this flexibility. We see this flexibility as being crucial, since
it is unclear that there is, a priori a preferred policy for sensor networks (unlike
the Internet, which is a shared infrastructure, and for which some form of fairness
makes sense). RCRT’s rate allocation component is similar to XCP’s [Katabi et al.
2002] fairness controller, but offers greater flexibility.

Our current prototype contains three different policies.
Demand-proportional. In this policy, each flow expresses a desired rate, that

we call its demand di. This policy allocates rate ri to each node i proportional to
its demand di such that the fraction (ri(t)/di) is the same for all i;

ri(t)/di = ρ(t) ∀i ∈ S

As long as we use same ρ(t) = ρi(t) for all node i, demand-proportional allocation
follows. We compute ρ(t) as follows:

D =
∑

i∈S

di

R(t) =
∑

i∈S

ri(t)

ρ(t) =
R(t)

D
(1)
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where D is the sum of all dis. Then, the new rate for each node i simply becomes:

ri(t) = ρ(t) · di

Demand-limited. In this policy, R(t) is divided among all the flows equally,
except that no flow gets a higher rate than di. Given R(t), there exists a simple
greedy algorithm for computing a demand-limited rate allocation.

Fair. This allocation policy assigns an equal share of R(t) to all flows, regardless
of di. Flow demands are ignored in this policy.

As an example, consider a scenario where two nodes A and B demands for
1 pkt/sec and 2 pkts/sec respectively, and the network can only support 2.4 pkts/sec
total. Then, the Demand-proportional policy will allocate 0.8 and 1.6 pkts/sec, the
Demand-limited policy will allocate 1.0 and 1.4 pkts/sec, and and the Fair policy
will allocate 1.2 and 1.2 pkts/sec, to nodes A and B respectively.

While we have not experimented with other policies, our prototype software is
written modularly to easily accommodate other policies. For example, it is easy
to implement a weighted allocation policy, where each source gets a rate allocation
proportional to a configured weight wi (weighted allocation is similar to demand-
proportional allocation, with the only difference that in the latter, a source is not
assigned a rate higher than its demand). This weighted allocation policy is a
generalized form of priority allocation, in which some nodes are given higher priority
than others. Finally, new rate allocation policies should not require any changes to
the protocol (or to code on the sensors) — they can simply be configured at the
sink.

3.7 Other Details

In our description, we have left out several details of RCRT. We describe them
here briefly for completeness.

Source Node Behavior: In RCRT, each source node initiates a flow by
first establishing an end-to-end connection with the sink. RCRT uses a three-
way handshake connection establishment mechanism similar to that of TCP where
the third ACK is substituted with the first data packet. While doing this, the
source tells the sink its desired data rate di (although this information can, in
principle, also be just configured at the sink), and the sink tells the node the
rate ri. This three-way handshake also allows RCRT to guess an initial RTT
estimate. Once a connection has been established, the node transmits packets
on this connection. Each node originates data at rate at most ri assigned by
the sink. The rate ri is enforced by a token bucket with rate ri. Each packet
contains sequence number, flow ID, and the rate of the corresponding flow. The
rate ri regulates only the new packets that are sourced by this node. End-to-end
retransmissions are not constrained by this rate, nor are forwarding and link-level
retransmissions performed the lower layers of the protocol stack.

Since rate allocation and loss recovery are controlled end-to-end by the sink,
each node simply reacts to the sink. When a node receives a packet from the sink
with new rate r′i (this is usually sent in a feedback packet which may or may not
contain NACK information, see below), the node adjusts the token bucket rate
accordingly. When a node receives a feedback packet with NACK information, the
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node retransmits those missing packets.

Finally, each source has a fixed-size retransmit buffer which contains sent packets
that have not been acknowledged. Clearly, a source cannot store an infinite num-
ber of packets for potential retransmission. To efficiently manage the retransmit
buffer, each feedback packet (described below) includes a cumulative ACK sequence
number, which indicates the last sequence number that the sink has received con-
tiguously without any missing packets. The source can safely remove packets in
the retransmit buffer that are covered by the cumulative ACK sequence number.

When the retransmit buffer is full, the source stops sending new packets and
retransmits the packet whose sequence number is one higher than the last acknowl-
edged packet at a rate of min( ri

2 , 1
RTT

). The source does this until it is told that
the sink has received those packets and hence it is safe to overwrite the buffers.
When this packet has been received at the sink, loss recovery is triggered, the rate
is adjusted for all nodes, and a feedback packet is sent. The retransmit buffer rarely
fills up since a cumulative ACK is piggybacked in every feedback packet. Addition-
ally, to prevent a stall, each source requests explicit feedback from the sink when
its retransmit buffer is more than half full. It does this by setting a bit in every
outgoing packet. To minimize the number of feedback transmissions while allowing
for enough packets to be in transit, the buffer must be large enough (>> 2ri/RTTi

packets).

Feedback packets: Every feedback packet sent to a source i contains the
assigned rate ri, a list of NACK ed sequence numbers, a cumulative ACK, and the
RTTavg (see below) value for that node. Thus, every feedback packet is completely
self-contained so that, even if one of these is lost, a subsequent feedback packet
suffices to adjust the node’s rate, and recover from loss.

RCRT has to be careful in sending feedback packets, since they represent signif-
icant overhead. When a packet is received at the sink from node i, the sink sends
a feedback to the node only when at least one of these four conditions have been
met: one or more missing packets have been detected; the node is sending at a rate
different from the assigned rate; a duplicate packet with an already acknowledged
sequence number has been received; or, a feedback packet has been explicitly re-
quested by the node. However, RCRT is careful not to send feedback more often
than once every RTOi, defined as RTTavg + 2 ∗ RTTvar, where RTTavg is the av-
erage RTT (see below), and RTTvar is the mean deviation of RTT. This rate limit
trades-off increased convergence time for lower overhead, especially in times of con-
gestion. Finally, recall that rate adaptation decisions are made on RTT time-scales,
also reducing the rate of sending feedback packets.

RTT estimation: Finally, the sink estimates the RTT of each node using
feedback packets. RCRT does not require any time synchronization mechanism to
do this. The sink records the time Ti when it sends a feedback packet to node i.
Node i remembers the time T ′

i at which it had received the feedback. When node
i next sends a packet to the sink at time T ′′

i , it calculates the interval T ′′

i − T ′

i and
piggybacks this value in the packet. Upon reception of this packet at time T ′′′

i , the
sink can calculate the instantaneous RTT sample value RTTinst,i by (T ′′′

i − Ti) −
(T ′′

i − T ′

i ). RCRT uses an exponentially-weighted moving average of this value to
get the estimated RTTavg,i for node i. Earlier in this section, when we have referred
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to RTTi, we have meant RTTavg,i.

3.8 Discussion

Three minor details of RCRT are worth mentioning. One is that any NACK-based
scheme suffers from not being able to detect the loss of the last packet (or the
contiguous loss of the last few packets), since it relies on the successful reception
of a later packet. In RCRT, we detect and recover from such losses during con-
nection tear-down: after they are done sending data, sources explicitly tear-down
the transport connection, at which point they synchronize sequence numbers and
repair the last loss (if any). The second is that in large networks, the maximum
RTT can be high and since RCRT makes decisions on RTT timescales, the network
may converge slowly. The third is the case when several consecutive packets are
lost due to high congestion. Until a subsequent data packet is received, the sink will
not notice the congestion, hence RCRT’s reaction may be delayed. RCRT’s reac-
tion may also be delayed when several consecutive feedbacks are lost due to high
congestion. However, at least one packet from at least one of the congested nodes
will eventually be delivered, and this will bring the rates down sufficiently (M(t),
Section 3.5). The reduced rates will be applied to at least the nodes that can re-
ceive the feedback packets, and this in turn will make some capacity room for the
feedback packets to reach the other congested nodes. Hence, RCRT will re-gain
control.

A fourth detail requires a little more explanation. Our current RCRT implemen-
tation uses link-level retransmissions, and a natural question to ask is: How would
RCRT perform in the absence of link-layer retransmissions? To us, this question
is ill-posed: in wireless networks with link loss rates approaching 30%, trying to
design an end-to-end ARQ-based reliability mechanism without link-layer retrans-
missions is a fundamentally bad idea, since it would rely on expensive end-to-end
retransmissions to repair loss. That said, with a limit on the number of retransmis-
sions as in RCRT, there may be scenarios in which the end-to-end packet delivery
rate is still low. In this case, pi (Section 3.5) will be low, and the multiplicative de-
crease factor could be lower than 0.5 (the constant multiplicative decrease used by
TCP). Thus, in this regime, RCRT may be more conservative than TCP’s AIMD,
but that mechanism it not known to work well in lossy conditions anyway; it is
unrealistic to expect efficient and reliable delivery in a network where the packet
delivery ratio is extremely poor. In those conditions, the best approach would be
to re-provision the network by re-deploying some nodes, or adding capacity using
extra nodes or introducing tiers. We evaluate the effect of link-level retransmissions
in Section 4.4.

Finally, we address the question: does RCRT really avoid congestion collapse?
There are two cases to consider. When source nodes hear feedback from the
sink, RCRT’s multiplicative decrease function M(t) (Figure 2) aggressively re-
duces source sending rates, allowing the network to recover from congestion. When
a source does not hear feedback, the source sends at ri(t) for a while, but it eventu-
ally fills up its retransmit buffer and stalls, effectively sending one packet per RTT
(Section 3.7). This is a conservative solution, since the source needs to “probe” by
sending at least one packet to recover from transient path failures, and the RTT
is the right timescale to do this. (Of course, more conservative approaches, like
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exponentially backing-off the probe interval are possible, and we have left these to
future work). When it is stalled, the source does not congest the network, allow-
ing the network to recover (if, indeed, the loss of feedback packets was caused by
congestion).

There are several open questions in the design of RCRT. First, we have not
examined inter-sink cooperation. Having such a mechanism in place would help
administrators control capacity allocation across different applications and provide
higher efficiency gains. Second, our current design does not support a policy which
gives excess bandwidth to unconstrained sources. In most of the topologies we have
experimented with, almost all sources are constrained by one bottleneck wireless
region. However, there can exist topologies where some sources may not be so
constrained, and it might be beneficial to allocate higher rates to these sources
while rate limiting the congested sources only. Since RCRT does not have insight
into the network, it cannot easily distinguish between these sources. Even if the sink
observed a set of uncongested flows, it cannot determine how those flows interfere
with other flows. So, trying to allocate higher rate to those flows might exacerbate
congestion on other flows.

Finally, we conclude with a discussion of an important aspect of congestion con-
trol design that we have ignored so far: what should the “application” do if the
data generation rate exceeds the rate offered by the congestion control protocol?
Or, how should the application adapt to the rate control performed by the network
stack? Prior work in congestion control for WSN has assumed infinite backlog of
data that can be arbitrarily delayed or dropped. However, we argue that the ap-
plication should adapt to rate control. Applications can adopt many methods to
ensure that the offered rate matches the rate that can be supported by the un-
derlying network. Simple periodic sensing applications can sub-sample the stream
so that the user-perceived quality degrades more gracefully. However, such sub-
sampling should be accompanied by appropriate low pass filtering to avoid altering
the spectral characteristics of the data. Bulk transfer applications can either adjust
the chunk generation rate, use adaptive compression techniques, or employ local
processing. To support such adaptation, a transport protocol must provide precise
and timely information about the currently achievable rate to the application, and
RCRT is capable of providing this information.

4. EVALUATION

In this section, we present results from an extensive performance evaluation of our
implementation of RCRT on a wireless sensor testbed.

4.1 Implementation and Methodology

We have implemented RCRT in TinyOS for the motes5 and in C for a PC-class sink
device running Linux. The RCRT module on the motes provides a transport-layer
interface that a sensor application can use to initiate a flow to the sink and send
data packets. Also, the module implements a token bucket, whose rate is set to the
rate allocated by the sink, to regulate data packets generated at that node. The

5RCRT has been implemented in both TinyOS 1.x and TinyOS 2.x and their performance are

similar.
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Fig. 3. A snapshot of routing topology constructed by MultihopLQI

memory footprint of RCRT for the mote is approximately 5252 code bytes and
374 bytes of RAM for a packet payload size of 64 bytes. The code size excludes
RCRT-independent basic components such as timer, flash, MAC, and routing. It
uses 64KB of external flash for a retransmit buffer. All other mechanisms described
in Section 3 including loss detection, rate adaptation, rate allocation, congestion
detection, and RTT estimation are implemented at the sink.

We have evaluated our RCRT implementation on an indoor wireless sensor
network testbed6. Most experiments are conducted on a 40-node subset of this
testbed, but we also show results from some larger topologies. Each sensor node in
our testbed is a Moteiv Tmote with an 8MHz TI-MSP430 micro controller, IEEE
802.15.4-compatible CC2420 radio chip, 10KB RAM, and a 1MB external serial
flash memory. These motes are deployed over 1125 square meters of a large office
floor.

We have used MultihopLQI in TinyOS as our routing tree protocol and default
CSMA in TinyOS as our MAC protocol for our experiments. In MultihopLQI, each
node dynamically selects its parent to construct a routing tree to the base station
using the link quality indicator provided by the CC2420 radio chip. Since a sink-to-
mote reverse path is required in RCRT (for the feedback packets), we have added
a data-driven reverse path construction mechanism. This works as follows. Each
node maintains a routing table. When it receives a packet with source address S
from a neighbor N , it adds a route entry to S with next hop N . Feedback packets
are forwarded using this routing table. Finally, our implementation uses link-layer
retransmissions based on chip-level acknowledgments with up to 4 retransmissions
unless stated otherwise. We experiment with different link-layer retransmission
strategies in Section 4.4.

Figure 3 is a snapshot of the routing tree constructed by the MultihopLQI dur-
ing one of our experiments. Due to changes in wireless link quality over time, the
routing tree changes. Figure 14 shows how frequently each node changed its parent
in one of our experiments; our experiments were conducted in a dynamic environ-
ment, with significant routing variability. However, in most of our experiments, the
routing protocol consistently produced 5 to 7-hop deep routing trees. We show the
effect of different topologies/node density in Section 4.3.

6Tutornet: Tiered Wireless Sensor Network Testbed. (http://enl.usc.edu/projects/tutornet/)
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Design Goal Section

Reliable end-to-end transmission All

Network Efficiency Section 4.2.1

Section 4.2.2

Section 4.2.5

Section 4.3

Support for concurrent applications Section 4.2.4

Flexibility Section 4.2.4

Section 4.2.3

Robustness Section 4.2.3

Section 4.3

Table III. Experiments to demonstrate that RCRT meets its goals.

In each of our RCRT experiments, each source originated at least 1000 data
packets. This traffic is synthetic, and does not represent the workload generated by
any sensor; however, since RCRT is oblivious to the actual data, this is an appro-
priate methodology. Each experiment ran from 30 minutes to an hour depending
on the achieved rate. We logged every packet received at the sink along with the
current allocated rate at the time of packet reception.

4.2 Results

In this section, we describe experimental results that validate our RCRT design,
demonstrate that RCRT achieves the goals discussed in Section 3.1, and show that
RCRT outperforms the state-of-the-art in distributed congestion control. Table III
summarizes our methodology: for each high-level goal described in Section 3.1, we
have designed at least one experiment to validate or quantify that goal. (One
exception is the goal of minimal sensor functionality, which follows from RCRT’s
design). Some experiments are used to validate or quantify more than one goal.

In most cases, we evaluate RCRT’s performance using its rate allocation profile

which is the plot of the assigned sensor rates ris as a function of time. In some
cases, particularly to show the efficacy of RCRT’s capacity allocation policies, we
plot the average goodput achieved by the node during the experiment.

We must emphasize that we have run RCRT experiments under very general
settings. All experiments reported here are from an actual implementation running
on a real testbed. The underlying routing and MAC layers are not optimized in any
way, nor have the experiments been run at special times to avoid interference. Our
testbed is susceptible to significant interference both from other 802.15.4 radios and
from 802.11 radios, and this interference is highly time-varying.

Finally, we note that RCRT achieves 100% reliable packet delivery in all ex-

periments we have conducted for this paper. For this reason, we do not focus on
RCRT’s end-to-end reliable transmission mechanism, but instead focus on how well
RCRT’s congestion control works: what rates are assigned, how RCRT reacts to
dynamics, and so on.

4.2.1 Baseline. We start with a simple baseline experiment that illustrates some
of the important features of RCRT. In this experiment, RCRT runs on a 40-node
network. One node is a base-station, and the others are programmed to send data
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Fig. 5. Per-node goodput in the 40-node experiment with fair rate policy

back to the sink. The fair rate allocation policy is used at the sink.
Figure 4 shows the rate allocation profile ri(t) allocated to every node by the

sink as a function of time. The solid line represents the instantaneous allocated
rate logged at the time of every packet reception. The dashed line shows the
average achieved goodput from all nodes. Since a fair-rate policy was used, all
nodes received the same goodput. This graph shows the efficiency of RCRT’s rate
adaptation mechanism. Unlike other AIMD schemes that drastically reduce the
rate in response to congestion by halving the rate (or, as in TCP, the window)
RCRT tries to stay near the steady state average rate by making small adaptive
reductions. At the beginning of the experiments, the allocated rate over-shoots to
almost 1 pkts/sec, and drops down to around 0.55 pkts/sec (almost half). This is
because when the nodes first start sending packets, the network was not congested,
and the RTT estimate takes some time to stabilize. But after this transient, the
allocated rate converges and stays within 25% of the average goodput. This less
oscillatory behavior results from RCRT’s rate adaptation design which makes rate
adaptation decisions based on the overall traffic, rather than on a single flow.
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Fig. 6. Packet reception plot for all nodes in the 40-node experiment with fair rate policy
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Fig. 7. Percentage of packet repaired by end-to-end loss recovery mechanism in the 40-node
experiment

Figure 5 shows the per-flow goodput achieved at the sink. Each bar represent the
average goodput achieved by each source during the entire experiment. This graph
shows that nodes achieved approximately fair goodput: the difference between
the largest and the smallest goodput is only 0.015pkts/sec! This is a surprising
result since one might expect that allocating same sending rate to all nodes in
a multi-hop environment would penalize nodes farther away from the sink, since
they traverse more hops. RCRT maintains fairness because its rate adaptation
mechanism conservatively adapts to the source that experiences congestion most
along the path to the sink.

Figure 6 shows the packet reception plot for all the nodes in the network. Each
point on the curve is the time at which a packet with a particular sequence number
was received. Since all of the packets were eventually delivered, the progress in
sequence numbers approximately corresponds to the progress in number of packets
received. The slope of each plot is the estimate of the instantaneous goodput that
each node achieves at that point in time, and this figure shows that all nodes have
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Fig. 8. Feedback packet overhead (percentage relative to data packets) in the 40-node experiment

approximately fair goodput throughout the experiment. The small spikes below
the curve represent lost packets being repaired by RCRT’s end-to-end loss recovery
mechanism.

How many packets are recovered via end-to-end retransmission? Because of link-
layer retransmissions, for all but 6 nodes, only 5% of the packets incurred end-to-
end retransmissions, and for none of the nodes were more than 9% of the packets
recovered end-to-end (Figure 7). This is encouraging, since one of the original
design goals of RCRT’s end-to-end reliability mechanism was to avoid a feedback
implosion. We can quantify the overhead of feedback in RCRT. In this experiment,
4549 feedback packets were sent in total for 39000 data packets, representing an
overhead of 11.6% (Figure 8. This feedback was used both to recover from losses
and to adapt to congestion. Contrast this with TCP, in which every connection
can see half as many ACK packets as data packets (most TCP implementations
acknowledge every other packet).

4.2.2 Optimality. The baseline experiment demonstrates some of the salient
features of RCRT’s algorithms. The next question we address is: How close does
RCRT’s rate allocation get to the optimal? One way to evaluate the performance
achieved by RCRT is to determine the maximum fair and reliable rate sustainable
on the same network with same routing and MAC layers. We address this ques-
tion by experimentally evaluating the goodput received by two different kinds of
transport mechanisms at different offered loads. Best-effort transport sends data
at a configured rate, but includes no end-to-end reliability and does not adapt to
congestion. Reliable transport sends data at a configured rate, includes end-to-end
reliability, but does not adapt to congestion. In our implementation for the ex-
periments, best-effort transport is essentially MultihopLQI with application-level
sequence numbers, and reliable transport adds end-to-end loss recovery (Sec.3.3)
on top of that.

Figures 9 and 10 plot the average goodput over all nodes for two transport mech-
anisms at various offered loads. The thick solid curve shows the average goodput
achieved at the sink, the error-bars parallel to the y-axis indicate the maximum
variation in node goodput at each offered load, and the straight dotted diagonal
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line represents the rate achievable with infinite capacity.
Figure 9 shows the maximum fair rate achievable without end-to-end reliability

on our 40-node testbed. Until the offered load reaches 1.1 pkts/sec per node, all
nodes achieve approximately fair goodput (small error bars) and 95.4% reliability
(not shown). However, as the offered load increases above 1.2 pkts/sec, variability
in goodput increases, and the reliability drops below 90%.

Figure 10 represents the achievable rate with end-to-end reliability, but no con-
gestion control. Our network is able to sustain up to 0.9 pkts/sec per node. There-
after, it experiences congestion collapse: acknowledgments and retransmissions use
up much of the network capacity, resulting in less goodput and lower fairness than
best-effort transport.

Since RCRT provides end-to-end reliability, we should compare its achieved rate
with that of Figure 10. If we define 0.9 pkts/sec as the maximum sustainable rate
for reliable transport, then, as Figure 11 shows, RCRT achieves nearly 0.8 pkts/sec
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per node, or 88% of the sustainable rate for reliable transport. In this experiment,
we assigned all nodes equal demand. The figure plots this increasing demand on
the x-axis. Of course, since RCRT is congestion-adaptive, sources only send at the
assigned rates, not at their demands.

Another way to evaluate RCRT’s optimality is to consider a single-source net-
work. We conducted a single-source single-sink experiment and found that best-
effort transport can achieve up to 95 pkts/sec, and RCRT can achieve up to 60
pkts/sec on average (As an aside, note that RCRT is capable of achieving high
goodput (60 pkts/sec). In our previous experiments, the low per-node goodput
(0.8 pkts/sec) is mainly a function of the topology, not our protocol.) We can re-
late these experimental results to those observed on our larger topology as follows.
In Figure 3, an instantaneous snapshot of the routing tree during one of our exper-
iments, we estimate that node 19 is the most congested node: it has 19 children, 3
siblings, 3 children of the siblings, and hence a parent (node 13) that has total of 26
children. Let’s say every node sends 1 unit of data per 1 unit of time. Then node
19 receives 19 units of data and sends 20 units of data (including it’s own data) per
unit time. Also, node 19 contends with 6 units of data from its 3 siblings and their
children to reach its parent. Finally, node 19 contends with 27 units of data that
the parent (node 13) transmits to its parent (node 1). Hence, the channel capacity
around 19 → 13 must be shared at least by total traffic of 72 units of data per unit
time (= 19 + 20 + 6 + 27), even if we assume an ideal MAC. (We call this 72 the
maximum contention factor of this routing topology.) This means that the optimal
sustainable rate in this network is 60/72 = 0.83 for RCRT and 95/72 = 1.32 for
best-effort transport. These numbers match what we observe above, and confirms
that RCRT closely achieves what the topology allows; RCRT in a 40-node net-
work achieves 96% of what it can achieve in a single node network. We discuss how
resilient RCRT is to the effect of network topology in Section 4.3.

In summary, RCRT manages to assign near-optimal rates by having congestion
control functionality at the sink. We have compared the various transport protocols
with the same radio, MAC, and routing layers, to ensure that our results are not
affected by differences in the underlying protocol layers. Our results show that it is
possible to estimate and manage overall network capacity in a centralized manner,
and achieve high efficiency.

4.2.3 Robustness. In this section, we conduct an experiment that demonstrates
RCRT’s robustness, and also validates its flexibility in capacity allocation. In this
experiment, nodes join and leave dynamically, and different nodes are assigned dif-
ferent demands. The network is configured to use a demand-proportional allocation
policy. We set up three sets of flows that request different demands. Specifically,
in this experiment, 31 flows start at time 0. Sixteen of these (which we will call set
A) demand 1.0 pkts/sec and the other 15 flows (set B) demand 0.5 pkts/sec. The
remaining 8 flows (set C) join in after 500 seconds with a demand of 4 pkts/sec.
All flows send the same total number of packets, but set C finishes earlier because
of its higher demand.

Figure 12 shows the rate allocation profile for this experiment. Recall that RCRT
allocates exactly the same rate to all flows having the same demand. During the
first 500 seconds of the experiment, sets A and B were allocated roughly the rate
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Fig. 13. Per-flow goodput in the 40-node experiment with demand-proportional rate allocation

policy when 8 nodes join in after 500 seconds

that they demanded: 0.5 and 1 pkts/sec. When the third set of flows C joined in
with significantly higher demand, the network immediately experienced congestion,
and the flows in both A and B were forced to reduce their rates. Between 500 and
1000 seconds into the experiment, all three sets of flows were active, and were
all allocated rates proportional to their demands. When the flows in set C had
completed at around 1000 seconds, the network had enough capacity to satisfy the
demands of flows A and B. This result shows that RCRT is robust to node joins
and leaves, its congestion detection mechanism and the rate adaptation mechanism
successfully adapted the network-wide aggregate rate to the network state, and the
rate allocation mechanism indeed allocated rates proportional to the demands of
each node.

Figure 13 plots the goodput achieved by each node for this experiment. While
nodes with identical demands achieved comparable goodputs, the average goodput
between different sets is, interestingly, not exactly proportional to their demands.
Specifically, the average goodput achieved by sets A, B, and C is 0.44, 0.77, and
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2.04 pkts/sec respectively, while their demands are 0.5, 1.0, and 4.0 pkts/sec re-
spectively. This is because each set experienced network congestion for different
fractions of their lifetimes. Since the flows in set C experienced congestion during
their entire lifetime and only achieved half the goodput of their demand, the average
ri

di

during this congested period is about 0.5 (2.04/4.0 ≈ 0.5). Since set B experi-
enced congestion and was assigned half the demanded rate for half of its lifetime,
its expected goodput is around 75% of what it would have achieved in an uncon-
gested network. This roughly matches the goodput that set B actually achieved
(0.5 1

2 + 1.0 1
2 = 0.75 ≈ 0.77). Finally, set A was assigned half the rate for 1/4 of

its lifetime, which amounts to 0.25 1
4 + 0.5 3

4 = 0.4325 pkts/sec, which is close to
the observed 0.44 pkts/sec. Thus, RCRT’s demand-proportional allocation policy
results in instantaneous, but not long-term, demand-proportional rate assignments.
It is possible to implement a long-term demand-proportional allocation policy in
RCRT, and we have left this to future work.

Finally, Figure 14 shows how frequently each node changed its routing parent
during this 38-minute experiment. Even though, on average, each node changed
its parent 3.4 times, RCRT assigned rates correctly to all the flows. This also
highlights the robustness of RCRT’s design and implementation.

4.2.4 Flexibility. In this section, we demonstrate that RCRT achieves two more
of its original goals: that it can support multiple concurrent applications, and that
each application can use different capacity allocation policies.

We ran two separate “applications” with two sinks. Each application ran on a dif-
ferent sink and used different rate allocation policies: one used demand-proportional
allocation, and the other used demand-limited allocation. The two sinks at the
upper-tier were connected via 802.11b wireless. Nodes 15 and 30 were the gateway
motes on our testbed connected to the two sinks. Each sink was a Stargate running
Linux. The motes used a multi-sink version of MultiHopLQI, so that two trees were
formed, one rooted at each sink. We used additional routing software that allowed
both sinks to receive data packets from all motes. Thus, this set up represents two
applications running on a tiered network.
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Set App. ID Demand Num.pkts Num.nodes
A1 1 1.0 pkts/sec 1000 19
B1 1 0.5 pkts/sec 500 18
A2 2 1.0 pkts/sec 500 19
B2 2 0.5 pkts/sec 250 18

Table IV. Setup for two-application, two-sink experiment
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Fig. 15. Rate allocated to each node in 39-node experiment with two applications running on two
sinks

In this experiment, we used 37 motes. The experiment was set up as shown in
Table IV. The demand-proportional application comprised two sets of nodes A1

and B1, the first set being assigned twice the demand as the second. The demand-
limited application comprised the same two sets (denoted A2 and B2) respectively,
with identical respective demand assignments. The total aggregate demand was 56
pkts/sec, enough to saturate the network.

Figure 15 shows the rate allocation profile for this experiment. Flows in applica-
tion 1 (sets A1 and B1) were assigned rates proportional to their demands, and flows
in application 2 (sets A2 and B2) were assigned rates limited by their demands.
Thus, notice that even though flows in A1 and A2 had the same demand, they
each get different rate allocations because the applications use different capacity
allocation policies. Also note that all flows in the demand-limited application get
the same rate; the sustainable network rate was below the 0.5 pkts/sec demanded
by B2. All flows experienced congestion from time 0 till about 600 seconds when
all four sets of flows were active (a total of 74 flows). After set B2 finished at
600 seconds, the other flows were allocated higher rates to take advantage of the
increased available capacity.

Finally, Figure 16 shows the goodput achieved at the sink by each node. Two
flows (for two different applications) from the same node are stacked together to
show the total goodput achieved by each node. The average goodputs achieved by
the two applications are 0.718 pkts/sec and 0.508 pkts/sec respectively, which totals
1.226 pkts/sec. This brings up an important point. The total achieved goodput is
approximately 60% higher than the single-sink 40-node experiment (Section 4.2.1).
This comes from using a tiered network. The two sinks are near the center of the
network and roughly have comparably sized sub-trees. Moreover, the two sinks
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Fig. 17. Rate achieved by IFRC and RCRT in 30-node experiment

use 802.11b radios to communicate with each other, which has at least an order
of magnitude higher bandwidth. This experiment not only shows that RCRT can
support multiple concurrent applications on a tiered network with multiple sinks,
but also quantifies the capacity increase achievable by using RCRT on a tiered
network. Furthermore, although we have left inter-sink cooperative rate control as
future work, this experiment shows that independent congestion control decisions
made by different sinks resulted in reasonable (although not perfect) behavior.

4.2.5 Comparison. In this section, we compare the performance of RCRT with
that of IFRC [Rangwala et al. 2006], a recently proposed interference-aware dis-
tributed rate-control protocol, and also with WRCP [Sridharan and Krishnamachari
2009], another recently proposed distributed rate-control protocol.

Figure 17 shows the rate achieved by IFRC together with RCRT’s rate allocation
in a 30-node experiment. The two protocols are qualitatively different, since IFRC
does not provide end-to-end reliable transmissions. However, we are interested in
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Fig. 18. Rate achieved by IFRC and RCRT in a 30-node experiment with modified MAC param-

eters for software acknowledgment

comparing their congestion control efficacy: IFRC does distributed congestion con-
trol, while RCRT performs congestion control at the sink, and we explore to what
extent these approaches are quantitatively different. To compare these two proto-
cols, we run them on the same set of nodes with the same radio power. RCRT
was configured to use the fair allocation policy. However, IFRC has been evalu-
ated only on static routing trees [Rangwala et al. 2006], so we ran IFRC on an
empirically-determined “good” tree. 7 RCRT runs with dynamic routing enabled.

In Figure 17, the solid line represents the rate allocated to all nodes in RCRT,
and the dashed line represents the rate achieved by one of the nodes in IFRC.
Since all nodes were allocated the same rate in RCRT, a single line is sufficient
to show rate allocation of all nodes. In IFRC, all nodes adapt their rates in near-
synchrony, and rate plots for various nodes overlap with each other. We only plot
the rate adaptation plot for one node for clarity. The dotted horizontal lines show
the average rate achieved by each protocol during the experiment.

The results show that RCRT achieves an average rate of 0.824 pkts/sec in this
experiment, which is more than twice the rate achieved by IFRC: 0.293 pkts/sec.

This surprisingly large difference in the result deserves further investigation. Af-
ter extensive experiments, we have found that a hardware limitation of our current
platform degrades the performance of IFRC. IFRC, by design, requires the radio
and MAC to run in promiscuous mode and overhear the packets in the neighbor-
hood. However, our experimental platform (CC2420) does not permit the use of
hardware-level acknowledgments along with promiscuous mode. So the IFRC im-
plementation uses software acknowledgments for link-level retransmission, which
adds some software delays in the MAC layer and reduces IFRC throughput. When
RCRT uses the same software acknowledgment implementation as IFRC, RCRT’s
average goodput is about 1.7 times that of IFRC (Figure 18).

7Our IFRC experiments were executed by the lead author of the IFRC paper. We ran dynamic
routing in RCRT because the performance was similar to static and we wanted to emphasize the
fact that RCRT works over dynamic routing where as IFRC does not; a significant deficiency of

both IFRC and WRCP.
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We believe two main reasons account for this difference. The first, of course, is
that much of RCRT’s performance advantage comes from implementing its conges-
tion control functionality at the sink, which has a more global view of network state.
This results in less pronounced rate deviations in RCRT’s rate allocation profile. A
second reason is that IFRC aggressively avoids congestion whereas RCRT detects

congestion after it has happened. To avoid dropping packets, IFRC detects incipi-
ent congestion and aggressively cuts its rate when queues exceed a small threshold.
On the other hand, RCRT fully utilizes the network queues until packets are lost,
resulting in higher throughput. RCRT can afford packet loss, since it has a built-
in loss recovery mechanism. That said, it should be possible to improve IFRC
performance by varying its parameters and making it less aggressive in avoiding
congestion, at the possible expense of lower end-to-end goodput.

Recently, we have also compared the performance of RCRT with that of WRCP
[Sridharan and Krishnamachari 2009]. Since the code for WRCP was not publicly
available at the time of this writing, we ran RCRT on the same 40-node topology
as that in the WRCP paper and compared the RCRT results to the WRCP re-
sult in their paper [Sridharan and Krishnamachari 2009]. Specifically, on the same
testbed (Tutornet 8), we used exactly the same set of nodes, same radio power (5)
and channel (26), and same static routing topology as in their topology. The result
is that RCRT achieves an average rate of 0.84 pkts/sec, which is about 1.4 times
the rate reported for WRCP: 0.6 pkts/sec. Moreover, if we can assume that RTT
is roughly the double of end-to-end latency, then the latency achieved by RCRT
(Table V) is no greater than that achieved by [Sridharan and Krishnamachari 2009].
The reasons for this difference are similar as for IFRC: in particular, WRCP ag-
gressively avoids congestion by conservatively dividing the receiver capacity into
the estimated active flow counts.

4.3 Network Topology

In Section 4.2.2, we have shown that the low per-node goodput (0.8 pkts/sec) in
our baseline experiment (Section 4.2.1) is mainly a function of the topology, not
our protocol. Also, we have already mentioned that RCRT can achieve up to
60 pkts/sec on average in a single-source single-sink network. In this section, we
investigate how network size and topology affects the rate achieved by RCRT, which
in turn shows how well RCRT adapts to different topologies. We used a 40-node
network for our baseline experiment to enable comparison with IFRC and WRCP
(Section 4.2.5). In this section, we report results from two other network sizes, 80
and 20 nodes. We also report result from a 40-node network with different node
densities (by varying the RF transmit power) and network depth (by varying the
number of master nodes). Note that RCRT achieved approximately fair goodput
as well as 100% reliable packet delivery in all of these experiments.

4.3.1 Network Size. Table V summarizes the rate achieved by RCRT from var-
ious network sizes that we have experimented with. It also shows the estimated
achievable rate for each topology. This is calculated using the methodology de-
scribed in Section 4.2.2. Specifically, for the 80 node topology (Figure 19) we com-

8Tutornet: Tiered Wireless Sensor Network Testbed. (http://enl.usc.edu/projects/tutornet/)
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network max contention estimated achieved % feedback RTT
size hopcount factor rate rate achieved overhead (msec)

80 7 171 0.35 0.34 97% 18.5% 390
40 6 72 0.83 0.80 96% 15.8% 325
20 3 27 2.22 2.11 95% 14.1% 229

Table V. Rate achieved by RCRT for various network sizes and topologies.
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Fig. 19. A snapshot of routing topology constructed in a 80 node network

pute it as follows. In this topology, we estimate that node 17 is the most congested
node: it has 54 children, 3 siblings and their children, and hence a parent (node 8)
that has total of 58 children. Using the same calculation method as Section 4.2.2,
the channel capacity around 17 → 8 must be shared at least by contention factor
of 171 (= 54 + 55 + 3 + 59), even if we assume an ideal MAC. This means that the
optimal sustainable rate in this network is 60/171 = 0.35, which closely matches
the achieved rate. The achievable rate estimate was calculated for the 20-node net-
work in a similar manner. Thus, for three different network sizes, RCRT achieves
between 95-97% of the achievable rate on the corresponding topology.

Table V also shows the average feedback overhead, measured as the total number
of feedback packets divided by the total number of data packets, and the average
RTT achieved by RCRT. Notice that even when the network size doubles from 40
to 80 nodes, the overhead and RTT increase is less than 20%. This is only a small
increase. However, it is true that the overhead and latency will continue to increase
if the network size continues to grow. However, with a larger network, the overall
per-node throughputs will become vanishingly small, and it is not clear that such
a configuration would be useful for the kinds of applications we have considered in
this paper. Instead, in such cases, a tiered architecture with multiple sinks should
be employed to reduce the feedback overhead and improve throughput as described
below in Section 4.3.3.

4.3.2 Network Density. Next, we experiment with different network densities
by varying the RF transmit power in a 40 node network. This effectively changes
the node density and the routing depth of the network in a given physical area.
Table VI summarizes the rate, as well as the feedback overhead and RTT, achieved
by RCRT with varying RF transmit power. There are several things to note in
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RF Power configuration
3 5 7 11 15 19 23 27 31

dbm -25 ∼ -15 -10 -7 -5 -3 -1 0

hopcount
avg. 3.3 2.8 2.7 2.2 1.9 1.8 1.6 1.7 1.6
max. 7 6 5 4 3 3 3 3 3

avg. goodput 0.81 0.95 0.97 0.98 0.98 1.07 0.96 1.10 1.06
avg. overhead (%) 15.1 15.0 15.5 15.9 15.2 15.2 16.5 15.5 16.0

avg. RTT (ms) 548 505 396 363 359 348 305 311 290

Table VI. RCRT results on 40-node network with varying RF power settings.

Fig. 20. Layout of source and sink nodes in Tutornet.

this result. First, as expected, the network depth decreases as the transmit power
increases, and RTT is smaller when the network depth is smaller. Second, the
feedback overhead stays at around 15% regardless of the network density. Finally,
the rate achieved by RCRT is also fairly consistent even at different densities
for comparable depths. The latter two results are because the congestion usually
occurs near the sink and the total number of flows passing through that region
governs the achievable rate of the network. On the contrary, as we will see below
in Section 4.3.3, the rate and overhead achieved by RCRT will differ when the
number of flows passing through the congestion region changes. Thus, increasing
the transmit power within a given network is unlikely to improve the rate achieved
by the network.

4.3.3 Network Depth. In this experiment, we vary the number of sinks in the
network while keeping the number of nodes and RF power constant. Figure 20
depicts the layout of the source and sink nodes in our testbed where the darker
squares represent the sink nodes with the numbering in their added order. Table VII
summarizes the result from this experiment. The average and maximum hop count
(routing depth) decreases as the number of sinks increase. Thus the average RTT
also decreases. What is more important is that, unlike increasing the RF transmit
power, the rate achieved by RCRT improves significantly and the overhead incurred
also reduces as the number of sinks increase. This is because, as more sinks are
added to the network, and the number of flows that a single sink handles reduces,
and congestion is distributed among the several sinks. Thus, deploying additional
sinks in a given network is an effective way of improve the throughput, as well as
overhead and latency, achieved by RCRT.
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Number of Master(Sink) nodes
1 2 3 4 5 6

hopcount
avg. 2.8 1.6 1.5 1.4 1.3 1.0
max. 6 3 3 3 3 2

avg. goodput 0.87 1.33 1.62 2.32 2.56 2.78
avg. overhead (%) 15.8 14.6 15.1 13.9 13.3 13.5

avg. RTT (ms) 492 256 208 194 189 162

Table VII. RCRT results on 40-node network with varying number of sink nodes.
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Fig. 21. Goodput achieved by RCRT in the 40-node experiment with varying queue sizes and
maximum number of hop-by-hop retransmissions.

4.4 Sensitivity: Hop-by-hop Retransmissions and Queue Sizes

As we have mentioned earlier (Section 3.2), the design of RCRT does not depend
on any features specific to a particular MAC or routing layer. We only assume that
there exists at least one or more end-to-end path, with non-zero delivery probability,
from each sensor node to the sink and also a reverse path from the sink to each
node. However, as we have mentioned in Section 3.5 also, the performance of
RCRT’s rate adaptation may depend on the quality of these end-to-end paths. If
the end-to-end packet delivery ratio is extremely poor, RCRT may over-estimate
congestion and assign lower rates than optimal.

In this section, we investigate the effects of lower-layer parameters to the perfor-
mance of RCRT. Specifically, we look at the effects of the limit on the number of
hop-by-hop retransmissions (the retransmission limit) at the MAC layer and the
size of the forwarding queue at the routing layer, since these two factors may impact
path packet loss characteristics.

Figure 21 shows the goodput achieved by RCRT in the 40-node experiment, with
varying queue sizes and varying retransmission limits. The bottom dash-dot line
(with squares), the dotted line (with crosses), and the solid line (with circles), each
show the goodput achieved by RCRT when the retransmission limits are 0, 2 and
4, respectively. There are several observations that we can make from this figure.
First, RCRT achieves very low goodput (∼0.1 pkts/sec) regardless of the queue
size when there are no hop-by-hop retransmissions. On the other hand when the
retransmission limit is either 2 or 4, the queue size impacts the rate achieved by
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Fig. 22. PRR achieved by best-effort transport (z-axis) with varying forwarding queue sizes (x-
axis) and varying maximum number of hop-by-hop retransmissions (y-axis).

RCRT. This is because, when there are no hop-by-hop retransmissions, successful
packet delivery probability is so poor that RCRT assigns low rates and the number
of packets in the network is very small, so the forwarding queue never fills up.

A second observation requires a more careful understanding. When the forward-
ing queue size is above a certain point (15 in this figure), a retransmission limit of
4 achieves better goodput compared to that of 2. However, when the queue size
is below a certain point (7 in this figure), retransmission limits of 2 and 4 have
similar goodput. This is because more hop-by-hop retransmissions result in higher
utilization of the forwarding queue and possible queue drops. In general, more
hop-by-hop retransmissions should result in better end-to-end packet delivery ra-
tio, and hence better goodput achieved by RCRT. However, when the queue sizes
are small, a higher rate results in more queue drops, which in turn takes away the
extra packet delivery achieved by more hop-by-hop retransmissions. Thus more
hop-by-hop retransmissions do not improve the goodput achieved by RCRT when
forwarding queue sizes are too small.

To verify the above arguments, we ran a series of experiments to measure the
end-to-end packet reception ratio (PRR) achieved by the best-effort transport in
the same 40 node network with varying forwarding queue sizes and varying retrans-
mission limits. Figure 22 is a 3-D plot of all the results: the z-axis represents the
PRR achieved by the best-effort transport, and the x and y axes plot forwarding
queue sizes and retransmission limits, respectively. Observe that when there are no
hop-by-hop retransmissions, the PRR is very poor regardless of what queue size we
use. However, when there are hop-by-hop retransmissions (limit of 2 or 4), queue
size does affect PRR. Another observation is that, when the queue size is very small
(1, the minimum possible), the PRR is very poor even with hop-by-hop retrans-
missions. However, when the queue size is sufficiently large relative to the network
size, hop-by-hop retransmissions can significantly improve end-to-end PRR. These
results confirm that our reasoning about Figure 21 is valid.

In summary, the performance of RCRT may depend on the end-to-end packet
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Additive Increase Parameter ‘A’
0.25 0.5 1 2 4 5 10 20

avg. goodput 0.72 0.91 0.93 0.99 0.95 0.62 0.66 0.56
avg. overhead (%) 18.5 16.5 15.6 14.5 16.8 31.2 28.4 34.0
avg. RTT (ms) 331 390 514 495 662 551 485 428

Table VIII. RCRT results on 40-node network with varying additive increase parameter ‘A’.

delivery ratio of the source nodes in the network. Hop-by-hop retransmissions at
the MAC layer and the queue size at the routing layer are two important factors
that may affect the end-to-end packet delivery. However, having a moderate queue
size (15 packets) and reasonable retransmission limits (4) result in good RCRT
performance, across all our experiments.

4.5 Additive Increase Parameter ‘A’

In this section, we investigate the effect of the value of the additive increase pa-
rameter A on the performance of RCRT. As we have discussed in Section 3.5,
RCRT additively increments the total aggregate rate R(t) by A when it observes
the network as under-utilized. If this A is too small, it will take long time for
RCRT to throttle its rate up to the steady-state level whenever the rate is below
it. If this A is too large, RCRT’s rate adaptation will oscillate significantly around
the steady-state level. Thus, setting the value of A incorrectly can result in sig-
nificant performance loss. For this reason, we explore the sensitivity of RCRT’s
performance to the choice of A.

Table VIII summarizes the average rate, overhead, and RTT achieved by RCRT
in a 40-node experiment with varying A. There are several observations that can
be made from this result. First, when A is too large (5 or higher), RCRT incurs
high overhead and achieves lower rate due to the oscillatory behavior of its rate
adaptation. This is because it increases the rate quickly and decreases frequently,
instead of spending more time near the steady-state rate (between the upper and
the lower threshold). Second, when A is too small (0.25 or lower), RCRT achieves
lower overall goodput because it takes long time for it to recover its steady-state rate
after a congested period. Note that this does not necessarily worsen the overhead
and RTT. Finally, RCRT achieves more or less comparable rates for a wide range
of A values, between 0.5 ∼ 4. In this range, the average overhead and average RTT
are also comparable. Thus, the result altogether shows that it is possible for RCRT
to select any value of A within this range; in our other experiments, we have used
a conservative value of A = 0.5.

5. REAL-WORLD DEPLOYMENT

In this section, we discuss a real-world deployment of RCRT, used in an imaging
application for bird nestbox monitoring at the James San Jacinto Mountain Re-

serve9 [Hicks et al. 2008]. This application used RCRT to reliably transfer images
of bird nestboxes in a large mountain area for three months.
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Fig. 23. A map detailing the location and topology of our deployment at James Reserve.

5.1 Motivation and Deployment

Studies have been taking place for several years at the James San Jacinto Moun-

tains Reserve on the breeding biology of some species of birds. These studies
involve observing the behavior of birds in nest boxes, specially placed to attract
birds. However, observing day-to-day changes in breeding behavior in these nest
boxes is extremely labor intensive. Each box spread over a large mountain area
must be checked daily by a biologist in the field. A wireless sensor network with
image sensors can help: the biologists can inspect the wirelessly delivered images
remotely, saving time and effort. For this purpose, we developed a wireless imag-
ing application on Tenet [Paek et al. 2010] using the RCRT protocol to transfer
images periodically taken by Cyclops [Rahimi et al. 2005] cameras. We deployed
this system, consisting of 5 master nodes and 19 motes, over 120,000 square meters
of the James Reserve, for 3 months between May 9th ∼ Aug 9th, 2008.

The goal of our application was to repeatedly collect, from every node, an im-
age along with environmental sensor readings as frequently as possible. Reliable
delivery is a requirement for our system, otherwise image quality can be severely
compromised. Each image is large (40 KB uncompressed), and the total network
data rate required to deliver images from all our nodes can easily overwhelm the
radio bandwidth. Our system uses lossless image compression to alleviate this
somewhat, but congestion control, which allows our application to adapt its im-
age transfer rate dynamically, is still necessary to avoid congestion collapse. It is
also necessary to achieve efficiency in the presence of network dynamics: in our
deployment, some nodes ran out of battery, and were unattended for a while, after
which the batteries were replaced and they rejoined the network; also, the wireless
environment changed as foliage grew during the 3-month period. For these reasons,

9http://www.jamesreserve.edu/
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Fig. 24. Link connectivity of each node: Packet reception rate and RSSI to next hop node.

we used RCRT as our transport protocol in this application.
In our deployment, we had one Linux server machine running as the RCRT sink,

and this server communicated with four Stargates which were placed around the
James Reserve to constitute the master tier of the network. The server and the
Stargates were connected via Ethernet and 802.11b wireless. Each Stargate was
connected to a Mica2 mote that acted as gateway to nearby sensor nodes. Each
sensor node was a Mica2 mote equipped with a Cyclops camera. The resulting
network topology is shown in Figure 23. While our system does support multihop
routing (and we did log some temporary multihop paths), nest box placement was
determined from a previous, single-hop deployment [Ahmadian et al. 2008].

5.2 Results

During the 3 month deployment period, RCRT delivered over 83 million packets
to collect 102,173 images from 19 sensor nodes. Since there were times when our
application was stopped for maintenance or debugging purposes, our networking
log files are discontinuous. Here we present the observations we made for one week
from July 21 to 28, 2008. During this period, there were total of 8453 attempts
to transfer an image from 19 nodes. Among these attempts, 8372 image transfers,
which corresponds to 99% of initiated RCRT transfers, were complete with 100%
packet delivery. For these complete images, the average data rate achieved by the
network was 1.1 packets/sec per node, and the average number of packets required
to deliver one image was 833.2. As a result, one image transfer took 12.6 minutes
on average (each image is 40KB, but had a variable size after compression, so there
was some variability in the number of packets required to deliver an image).

This data rate of 1.1 pkts/sec was achieved despite extremely poor link connec-
tivity. Figure 24 shows the end-to-end packet delivery ratio for each node when we
tested the network just before the deployment using best-effort delivery without
loss recovery. (e.g. node 905 had PRR of less than 50%). The figure also plots
the RSSI readings to nearest routing parent for each node. When we conducted
a single-source single-sink experiment with 433MHz Mica2 motes, we found that
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Fig. 25. Rate-allocation profile at James Reserve for single image transfer

RCRT can achieve up to 11 pkts/sec on average. 10 From Figure 23, notice that
Stargate 42871 at the top-left area of the map is the bottleneck where 8 sensor
nodes are trying to route through a single stargate. This means that the maximum
achievable rate in this topology cannot exceed 11/8 = 1.375 pkts/sec even with an
ideal MAC when fair rate allocation policy is used. Considering the extremely poor
link connectivities (Figure 24) and the fact that RCRT may over-estimate con-
gestion when PRR is very low (Section 3.5), the deployment result of 1.1 pkts/sec
(which is 80% of 1.375) is very good.

The reason that only 99% of the initiated RCRT transfers were complete is as
follows. Poor link connectivity for some nodes caused frequent packet losses and
delayed loss recovery severely. But our application terminated an image transfer
if no new image segment came in within 30 seconds. So whenever there were lost
packets near the end of image transfers that were not recovered within 30 seconds,
our application stopped without waiting for the RCRT loss recovery to complete.
Given more time, RCRT would have been able to correctly transfer those images.

Figure 26 is a snapshot of the rate allocation profile for 10 consecutive image
transfers during a 2 hour 45 minute period. Also, Figure 25 is a zoomed-in version
of Figure 26 which plots the rate allocated to each node for a single image transfer
during 13 minute period. There are several things to notice here. First, the
average data rate was consistently around 1.1 pkts/sec most of the time for most of
the image transfers. It is visually evident that RCRT’s rate adaptation stayed near
the steady-state average by making small rate reductions. Second, the reason that
the rate starts at 0.5 pkts/sec at the beginning of each image transfer is because
this was set as the initial value for our AIMD rate adaptation. (We start a new
RCRT connection for every image transfer). Finally, the rate shoots up to around
2.5 pkts/sec near the end of each image transfer. This is because there are multiple
nodes in the network and some nodes finish data transfer earlier than others due to
the variability in loss rates (Figure 24). When subset of the nodes finish transfer
earlier than others, there is left-over network capacity, which RCRT detects and

10We use an 80 byte TinyOS packet payload.
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Fig. 26. Rate-allocation profile at James Reserve for 10 image transfers (2 hour 45 minute period)

adapts to, so the incomplete transfers are allocated higher rates as more nodes
complete.

In summary, we have used RCRT for three months in a real-world deployment of
19-node network deployed over an area of 120000 square meters (Figure 23). During
this deployment, RCRT collected over 83 million packets reliably at a reasonable
rate despite highly variable individual node availability and wireless link quality.
Our deployment have shown that RCRT works well in real deployments.

6. CONCLUSIONS AND FUTURE WORK

RCRT is a reliable transport protocol for wireless sensor networks. It places its
congestion control functionality at the sink, whose perspective into the network
enables better aggregate control of traffic, and affords flexibility in rate allocation.
It supports multiple concurrent applications, and is robust to network dynamics.
Finally, RCRT’s rates are significantly higher than that of the state-of-the-art
in sensor network congestion control. We envision several interesting directions for
future work including coordinated rate allocation across sinks, differential treatment
for flows unconstrained by the bottleneck region, and improved convergence time
in networks with highly varing RTTs.
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