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Review
Glossary

Bayesian network: a graphical representation of the conditional dependencies

of nodes.

Cluster compactness: a measure for determining the degree of similarity of

nodes in a cluster.

Cluster completeness: a measure of how many nodes with the same property

are assigned to the same cluster.

Cluster connectedness: a measure of the density of the links between nodes in

a cluster.

Cluster purity or homogeneity: a measure of the homogeneity of the

characteristics of the nodes in a cluster.

Cluster stability: a measure of the degree of conservation of a cluster with

respect to the composition of the nodes when different parameters or datasets

are used to generate it.

Decision tree: a model that uses a tree-like graph of decisions and their

possible consequences.

Evidence code: a type of evidence supporting the assertion of the annotation.

Experimental evidence codes include: inferred from direct assays (IDA),

inferred from expression patterns (IEP), inferred from genetic interactions

(IGI), inferred from mutant phenotypes (IMP), and inferred from physical

interactions (IPI). More information about GO evidence codes can be found

online (http://www.geneontology.org/GO.evidence.shtml).

Evolutionary context: the co-gain or loss of genes through evolution. Also

called phylogenomic or phylogenetic profiling.

Gene fusion: an evolutionary event where two proteins in a species have been

fused into one protein in another species.

Genomic context: physical proximity of genes belonging to the same pathway

or process on the chromosome.

Gold standard data: data that have been experimentally validated and

published in primary research articles.

Granularity: specificity of a term in an ontology, often represented as the

distance from the root term.

Guilt-by-association: in function prediction, this is a conjecture that genes of

related functions share similar characteristics.

Machine learning: a branch of artificial intelligence dealing with learning from

data, often used for classification.

Network neighbors: nodes that are connected by a link in a network.

Neural network: a model based on the human neuron perception system.

Omics technologies: high-throughput experimental techniques that are applied
The great recent progress made in identifying the mo-
lecular parts lists of organisms revealed the paucity of
our understanding of what most of the parts do. In this
review, we introduce computational and statistical
approaches and omics data used for inferring gene func-
tion in plants, with an emphasis on network-based
inference. We also discuss caveats associated with net-
work-based function predictions such as performance
assessment, annotation propagation, the guilt-by-asso-
ciation concept, and the meaning of hubs. Finally, we
note the current limitations and possible future direc-
tions such as the need for gold standard data from
several species, unified access to data and tools, quanti-
tative comparison of data and tool quality, and high-
throughput experimental validation platforms for sys-
tematic gene function elucidation in plants.

How little we know
The elucidation of the genome sequence of many organ-
isms, one of the outstanding achievements of our genera-
tion, confirmed what most biologists already suspected –
that we know little about what most genes do. For example,
approximately 40% of Arabidopsis (Arabidopsis thaliana,
thale cress) and 1% of rice (Oryza sativa) protein-coding
genes have had some aspect of their functions annotated
based on experimental evidence (Figure 1) [1,2]. Moreover,
we know about the biochemical activity, subcellular loca-
tion, and biological role of only �5% of Arabidopsis genes
based on experimental evidence. It is difficult to determine
the number of experimentally characterized genes in pub-
lic databases for any plant species other than for Arabi-
dopsis and rice. This paucity and disparity in the level of
functional annotation in different plant species is a bottle-
neck for understanding how biological processes are orga-
nized, how they function, and how they evolved in plants.

Because empirical elucidation of gene function and
extraction of such information from the literature are
time-consuming processes, researchers have been turning
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to in silico methods for assistance in elucidating and
annotating gene function. Fortunately, the past decade
has seen a revolution in omics technologies (see Glossary)
that have generated copious amounts of data useful for in
silico function prediction. In this review, we examine the
different types of omics data that are being generated and
genome-wide.

Ontologies: controlled vocabulary systems with an explicit definition of

meaning and relationship with other terms in the system.

Predictive power: a measure of the accuracy of a prediction method.

Support vector machine: a computational method used for optimally

separating data into categories by drawing a hyperplane in a multidimensional

data space.

Weighted co-function network: a network where nodes represent genes and

links represent functional associations between those genes. The links are

assigned weights to represent the probability of two genes being functionally

associated.
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Figure 1. Status of gene function elucidation and annotation in plants: Arabidopsis thaliana, rice (Oryza sativa), grapevine (Vitis vinifera), soybean (Glycine max), maize (Zea

mays), potato (Solanum tuberosum), Medicago truncatula, and barley (Hordeum vulgare). (A) Each pie chart shows the proportion of genes that are annotated to a domain

of Gene Ontology (GO), molecular function, biological process, or cellular component, based on experimental evidence (green), computational predictions (blue), or

uncharacterized or unannotated (gray). GO annotations were downloaded from GRAMENE (http://www.gramene.org) on June 17, 2013 using BioMart. (B) Completeness of

gene annotation for A. thaliana. The pie chart shows the number and proportion of genes annotated to at least one GO domain. The Venn diagram shows the number of

genes annotated to each domain of GO based on experimental data. GO evidence codes [11] were used to distinguish experimentally derived annotations from

computationally predicted ones.
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the methods that can be used to infer the molecular
function, biological process, or cellular component of a gene
product.

What is in a function?
Gene function can mean different things to different peo-
ple. Therefore, it is important to use controlled vocabular-
ies for defining the function explicitly [3]. It is also helpful
to use the same vocabularies for describing functions to
maximize comparability across species. The Open Biologi-
cal Ontologies consortium provides a set of guidelines for
creating and improving ontologies and a forum for sharing
them [4]. The Gene Ontology (GO) vocabulary system
exemplifies the minimal information necessary to define
gene function by using three domains: cellular component
(subcellular components where the gene product acts),
molecular function (biochemical activities of the gene prod-
uct), and biological process (goals of the activities of the
gene product) [5]. For example, using GO, we can state that
the large subunit of the ribulose-1,5-bisphosphate carbox-
ylase oxygenase complex (RBCL) is involved in ‘carbon
fixation’ (GO:0015977, biological process) and works in
the ‘chloroplast thylakoid membrane’ (GO:0009535, cellu-
lar component) where it has ‘ribulose-bisphosphate carbox-
ylase activity’ (GO:0016984, molecular function). Other
2

commonly used ontologies in plant research include the
Enzyme Commission nomenclature for describing catalytic
reactions [6], Transporter Classification for transporters
[7], Plant Ontology for plant growth stages and anatomical
structures [8,9], and Mapman ontologies for biological
processes [10]. An important characteristic of these vocab-
ulary systems is that they are organized into hierarchical
structures that enable groupings, comparisons, and infer-
ences to be made at different granularities of function [11].
A disadvantage of ontologies is that the multiple parent–
child relationships make visualization and maintenance of
the ontologies non-trivial. An annotation of gene function
using these ontologies should be accompanied by explicit
evidence types and confidence measures and linked to
primary sources supporting the evidence [11].

What is in a network?
Just as a function can have different meanings, a network
can also have different meanings and purposes in biology.
Molecular networks that have been generated can be
grouped into three categories: associational, informational,
and mechanistic. Associational networks are akin to social
networks such as Facebook or LinkedIn. We can guess
things about a gene (or person) based on other genes (or
people) it is connected to. For example, properties of genes

http://www.gramene.org/
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can be identified from omics data and used to link the genes
that share the properties, resulting in a co-function net-
work [12]. How co-function networks are used to infer gene
function is described in more detail in this review. Infor-
mational networks process information (e.g., the Ethernet
or Internet). Signal transduction networks and genome-
wide metabolic networks where the nodes represent indi-
vidual functions are so far represented as informational
networks in plant biology [13]. Although information about
the nature of how the functions are linked in these net-
works can be used to predict genes that may perform the
functions, we will not discuss these approaches further
here. Mechanistic networks (e.g., the electronic circuit of a
computer or the lac operon) describe a system quantita-
tively and mechanistically [14]. A grand challenge in biol-
ogy is to uncover these mechanistic networks at scales of
increasing depth and breadth. The elucidation of all func-
tions encoded by a genome will be an important step for
tackling this challenge.

Omics data used in inferring gene function
Omics data can help elucidate functions of gene products
either by direct measurement or usage in inference pro-
grams. Typically, a particular type of omics data is useful
for elucidating functions in a particular GO domain. For
example, sequencing peptides from isolated subcellular
compartments is useful for assigning gene products to
cellular components [15], but is less valuable for assigning
to biological processes. In addition, similarity between
protein sequences enables molecular functions to be in-
ferred [16]. Finally, analyses of high-throughput interac-
tomes can help infer biological processes because
physically interacting proteins tend to be involved in the
same biological process [17].

The different types of omics data and methods that can
be used to predict the molecular function, biological pro-
cess, or cellular component of a gene product are described
below. Public repositories and the amount of available
plant omics data are listed in Table 1.

Genomic data

Advances in genome sequencing and assembly have made
it possible to sequence the genomes of more than 40 plant
species and nearly 7000 species from the other kingdoms
[18,19]. Genomic data can be used to infer molecular
Table 1. Availability and source of omics data relevant for predic

Plant species Genomes

(year published)a
Transcriptome RNA 

Microarray RN

Arabidopsis thaliana 2000 26 747 39

Oryza sativa 2002 5464 85

Vitis vinifera 2007 1064 7 

Hordeum vulgare 2009 2558 4 

Medicago truncatula 2009 1184 0 

Zea mays 2009 3275 58

Glycine max 2010 1565 67

Solanum tuberosum 2011 1061 16

aData from Genomes OnLine database (http://www.genomesonline.org/).

bData from ArrayExpress (http://www.ebi.ac.uk/arrayexpress/): downloaded June 16, 2

cData from BioGRID (http://thebiogrid.org/).

dData from NCBI (http://www.ncbi.nlm.nih.gov/structure/).
function and biological process. For example, protein se-
quence similarity is commonly used to transfer molecular
function annotation from one protein to another [20].
Molecular function annotation by sequence comparison
is commonly performed using programs such as BLAST
[20] and InterProScan [21]. Typically, sequence identity of
more than 60% can predict enzyme function with at least
90% accuracy [16]. A major pitfall of sequence-based infer-
ence is that high sequence similarity does not always
guarantee the same function [22] and, conversely, lack of
sequence similarity does not preclude similar function [23].
Furthermore, a substantial proportion of plant genomes
lack sequence similarity to any characterized genes [1],
making sequence similarity based molecular function in-
ference inapplicable.

Genomic data can be used to infer not only molecular
function but also biological process. For example, gene
fusion events have been used to infer biological processes
in prokaryotic and eukaryotic organisms, including plants
[24]. Genomic context information can also be used to
predict biological processes in prokaryotes. However,
eukaryotes show this tendency to a much weaker degree
than prokaryotes, although fungi and plants have been
reported to contain clustered genes for specialized metab-
olism [25,26]. Finally, evolutionary context analysis [27]
was applied to Escherichia coli and Arabidopsis genomes
and assigned 19 gene families of unknown function to
metabolic processes [28].

Transcriptomic data

Transcriptomic data capture changes in gene expression
levels of all genes in an organism and represent a rapidly
growing resource (Table 1). Co-expression analysis is based
on the observation that functionally related genes often
have similar expression profiles across different experi-
ments, and has become a powerful tool for reverse genetics
[29]. It is generally used to infer biological processes,
although it has also been used recently to support the
inference of cellular components [30]. Co-expression anal-
ysis has been successfully used to study many processes in
plants, including secondary cell wall biosynthesis, fatty
acid biosynthesis, and specialized metabolism [31–33]. In
addition, transcriptional regulation appears to be con-
served across species to a degree and co-expression analy-
sis across species can enhance the predictive power to
ting gene function

samplesb Protein

interactionsc
Genetic

interactionsc
3D structuresd

Aseq

1 16 697 171 2135

 0 0 129

0 0 19

0 0 111

0 0 15

 1 0 182

 0 0 136

 0 0 32

013.
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detect functional homologs [34–36]. However, the most
commonly used microarray platforms for plants are miss-
ing �40% of genes, which can lead to many false negatives.
Luckily, data from RNA sequencing are becoming abun-
dant enough to generate co-expression networks in Arabi-
dopsis [37].

Interactomic data

Many biological processes such as photosynthesis and
protein synthesis use multimeric protein complexes to
perform their function. Therefore, the interaction of two
proteins generally implicates that they act in the same
biological process and cellular component [17]. High-
throughput interaction data, often obtained through
yeast two-hybrid [38] or tandem affinity purification cou-
pled to mass spectrometry (TAP-MS) [39], are now avail-
able for several model organisms and have been used in
biological process prediction [40,41]. Although a substan-
tial amount of protein–protein interaction (PPI) data are
available for Arabidopsis, only approximately 2% of its
interactome has been tested [42]. There are virtually no
PPI data for any other plant species in public repositories
(Table 1). High-throughput TAP-MS is currently not ap-
plicable to plants in a high-throughput manner because it
requires efficient transformation. PPI data often have
false positive (spurious interactions) and false negative
(missing relevant interactions) rates that can reach 45%
and 50%, respectively [43]. Validating the interaction
data with at least two independent studies has been
suggested to improve the confidence and coverage of
the interactions [44,45].

Genetic interactions

Genetic interaction (GI) measures the extent to which the
phenotypes of one mutation in a gene are influenced by a
mutation in another gene. GI screens look for pairs of genes
that exhibit either suppression or enhancement of a phe-
notype when both genes are mutated, which would imply
that both genes are involved in the same biological process.
High-throughput detection of GIs enabled the rapid iden-
tification of biological pathways in yeast and predicted the
roles of uncharacterized genes in E. coli, yeast, and mam-
mals [46–48]. Unfortunately, only a limited number of GI
mapping studies have been performed and there are little
GI data available in public repositories [49], particularly
from plants (Table 1).

3D structures

Structure-based function prediction is motivated by the
observation that structurally related proteins often share a
similar molecular function [50–52]. However, despite sev-
eral structural genomics efforts, the number of available
structures is limited in plants (Table 1).

Process of systematic gene function elucidation
Most of the omics data can be used to build co-function
networks that are useful for inferring biological process-
es. The process of biological process inference using co-
function networks can be broken down into seven steps, as
shown in Figure 2. Typically, function inference uses the
guilt-by-association concept that tries to find similarity
4

between characterized and uncharacterized genes based
on some shared feature, and transfers the annotation
from knowledge donor (gene of known function) to knowl-
edge acceptor (gene of unknown function) [53]. Function
prediction begins with generating or obtaining omics data
from public repositories (Table 1, Figure 2A), linking
genes using a similarity measure (Figure 2B), and pro-
ducing a gene co-function network (Figure 2C), where
genes are represented as nodes and functional associa-
tions as links (also called edges in network analysis)
between the genes [12,54]. Weighting the links and inte-
grating the co-function networks generate integrated co-
function networks (Figure 2D) [55] that can be used for
gene function prediction and experimental validation of
the predictions (Figure 2E,F) [12]. Experimentally vali-
dated gold standard data (Figure 2G) are crucial for
assessing the quality of and integrating co-function net-
works [12,56]. A growing number of useful co-function
and co-expression tools using plant data, some of
which enable functional inference, are available online
(Table 2).

Integrating co-function networks
There are two advantages in integrating different types of
omics data to construct co-function networks [57]. First,
one type of data often reveals only one domain of gene
function. Therefore, combining data types can increase
prediction coverage. Second, a predicted functional associ-
ation between two genes is more likely to be true if it is
supported by multiple, independent data sources. Various
data types have been integrated and used for biological
process prediction in Arabidopsis [12,54]. Integrating dif-
ferent data types has been shown to outperform single data
type based co-function networks [12].

There are several ways of integrating different data to
build co-function networks, which have been reviewed
extensively [58]. Functional linkage is a binary classifica-
tion problem (gene A is or is not linked to gene B) for which
many machine learning and statistical algorithms exist.
Popular machine learning algorithms include support vec-
tor machines, Bayesian network, decision trees, and neural
networks (reviewed in [59]). The use of support vector
machines has been applied to integrate Arabidopsis co-
expression networks and protein sequences to improve
cellular component prediction [30]. Bayesian network
approaches are used extensively in function prediction
for Arabidopsis using multiple omics data (Table 2). Deci-
sion trees have been trained to predict the function of
yeast, mouse, and Arabidopsis genes by combining se-
quence and expression data [60]. Finally, neural networks
have been used to combine protein sequence features to
predict molecular function [61].

These methods can either predict gene function directly
or be used to construct weighted co-function networks for
inferring function using network properties. In addition,
global properties of co-function networks can help improve
the accuracy of function prediction. For example, normal-
izing the links in common between two genes against all
the links the two genes have to other genes in the network
can significantly increase the performance of network-
based inferences [62].
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Figure 2. Process of systematic function elucidation using omics data. (A) Omics datasets are generated. (B) The data are analyzed by appropriate methods to determine

similarities between genes. Gold standard data are used to find optimal parameter values and to train machine learning algorithms. (C) Each method generates a matrix of

gene–gene associations and can be visualized as a network. (D) To integrate results from the different methods, gold standard data are used to weight the gene–gene

associations. Associations consistent with gold standard data are assigned more weight, whereas poorly performing associations are assigned less weight. Weighted

associations from the different data sources are integrated into one co-function network. (E) The network can now be used to predict gene function by using neighborhood

enrichment, clustering, or other methods. (F) Predictions are used for focused reverse genetic testing, where uncharacterized genes can be associated with a biological

process of interest. (G) New evidence from experimental validation is used to expand the gold standard data, which can be used to train and improve future predictions.
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Besides integrating multiple data sources, integrating
various inference methods can dramatically boost perfor-
mance. The Dialogue on Reverse Engineering Assessment
and Methods (DREAM) project assessed the performance
of 35 transcriptional regulation inference methods in E.
coli [63]. Although there was no clear winner among the
inferences, integrating the methods produced an ensemble
prediction that outperformed all the individual methods.
Ensemble prediction methods have been developed for
subcellular localization and transporters in plants [64–66].

Predicting and validating gene function
The biological processes of genes can be inferred from co-
function networks either by using the enriched (statisti-
cally overrepresented) functions of network neighbors
or by clustering genes and identifying the enriched or
majority functions of the genes within a cluster [62,67]
(Figure 2E). Clustering techniques largely fall into three
categories: hierarchical, partitioning, and density-based
(reviewed in [68]). Popular algorithms include Markov
Cluster Algorithm (MCL) for its efficiency and performance
(S. van Dongen, PhD thesis, University of Utrecht, 2000,
http://micans.org/mcl/) and CFinder for its ability to find
overlapping clusters [69]. There are various function en-
richment techniques that can be used to help characterize
the clusters (reviewed in [70]).

The quality of clusters can be assessed using various
measures, including the compactness, connectedness, spa-
tial separation, predictive power, and stability of the clus-
ters [68]. In addition, clusters can be validated using
external, ‘gold standard’ datasets and measures, such as
purity, completeness, and similarity among the clusters.
The performance of functional inference from clusters can
be improved by using multiple lines of evidence supporting
the links between genes [71,72]. Various clustering meth-
ods may work differently for different structures of net-
works. Therefore, systematic analyses of the effect of
network properties on different prediction algorithms
5
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Table 2. Tools useful for inferring the biological processes of plant genes

Tool Network

visualization

New member

identification

Function

prediction

Data types usem Data integration

scheme

Confidence of

association or

prediction shownm

Tool

performance

publishedm

Refs

AraNeta Y Y Y SS, CE, PPI, GI, GC Bayesian Y Y [12]

AFMSDb N Y Y SS, CE, PPI, GI, GC Clustering Y Y [92]

ATTED-IIc Y Y N SS, CE None Y Y [93]

BMRFd N Y Y SS, CE, PPI Bayesian N Y [94]

CoPe Y Y N SS, CE None Y N [95]

GeneMANIAf Y Y Y SS, CE, PPI, GI Support vector machine Y Y [55]

GO-Atg N Y Y SS, CE, PPI, GC Bayesian N Y [96]

PlaNeth Y Y N SS, CE None Y Y [97]

SCoPNeti Y Y Y CE None N N [98]

StarNet2j Y Y N SS, CE None Y N [99]

STRINGk Y Y N SS, CE, PPI, GI, GC None Y N [100]

VirtualPlantl Y Y N SS, CE None N N [101]

ahttp://www.functionalnet.org/aranet/.

bhttp://bioinformatics.psb.ugent.be/cig_data/plant_modules/.

chttp://atted.jp/.

dhttp://www.ab.wur.nl/bmrf/.

ehttp://webs2.kazusa.or.jp/kagiana/cop0911/.

fhttp://www.genemania.org/.

ghttp://www.bioinformatics.leeds.ac.uk/goat.

hhttp://aranet.mpimp-golm.mpg.de/.

ihttp://bree.cs.nott.ac.uk/arabidopsis/neighbor/network.php.

jhttp://vanburenlab.medicine.tamhsc.edu/starnet2.html.

khttp://string-db.org/.

lhttp://www.virtualplant.org/.

mAbbreviations: CE, co-expression; GC, genomic context; GI, genetic interaction; N, no; PPI, protein–protein interaction; SS, sequence similarity; Y, yes.
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could help determine the most appropriate clustering
method to use on a given network.

Predictions can be followed up by focused reverse ge-
netic approaches to validate the functions of uncharacter-
ized genes (Figure 2F). Typically, this is initially done by
reducing the expression of the candidate gene by using
various methods described in [73]. Experimental valida-
tion can expand the gold standard data, which in turn can
be used to train and improve any future prediction meth-
ods (Figure 2G).

Systematic gene function elucidation is not likely to
progress linearly nor one gene at a time. The approaches
described here enable the prediction of functions of hun-
dreds to thousands of genes in a genome using properties
such as network neighbors, linkage distributions, and
clustering. The elucidation of a substantial proportion of
the functions encoded in a genome will enable the gener-
alization of properties of the genome.

Caveats for gene function prediction
There are some caveats involved in function inference,
which we will briefly discuss to help scientists identify
which predictions are likely to be less reliable, and indicate
the areas that are likely to be the focus of future research.

Performance assessment

An assessment of the performance of prediction methods is
rarely conducted as rigorously as it should be. For exam-
ple, the granularity of functional inference is generally not
considered when reporting the performance of inference
methods. A method could have a high level of performance
if it is restricted to predicting high-level functions.
6

However, functional inference to a general, high-level
term in the ontology (e.g., ‘binding’ GO:0005488) is not
useful when trying to determine the role of a gene product.
Therefore, the granularity of predictability should be
considered when comparing different programs. In addi-
tion, most inference methods use all annotations, includ-
ing those derived from other computational predictions, as
a part of benchmarking data. This may lead to circular
prediction problems or inaccurate assessment of true
performance. Furthermore, gene product features that
are tightly linked to function (e.g., catalytic residues in
protein sequences or specific microarray experiments that
boost co-expression prediction) are often not trivial to
identify [74] and inappropriate features can lead to incor-
rect annotations [75]. Finally, it is important to use a
community accepted set of gold standard data as an exter-
nal standard when comparing the performance of different
methods [53].

Annotation propagation

Generally, one type of omics data is useful for inferring
gene function in a particular domain of GO. For example,
sequence similarity can be used to infer molecular func-
tion, but not necessarily biological process or cellular
compartment. However, common knowledge is sometimes
used to infer other types of gene function using sequence
similarity. For example, proteins containing predicted
DNA-binding domains are inferred not only to have
‘DNA binding’ activity (GO:0003677, molecular function)
but also to be located in the ‘nucleus’ (GO:0005634, cellu-
lar component) and involved in ‘regulation of transcrip-
tion’ (GO:0006355, biological process). These secondary

http://www.functionalnet.org/aranet/
http://bioinformatics.psb.ugent.be/cig_data/plant_modules/
http://atted.jp/
http://www.ab.wur.nl/bmrf/
http://webs2.kazusa.or.jp/kagiana/cop0911/
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http://www.bioinformatics.leeds.ac.uk/goat
http://aranet.mpimp-golm.mpg.de/
http://bree.cs.nott.ac.uk/arabidopsis/neighbor/network.php
http://vanburenlab.medicine.tamhsc.edu/starnet2.html
http://string-db.org/
http://www.virtualplant.org/
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annotations are more often subject to the ‘fallacy of
converse accident’ (e.g., if A then B, therefore if B then
A) than the primary annotations [75] and should be
avoided or used with caution.

Guilt-by-association

Guilt-by-association is a logical fallacy (e.g., Sue is a scien-
tist. Sue has black hair. Therefore, all people with black
hair are scientists). However, when constrained by knowl-
edge in biology, the ‘guilt-by-association’ principle, which
states that genes that have similar functions will share
similar properties, has been successfully used to infer gene
function [53]. Inferences made using ‘guilt-by-association’
are best suited for discovering novel members of known
pathways. However, it may not be the best approach for
discovering new pathways because it relies on assumptions
made using our current knowledge of biology (e.g., relation-
ships depicted in the GO system). Systematic discovery of
novel mechanisms and pathways remains a big challenge
that is likely to require an innovative combination of
empirical and computational methods. For example, ma-
chine learning algorithms that use unsupervised or semi-
supervised methods [76] combined with genome-wide net-
work data may be more suitable for discovering novel
mechanisms and pathways.

Importance of being a hub

Highly connected nodes (hubs) in networks have received
much attention for their potential biological roles [77–81].
Although some of the hubs may represent true biological
hubs or integrators of multiple processes, many hubs may
not have such meaning in vivo. For example, many hubs in
protein interaction networks are proteins that tend to
interact with many proteins in vitro such as kinases or
trafficking proteins. Similarly, ubiquitous molecules such
as water and protons represent hubs in metabolic networks
but their inclusion in network analysis may not be mean-
ingful in analyzing network topologies or dynamics [82].

The number of links a gene has in a co-function network
can confound the predictability of its function. For example,
functions of hubs involved in multiple processes are easier to
predict than functions associated with sparsely connected
genes. Therefore, when using performance assessment and
inference scoring schemes we should consider normalizing
the scores against the number of functions a gene has as well
as the number of genes to which a function is annotated [83].
Another possible solution is to perform a statistical test
against a randomized network (ensuring that the node
and edge degree distributions are retained) and consider
only the inferences that are statistically significant.

Where do we go from here?
Network-based function inference, despite having some
caveats, holds great promise for accelerating gene function
discovery in plants. However, there are some bottlenecks
that we must overcome to achieve the goal of understand-
ing the function of all genes in a plant genome.

Data matter, perhaps more than algorithms

Although systematic comparisons of different prediction
programs are few compared with the plethora of prediction
programs, it appears that the quality of underlying data is
at least as important as the different algorithms in dictat-
ing the performance [63]. Unfortunately, the limited
amount of high-quality omics data and experimentally
proven gold standard data in plants, particularly for plants
other than Arabidopsis, is still a bottleneck (Table 1).
Besides transcriptome and protein interactome data, we
need to identify genome-wide protein subcellular localiza-
tion and proteome data [64], enzyme active site informa-
tion [84], post-translational modification data [85], ligand–
protein interaction data [86], chromatin and epigenetic
marks [87], and transcriptional regulatory information,
protein complexes and pathways [88], to name a few.

In addition to expanding the types and depths of omics
datasets, gold standard data are critical in assessing and
improving function prediction [12,63]. To increase the
coverage of gold standard data in public databases, we
need more efficient ways of not only experimentally vali-
dating the predictions but also curating experimental data
from the literature. Text-mining could help automate and
triage curation efforts and collaborative projects such as
the BioCreative initiative could improve the way gold
standard data are extracted from the literature [89].
How much gold standard data do we need to transform
the state of knowledge of gene function? A recent study has
shown that for an organism where less than 20% of the
genes are experimentally annotated (as is the case for most
plant species), function prediction can reliably annotate
40% of all genes [56]. According to this study, 80% of
reliable function prediction would necessitate 50% of genes
with experimental annotation. How much gold standard
data from one species can improve the predictability in
another species is an open question. A reference set of gold
standard data from multiple species is needed to study
cross-species predictability of gene function.

Need to benchmark data integration and function

prediction

The integration of heterogeneous inference methods is
often more effective than single inference analysis [63].
Although variation in the performance of predictive meth-
ods poses a problem, it also offers a solution because the
heterogeneity of predictions tends to boost true associa-
tions and cancel out the limitations of individual methods
when they are integrated [12,63]. It is important to com-
pare the performance of inference methods objectively and
systematically as the critical assessment of protein func-
tion annotation (CAFA) experiment has done [57]. Such
performance comparison can help integrate different
methods by exploiting method-specific advantages and
rationally including, excluding, or weighting different
methods.

Need for a community repository of networks, gold

standards, tools, protocols, and annotations

The number of networks and inference tools for plants is
increasing (Table 2), but they are scattered in various
websites and publications. For the entire plant research
community to benefit from these tools, it would be useful to
have a single, up-to-date portal from which these networks,
inference tools, gold standard datasets, and protocols on
7
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how to use the tools could be accessed. Efforts such as the
iPlant [90] and KnowledgeBase (KBase, http://kbase.scien-
ce.energy.gov/) projects have been initiated recently to
address this problem.

Need for high-throughput experimental testing

platforms

Function inference methods typically use internal cross-
validation using a proportion of the gold standard data that
was partitioned from the training. Performance is rarely
tested on external data that have never been seen by the
algorithm. Even fewer studies perform experimental vali-
dation of predicted functions, and no study has yet per-
formed systematic, large-scale functional validation of
predictions in plants. To reach the goal of elucidating
the functions of all genes in plants, we need to develop
high-throughput experimental validation platforms. Pio-
neering efforts towards this goal have been initiated, which
include high-throughput enzyme assays (BIOLOG, http://
www.biolog.com/), plant phenotyping platforms (Lemna-
Tech, http://www.lemnatec.com/), and metabolomics plat-
forms [91].

Concluding remarks
Although network-based gene function prediction has been
an active area of research for the past 15 years, its use in
plant science has been limited. To exploit this underused
technology we need, (i) more data; (ii) better assessment of
data and tool quality; (iii) easy access to the data and tools;
and (iv) high-throughput experimental validation. Many
discoveries in plant science were made without knowing
what most of the genes do. It is exciting to ponder what we
will discover, those discoveries that are unimaginable now,
when we are equipped with the knowledge of all the
functions encoded in genomes.
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