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Abstract

We discuss an approach to constructing com-
posite features during the induction of de-
cision trees. The composite features corre-
spond to m-of-n concepts. There are three
goals of this research. First, we explore a
family of greedy methods for building m-of-
n concepts (one of which, GS, is described in
this paper). Second, we show how these con-
cepts can be formed as internal nodes of de-
cision trees, serving as a bias to the learner.
Finally, we evaluate the method on several
artificially generated and naturally occurring
data sets to determine the effects of this bias.

1 INTRODUCTION

In this paper, we discuss an approach to construct-
ing composite features during the induction of decision
trees (Quinlan, 1986). Pagallo and Haussler (1990)
describe the FRINGE algorithm that analyzes a deci-
sion tree and creates new features that are conjunc-
tions of existing features. After the new features are
constructed, the induction algorithm is run again and
may incorporate the conjunctive features in the test of
a single node in the decision tree. These conjunctive
tests avoid the need to duplicate subtrees in a decision
tree.

Our work on the construction of composite features
differs in two ways from FRINGE:

1. New features are constructed while the decision tree
1s created. This avoids the need to re-run the induction
algorithm after the constructive induction process.

2. The new features are m-of-n concepts (also
known as Boolean threshold functions) rather than
conjunctive concepts. We will use the notation m-
of-(F1,...,Fn) to indicate an m-of-n concept. For
example, 2-0f-(A, B,C, D) is logically equivalent to
AB+AC+AD+ BC+BD4+CD.
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Although m-of-n concepts can be expressed in terms
of conjunctions and disjunctions, they are not easily
represented as decision trees. Adding conjunctive tests
to nodes mitigates the problem of replicated subtrees,
but does not completely solve 1t. For example, for a
single 4-0f-8 concept, there are 70 conjunctive terms.

We are interested in creating composite m-of-n fea-
tures for several reasons. First, m-of-n concepts more
closely resemble “fuzzy categories” with graded struc-
ture (Barsalou, 1985; Smith & Medin, 1981). Second,
there is some evidence that this bias helps in the ac-
quisition of naturally occurring concepts (Spackman,
1988). For example, a successful medical expert sys-
tem makes use of “criteria tables” that are essentially
m-of-n concepts (Kingsland, 1985).

Our motivation is somewhat similar to that of Utgoff
(1988) in developing perceptron trees. In particular,
the terms constructed to serve as tests at nodes in the
decision tree serve as a representational bias for the
learner. However, m-of-n concepts are less expressive
than perceptrons, and provide further constraints on
the learning. Furthermore, the construction of these
terms does not require the step of determining that
the data is not linearly separable.

Note that we are also interested in efficient means of
approximating m-of-n concepts when there may be
noise in the training data. Pitt and Valiant (1988)
show that it is NP-hard to determine whether there
exists a m-of-n concept that is consistent with a set
of examples. Therefore, the algorithm for creating new
m-of-n features must not rely on such a test. Instead,
we merely determine whether a given m-of-n concept
provides gain according to an information-based evalu-
ation function (Quinlan, 1986). Furthermore, the fea-
ture construction algorithm makes use of operators to
find a set of m-of-n concepts related to a given m-of-n
concept and performs hill-climbing search to find the
m-of-n concept in this set whose gain is greatest.

In the next section, we describe two operators for mod-
ifying the current m-of-n hypothesis and describe an
approach to choosing an initial hypothesis. Next, we



describe how the m-of-n feature creation algorithm is
embedded in a decision tree learning program called
ID2-0f-3 and compare its performance with and with-
out the feature creation mechanism on artificially gen-
erated data sets. Finally, we give results from running
the algorithms on four naturally occurring data sets.

2 DEFINITIONS AND
CONVENTIONS

An m-of-n concept classifies an example as positive if
at least m of the feature-values in the set n are present
in the example. Note that typically, examples have a
dimensionality d that is greater than n. Therefore, the
learner must determine which n of a total d features
may be associated with positive examples. Through-
out this paper, where unambiguous, n will refer to ei-
ther the set of n “relevant” feature-values or the cardi-
nality (number of distinct features) of this set. We will
call the conjunction of these n features the prototypic
region of the m-of-n concept. The learner must also
determine how far from the prototypic region an exam-
ple may deviate, while still being classified as positive.
We will call this value (i.e., n —m) the relative thresh-
old of the m-of-n concept. Formally, m-of-n concepts
are characterized as all examples within hamming dis-
tance n —m of some example in the prototypic region.

We will define a number of operators that either gener-
alize or specialize a given m-of-n concept. For exam-
ple, such a concept may be generalized by including
an additional feature-value in the set n (and not in-
creasing m). Adding a feature-value to n may include
adding another value to a feature already present in
n. One way to specialize an m-of-n hypothesis is to
increase m.

Decision trees constructed by ID-2-0f-3 are like those
built by TD3 (Quinlan, 1986) except that they contain
m-of-n hypotheses as discriminators at internal nodes.

3 CONSTRUCTING M-of-N
CONCEPTS

An m-of-n concept construction algorithm, GS, is de-
scribed in this section that applies operators during
hill-climbing search to successively refine partial m-
of-n hypotheses (Table 1). GS, chooses as its initial
hypothesis the feature-value that best splits the data,
according to the information based heuristic entropy
function from ID3. The chosen feature-value, F', be-
comes the l-of-(F) initial hypothesis that operators
are then applied to. For a description and comparison
of other approaches for constructing m-of-n hypothe-
ses see (Murphy & Pazzani, 1991).

Table 1. M-of-N Constructive Induction Algorithm
function generate_m-of-n(Examples)
Best_Concept := initial-concept(Examples);
Best_Cost := eval-concept(Examples,Best_Concept);
repeat
Concept := Best_Concept;
Cost := Best_Cost;
for all Op_Instantiation(Concept)
Temp_Concept := Op_Instantiation(Concept);

Temp_Cost := eval-cost(Examples, Temp_Concept);

if Temp_Cost < Best_Cost then
Best_Cost := Temp_Cost;
Best_Concept := Temp_Concept;
until BestCost > Cost
return Concept;

3.1 GS

GS conceptually builds an m-of-n concept from the
simplest to the more complex. It starts with a simple
m-of-n concept, where the majority of the features in
the feature space are considered irrelevant, and applies
operators that add relevant feature-values to the pro-
totypic region and optionally increment the threshold.
Specifically, the two operators used in GS are:

e m-of-n + 1
feature-value. . .
(e.g., 2-0f-(A, B, D) = 2-0f-(4, B, D, ("))

e m+1-of-n+1 : Increment threshold, add feature-
value.

(e.g., 2-0f-(A, B, D) = 3-0f-(A, B, D,C))

Keep threshold constant, add

Operator m-of-n + 1 generalizes the hypothesis by ei-
ther increasing the relative threshold or by generaliz-
ing the prototypic region. Before application of the
operator, the hypothesis covered all points within a
hamming distance of n — m of the prototypic region.
After the operator application, if the feature added 1s
already present in n, the prototypic region is general-
ized and n remains constant, otherwise the prototypic
region is specialized as n is incremented, and the max-
imum hamming distance covered increases by one.

Operator m+ 1l-of-n+ 1 specializes the hypothesis. If
the feature added is already present in n, the proto-
typic region is generalized and the relative threshold is
decreased. Otherwise the prototypic region is special-
ized with the relative threshold remaining constant.

Note, if the feature-value added, f = v, by either of
these operators adds the only remaining value, v, for
f not already in n, the feature f becomes irrelevant to
the concept.

GS has the potential of generating any m-of-n con-
cept in the hypothesis space. The number of possi-
ble hypotheses considered by GS is O(kd?), where k



is an upper bound on the number of values for any
feature and d 1s the dimensionality of the hypothe-
sis space. Since there are O(d39) concepts in the hy-
pothesis space of Boolean valued features (Hampson
& Volper, 1986), each operator application, in such a
space, discards O(39/d) possible hypotheses. Search
depth is no greater than kd. The time required to
generate a single m-of-n concept is O(ekd?®), where e
is the number of training examples.

4 EMBEDDING M-of-N
HYPOTHESIS

M-of-N hypotheses by themselves suffer from the
same representational limits as linear threshold units
— they can only represent linearly separable concepts.
To overcome this weakness, m-of-n hypotheses gener-
ated by the previous algorithms are used to create new
terms that serve as nodes in decision trees (see Table

9).

Since the space of m-of-n concepts 1s a superset of the
space of single attribute discriminations, decision trees
constructed in this manner are complete (Utgoff, 1988)
in that they can represent any subset of the instance
space. Since decision trees also have this property,
the intent is not to make decision trees more expres-
sive, but rather to bias decision trees to make poly-
thetic (Fisher, 1987) discriminations. Furthermore,
since each node of an m-of-n decision tree has more
representation power than that of an ID3 decision tree
node, m-of-n decision trees have the potential of being
much smaller than ID3’s trees when concepts conform
to combinations of m-of-n decisions.
Table 2. ID2-0f-3 Decision Tree Algorithm
function generate-tree(Examples)
if examples-discriminated(Examples) then
return example-class(Examples);
else
Discriminator := generate_m-of-n(Examples);
(Positive_Examples,Negative_Examples) :=
split-examples(Discriminator, Examples);
return tree(Discriminator,
generate-tree(Positive_Examples),
generate-tree(Negative_Examples));

5 EXPERIMENTS

To evaluate the effects of constructing m-of-n terms,
the accuracy of the decision trees produced by the
above algorithms were compared for both artificial and
real domains. We also ran a version of ID3 (provided
by Ray Mooney) on the same data. Since we have not
vet implemented a pruning algorithm for ID2-0f-3, we
did not use any of the pruning algorithms for ID3.

5.1 ARTIFICIAL DATA

We ran an exhaustive series of experiments comparing
ID3, and ID2-0f-3 augmented with GS. The goal of
the experiments was to gain an understanding of the
properties of GS in constructing m-of-n terms.

The artificial concepts were formed from a Boolean
feature space with two classes (positive and negative),
distinguished by some form of m-of-n target concept.
For each concept, we recorded the accuracy as a func-
tion of the training set size. Target concepts ranged
from simple m-of-n concepts, consisting of a singleton
m-of-n concept, to more complex m-of-n concepts,
e.g., conjuncts and disjuncts of singleton m-of-n con-
cepts. The singleton m-of-n concepts ranged from
conjuncts, (n-of-n), to disjuncts (l-of-n). We also
tested the effects of irrelevant features on these con-
cepts. A listing of some of the experiments is provided
below.

o Irrelevant Features Domains

— 3-0f-5/0 (0 irrelevant features)
— 3-0f-5/3 (3 irrelevant features)
— 3-0f-5/5 (5 irrelevant features)

e Disjunction versus Conjunction

— m-of-5/3,1<m <5
e Disjunctive m-of-n

— 3-0f-5 V 2-0f-3/2 (disjoint Ns)

— 3-0f-5 V 3-0f-5/2 (non-disjoint Ns)
e Conjunctive m-of-n

— 3-0f-5 A 2-0f-3/2 (disjoint Ns)

— 3-0f-5 A 3-0f-5/2 (non-disjoint Ns)

In the next section, we will summarize the results
of these experiments and graph some of the results.
Training and testing sets were generated by randomly
choosing examples, with replacement, from the fea-
ture space. The accuracy for a particular number of
examples were averaged over twenty runs on varying
training and testing sets.

5.1.1 The Utility of Creating M-of-N Terms

Using GS for creating new terms when learning ar-
tificial m-of-n target concepts, resulted in accuracy
at least as good as and usually better than single at-
tribute discriminations. Performance results tended to
converge for target concepts where m was nearly equal
to n (e.g., n-of-n). On the more complex disjunctive
and conjunctive m-of-n target concepts, creating new
terms was always very beneficial. Differences for these
domains were more pronounced when the prototypic
regions of the simple m-of-n concepts that composed
the digjuncts or conjuncts were digjoint with respect to
feature relevance. Being disjoint, the target concepts



were more prototypic in nature and more closely ori-
ented to the bias of the m-of-n algorithms. Figure 1
graphs the accuracy of the conjunction of two m-of-n
concepts — 3-of-(a,b,c,d,e) A 2-0f-(f,g,h) when there
are a total of 10 features. The two algorithms com-
pared are the decision tree learner without construc-
tive induction and the decision tree learner augmented

with GS.
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Figure 1: Conjunction of 2 m-of-n Concept

5.2 NATURALLY OCCURRING DATA

We have tested ID2-0f-3 on four domains from the
UCI Repository of Machine Learning Databases & Do-
main Theories. Currently, we are restricted to not
using data with missing values. The databases se-
lected are the lymphography, lenses, shuttle landing
and mushroom databases (the feature stalk-root was
removed from mushrooms because it had missing val-
ues). The lymphography domain was obtained from
the University Medical Centre, Institute of Oncology,
Ljubljana, Yugoslavia. Thanks go to M. Zwitter and
M. Soklic for providing the data.

The design of each experiment follows a 2 algorithm
(learning decision trees with and without m-of-n
terms) x n training set size design. Each experiment
used different values for the training set size. We mea-
sured the accuracy of each algorithm and the number
of internal nodes in the decision tree at each training
set size.

On two of the domains, we found a statistically sig-
nificant increase in performance when creating m-of-
n terms during learning. Adding m-of-n terms had
the most positive impact in the lymphography do-
main. Figure 2 graphs each algorithm, averaged over
20 runs. An analysis of variance indicated that the
algorithm had a significant effect on the accuracy in
this domain (F'(1,342) = 26.6,p < .0001). Similarly,
using GS improved the accuracy on the shuttle land-
ing databases (F'(1,1782) = 14.4, p < .0001). Figure 2
graphs the accuracy on this domain, averaged over 100
runs. On the lenses database, no significant difference
in accuracy was noticed when averaged over 40 runs.

(F(1,858) < 1).

On the mushroom database, creating new terms in-
terfered with the ability of the learner to converge

on a more accurate concept. In this case, not creat-
ing new terms resulted in significantly higher accuracy
(F(1,266) = 11.758,p < .001). Figure 2 shows this
data, which is averaged over 20 runs. In the mushroom
domain, many of the attributes, including one highly
predictive feature, have multiple values, and 1D3 cre-
ates a multi-valued discrimination at each node. GS
discriminations are binary (although multiple values
for the same features can appear in a single node- 1-
of-(odor = A,odor = L, odor = N)) Using a single
feature with 9 values allowed ID3 to generate highly
accurate (> 95%), decision trees. Since GS makes bi-
nary decisions at its nodes, it typically required sev-
eral nodes to simulate this multi-valued branch. We
hypothesize that the highly predictive multi-valued at-
tributes in this domain are responsible for the decrease
in accuracy. To test this hypothesis, we compared
the accuracy of the decision tree learner augmented
with GS to a variant of the decision tree learn that
made binary trees. In this variation, the a nodes corre-
sponded to a boolean decision (e.g., odor = L), rather
than a separate branch for each value of an attribute.
There was not a significant difference in the accuracy
of the binary decision tree learner or the decision tree
learner augmented with constructive induction of m-

of-n terms (F(1,266) < 1).
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Figure 2: Accuracy Comparisons
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Figure 3: Tree Size Comparisons

The size of the tree (i.e., number of internal nodes)
created by each algorithm are graphed as a function of
the training set size for the lymphography and mush-
room databases in Figure 3. A ratio of ID3’s tree sizes
to GS’s tree sizes as a function of the training set size
number is shown in Figure 4 for various domains. In
general, we have observed that the greatest improve-
ment in accuracy occurs when constructive induction
results in the greatest reduction of trees sizes.
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Figure 4: Tree Size Ratios

6 CONCLUSION

We investigated an approach to creating new compos-
ite m-of-n terms during induction of decision trees.
An algorithm was explored and experimental results
indicate that starting with simple m-of-n hypotheses
and then using operators to make them more complex
efficiently generates discriminators for decision trees.
On artificial data that conforms to the bias of the m-
of-n learner, creating composite terms substantially

improves the performance of the learner. The algo-
rithm also showed some statistically significant im-
provement on naturally occurring datasets when the
tree generated were much smaller than trees gener-
ated using only feature-value pairs as discriminators.
More experimentation and analysis is needed to under-
stand which biases are appropriate for various types of
naturally occurring data.
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