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Abstract

This paperpresentsanalgorithmfor full 3D shape
reconstructionof indoorandoutdoorenvironments
with mobile robots. Data is acquiredby a fast-
moving robot equippedwith two 2D laser range
finders. Our approachcombinesan efficient scan
matchingroutine for robot poseestimationwith
analgorithmfor approximatingenvironmentsusing
flat surfaces.On top of that,ourapproachincludes
a meshsimplificationtechniqueto reducethecom-
plexity of theresultingmodels.In extensive exper-
iments,our methodis shown to produceaccurate
modelsof indoor and outdoorenvironmentsthat
comparefavorablyto othermethods.

1 Intr oduction
Thetopicof learning3Dmodelsof buildings(exteriorandin-
terior)andman-madeobjectshasreceivedconsiderableatten-
tion over thepastfew years.3D modelsareusefulfor arange
of applications.For example,architectsandbuilding man-
agersmayuse3D modelsfor designandutility studiesusing
virtual reality (VR) technology. Emergency crews, suchas
fire fighters,couldutilize3Dmodelsfor planningastohow to
bestoperateatahazardoussite.3D modelsarealsousefulfor
robotsoperatingin urbanenvironments.And finally, accurate
3D modelscouldbeagreatsupplementto thevideogamein-
dustry, especiallyif themodelcomplexity is low enoughfor
real-timeVR rendering.In all of theseapplicationdomains,
thereis a needfor methodsthat cangenerate3D modelsat
low cost,andwith minimumhumanintervention.

In the literature,approachesfor 3D mappingcan be di-
vided into two categories: Approachesthat assumeknowl-
edgeof theposeof thesensors[1; 2;3; 5; 19], andapproaches
that do not [11; 20]. In the presentpaper, we areinterested
in using mobile robots for dataacquisition;henceour ap-
proachfalls into thesecondcategorydueto theinherentnoise
in robot odometry. However, unlike the approachesin [11;
20] which generatehighly complex models,our focusis on
generatinglow-complexity modelsthat can be renderedin
real-time.Theapproachin [20], for example,composesmod-
elswherethenumberof polygonsis similar to thenumberof
raw scans,whicheasilyliesin thehundredsof thousandseven

for small indoorenvironments.Themajority of existing sys-
temsalsorequireshumaninput in the3D modelingprocess.
Herewe areinterestedin fully automatedmodelingwithout
any humaninteraction.Our approachis alsorelatedto [14],
whichreconstructsplanarmodelsof indoorenvironmentsus-
ing stereovision, usingsomemanualguidancein therecon-
structionprocessto accountfor the lack of visible structure
in typical indoorenvironments.

This paperpresentsan algorithm for generatingsimpli-
fied 3D modelsof indoor and outdoorenvironments. The
datafor generatingthesemodelsare acquiredby a mobile
robot, equippedwith two 2D laserrangefinders. The first
laserscanshorizontallyandis usedfor poseestimation(lo-
calization).Thesecondscanneris pointedupwardssothat it
scansthethree-dimensionalstructureswhile therobotmoves
throughits environment. To estimatethe poseof the robot
while collecting the data,a 2D scanmatchingalgorithm is
usedthatis reminiscentof theliteratureonmobilerobotmap-
ping. The resultingpre-filtereddata is globally consistent
but locally extremelynoisy. A recursive surfaceidentifica-
tion algorithmis thenemployedto identify largeflat surfaces,
therebyreducingthe complexity of the 3D model signifi-
cantlywhile alsoeliminatingmuchof thenoisein thesensor
measurement.Theresulting3D modelsconsistof large,pla-
nar surfaces,interspersedwith small fine-structuredmodels
of regionsthatcannotbecapturedby a flat-surfacemodel.

The topic of simplificationof polygonalmodelshaslong
beenstudiedin thecomputergraphicsliterature(seee.g.,[8;
12; 17]), oftenwith thegoalof devising algorithmsfor real-
time renderingof complex models.Therearetwo important
characteristicsof thedatageneratedby robotsthatdiffer from
thepolygonalmodelstudiedin thecomputergraphicslitera-
ture. First, robot datais noisy. The modelsstudiedin the
computergraphicsliteratureareusuallyassumedto benoise-
free;hence,simplificationsareonlyappliedfor increasingthe
speedof rendering,andnot for the reductionof noise. This
hasimportantramifications,asthenoisein thedatarendersa
close-to-randomfine structureof theinitial 3D models.Sec-
ond, built structureis known to containlarge, flat surfaces
thataretypically parallelor orthogonalto theground. Such
a prior is usuallynot incorporatedin polygonsimplification
algorithms. Consequently, a comparisonwith the algorithm
presentedin [8] illustratesthat our approachyields signifi-
cantlymoreaccurateandrealistic-looking3D models.



(a) (b)

Figure1: (a) 2D laserscanof theforward-pointedscanner(bird’s
eyeperspective). (b) Log-likelihoodfunctionfor detectingobstacles
in free-space:thedarkera location,thelesslikely it is thatanother
rangescandetectsanobstacleat this location.Noticethatoccluded
areasareleft blank,hencedo not contribute to the gradientascent
scanadjustment.

(a) Initial match (b) After 10 iterations

(c) After 50 iterations (d) After 100iterations

Figure2: Exampleof gradientascentfor aligningscans.Theinitial
translationalerroris 10 cm alongeachaxis,andtherotationalerror
is 30 degrees.Thegradientascentalgorithmsafelyalignsthescans.

2 Concurrent Mapping and Localization in
2D

2.1 2D ScanAlignment
Thefirst steptowardsbuilding 3D mapswith mobilerobotics
is a 2D posealignmentprocedure. The problemis as fol-
lows: Robot odometryis erroneous.Small error in odom-
etry, causedby effects suchas drift and slippage,multiply
over time. Sucheffectsarerelatively easyto compensateif a
modelof the environmentis readilyavailable[9]. However,
in theabsenceof suchamodel,therobotfacesachicken-and-
eggproblemin thatit hasto simultaneouslyestimateboththe
modelandits path.

In the robot mappingliterature, this problem is known
as the simultaneously localization and mapping problem

Figure3: Occupancy grid map(left) andarchitecturalblueprintof
a recentlyconstructedmuseumin SanJose(right). Notice that the
blueprintis inaccuratein certainplaces.

(SLAM) [6]. Powerful statisticaltechniqueshave beenpro-
posedfor this problem,mostof which, however, requirethe
extractionof uniquefeatures[15] or arecomputationallyvery
expensive [4]. However, theseapproachesdemonstratethat
theposeof a robotcanberecoveredfrom 2D informationin
indoorandleveledoutdoorenvironments,for robotsconfined
to a flat 2D surface.

Ouralgorithmestimatesposesin 2D usingareal-timescan
matchingalgorithm, similar to the onesdescribedin [16;
20]. Our scanmatchingalgorithmusesgradientascentin a
log-likelihoodfunctiondefinedover pairsof scans.Figure1a
shows an exampleof a sensorscan,takenwith a forward-
pointed2D laserrangefinder. The probability function of
detectingan obstaclein the rangeof this scanis shown by
the grayly shadedareain Figure1b: The darkera location
in this diagram,the lesslikely it is that an obstacleis de-
tectedat someotherpoint in time. This log-likelihoodfunc-
tion is differentiable.It is maximalat locationswhereanob-
ject hasbeendetectedin the scan(occupiedregion), or in
occludedregionsasshown. It is minimal in areaswherethe
presentscanfails to detectanobstacle(free-space),with the
log-likelihooddecreasingin proportionto thedistanceto the
nearestdetectedobstacle.Thus,this probabilisticperception
modelis similar to potentialfields [13], but it alsocarriesa
notionof occlusion.

2.2 Search in PoseSpace
Clearly, whenaligninga scanto oneor morepreviouslycol-
lectedscans,the total log-likelihooddependson the poseof
thescan,wherepose refersto thescan’s � - � -coordinatesto-
getherwith its orientation� . Exploiting thedifferentiability
of our log-likelihood function, scansarealignedrelative to
previouslyrecordedscansby adjustingtheposein proportion
to thenegative gradient:
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where� denotesthetotal log likelihood(asumover all mea-
surementsof a scan),and ����� is a step-sizeparameter.
Figure2 shows anexampleof aligningtwo scans,usingthe
gradientascentscanmatchingroutine. In this example,the
two scansare initially misalignedby translationalerrorsof
10cmin eachcoordinateaxis,anda rotationalmisalignment
of 30degrees—theseerrorsexceedpracticalerrorsby afactor



Figure4: Fractionsof theraw datafor partsof theceiling andthe
wall.

of 10. After 100 iterations,the scansarealignedwith suffi-
cientaccuracy for our3D modelingtask.

To performthescanalignmentin real-time,our approach
pre-computesocclusionandall necessarydistancesnecessary
for calculatinggradientsusinga fine-grained2-dimensional
grid (typical resolution:10 cm). After this pre-computation,
whichtakesapproximately0.1seconds,eachiterationof gra-
dientascentrequiresin theorderof 1mson a low-endPC—
which is fast enoughto align scansaccuratelyas the robot
moves. Two relatedpapers[10; 20] discusstheuseof prob-
abilistic posteriorestimationtechniquesto build consistent
mapsin cyclic environments,where our incrementalscan
matchingapproachwouldbedoomedto fail.

Figure 3 illustrates the accuracy of the resulting maps.
Shown thereis a 2D occupancy grid map[7; 18] of a large
indoorenvironmentacquiredin real-time,alongwith a blue-
print of the sameenvironment. The poseestimatesof these
2D mapsform thevery basisof thetopic centrallyaddressed
in thispaper:Building 3D maps.

2.3 Generating ‘Raw’ 3D Data
The3D datais generatedusingthe upward-pointedlaser, as
shown in Figure 6. While the robot traversesandmapsan
unknownenvironmentin 2D, therebyrecoveringits pose,the
upwardpointedlaserscansthe 3D structureof the environ-
ment.We thenobtaina polygonalmodelby connectingcon-
secutive 3D points. To avoid closingwholessuchasdoor-
waysetc,we only createa polygonalsurfaceif theconsecu-
tivepointsarecloseto eachother.

3 Learning Smooth3D Models
Although the approachdescribedabove producesaccurate
positionestimates,theresultingmodelsoftenlack theappro-
priatesmoothness.Figure 4 shows, in detail, someof the
data.As is easilyseen,thedatais extremelyrugged.Whereas
someof the ruggednessarisesfrom remainingerrorsin the
poseestimation,the majority of error stemsfrom measure-
mentnoisein laserrangefinders. However, thekey charac-
teristichereis thatall noiseis local, asthe scanshave been
globally alignedby the 2D mappingalgorithm. As a result,
globalstructurescannotbeextractedby consideringsmallar-
easof thedata.Rather, onehasto scanlargerfractionsof the
modelin orderto find suchstructures.

For example,thefractionsof themodelsillustratedin Fig-
ure4 show dataobtainedfor a wall (left image)anda ceiling
(right image). Although the correspondingobjectsarepla-
nar in therealworld, this structurecannotbeextractedfrom
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Figure5: Normedsurfacenormalsfor a ceiling (left) anda wall
(right).

the local surfaces.Figure5 shows the surfacenormalsfor
5000surfacesof thewall andtheceilingpartlyshown in Fig-
ure 4. As can be seenfrom the figure, the normalsareal-
mostuniformly distributed. Accordingly, first experiments
with astandardclusteringalgorithmleadto unsatisfactoryre-
sultsbecausethesurfacenormalscouldnot beseparatedap-
propriately.

Thenoiseproblemis inherentto thesensor-basedacquisi-
tion of high-resolution3D-models.In orderto scananobject
with highresolution,thedistanceof consecutivescanningpo-
sitionsmustbe extremely small. However, the smallerthe
distancebetweenconsecutive scanningpositions,the higher
the influenceof the measurementnoiseon the deviation be-
tweensurfacenormalsof neighboringshapes(andalsoto the
truesurfacenormal).

Sinceapproximationsof largerstructurescannotbefound
by alocalanalysis,ourmethodperformsarandomizedsearch
to find larger planarstructuresin the data. If sucha planar
structureis found,ourapproachmapsthecorresponding3D-
points on this planarsurface. In a secondphaseneighbor-
ing surfacesin the meshwhich lie on the sameplaneand
satisfy further constraintsdescribedbelow are merged into
largerpolygons.

3.1 Planar Approximation of Surfaces
Thealgorithmto find planesfor setsof pointsis arandomized
approach.It startswith a randomlychosenpoint in 3D and
appliesa region growing techniqueto find a maximumset
of points in the neighborhoodto which a fitting planecan
be found. As the optimal planewe chosethat planewhich
minimizesthe sumof the squareddistancesto the points  "!
in thecurrentregion. Thenormalof thisplaneis givenby the
eigenvectorcorrespondingto the smallesteigenvalueof the#%$&#

matrix

' ( )*
!,+�-
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where
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is the centerof massof the points  ! . The minimumeigen-
valuecorrespondsto thesumof thesquaresof thedistances
betweentheplaneandthepoints  ! .

Our approachproceedsasfollows. It startswith a random
point  ;- andits nearestneighbor �< . It thenrepeatedlytries



to extendthecurrentset = of pointsby consideringall other
points> in increasingdistanceform this point set. Suppose �?
is a point suchthat thepoint distance@�ACB"DFEHGIB;J�E . = 
  �? 1 be-
tween  �? andonepoint in = is lessthan K (which is 30cm
in our currentimplementation).If theaveragesquarederrorL;MFM A M . =ONQPR �?4S 1 to the optimal planefor =ONQPR �?4S is less
than T (which was2.8 in all our experiments)andif thedis-
tanceof  �? to theoptimalplanefor

. =UNVPR W?4S 1 is lessthan X
( X ( 8 � cmin our implementation)then  �? is addedto = . As
a result, regionsaregrown to includenearbypointsregard-
lessof thesurfacenormalof thepolygonsneighboringthese
points (which areassumedto be random). This processis
describedmorepreciselyin Table1. To find thebestplanes,
this processis restartedfor differentrandomlychosenstart-
ing points  - and  < . Ourapproachalwaysselectsthelargest
planefoundin eachround. If no furtherplanecanbefound,
theoverall processis terminated

select point tuple YWZ�[\Y^]_�`ba�c Y�Z�[dY^]fe
WHILE (new point can be found) BEGIN

Select point Y�g with hjiFkmlHn�o�k�p"n�q _ [\Y�gsrut&v
if w"x�xHi"x�q _&yzc Y�g{e|r�t&} && ~�~bq _&y�c Y�gse�[�Y�g�r�~�~Wt��_�`ba�_&yzc Y�g{e

END WHILE

Table1: Algorithm to searchfor aplanethroughapoint tuple.

Obviously,ourapproachsolvesameshsimplificationprob-
lem that hasbeenstudiedthroughly in the computergraph-
ics literature. The important differencebetweenour ap-
proachand meshsimplification algorithmsfrom computer
graphics,suchas [8; 12], lies in the way the input datais
processed.In contrastto our method,which tries to fit a
planeto a largersetof points,thetechniquespresentedin [8;
12] only performa local searchandconsideronly pairsof
surfaces.Neighboredsurfacesaresimplifiedby minimizing
an error or energy function which specifiesthe visual dis-
crepancy betweenthe original model and simplified model
in termsof discontinuitiesin the surfacenormals. Because
of the local noisein our data thesetechniquescannotdis-
tinguishbetweenareaswith a higher level of detail suchas
cornersandareaswith few detailssuchasplanarstructures
correspondingto walls. Thus,thesimplificationis carriedout
uniformly over themesh.Our approach,in contrast,simpli-
fiesplanarstructuresandleavesahighlevel of detailwhereit
reallymatters.

3.2 Merging of Surfaces
In a secondphase,neighboringpolygonsbelongingto the
sameplaneare merged to larger polygons. A polygonbe-
longsto a plane,if all of its edgesbelongto this plane.Two
polygonsof thesameplanecanbecombined,if

1. both polygonshave exactly one sequenceof common
edgesand

2. if bothpolygonsdonot overlap.

Figure6: Theplatformsusedfor theexperiments.Outdoorsystem
(left), indoorsystem(right).

Figure7: Magnificationof a doorwayin thecorridorenvironment
after the approximationwith QSlim (left) and with our approach
(right).

Ourapproachrepeatedlyperformsthismerging processuntil
theredo not exist any further polygonsthat canbe merged.
Pleasenotethat both conditionsaresufficient to ensurethat
eachmerging operationleadsto a valid polygon. Further-
more, the resulting polygons are not necessarilyconvex,
i.e. our approachdoesnot closewholesin the modelcom-
ing from doorsor windows, suchasthe techniquedescribes
in [11].

4 Experimental Results
Ourapproachhasbeenimplementedandtestedusingtwodif-
ferentplatforms(seeFigure6), andin indoorandoutdooren-
vironments.As pointedoutabove,bothrobotswereequipped
with two 2D laser-rangescanners.Whereastheangularreso-
lution of thelaserusedon theoutdoorsystemis 0.5degrees,
theresolutionof thelasersmountedontheindoorsystemis 1
degree.Theresolutionof themeasureddistancesis 1cmand
the measurementerror of thesesystemslies between0 and
20cm.

Thefirst experimentwascarriedout in our office environ-
ment. Here the robot traveled 10m througha corridor and
measured82,592points in 3D. The correspondingraw 3D
dataconsistedof 163,336triangles.This input modelis de-
pictedin theleft imageof Figure8. Theresultof oursimplifi-
cationtechniqueis shown in theright imageof Figure8. Our
approachneeded6 hoursto computetheplanesandgenerated
868 polygons. Only 24,996trianglescould not be approxi-
matedby largerplanarstructures.As a result,we obtaineda
significantreductionby 84%of theinputdata.Thecenterof
Figure8 shows theresultof theQSlim system[8] which ap-
pliescomputergraphicsalgorithmsto reducethecomplexity
of 3D models.Pleasenotethat this modelcontainsthesame
numberof polygonsasobtainedwith our approach.Obvi-
ously, the quality of our model is significantly higher than



Figure8: Modelslearnedfor anindoorenvironment.Fromleft to right: Raw data,QSlim-approximation,ourapproach.

Figure9: Modelslearnedfor abuilding: Raw data(left), QSlim-simplification(center),our approach(right).

the quality obtainedby the QSlim system. Figure7 shows
magnifiedpartsof thesemodelswhichcorrespondto thedata
shown in theleft imageof Figure4. Apparently, ourapproach
providesaccurateapproximationsof theplanarstructuresand
computesmodelswith a seriouslylower complexity thanthe
QSlimsystem.

Additionally,weappliedourapproachto differentdatasets
obtainedwith ouroutdoorsystem.Theleft imageof Figure9
shows onesuch3D dataset. Again the local noiseis clearly
visible.Whereastheright imageof thefigureshowstheresult
of our planarapproximation,the centerimagedisplaysthe
approximationobtainedwith QSlim. Both modelscontain
thesamenumberof shapes.

Finally, the left imageof Figure10 shows the modelob-
tainedfor abuildingwith asizeof � � $�� � m. Theright image
shows a photoof thesamebuilding. Dueto thehigh number
of non-planarstructuresonthesurfaceof thebuilding, there-
ductionwasonly40.7%in thiscase(from 800,869to 474,921
surfaces).Theoverall computationtimewas10hours.

5 RelatedWork
Due to thevariousapplicationareaslike virtual reality, tele-
presence,accessto culturalsavings,theproblemof construct-
ing 3D modelshasrecentlygainedseriousinterest.Theap-
proachesdescribedin [2; 3; 5; 19] rely on computervision
techniquesandreconstruct3D modelsfrom sequencesof im-
ages.Allen et al. [1] constructaccurate3D-modelswith sta-
tionary rangescanners.Their approachalso includestech-
niquesfor planar approximationsin order to simplify the
models.However, their techniquecomputestheconvex hull
of polygonsin thesameplaneandthereforecannotdealwith
windows or doors. Furthermore,their approachto region
clusteringassumesthattherelativepositionsbetweenconsec-
utive scansareexactly known. Systemssimilar to ourshave
beenpresentedin [11] and[20]. Both techniquesusea mo-
bile platformto construct3D modelsof anenvironmentusing

rangesensors.However, they do not includeany meansfor
planarapproximation.Accordinglyourmodelshave asignif-
icantly lowercomplexity.

Theproblemof polygonalsimplificationhasbeenstudied
intensively in the computergraphicsarea[8; 12; 17]. The
primarygoal of thesemethodsis to simplify a meshso that
thevisualappearanceof theoriginalmodelandthesimplified
modelis almostidentical. Typical criteriausedfor simplifi-
cationarethediscontinuityof thesurfacenormalsof neigh-
boringsurfacesaswell astherelative anglebetweenthesur-
facenormalandtheviewing direction. Becauseof the local
noisein thedata,however, thesemethodsfail to extractplanar
structures.Accordingly, our approachprovidessignificantly
betterapproximationsin suchareas.

6 Conclusions
Wehavepresentedanalgorithmfor acquiring3Dmodelswith
mobile robots. The algorithmproceedsin two stages:First,
the robot poseis estimatedusing a fast scanmatchingal-
gorithm. Second,3D datais smoothedby identifying large
planarsurfaceregions. Theresultingalgorithmis capableof
producing3D mapswithout manualintervention,asdemon-
stratedusingdatasetsof indoorandoutdoorscenes.

The work raisesseveral follow-up questionsthat warrant
future research.Most importantly, the current3D model is
limited to flat surfaces.Measurementsnot representingflat
objectsarenot correctedin any way. As a consequence,the
resultingmodelis still fairly complex. An obviousextension
involvesbroadeningtheapproachto includeatomsotherthan
flat surfaces,suchascylinders,poles,etc. Additionally, an
interestingquestionconcernsrobotexploration.Theissueof
robot exploration hasbeenstudiedextensively for building
2D maps,but we are not aware of robot exploration algo-
rithmsthatapplyto thefull three-dimensionalcase.Thiscase
introducesthechallengethat therobotcannotmove arbitrar-
ily closeto objectsof interest,sinceit is confinedto a two-



Figure10: Building modellearnedby our robot(left) andphotoof thesamebuilding (right).

dimensionalmanifold. Finally, extending this approachto
multi-robotmappingandarbitraryoutdoorterrain(e.g.,plan-
etaryexploration)areworthwhilegoalsof futureresearch.

Acknowledgment

This researchis sponsoredby DARPA’s TMR Program(con-
tract numberDAAE07-98-C-L032),DARPA’s MARS Pro-
gram, and DARPA’s CoABS Program (contract number
F30602-98-2-0137). It is alsosponsoredby theNationalSci-
enceFoundation(regulargrantnumberIIS-9877033andCA-
REERgrantnumberIIS-9876136),all of which is gratefully
acknowledged.

References
[1] P.K. Allen andIoannisStamos.Integrationof rangeandimage

sensingfor photorealistic3D modeling. In Proc. of the IEEE
International Conference on Robotics & Automation (ICRA),
pages1435–1440,2000.

[2] R. Bajcsy, G. Kamberova,andLucienNocera.3D reconstruc-
tion of environmentsfor virtual reconstruction. In Proc. of
the 4th IEEE Workshop on Applications of Computer Vision,
2000.

[3] S.BeckerandM. Bove. Semiautomatic3-d modelextraction
from uncalibrated2-d cameraviews. In Proc. of the SPIE
Symposium on Electronic Imaging, San Jose, 1995.

[4] W. Burgard,D. Fox,H. Jans,C.Matenar, andS.Thrun.Sonar-
basedmappingof large-scalemobile robot environmentsus-
ing EM. In Proceedings of the International Conference on
Machine Learning, Bled,Slovenia,1999.

[5] P.E. Debevec,C.J.Taylor, andJ. Malik. Modeling andren-
dering architecturefrom photographs. In Proc. of the 23rd
International Conference on Computer Graphics and Interac-
tive Techniques (SIGGRAPH), 1996.

[6] G.Dissanayake,H. Durrant-Whyte,andT. Bailey. A computa-
tionally efficient solutionto thesimultaneouslocalisationand
mapbuilding (SLAM) problem.Workingnotesof ICRA’2000
WorkshopW4: Mobile RobotNavigationandMapping,April
2000.

[7] A. Elfes. Sonar-basedreal-world mappingand navigation.
IEEE Transactions on Robotics and Automation, 3(3):249–
265,1987.

[8] M. Garlandand P. Heckbert. Surfacesimplification using
quadricerror metrics. In Proc. of the International Confer-
ence on Computer Graphics and Interactive Techniques (SIG-
GRAPH), pages209–216,1997.

[9] J.-S.Gutmann,W. Burgard,D. Fox, andK. Konolige.An ex-
perimentalcomparisonof localizationmethods.In Proceed-
ings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 1998.

[10] J.-S.GutmannandK. Konolige.Incrementalmappingof large
cyclic environments. In Proceedings of the IEEE Interna-
tional Symposium on Computational Intelligence in Robotics
and Automation (CIRA), 2000.

[11] S.E.Hakim, P. Boulanger, andF. Blais. A mobilesystemfor
indoors3-dmappingandpositioning.In Proc. of the 4th Con-
ference on Optical 3-D Measurement Techniques, 1997.

[12] H. Hoppe. Progressive meshes. In Proc. of the 23rd Inter-
national Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), 1996.

[13] O. Khatib. Real-timeobstacleavoidancefor robotmanipula-
tor andmobile robots. The International Journal of Robotics
Research, 5(1):90–98,1986.

[14] M. BajracharyaL. Iocchi,K. Konolige.Visuallyrealisticmap-
ping of a planarenvironmentwith stereo. In Proceedings of
the 2000 International Symposium on Experimental Robotics,
Waikiki, Hawaii, 2000.

[15] J.J.Leonardand H.J.S.Feder. A computationallyefficient
methodfor large-scaleconcurrentmappingand localization.
In J. HollerbachandD. Koditschek,editors,Proceedings of
the Ninth International Symposium on Robotics Research,Salt
LakeCity, Utah,1999.

[16] F. Lu andE. Milios. Robotposeestimationin unknown envi-
ronmentsby matching2d rangescans.Journal of Intelligent
and Robotic Systems, 1998. to appear.

[17] D. LuebkeandC. Erikson. View-dependentsimplificationof
arbitrarypolygonalenvironments.In Proc. of the 24rd Inter-
national Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), 1997.

[18] H.P. Moravec. Sensorfusion in certainty grids for mobile
robots.AI Magazine, pages61–74,Summer1988.

[19] H. Shum,M. Han,andR. Szeliski. Interactiveconstructionof
3d modelsfrom panoramicmosaics.In Proc. of the Interna-
tional Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 1998.



[20] S.Thrun,W. Burgard,andD. Fox. A real-timealgorithmfor
mobilerobotmappingwith applicationsto multi-robotand3D
mapping. In Proceedings of the IEEE International Confer-
ence on Robotics and Automation (ICRA), SanFrancisco,CA,
2000.IEEE.


