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Abstract

This paperpresentanalgorithmfor full 3D shape
reconstructiorof indoorandoutdoorervironments
with mobile robots. Datais acquiredby a fast-
moving robot equippedwith two 2D laserrange
finders. Our approachcombinesan efficient scan
matching routine for robot pose estimationwith
analgorithmfor approximatingervironmentsusing
flat surfacesOn top of that,our approachncludes
ameshsimplificationtechniqueo reducethe com-
plexity of theresultingmodels.In extensve exper
iments,our methodis shovn to produceaccurate
modelsof indoor and outdoor ervironmentsthat
compardavorablyto othermethods.

1 Intr oduction

Thetopic of learning3D modelsof buildings (exteriorandin-
terior)andman-mad@bjectshasrecevedconsiderablatten-
tion overthepastfew years.3D modelsareusefulfor arange
of applications. For example, architectsand building man-
agersmayuse3D modelsfor designandutility studiesusing
virtual reality (VR) technology Emegeng crews, suchas
fire fighters,couldutilize 3D modeldor planningasto how to
bestoperateatahazardousite. 3D modelsarealsousefulfor
robotsoperatingn urbanervironments And finally, accurate
3D modelscouldbeagreatsupplemento thevideogamein-
dustry especiallyif the modelcompleity is low enoughfor
real-timeVR rendering.In all of theseapplicationdomains,
thereis a needfor methodsthat cangenerate3D modelsat
low cost,andwith minimumhumanintervention.

In the literature, approachegor 3D mappingcan be di-
vided into two categories: Approacheghat assumeknowl-
edgeof theposeof thesensor$l; 2; 3; 5; 19], andapproaches
thatdo not[11; 20]. In the presenipapey we areinterested
in using mobile robotsfor dataacquisition; henceour ap-
proachfalls into the seconctategyory dueto theinherentoise
in robot odometry However, unlike the approachedn [11;
20] which generatehighly complex models,our focusis on
generatinglow-compleity modelsthat can be renderedin
real-time.Theapproacthin [20], for example,composesnod-
elswherethe numberof polygonsis similarto the numberof
raw scanswhicheasilyliesin thehundred®f thousandsven
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for smallindoor ervironments.The majority of existing sys-
temsalsorequireshumaninput in the 3D modelingprocess.
Herewe areinterestedn fully automatednodelingwithout
ary humaninteraction. Our approachs alsorelatedto [14],
whichreconstructplanarmodelsof indoorervironmentsus-
ing stereovision, usingsomemanualguidancen the recon-
structionprocesgso accountfor the lack of visible structure
in typical indoorervironments.

This paperpresentsan algorithm for generatingsimpli-
fied 3D modelsof indoor and outdoorervironments. The
datafor generatingthesemodelsare acquiredby a mobile
robot, equippedwith two 2D laserrangefinders. The first
laserscanshorizontallyandis usedfor poseestimation(lo-
calization). The secondscanneis pointedupwardssothatit
scanghethree-dimensionadtructuresvhile therobotmoves
throughits ervironment. To estimatethe poseof the robot
while collectingthe data,a 2D scanmatchingalgorithmis
usedhatis reminiscentf theliteratureon mobilerobotmap-
ping. The resultingpre-filtereddatais globally consistent
but locally extremely noisy. A recursve surfaceidentifica-
tion algorithmis thenemployedo identify largeflat surfaces,
therebyreducingthe compleity of the 3D model signifi-
cantlywhile alsoeliminatingmuchof the noisein the sensor
measuremenilhe resulting3D modelsconsistof large, pla-
nar surfacesjnterspersedvith small fine-structurednodels
of regionsthatcannotbe capturedy a flat-surfacemodel.

The topic of simplificationof polygonalmodelshaslong
beenstudiedin the computergraphicditerature(seee.g.,[8;
12; 17]), oftenwith the goal of devising algorithmsfor real-
time renderingof complex models. Therearetwo important
characteristicsef thedatageneratetby robotsthatdiffer from
the polygonalmodelstudiedin the computergraphicditera-
ture. First, robot datais noisy The modelsstudiedin the
computemgraphicditeratureareusuallyassumedo benoise-
free;hencesimplificationsareonly appliedfor increasinghe
speedof rendering,andnot for the reductionof noise. This
hasimportantramificationsasthenoisein the datarendersa
close-to-randorfine structureof theinitial 3D models.Sec-
ond, built structureis known to containlarge, flat surfaces
thataretypically parallelor orthogonatto the ground. Such
a prior is usuallynot incorporatedn polygon simplification
algorithms. Consequentlya comparisorwith the algorithm
presentedn [8] illustratesthat our approachyields signifi-
cantlymoreaccurateandrealistic-looking3D models.



@[ b

Figurel: (a) 2D laserscanof the forward-pointedscannelbird’s
eye perspectie). (b) Log-likelihoodfunctionfor detectingobstacles
in free-spacethe darkera location,the lesslikely it is thatanother
rangescandetectsan obstacleat this location. Notice thatoccluded
areasareleft blank, hencedo not contribute to the gradientascent
scanadjustment.
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(a) Initial match (b) After 10iterations
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(c) After 50 iterations (d) After 100iterations

Figure2: Exampleof gradieniascenfor aligningscans Theinitial
translationakrroris 10 cm alongeachaxis, andtherotationalerror
is 30 dggrees.Thegradientascengalgorithmsafelyalignsthe scans.

2 Concurrent Mapping and Localization in
2D

2.1 2D ScanAlignment

Thefirst steptowardsbuilding 3D mapswith mobilerobotics
is a 2D posealignmentprocedure. The problemis as fol-
lows: Robotodometryis erroneous.Small error in odom-
etry, causedby effects suchasdrift and slippage,multiply
overtime. Sucheffectsarerelatively easyto compensatéd a
modelof the environmentis readily available[9]. However,
in theabsencef suchamodeltherobotfacesachicken-and-
egg problemin thatit hasto simultaneouslgstimateboththe
modelandits path.

In the robot mappingliterature, this problemis known
as the simultaneously localization and mapping problem

Figure3: Occupany grid map(left) andarchitecturablueprintof
arecentlyconstructednuseumn SanJose(right). Notice thatthe
blueprintis inaccuraten certainplaces.

(SLAM) [6]. Powerful statisticaltechniqueshave beenpro-
posedfor this problem,mostof which, however, requirethe
extractionof uniquefeatureq 15] or arecomputationallyery
expensve [4]. However, theseapproacheslemonstratehat
the poseof arobotcanbe recoreredfrom 2D informationin

indoorandleveledoutdoorervironmentsfor robotsconfined
to aflat 2D surface.

Ouralgorithmestimateposesn 2D usingareal-timescan
matchingalgorithm, similar to the onesdescribedin [16;
20]. Our scanmatchingalgorithmusesgradientascentin a
log-likelihoodfunctiondefinedover pairsof scansFigurela
shavs an example of a sensorscan,takenwith a forward-
pointed2D laserrangefinder The probability function of
detectingan obstaclein the rangeof this scanis shovn by
the grayly shadedareain Figure 1b: The darkera location
in this diagram,the lesslikely it is that an obstacleis de-
tectedat someotherpointin time. This log-likelihoodfunc-
tion is differentiable It is maximalatlocationswhereanob-
ject hasbeendetectedn the scan(occupiedregion), or in
occludedregionsasshaown. It is minimalin areaswvherethe
presenscanfails to detectan obstacle(free-space)with the
log-likelihooddecreasingn proportionto the distanceo the
nearestletectedbstacle.Thus,this probabilisticperception
modelis similar to potentialfields [13], but it also carriesa
notionof occlusion.

2.2 Searhin PoseSpace

Clearly, whenaligninga scanto oneor morepreviously col-
lectedscansthetotal log-likelihood dependsn the poseof
the scan,wherepose refersto the scans z-y-coordinatego-
getherwith its orientationd. Exploiting the differentiability
of our log-likelihood function, scansare alignedrelative to
previouslyrecordedscandyy adjustingthe posein proportion
to the nggative gradient:

oF
(z,y,0) Urrrmenr 1)
whereE denoteghetotallog likelihood (a sumover all mea-
surement®of a scan),andn > 0 is a step-sizeparameter
Figure2 shavs an exampleof aligningtwo scansusingthe
gradientascentscanmatchingroutine. In this example,the
two scansareinitially misalignedby translationalerrorsof
10cmin eachcoordinateaxis, anda rotationalmisalignment
of 30dggrees—theserrorsexceedpracticalerrorsby afactor

(z,y,0) +—
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Figure4: Fractionsof theraw datafor partsof the ceiling andthe
wall.

of 10. After 100 iterations,the scansare alignedwith suffi-
cientaccurag for our 3D modelingtask.

To performthe scanalignmentin real-time,our approach
pre-computescclusionandall necessargistancesiecessary
for calculatinggradientsusing a fine-grained?-dimensional
grid (typical resolution:10 cm). After this pre-computation,
whichtakesapproximately0.1secondsgachiterationof gra-
dientascentrequiresin the orderof 1msonalow-endPC—
which is fast enoughto align scansaccuratelyasthe robot
moves. Two relatedpaperd 10; 20] discusshe useof prob-
abilistic posteriorestimationtechniquego build consistent
mapsin cyclic ervironments,where our incrementalscan
matchingapproactwould be doomedo fail.

Figure 3 illustratesthe accurag of the resulting maps.
Shown thereis a 2D occupang grid map[7; 18] of a large
indoorenvironmentacquiredn real-time,alongwith a blue-
print of the sameervironment. The poseestimatef these
2D mapsform thevery basisof the topic centrallyaddressed
in this paper:Building 3D maps.

2.3 Generating‘Raw’ 3D Data

The 3D datais generatedisingthe upward-pointedaser as
shavn in Figure 6. While the robot traversesand mapsan
unknowvn environmentin 2D, therebyrecoveringits pose the
upwardpointedlaserscanghe 3D structureof the erviron-
ment. We thenobtaina polygonalmodelby connectingcon-
secutve 3D points. To avoid closingwholessuchasdoor
waysetc, we only createa polygonalsurfaceif the consecu-
tive pointsarecloseto eachother

3 Learning Smooth3D Models

Although the approachdescribedabore producesaccurate
positionestimatestheresultingmodelsoftenlack the appro-
priate smoothnessFigure 4 shaws, in detail, someof the
data.Asis easilyseenthedatais extremelyrugged.Whereas
someof the ruggednessirisesfrom remainingerrorsin the
poseestimation,the majority of error stemsfrom measure-
mentnoisein laserrangefinders. However, thekey charac-
teristic hereis thatall noiseis local, asthe scanshave been
globally alignedby the 2D mappingalgorithm. As a result,
globalstructuresannotbe extractedby consideringsmallar
easof the data.Rather onehasto scanlargerfractionsof the
modelin orderto find suchstructures.

For example,thefractionsof the modelsillustratedin Fig-
ure4 shav dataobtainedfor awall (left image)anda ceiling
(right image). Although the correspondingbjectsare pla-
narin the realworld, this structurecannotbe extractedfrom

Figure5: Normedsurfacenormalsfor a ceiling (left) and a wall
(right).

the local surfaces. Figure5 shaws the surfacenormalsfor

5000surfacef thewall andthe ceiling partly shavn in Fig-

ure 4. As canbe seenfrom the figure, the normalsare al-

most uniformly distributed. Accordingly, first experiments
with astandardlusteringalgorithmleadto unsatisfactorye-

sultsbecausehe surfacenormalscould not be separateép-

propriately

The noiseproblemis inherentto the sensotbasedacquisi-
tion of high-resolutiorBD-models.In orderto scananobject
with highresolutionthedistancenf consecutie scanningo-
sitions must be extremely small. However, the smallerthe
distancebetweenconsecutie scanningpositions,the higher
the influenceof the measurementoiseon the deviation be-
tweensurfacenormalsof neighboringshapegandalsoto the
truesurfacenormal).

Sinceapproximation®f larger structuresannotbe found
by alocalanalysispurmethodperformsarandomizedearch
to find larger planarstructuredn the data. If sucha planar
structureis found,our approachmapsthe correspondin@D-
points on this planarsurface. In a secondphaseneighbor
ing surfacesn the meshwhich lie on the sameplaneand
satisfy further constraintsdescribedbelon are meged into
largerpolygons.

3.1 Planar Approximation of Surfaces

Thealgorithmto find planedor setsof pointsis arandomized
approach.lt startswith a randomlychosenpointin 3D and
appliesa region growing techniqueto find a maximumset
of pointsin the neighborhoodo which a fitting plane can
be found. As the optimal planewe chosethat planewhich
minimizesthe sumof the squareddistancego the pointsv;
in the currentregion. Thenormalof this planeis givenby the
eigervector correspondingo the smallesteigervalue of the
3 x 3 matrix

> (v =m)" - (v —m) )
where

1 n

=1
is the centerof massof the pointsv;. The minimumeigen-
valuecorrespondso the sumof the squaref the distances
betweerthe planeandthe pointsw;.

Our approaciproceedsasfollows. It startswith arandom
point v; andits nearesneighborv,. It thenrepeatedlytries



to extendthe currentsetll of pointsby consideringall other
pointsin increasingdistanceform this point set. Suppose)’

is a point suchthatthe point distancepointDist(II, v') be-
tweenv’ andonepointin II is lessthand (which is 30cm
in our currentimplementation).If the averagesquarederror
error(Il U {v'}) to the optimal planefor IT U {v'} is less
thane (which was2.8in all our experimentsjandif the dis-
tanceof v’ to the optimalplanefor (IT U {v'}) is lessthan~y

(y = 10cmin ourimplementationjhen’ is addedto I1. As

a result, regionsare grown to include nearbypointsregard-
lessof the surfacenormalof the polygonsneighboringthese
points (which are assumedo be random). This processs

describednorepreciselyin Table1. To find the bestplanes,
this procesds restartedor differentrandomlychosenstart-
ing pointsv; andw,. Ourapproachalwaysselectghelargest
planefoundin eachround. If no furtherplanecanbe found,
theoverall processs terminated

sel ect point tuple vy, v
IT:= {v1,v2}
VWH LE (new point can be found) BEG N
Sel ect point v with pointDist(Il,v’) < 4§
if error(TU{v'}) <e && |[(TTU {v'},v")|| < v
M:=Tu{v'}
END WHI LE

Table1: Algorithm to searcHor aplanethrougha pointtuple.

Obviously, ourapproactsolvesameshsimplificationprob-
lem that hasbeenstudiedthroughlyin the computergraph-
ics literature. The important differencebetweenour ap-
proachand mesh simplification algorithmsfrom computer
graphics,suchas|[8; 12], lies in the way the input datais
processed.In contrastto our method,which tries to fit a
planeto alargersetof points,thetechniquegpresentedh [8;
12] only performa local searchand consideronly pairs of
surfaces.Neighboredsurfacesare simplified by minimizing
an error or enegy function which specifiesthe visual dis-
crepang betweenthe original model and simplified model
in termsof discontinuitiesin the surfacenormals. Because
of the local noisein our datathesetechniqguescannotdis-
tinguish betweenareaswith a higherlevel of detail suchas
cornersand areaswith few detailssuchasplanarstructures
correspondingo walls. Thus,thesimplificationis carriedout
uniformly over the mesh. Our approachijn contrastsimpli-
fiesplanarstructuresandleasesahighlevel of detailwhereit
really matters.

3.2 Merging of Surfaces

In a secondphase,neighboringpolygonsbelongingto the
sameplaneare meigedto larger polygons. A polygonbe-
longsto a plane,if all of its edgesbelongto this plane. Two
polygonsof the sameplanecanbe combined jf

1. both polygonshave exactly one sequencef common
edgesand

2. if bothpolygonsdonot overlap.

Figure6: Theplatformsusedfor the experiments Outdoorsystem
(left), indoorsystem(right).

Figure7: Magnificationof a doorwayin the corridorervironment
after the approximationwith QSlim (left) and with our approach

(right).

Ourapproachrepeatedlyperformsthis meging processuntil
theredo not exist ary further polygonsthat canbe meged.
Pleasenotethat both conditionsare sufiicient to ensurethat
eachmemging operationleadsto a valid polygon. Further
more, the resulting polygons are not necessarilycorvex,
i.e. our approachdoesnot closewholesin the model com-
in% fr(])m doorsor windows, suchasthe techniquedescribes
in[11].

4 Experimental Results

Ourapproacthasbeenmplementedndtestedusingtwo dif-
ferentplatforms(seeFigure6), andin indoorandoutdooren-
vironments As pointedoutabore, bothrobotswereequipped
with two 2D laserrangescannersWhereaghe angulamreso-
lution of the laserusedon the outdoorsystemis 0.5 degrees,
theresolutionof thelaseramountedontheindoorsystemis 1
degree.Theresolutionof the measuredlistancess 1cmand
the measuremengrror of thesesystemdies between0 and
20cm.

Thefirst experimentwascarriedout in our office erviron-
ment. Herethe robot traveled 10m througha corridor and
measured2,592pointsin 3D. The correspondingaw 3D
dataconsistedof 163,336triangles. This input modelis de-
pictedin theleft imageof Figure8. Theresultof our simplifi-
cationtechniquds shawn in therightimageof Figure8. Our
approacmeeded hoursto computeheplanesandgenerated
868 polygons. Only 24,996trianglescould not be approxi-
matedby largerplanarstructures As aresult,we obtaineda
significantreductionby 84% of theinput data. The centerof
Figure8 shaws theresultof the QSlim system 8] which ap-
pliescomputergraphicsalgorithmsto reducethe compleity
of 3D models.Pleasenotethatthis modelcontainsthe same
numberof polygonsas obtainedwith our approach. Obvi-
ously, the quality of our modelis significantly higherthan



the quality obtainedby the QSlim system. Figure 7 shavs

magnifiedpartsof thesemodelswhich correspondo thedata
shavnin theleft imageof Figure4. Apparently ourapproach
providesaccurateapproximation®f theplanarstructuresand

computesnodelswith a seriouslylower compleity thanthe

QSlim system.

Additionally, we appliedourapproacho differentdatasets
obtainedwith our outdoorsystem.Theleft imageof Figure9
shavs onesuch3D dataset. Again the local noiseis clearly
visible. Whereagherightimageof thefigureshavstheresult
of our planarapproximation,the centerimagedisplaysthe
approximationobtainedwith QSlim. Both modelscontain
thesamenumberof shapes.

Finally, the left imageof Figure 10 shavs the model ob-
tainedfor abuilding with asizeof 40 x 70m. Therightimage
shavs a photoof the samebuilding. Dueto the high number
of non-planastructureonthesurfaceof the building, there-
ductionwasonly 40.7%in thiscaseg(from 800,86%0 474,921
surfaces)Theoverall computatiortime was10 hours.

5 RelatedWork

Dueto the variousapplicationareadike virtual reality, tele-
presenceaccesso culturalsavings,theproblemof construct-
ing 3D modelshasrecentlygainedseriousinterest. The ap-
proachesiescribedn [2; 3; 5; 19] rely on computervision
techniqguesindreconstruc8D modelsfrom sequencesf im-
ages.Allen etal. [1] construciaccurate8D-modelswith sta-
tionary rangescanners.Their approachalsoincludestech-
niquesfor planar approximationsin order to simplify the
models. However, their techniguecomputeghe cornvex hull
of polygonsin the sameplaneandthereforecannotdealwith
windows or doors. Furthermoretheir approachto region
clusteringassumethattherelative positionsbetweerconsec-
utive scansareexactly known. Systemssimilar to ourshave
beenpresentedn [11] and[20]. Both techniquesisea mo-
bile platformto construcB8D modelsof anervironmentusing

Figure9: Modelslearnedor abuilding: Rav data(left), QSlim-simplification(center) our approact{right).

rangesensors.However, they do not include arny meansfor
planarapproximation Accordinglyour modelshave asignif-
icantly lower compleity.

The problemof polygonalsimplificationhasbeenstudied
intensively in the computergraphicsareal[8; 12; 17]. The
primary goal of thesemethodsis to simplify a meshso that
thevisualappearancef theoriginalmodelandthesimplified
modelis almostidentical. Typical criteriausedfor simplifi-
cationarethe discontinuityof the surfacenormalsof neigh-
boringsurfacesaswell astherelative anglebetweerthe sur
facenormalandthe viewing direction. Becauseof the local
noisein thedata however, thesemethoddail to extractplanar
structures.Accordingly, our approactprovidessignificantly
betterapproximationsn suchareas.

6 Conclusions

We have presentednalgorithmfor acquiring3D modelswith
mobile robots. The algorithmproceedsn two stages:First,
the robot poseis estimatedusing a fast scanmatchingal-
gorithm. Second,3D datais smoothedby identifying large
planarsurfaceregions. Theresultingalgorithmis capableof
producing3D mapswithout manualintervention,asdemon-
stratedusingdatasetsof indoorandoutdoorscenes.

The work raisesseveral follow-up questionghat warrant
future research.Most importantly the current3D modelis
limited to flat surfaces.Measurementgaot representinglat
objectsarenot correctedn ary way. As a consequencehe
resultingmodelis still fairly complex. An obviousextension
involvesbroadeningheapproacho includeatomsotherthan
flat surfacessuchascylinders, poles,etc. Additionally, an
interestingguestionconcerngobotexploration. Theissueof
robot exploration hasbeenstudiedextensvely for building
2D maps,but we are not aware of robot exploration algo-
rithmsthatapplyto thefull three-dimensionalase.Thiscase
introduceghe challengethatthe robotcannotmove arbitrar
ily closeto objectsof interest,sinceit is confinedto a two-
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Figure10: Building modellearnedby our robot(left) andphotoof the samebuilding (right).

dimensionalmanifold. Finally, extendingthis approachto
multi-robotmappingandarbitraryoutdoorterrain(e.g.,plan-
etaryexploration)areworthwhilegoalsof futureresearch.
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