
ar
X

iv
:1

40
8.

11
23

v1
  [

m
at

h.
A

C
] 

 5
 A

ug
 2

01
4

GORENSTEIN DIMENSIONS OVER SOME RINGS OF THE

FORM R⊕ C

PYE PHYO AUNG

Abstract. Given a semidualizing module C over a commutative noether-
ian ring, Holm and Jørgensen [13] investigate some connections between C-
Gorenstein dimensions of anR-complex and Gorenstein dimensions of the same
complex viewed as a complex over the “trivial extension” R⋉C. We generalize
some of their results to a certain type of retract diagram. We also investigate
some examples of such retract diagrams, namely D’Anna and Fontana’s amal-
gamated duplication [6] and Enescu’s pseudocanonical cover [7].

1. Introduction

In this paper, let R be a commutative noetherian ring with identity.
As in the famous theorem of Auslander-Buchsbaum [2] and Serre [18] where

projective dimension of R-modules is used to characterize regularity of R, Auslan-
der and Bridger introduced Gorenstein dimension in [1] to characterize Gorenstein
rings: a local ring R is Gorenstein if and only if every finitely generated R-module
M has finite Gorenstein dimension, i.e., G-dimRM <∞ . To extend similar results
to non-finitely generated R-modules, Enochs and Jenda introduced Gorenstein pro-
jective dimension [8]. In particular, a local ring is Gorenstein if and only if every
(finitely generated) R-module M has finite Gorenstein projective dimension, i.e.,
GpdRM <∞; see [4, 10]. Enochs and Jenda also studied the Gorenstein injective
dimension Gid and, with Torrecillas [9], the Gorenstein flat dimension Gfd.

Semidualizing R-modules, first introduced by Foxby in [11] and later studied
by Vasconcelos [20] and Golod [12], arise naturally in the study of the connection
between R and its modules: a finitely generated R-module M is semidualizing if
R ∼= HomR(C,C) and ExtiR(C,C) = 0 for all i > 1. For example, Golod introduced
the GC -dimension in [12] and proved a formula of the same type as the Auslander-
Buchsbaum and Auslander-Bridger formulae.

Holm and Jørgensen extended the GC -dimension in [13] introducing three new
homological dimensions called the C-Gorenstein projective, C-Gorenstein injec-
tive and C-Gorenstein flat dimensions, denoted as C -GpdR(M), C -GidR(M), and
C -GfdR(M), respectively, for anR-complexM . They also proved how these new di-
mensions coincide with Enochs, Jenda and Torrecillas’ Gorenstein dimensions over
the trivial extension R ⋉ C [13, Theorem 2.16]. This means that for an R-module
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M , one has

C -GpdR(M) = GpdR⋉C(M)

C -GidR(M) = GidR⋉C(M)

C -GfdR(M) = GfdR⋉C(M).

In this paper, we generalize this from the trivial extension R ⋉ C to a retract
diagram

R
f

//

idR
��
❅

❅

❅

❅

❅

❅

❅

❅

S

g

��

R

where R and S are commutative rings with the identity map idR on R, satisfying
the following properties:

(i) C ∼= Ker g,
(ii) HomR(S,C) ∼= S as S-modules, and

(iii) ExtiR(S,C) = 0 for all i > 1.

We prove the following generalized version of Holm and Jørgensen’s Theorem 2.16
[13]; see Theorem 3.19.

Theorem A. In the setting of the above retract diagram with a semidualizing C,
given a homologically left-bounded R-complex M and a homologically right-bounded
R-complex N , one has

C -GidR(M) = GidS(M)

C -GpdR(N) = GpdS(N)

C -GfdR(N) = GfdS(N).

Along the way we prove the following characterization of semidualizing modules;
see Theorem 3.5.

Theorem B. In the setting of the above retract diagram with a finitely generated
C, the following are equivalent:

(a) C is semidualizing over R;
(b) R is Gorenstein projective over S and AnnR(C) = 0; and
(c) C is Gorenstein projective over S and AnnR(C) = 0.

We further show that S = R⋉C is not the only example of a ring satisfying our
generalized settings set forth in the retract diagram above. See Theorems 4.4 and
4.9, along with their corollaries.

Theorem C. The following examples satisfy the hypotheses of Theorem A:

(a) D’Anna and Fontana’s amalgamated duplication S = R ⊲⊳ C, and
(b) Enescu’s pseudocanonical cover S = S(h), when h is a square in R.

In particular, we recover the main result of Salimi, Tavasoli and Yassemi in [16]
as the special case where S = R ⊲⊳ C.
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2. Preliminaries

We provide in this section some preliminary definitions and properties to be used
later. We first extend a couple of results of Ishikawa [15] to our setting.

Lemma 2.1. Let f : R → S be a ring homomorphism. Let S be finitely generated
as an R-module, let M be an R-module, and let N be an injective R-module. Then
the natural map

ΘS,M,N : S ⊗R HomR(M,N) → HomR(HomR(S,M), N)

defined as (ΘS,M,N(s ⊗R ψ))(φ) = ψ(φ(s)) for each s ⊗R ψ ∈ S ⊗R HomR(M,N)
and each φ ∈ HomR(S,M), is an S-module isomorphism.

Proof. By Ishikawa’s Hom evaluation result [15, Lemma 1.6], ΘS,M,N is an R-
module isomorphism. One readily checks that ΘS,M,N is also an S-module homo-
morphism, hence it is an S-module isomorphism. �

Lemma 2.2. Let f : R → S be a ring homomorphism. Let S be finitely generated
as an R-module, let M be an R-module, and let N be a flat R-module. Then the
natural map

ΩS,M,N : HomR(S,M)⊗R N → HomR(S,M ⊗R N)

defined as ΩS,M,N(ψ ⊗R n)(s) = ψ(s)⊗R n for each ψ ⊗R n ∈ HomR(S,M)⊗R N
and each s ∈ S, is an S-module isomorphism.

Proof. The proof is similar to that of Lemma 2.1, using Ishikawa’s Tensor evaluation
result instead. �

We collect here some properties of injectivity, projectivity and flatness associated
with restriction of scalars. A version of this result for S = R ⋉ C is found in [14,
Lemma 3.1].

Lemma 2.3. Let f : R → S be a ring homomorphism.

(a) Each injective S-module J is a direct summand in HomR(S, I) for some injec-
tive R-module I.

(b) Each projective S-module Q is a direct summand in S⊗RP for some projective
R-module P .

Proof. (a) Since J is also an R-module via f , we have an exact sequence 0 → J → I

ofR-modules for some injective R-module I. Applying the left-exact HomR(S,−) to
this exact sequence, noting that HomS(S, J) is an S-submodule of HomR(S, J), and
using Hom cancellation, we obtain the following S-module iso/mono-morphisms.

J
∼=
−→ HomS(S, J)

�

�

// HomR(S, J)
�

�

// HomR(S, I).

Since J is injective over S, this composite monomorphism splits as desired.
(b) This part is proved dually. �

We next define some useful classes and resolutions.

Definition 2.4. Let M be an R-module, and let A be a class of R-modules. Then
an augmented A-resolution X+ of M is an exact sequence of R-modules of the form

X+ = · · ·
∂X

2−−→ X1
∂X

1−−→ X0 →M → 0
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where Xi ∈ A for each integer i > 0. The R-complex

X = · · ·
∂X

2−−→ X1
∂X

1−−→ X0 → 0

is the associated A-resolution of M .

Definition 2.5. Let N be an R-module, and let B be a class of R-modules. Then
an augmented B-coresolution +Y of N is an exact sequence of R-modules of the
form

+Y = 0 → N → Y0
∂Y

0−−→ Y−1

∂Y

−1

−−→ · · ·

where Yj ∈ B for each integer j 6 0. The R-complex

Y = 0 → Y0
∂Y

0−−→ Y−1

∂Y

−1

−−→ · · ·

is the associated B-coresolution of N .

Definition 2.6. Let C be an R-module.

(a) Let I be the class of injective R-modules.
(b) Let P be the class of projective R-modules.
(c) Let F be the class of flat R-modules.
(d) Let IC be the class of R-modules isomorphic to HomR(C, I) for some injective

R-module I.
(e) Let PC be the class of R-modules isomorphic to C ⊗R P for some projective

R-module P .
(f) Let FC be the class of R-modules isomorphic to C⊗RF for some flat R-module

F .

The following two classes, known collectively as Foxby classes, are associated
with a finitely generated R-module C. The definitions can be found in [3] and
[5], and they are studied in conjunction with various homological dimensions, such
as the G-dimension in [22], the C-projective dimension in [19] and the Gorenstein
projective dimension in [21].

Definition 2.7. Let C be a finitely generated R-module. The Auslander class
AC(R) is the class of all R-modules M such that

(a) the natural map γCM :M → HomR(C,C⊗RM), defined as γCM (m)(c) := c⊗Rm
for all m ∈M and c ∈ C, is an isomorphism; and

(b) TorRi (C,M) = 0 = ExtiR(C,C ⊗RM) for all i > 1.

Definition 2.8. Let C be a finitely generated R-module. The Bass class BC(R)
is the class of all R-modules M such that

(a) the evaluation map ξCM : C ⊗R HomR(C,M) → M , defined as ξCM (c ⊗R ψ) :=
ψ(c) for all c ∈ C and ψ ∈ HomR(C,M), is an isomorphism; and

(b) ExtiR(C,M) = 0 = TorRi (C,HomR(C,M)) for all i > 1.

Definition 2.9. Let C be an R-module.

(a) A complete ICI-resolution X of R-modules is an exact sequence of R-modules
of the form

X = · · ·
∂X

2−−→ X1
∂X

1−−→ X0
∂X

0−−→ X−1

∂X

−1

−−→ · · ·

such that Xi ∈ IC for each integer i > 1, Xj ∈ I for each integer j 6 0, and
HomR(A,X) is exact for each A ∈ IC .
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(b) A complete PPC-resolution X of R-modules is an exact sequence of R-modules
of the form

X = · · ·
∂X

2−−→ X1
∂X

1−−→ X0
∂X

0−−→ X−1

∂X

−1

−−→ · · ·

such that Xi ∈ P for each integer i > 0, Xj ∈ PC for each integer j 6 −1, and
HomR(X,A) is exact for each A ∈ PC .

(c) A complete FFC-resolution X of R-modules is an exact sequence of R-modules
of the form

X = · · ·
∂X

2−−→ X1
∂X

1−−→ X0
∂X

0−−→ X−1

∂X

−1

−−→ · · ·

such that Xi ∈ F for each integer i > 0, Xj ∈ FC for each integer j 6 −1, and
A⊗R X is exact for each A ∈ IC .

Using complete resolutions, we next define C-Gorenstein injectivity, C-Gorenstein
projectivity and C-Gorenstein flatness. We also note that these definitions are
equivalent to [13, Definition 2.7].

Definition 2.10. Let C be an R-module. Then, an R-module M is

(a) C-Gorenstein injective if there is a complete ICI-resolution X, as in Defini-
tion 2.9(a), such that Ker ∂X0

∼=M .
(b) C-Gorenstein projective if there is a complete PPC -resolution X, as in Defini-

tion 2.9(b), such that Coker∂X1
∼=M .

(c) C-Gorenstein flat if there is a complete FFC -resolutionX, as in Definition 2.9(c),
such that Coker ∂X1

∼=M .

When C = R, Definition 2.10 reduces to the definitions of Gorenstein injectivity,
Gorenstein projectivity and Gorenstein flatness of Enochs, Jenda, and Torrecillas
[8, 9], with complete ICI-resolution, complete PPC -resolution and complete FFC -
resolution becoming complete injective resolution, complete projective resolution
and complete flat resolution, respectively.

Lemma 2.11. Let C and M be R-modules. Then M is C-Gorenstein injective if
and only if

(a) For each A ∈ IC , Ext
i
R(A,M) = 0 for all i > 1.

(b) M admits an augmented IC-resolution Y
+ such that HomR(A, Y

+) is exact for
each A ∈ IC .

Lemma 2.12. Let C and M be R-modules. Then M is C-Gorenstein projective if
and only if

(a) For each A ∈ PC, Ext
i
R(M,A) = 0 for all i > 1.

(b) M admits an augmented PC-coresolution
+Y such that HomR(

+Y ,A) is exact
for each A ∈ PC .

Lemma 2.13. Let C and M be R-modules. Then M is C-Gorenstein flat if and
only if

(a) For each A ∈ IC , Tor
R
i (A,M) = 0 for all i > 1.

(b) M admits an augmented FC-coresolution
+Y such that A⊗R (+Y ) is exact for

each A ∈ IC .
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As the injective R-complexes give rise to the injective dimension of an R-complex
M , denoted idRM , the C-Gorenstein injective R-complexes give rise to the C-
Gorenstein injective dimension of M : for a homologically left-bounded R-complex
M , one has

C -GidRM := inf

{

sup {i ∈ Z | X−i 6= 0}

∣

∣

∣

∣

X is a C-Gorenstein injective
resolution of M

}

.

In the case C = R, the C-Gorenstein injective dimension of M is the Gorenstein
injective dimension of M , denoted GidRM . In other words, one has R -GidRM =
GidRM . The C-Gorenstein projective dimension, the Gorenstein projective dimen-
sion, the C-Gorenstein flat dimension, and the Gorenstein flat dimension of an R-
module M , denoted respectively C -GpdRM , GpdRM , C -GfdRM , and GfdRM ,
are defined similarly.

3. Semidualizing Modules and Gorenstein Dimensions

The main point of this section is to prove Theorem A from the introduction.

Property 3.1. Let R and S be rings, and let C be an R-module. Then the triple
(R,S,C) satisfies Property 3.1 if there is a commutative diagram

R
f

//

idR
��
❅

❅

❅

❅

❅

❅

❅

❅

S

g

��

R

of ring homomorphisms with the identity map idR on R such that HomR(S,C) ∼= S

as S-modules and ExtiR(S,C) = 0 for all i > 1.

Remark 3.2. Property 3.1 implies that RHomR(S,C) ≃ S in the derived category
D(S). In other words, if I is an injective resolution of C over R, then Property 3.1
implies that HomR(S, I) is an injective resolution of the S-module S.

Property 3.3. Let R and S be rings, and let C be an R-module. Then the
triple (R,S,C) satisfies Property 3.3 if it satisfies Property 3.1 and C ∼= Ker g as
R-modules.

We here note that if (R,S,C) satisfies Property 3.3, it follows that S ∼= R ⊕ C

as R-modules. We next state and prove versions of several lemmas of Holm and
Jørgensen [13, 14] in the general setting of Properties 3.1 and 3.3.

Lemma 3.4. Let R and S be rings, and let C be an R-module. If (R,S,C) satisfies
Property 3.1, then the following facts hold:

(a) For any R-module M , we have ExtiS(M,S) ∼= ExtiR(M,C) as S-modules for all
i > 0.

(b) We also have HomS(R,S) ∼= C as S-modules and ExtiS(R,S) = 0 for all i > 1.

Proof. (a) Argue as in [14, Lemma 3.2 (ii)] with the ring S taking the place of the
trivial extension R⋉C. The essential point is to use Hom-tensor adjointness with
the injective resolution HomR(S, I) of S, as described in Remark 3.2.

(b) This is the special case of part (a) where M = R. �

The following is Theorem B from the introduction.
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Theorem 3.5. Let R and S be rings, and let C be a finitely generated R-module
such that (R,S,C) satisfies Property 3.1. Then the following are equivalent:

(a) C is semidualizing over R;
(b) R is Gorenstein projective over S and AnnR(C) = 0; and
(c) C is Gorenstein projective over S and AnnR(C) = 0.

Proof. To prove that (a) implies (b), we assume that C is semidualizing over R.
Using Lemma 3.4, we note that

ExtiS(HomS(R,S), S) ∼= ExtiS(C, S)
∼= ExtiR(C,C).

This is equal to 0 for all i > 1 and isomorphic to R when i = 0 because C is
semidualizing over R. Again, using the Ext-vanishing from Lemma 3.4(b), this
means that R is Gorenstein projective over S by [4, Proposition 2.2.2]. We also
note that AnnR(C) is the kernel of the homothety map χRC : R → HomR(C,C),
which is 0 because C is semidualizing over R.

To prove that (b) implies (c), we recall that HomS(−, S) preserves the class
of finitely generated Gorenstein projective S-modules by [4, Observation 1.1.7].
This proves the desired implication because C ∼= HomS(R,S) as S-modules by
Lemma 3.4(b).

To prove that (c) implies (a), we assume that C is Gorenstein projective over S
and AnnR(C) = 0. Since C is finitely generated over R, it is also finitely generated
over S. Therefore, by [4, Theorem 4.2.6], we have

ExtiS(C, S) = 0 = ExtiS(HomS(C, S), S)

for all i > 1 and the biduality map

δSC : C → HomS(HomS(C, S), S)

is an S-module isomorphism. Using Lemma 3.4, we have

ExtiR(C,C) = 0 = ExtiR(HomR(C,C), C)

for all i > 1 and the biduality map

δSC : C → HomS(HomS(C, S), S) ∼= HomR(HomR(C,C), C)

is an R-module isomorphism. Therefore, C is “totally C-reflexive” over R. Since
AnnR(C) = 0, it follows that C is semidualizing over R by [17, Fact 1.1].

�

The assumption AnnR(C) = 0 is essential in Theorem 3.5; see [17, Example 1.2].

Lemma 3.6. Let R and S be rings, let N be a finitely generated R-module, and
let C be a semidualizing R-module. If (R,S,C) satisfies Property 3.1, and if N is
Gorenstein projective as an S-module, then the module HomR(N, I) is Gorenstein
injective over S for any injective R-module I.

Proof. Since N is Gorenstein projective over S, the module N has a complete pro-
jective resolution P over S. Moreover, since N is finitely generated over R (hence
over S as well) P can be chosen to consist of finitely generated S-modules by [4,
Theorems 4.1.4 and 4.2.6]. As in the proof of [14, Lemma 3.3 (ii)], it is straight-
forward to show that HomS(P ,HomR(S, I)) is a complete injective resolution of
HomR(N, I) over S. �

We here recover a version of [14, Lemma 3.3 (ii)] for our general setting.
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Proposition 3.7. Let R and S be rings, and let C be a semidualizing R-module.
If (R,S,C) satisfies Property 3.1, then for any injective R-module I, the modules
HomR(C, I) and HomR(R, I) ∼= I are Gorenstein injective over S.

Proof. The modules C and R are Gorenstein projective over S by Theorem 3.5.
Thus, the duals HomR(C, I) and HomR(R, I) ∼= I are Gorenstein injective over S
by Lemma 3.6. �

Next we prove a version of [14, Lemma 3.4] in the general setting.

Lemma 3.8. Let R and S be rings, and let C be a semidualizing R-module. If
(R,S,C) satisfies Property 3.3, then for any injective R-module J , we have

ExtiS(HomR(S, J),−) ∼= ExtiR(HomR(C, J),−)

for i > 0 as functors on S-modules.

Proof. Argue as in the proof of [14, Lemma 3.4] that

HomR(S, J) ∼= HomR(HomR(S,C), J) ∼= S ⊗R HomR(C, J)

using Lemma 2.1 and the fact that (R,S,C) satisfies Property 3.3 (hence Prop-
erty 3.1). If P is a projective resolution over R of HomR(C, J), one can argue
that S ⊗R P is a projective resolution over S of S ⊗R HomR(C, J) ∼= HomR(S, J).
This uses the facts that S ∼= R ⊕ C as R-modules and J ∈ BC(R) by [19, 1.9 (b)]
(hence HomR(C, J) ∈ AC(R) by Foxby equivalence [11, Proposition 1.4]). Using
this projective resolution over S of HomR(S, J) and Hom-tensor adjointness, one
can obtain the desired isomorphism. �

As a consequence of the above lemma, we have the following proposition.

Proposition 3.9. Let R and S be rings, and let C be a semidualizing R-module. If
(R,S,C) satisfies Property 3.3 and M is an R-module, then for each i > 0, we have

ExtiR(HomR(C, J),M) = 0 for all J injective over R if and only if ExtiS(U,M) = 0
for all U injective over S.

Proof. As in [13, Corollary 2.3 (1)], this follows from Lemmas 2.3(a) and 3.8. �

Lemma 3.10. Let R and S be rings, and let C be a semidualizing R-module. If
the triple (R,S,C) satisfies Property 3.3 and M is an R-module that is Gorenstein
injective over S, then there exists a short exact sequence of R-modules

0 →M ′ → HomR(C, I) →M → 0

for some injective R-module I such that

(1) M ′ is Gorenstein injective over S
(2) the above sequence is HomR(HomR(C, J),−)-exact for any injective R-

module J .

Proof. The proof begins similarly to that of [14, Lemma 4.1].
Since M is Gorenstein injective over S, it has a complete injective resolution.

From this, we can construct the following short exact sequence of S-modules

0 → N → K →M → 0

where K is injective over S, N is Gorenstein injective over S and the sequence is
HomS(L,−)-exact for each L injective over S, particularly for L = HomR(S, J)
with any J injective over R.
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As in the proof of [14, Lemma 4.1], we can use Lemma 2.3(a) to assume without
loss of generality that the above sequence is of the form

0 → N
ǫ
−→ HomR(S, I)

η
−→M → 0 (3.10.1)

for some injective R-module I.
We here note that we cannot make use of a specific ring structure of S as in the

proof of [14, Lemma 4.1], so we use Lemma 2.1 instead. Since S ∼= HomR(S,C) as
S-modules by Property 3.1, we have

HomR(S, I) ∼= HomR(HomR(S,C), I) ∼= S ⊗R HomR(C, I)

as S-modules, where the second isomorphism is by Lemma 2.1. We note here that
I is injective over R, and S ∼= R ⊕ C as R-modules, hence S is finitely generated
over R. Therefore, we can replace HomR(S, I) in (3.10.1) with S ⊗R HomR(C, I)
to obtain the top row of the following diagram.

0 // N
ǫ′

//

ψ◦ǫ′

��

S ⊗R HomR(C, I)
η′

//

ψ

��

M // 0

0 // M ′ := Kerφ �
�

// HomR(C, I)
φ

// M // 0

(3.10.2)

The maps ψ and φ are defined as follows. For any s ⊗R β ∈ S ⊗R HomR(C, I),
set ψ(s ⊗R β) := sβ, where the scalar multiplication is afforded by the S-module
structure on the R-module HomR(C, I). For any β in HomR(C, I), set φ(β) :=
η′(1S ⊗R β). It is routine to check that both ψ and φ are well-defined S-module
homomorphisms and that the diagram (3.10.2) is commutative.

As in [14, Lemma 4.1], we can show that the bottom row of the diagram (3.10.2)
satisfies the desired properties. �

Lemma 3.11. Let R and S be rings, and let C be an R-module such that (R,S,C)
satisfies Property 3.3. Let M be an R-module that is C-Gorenstein injective over
R. Then there exists a short exact sequence of S-modules

0 →M ′ → U →M → 0

where U is injective over S, M ′ is C-Gorenstein injective over R and the above
sequence is HomS(V,−)-exact for any V injective over S.

Proof. The proof is similar to [13, Lemma 2.11], using Lemma 2.1 as in the previous
result. �

Using the lemmas proved above in the general setting of the retract diagram, we
can claim similar propositions and theorems as in [14] and [13].

Proposition 3.12. Let R and S be rings, and let C be a semidualizing R-module,
such that the triple (R,S,C) satisfies Property 3.3. Then, for any R-module M , M
is C-Gorenstein injective over R if and only if M is Gorenstein injective over S.

Proof. This is proved similarly as in [13, Proposition 2.13 (1)]. �

We need the dual versions of Lemma 3.8, Proposition 3.9, Lemma 3.10 and
Lemma 3.11 to prove the projective and flat versions of Proposition 3.12. They are
stated next for the sake of completeness.



10 PYE PHYO AUNG

Lemma 3.13. Let R and S be rings, and let C be a semidualizing R-module. If
(R,S,C) satisfies Property 3.3, then for any projective R-module Q, we have

ExtiS(−, S ⊗R Q) ∼= ExtiR(−, C ⊗R Q)

for all i > 0 as functors on S-modules.

Proof. This is the dual of the proof of Lemma 3.8 using Lemma 2.2 and HomR(S, I)
as the injective resolution over S of HomR(S,C ⊗R Q) where I is an injective
resolution of C ⊗R Q. �

Proposition 3.14. Let R and S be rings, and let C be a semidualizing R-module.
If (R,S,C) satisfies Property 3.3 and M is an R-module, then for each i > 0, we

have ExtiR(M,C⊗RP ) = 0 for all P projective over R if and only if ExtiS(M,V ) = 0
for all V projective over S.

Proof. This is the dual of Proposition 3.9. �

Lemma 3.15. Let R and S be rings, and C be a semidualizing R-module. If the
triple (R,S,C) satisfies Property 3.3 and M is an R-module that is Gorenstein
projective over S, then there exists a short exact sequence of R-modules

0 →M → C ⊗R P → M ′ → 0

for some projective R-module P such that

(1) M ′ is Gorenstein projective over S
(2) the above sequence is HomR(−, C ⊗RQ)-exact for any projective R-module

Q.

Proof. This is the dual of Lemma 3.10, using Lemma 2.2 instead. �

Lemma 3.16. Let R and S be rings, and let C be an R-module such that (R,S,C)
satisfies Property 3.3. Let M be an R-module that is C-Gorenstein projective over
R. Then there exists a short exact sequence of S-modules

0 →M →W →M ′ → 0

where W is projective over S, M ′ is C-Gorenstein projective over R and the above
sequence if HomS(−, Y )-exact for any Y projective over S.

Proof. This is the dual of Lemma 3.11. �

Using the above results, one can prove the injective version of Proposition 3.12.

Proposition 3.17. Let R and S be rings, and let C be a semidualizing R-module,
such that the triple (R,S,C) satisfies Property 3.3. Then, for any R-module M , M
is C-Gorenstein projective over R if and only if M is Gorenstein projective over S.

Proof. Argue similarly as in the proof of Proposition 3.12 using Lemmas 3.13, 3.15,
3.16 and Proposition 3.14 instead. �

For the flat version of Proposition 3.12, please see [13, Proposition 2.15], whose
proof can be adapted for our general setting.

Proposition 3.18. Let R and S be rings, and let C be a semidualizing R-module,
such that the triple (R,S,C) satisfies Property 3.3. Then, for any R-module M ,
M is C-Gorenstein flat over R if and only if M is Gorenstein flat over S.
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Proof. Argue as in the beginning of the proof of [13, Proposition 2.15], using Hom-
tensor adjointness, that for any faithfully-injective R-module E, the module M is
C-Gorenstein flat if and only if the module HomR(M,E) is C-Gorenstein injective.

Since HomR(S,E) is faithfully injective over S for any E faithfully injective
over R, one has GfdSM = GidS(HomS(M,HomR(S,E))) by [4, Theorem 6.4.2].
Moreover, since HomS(M,HomR(S,E)) ∼= HomR(M,E) by Hom-tensor adjointness
and tensor cancellation, we have GfdSM = GidS(HomR(M,E)).

The above two facts, combined with Proposition 3.12, give the desired result. �

The last result of this section is Theorem A.

Theorem 3.19. Let R and S be rings, and let C be a semidualizing R-module. If
(R,S,C) satisfies Property 3.3, then for any homologically left-bounded R-complex
M and any homologically right-bounded R-complex N , one has

C -GidRM = GidSM

C -GpdRN = GpdS N

C -GfdRN = GfdS N

Proof. This follows from Propositions 3.12, 3.17 and 3.18 as in [13, Theorem 2.16].
�

4. Examples

It is routine to show that Nagata’s trivial extension R⋉C satisfies Property 3.3,
hence we can recover [13, Theorem 2.16] as a special case of Theorem 3.19. The
rest of this section is devoted to two similar constructions. In particular, we prove
in this section Theorem C from the introduction.

4.1. Amalgamated Duplication of a Ring along an Ideal.
The following construction is due to D’Anna and Fontana [6].

Definition/Notation 4.1. Let R be a ring, and let C be an ideal in R. Then
define a multiplication structure on R⊕C as follows: for each (r, c) and (r′, c′) in
R ⊕ C, we define (r, c)(r′, c′) = (rr′, rc′ + r′c + cc′). The group R ⊕ C with this
multiplication structure is a ring with (1R, 0) as the multiplicative identity [6]. We
denote this ring as R ⊲⊳ C.

It is routine to check that we have a retract diagram similar to the one in
Property 3.1. We collect this information in the following lemma.

Lemma 4.2. Let R be a ring, and let C be an ideal in R. Then the diagram

R
f

//

idR
##●

●

●

●

●

●

●

●

●

R ⊲⊳ C

g

��

R

where f(r) := (r, 0) and g(r, c) := r for each r ∈ R and c ∈ C, is a commutative
diagram of ring homomorphisms such that Ker g ∼= C over R.

We prove next that the ring R ⊲⊳ C satisfies Property 3.1.
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Lemma 4.3. Let R be a ring, and let C be an ideal in R. If C is semidualizing over
R, then HomR(R ⊲⊳ C,C) ∼= R ⊲⊳ C as R ⊲⊳ C-modules, and ExtiR(R ⊲⊳ C,C) = 0
for all i > 1.

Proof. We first note that the R ⊲⊳ C-module structure of HomR(R ⊲⊳ C,C) comes
from R ⊲⊳ C in the first slot. Specifically, for any (r, c) and (s, d) in R ⊲⊳ C, and
for any R-module homomorphism ϕ from R ⊲⊳ C to C, we have ((r, c)ϕ)(s, d) =
ϕ((r, c)(s, d)) = ϕ(rs, rd+ sc+ cd). Since R ⊲⊳ C ∼= R⊕C as R-modules, we know
that HomR(R ⊲⊳ C,C) ∼= HomR(C,C) ⊕ C as R-modules.

Since C is assumed to be semidualizing over R, we have HomR(C,C) ∼= R as
R-modules, hence HomR(R ⊲⊳ C,C) ∼= R ⊲⊳ C as R-modules. Tracing all the
natural isomorphisms involved, we see that the natural R-module isomorphism
Θ : R ⊲⊳ C → HomR(R ⊲⊳ C,C) sends (r, c) 7→ φ(r,c), where φ(r,c) is defined for any
(r′′, c′′) ∈ R ⊲⊳ C as φ(r,c)(r′′, c′′) = rc′′ + r′′c.

However, unlike in the case of R ⋉ C, this natural R-module isomorphism Θ is
not an R ⊲⊳ C-module isomorphism. We therefore construct a new map Φ from
R ⊲⊳ C to HomR(R ⊲⊳ C,C), and we prove that Φ is indeed an R ⊲⊳ C-module
isomorphism.

Define Φ : R ⊲⊳ C → HomR(R ⊲⊳ C,C) as Φ(r, c) := ϕ(r,c) for any (r, c) ∈ R ⊲⊳ C,
where ϕ(r,c) maps (r′′, c′′) 7→ rc′′+ r′′c+ cc′′. It is routine to check that Φ is indeed
an R ⊲⊳ C-module homomorphism with respect to the module structures noted
above.

We proceed to show that Φ is bijective. Since Θ is an isomorphism, we have
ImΦ ⊆ HomR(R ⊲⊳ C,C) = ImΘ. Moreover, we can check that for any ϕ(r,c) ∈
ImΘ, we have ϕ(r,c) = ϕ(r−c,c) ∈ ImΦ for each (r′′, c′′) ∈ R ⊲⊳ C. Therefore, we
have ImΘ ⊆ ImΦ proving that ImΦ = ImΘ = HomR(R ⊲⊳ C,C), hence Φ is
surjective. We here note that we have r − c ∈ R since C ⊆ R.

We here prove that Φ is injective. Let (r, c) ∈ KerΦ. Then ϕ(r,c)(r
′′, c′′) =

0 for any (r′′, c′′) ∈ R ⊲⊳ C, particularly (1R, 0) ∈ R ⊲⊳ C. This implies that
0 = r(0) + (1R)c + c(0) = c. Therefore, for any (r′′, c′′) ∈ R ⊲⊳ C, we have 0 =
φ(r,c)(r

′′, c′′) = rc′′, implying that r ∈ AnnR(C). Moreover, since C is semidualizing
over R, we have AnnR(C) = 0, implying that r = 0. This concludes that KerΦ = 0,
hence Φ is injective.

Finally, we note that we already have ExtiR(R ⊲⊳ C,C) ∼= ExtiR(C,C) as R-

modules. Since C is semidualizing over R, we have ExtiR(C,C)
∼= 0 for all i > 1,

hence ExtiR(R ⊲⊳ C,C) ∼= 0 as well. �

The next result justifies Theorem C(a) from the introduction.

Theorem 4.4. Let R be a ring, let C be an ideal in R, and set S := R ⊲⊳ C. If C
is semidualizing as an R-module, then (R,S,C) satisfies Property 3.3.

Proof. Lemmas 4.2 and 4.3 combined provide the desired result. �

Since (R,R ⊲⊳ C,C) satisfies Property 3.3, Theorem 3.19 can be applied to imply
the following.

Corollary 4.5. Let R be a ring, and let C be an ideal in R such that C is semid-
ualizing over R. Then, for any homologically left-bounded R-complex M and any
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homologically right-bounded R-complex N , one has

C -GidRM = GidR⊲⊳CM

C -GpdRN = GpdR⊲⊳C N

C -GfdRN = GfdR⊲⊳C N

4.2. Pseudocanonical Cover.
In this section, we apply Theorem 3.19 to pseudocanonical covers introduced by

Enescu in [7].

Definition/Notation 4.6. Let R be a ring, let h ∈ R, and let C be an ideal in R.
We define a ring structure on R⊕C by defining (r, c)(r′, c′) = (rr′ + cc′h, rc′ + r′c)
for each (r, c), (r′, c′) ∈ R⊕C. The group R⊕C with this multiplication structure,
denoted as S(h), is indeed a ring with (1R, 0) as its multiplicative identity [7], and
is called the pseudocanonical cover of R via h.

We construct a retract diagram similar to the one in Property 3.1.

Lemma 4.7. Let R be a ring, let C be an ideal and let h ∈ R such that h = r20 for
some r0 ∈ R. Then the diagram

R
f

//

idR

!!❈
❈

❈

❈

❈

❈

❈

❈

❈

S(h)

g

��

R

where f(r) := (r, 0) and g(r, c) := r+cr0 for each r ∈ R and c ∈ C, is a commutative
diagram of ring homomorphisms such that Ker g ∼= C over R.

Proof. By construction, f and g are well-defined functions making the diagram
commute. It is routine to check that f is a ring homomorphism and that g respects
addition. To check that g respects multiplication as well, let r, r′ ∈ R and c, c′ ∈ C.
Then

g ((r, c)(r′, c′)) = g(rr′ + cc′h, rc′ + r′c)

= rr′ + cc′h+ rc′r0 + r′cr0

= r(r′ + c′r0) + cc′r20 + r′cr0

= r(r′ + c′r0) + cr0(c
′r0 + r′)

= (r + cr0)(r
′ + c′r0)

= g(r, c)g(r′, c′)

where we used the fact that h = r20 .
We note that Ker g is the R-submodule of S(h) consisting of all elements of the

form (−cr0, c) with c ∈ C. Therefore one can readily prove that the map from C

to Ker g sending c 7→ (−cr0, c) is indeed an R-module isomorphism. �

Lemma 4.8. Let R be a ring, let C be an ideal in R, and let h ∈ R such that
h = r20 for some r0 ∈ R. If C is semidualizing over R, then HomR(S(h), C) ∼= S(h)

as S(h)-modules, and ExtiR(S(h), C) = 0 for all i > 1.
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Proof. We first note that the S(h)-module structure of HomR(S(h), C) comes from
S(h) in the first slot. Since S(h) ∼= R⊕ C as R-modules, we know that

HomR(S(h), C) ∼= HomR(C,C) ⊕ C

as R-modules.
Since C is assumed to be semidualizing over R, we have HomR(C,C) ∼= R as R-

modules, hence S(h) ∼= HomR(S(h), C) as R-modules. Tracing the composition of
all the natural R-module isomorphisms above, we have an R-module isomorphism
Θ : S(h) → HomR(S(h), C) sending (r, c) 7→ ϕ(r,c), where ϕ(r,c) is defined for any
(r′′, c′′) ∈ S(h) as ϕ(r,c)(r′′, c′′) = rc′′ + r′′c. It is routine to check that Θ is also an
S(h)-module homomorphism.

Finally, we have that ExtiR(S(h), C)
∼= ExtiR(C,C) as R-modules for all i > 1.

Since C is semidualizing over R, we have ExtiR(C,C) = 0 for all i > 1, hence

ExtiR(S(h), C) = 0 as well. �

The next result justifies Theorem C(b) from the introduction.

Theorem 4.9. Let R be a ring, let C be an ideal in R, let h ∈ R such that h = r20
for some r0 ∈ R, and let S(h) be the pseudocanonical cover of R via h. If C is
semidualizing as an R-module, then (R,S,C) satisfies Property 3.3.

Proof. Lemmas 4.7 and 4.8 combined provide the desired result. �

We can apply Theorem 3.19 to S(h).

Corollary 4.10. Let R be a ring, let C be an ideal in R such that C is semid-
ualizing over R, and let h ∈ R such that h = r20 for some r0 ∈ R. Then, for
any homologically left-bounded R-complex M and any homologically right-bounded
R-complex N , one has

C −GidRM = GidS(h)M

C −GpdRN = GpdS(h)N

C −GfdRN = GfdS(h)N

Proof. Since (R,S(h), C) satisfies Property 3.3, this is a direct application of The-
orem 3.19. �

5. Counterexamples Regarding the Converse

It is natural to ask if the general settings we mentioned characterize the situ-
ation where an R-module M is C-Gorenstein injective over R if and only if M is
Gorenstein injective over S. However, this fails in general, and the following is a
counterexample.

Example 5.1. Let C be a semidualizing module, and set R1 := R ⋉ C and S :=
R1 ⋉R1. We have the following diagram

R

��
✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

✵

// S

g1

��

R1

g2

��

R
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We note that M is C-Gorenstein projective over R if and only if it is Gorenstein
projective over R1, if and only if Gorenstein projective over S by [13, Proposition
2.13]. We also note that S ∼= R⊕ (C ⊕R⊕C) as R-modules. As g = g2 ◦ g1, both
of which are natural maps as described before, Ker g ∼= R2 ⊕ C, which is different
from C.

We finally note here that the R-module structure on S in the previous example
is not by accident. If we assume that a retract diagram in our general setting exists,
i.e., there exists a ring homomorphism f : R → S such that g ◦ f = idR, then g is
a split surjection. This implies that S ∼= R ⊕ Ker g as R-modules as in the above
example.
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