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GORENSTEIN DIMENSIONS OVER SOME RINGS OF THE
FORM ReC

PYE PHYO AUNG

ABSTRACT. Given a semidualizing module C over a commutative noether-
ian ring, Holm and Jgrgensen [13] investigate some connections between C-
Gorenstein dimensions of an R-complex and Gorenstein dimensions of the same
complex viewed as a complex over the “trivial extension” Rx C. We generalize
some of their results to a certain type of retract diagram. We also investigate
some examples of such retract diagrams, namely D’Anna and Fontana’s amal-
gamated duplication [6] and Enescu’s pseudocanonical cover [7].

1. INTRODUCTION

In this paper, let R be a commutative noetherian ring with identity.

As in the famous theorem of Auslander-Buchsbaum [2] and Serre [I8] where
projective dimension of R-modules is used to characterize regularity of R, Auslan-
der and Bridger introduced Gorenstein dimension in [I] to characterize Gorenstein
rings: a local ring R is Gorenstein if and only if every finitely generated R-module
M has finite Gorenstein dimension, i.e., G-dimg M < oo . To extend similar results
to non-finitely generated R-modules, Enochs and Jenda introduced Gorenstein pro-
jective dimension [§]. In particular, a local ring is Gorenstein if and only if every
(finitely generated) R-module M has finite Gorenstein projective dimension, i.e.,
Gpdy M < oo; see [, [10]. Enochs and Jenda also studied the Gorenstein injective
dimension Gid and, with Torrecillas [9], the Gorenstein flat dimension Gfd.

Semidualizing R-modules, first introduced by Foxby in [II] and later studied
by Vasconcelos [20] and Golod [12], arise naturally in the study of the connection
between R and its modules: a finitely generated R-module M is semidualizing if
R = Homp(C, C) and Ext’s(C, C) = 0 for all i > 1. For example, Golod introduced
the Geo-dimension in [12] and proved a formula of the same type as the Auslander-
Buchsbaum and Auslander-Bridger formulae.

Holm and Jgrgensen extended the Ge-dimension in [I3] introducing three new
homological dimensions called the C-Gorenstein projective, C-Gorenstein injec-
tive and C-Gorenstein flat dimensions, denoted as C'-Gpdz (M), C'-Gidg (M), and
C-Gfdr (M), respectively, for an R-complex M. They also proved how these new di-
mensions coincide with Enochs, Jenda and Torrecillas’ Gorenstein dimensions over
the trivial extension R x C' [13, Theorem 2.16]. This means that for an R-module
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M, one has

C-Gpdgr(M) = Gdexc(M)
C-Gidgr(M) = Gidgx (M)
C-Gfdr(M) = Gfdgxc(M).

In this paper, we generalize this from the trivial extension R x C to a retract
diagram

R—f>S

b

R

where R and S are commutative rings with the identity map idgr on R, satisfying
the following properties:

(i) C = Keryg,

(ii) Hompg(S,C) = S as S-modules, and
(iil) Extk(S,C) =0 for all i > 1.
We prove the following generalized version of Holm and Jgrgensen’s Theorem 2.16
[13]; see Theorem B.19

Theorem A. In the setting of the above retract diagram with a semidualizing C,
given a homologically left-bounded R-complex M and a homologically right-bounded
R-complex N, one has

C -Gidgr(M) = Gidg(M)
C-Gpdg(N) = Gpdg(N)
C-Gfdp(N) = Gfdg(N).

Along the way we prove the following characterization of semidualizing modules;
see Theorem

Theorem B. In the setting of the above retract diagram with o finitely generated
C, the following are equivalent:

(a) C is semidualizing over R;
(b) R is Gorenstein projective over S and Anng(C) = 0; and
(¢) C is Gorenstein projective over S and Anng(C) = 0.

We further show that S = R x C'is not the only example of a ring satisfying our
generalized settings set forth in the retract diagram above. See Theorems [£.4] and
9] along with their corollaries.

Theorem C. The following examples satisfy the hypotheses of Theorem [Al:
(a) D’Anna and Fontana’s amalgamated duplication S = R C, and

(b) Enescu’s pseudocanonical cover S = S(h), when h is a square in R.

In particular, we recover the main result of Salimi, Tavasoli and Yassemi in [16]
as the special case where S = R C.
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2. PRELIMINARIES

We provide in this section some preliminary definitions and properties to be used
later. We first extend a couple of results of Ishikawa [I5] to our setting.

Lemma 2.1. Let f: R — S be a ring homomorphism. Let S be finitely generated
as an R-module, let M be an R-module, and let N be an injective R-module. Then
the natural map

eS,M,N :S®r HOHIR(M, N) — HOHIR(HOHIR(S, M),N)

defined as (Os.m,n(s @r ¥))(d) = Y(@(s)) for each s @r ¢ € S @r Hompg(M, N)
and each ¢ € Homp(S, M), is an S-module isomorphism.

Proof. By Ishikawa’s Hom evaluation result [I5, Lemma 1.6], ©g N is an R-
module isomorphism. One readily checks that ©g a7, is also an S-module homo-
morphism, hence it is an S-module isomorphism. O

Lemma 2.2. Let f: R — S be a ring homomorphism. Let S be finitely generated
as an R-module, let M be an R-module, and let N be a flat R-module. Then the
natural map

Qs MmN : HomR(S, M) Rr N — HOmR(S,M®R N)

defined as Qg N @rn)(s) = P(s) g n for each ¢ @ n € Hompg(S, M) ®p N
and each s € S, is an S-module isomorphism.

Proof. The proof is similar to that of Lemmal[2T] using Ishikawa’s Tensor evaluation
result instead. (]

We collect here some properties of injectivity, projectivity and flatness associated
with restriction of scalars. A version of this result for S = R x C is found in [14]
Lemma 3.1].

Lemma 2.3. Let f: R — S be a ring homomorphism.

(a) Each injective S-module J is a direct summand in Hompg(S, I) for some injec-
tive R-module I.

(b) Fach projective S-module Q is a direct summand in SQg P for some projective
R-module P.

Proof. (a) Since J is also an R-module via f, we have an exact sequence 0 — J — I
of R-modules for some injective R-module I. Applying the left-exact Hompg(S, —) to
this exact sequence, noting that Homg (S, J) is an S-submodule of Hompg (S, J), and
using Hom cancellation, we obtain the following S-module iso/mono-morphisms.

J = Homg(S, J)—= Homp(S, J)—= Homp(S, I).

Since J is injective over S, this composite monomorphism splits as desired.
(b) This part is proved dually. O

We next define some useful classes and resolutions.

Definition 2.4. Let M be an R-module, and let A be a class of R-modules. Then
an augmented A-resolution X of M is an exact sequence of R-modules of the form

+ ax i
X'= =X —Xo—=-M—=0
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where X; € A for each integer ¢ > 0. The R-complex

ax X
X=X X900
is the associated A-resolution of M.

Definition 2.5. Let N be an R-module, and let B be a class of R-modules. Then
an augmented B-coresolution Y of N is an exact sequence of R-modules of the
form

oy Y,
Y= 0=N—=Yy Y | —--
where Y; € B for each integer j < 0. The R-complex
oy aY,
Y= 0-Yy—Y ;] —. -
is the associated B-coresolution of N.

Definition 2.6. Let C be an R-module.

(a) Let Z be the class of injective R-modules.

(b) Let P be the class of projective R-modules.

(¢) Let F be the class of flat R-modules.

(d) Let Z¢ be the class of R-modules isomorphic to Hompg(C, I) for some injective
R-module 1.

(e) Let Pc be the class of R-modules isomorphic to C' ® P for some projective
R-module P.

(f) Let F¢ be the class of R-modules isomorphic to C®pg F for some flat R-module
F.

The following two classes, known collectively as Foxby classes, are associated
with a finitely generated R-module C. The definitions can be found in [3] and
[5], and they are studied in conjunction with various homological dimensions, such
as the G-dimension in [22], the C-projective dimension in [I9] and the Gorenstein
projective dimension in [21].

Definition 2.7. Let C be a finitely generated R-module. The Auslander class

Ac(R) is the class of all R-modules M such that

(a) the natural map 7§, : M — Hompg(C,C®r M), defined as v{;(m)(c) := c®rm
for all m € M and ¢ € C, is an isomorphism; and

(b) Torf(C, M) =0 = Ext(C,C @r M) for all i > 1.

Definition 2.8. Let C be a finitely generated R-module. The Bass class Bo(R)
is the class of all R-modules M such that
(a) the evaluation map &5 : C ®g Hompg(C, M) — M, defined as £§;(c @g ) :=
Y(c) for all ¢ € C and ¢ € Hompg(C, M), is an isomorphism; and
(b) Ext%(C, M) = 0 = Tor(C,Homg(C, M)) for all i > 1.
Definition 2.9. Let C be an R-module.
(a) A complete ZcZ-resolution X of R-modules is an exact sequence of R-modules
of the form
X X X aX
1:...%}(1 &XO&X—I .

such that X; € Z¢ for each integer + > 1, X; € T for each integer j < 0, and
Homp (A, X) is exact for each A € Z¢.



GORENSTEIN DIMENSIONS OVER SOME RINGS OF THE FORM R & C 5

(b) A complete PP c-resolution X of R-modules is an exact sequence of R-modules
of the form
a5 X g o
X=X X)X, —5...
such that X; € P for each integer ¢ > 0, X; € P¢ for each integer j < —1, and
Homp(X, A) is exact for each A € P¢.
(c) A complete FFc-resolution X of R-modules is an exact sequence of R-modules
of the form

0% 8% X X,
K:_ﬁ_)Xl_i_)XO_R_)Xil_>

such that X; € F for each integer ¢ > 0, X; € F¢ for each integer j < —1, and
A®pr X is exact for each A € Z¢.

Using complete resolutions, we next define C-Gorenstein injectivity, C-Gorenstein
projectivity and C-Gorenstein flatness. We also note that these definitions are
equivalent to [I3] Definition 2.7].

Definition 2.10. Let C' be an R-module. Then, an R-module M is

(a) C-Gorenstein injective if there is a complete ZcZ-resolution X, as in Defini-
tion 2Z.9(@), such that Ker 95 = M.

(b) C-Gorenstein projective if there is a complete PP -resolution X, as in Defini-
tion 29I(B), such that Coker 8¢ =2 M.

(c) C-Gorenstein flat if there is a complete FF c-resolution X, as in Definition [2Z.0l(@),
such that Coker ;X = M.

When C = R, Definition 2.10 reduces to the definitions of Gorenstein injectivity,
Gorenstein projectivity and Gorenstein flatness of Enochs, Jenda, and Torrecillas
[8,19], with complete ZoZ-resolution, complete PP -resolution and complete F.F -
resolution becoming complete injective resolution, complete projective resolution
and complete flat resolution, respectively.

Lemma 2.11. Let C' and M be R-modules. Then M is C-Gorenstein injective if

and only if

(a) For each A € I¢, Extiy(A, M) =0 for all i > 1.

(b) M admits an augmented Zc-resolution Y such that Hompg(A,Y ) is exact for
each A € I¢.

Lemma 2.12. Let C and M be R-modules. Then M is C-Gorenstein projective if

and only if

(a) For each A € Po, Extih(M,A) =0 for all i > 1.

(b) M admits an augmented Pc-coresolution TY such that Hompg (1Y, A) is exact
for each A € Pc.

Lemma 2.13. Let C and M be R-modules. Then M is C-Gorenstein flat if and

only if

(a) For each A € I, Torf(A, M) =0 for alli > 1.

(b) M admits an augmented Fc-coresolution 7Y such that A®g (1Y) is exact for
each A € I¢.
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As the injective R-complexes give rise to the injective dimension of an R-complex
M, denoted idgr M, the C-Gorenstein injective R-complexes give rise to the C'-
Gorenstein injective dimension of M: for a homologically left-bounded R-complex
M, one has

C-Gidp M = inf {sup (ieZ|X_;+0} X is a C-Gorenstein 1nJectlve} '

resolution of M

In the case C' = R, the C-Gorenstein injective dimension of M is the Gorenstein
injective dimension of M, denoted Gidg M. In other words, one has R-Gidg M =
Gidg M. The C-Gorenstein projective dimension, the Gorenstein projective dimen-
sion, the C-Gorenstein flat dimension, and the Gorenstein flat dimension of an R-
module M, denoted respectively C-Gpdg M, Gpdp M, C-Gfdg M, and Gifdr M,
are defined similarly.

3. SEMIDUALIZING MODULES AND GORENSTEIN DIMENSIONS
The main point of this section is to prove Theorem [Al from the introduction.

Property 3.1. Let R and S be rings, and let C' be an R-module. Then the triple
(R, S, C) satisfies Property [31]if there is a commutative diagram

R'—f>S

b

R

of ring homomorphisms with the identity map idg on R such that Hom r(S,C) =S
as S-modules and Ext(S,C) =0 for all ¢ > 1.

Remark 3.2. Property BIlimplies that RHompg (S, C) = S in the derived category
D(S). In other words, if I is an injective resolution of C' over R, then Property [31]
implies that Hompg(S,I) is an injective resolution of the S-module S.

Property 3.3. Let R and S be rings, and let C' be an R-module. Then the
triple (R, S, C) satisfies Property [33 if it satisfies Property Bl and C' = Kerg as
R-modules.

We here note that if (R, S, C) satisfies Property B3] it follows that S 2 R & C
as R-modules. We next state and prove versions of several lemmas of Holm and
Jorgensen [13] [I4] in the general setting of Properties Bl and 3.3

Lemma 3.4. Let R and S be rings, and let C be an R-module. If (R, S,C) satisfies

Property[31], then the following facts hold:

(a) For any R-module M, we have Ext’(M, S) = Exth (M, C) as S-modules for all
12 0.

(b) We also have Homg (R, S) = C as S-modules and Exts(R,S) = 0 for alli > 1.

Proof. (a) Argue as in [14) Lemma 3.2 (ii)] with the ring S taking the place of the
trivial extension R x C'. The essential point is to use Hom-tensor adjointness with
the injective resolution Homp(S, I) of S, as described in Remark B2

(b) This is the special case of part (a) where M = R. O

The following is Theorem [B] from the introduction.
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Theorem 3.5. Let R and S be rings, and let C be a finitely generated R-module
such that (R, S,C) satisfies Property[31l. Then the following are equivalent:

(a) C is semidualizing over R;

(b) R is Gorenstein projective over S and Anng(C) = 0; and

(c) C is Gorenstein projective over S and Anng(C) = 0.

Proof. To prove that (a) implies (b), we assume that C' is semidualizing over R.
Using Lemma B4 we note that

Ext(Homg(R, S), S) = Exty(C, S) = Ext%(C,C).

This is equal to 0 for all ¢ > 1 and isomorphic to R when ¢ = 0 because C is
semidualizing over R. Again, using the Ext-vanishing from Lemma B[R], this
means that R is Gorenstein projective over S by [4, Proposition 2.2.2]. We also
note that Anng(C) is the kernel of the homothety map x& : R — Hompg(C,C),
which is 0 because C' is semidualizing over R.

To prove that (b) implies (c), we recall that Homg(—, S) preserves the class
of finitely generated Gorenstein projective S-modules by [4, Observation 1.1.7].
This proves the desired implication because C = Homg(R,S) as S-modules by
Lemma [3.44(b)).

To prove that (c) implies (a), we assume that C' is Gorenstein projective over S
and Anng(C) = 0. Since C is finitely generated over R, it is also finitely generated
over S. Therefore, by [4, Theorem 4.2.6], we have

Ext(C,S) = 0 = Ext(Homg(C, S), S)

for all ¢ > 1 and the biduality map
62+ C — Homg(Homg(C, S), S)

is an S-module isomorphism. Using Lemma [3.4] we have

Exth(C,C) = 0 = Exth(Hompg(C, C), C)
for all ¢ > 1 and the biduality map

62 : C — Homg(Homg(C, S), S) = Homg(Hompg(C, C),C)

is an R-module isomorphism. Therefore, C' is “totally C-reflexive” over R. Since

Anng(C) =0, it follows that C is semidualizing over R by [I7, Fact 1.1].
(]

The assumption Anng(C) = 0 is essential in Theorem B.E} see [17, Example 1.2].

Lemma 3.6. Let R and S be rings, let N be a finitely generated R-module, and
let C be a semidualizing R-module. If (R, S,C) satisfies Property[31, and if N is
Gorenstein projective as an S-module, then the module Homp (N, I) is Gorenstein
ingjective over S for any injective R-module 1.

Proof. Since N is Gorenstein projective over S, the module N has a complete pro-
jective resolution P over S. Moreover, since N is finitely generated over R (hence
over S as well) P can be chosen to consist of finitely generated S-modules by [4]
Theorems 4.1.4 and 4.2.6]. As in the proof of [I4, Lemma 3.3 (ii)], it is straight-
forward to show that Homg(P, Hompg(S, 7)) is a complete injective resolution of
Homp(N,I) over S. O

We here recover a version of [I4] Lemma 3.3 (ii)] for our general setting.
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Proposition 3.7. Let R and S be rings, and let C be a semidualizing R-module.
If (R, S, C) satisfies Property[31], then for any injective R-module I, the modules
Homp(C,I) and Hompg(R,I) = I are Gorenstein injective over S.

Proof. The modules C' and R are Gorenstein projective over S by Theorem
Thus, the duals Hompg(C, I) and Hompg(R, I) = I are Gorenstein injective over S
by Lemma O

Next we prove a version of [I4] Lemma 3.4] in the general setting.

Lemma 3.8. Let R and S be rings, and let C be a semidualizing R-module. If

(R, S,C) satisfies Property[3.3, then for any injective R-module J, we have
Exth(Homg(S, J), —) = Exty(Homg(C, J), —)

for i >0 as functors on S-modules.

Proof. Argue as in the proof of [14] Lemma 3.4] that
Homp(S,J) = Homp(Hompg(S,C),J) =2 S @ Hompg(C, J)

using Lemma [ZT] and the fact that (R, S,C) satisfies Property (hence Prop-
erty B.Il). If P is a projective resolution over R of Homp(C,J), one can argue
that S ®@p P is a projective resolution over S of S ® g Hompg(C, J) = Hompg/(S, J).
This uses the facts that S = R ® C as R-modules and J € Beo(R) by [19, 1.9 (b)]
(hence Hompg(C,J) € Ac(R) by Foxby equivalence [I1], Proposition 1.4]). Using
this projective resolution over S of Hompg(S, J) and Hom-tensor adjointness, one
can obtain the desired isomorphism. O

As a consequence of the above lemma, we have the following proposition.

Proposition 3.9. Let R and S be rings, and let C' be a semidualizing R-module. If
(R, S, C) satisfies Property[3.3 and M is an R-module, then for each i = 0, we have
Exts(Homg(C, J), M) = 0 for all J injective over R if and only if Exts (U, M) =0
for all U injective over S.

Proof. As in [13, Corollary 2.3 (1)], this follows from Lemmas 23@) and 38 O

Lemma 3.10. Let R and S be rings, and let C' be a semidualizing R-module. If
the triple (R, S,C) satisfies Property[33 and M is an R-module that is Gorenstein
injective over S, then there exists a short exact sequence of R-modules

0— M — Hompg(C,I) - M — 0
for some injective R-module I such that

(1) M’ is Gorenstein injective over S
(2) the above sequence is Hompg(Hompg(C, J), —)-ezact for any injective R-
module J.

Proof. The proof begins similarly to that of [14], Lemma 4.1].
Since M is Gorenstein injective over S, it has a complete injective resolution.
From this, we can construct the following short exact sequence of S-modules

O—-N—-K—>M-—=0

where K is injective over S, N is Gorenstein injective over S and the sequence is
Homg(L, —)-exact for each L injective over S, particularly for L = Hompg(S, J)
with any J injective over R.
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As in the proof of [I4, Lemma 4.1], we can use Lemma 23|@) to assume without
loss of generality that the above sequence is of the form

0— N S Hompg(S,I) & M — 0 (3.10.1)

for some injective R-module I.

We here note that we cannot make use of a specific ring structure of S as in the
proof of [I4, Lemma 4.1], so we use Lemma [ZT] instead. Since S = Hompg(S,C) as
S-modules by Property Bl we have

HomR(S, I) = HomR(HomR(S, C),I) =2 S®g HomR(C, I)

as S-modules, where the second isomorphism is by Lemma 211 We note here that
I is injective over R, and S & R & C as R-modules, hence S is finitely generated
over R. Therefore, we can replace Homg(S,7) in (BI00) with S ® g Hompg(C,I)
to obtain the top row of the following diagram.

’

0 N < S®RHOIHR(CI —>M%O
lwoa lw H (3.10.2)
0 —— M’ := Ker ¢ Hompg(C, I) 0

The maps ¢ and ¢ are defined as follows. For any s @z 8 € S ®r Hompg(C,I),
set (s ®g ) := s8, where the scalar multiplication is afforded by the S-module
structure on the R-module Hompg(C,I). For any § in Hompg(C,I), set ¢(3) =
7' (ls ®g B). It is routine to check that both ¢ and ¢ are well-defined S-module
homomorphisms and that the diagram (3I0.2]) is commutative.

As in [I4, Lemma 4.1], we can show that the bottom row of the diagram BI0.2)
satisfies the desired properties. O

Lemma 3.11. Let R and S be rings, and let C' be an R-module such that (R, S, C)
satisfies Property[3.3. Let M be an R-module that is C-Gorenstein injective over
R. Then there exists a short eract sequence of S-modules

0->M —-U—-M-=0

where U is injective over S, M’ is C-Gorenstein injective over R and the above
sequence is Homg(V, —)-ezxact for any V injective over S.

Proof. The proof is similar to [I3, Lemma 2.11], using Lemma 2T as in the previous
result. (|

Using the lemmas proved above in the general setting of the retract diagram, we
can claim similar propositions and theorems as in [14] and [13].

Proposition 3.12. Let R and S be rings, and let C be a semidualizing R-module,
such that the triple (R, S, C) satisfies Property[3.3. Then, for any R-module M, M
is C'-Gorenstein injective over R if and only if M is Gorenstein injective over S.

Proof. This is proved similarly as in [I3] Proposition 2.13 (1)]. O

We need the dual versions of Lemma [B.8, Proposition [3.9] Lemma [BI0 and
Lemma [3.11] to prove the projective and flat versions of Proposition[B.12 They are
stated next for the sake of completeness.
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Lemma 3.13. Let R and S be rings, and let C' be a semidualizing R-module. If
(R, S,C) satisfies Property[3.3, then for any projective R-module Q, we have

Exts(—, S ®r Q) = Extp(—,C ®r Q)
for all i > 0 as functors on S-modules.
Proof. This is the dual of the proof of LemmaB.8 using Lemma 2.2 and Hompg(S, I)

as the injective resolution over S of Hompg(S,C ®g @) where I is an injective
resolution of C' ®r Q. O

Proposition 3.14. Let R and S be rings, and let C be a semidualizing R-module.
If (R, S,C) satisfies Property [Z3 and M is an R-module, then for each i > 0, we
have Exts (M,C®pP) = 0 for all P projective over R if and only if Exts(M, V) = 0
for all V' projective over S.

Proof. This is the dual of Proposition O

Lemma 3.15. Let R and S be rings, and C be a semidualizing R-module. If the
triple (R, S,C) satisfies Property [Z3 and M is an R-module that is Gorenstein
projective over S, then there exists a short exact sequence of R-modules

0-M-—=-C®rP—-M =0

for some projective R-module P such that

(1) M’ is Gorenstein projective over S
(2) the above sequence is Hompg(—, C ® g Q)-ezxact for any projective R-module

Q.
Proof. This is the dual of Lemma B0, using Lemma [2.2] instead. d

Lemma 3.16. Let R and S be rings, and let C' be an R-module such that (R, S, C)
satisfies Property[3.3. Let M be an R-module that is C-Gorenstein projective over
R. Then there exists a short exact sequence of S-modules

0-M-—-W-—=>M =0

where W is projective over S, M’ is C-Gorenstein projective over R and the above
sequence if Homg(—,Y)-exact for any Y projective over S.

Proof. This is the dual of Lemma [3.11] O
Using the above results, one can prove the injective version of Proposition .12

Proposition 3.17. Let R and S be rings, and let C be a semidualizing R-module,
such that the triple (R, S, C) satisfies Property[3.3. Then, for any R-module M, M
is C'-Gorenstein projective over R if and only if M is Gorenstein projective over S.

Proof. Argue similarly as in the proof of Proposition 312 using Lemmas B.13] B.15,
B.16] and Proposition B.14] instead. O

For the flat version of Proposition B12] please see [I3, Proposition 2.15], whose
proof can be adapted for our general setting.

Proposition 3.18. Let R and S be rings, and let C be a semidualizing R-module,
such that the triple (R, S,C) satisfies Property [3.3. Then, for any R-module M,
M is C-Gorenstein flat over R if and only if M is Gorenstein flat over S.
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Proof. Argue as in the beginning of the proof of [I3], Proposition 2.15], using Hom-
tensor adjointness, that for any faithfully-injective R-module F, the module M is
C-Gorenstein flat if and only if the module Hompg(M, E) is C-Gorenstein injective.

Since Hompg(S, E) is faithfully injective over S for any E faithfully injective
over R, one has Gfdg M = Gidg(Homg(M,Hompg(S, E))) by [4, Theorem 6.4.2].
Moreover, since Homg (M, Hompg(S, E)) = Hompg(M, E) by Hom-tensor adjointness
and tensor cancellation, we have Gfdg M = Gids(Hompg(M, E)).

The above two facts, combined with Proposition[3.12] give the desired result. [

The last result of this section is Theorem [Al

Theorem 3.19. Let R and S be rings, and let C be a semidualizing R-module. If
(R, S,C) satisfies Property[3.3, then for any homologically left-bounded R-complex
M and any homologically right-bounded R-complex N, one has

C-Gidp M = Gidg M

C-Gpdr N = Gpdg N

C-Gfdg N = Gfdg N

Proof. This follows from Propositions B.12 B.17 and as in [I3] Theorem 2.16].
O

4. EXAMPLES

It is routine to show that Nagata’s trivial extension R x C satisfies Property [3.3]
hence we can recover [13, Theorem 2.16] as a special case of Theorem The
rest of this section is devoted to two similar constructions. In particular, we prove
in this section Theorem [C] from the introduction.

4.1. Amalgamated Duplication of a Ring along an Ideal.
The following construction is due to D’Anna and Fontana [6].

Definition/Notation 4.1. Let R be a ring, and let C' be an ideal in R. Then
define a multiplication structure on R® C as follows: for each (r,c) and (v',c) in
R & C, we define (r,c)(r',c) = (rr',rc’ +r'c+ cc’). The group R C with this
multiplication structure is a ring with (1r,0) as the multiplicative identity [6]. We
denote this ring as R C.

It is routine to check that we have a retract diagram similar to the one in
Property Bl We collect this information in the following lemma.

Lemma 4.2. Let R be a ring, and let C be an ideal in R. Then the diagram

RL>RD<IC
lg
idr
R

where f(r) := (r,0) and g(r,c) :=r for each r € R and ¢ € C, is a commutative
diagram of ring homomorphisms such that Ker g = C over R.

We prove next that the ring R < C' satisfies Property [3.1}
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Lemma 4.3. Let R be a ring, and let C be an ideal in R. If C' is semidualizing over
R, then Hompg(R <1 C,C) =2 R C as R 1 C-modules, and Extm(R<C,C) =0
foralli>1.

Proof. We first note that the R <t C-module structure of Homp (R <t C, C) comes
from R < C in the first slot. Specifically, for any (r,¢) and (s,d) in R < C, and
for any R-module homomorphism ¢ from R <1 C to C, we have ((r,c)¢)(s,d) =
o((r,e)(s,d)) = p(rs,rd + sc+ cd). Since Rt C' 2 R& C as R-modules, we know
that Hompg(R < C,C) =2 Hompg(C,C) & C as R-modules.

Since C' is assumed to be semidualizing over R, we have Homg(C,C) = R as
R-modules, hence Hompg(R <t C,C) = R < C' as R-modules. Tracing all the
natural isomorphisms involved, we see that the natural R-module isomorphism
©: R C — Hompg(R < C,C) sends (r,c) — ¢, where ¢(™¢) is defined for any
(1", ") € R C as ¢ (1" ") = rc 4+ 1"c.

However, unlike in the case of R x C, this natural R-module isomorphism O is
not an R <1 C-module isomorphism. We therefore construct a new map ® from
R < C to Hompg(R < C,C), and we prove that ® is indeed an R <t C-module
isomorphism.

Define @ : R C — Hompg(R < C,C) as ®(r, ¢) := ¢ for any (r,c) € Rix C,
where ¢, .y maps (r”,c”) = rc”’ +1r"c+cc”. Tt is routine to check that @ is indeed
an R 4 C-module homomorphism with respect to the module structures noted
above.

We proceed to show that ® is bijective. Since © is an isomorphism, we have
Im® C Hompg(R< C,C) = Im©. Moreover, we can check that for any ("¢ €
Im ©, we have @) = P(r—c,e) € Im® for each (r”,c”) € Roa C. Therefore, we
have Im©® C Im ® proving that In® = Im© = Hompg(R < C,C), hence P is
surjective. We here note that we have r — ¢ € R since C' C R.

We here prove that @ is injective. Let (r,c) € Ker®. Then ¢, o (r",c") =
0 for any (r”,¢”) € R 1 C, particularly (1g,0) € R > C. This implies that
0 = r(0) + (1g)c + ¢(0) = ¢. Therefore, for any (r”,¢”) € R C, we have 0 =
P(r,e) (", ") = rc”, implying that € Anng(C'). Moreover, since C' is semidualizing
over R, we have Anng(C) = 0, implying that = 0. This concludes that Ker ® = 0,
hence @ is injective.

Finally, we note that we already have Ext%(R > C,C) = Exth(C,C) as R-
modules. Since C' is semidualizing over R, we have Extzé(C’, C) =0 for alli > 1,
hence Ext’ (R > C,C) =0 as well. O

The next result justifies Theorem [C@) from the introduction.

Theorem 4.4. Let R be a ring, let C' be an ideal in R, and set S := R C. If C
is semidualizing as an R-module, then (R, S,C) satisfies Property [3.3

Proof. Lemmas and combined provide the desired result. d

Since (R, R 1 C, C) satisfies Property B3] Theorem 319 can be applied to imply
the following.

Corollary 4.5. Let R be a ring, and let C' be an ideal in R such that C' is semid-
ualizing over R. Then, for any homologically left-bounded R-complex M and any
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homologically right-bounded R-complex N, one has

C-Gidp M = Gidgye M
C-Gfdr N = Gfdgsec N

4.2. Pseudocanonical Cover.
In this section, we apply Theorem [B.19 to pseudocanonical covers introduced by
Enescu in [7].

Definition/Notation 4.6. Let R be a ring, let h € R, and let C be an ideal in R.
We define a ring structure on R @ C by defining (r,¢)(r’,¢') = (r/ + ec’h,rc’ +1'¢)
for each (r, ¢), (', ') € R®C. The group R® C with this multiplication structure,
denoted as S(h), is indeed a ring with (1g,0) as its multiplicative identity [7], and
is called the pseudocanonical cover of R via h.

We construct a retract diagram similar to the one in Property B.11

Lemma 4.7. Let R be a ring, let C be an ideal and let h € R such that h = r for
some ro € R. Then the diagram

where f(r) := (r,0) and g(r,c) := r+crg for eachr € R and c € C, is a commutative
diagram of ring homomorphisms such that Ker g = C over R.

Proof. By construction, f and g are well-defined functions making the diagram
commute. It is routine to check that f is a ring homomorphism and that g respects
addition. To check that g respects multiplication as well, let r,7’ € R and ¢, € C.
Then

g((r,e)(r', ) = glrr" + ec'h,rc’ +1'c)
=rr' +ech+rdrg 4+ rerg
=r(r' 4+ cro) +ccrg +1'crg
=7r(r" +ro) + ero(cro +1')
= (r+cro)(r' +c'ro)
=g(r, C)g(rlv cl)
where we used the fact that h = r3.
We note that Ker g is the R-submodule of S(h) consisting of all elements of the

form (—crg,c¢) with ¢ € C. Therefore one can readily prove that the map from C
to Ker g sending ¢ — (—cro, ¢) is indeed an R-module isomorphism. (I

Lemma 4.8. Let R be a ring, let C be an ideal in R, and let h € R such that
h =1 for somero € R. If C is semidualizing over R, then Homg(S(h),C) = S(h)
as S(h)-modules, and Extw(S(h),C) =0 for all i > 1.
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Proof. We first note that the S(h)-module structure of Hompg(S(h), C) comes from

S(h) in the first slot. Since S(h) =2 R@® C as R-modules, we know that
HomR(S(h), O) = HomR(C, C) eC

as R-modules.

Since C' is assumed to be semidualizing over R, we have Hompg(C,C) = R as R-
modules, hence S(h) = Hompg(S(h),C) as R-modules. Tracing the composition of
all the natural R-module isomorphisms above, we have an R-module isomorphism
O : S(h) — Hompg(S(h),C) sending (r,c) — o), where ¢ is defined for any
(r",c") € S(h) as ") (r" ") = rc” + 1" c. Tt is routine to check that © is also an
S(h)-module homomorphism. .

Finally, we have that Exty(S(h),C) = Extp(C,C) as R-modules for all 7 > 1.
Since C' is semidualizing over R, we have ExtR(C,C) = 0 for all 4 > 1, hence
Ext®(S(h),C) =0 as well. O

The next result justifies Theorem [CY[B]) from the introduction.

Theorem 4.9. Let R be a ring, let C' be an ideal in R, let h € R such that h = 7“3

for some ro € R, and let S(h) be the pseudocanonical cover of R via h. If C is
semidualizing as an R-module, then (R, S, C) satisfies Property[3-3.

Proof. Lemmas 4.7 and 4.8 combined provide the desired result. O
We can apply Theorem to S(h).

Corollary 4.10. Let R be a ring, let C be an ideal in R such that C is semid-
ualizing over R, and let h € R such that h = r¢ for some ro € R. Then, for
any homologically left-bounded R-complex M and any homologically right-bounded
R-complex N, one has

C — Gidg M = Gidg(n) M

C —Gfdg N = Gfdg) N
Proof. Since (R, S(h), C) satisfies Property B.3] this is a direct application of The-
orem [3.T9 0O

5. COUNTEREXAMPLES REGARDING THE CONVERSE

It is natural to ask if the general settings we mentioned characterize the situ-
ation where an R-module M is C-Gorenstein injective over R if and only if M is
Gorenstein injective over S. However, this fails in general, and the following is a
counterexample.

Example 5.1. Let C be a semidualizing module, and set Ry := R x C and S :=
Ry x R;. We have the following diagram

R——= S

lgl

Ry

R
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We note that M is C-Gorenstein projective over R if and only if it is Gorenstein
projective over Ry, if and only if Gorenstein projective over S by [13l Proposition
2.13]. We also note that S = R&® (C @ R® C) as R-modules. As g = g2 0 g1, both
of which are natural maps as described before, Ker g = R? @ C, which is different
from C.

We finally note here that the R-module structure on S in the previous example
is not by accident. If we assume that a retract diagram in our general setting exists,
i.e., there exists a ring homomorphism f : R — S such that g o f = idg, then g is
a split surjection. This implies that S = R & Ker g as R-modules as in the above
example.
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