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Abstract

Visual and inertial sensors, in combination, are able to provide accurate motion estimates

and are well-suited for use in many robot navigation tasks. However, correct data fusion, and

hence overall performance, depends on careful calibration of the rigid body transform between

the sensors. Obtaining this calibration information is typically difficult and time-consuming,

and normally requires additional equipment. In this paper we describe an algorithm, based

on the unscented Kalman filter, for self-calibration of the transform between a camera and an

inertial measurement unit (IMU). Our formulation rests on a differential geometric analysis

of the observability of the camera-IMU system; this analysis shows that the sensor-to-sensor

transform, the IMU gyroscope and accelerometer biases, the local gravity vector, and the metric

scene structure can be recovered from camera and IMU measurements alone. While calibrating

the transform we simultaneously localize the IMU and build a map of the surroundings – all

without additional hardware or prior knowledge about the environment in which a robot is

operating. We present results from simulation studies and from experiments with a monocular

camera and a low-cost IMU, which demonstrate accurate estimation of both the calibration

parameters and the local scene structure.
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1 Introduction

The majority of future robots will be mobile, and will need to navigate in dynamic and unknown en-

vironments. Inertial sensors have been used very successfully over the past several decades for both

terrestrial (Farrell & Barth 1998) and space navigation (Woods 2008). The standard inertial sensing

device, an inertial measurement unit (IMU), employs an orthogonal triad of single-axis accelerome-

ters and an orthogonal triad of angular rate gyroscopes to measure rigid body motion. Advances in

the fabrication of micro electro-mechanical systems (MEMS) have led to the development of reliable,

solid-state IMUs (Titterton & Weston 2004); the small size and low power consumption of these

MEMS-based instruments makes them ideal for many robotics applications.

Solid-state IMUs are designed for use in a strapdown configuration, with the accelerometers and

gyroscopes attached to a common chassis and not actively gimbaled to maintain a fixed orientation.

The change in pose of a strapdown IMU can, in principle, be determined by integrating the gyroscope

and accelerometer outputs. In practice, all inertial sensors are subject to low-frequency drift, which

limits the accuracy of inertial dead reckoning over extended periods. The existence of varying

drift terms (biases) also implies that IMU measurements are correlated in time. Further, IMU

accelerometers sense the force of gravity in addition to forces which accelerate the platform. The

magnitude of the gravity vector (nominally 9.81 m/s2) is often large enough to dominate other

measured accelerations. If the orientation of the IMU with respect to gravity is unknown, or is

misestimated, the integrated sensor pose will diverge rapidly from the true pose.

To maintain the long-term integrity of inertial positioning information, some form of aiding is

required (Farrell 2008). Typically, aiding updates are provided by GPS/GNSS sensors; however,

GPS has limited accuracy, suffers from problems with multipath interference, and cannot be used

in many environments of interest to roboticists, e.g., indoors, underwater, or on remote planetary

surfaces. An alternative is visual aiding, in which pose corrections are derived from observations

made by one or more cameras. The complementary frequency response and noise characteristics of

cameras and IMUs make the sensors suitable for use in combination to estimate ego-motion with

high fidelity and at a high update rate (Strelow & Singh 2003, Mourikis & Roumeliotis 2007, Kelly,

Saripalli & Sukhatme 2008).

In order to properly fuse visual and inertial measurements in a single navigation frame, precise

calibration of the six degrees-of-freedom (6-DOF) transform(s) between the camera(s) and the IMU

is required. Incorrect calibration introduces a systematic bias in motion estimates, degrading overall

navigation performance. The calibration process is usually complex and time-consuming, however,
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and must be repeated whenever the sensors are repositioned or significant mechanical stresses are

applied. This is inconvenient, and may be impossible in some cases. Ideally, we would like to build

‘power-on-and-go’ robots that are able to operate autonomously for long periods without requiring

tedious manual (re-) calibration.

In this paper, we describe our work on combining visual and inertial sensing for navigation, with

an emphasis on the ability to self-calibrate the camera-IMU transform in the field. Self-calibration

refers to the use of measurements (exclusively) from the sensors themselves to improve our estimates

of related system parameters. As an exteroceptive sensor, the camera must view a set of static visual

landmarks during calibration. Without additional information, the 3-D positions of the landmarks

will initially be unknown and so must also be estimated, i.e., we must localize the camera-IMU

platform, build a map of the landmarks, and determine the calibration parameters. As a first step

herein, we perform an analysis of the observability of self-calibration. The analysis shows that the

6-DOF camera-IMU transform, IMU biases, gravity vector, and the metric scene structure are all

observable and can be estimated simultaneously. To the best of our knowledge, this result is more

general than those reported previously in the literature. Full observability requires the camera-IMU

platform to undergo rotation about at least two IMU axes and acceleration along two IMU axes.

Based on the observability analysis, we develop a practical algorithm for camera-IMU sensor-to-

sensor self-calibration.1 We formulate this task as a filtering problem, and estimate the transform

between the sensors using an unscented Kalman filter (UKF). Our approach is designed to enable

online, anytime calibration updates, potentially during an ongoing navigation or mapping task.2

The calibration algorithm provides a measure of the uncertainty associated with the transform (i.e.,

a covariance matrix), and can easily be integrated with other estimators.

Initially, we consider target-based calibration, in which the camera views a known calibration

target or object. We then extend the filtering algorithm to handle target-free self-calibration, where

the positions of the landmarks corresponding to image features are not a priori known. We present

results from simulation studies and from experiments with real hardware, which demonstrate that

accurate estimates of the calibration parameters and the metric scene structure can be obtained

using a monocular camera and an inexpensive solid-state IMU, without extra apparatus.

The remainder of the paper is organized as follows. We examine related research in Section

2. In Section 3 we review the notation used in the paper, and briefly discuss quaternions and their

algebra. In Section 4 we describe the camera-IMU system model. Section 5 presents our observability

1We use the terms sensor-to-sensor calibration and relative pose calibration synonymously throughout the paper.
2Note that our technique could also be adapted for use in a batch framework.
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analysis; we then develop our UKF-based estimator in Section 6. Results from simulation studies

and from experiments with a low-cost IMU are given in Sections 7 and 8, respectively. Finally, we

offer some conclusions and several directions for future work in Section 9.

2 Related Research

There are very substantial bodies of independent research on both visual and inertial navigation. Of

particular relevance to our work is the recent demonstration of real-time localization and mapping

based solely on the input from a monocular camera. For example, Davison et al. describe an extended

Kalman filter (EKF)-based system in (Davison, Reid, Molton & Stasse 2007) that is able to localize

a camera in a room-sized environment. To scale to larger scenes, Eade and Drummond use a fast

particle filtering algorithm (Eade & Drummond 2006), which takes advantage of the independence

of landmark position estimates given a known camera trajectory. Klein and Murray propose parallel

tracking and mapping in (Klein & Murray 2007), where localization and mapping are run as separate,

asynchronous processes to improve performance. We note that vision-only techniques must make

assumptions about camera motion, however, and can have difficultly recovering when all tracked

features are lost. Additionally, to determine the absolute scene scale, monocular algorithms require

initialization using a known reference object. Our approach makes use of IMU data to determine

absolute scale and to fill-in during periods when visual tracking fails.

A variety of hybrid visual-inertial systems have been developed, for applications from short-

range sensor localization (Strelow & Singh 2002) to long-range motion estimation for spacecraft

entry, descent and landing (Mourikis, Trawny, Roumeliotis, Johnson, Ansar & Matthies 2009).

Rehbinder and Ghosh demonstrate accurate motion and structure estimation in (Rehbinder & Ghosh

2003), using a combination of IMU measurements and camera observations of line features in the

environment. Gemeiner, Einramhof and Vincze (Gemeiner, Einramhof & Vincze 2007) fuse IMU and

camera data in an EKF for motion estimation, and use an additional bank of EKFs to estimate the

positions of a series of landmarks. More broadly, improvements in available computing power have

recently enabled real-time visual-inertial navigation (Strelow 2004, Mourikis & Roumeliotis 2007).

While all of these algorithms estimate motion and structure, they do not incorporate calibration,

which is a primary focus of our work.

Several visual-inertial calibration techniques have also been presented in the literature. Lang

and Pinz use a constrained nonlinear optimization algorithm to solve for the fixed rotation between
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a camera and an IMU (Lang & Pinz 2005). By comparing camera measurements of the relative

angles to several external markers with integrated gyroscope outputs, the optimization algorithm

determines the rotation which best aligns the sensor frames.

In (Lobo & Dias 2007), Lobo and Dias describe a camera-IMU calibration procedure in which the

relative orientation and the relative translation of the sensors are estimated separately. First, the

relative orientation is found by rotating the camera-IMU platform while the camera captures images

of a vertical planar target. The relative translation is then determined by spinning the camera

and the IMU on a turntable, positioning the IMU such that its measured horizontal acceleration is

zero. A drawback of the method is that separate calibration of orientation and translation ignores

any correlations that exist between the parameters, and hence does not properly account for error

propagation.

More closely related to our own work is the algorithm proposed by Mirzaei and Roumeliotis

(Mirzaei & Roumeliotis 2008) for calibrating the camera-IMU transform and simultaneously esti-

mating the IMU biases. Their algorithm uses an iterated EKF to fuse IMU data with camera mea-

surements of known corner points on a planar calibration target. A similar algorithm for calibrating

the relative pose of a spherical camera and an IMU is discussed in (Hol, Schon & Gustafsson 2008).

Our approach, in the spirit of (Foxlin 2002) and unlike those above, does not require any additional

equipment in the general case.

Jones, Vedaldi and Soatto present an observability analysis in (Jones, Vedaldi & Soatto 2007)

which shows that the camera-IMU relative pose, gravity vector and metric scene structure can be

determined using camera and IMU measurements only. Their analysis assumes that the IMU biases

are known and static over the calibration interval, although bias drift may be significant even for

short durations – particularly for the low-cost MEMS inertial sensors that we consider in this paper.

We account for and explicitly model the IMU biases. This is critical for longer motion sequences, or

when estimates of the biases are not available from other sources.

3 Preliminaries

Below, we introduce the notation used throughout the remainder of the paper. We also briefly

review quaternions, which we employ as a singularity-free orientation parameterization.
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3.1 Notation

Our notation follows the general conventions outlined in (Britting 1971). We denote vectors and

matrices in boldface, and indicate that a vector is expressed with respect to a specific reference frame

by appending a superscript identifying the frame, e.g., vA for the vector v expressed in frame {A}.

If a vector describes the relative translation of one reference frame with respect to another frame,

we append a subscript identifying the translated frame and a superscript identifying the base frame,

e.g., pA
B for the vector that defines the translation of frame {B} in frame {A}.

In our analysis, we make frequent use of both the identity matrix, I, and the zero matrix, 0. We

indicate the sizes of these matrices using subscripts, e.g., I3 for the 3× 3 identity matrix, and 04×3

for the 4× 3 matrix that contains zeros only.

Finally, for the 3×1 vector a =
[
ax ay az

]T
, we write [a×] to denote the 3×3 skew-symmetric

cross-product matrix

[a×] =

 0 −az ay

az 0 −ax
−ay ax 0

 , (1)

such that for another 3× 1 vector b, a× b , [a×] b.

3.2 Quaternions

We use quaternions to parameterize the rotation group SO(3). A quaternion is a four-component

hyper-complex number, consisting of both a scalar part q0 and a vector part q,

q = q0 + q = q0 + q1i + q2 j + q3k, (2)

where q0, q1, q2 and q3 are real numbers, and i, j and k are the quaternion basis vectors, which

satisfy

i2 = j2 = k2 = i j k = −1. (3)

Quaternion addition is performed by summing the respective components of each quaternion sepa-

rately. With use of (3), the product of two quaternions, p = p0 + p and q = q0 + q, is

p⊗ q = (p0 + p)⊗ (q0 + q)

= p0q0 − pTq + p0 q + q0 p + p× q,
(4)

6
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where the symbol ‘⊗’ denotes quaternion multiplication. It will often be convenient to express (4) as

the product of a 4× 4 matrix and a quaternion (represented as a four-vector). For two quaternions,

p and q, let3

p⊗ q , S(p) q =

[
p0 −pT

p p0 I3 + [p×]

][
q0

q

]
(5)

and

p⊗ q , D(q) p =

[
q0 −qT

q q0 I3 − [q×]

][
p0

p

]
. (6)

The conjugate of the quaternion q is

q∗ = q0 − q = q0 − q1i− q2 j− q3k, (7)

and the norm of q is defined as the square root of the product of the quaternion and its conjugate,

∥∥ q ∥∥ =
√
q ⊗ q∗ =

√
q2
0 + q2

1 + q2
2 + q2

3 . (8)

The inverse of q is

q−1 =
q∗∥∥ q ∥∥2 . (9)

Any rotation on SO(3) can be represented by a unit quaternion (Kuipers 2002), i.e., by a quaternion

with unit norm ∥∥ q̄ ∥∥ =
√
q2
0 + q2

1 + q2
2 + q2

3 = 1, (10)

where we use an overbar to indicate that q̄ has norm one. The quaternion q̄ represents a rotation

by the angle θ about an axis defined by unit vector ā ∈ R3,

q̄ =
[
cos(θ/2) āT sin(θ/2)

]T
. (11)

The direction cosine (rotation) matrix corresponding to q̄ is

C(q̄) = (2q2
0 − 1) I3 + 2 q qT − 2 q0 [q×] . (12)

Following our notation for translation vectors, we denote the unit quaternion that describes the

3We use the symbols S and D as abbreviations for the latin terms sinister (left) and dexter (right).
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orientation of frame {B} with respect to frame {A} as q̄ A
B .4

Unit quaternions have several advantages over other orientation parameterizations, e.g., the

mapping from the unit sphere S3 in R4 to SO(3) is smooth and singularity-free. Quaternions are

also less susceptible than rotation matrices to round-off errors (Chou 1992). We note that unit

quaternions are a non-minimal parameterization, however, with four components but only three

degrees of freedom. This constraint requires special treatment in our estimation algorithm (cf.

Section 6.2).

4 System Modeling

The goal of calibration is to determine the 6-DOF rigid body transform between the camera and

the IMU. Our approach formulates this task as a causal filtering problem, in which we refine an

initial estimate of the calibration parameters using observations acquired sequentially over time.

Additionally, if the environment is unknown, we also recover the local scene structure. We consider

three separate reference frames:

1. the IMU frame {I}, with its origin at the center of the IMU body, in which linear accelerations

and angular rates are measured,

2. the camera frame {C}, with its origin at the optical center of the camera and with the z-axis

aligned with the optical axis of the lens, and

3. the world frame {W}, an inertial frame that serves as an absolute reference for both the camera

and the IMU.5

As a first step, we must choose an origin for the world frame. When a calibration target is available,

we will select the one of the corner points on the target as the origin of the world frame. For target-

free self-calibration, we consider the initial camera position as the origin of the world frame (cf.

Section 5.2.1). Figure 1 illustrates the relationship between the reference frames, for target-based

calibration.

4For clarity, and in a slight abuse of our notation, we do not use boldface to identify unit quaternions.
5In fact, the world frame is not strictly an inertial frame, since it is attached to the surface of the rotating Earth.

The effects of the Earth’s rotation are very small over the calibration time interval, however, and we ignore them in
our treatment here.
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Figure 1: Relationship between the world {W}, IMU {I}, and camera {C} reference frames, for target-based
calibration. The IMU (left) and camera (right) are rigidly attached to a common chassis. Our goal is to
determine the transform (pI

C , q̄
I
C) between the camera and IMU.

4.1 System Parameterization

Target-based calibration involves sensor-related quantities only. Our 26× 1 sensor state vector is

xs(t) =
[
(pW

I (t))T (q̄W
I (t))T (vW (t))T (bg(t))T (ba(t))T (gW )T (pI

C)T (q̄ I
C)T

]T
, (13)

where pW
I (t) is the position of the IMU in the world frame, q̄W

I (t) is the (unit quaternion) orientation

of the IMU frame with respect to the world frame, vW (t) is the linear velocity of the IMU in the

world frame, bg(t) and ba(t) are the IMU gyroscope and accelerometer biases, respectively, and gW

is the gravity vector in the world frame. The remaining entries, pI
C and q̄ I

C , are the position of the

camera in the IMU frame and the (unit quaternion) orientation of the camera frame with respect

to the IMU frame. Note that the last three terms in the sensor state vector are parameters, i.e.,

quantities that are not time-varying. For brevity, we do not indicate dependence on time in the

sections that follow below.

When performing target-free self-calibration, we also estimate the positions of a series of static

point landmarks in the environment. The complete target-free state vector is

x(t) =
[
xT
s (t) xT

m

]T
, xm =

[
(pW

l1
)T . . . (pW

ln
)T
]T
, (14)

where xm is the map (structure) state vector. Each entry in xm is a 3× 1 vector, pW
li

, that defines

9
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the position of landmark i in the world frame, i = 1 . . . n, for n ≥ 3. The target-free state vector

has size (26 + 3n) × 1. In our laboratory calibration experiments, we have found it sufficient to

use Cartesian coordinates to specify landmark positions. If the true landmark depths relative to

the camera vary significantly, it may be more appropriate to use an inverse-depth parameterization

(Montiel, Civera & Davison 2006). We discuss this issue in more detail in Section 8.

We define the axes of the world frame with respect to either the calibration target or the first

camera pose. As such, the relationship between the gravity vector and the world frame depends

entirely on how the target or the camera is oriented. For target-based calibration, we can manually

align the vertical axis of the target with gravity – this alignment will not in general be exact, however.

Similarly, for target-free self-calibration, the vertical axis of the camera image plane is unlikely to

be exactly parallel to the gravity vector initially. To avoid introducing unmodeled biases in the

calibration solution, we therefore also estimate the components of the local gravity vector in the

world frame.

4.2 Process Model

Our process model uses the IMU angular velocity and linear acceleration measurements as control

inputs in the system dynamics equations (Chatfield 1997). The gyroscope and accelerometer biases

are modeled as Gaussian random walk processes, driven by the white, zero-mean noise vectors

ngw and naw, with covariance matrices Qgw and Qaw, respectively. Gyroscope and accelerometer

measurements are assumed to be corrupted by zero-mean Gaussian noise defined by vectors ng and

na, with covariance matrices Qg and Qa, respectively. The system state evolves in continuous time

according to

ṗW

I = vW , ˙̄qW

I =
1

2
Ω(ωI) q̄W

I , v̇W = aW , ġW = 03×1, (15)

ḃg = ngw, ḃa = naw, ṗI

C = 03×1, ˙̄q I

C = 04×1, (16)

where Ω(ωI) is the quaternion kinematic matrix (Stevens & Lewis 2003),

Ω(ωI) =

[
0 − (ωI)

T

ωI − [ωI×]

]
, (17)

which relates the time rate of change of the orientation quaternion to the IMU angular velocity, ωI

is the angular velocity of the IMU expressed in the IMU frame, and aW is the acceleration of the

10
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IMU expressed in the world frame. The measured IMU angular velocity and linear acceleration are

ωm = ωI + bg + ng, (18)

am = CT (q̄W

I ) (aW − gW ) + ba + na, (19)

where C(q̄W
I ) is the direction cosine matrix corresponding to the unit quaternion q̄W

I . We stack the

individual noise term to form the complete process noise vector n and the associated block-diagonal

process noise covariance matrix Q,

n =


ngw

naw

ng

na

 , Q =


Qgw 03×3 03×3 03×3

03×3 Qaw 03×3 03×3

03×3 03×3 Qg 03×3

03×3 03×3 03×3 Qa

 . (20)

Also, we assume that any landmarks used for target-free calibration remain stationary over time,

ṗW

li
= 03×1, i = 1 . . . n. (21)

4.3 Measurement Model

We use an ideal projective (pinhole) camera model, and rectify each camera image to remove lens

distortions. The camera intrinsic and distortion parameters may either be calibrated separately

beforehand, or calibrated using a subset of the images acquired for the target-based camera-IMU

procedure (if the procedure is run offline). Self-calibration of the camera is also possible, although

this is beyond the scope of the work presented here.

Measurement zi is the projection of landmark i, at position pC
li

=
[
xi yi zi

]T
in the camera

frame, onto the image plane,

pC

li
=

xiyi
zi

 = CT (q̄ I

C) CT (q̄W

I )
(
pW

li
− pW

I

)
−CT (q̄ I

C) pI

C , (22)

zi =

[
ui

vi

]
=

[
x′i

y′i

]
+ ηi,

x
′
i

y′i

1

 = K

xi/ziyi/zi

1

 , (23)

where xi/zi and yi/zi are the normalized image plane coordinates, ui and vi are the observed pixel

11
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coordinates, K is the 3×3 camera intrinsic calibration matrix (Ma, Soatto, Kos̆ecká & Sastry 2004),

and ηi is a Gaussian measurement noise vector with covariance matrix Ri = σ2
i I2. Our measurement

residuals consist of the difference between the observed coordinates of the projected landmark points

and their predicted coordinates, based on the current state estimate.

When several landmarks are visible in one image, we stack the individual measurements to form a

single measurement vector z =
[
zT1 . . . zTn

]T
and the associated block-diagonal covariance matrix

R = diag
(
R1 . . . Rn

)
. This vector can then be processed by our filtering algorithm in one step.

5 Nonlinear Observability Analysis

In order to calibrate the transform between the camera and the IMU, the relevant system states

must be observable. That is, we must be able to recover the state values from the measured system

outputs, the known control inputs, and a finite number of their time derivatives (Conte, Moog &

Perdon 2006). Observability is a necessary condition for any filtering algorithm to converge to an

unbiased estimate of the true system state (Lee, Dunn & Chang 1982).

For linear time-invariant systems, observability can be determined using any of several straight-

forward tests, such as the well-known linear observability matrix rank test (Maybeck 1979) or the

Popov–Belevitch-Hautus eigenvector test (Verhaegen & Verdult 2007). Establishing the observabil-

ity of linear time-varying systems generally involves evaluating the observability gramian matrix,

which must usually be done numerically. An alternative, for time-varying systems that can be ap-

proximated as piece-wise constant, is to use the stripped observability matrix (Goshen-Meskin &

Bar-Itzhack 1992). Analyzing the observability of nonlinear systems is significantly more difficult.

In Section 5.2, we present a fully nonlinear analysis of the observability of target-free camera-IMU

self-calibration. The analysis is based on a differential geometric characterization of observability,

and relies a matrix rank test originally introduced by Hermann and Krener (Hermann & Krener

1977). The method has been used to analyze the observability of a series of robotic calibration

problems, including camera extrinsic parameter calibration (Martinelli, Scaramuzza & Siegwart

2006) and online odometry self-calibration with an exteroceptive sensor (Martinelli, Weingarten &

Siegwart 2006, Martinelli & Siegwart 2006).

12
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5.1 Differential Geometry and Nonlinear Observability

Our analysis follows the differential geometric approach described in (Hermann & Krener 1977). We

treat the state space as a smooth manifold M of dimension m, and consider the nonlinear system

S


ẋ = f0(x) +

∑p
i=1 fi(x)ui

y = h(x)

, (24)

where x ∈ M ⊆ Rm is the state vector, y ∈ Rn is the vector of observed system outputs, and

u ∈ Rp,u =
[
u1 . . . up

]T
is the vector of control inputs. Systems of the form defined by (24) are

called input-linear or control-affine (Sastry 1999), as each fi(x), i = 1 . . . p, defines a vector field on

M that is a linear function of a single control input. Together with the drift vector field f0(x), the

fields fi(x), i = 1 . . . p, and the control vector u determine the evolution of the system state over

time.

A system is observable, in a global sense, if there are no two points x0,x1 ∈ M that are in-

distinguishable, or that share the same input-output map for all possible control inputs. It may

be necessary to move an arbitrary distance on M , or for an arbitrary amount of time, however, in

order to distinguish between the two points. We will instead determine whether our camera-IMU

system is locally weakly observable, i.e., if, for each point x0 ∈M , there exists an open neighborhood

U ⊆M such that for every open neighborhood V of x0, V ⊆ U , there is no other state x1 ∈ V that

is indistinguishable from x0 (Hermann & Krener 1977). Intuitively, this definition expresses the fact

that it is possible to instantaneously distinguish one point in the state space from its neighbors.6 In

turn, if a system is locally weakly observable, the system state can be estimated from the measured

outputs and the known control inputs (Conte et al. 2006). Note that the definition of local weak

observability does not imply that every set of control inputs distinguishes between states.

We now develop the formalism required for our analysis. Given the smooth vector field f : M →

TM , where TM is the tangent bundle7 of M , and a smooth scalar function h : M → R, the Lie

derivative of h with respect to f at x ∈M is

Lfh(x) = ∇fh(x) =
∂h(x)

∂ x
f(x), (25)

6In summary, “if the states are different, the measurements are different.”
7The tangent bundle of M is the disjoint union of all of the tangent spaces of M .
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where ∂h(x)/∂ x is a row vector. The Lie derivative is the directional derivative of h along f ,

evaluated at x. Lie differentiation can be defined recursively, so that if we, for example, differentiate

along vector field f and then along vector field g, we obtain

LgLfh(x) =
∂ Lfh(x)

∂ x
g(x). (26)

Note that the Lie derivative is not commutative in general. If the function h is differentiated k times

along the vector field f , we use the notation Lk
f h(x), according to the recurrence relation

Lk
f h(x) =

∂
(
Lk−1

f h(x)
)

∂ x
f(x). (27)

By definition, L0 h(x) is simply the function h itself,

L0h(x) , h(x). (28)

For the column observation vector h of size n, we will stack the individual row Lie derivatives of hj ,

j = 1 . . . n to form an n×m matrix.

Now, consider the system S above, and let O be the observability matrix for S, whose rows are

formed from the gradients of the Lie derivatives of h(x). The system S is locally weakly observable

at x0 if O has full column rank at x0; we say that S satisfies the observability rank condition at

x0 (Theorem 3.1 in (Hermann & Krener 1977)). If O has full column rank for all x ∈ M , then S

satisfies the observability rank condition generically and is locally weakly observable (Isidori 1995).

Note that the matrix O may in general have an infinite number of rows because M is (infinitely)

smooth, however it is sufficient to show there are m rows which are always linearly independent.

5.2 On the Observability of Structure, Motion and Sensor Relative Pose

We now show that the target-free camera-IMU system is locally weakly observable. In Section 5.2.3

we describe a number of simplifications that can be made to the analysis when a known calibration

target is available. Prior work on the observability of camera-IMU relative pose calibration includes

(Jones et al. 2007) and (Mirzaei & Roumeliotis 2008).
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5.2.1 Structure and Motion

The problem of estimating camera motion and scene structure has been extensively studied in com-

puter vision (as structure from motion, or SFM) and in robotics (as visual simultaneous localization

and mapping, or SLAM). An analysis presented in (Chiuso, Favaro, Jin & Soatto 2002) shows

that monocular SFM is observable up to an unknown similarity transform, i.e., an arbitrary rigid

motion and a scaling. The reasons for this are twofold: first, a camera is a bearing-only sensor,

which cannot provide absolute information about the depths of landmark points; parallax provides

a baseline-dependent measure of distance, but the baseline will be unknown unless this information

is provided by another sensor. Second, all of the camera observations are relative – the landmark

positions are unknown, and the camera position is also unknown, so there is no fixed, absolute refer-

ence. As noted in (Jones et al. 2007), simply initializing the first camera pose with zero uncertainty

is not sufficient to ensure full observability.

Following (Chiuso et al. 2002), it is possible to make monocular SFM observable by fixing the

directions to three non-collinear features in the first camera image. We achieve this through a

pseudo-measurement technique, in which the uncertainty associated with each of the three features

(which we call anchors) is artificially reduced. As a result, only scale remains indistinguishable. The

scale can be selected arbitrarily, by choosing the depth of one of the image features.

We prove below that, if we anchor the world frame in this way, it is possible to simultaneously

observe the pose of the IMU, the camera-IMU transform, the gyroscope and accelerometer biases,

the gravity vector and the local scene structure. This is the basis for the self-calibration algorithm

we propose. Information about absolute depth is provided by the integrated IMU accelerometer

measurements. The result holds as long as the same set of anchor features remains visible throughout

the calibration process. Fixing the initial camera pose can introduce a small bias in the structure

measurements – by averaging several observations at the start of calibration, we have found that it

is possible to make this bias negligible.

5.2.2 Observability of Self-Calibration

We will assume that visual measurements are provided by an independent SFM algorithm, and

that the world frame has been anchored relative to three point features. Given these assumptions,

monocular SFM is able to provide the camera pose in the world frame up to an unknown scale.

Further, if the camera pose in the world frame can be recovered, it is immediately possible to

determine the landmark positions also (by, e.g., triangulation). For the observability analysis, we
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therefore define an expanded 27× 1 state vector for the continuous time system model,

x =
[
(pW

I )T (q̄W
I )T (vW )T (bg)T (ba)T (gW )T (pI

C)T (q̄ I
C)T α

]T
. (29)

The first 26 states of the vector above are identical to those described in Section 4.1, and the final

state, α, is the scale factor that appears in the measurement model. We assume that the scene scale

does not vary with time, i.e., the time derivative of the scale factor is zero,

α̇ = 0. (30)

Rearranging (15)–(16) from Section 4.2, and incorporating (30), the system process model is de-

scribed by the matrix differential equation

ẋ =



ṗW
I

˙̄qW
I

v̇W

ḃg

ḃa

ġW

ṗI
C

˙̄q I
C

α̇



=

f0︷ ︸︸ ︷

vW

− 1
2Ξ (q̄W

I ) bg

gW −C(q̄W
I )ba

03×1

03×1

03×1

03×1

04×1

0



+

f̆1︷ ︸︸ ︷

03×3

1
2Ξ (q̄W

I )

03×3

03×3

03×3

03×3

03×3

04×3

01×3



ωm +

f̆2︷ ︸︸ ︷

03×3

04×3

C(q̄W
I )

03×3

03×3

03×3

03×3

04×3

01×3



am. (31)

Note that f̆1 and f̆2 are both composed of three individual column vectors, where each column is

multiplied by a single control input. For the unit quaternion q̄, the matrix Ξ (q̄) is

Ξ (q̄) =

[
−qT

q0I3 − [q×]

]
, (32)

which expresses the time rate of change of the q̄ as a function of the angular velocity vector ω

˙̄q =
1

2
Ω(ω)q̄ =

1

2
Ξ (q̄)ω. (33)

We can write the measurement functions for the camera position and the camera orientation as,
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respectively,

h1 = α (pW

I + C(q̄W

I ) pI

C) , (34)

h2 = q̄W

I ⊗ q̄ I

C , (35)

where the terms in brackets in (34) define the absolute position of the camera in the world frame,

which is scaled according to the factor α. We enforce the unit quaternion constraint for q̄W
I with

the measurement function

h3 = (q̄W

I )T q̄W

I = 1. (36)

To show that the nonlinear system described by (31) is locally weakly observable, given measurements

defined by (34)–(36), we must prove that the matrix formed from the gradients of the Lie derivatives

of the measurement functions has full column rank. We begin by defining the zeroth-order Lie

derivatives of h1, h2 and h3, which are simply the measurement functions themselves:

L0h1 = α (pW

I + C(q̄W

I ) pI

C) (37)

L0h2 = q̄W

I ⊗ q̄ I

C (38)

L0h3 = (q̄W

I )T q̄W

I (39)

Their gradients are:

∇L0h1 =
[
α I3 αΓ (q̄W

I ,p
I
C) 03×3 03×3 . . .

03×3 03×3 αC(q̄W
I ) 03×4 U1(p

W
I , q̄

W
I ,p

I
C)
]

(40)

∇L0h2 =
[
04×3 D(q̄ I

C) 04×3 04×3 04×3 04×3 04×3 S(q̄W
I ) 04×1

]
(41)

∇L0h3 =
[
01×3 2 (q̄W

I )
T

01×3 01×3 01×3 01×3 01×3 01×4 0
]
, (42)

where

Γ (q̄W

I ,p
I

C) =
∂C(q̄W

I ) pI
C

∂ q̄W
I

. (43)

Matrices Ui(·) are not required for our analysis, and so we do not expand them completely. Con-

17
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tinuing, the first-order Lie derivatives of h1 and h2 with respect to f0 are:

L1
f0h1 = ∇L0h1 · f0 = αvW − 1

2
αΓ (q̄W

I ,p
I

C) Ξ (q̄W

I ) bg (44)

L1
f0h2 = ∇L0h2 · f0 = −1

2
D(q̄ I

C) Ξ (q̄W

I ) bg (45)

The gradients are:

∇L1
f0h1 =

[
03×3 U2(q̄

W
I ,bg,p

I
C , α) α I3 U3(q̄

W
I ,p

I
C , α) . . .

03×3 03×3 U4(q̄
W
I ,bg, α) 03×4 U5(q̄

W
I ,v

W ,bg,p
I
C)
]

(46)

∇L1
f0h2 =

[
04×3 U6(bg, q̄

I
C) 04×3 − 1

2D(q̄ I
C) Ξ (q̄W

I ) . . .

04×3 04×3 04×3 U7(q̄
W
I ,bg) 04×1

]
(47)

We now consider Lie derivatives with respect to f̆1 and f̆2; we will stack the gradients of the individual

columns of the resulting matrices, where each column is multiplied by a single control. The first-order

Lie derivatives of h1 with respect to the columns of f̆1 are

L1
f̆1

h1 = ∇L0h1 · f̆1 =
1

2
αΓ (q̄W

I ,p
I

C) Ξ (q̄W

I )

=
[
L1

f1,1
h1 L1

f1,2
h1 L1

f1,3
h1

]
,

(48)

which is a 3 × 3 matrix.8 Computing the gradients of the individual Lie derivatives (columns), we

obtain

∇L1
f̆1

h1 =

∇L
1
f1,1

h1

∇L1
f1,2

h1

∇L1
f1,3

h1


=
[
09×3 U8(q̄

W
I ,p

I
C , α) 09×3 09×3 . . .

09×3 09×3 αG1(q̄
W
I ) 09×4 U9(q̄

W
I ,p

I
C)
]
,

(49)

where the matrix G1(q̄
W
I ) is formed from the stacked partial derivatives of the columns of

1
2Γ (q̄W

I ,p
I
C) Ξ (q̄W

I ) with respect to pI
C .9 We also require the second-order Lie derivative of h1 with

8For brevity, we use the notation L1
f̆1
h1 for the three individual column Lie derivatives of f̆1, and ∇L1

f̆1
h1 for their

stacked gradients.
9We fully expand the matrices Gi(·) in the Appendix.
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respect to f0

L2
f0h1 = ∇L1

f0h1 · f0 = −1

2
U2(q̄

W

I ,bg,p
I

C , α) Ξ (q̄W

I ) bg − αC(q̄W

I ) ba + αgW . (50)

The gradient is

∇L2
f0h1 =

[
03×3 U10(q̄

W
I ,bg,p

I
C , α)− αΓ (q̄W

I ,ba) 03×3 U11(q̄
W
I ,bg,p

I
C , α) . . .

−αC(q̄W
I ) α I3 U12(q̄

W
I ,bg, α) 03×4 U13(q̄

W
I ,bg,ba,p

I
C ,g

W )
]
, (51)

where

Γ (q̄W

I ,ba) =
∂C(q̄W

I ) ba

∂ q̄W
I

. (52)

Next, we require the second-order Lie derivatives of ∇L1
f0

h1 with respect to the columns of f̆2,

L1
f̆2
L1

f0h1 = ∇L1
f0h1 · f̆2 = αC(q̄W

I )

=
[
L1

f2,1
L1

f0
h1 L1

f2,2
L1

f0
h1 L1

f2,3
L1

f0
h1

]
,

(53)

which is also a 3× 3 matrix. Stacking the gradients of the individual columns, we obtain

∇L1
f̆2
L1

f0h1 =

∇L
1
f2,1
L1

f0
h1

∇L1
f2,2
L1

f0
h1

∇L1
f2,3
L1

f0
h1


=
[
09×3 αG2(q̄

W
I ) 09×3 09×3 09×3 09×3 09×3 09×4 G3(q̄

W
I )
]
,

(54)

where the matrices G2(q̄
W
I ) and G3(q̄

W
I ) are formed from the stacked partial derivatives of the

columns of C(q̄W
I ) with respect to q̄W

I and α, respectively. Finally, we require the third-order Lie

derivatives of ∇L2
f0

h1 with respect to the columns of f̆1

L1
f̆1
L2

f0h1 = ∇L2
f0h1 · f̆1 =

1

2
U9(q̄

W

I ,bg,p
I

C , α) Ξ(q̄W

I )− 1

2
αΓ (q̄W

I ,ba) Ξ (q̄W

I )

=
[
L1

f1,1
L2

f0
h1 L1

f1,2
L2

f0
h1 L1

f1,3
L2

f0
h1

]
.

(55)
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We proceed as before and stack the gradients of the individual columns,

∇L1
f̆1
L2

f0h1 =

∇L
1
f1,1
L2

f0
h1

∇L1
f1,2
L2

f0
h1

∇L1
f1,3
L2

f0
h1


=
[
09×3 U14(q̄

W
I ,bg,ba,p

I
C , α) 09×3 U15(q̄

W
I ,bg,p

I
C , α) . . .

−αG1(q̄
W
I ) 09×3 U16(q̄

W
I ,bg, α) 09×4 U17(q̄

W
I ,bg,ba,p

I
C)
]
,

(56)

where G1(q̄
W
I ) is (again) formed from stacked partial derivatives of the columns of Γ (q̄W

I ,ba) Ξ (q̄W
I )

with respect to ba.

We form the observability matrix O by stacking the gradient matrices above:

O =



∇L0h1

∇L0h2

∇L1
f0

h1

∇L1
f0

h2

∇L1
f̆1

h1

∇L2
f0

h1

∇L1
f̆2
L1

f0
h1

∇L0h3

∇L1
f̆1
L2

f0
h1



=



α I3 αΓ (q̄W
I ,p

I
C) 03×3 03×3 03×3 03×3 αC(q̄W

I ) 03×4 U1

04×3 D(q̄ I
C) 04×3 04×3 04×3 04×3 04×3 S(q̄W

I ) 04×1

03×3 U2 α I3 U3 03×3 03×3 U4 03×4 U5

04×3 U6 04×3 − 1
2D(q̄ I

C) Ξ (q̄W
I ) 04×3 04×3 04×3 U7 04×1

09×3 U8 09×3 09×3 09×3 09×3 αG1(q̄
W
I ) 09×4 U9

03×3 U10 − αΓ (q̄W
I ,ba) 03×3 U11 −αC(q̄W

I ) α I3 U12 03×4 U13

09×3 αG2(q̄
W
I ) 09×3 09×3 09×3 09×3 09×3 09×4 G3(q̄

W
I )

01×3 2 (q̄W
I )T 01×3 01×3 01×3 01×3 01×3 01×4 0

09×3 U14 09×3 U15 −αG1(q̄
W
I ) 09×3 U16 09×4 U17



, (57)

where the complete matrix has size 45×27. Our choice of the ordering of the Lie derivatives is made

to facilitate the proof of the following theorem about the rank of O.

Theorem 1. The matrix O, defined by (57), has full column rank when α 6= 0.

Proof. We use block Gaussian elimination to show that O has full column rank when α 6= 0.

Abbreviated proofs of Lemmas 1–4 are provided in the Appendix.

Step 1: By Lemma 1, the matrix
[
αG2(q̄

W
I ) G3(q̄

W
I )
]

has full column rank, with the constraint

that q̄W
I is a unit quaternion. This allows us to eliminate the remaining nonzero entries in column

blocks 2 and 9.

Step 2: By Lemma 2, the matrix S(q̄W
I ) has full column rank. We eliminate the remaining nonzero

entries in column block 8.

Step 3: By Lemma 3, the matrix D(q̄W
I ) Ξ (q̄W

I ) has full column rank, and so we eliminate the

remaining nonzero entry in column block 4.
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Step 4: Finally, by Lemma 4, the matrix αG1(q̄
W
I ) has full column rank, and we eliminate the

remaining nonzero entries in column blocks 5 and 7.

After applying Lemmas 1–4 and removing any rows of O that consist entirely of zeros, we obtain:

O =



α I3 03×4 03×3 03×3 03×3 03×3 03×3 03×4 03×1

04×3 04×4 04×3 04×3 04×3 04×3 04×3 I4 04×1

03×3 03×4 α I3 03×3 03×3 03×3 03×3 03×4 03×1

03×3 03×4 03×3 I3 03×3 03×3 03×3 03×4 03×1

03×3 03×4 03×3 03×3 03×3 03×3 αI3 03×4 03×1

03×3 03×4 03×3 03×3 03×3 α I3 03×3 03×4 03×1

04×3 α I4 04×3 04×3 04×3 04×3 04×3 04×4 04×1

01×3 01×4 01×3 01×3 01×3 01×3 01×3 01×4 1

03×3 03×4 03×3 03×3 α I3 03×3 03×3 03×4 03×1



(58)

which has full column rank whenever α 6= 0. This completes the proof.

Note that O has full column rank only when the scale factor α is nonzero. This constraint is not

an issue in practice, as any nonzero values for the initial landmark depths will result in a nonzero

scene scale. Our analysis, based on Lemmas 1–4, requires the IMU to undergo rotation about at

least two axes and acceleration along at least two axes (cf. Appendix).

5.2.3 Observability of Target-Based Calibration

For target-based calibration, the true distances between landmarks (corner points on the calibration

target) are a priori known. This allows us to replace (34) with the observation function

h∗1 = pW

I + C(q̄W

I ) pI

C , (59)

where the scale factor, α, does not appear. We can modify the observability analysis by removing

the α term from any entries in O, and eliminating the last column of the matrix. Using the same

sequence of steps described in Section 5.2.2, it follows immediately that target-based calibration is

locally weakly observable, as expected. Note also that, because the true landmark positions are

known, it not necessary to anchor the world frame as described in Section 5.2.1.
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6 Filtering for Structure, Motion and Relative Pose

Self-Calibration

In this section, we develop a practical algorithm for recovering the local scene structure, camera

and IMU motion, and the sensor-to-sensor transform, from camera and IMU measurements. The

algorithm is based on the unscented Kalman filter (UKF), an alternative to the well-known extended

Kalman filter (EKF) (Julier & Uhlmann 2004).

Our choice of the UKF is motivated by its superior performance compared to the EKF for many

nonlinear problems. For Gaussian state distributions, the posterior estimate produced by the UKF

is accurate to the third order, while the EKF estimate is accurate to the first order only (van der

Merwe & Wan 2004).10 Recent work has shown, for a variety of navigation problems, that the

UKF produces more accurate and consistent estimates than the EKF. For example, in (Huster &

Rock 2003), Huster and Rock demonstrate that the UKF is able to accurately estimate ego-motion

by fusing inertial data with monocular visual measurements, while the EKF produces inconsistent

and biased results. An additional benefit of the UKF is that it is derivative-free, i.e., the filter does

not require Jacobian matrices to be computed. Although the computational demands of the UKF

are greater than those of the EKF, we note that the UKF is amenable to parallelization.

We give a brief overview of the filter in Section 6.1 below, and refer the reader to (Julier &

Uhlmann 2004) for a more detailed treatment. In Section 6.2 we discuss several changes to the

standard UKF algorithm that are necessary to correctly propagate and update unit quaternions in

the state vector. We then review filter initialization in Section 6.3 and outlier rejection in Section

6.4.

6.1 Unscented Filtering

The UKF is a Bayesian filtering algorithm which updates the system state using a set of deterministic

sample points drawn from the prior distribution. These sigma points lie on the covariance contours in

state space. The filter propagates each sigma point through the (nonlinear) process and measurement

models, and computes the weighted averages of the transformed points to determine the posterior

mean and covariance. This technique, known as the unscented transform, is a type of statistical local

linearization, which produces more accurate estimates than the analytic local linearization employed

by the EKF.

10The UKF estimate is accurate to the third order of the Taylor series expansion of the posterior state distribution.
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We use a continuous-discrete formulation of the UKF, in which the sigma points are propagated

forward in time using forth-order Runge-Kutta integration of (15)–(16). Measurement updates occur

at discrete time steps. Our filter implementation augments the state vector and state covariance

matrix with a process noise component, as described in (Julier & Uhlmann 2004),

xa(tk) =

[
x(tk)

n(tk)

]
, (60)

where xa(tk) is the augmented state vector, of size N , at time tk, and n(tk) is the 12 × 1 process

noise vector defined by (20).

At time tk−1, immediately after the last measurement update, the augmented state mean x̂+
a (tk−1)

and augmented state covariance matrix P+
a (tk−1) are

x̂+
a (tk−1) =

[
x̂+(tk−1)

012×1

]
, P+

a (tk−1) =

[
P+(tk−1) 0m×12

012×m Q

]
, (61)

where Q is the covariance matrix for the noise vector n, and the state vector x̂+(tk−1) has size

m = 26 + 3n (when n landmarks are included). We employ the scaled form of the unscented

transform (Julier 2002), which requires a scaling term

λ = α2(N + β)−N. (62)

Here, the α parameter controls the spread of the sigma points about the state mean; α is usually set

to a small positive value. The β parameter is used to incorporate corrections to higher-order terms

in the Taylor series expansion of the state distribution; setting β = 2 minimizes the fourth-order

error for jointly Gaussian distributions. For state estimate x̂+(tk−1), the augmented state vector

x̂+
a (tk−1) is used to generate the set of sigma points according to

χ0 a(tk−1) = x̂+
a (tk−1) (63)

χl a(tk−1) = x̂+
a (tk−1) + Sj (tk−1), j = l = 1, . . . , N (64)

χl a(tk−1) = x̂+
a (tk−1)− Sj (tk−1), j = 1, . . . , N, l = N + 1, . . . , 2N (65)

S(tk−1) =

√
(λ+N) P+

a (tk−1), (66)

where Sj denotes the jth column of the matrix S. The matrix square root of P+
a (tk−1) is found by
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Cholesky decomposition (Golub & Loan 1996). The associated sigma point weight values are

W0
m = λ/(λ+N) (67)

W0
c = λ/(λ+N) + (1− α2 + β) (68)

Wj m = Wj c =
1

2 (λ+N)
, j = 1, . . . , 2N. (69)

Individual sigma points are propagated through the augmented nonlinear process model function fa

(which incorporates process noise in the propagation equations) and the weights above are used to

calculate the a priori state estimate and covariance matrix at time tk,

χi a(tk) = fa
(
χi a(tk−1)

)
, i = 0, . . . , 2N (70)

x̂−(tk) =

2N∑
i=0

Wi m χi (tk) (71)

P−(tk) =

2N∑
i=0

Wi c

(
χi (tk)− x̂−(tk)

) (
χi (tk)− x̂−(tk)

)T
. (72)

When a measurement arrives (in our case, an observation of one of the landmarks in the environ-

ment), we determine the predicted measurement vector by propagating each sigma point through

the nonlinear measurement model function h,

γi (tk) = h
(
χi (tk)

)
, i = 0, . . . , 2N (73)

ẑ(tk) =

2N∑
i=0

Wi m γi (tk). (74)

We then perform a state update by computing the Kalman gain matrix K(tk) and the a posteriori
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state vector and state covariance matrix

Px̂ẑ(tk) =

2N∑
i=0

Wi c

(
χi (tk)− x̂−(tk)

) (
γi (tk)− ẑ(tk)

)T
(75)

Pẑẑ(tk) =

2N∑
i=0

Wi c

(
γi (tk)− ẑ(tk)

) (
γi (tk)− ẑ(tk)

)T
(76)

K(tk) = Px̂ẑ(tk) (Pẑẑ(tk) + R(tk))
−1

(77)

x̂+(tk) = x̂−(tk) + K(t) (z(tk)− ẑ(tk)) (78)

P+(tk) = P−(tk)−K(tk)Pẑẑ(tk)KT (tk), (79)

where Px̂ẑ(tk) and Pẑẑ(tk) are the state-measurement cross-covariance matrix and the predicted

measurement covariance matrix, respectively, while R(tk) is the measurement covariance matrix

for the current observation. Note that because our measurement noise is additive, the innovation

covariance (in brackets in (77)) is simply the sum of the matrices Pẑẑ(tk) and R(tk).

6.2 The Unscented Quaternion Estimator

The UKF updates the system state by computing the barycenteric mean of the sigma points. For

unit quaternions, which lie on the unit sphere S3 in R4, the barycenter of the transformed sigma

points will often not represent the correct mean. In particular, the weighted average of several unit

quaternions may not be a unit quaternion.

Special consideration is therefore required when propagating unit quaternions through the un-

scented transform. There are several possible ways to enforce the unit norm constraint within the

UKF, for example by incorporating pseudo-measurements, or by projecting the unconstrained time

and measurement updates onto the quaternion constraint surface (Julier & Jr. 2007). We follow the

method described in (Crassidis & Markely 2003) and employ a re-parameterization which incorpo-

rates multiplicative, three-parameter orientation error state vectors in place of the unit quaternions

q̄W
I and q̄ I

C . This approach, called the USQUE (UnScented QUaternion Estimator) in (Crassidis &

Markely 2003), is similar to the algorithm described in (Kraft 2003), but does not require an iterated

gradient descent step.

To propagate and update unit quaternions in the state vector, the USQUE filter defines a mul-

tiplicative local error quaternion,

δq =
[
δq0 δqT

]T
, (80)
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and the following three-component vector of modified Rodrigues parameters (MRPs), derived from

the error quaternion

δ e =
δq

1 + δq0
. (81)

The MRP vector is an unconstrained three-parameter orientation representation, which is singular

at 2π, and can be expressed in axis-angle form as

δ e = ā tan(θ/4), (82)

where ā defines the rotation axis, and θ is the rotation angle. The inverse transformation, from the

MRP vector to the local error quaternion δq, is

δq0 =
1−

∥∥ δ e
∥∥

1 +
∥∥ δ e

∥∥ (83)

δq = (1 + δq0) δ e. (84)

From the full sensor state vector (13), we define the modified 24×1 sensor error state vector xse(tk)

as:

xse(tk) =
[
(pW

I (t))T (δ eW
I (t))T (vW (t))T (bg(t))T (ba(t))T (gW )T (pI

C)T (δ e I
C)T

]T
(85)

where δ eW
I and δ e I

C are the MRP error state vectors for the orientation quaternions q̄W
I and q̄ I

C ,

respectively.

Throughout the calibration procedure, the filter maintains an estimate of the full 26× 1 sensor

state vector and the 24 × 24 sensor error state covariance matrix. The initialization procedure (cf.

Section 6.3.1) yields an estimate of the full state vector and the error state covariance; for the

orientation quaternions ˆ̄qW
I and ˆ̄q I

C we store the 3× 3 covariance matrices for the MRP error state

representations.

At the start of each propagation step, we compute the sigma points for the error state according

to (63)–(65), setting the mean error state MRP vectors to

δ êW
I

0 (tk−1) = 03×1, δ ê I
C

0 (tk−1) = 03×1, (86)

where we indicate the component of the state vector that ‘belongs’ to a specific sigma point by pre-
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fixing the vector with a superscripted index (zero above). We will follow this convention throughout

the section.

To propagate the IMU orientation quaternion q̄W
I forward in time, we compute the local error

quaternion jδ ˆ̄qW
I (tk−1) from the MRP vector in sigma point j using (83), and then the full orientation

quaternion from the error quaternion

j ˆ̄qW

I (tk−1) = jδ ˆ̄qW

I (tk−1)⊗ ˆ̄q
W+

I (tk−1), j = 1, . . . , 2N (87)

The other components of the sigma points are determined by addition or subtraction directly. Each

sigma point, including the full IMU orientation quaternion, is then propagated through the aug-

mented process model function fa from time tk−1 to time tk, with process noise directly incorporated

in the nonlinear propagation equations. We determine the orientation error quaternions at time tk

by reversing the procedure above, using the propagated mean quaternion

jδ ˆ̄qW

I (tk) = j ˆ̄qW

I (tk)⊗
(

0 ˆ̄qW

I (tk)
)−1

, j = 1, . . . , 2N (88)

and finally compute the orientation error MRP vectors using (81). Note that this is required only

for the IMU orientation quaternion during the propagation step, as the camera-IMU orientation

quaternion does not change. We can then compute the updated a priori error state vector and error

state covariance matrix using (71) and (72).

We store the orientation quaternions from the last propagation step; when a measurement ar-

rives, we then compute the predicted measurement vector for each sigma point using the nonlinear

measurement function h. The error quaternions for the camera-IMU orientation are determined

according to

jδ ˆ̄q I

C(tk) = j ˆ̄q I

C(tk)⊗
(

0 ˆ̄q I

C(tk)
)−1

j = 1, . . . , 2N, (89)

and the MRP error state vectors are found using (81). Next, we compute the state-measurement

cross-covariance matrix, the predicted measurement covariance matrix, the Kalman gain matrix,

and the updated a posteriori error state vector and error state covariance matrix. As a final step,

we use the updated mean MRP error state vectors to compute the mean error quaternions, and the

full state vector orientation quaternions.
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6.3 Filter Initialization

At the start of the calibration procedure, we generate an initial estimate of the sensor state (i.e., the

IMU pose in the world frame). For target-free self-calibration, we also compute an initial estimate

of the map state (i.e., landmark positions in the world frame). After initialization is complete, we

have an estimate of the full state vector and the error state covariance matrix, which are the inputs

to the UKF.

6.3.1 Sensor State Initialization

For target-based calibration, we initially compute estimates of the camera position p̂W
C and orien-

tation ˆ̄qW
C in the world frame. Given the known positions of the corner points on the calibration

target and their image projections, we calculate a solution in closed form for the orientation of the

camera using Horn’s method (Horn 1987).11 This is followed by an iterative nonlinear least squares

refinement step (using modified Rodrigues parameters), which also provides the 3 × 3 MRP error

covariance matrix.

An initial estimate of the camera pose relative to the IMU is also required. We use hand mea-

surements of the relative pose for the experiments described in this paper – however this information

in many cases may be available from CAD drawings or other sources. Given the estimate of the

camera pose in the world frame and an estimate of the relative pose of the camera with respect to

the IMU, we compute an initial estimate of the IMU pose in the world frame, according to

p̂W

I = p̂W

C −C(ˆ̄qW

C ) CT(ˆ̄q I

C) p̂I

C (90)

ˆ̄qW

I = ˆ̄qW

C ⊗
(
ˆ̄q I

C

)−1
. (91)

We determine the covariance matrix for the IMU pose by computing the Jacobians of (90) and (91),

again using modified Rodrigues parameters. For the target-free case, the initialization procedure is

the same, except that we use p̂W
C = 03×1 as the initial camera position, and set the initial camera

orientation arbitrarily, with zero initial uncertainty.

6.3.2 Landmark Position Initialization

As part of the target-free calibration procedure, we estimate the map state (landmark positions)

as well as the sensor state. We typically choose approximately 40 to 50 salient features in the first

11Here, we assume that the target is positioned in front of and approximately parallel to the camera image plane.
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camera image as point landmarks. At present, we do not add new landmarks when the camera

moves (since we expect to perform calibration in a limited area).

As noted in Section 4.1, we parameterize landmark positions in the state vector using Cartesian

coordinates, and initialize the positions using a nominal depth value, along the corresponding camera

rays in the first camera image. The positions of the n landmarks in the world frame are estimated

as

p̂W

li
= dK−1

[
ui vi 1

]T
, i = 1 . . . n. (92)

where d is the nominal depth value, K−1 is the inverse of the camera intrinsic calibration matrix,

and
[
ui vi

]T
is the vector of observed image coordinates for landmark i.

To anchor the world frame, we select three highly distinct features from the initial set. We use

very small image plane uncertainties when computing the three-dimensional covariance ellipses for

these landmarks. This effectively ‘locks down’ the initial camera pose and ensures that the full

system state is observable (cf. Section 5.2).

6.4 Feature Detection, Tracking and Outlier Rejection

We use different feature detection and tracking methods for target-based and target-free calibration.

For the target-based case, we first locate candidate corner points in each image using a fast template

matching algorithm. This is followed by a homography-based check to ensure that all of the points

lie on the planar surface of the target. Once we have coarse estimates of the locations of the corner

points, we refine those estimates to subpixel accuracy using a saddle point detector (Lucchese &

Mitra 2002). The integrated IMU accelerometer measurements are used to bound the search for the

calibration target in the next image.

Target-free calibration is typically performed in a previously unseen and unknown environment.

In this case, we select a set of salient and well-localized point features to use as landmarks. We employ

the Scale Invariant Feature Transform (SIFT) (Lowe 2004) as our feature detector. SIFT features

are invariant to changes in scale and rotation, and partially invariant to changes in illumination; a

fast C implementation of SIFT is available (Vedaldi & Fulkerson 2009).

To detect outliers due to mismatched features in consecutive image frames, we use a simple

threshold test based on the χ2 statistic for the measurement residuals. We discard any feature

measurements whose residuals are above the threshold.
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7 Simulation Studies

We initially carried out a series of simulation studies to characterize the performance of the calibra-

tion algorithm, with ground truth available. We modeled a sensor beam, 15 cm in length, moving

through space according to accurate rigid body kinematics. During each simulation, the beam ro-

tated while traveling along the corkscrew-like trajectory shown in Figure 2, in order to excite all six

degrees of translational and rotational freedom. The IMU had a maximum angular rotation rate of

36.0◦/s and a maximum linear acceleration of 1.0 m/s2.

Our aim was to make the simulation as realistic as possible – the characteristics of our simulated

camera and IMU are the same as those of the real hardware described in Section 8. Simulated IMU

updates occurred at a rate of 100 Hz, while camera images arrived at either 7.5 or 15 Hz (for target-

based and target-free calibration, respectively). The process noise for the simulated IMU matched

the noise properties of the IMU available in our laboratory. Our simulated camera had a horizontal

field of view of 58◦ and a resolution of 640× 480 pixels.

For both the target-based and target-free simulations, we used a set of 48 corner points (8× 6)

on a simulated planar target as landmarks. The points were spaced 10.4 cm apart (again, accurately

modeling our real calibration target). To generate each simulated image frame, we projected the

known corner points onto the camera image plane and added uncorrelated, zero-mean Gaussian noise

to the u (horizontal) and v (vertical) image coordinates. The noise had a standard deviation of 1.0

pixels in both the u and v directions. We constrained the rotation of the camera along the trajectory

to ensure that the majority of the points on the calibration target remained visible throughout each

simulation run.

In the sections that follow, we present results from four different simulation trials – three sim-

ulations of target-based calibration (with varying amounts of initial error in the estimate of the

camera-IMU relative orientation, and with intentional misestimation of the gravity vector), and one

simulation of target-free self-calibration. These results are a representative sample of the perfor-

mance of the calibration algorithms across a large number of simulations.

7.1 Target-Based Calibration

Simulation results for target-based calibration are shown in Figures 3 and 4, and in Tables 1 and

2. During the simulation, 2500 IMU measurements and 187 camera images (in which all 48 corner

points on the target were visible) were processed, over 25 seconds. The initial IMU position and
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Figure 2: Estimated trajectory of the IMU (light line) versus true trajectory (dark line), over the 25-second
simulation time interval, for trial TB-1. The estimated initial position and true initial position of the IMU
are indicated by light and dark circles, respectively.

orientation estimates were computed using the procedure described in Section 6.3.1.

For the first simulation trial (designated ‘TB-1’ in Tables 1 and 2), the initial translation and

orientation errors were p̃I
C =

[
−5 −5 6

]T
cm and ξ̃

I

C =
[

5 5 −5
]T

degrees (roll, pitch and yaw),

respectively.12 The plot in Figure 3(b) indicates that the orientation estimates converge rapidly,

with residual errors of less than 0.1 degrees in roll, pitch and yaw after 25 seconds.13 Likewise, the

translation errors, shown in Figure 3(a), decrease to approximately 3 mm or less along each axis

with an uncertainty (3σ) of ±7 mm or less, over the 25 second simulation time interval.

We also investigated calibration with larger initial orientation errors. For the second simulation

trial (designated ‘TB-2’ in Tables 1 and 2) we used the same translation error as for the TB-1

simulation, but an initial orientation error of ξ̃
I

C =
[

10 −10 −10
]T

degrees (roll, pitch and yaw),

respectively. The plot in Figure 4(b) shows that the orientation estimates again converge very

rapidly, with residual errors of less than 0.1 degrees in roll, pitch and yaw after 25 seconds. The

translation errors decrease to less than 3 mm along each axis, with an uncertainty (3σ) of ±8 mm

or less within the 25 second simulation time interval. These results indicate that the filter is able

to accurately estimate the calibration parameters despite large initial errors in the relative camera

orientation.

12We use ξ̃
I

C to denote a 3 × 1 vector of Euler angles, which are more easily visualized than the equivalent MRP
representation.

13We have expanded the time axis in the plots over the interval from t = 0 to t = 1.0 seconds to more clearly show
the convergence of the orientation estimate.
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Figure 3: Simulation results for target-based calibration trial TB-1, showing the estimation error (solid line)
and 3σ bounds (dashed line) for the camera-IMU (a) relative translation and (b) relative orientation. Initial

translation and orientation errors were p̃I
C = [−5 −5 6 ]T cm and ξ̃

I

C = [ 5 5 −5 ]T degrees, respectively.

Table 1: Simulation results for target-based calibration of the camera-IMU relative translation. The initial
and final estimation errors are listed, along with their respective 3σ error bounds.

Simulation px Error ±3σ (cm) py Error ±3σ (cm) pz Error ±3σ (cm)

TB-1
Initial -5.00 ± 15.00 -5.00 ± 15.00 6.00 ± 15.00

Final -0.01 ± 0.53 -0.28 ± 0.62 -0.32 ± 0.70

TB-2
Initial -5.00 ± 15.00 -5.00 ± 15.00 6.00 ± 15.00

Final 0.13 ± 0.53 -0.19 ± 0.79 -0.27 ± 0.65

7.2 Target-Free Self-Calibration

Simulation results for target-free self-calibration are shown in Figure 5 and Tables 3 and 4. We used

the same IMU trajectory as for the target-based simulation – however, in this case, we treated the

corner points on the calibration target as landmarks with unknown positions in the world frame.

The landmark positions were initialized using the procedure described in Section 6.3.2; we chose a

nominal distance of 2.5 m from the first camera pose for each landmark, with a standard deviation

of 0.4 m, along the respective camera ray axis. The upper left and right corner points and the lower

left corner point were selected as anchors to lock down the world frame. To reduce any bias in the

estimates of the positions of the anchor landmarks, the locations of the corresponding points on

the image plane were averaged over 60 seconds (900 image frames), while the beam was stationary,

before we started the filtering algorithm.
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Figure 4: Simulation results for target-based calibration trial TB-2. The estimation error and 3σ bounds
for the camera-IMU (a) relative translation and (b) relative orientation are shown. Initial translation and

orientation errors were p̃I
C = [−5 −5 6 ]T cm and ξ̃

I

C = [ 10 −10 −10 ]T degrees, respectively.
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Figure 5: Simulation results for target-free self-calibration. The estimation error and 3σ bounds for the
camera-IMU (a) relative translation and (b) relative orientation are shown. Initial translation and orientation

errors were p̃I
C = [−5 −5 6 ]T cm and ξ̃

I

C = [ 5 5 −5 ]T degrees, respectively.
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Figure 6: Simulation results for target-based calibration. The estimation error and 3σ bounds for the camera-
IMU (a) relative translation and (b) relative orientation are shown. Gravity was not estimated as part of
the calibration procedure in this case; the gravity vector was intentionally misaligned by 2 degrees relative
to the z axis of the calibration target. Initial translation and orientation errors were p̃I

C = [−5 −5 6 ]T

cm and ξ̃
I

C = [ 5 5 −5 ]T degrees, respectively. Note that there are steady-state translation errors along
px and pz.

Table 2: Simulation results for target-based calibration of the camera-IMU relative orientation. The initial
and final estimation errors are listed, along with their respective 3σ error bounds.

Simulation Roll Error ± 3σ (◦) Pitch Error ± 3σ (◦) Yaw Error ± 3σ (◦)

TB-1
Initial 5.00 ± 15.00 5.00 ± 15.00 -5.00 ± 15.00

Final -0.02 ± 0.06 -0.06 ± 0.06 0.05 ± 0.05

TB-2
Initial -10.00 ± 30.00 -10.00 ± 30.00 10.00 ± 30.00

Final -0.04 ± 0.10 -0.01 ± 0.10 -0.03 ± 0.08
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Figure 7: Simulation results for target-free self-calibration. Estimated (a) initial positions of landmarks in
the world frame and (b) positions of landmarks after the calibration algorithm has run for 25 s. The RMS
error between the true and estimated positions of the 48 landmarks is 1.39 cm, after 25 s.

For the target-free case, we used 375 camera images (twice as many as for target-based calibra-

tion), acquired at a rate of 15 Hz instead of 7.5 Hz. We have found that an increase in the frame

rate is necessary in many situations because of the large number of degrees of freedom in the system.

This is particularly important when the initial orientation error is large.14

The final estimates of the calibration parameters are very close to the values obtained for target-

based calibration. The residual orientation errors are less than 0.2 degrees in roll, pitch and yaw

after 25 seconds. The translation errors, shown in Figure 5, decrease to less than 6 mm along each

axis, with an uncertainty (3σ) of ±12 mm or less within the 25 second simulation time interval.

To verify our ability to accurately estimate the local scene structure, we compared the estimated

positions of the landmark points (corners on the calibration target) with their actual positions, after

the filter had run for 25 seconds. The results are shown in Figure 7. The RMS error between the

true and estimated landmark positions is only 1.39 cm, and the majority of this error is along the

depth direction. By running the calibration algorithm for a longer period of time, it is possible to

to refine these estimates and further reduce the RMS error.

14The relationship between the IMU trajectory, the initial camera-IMU orientation error, and required camera frame
rate is complex in general. We are currently investigating this relationship in more detail.
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Table 3: Simulation results for target-free self-calibration of the camera-IMU relative translation. The initial
and final estimation errors are listed, along with their respective 3σ error bounds.

Simulation px Error ±3σ (cm) py Error ±3σ (cm) pz Error ±3σ (cm)

TF
Initial -5.00 ± 15.00 -5.00 ± 15.00 6.00 ± 15.00

Final -0.36 ± 1.22 -0.01 ± 0.56 0.57 ± 0.60

Table 4: Simulation results for target-free self-calibration of the camera-IMU relative orientation. The initial
and final estimation errors are listed, along with their respective 3σ error bounds.

Simulation Roll Error ± 3σ (◦) Pitch Error ± 3σ (◦) Yaw Error ± 3σ (◦)

TF
Initial 5.00 ± 15.00 5.00 ± 15.00 -5.00 ± 15.00

Final 0.19 ± 0.20 0.12 ± 0.14 -0.14 ± 0.15

7.3 Gravity and Calibration

We ran an additional simulation to determine the effect of not estimating gravity as part of the

calibration procedure, when there is a small misalignment between the true gravity vector and the

vector used by the filtering algorithm. For target-based calibration, this situation occurs when the

vertical axis of the target is not exactly parallel to the local gW vector.

In the simulation, we set the initial translation and orientation errors to the same values used for

the first target-based trial, p̃I
C =

[
−5 −5 6

]T
cm and ξ̃

I

C =
[

5 5 −5
]T

degrees, as described in

Section 7.1. We then rotated the gravity vector through a pitch angle of two degrees, which resulted

in a component of g acting along the positive x axis in the world frame. We note that misalignments

on the order of one to two degrees occur often in practice.

The time-evolution of the camera-IMU relative translation and orientation estimates are shown

in Figure 6. Note that roll and yaw orientation estimates are initially inconsistent. The pitch and

yaw estimates do converge (within the estimation uncertainty) after approximately five seconds.

However, there is a small residual bias in the roll estimate, even after 25 seconds. The relative

translation estimates, in contrast, remain biased and inconsistent – both px and pz diverge from the

true translation values. Although the value of py does eventually converge, there is a constant bias

of 3.8 cm along px and 2.3 cm along pz.

An analysis of these results indicates that the constant translation biases exists because the filter

is able to compensate for the erroneous orientation of the gravity vector by either a) adjusting the

accelerometer bias, or b) introducing a constant translational offset in the camera position. The

initial uncertainty in the accelerometer bias is small relative to the uncertainty in the px and pz
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(a) (b)

Figure 8: (a) Sensor beam, showing Flea camera (lower right) and 3DM-GX3 IMU (center left). The beam
is 30 cm in length. (b) Our planar camera calibration target. Each target square is 10.4 cm on a side. There
are 48 interior corner points, which we use as landmarks for calibration. The small circles in the figure
identify the three points that we use as anchors for the self-calibration experiments described in Section 8.1.

translation values in this case. As the camera-IMU translation covariance decreases, the translation

parameters converge to the incorrect, biased values, after which they are insensitive to further

changes.

8 Experiments

We performed a series of experiments to quantify the accuracy and performance of the target-based

calibration and the target-free self-calibration algorithms with real hardware. Our test rig consists

of a 30 cm long 8020 aluminum beam, with an IMU mounted near the center and a camera mounted

at one end (cf. Figure 8(a)). The camera is a black and white Flea FireWire model from Point

Grey Research (640× 480 pixel resolution), mated to a 4 mm Navitar lens (58◦ horizontal FOV, 45◦

vertical FOV). Our IMU is a MEMS-based 3DM-GX3 unit, manufactured by MicroStrain, which

provides three-axis angular rate and linear acceleration measurements at 100 Hz. Axis scale and

non-orthogonality effects are compensated for internally by the IMU.

In the sections below, we present results from three different experiments – one target-based cal-

ibration experiment and two target-free calibration experiments. These results are a representative

sample of the performance of the calibration algorithms across a large number of trials.
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Table 5: Results for target-based calibration and target-free self-calibration of the camera-IMU relative
translation. The initial hand-measured (HM) estimate of the translation and the final target-based (TB)
and target-free, self-calibrated (TF-1, TF-2) estimates are listed, along with their respective 3σ error bounds.

Trial px ± 3σ (cm) py ± 3σ (cm) pz ± 3σ (cm)

HM 0.00 ± 6.00 15.00 ± 15.00 0.00 ± 9.00

TB -3.14 ± 0.98 16.60 ± 0.64 -2.85 ± 0.70

TF-1 -3.57 ± 0.98 16.56 ± 0.64 -2.98 ± 0.69

TF-2 -3.97 ± 0.43 16.56 ± 0.23 -2.89 ± 0.24

Table 6: Results for target-based calibration and target-free self-calibration of the camera-IMU relative
orientation. The initial hand-measured (HM) estimate of the orientation (roll, pitch, and yaw angles) and
the final target-based (TB) and target-free, self-calibrated (TF-1, TF-2) estimates are listed, along with
their respective 3σ error bounds.

Trial Roll ± 3σ (◦) Pitch ± 3σ (◦) Yaw ± 3σ (◦)

HM 90.00 ± 15.00 0.00 ± 15.00 -90.00 ± 15.00

TB 90.62 ± 0.10 0.78 ± 0.11 -88.29 ± 0.10

TF-1 90.57 ± 0.11 0.70 ± 0.12 -88.33 ± 0.09

TF-2 90.60 ± 0.06 0.77 ± 0.06 -88.39 ± 0.06

8.1 Experimental Procedure

For the target-based experiments, we placed the sensor beam in front of a stand-mounted planar

camera calibration target in our laboratory, such that the entire target was visible in the camera

image. Our planar calibration target is 100 cm × 80 cm in size, with 48 (8×6) interior corner points

that are each 10.4 cm apart.

At the start of an experiment, we initialized the filter biases by holding the sensor beam still for

approximately one minute. After this settling time, we moved the beam manually through a series

of rotation and translation maneuvers, at distances between approximately 0.5 m and 2.5 m from

the target. Typically, approximately 50 to 60 seconds of data are required for accurate calibration,

with the sensor beam rotating and translating during this time.

The camera-IMU transform parameters were initialized using hand measurements of the rela-

tive position and orientation of the sensors. We used a subset of 25 images acquired during the

camera-IMU procedure to calibrate the camera intrinsic parameters. We assume that each image

measurement is corrupted by independent white Gaussian noise with a standard deviation of 2.0

pixels along the u and v image axes.
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Self-calibration involves first anchoring the world frame by fixing the directions to three points

on the image plane (Chiuso et al. 2002). For our self-calibration experiments using the calibration

target, we chose to fix the directions to the upper left, upper right and lower left points on the

target (as shown in Figure 8(b)). We computed the 3-D covariances for these points using very

small image plane uncertainties, after averaging the image coordinates over 400 frames to reduce

noise. Applying standard linearized error propagation, this effectively meant that only the depths

of the points were undetermined. We selected an initial depth of 3.0 m for each of the 48 points on

the target, along the corresponding camera ray, with a standard deviation of 0.8 m. Further details

about the target-free experiments are provided in Section 8.3.

8.2 Target-Based Calibration

We initially evaluated the accuracy of the camera-IMU calibration algorithm using data acquired

while the camera viewed our (known) planar calibration target. This provided a set of reference

calibration values for comparison with the values obtained from the target-free procedure. Images

were acquired at a rate of 7.5 Hz.15 The data set included 15,025 IMU measurements and 1,123

image frames; the 48 corner points on the calibration target were completely visible in all but three

of the frames. We simply discarded these frames, leaving 1,120 frames for use by the calibration

algorithm.

Calibration results are shown in Figure 9 and in the first row of Tables 5 and 6 (designated as

‘TB’). The plots indicate that both the translation and orientation parameters converge to their

steady-state values within approximately 50 seconds. The final uncertainty for the parameter esti-

mates is on the order of 0.1 degrees for orientation and less than 1 cm for translation.

Importantly, we note that the final estimate of the gravity vector in the world frame is gW =[
−0.150 0.038 9.790

]
m/s2, with magnitude

∥∥gW
∥∥ = 9.791 m/s2. The magnitude of the vector

agrees with the known value for g in Los Angeles of 9.796 m/s2. However, the gravity vector has

a pitch angle of approximately 0.9 degrees relative to the z axis of the calibration target. This

misalignment was present despite our best efforts to orient the target exactly vertically (using a

bubble level), and indicates the importance of estimating the gravity vector as part of the calibration

process.

15We logged camera data at a rate of 15 Hz, however, for target-based calibration we used every second image only.
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Figure 9: Experimental results for target-based calibration (TB). The 48 interior corner points on the
calibration target were treated as known landmarks in this case. (a) Estimate of the relative translation of
the camera along the IMU x, y and z axes, and (b) the corresponding standard deviations, over time. (c)
Estimate of the relative orientation (roll, pitch and yaw angles) of the camera frame with respect to the
IMU frame, and (d) the corresponding standard deviations, over time.
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Figure 10: Experimental results for target-free calibration (TF-1). The 48 interior corner points on the
calibration target were treated as unknown landmarks in this case. (a) Estimate of the relative translation
of the camera along the IMU x, y and z axes, and (b) the corresponding standard deviations, over time.
(c) Estimate of the relative orientation (roll, pitch and yaw angles) of the camera frame with respect to the
IMU frame, and (d) the corresponding standard deviations, over time.
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Figure 11: Experimental results for target-free calibration using the ‘desk’ dataset (TF-2). A total of 40
landmarks were tracked. (a) Estimate of the relative translation of the camera along the IMU x, y and z
axes, over time. (b) Estimate of the relative orientation (roll, pitch and yaw angles) of the camera frame
with respect to the IMU frame, over time.
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Figure 12: Images from the target-free ‘desk’ data set (TF-2), at times t = 5.4 s, t = 59.5 s and t = 109.4 s
from left to right, respectively. The measured image locations of the identified landmarks are shown as red
crosses, and the corresponding predicted locations (based on the current state estimate) are shown as blue
circles. Green circles identify anchor landmarks, which we used to fix the orientation of the world frame.
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Figure 13: Pixel residuals for camera-IMU motion estimation using (a) hand-measured transform parameters,
and (b) self-calibrated transform parameters. Note that the residuals for the calibrated case are more than
two times smaller, on average.

8.3 Target-Free Calibration

We performed two separate target-free calibration experiments, and compared the results with those

from the target-based procedure. For the first target-free experiment, we used the same target-based

dataset (‘TB’), but treated the landmark positions as unknown initially.16 In this case, we also

increased the frame rate to 15 Hz. The (updated) data set (designated as ‘TF-1’) included 15,025

IMU measurements and 2,225 image frames; the 48 corner points on the calibration target were

completely visible in all but five of these frames (which we discarded).

Calibration results are shown in Figure 10 and in the second row of Tables 5 and 6 (designated

as ‘TF-1’). The plots indicate that both the translation and orientation parameters converge to

their steady-state values within approximately 50 seconds. As a measure of the accuracy of the

structure estimate, we computed the best-fit alignment between the known target corner points and

the positions estimated by the calibration algorithm using iterative, nonlinear least squares. The

RMS error was only 6.1 mm, over the 48 landmark points.

As ground truth measurements of the camera-IMU transform were not available, we chose instead

to evaluate the calibration accuracy by comparing motion estimation results. We ran the target-

based algorithm twice, without estimating the calibration parameters – for the first trial, we used

our initial hand-measured estimate of the camera-IMU transform, while for the second trial we used

16It is important to reemphasize that the self-calibration algorithm does not require a calibration target. We used
the target only to compare the accuracy of the approaches, with known ground truth available.
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the calibrated TF-1 estimate. To emphasize the importance of accurate calibration, we also reduced

the camera frame rate to 1.875 Hz. We then recorded and plotted the measurement residuals at

each time step, along the u and along the v image plane axes, for both cases, as shown in shown in

Figures 13(a) and Figure 13(b). Note that the RMS residual for the calibrated case is 3.08 pixels,

which is less than half of the RMS value of 7.10 pixels for the hand-measured estimate.

For the second experiment, we ran the calibration algorithm using data acquired from a scene

with unknown structure (a cluttered desk in our laboratory). Several frames from this sequence

(designated as ‘TF-2’) are shown in Figure 12. We extracted 40 well-localized SIFT features from the

first camera image, and used the corresponding landmarks for calibration. The SIFT features were

selected automatically, based on their distribution in the first image and their frequent appearance

in the next 150 frames (10 seconds of calibration data).

We used exactly the same number of image frames and IMU measurements for the TF-1 and

TF-2 trials. However, for the desk dataset, only 19.5 features were visible per frame, on average.

This is a significantly lower number (less than half) than for the TF-1 trial. Despite the smaller

number of visible features, we note that the calibration results are almost identical to those for

our target-based experiment (except for the px translation value, which we discuss below). This

shows that it is possible to recover accurate calibration in unknown environments and without any

additional hardware.

The only significant difference between the results obtained across all three trials is the value of

the px translation parameter. It is more difficult to obtain an accurate estimate for px because of

the camera’s limited field of view, its position relative to the IMU, and the fact that we typically

calibrate using landmarks which lie in a constrained region in front of the camera. We are cur-

rently investigating the use of a wider distribution of landmarks, in order to better calibrate the px

translational offset. Also, we note, importantly, that for most navigation applications (which involve

moving primarily forward through the world), the px offset has significantly less influence on the

accuracy of motion estimates than the other translation parameters. That is, px is more difficult to

calibrate precisely because its exact value does not usually have a large effect on motion estimation

accuracy.
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9 Conclusions and Future Work

In this paper, we presented a localization, mapping and self-calibration algorithm for visual and

inertial sensors. The algorithm employs an unscented Kalman filter to estimate the relative pose

of the sensors, the metric scene structure, and the motion of the IMU over time. Our results show

that it is possible to accurately calibrate the sensor-to-sensor transform without using a known

calibration target or other calibration object. This work is a step towards building power-on-and-go

robotic systems that are able to self-calibrate in the field. Additionally, our approach enables rapid

re-calibration when the poses of the sensors must be changed (e.g., to enable operation in different

environments).

There are several directions for future research. We are currently investigating how the trajectory

of the camera-IMU platform affects calibration accuracy and convergence time, in an effort to define

trajectories which quickly produce accurate calibration results. We are also planning to extend the

algorithm to include calibration of the camera intrinsic and lens distortion parameters. Finally,

we are working to deploy our visual-inertial calibration system for several platforms, including an

unmanned aerial vehicle, an autonomous underwater vehicle and a humanoid robot.
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Appendix A Proofs

We use curly braces, { and }, to denote the submatrix formed from several rows of a larger matrix,

e.g. B{1, 2, 6} for the submatrix formed from rows 1, 2 and 6 of matrix B. The determinant of a

matrix is denoted by a set of vertical bars, e.g.
∣∣A ∣∣.

Lemma 1. For any unit quaternion q̄, the 10× 5 matrix:

A =

[
αG2(q̄) G3(q̄)

2 q̄T 0

]
(93)
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has full column rank when α is nonzero and at least two components of am =
[
ax ay az

]T
are

excited.

Proof. Let q̄ =
[
q0 qT

]T
=
[
q0 q1 q2 q3

]T
. The rows of A correspond to the individual compo-

nents of the measured linear acceleration vector am, as shown below.

A =



0 0 −4αq2 −4αq3 1− 2q2
2 − 2q2

3

2αq3 2αq2 2αq1 2αq0 2q0q3 + 2q1q2

−2αq2 2αq3 −2αq0 2αq1 2q1q3 − 2q0q2

−2αq3 2αq2 2αq1 −2αq0 2q1q2 − 2q0q3

0 −4αq1 0 −4αq3 1− 2q2
1 − 2q2

3

2αq1 2αq0 2αq3 2αq2 2q0q1 + 2q2q3

2αq2 2αq3 2αq0 2αq1 2q0q2 + 2q1q3

−2αq1 −2αq0 2αq3 2αq2 2q2q3 − 2q0q1

0 −4αq1 −4αq2 0 1− 2q2
1 − 2q2

2

2q0 2q1 2q2 2q3 0



axayaz
(94)

where the series of braces to the right of the matrix indicate which components of the control input

am must be excited in order to use the respective rows of A.

To prove that A has full column rank, it is sufficient to show that there always exists a combi-

nation of five rows of the matrix for which the determinant is nonzero. Observe that with only one

component of am available, a maximum of four rows of A can be used, and the rank of A will be at

most four. So at least two of ax, ay and az must be excited.

Without loss of generality, let the control inputs ax and ay be excited; we can prove the same

result when other possible combinations of control inputs (ax and az, ay and az) are used, and we

do not present those cases here. Selecting rows {1, 2, 3, 6, 10} and {1, 2, 4, 5, 10}, we compute the

determinants of the respective submatrices, and after simplification we obtain

∣∣A{1, 2, 3, 6, 10}
∣∣ = 16α3

(
q2
1 − q2

0 + q2
2 − q2

3

)
, (95)∣∣A{1, 2, 4, 5, 10}

∣∣ = −64α3
(
q2
0 + q2

3

) (
q2
1 + q2

2

)
. (96)

Assume that (95) and (96) are both equal to zero and that α 6= 0. If we consider (96), then either

q0 = q3 = 0 or q1 = q2 = 0. We handle each case in turn.

46



To
Ap
pe
ar
in

In
te
rn
at
io
na
l J
ou
rn
al
of
Ro
bo
tic
s R
es
ea
rc
h

c ©
C
op
yr
ig
ht

20
10

Case 1: Let q0 = q3 = 0. Substituting these values in (95) and dividing by 16α3, we obtain:

q2
1 + q2

2 = 0 (97)

which is zero only if q1 = q2 = 0. But q̄ is a unit quaternion, and so at least one component must

be nonzero.

Case 2: Let q1 = q2 = 0. Substituting these values in (95) and dividing by −16α3, we obtain:

q2
0 + q2

3 = 0 (98)

which is zero only if q0 = q3 = 0. But q̄ is a unit quaternion, and so (again) at least one component

must be nonzero.

The matrix therefore always has full column rank.

Lemma 2. For any unit quaternion q̄, the 4× 4 matrix S(q̄) is full rank.

Proof. Let q̄ =
[
q0 qT

]T
=
[
q0 q1 q2 q3

]T
. The determinant of S(q̄) is:

∣∣S(q̄)
∣∣ =

(
q2
0 + q2

1 + q2
2 + q2

3

)2
=
∥∥ q̄ ∥∥4

= 1 (99)

which shows that the matrix is full rank.

Lemma 3. For any two unit quaternions p̄ and q̄, the 4×3 matrix B = D(p̄) Ξ (q̄) has full column

rank.

Proof. We use the approach described in (Mirzaei & Roumeliotis 2008), and multiply B by its

transpose,

BTB = Ξ (q̄)
T

D(p̄)TD(p̄) Ξ (q̄) = I3, (100)

noting that D(p̄)TD(p̄) = I4 and Ξ (q̄)
T

Ξ (q̄) = I3. The matrix therefore always has full column

rank.

Lemma 4. For any unit quaternion q̄, the 9× 3 matrix G1(q̄) has full column rank when at least

two components of ωm =
[
ωx ωy ωz

]T
are excited.
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Proof. Let q̄ =
[
q0 qT

]T
=
[
q0 q1 q2 q3

]T
and v =

[
vx vy vz

]T
. The matrix G1(q̄) is:

G1(q̄) =


∂ Γ(q̄W

I ,v) Ξ(q̄W
I )

∂ vx

∂ Γ(q̄W
I ,v) Ξ(q̄W

I )
∂ vy

∂ Γ(q̄W
I ,v) Ξ(q̄W

I )
∂ vz


}
ωx}
ωy}
ωz

(101)

where series of braces to the right of the matrix indicate which components of the control input ωm

must be excited in order to use the respective rows of G1.

When at least two of ωx, ωy and ωz are excited, it is always possible to choose three rows of G1

(e.g., rows 2, 3 and 8) such that the absolute value of the determinant of the resulting 3× 3 matrix

is: ∣∣G1{2, 3, 8}
∣∣ =

(
q2
0 + q2

1 + q2
2 + q2

3

)3
=
∥∥ q̄ ∥∥6

= 1 (102)

The matrix therefore always has full column rank.
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