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ON THE RADICAL OF A MONOMIAL IDEAL

JÜRGEN HERZOG, YUKIHIDE TAKAYAMA AND NAOKI TERAI

Abstract. Algebraic and combinatorial properties of a monomial ideal and its
radical are compared.

1. Introduction

There are simple examples of Cohen-Macaulay ideals whose radical is not Cohen-
Macaulay. The first such example is probably due to Hartshorne [5], who proved that
in positive characteristic the toric ring K[s4, s3t, st3, t4] is a set theoretic complete
intersection. With CoCoA or other computer algebra systems many other examples,
also in characteristic zero, can be constructed. The following example due Conca
was computed with CoCoA: let S = K[x1, x2, x3, x4, x5] and J = (x2

2 − x4x5, x1x3 −
x3x4, x3x4 − x1x5) ⊂ S. Then S/J is a 2-dimensional Cohen-Macaulay ring,

√
J =

(x1x3 − x1x5, x3x4 − x1x5, x
2
2 − x4x5, x

2
1x2 − x1x2x4, x2x

2
3 − x2x3x5) and S/

√
J is not

Cohen-Macaulay. Indeed, the depth of S/
√

J equals 1. On the other hand it is
well-known that the Cohen-Macaulay property of a monomial ideal is inherited by
its radical. The reason is that the radical of a monomial ideal is essentially obtained
by polarization and localization. This observation, was communicated to the third
author by David Eisenbud. Both operations, polarization and localization, preserve
the Cohen-Macaulay property. An explicit proof of this fact can be found in [11].
The purpose of this paper is to exploit this idea and to show that many other nice
properties are inherited by the radical of a monomial ideal.

2. The comparison

For the proof of the main result of this paper we need some preparation. We begin
with the following extension [10, Theorem 1.1] of Hochster’s formula [1, Theorem
5.3.8] describing the local cohomology of a monomial ideal.

Let K be a field, S = K[x1, . . . , xn] the polynomial ring and I ⊂ S a monomial
ideal. The unique minimal monomial system of generators of I is denoted by G(I).
For i = 1, . . . , n we set

ti = max{νi(u) : u ∈ G(I)},
where for a monomial u ∈ S, u = xa1

1 · · ·xan
n we set νi(u) = ai for i = 1, . . . , n.

For a = (a1, . . . , an) ∈ Zn, we set

Ga = {i : 1 ≤ i ≤ n, ai < 0},
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and define the simplicial complex ∆a(I) whose faces are the sets L\Ga with Ga ⊂ L,
and such that L satisfies the following condition: for all u ∈ G(I) there exists i /∈ L
such that νi(u) > ai ≥ 0.

Notice that the inequality ai ≥ 0 in the definition of ∆a(I) follows from the
condition i /∈ L ⊃ Ga. It is included only for the reader’s convenience.

With the notation introduced one has

Theorem 2.1 (Takayama [10]). Let I ⊂ S be a monomial ideal. Then the Hilbert

series of the local cohomology modules of S/I with respect to the Zn-grading is given

by

Hilb(H i
m
(S/I), t) =

∑

F∈∆

∑

a

dimK H̃i−|F |−1(∆a(I); K)ta

where ∆ is the simplicial complex corresponding to the Stanley-Reisner ideal
√

I,
and the second sum is taken over all a ∈ Zn such that ai ≤ ti − 1 for all i, and

Ga = F .

As a first application of this theorem we have

Corollary 2.2. Let I ⊂ S be a monomial ideal. Then

a(S/I) ≤
n

∑

i=1

ti − n,

where a(S/I) is the a-invariant of S/I.

Proof. By Theorem 2.1, we know that H i
m
(R)a = 0 for all i and for all a ∈ Z

n such
that ai > ti − 1 for some i. Thus in particular, if d = dim R, then Hd

m
(R)j = 0 for

j >
∑n

i=1
ti − n. �

We say that S/I has maximal a-invariant if the upper bound in Corollary 2.2 is
attained, that is, if a(S/I) =

∑n
i=1

ti − n.

For our main theorem the next corollary is important.

Corollary 2.3. Let I ⊂ S be a monomial ideal. Then we have the following iso-

morphisms of K-vector spaces

H i
m
(S/I)a

∼= H i
m
(S/

√
I)a

for all a ∈ Zn with ai ≤ 0 for 1 ≤ i ≤ n.

Proof. Consider the multigraded Hilbert series of H i
m
(S/I) and H i

m
(S/

√
I). Let

a ∈ Zn be such that ai ≤ 0 for all 1 ≤ i ≤ n. Then by Theorem 2.1, we have

dimK H i
m
(S/I)a = dimK H̃i−|F |−1(∆a(I); K), and

dimK H i
m
(S/

√
I)a = dimK H̃i−|F |−1(∆a(

√
I); K),

For a monomial u we set supp(u) = {i : xi divides u}. Now since for every u ∈ G(I)

there exists v ∈ G(
√

I) such that supp(u) ⊃ supp(v), and since for every v ∈ G(
√

I)

there exists u ∈ G(I) such that supp(v) = supp(u), it follows that ∆a(I) = ∆a(
√

I).

Thus we have dimK H i
m
(S/I)a = dimK H i

m
(S/

√
I)a. �
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Let M be a graded S-module. For the convenience of the reader we recall the
following two concepts which generalize the Cohen-Macaulay property and non-pure
shellability of simplicial complexes.

The following definition is due to Stanley [9, Section II, 3.9]:

Definition 2.4. Let M be a finitely generated graded S-module. The module M
is sequentially Cohen-Macaulay if there exists a finite filtration

0 = M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mr = M

of M by graded submodules of M such that each quotient Mi/Mi−1 is CM, and
dim M1/M0 < dim M2/M1 < . . . < dim Mr/Mr−1.

It is known (see for example [6, Corollary 1.7]) that if M is sequentially Cohen-
Macaulay, then the filtration given in the definition is uniquely determined. We call
it the attached filtration of the sequentially Cohen-Macaulay module M .

The uniqueness of the filtration is seen as follows: suppose depth M = t, then M1

is the image of the natural map Extn−t
S (Extn−t

S (M, ωS), ωS) → M . Here ωS = S(−n)
is the canonical module of S. Then one notices that M/M1 is again sequentially
Cohen-Macaulay and uses induction on the length of the attached sequence.

In case M is a cyclic module, say, M = S/I, with attached filtration 0 = M0 ⊂
M1 ⊂ · · · , each of the the modules Mi is an ideal in S/I, and hence is of the
form Ii/I for certain (uniquely determined) ideals Ii ⊂ S. Thus S/I is sequentially
Cohen-Macaulay, if and only of there exists a chain of graded ideals

I = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ir = S

such that each factor module Ii+1/Ii is Cohen-Macaulay with

dim Ii+1/Ii < dim Ii+2/Ii+1

for i = 0, . . . , r − 2. Moreover if this property is satisfied, then this chain of ideals
is uniquely determined.

In the particular case that I is a monomial ideal, the natural map

Extn−t
S (Extn−t

S (S/I, ωS), ωS) → S/I

is a homomorphism of multigraded S-modules. This implies that the attached chain
of ideals of the sequentially Cohen-Macaulay module S/I is a chain of monomial
ideals.

Now let us briefly describe the other concept which was introduced by Dress [4]:

Definition 2.5. Let M be a finitely generated graded S-module. A filtration

0 = M0 ⊂ M1 ⊂ M2 ⊂ . . . ⊂ Mr = M

of M by graded submodules of M is called clean if for all i = 1, . . . , r there exists a
minimal prime ideal Pi of M such that Mi/Mi−1

∼= S/Pi. The module M is called
clean if it has a clean filtration.

Again, if M = S/I is cyclic, then S/I is clean if there exists a chain of ideals
I = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ir−1 ⊂ Ir = S such that Ii+1/Ii

∼= S/Pi with Pi a minimal
prime ideal of I. In other words, for all i = 0, . . . , r− 1 there exists fi+1 ∈ Ii+1 such
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that Ii+1 = (Ii, fi+1) and Pi = Ii : fi+1. In case I is a monomial ideal we require
that all fi are monomials.

Dress [4] shows that a Stanley-Reisner ideal I∆ is clean if and only the simplicial
complex ∆ is non-pure shellable in the sense of Björner and Wachs [3].

In the proof of our main theorem we use polarization, as indicated in the in-
troduction. Let I = (u1, . . . , um) with ui = xai1

1 · · ·xain
n . We fix some number i

with 1 ≤ i ≤ n, introduce a new variable y, and set vk = xak1

1 · · ·xaki−1

i y · · ·xakn
n

if aki > 1,and vk = uk otherwise. We call J = (v1, . . . , vm) the 1-step polarization

of I with respect to the variable xi. The element y − xi is regular on S[y]/J and
(S[y]/J)/(y − xi)(S[y]/J) ∼= S/I, see [1, Lemma 4.2.16].

Let as above ti = max{νi(uj) : j = 1, . . . , m}, and set t =
∑n

i=1
ti − n. Then it is

clear that if we apply t suitable 1-step polarizations, we end up with a squarefree
monomial ideal Ip, which is called the complete polarization of I.

Now we are ready to present the main result of this section.

Theorem 2.6. Let K be a field, S = K[x1, . . . , xn] the polynomial ring over K,

and I ⊂ S a monomial ideal. Suppose that S/I satisfies one of the following proper-

ties: S/I is (i) Cohen-Macaulay, (ii) Gorenstein, (iii) sequentially Cohen-Macaulay,

(iv) generalized Cohen-Macaulay, (v) Buchsbaum, (vi) clean, or (vii) level and has

maximal a-invariant. Then S/
√

I satisfies the corresponding property.

Proof. We first use the trick, mentioned in the introduction, to show that the Betti-
numbers βi(I) of I do not increase when passing to

√
I.

We denote by Ip the complete polarization of I. Let T be the polynomial ring
in the variables that are needed to polarize I. Then Ip is a squarefree monomial
ideal in T with βi(I

p) = βi(I) for all i. It is easy to see that if we localize at the
multiplicative set N generated by the new variables which are needed to polarize I,
one obtains IpTN = (

√
I)TN . Since localization is an exact functor, the localized

free resolution will be a possibly non-minimal free resolution of (
√

I)TN . Since the
extension S → TN is flat, the desired inequality follows.

Proof of (i) and (ii): The inequality βi(
√

I) ≤ βi(I) implies that depth S/
√

I ≥
depth S/I. On the other hand, dim S/I = dim S/

√
I. This implies that S/

√
I is

Cohen-Macaulay, if S/I is so.
Suppose now that S/I is Gorenstein. Then βq(S/I) = 1 where q is the codimen-

sion of I, see [1, Theorem 3.3.7 and Corollary 3.3.9]. Therefore, βq(S/
√

I) ≤ 1.

Since I and
√

I have the same codimension, we see that βq(S/
√

I) > 0, and hence

βq(S/
√

I) = 1. Again using [1, Theorem 3.3.7 and Corollary 3.3.9] we conclude that

S/
√

I is Gorenstein. This fact follows also from [2, Corollary 3.4].

Proof of (iii): Since S/I is sequentially Cohen-Macaulay there exists a chain of
monomial ideals

I = I0 ⊂ I1 ⊂ I2 ⊂ · · · ⊂ Ik = S

such that Ij+1/Ij is Cohen-Macaulay for all j = 0, . . . , k−1 and such that dim I1/I0 <
dim I2/I1 < . . . < dim Ik/Ik−1.
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Suppose xa
1 with a > 1 divides a generator of I. Then we apply a 1-step po-

larization for x1 to all the ideals Ii, and obtain a chain of ideals J = J0 ⊂ J1 ⊂
J2 ⊂ · · · ⊂ Jk = S̃ where S̃ = S[y]. It follows that y − x1 is S̃/Ji-regular and

(S̃/Ji)/(y − x1)(S̃/Ji) ∼= S/Ii for all i. Therefore y − x1 is Ji+1/Ji-regular, and
(Ji+1/Ji)/(y − x1)(Ji+1/Ji) ∼= Ii+1/Ii. Thus J is sequentially Cohen-Macaulay.

Since the complete polarization Ip
i of the ideals Ii for i = 1, . . . k, is obtained by a

sequence of 1-step polarizations, it follows that Ip is sequentially Cohen-Macaulay.
As Ip

i /Ip
i+1 is Cohen-Macaulay, we conclude as in the proof of (i) that

√
Ii+1/

√
Ii is

Cohen-Macaulay of the same dimension as Ii+1/Ii. This shows that
√

I is sequen-
tially Cohen-Macaulay.

Proof of (iv) and (v): Assuming that S/I is generalized Cohen-Macaulay or
Buchsbaum, one has that S/I is equidimensional and that H i

m
(S/I)j = 0 for all

i < dim S/I, and all but finitely many j. Since I and
√

I have the same minimal

prime ideals, it follows that
√

I is again equidimensional.
Let Zn

− be the set of all a ∈ Zn such that ai ≤ 0 for i = 1, . . . , n. By Corollary

2.3, H i
m
(S/I)a = H i

m
(S/

√
I)a for all a ∈ Zn

−. Moreover, by Hochster’s formula,

H i
m
(S/

√
I)a = 0 for all a 6∈ Zn

−. Therefore, dimK H i
m
(S/

√
I)j ≤ dimK H i

m
(S/I)j for

all j ≤ 0 and H i
m
(S/J)j = 0 for j > 0. It is known [8] that a squarefree monomial

ideal is Buchsbaum if and only if it is generalized Cohen-Macaulay. Thus (iv) and
(v) follow.

Proof of (vi): Assuming that S/I is clean, there exists a chain of monomial ideals
I = I0 ⊂ I1 ⊂ I2 ⊂ . . . ⊂ Ir−1 ⊂ Ir = S such that Ii+1/Ii

∼= S/Pi with Pi a minimal
prime ideal of I. We claim that

√
Ii+1/

√
Ii = S/Pi, if

√
Ii+1 6=

√
Ii. This then

implies that S/
√

I is clean, since the prime ideals Pi are also minimal prime ideals

of
√

I.
In order to prove this claim we introduce some notation: let u = xa1

1 xa2

2 · · ·xan
n

and v = xb1
1 xb2

2 · · ·xbn
n be two monomials. Then we set

u : v =
n

∏

i=1

x
max{ai−bi,0}
i , and ured =

∏

i

ai>0

xi.

We then have

(u : v)red = (ured : vred)
∏

i,

ai>bi>0

xi.(1)

Note that if I is a monomial ideal with monomial generators u1, . . . , um, then
√

I = ((u1)red, . . . , (um)red) and I : v = (u1 : v, . . . , um : v).

Back to the proof of our claim, our assumption implies that for all i = 0, . . . , r − 1
there exists a monomial vi+1 ∈ Ii+1 such that Ii+1 = (Ii, vi+1) and Pi = Ii : vi+1.
Suppose Pi = (xi1 , . . . , xis). Then Pi = Ii : vi+1 if and only if

(a) for all j = 1, . . . , s there exists u ∈ Ii such that u : vi+1 = xij , and
5



(b) for all monomial generators w ∈ Ii there exists an integer j with 1 ≤ j ≤ s
such that xij |(w : vi+1).

We need to show that Pi =
√

Ii : (vi+1)red, if (vi+1)red 6∈
√

Ii, and prove this by
checking (a) and (b) for the pair

√
Ii and (vi+1)red.

Let j be an integer with 1 ≤ j ≤ s. Then there exists u ∈ Ii such that u : vi+1 =
xij . Suppose u =

∏n
k=1

xak

k and vi+1 =
∏n

k=1
xbk

k , then (1) implies that xij = (u :
vi+1)red = (ured : (vi+1)red)w where w =

∏

k, ak>bk>0
xk. Suppose xij divides w, then

ured : (vi+1)red = 1. This implies that (vi+1)red ∈
√

Ii, a contradiction. Therefore
ured : (vi+1)red = xij , and this proves (a). The argument also shows that bij = 0 for
j = 1, . . . , s.

For the proof of (b), let w ∈ Ii be a monomial generator. Then there exists an inte-
ger j with 1 ≤ j ≤ s such that xij |(w : vi+1). It follows that xij divides (w : vi+1)red.
Let w =

∏n
k=1

xck

k . Then (1) implies that xij divides (wred : (vi+1)red)
∏

k, ck>bk>0
xk.

However, bij = 0, as we have seen in the proof of (a). Therefore, xij divides

(wred : (vi+1)red). Since
√

Ii is generated by the monomials wred where the monomials
w are the generators of Ii, condition (b) follows.

Proof of (vii): By assumption S/I is level. This means that S/I is Cohen-
Macaulay and that all generators of the canonical module ωS/I of S/I have the
same degree, say g. In this situation the a-invariant a(S/I) of S/I is just −g, see
[1, Section 3.6]. Suppose d = dim S/I; then I has a graded minimal free resolution
F of length q = n − d − 1 with Fq = Sb(−c), Since ωS/I may be represented as the
cokernel of F ∗

q−1 → F ∗
q , which is dual of the map Fq → Fq−1 with respect to S(−n),

it follows that a(S/I) = c − n.
For i = 1, . . . , n we set again

ti = max{νi(u) : u ∈ G(I)}.
By Corollary 2.2, one has the upper bound a(S/I) ≤

∑n
i=1

ti − n. Since we assume
that S/I has maximal a-invariant, the upper bound is reached. Let Ip ⊂ T the
complete polarization of I. This polarization requires precisely t =

∑n
i=1

ti − n 1-
step polarizations. It follows that S/I is obtained from T/Ip as a residue class ring
modulo a regular sequence of linear forms of length t. From the above description
of the a-invariant we now conclude that a(T/Ip) = a(S/I) − t = 0. Let G be
the multigraded minimal free resolution of the squarefree monomial ideal Ip. Since
proj dim Ip = proj dim I = q, and since a(T/Ip) = 0, we see that Gq = T (−m)b,
where m = n + t = dim T . This implies that Gq as a multigraded module is
isomorphic to T (−e)b where e = (1, 1, . . . , 1).

For i = 1, . . . , m let ei be the ith canonical basis vector of Zm. Then e =
∑m

i=1
ei,

and we may assume that deg xi = ei for i = 1, . . . , n, while the new variables have
the multidegrees ei with i = n + 1, . . . , m. We define a new multigrading on T and
T/Ip: for an element f of multidegree a we set deg′ f = π(a), where π : Zm → Zn is
the projection onto the first n components of Zm.

As above, let N be the multiplicative set generated by the t new variables which
are needed to polarize I. Then IpTN =

√
ITN , and localization with respect to N

preserves the new multigrading since deg′ f = 0 for all f ∈ N . Therefore GN is,
6



with respect to the new grading, a multigraded free TN -resolution of
√

ITN with
(Gq)N = TN (−1, . . . ,−1)b and (−1, . . . ,−1) ∈ Zn.

Let H be the multigraded minimal free S-resolution of
√

I. Then HTN is the
minimal multigraded free TN -resolution of

√
ITN . A comparison with the (possibly

non-minimal) graded free TN -resolution GN shows that Hq is a direct summand of

copies of S(−1, . . . ,−1). Since S/I and S/
√

I are Cohen-Macaulay of the same

dimension, we see that q = proj dim I = proj dim
√

I. Therefore all summands in
the last step of the resolution H of S/

√
I have the same shift. This show that S/

√
I

is level. �

Remark 2.7. In Theorem 2.6(i) (or (iv)), it suffices to require that I is an arbitrary

homogeneous (generalized) Cohen-Macaulay ideal whose radical
√

I is a monomial
ideal, i.e. we do not need to require that I itself is a monomial ideal.

Indeed it is enough to prove that there is a surjective homomorphism H i
m
(S/I) −→

H i
m
(S/

√
I) for all i. The natural surjective map S/I −→ S/

√
I induce for all i

commutative diagrams

Exti(S/
√

I, S) −→ Exti(S/I, S)
↓ ↓

H i√
I
(S) −→ H i

I(S).

Since H i√
I
(S) ∼= H i

I(S) and since Exti(S/
√

I, S) −→ H i√
I
(S) is an essential exten-

sion (see [12]), it follows that Exti
S(S/

√
I, S) −→ Exti

S(S/I, S) is injective for all i.
Hence the desired conclusion follows by local duality.

On the other hand, as for the Gorenstein property, we must assume that I is a
monomial ideal. For example, I = (xy + yz, xz) is a complete intersection, hence, a

Gorenstein ideal, while
√

I = (xy, yz, xz) is not Gorenstein.

3. The inverse problem

The results of the previous section indicate the following question: for a subset
F ⊂ [n], let PF be the prime ideal generated by the xi with i ∈ F . The minimal
prime ideals of a squarefree I are all of this form, and since I is a radical ideal it is
the intersection of its minimal prime ideals, say, I =

⋂r
i=1

PFi
with Fi ⊂ [n].

Suppose I is Cohen-Macaulay. For which exponents aij is the ideal

J =
r

⋂

i=1

(x
aij

j : j ∈ Fi)

again Cohen-Macaulay?
Of course if we raise the xi uniformly to some power, say xi is replaced by xai

i

everywhere in the intersection, then the resulting ideal J is the image of the flat
map S → S with xi 7→ xai

i for all i. Thus in this case J will be Cohen-Macaulay, if
I is so. On the other hand, if we allow arbitrary exponents, the question seems to
be quite delicate, and we do not know a general answer. However, if we require that
for all choices of exponents the resulting ideal is again Cohen-Macaulay, a complete
answer is possible.
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We need a definition to state the next result. Let L be a monomial ideal.
Lyubeznik [7] defines the size of L as follows: let L =

⋂r
j=1

Qj be an irredun-
dant primary decomposition of L, where the Qi are monomial ideals. Let h be the
height of

∑r
j=1

Qj , and denote by v the minimum number t such that there exist

j1, . . . , jt with
√

∑t
i=1

Qji
=

√

∑r
j=1

Qj . Then size L = v + (n − h) − 1.

Since for monomial ideals the operations of forming sums and taking radicals can
be exchanged, the numbers v and h, and hence the size of L depends only on the
associated prime ideals of L.

We shall need the following result of Lyubeznik [7, Proposition 2]:

Lemma 3.1. Let L be a monomial ideal in S. Then depth S/L ≥ size L.

Now we can state the main result of this section.

Theorem 3.2. Let I ⊂ S = K[x1, . . . , xn] be a Cohen-Macaulay squarefree mono-

mial ideal, and write

I =

r
⋂

i=1

PFi
,

where the sets Fi ⊂ [n] are pairwise distinct, and all have the same cardinality c.
For i = 1, . . . , r and j = 1, . . . , c we choose integers aij ≥ 1, and set

QFi
= (x

aij

j : j ∈ Fi) for i = 1, . . . , r.

Then the following conditions are equivalent:

(a) for all choices of the integers aij the ideal

J =

r
⋂

i=1

QFi

is Cohen-Macaulay;

(b) for each subset A ⊂ [r], the ideal IA =
⋂

i∈A PFi
is Cohen-Macaulay;

(c) height PFi
+ PFj

= c + 1 for all i 6= j;
(d) for r ≥ 2 either |

⋃r
i=1

Fi| = c + 1, or |
⋂r

i=1
Fi| = c − 1;

(e) after a suitable permutation of the elements of [n] we either have

Fi = {1, . . . , i − 1, i + 1, . . . , c, c + 1} for i = 1, . . . , r,

or

Fi = {1, . . . , c − 1, c − 1 + i} for i = 1, . . . , r;

(f) size I = dim S/I;
(g) S/L is Cohen-Macaulay for any monomial ideal L such that Ass L = Ass I.

Proof. (a) ⇒ (b): Let QFi
= (x2

j : j ∈ Fi) if i ∈ A, and QFi
= PFi

if i 6∈ A. By
assumption, J =

⋂r
i=1

QFi
is Cohen-Macaulay. Hence the complete polarization Jp

of J is again Cohen-Macaulay. We have Jp =
⋂r

i=1
Qp

Fi
with Qp

Fi
= (xjyj : j ∈ Fi) if

8



i ∈ A, and Qp
Fi

= PFi
if i 6∈ A. Let N be the multiplicative set generated by all the

variables xi. Then Jp
N is Cohen-Macaulay, and hence

Jp
N =

⋂

i∈A

(yj : j ∈ Fi).

This shows that IA =
⋂

i∈A PFi
is Cohen-Macaulay.

(b) ⇒ (c): Consider the exact sequence

0 −→ S/(PFi
∩ PFj

) −→ S/PFi
⊕ S/PFj

−→ S/(PFi
+ PFj

) −→ 0.

The rings S/P
i
and S/P

j
are Cohen-Macaulay of dimension n−c, while S/(PFi

+PFj
)

is Cohen-Macaulay of dimension n−d where d is the height of PFi
+PFj

. The exact
sequence yields that S/(PFi

∩ PFj
) is Cohen-Macaulay if and only if d = c + 1.

Since by assumption S/PFi
∩ PFj

is Cohen-Macaulay for all i 6= j, the assertion
follows.

(c) ⇒ (d): We must show: given a collection of subsets F1, . . . , Fr ⊂ [n] with

(i) |Fi| = c for all i;
(ii) |Fi ∪ Fj | = c + 1 for all i 6= j.

Then either |
⋃r

i=1
Fi| = c + 1, or |

⋂r
i=1

Fi| = c − 1.
Suppose this is not the case. Then, since |F1 ∩ F2| = c − 1 and |F1 ∪ F2| = c + 1,

there exist integers i and j such that F1 ∩ F2 6⊂ Fi, and Fj 6⊂ F1 ∪ F2. The
conditions (i) and (ii) then imply that there exists an element x ∈ F1 ∩F2 such that
F1 ∪F2 \{x} = Fi, and an element y ∈ Fj \ (F1∪F2) such that Fj = {y}∪ (F1∩F2).
It follows that Fi ∪ Fj = (F1 ∪ F2) ∪ {y}. This contradicts (ii).

(d) ⇒ (e): Assume that |
⋃r

i=1
Fi| = c + 1. After a suitable permutation of the

elements of [n] we may assume that
⋃r

i=1
Fi = {1, . . . , c + 1}. Since |Fi| = c, there

exists ji ∈ {1, . . . , c + 1} such that Fi = {1, . . . , c + 1} \ {ji}. Since the sets Fi are
pairwise distinct it follows that ji 6= jk for i 6= k. Thus after applying again suitable
permutation we may assume that ji = i for i = 1, . . . , r.

The second statement follows similarly.
(e) ⇒ (f): In the first case, v = 2 and h = (c + 1), while in the second case, v = r

and h = c − 1 + r. Thus in both cases size I = n − c = dim S/I.
(f) ⇒ (g): By Lemma 3.1 and the remark preceding the lemma, we have

depth S/L ≥ size L = size I = dim S/I = dim S/L.

Hence S/L is Cohen-Macaulay.
Finally the implication (g) ⇒ (a) is trivial. �

Corollary 3.3. With notation as above, the following conditions are equivalent:

(a) J is a Gorenstein ideal for all choices of the integers aij;

(b) r = 1 or c = 1.

Proof. If r = 1 or c = 1, then J is complete intersection for all choices of the integers
aij . Thus (b) implies (a).

Conversely suppose condition (b) is not satisfied. We assume that c > 1, and have
to show that r = 1. By Theorem 3.2 we have |

⋂r
i=1

Fi| = c− 1 or |
⋃r

i=1
Fi| = c + 1.

9



In the first case we may assume that Fi = {1, . . . , c − 1, i + c − 1} for i = 1, . . . r.
Assume r > 1, and let QF1

= (x2
1, x2, . . . , xc) and QFi

= PFi
for i ≥ 2. Then

J =
⋂r

i=1
QFi

= (x2
1, x1x2,

∏r−1

i=0
xc+i) is not Gorenstein, a contradiction.

In the second case suppose that r ≥ 3. With the same argument as in the
proof of Theorem 3.2 it follows that IA =

⋂

i∈A PFi
is a Gorenstein ideal for all

subsets A ⊂ [r]. Therefore PF1
∩ PF2

∩ PF3
is Gorenstein. We may assume that

F1 = {1, 2, . . . , c}, F2 = {2, 3, . . . , c + 1} and F3 = {1, 3, 4, . . . , c + 1}. Then PF1
∩

PF2
∩ PF3

= (x1x2, x1xc+1, x2xc+1, x3, . . . , xc) is not Gorenstein, a contradiction.
On the other hand, if r = 2, then |

⋂r
i=1

Fi| = c − 1, and we are again in the first
case. Thus we must have that r = 1. �

Remark 3.4. From a view point of Stanley-Reisner rings, the ideal I in the first case
of condition (e) in Theorem 3.2 corresponds to an iterated cone of a 0-dimensional
simplicial complex. In this case it is known that S/I itself is Gorenstein if the
corresponding 0-dimensional simplicial complex consists of at most 2 points, see [9,
Theorem 5.1(e)]. The corollary also follows from this fact.
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